The Ontology of Communications:
Capturing Meaning from Organizational Communications

by

Gareth D. Keeves

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Business Administration) in the University of Michigan 2018

Doctoral Committee:
Professor James D. Westphal, Chair
Professor Gerald F. Davis
Assistant Professor Derek Harmon
Professor Mark S. Mizruchi
ACKNOWLEDGMENTS

Throughout my time in Michigan, I have been fortunate to receive the support and encouragement of so many friends and colleagues, which has allowed me to develop as a scholar, find my research passion, and has culminated in the writing of this dissertation.

First, I would like to thank my committee: Jim Westphal, Jerry Davis, Mark Mizruchi, and Derek Harmon, each of whom has had a significant impact on the direction, structure, and shape of my work. Since day one, Jim has provided foundational guidance, not only on research but also my broader academic outlook. From crafting ideas and developing an argument, through structuring and framing a paper, working with him has given me invaluable insight into the academic process. The perspective that he has ingrained will undoubtedly shape my entire academic career, providing the theoretical basis to build my subsequent work. In every way, Jim has been a fantastic mentor, always generous with his time, and there to provide support, guidance, and encouragement; there could not have been a better person for me to have worked with. My path to this dissertation was also significantly influenced by Jerry and the big-data camp that he organized in my first year. His enthusiasm for computational analysis helped me to see the potential of this rapidly evolving field within organizational research, and his encouragement and suggestions have helped broaden my thinking while helping me envisage the overall contribution of my work. I am also very grateful for the support that I have received from Mark throughout my Ph.D. The sociology class that I took with him early in the program fundamentally shaped my outlook of the field, helping me make connections between my research and sociological theories, and situate my work within the broader social science
literature. His thoughtful suggestions have helped me refine the framing and positioning of my work, sharpening my contribution to the overall development of social science theories. I am also very appreciative to have received the guidance of Derek. His insights into the impact of the structuring of language and deep understanding of the philosophies of meaning have allowed me to more clearly see the potential of research considering the multiple layers of structuring within textual information. Not only has Derek shaped my thinking on language, but he has also been extremely generous with help and encouragement, and his enthusiasm has reinforced the passion that I have for my research.

I have also benefited immensely from the overall Michigan community, the broad multidisciplinary training, and the acceptance of new approaches and ways of thinking that have given me the scholarly freedom to develop this dissertation. One of the most influential components of my training was the strategy classes completed in the formative stage of my time in the program; classes that shaped my trajectory, and still fundamentally influence my entire outlook on the strategy field. As I look back, my overall interest in understanding how communication evolves may be traced in part to Felipe Csaszar’s Organizational Cognition class; my outlook on the evolution of communications parallels work that I was exposed to on organizational evolution. As I complete this dissertation and begin considering opportunities for extending the approach developed, possibilities to draw from the Carnegie research that I was introduced to in his class are increasingly resonating. Michael Jensen’s Sociology of Strategy class also profoundly impacted my thinking, including my overall theoretical outlook and my appreciation of the need for a clear connection between theoretical constructs and how those constructs are measured. Indeed, this perspective helped me see limitations in existing approaches to characterize textual information and the opportunities from systematically
capturing a representation of what is said. Gautam Ahuja’s Theoretical Perspectives in Strategy class also fundamentally shaped my entire understanding of the strategy field. His class continues to influence how I synthesize the key perspectives, helping me make connections between papers and identify discrepancies in the literature. Minyuan Zhao’s International Business class also helped broaden my thinking, and as I consider opportunities to expand my approach to capture multi-lingual representations of text, the theories that we discussed in her class are again influencing my outlook. Finally, Brian Wu’s Boundaries of the Firm class allowed me to appreciate the unique contribution and importance of economic perspectives in strategy. Overall, one of the key strengths of the strategy field comes from its diversity in perspectives, and the broad awareness and appreciation for the different areas of the field that I have gained throughout my doctoral training underpin my ability to identify connections between my work and other areas.

Of course, my training extends far beyond just the strategy classes that I have taken, and my thoughts are undoubtedly influenced by the interactions with scholars from across the business school and beyond. Various conversations that I have had with Guy Shani, Sun Hyun Park, Raji Kunapuli, and Ronnie Lee have helped me get where I am today. I was also very fortunate to have had the opportunity to collaborate with Suzan Ashford and Madeline Ong on a book chapter, through which I learned a great deal on the writing process and how to structure my ideas. My outlook is also influenced in distinct ways from the theories and perspectives that I was exposed to in other doctoral classes including Greta Krippner’s Theories and Practices of Sociology class; Phoebe Ellsworth’s Social Psychology class; David Mayer’s Complex Cognitive Processes class; and Jeffrey Smith’s Econometrics class. Jordan Siegel has also been a
fantastic source of academic guidance, and Brian Jones and the Doctoral office have provided fantastic support throughout the program.

My Michigan experience would not have been complete were it not for the wealth of friendships that I have made. I was so fortunate to have Casidhe Horan Troyer, Ashley Hardin, Reginald Edwards, Cassandra Chambers and Pete Aceves in my cohort – friendships that will each transcend my time at Michigan. I am also extremely grateful to my parents, who have always been there for me, providing help throughout the program. Finally, I have been so lucky to have met Kelsey, who has provided so much support throughout the journey. Overall, my time at Ann Arbor has been terrific, and I am so appreciative of everyone who has helped me develop and get where I am today.
PREFACE

One of the most profound pieces of advice that I was given during my time at Michigan was to envision the research landscape in 100 years time; to consider the questions that will have been examined, the insight that will have been gained, and the new dimensions that our theories will have explored and explained. While I cannot predict five years into the future, let alone one hundred, I can imagine a very different field than we currently operate in. Specifically, I can imagine a world where it is possible to examine the evolution of meaning, the structuring of that meaning, and the dynamics of how the structuring of meaning evolves. A future where it is feasible to capture a representation of everything that is said, how this aggregates, and how this aggregation evolves. In a similar way to how empirical analysis complemented early case studies, enriching the types of questions that could be analyzed, I see a world where the ability to systematically capture meaning allows us to push the boundaries of our understanding of the social world.

Since it is easy to ignore good advice, for nearly five years, it remained dormant, tucked away, but largely out of mind. However, the advice had a second component, and if I had paid more attention to that, maybe the length of my Ph.D. would have been much less. Specifically, I was advised that once distant research areas can be imagined, the next step is to implement them; to explore the questions that researchers of the future will ask, to develop the approaches to examine them, and to create the envisioned world. While I cannot re-write the past five years, I can create the next. This is my attempt to change theoretical discussion by opening new dimensions on which research can be based, helping to create the advancements that I believe are
not only feasible, but are an important component to the overall impact and vibrancy of the management and strategy field. It is an attempt to infuse a theoretical basis into large-scale textual analysis, enriching theory by enabling research questions that inherently require large volumes of rich, nuanced textual data.

Specifically, this dissertation develops and implements an approach to characterize textual information, transforming raw text into a consistent representation of what is said while preserving the structure. It is an approach to capture meaning, and the structuring of that meaning, en masse, such that it becomes feasible to envision and examine a new set of questions on how communications and discussions evolve. This dissertation is intended as the first step to create the world that I can imagine – the stepping-stone that illustrates the potential of synthesizing meaning while laying the foundations to make this prospect a reality. While it is impossible to predict the future of academia, through this dissertation, it is my intention to be firmly situated in the center of shaping it.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. Introduction and Motivation</td>
<td>1</td>
</tr>
<tr>
<td>General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Overview of Existing Computational Approaches</td>
<td>9</td>
</tr>
<tr>
<td>Unsupervised Computational Linguistic Approaches</td>
<td>9</td>
</tr>
<tr>
<td>Supervised Machine-Learned Classification of Texts</td>
<td>11</td>
</tr>
<tr>
<td>Information Extraction Approaches</td>
<td>13</td>
</tr>
<tr>
<td>Overview of the Approach Developed in this Dissertation</td>
<td>17</td>
</tr>
<tr>
<td>Overview of the Dissertation</td>
<td>23</td>
</tr>
<tr>
<td>II. Qualitative Development Process</td>
<td>24</td>
</tr>
<tr>
<td>Unit of Analysis and Primary Information Types</td>
<td>24</td>
</tr>
<tr>
<td>Development of the Primary Ontologies</td>
<td>27</td>
</tr>
<tr>
<td>Removal of Surface Level Variation</td>
<td>32</td>
</tr>
<tr>
<td>III. Overview of the Information Extraction Process</td>
<td>34</td>
</tr>
<tr>
<td>Stage 1: Concept Recognition</td>
<td>34</td>
</tr>
<tr>
<td>Stage 2: Semantic Interpretation</td>
<td>35</td>
</tr>
<tr>
<td>Stage 3: Standardization and Verification of Concepts</td>
<td>36</td>
</tr>
<tr>
<td>IV. Managerial Backgrounds Implementation Specifics</td>
<td>38</td>
</tr>
<tr>
<td>Extension of the Information Extraction Approaches to Represent Entire Sentences</td>
<td>39</td>
</tr>
<tr>
<td>Concept Recognition</td>
<td>42</td>
</tr>
<tr>
<td>Semantic Interpretation</td>
<td>43</td>
</tr>
<tr>
<td>Standardization and Verification of Concepts</td>
<td>45</td>
</tr>
<tr>
<td>V. Dimensions of Interest, Aggregation, and Comparisons</td>
<td>53</td>
</tr>
<tr>
<td>Consideration of Theoretically Interesting Dimensions</td>
<td>53</td>
</tr>
<tr>
<td>Mathematical Approaches to Compare Text</td>
<td>56</td>
</tr>
<tr>
<td>Facilitation of Like-for-Like Comparisons</td>
<td>59</td>
</tr>
<tr>
<td>Structuring of Information</td>
<td>61</td>
</tr>
</tbody>
</table>

viii
LIST OF TABLES

TABLE

Table II.1 Illustration of Sentences Typical of Each Information Type. 27
Table II.2 Summary of Surface-Level Variation 32
Table IV.1 Summary of the Standardization Approaches 47
Table IV.2 Summary of Validation Approaches 51
Table V.1 Mathematical Operations Feasible with Ontologies 58
Table V.2 Approaches for Extracting the Order 62
Table A.1 Summary of Text Colors Used in the Dissertation 83
Table C.1 Summary of the Primary Concepts 86
Table C.2 Summary of the Connecting Concepts 87
Table D.1 Overall Summary of the Sub-Ontologies 90
Table D.2 Summary of Date-Like Events 91
Table D.3 Summary of Qualification Levels 94
Table D.4 Summary of Qualification Subjects 94
Table D.5 Most Common Standardized Universities 99
Table D.6 Summary of Managerial Functional Areas 102
Table D.7 Primary Managerial Levels 104
Table D.8 Summary of Main Entity Types 106
Table D.9 Primary Committee Types 109
Table D.10 Summary of Stock Exchanges 113
Table D.11 Summary of Characterization Areas 116
Table D.12 Summary of Experience Types 123
Table D.13 Summary of Professional License Areas 127
Table E.1 Sources of Non-Conformance to Ontologies 129
Table E.2 Proportion and Number of Terms Classified by Sub-Ontology Type 130
LIST OF FIGURES

FIGURE

Figure I.1 Illustrating Raw Text Populated to an Ontology 14
Figure I.2 Example of a Sentence Discussing a Manager’s Position History Represented in a Standardized Manner 19
Figure I.3 Example of a Sentence Discussing a Manager’s Qualifications Represented in a Standardized Manner 20
Figure I.4 Example of a Sentence Discussing a Manager’s Experiences Represented in a Standardized Manner 20
Figure I.5 Example of a Sentence Discussing a Manager’s Professional License Represented in a Standardized Manner 20
Figure II.1 Illustration of Sentences Split into the Five Primary Ontologies 27
Figure II.2 Overall Sentence Representations 28
Figure II.3 Managerial Position in the POSITION Sub-Ontology 29
Figure II.4 Illustration of Managerial Titles Dissected by Key Dimensions 30
Figure II.5 Managerial Position Standardized in the POSITION, EXPERIENCE, QUALIFICATION, and PROFESSIONAL_LICENSE Sub-Ontologies 32
Figure II.6 Illustration of How Different Sentence Constructions Standardize 33
Figure III.1 Illustration of the Process by which Information is Populated to the Ontologies 36
Figure III.2 Illustration of Standardization of Concepts 37
Figure IV.1 Illustration of Indicative Sentence Complexity and the Intent of the Process 38
Figure IV.2 Illustration of How Increasing the Sentence Length Increases Complexity 40
Figure IV.3 Illustration of Grouping Concepts 41
Figure IV.4 Summary of the Overall Process to Classify Terms into Concepts. 42
Figure IV.5 Overall Illustration of Groupings 44
Figure IV.6 Example of Interpreting the Semantic Relationships for a Single Sentence 45
Figure IV.7 Illustration of Dissecting Concepts with Sub-Concepts 46
Figure IV.8 Illustration of Dissecting Sub-Concepts to Properties 46
Figure IV.9 Illustration of Standardization Through Dissection 48
Figure IV.10 Illustration of Verification Through Dissection 48
Figure IV.11 Standardization of EDUCATION_INSTITUTION and LOCATION Concepts 50
Figure V.1 Illustration of Position Comparisons 55
Figure V.2 Illustration of Position Comparisons Across Multiple Sentences 56
Figure V.3 Illustration of How the Process Integrates with Traditional Research 59
Figure V.4 Illustration of Comparison of Overall Top Management Team 61
Figure VI.1 Impression Management Cycle 68
Figure VI.2 Illustrations of the Multiple Layers of Structure 69
Figure VI.3. Stylized Illustration of Different Forms of Managerial Diversity. 70
Figure D.44 Examples of the EXPERIENCE Sub-Ontology
Figure D.45 Specification of the QUALIFICATION Sub-Ontology
Figure D.46 Examples of the QUALIFICATION Sub-Ontology
Figure D.47 Examples of the QUALIFICATIONS Primary-Ontology
Figure D.48 Specification of the PROFESSIONAL_LICENSE Sub-Ontology
Figure D.49 Examples of the PROFESSIONAL_LICENSE Sub-Ontology
Figure E.1 Cumulative Distribution of Managerial Titles (Logarithmic Scale)
Figure E.2 Illustration of Connecting Company Areas to Associated NAICS codes through Wikipedia Data
Figure F.1 Mocked-Up of Ontologies for Selection Decisions
Figure F.2 Illustrations of Ontologies Populated in Spanish, with either a) English or b) Spanish Ontology Labels
LIST OF APPENDICES

APPENDIX

A. Text Colors Used in Dissertation

83

B. Collection of Managerial Background Data

84

C. Classifying the Text to Concepts

85
- Primary concepts
- Connecting concepts

D. Specifications of the Ontologies

91
- Dates and Date-Like-Events
- Length of Time
- Degree
- Education Institution
- Location
- Functional Area
- Management Level
- Company-Industry Area
- Management Title
- Committee
- Board
- Firm Financials
- Listing-Ownership
- Characterizations
- Company Description
- Company Name
- Person Name
- Background Details
- Position
- Experience
- Qualification
- Professional License

E. Standardization and Verification

128
- Summary of Standardization and Verification Status
- Approaches Under Development to Classify and Verify Fuzzy Concepts
- Initial Development of Automated Standardization of Industry and Company Areas to NAICS Codes

F. Expansion of the Approach

133
Expansion to Capture Top Manager Selection Decisions 133
Multi-Lingual Representations 134
ABSTRACT

This dissertation seeks to further scholarly understanding of the content and structure of organizational communications by developing an analytical approach to systematically transform communications into consistent ontologies. By representing the meaning of what is said in a consistent manner, while reflecting the underlying structuring of that information, this dissertation is intended to facilitate large-scale analysis of the evolution of meaning and different layers of structuring. Specifically, once textual information is transformed into consistent ontologies, it becomes feasible to examine the content of what is said, how that content is structured, and how sub-structures combine to overall meta-structures. As such, the overall approach developed is intended to enrich strategy, management, and social science research by allowing the development and testing of theories that inherently require large volumes of rich, nuanced data, such as the process by which high-level structuring of information evolves.

While the approach developed is general, able to be expanded across the social sciences, this dissertation focuses on capturing and representing meaning from managerial backgrounds. Specific consideration is given to illustrate how by removing surface-level variations, such as acronyms, synonyms, and superficial differences in sentence construction, inconsistently written sentences can be transformed to consistent ontologies. This dissertation also illustrates how consistently representing the key dimensions of the experiences, positions, qualifications and professional licenses discussed in managerial backgrounds, provides the basis for capturing theoretically meaningful concepts, that can be measured across the population of managers. By providing a path by which theoretically motivated constructs can be developed and utilized, this
dissertation is intended to bridge theoretically orientated social science research with advancements in data science, helping to facilitate the growth of theoretically-centered textual analysis, which has broad possibilities to enrich strategy and management theories.
CHAPTER I
Introduction and Motivation

General Introduction

There is no question that textual information represents a rich source of historical information to understand an array of firm actions. From analyzing strategic actions taken by organizations (Tripsas and Gavetti, 2000; Benner, 2010), to studying the dynamics of firm and stakeholder interactions (Chen and Hambrick, 1995; King, 2008), to understanding the overall evolution of a field or society (Fairclough, 1992; Barley and Kunda, 1992), the qualitative textual information produced by organizations, information intermediaries, and other stakeholders presents a wealth of detailed historical information for organizational researchers. Moreover, in addition to conveying factual information, communication provides opportunities to shape reality (Berger and Luckmann, 1967; Potter, 1996), and organizational communication is a way of managing audience perceptions (Bettman and Weitz, 1983; Elsbach, 2006; Fiss and Zajac, 2006). With communications underpinning and documenting organizational behaviors and how perceptions are shaped, it is unsurprising that scholars from a wide array of theoretical orientations have drawn on textual data to capture concepts of interest (e.g., Yoon and Park, 2004; Kennedy, 2005; Chatterjee and Hambrick, 2007), and that there is considerable scholarly interest in understanding organizational communication itself (e.g., Boje, 1991; Elsbach, 2006; Sillince, Jarzabkowski, and Shaw, 2012; Kahl and Grodal, 2016).
However, while communication underpins a substantial proportion of organizational theory and theoretical constructs, and a wealth of textual information is now easily available for researchers (including company filings, websites, conference calls and patents), the ability of researchers to systematically extract meaning from this information, or construct variables that closely map to concepts of theoretical interest, is limited. While qualitative studies give significant consideration to the content and form of firm communications (e.g., Martin et al., 1983; Elsbach, 1994; Fiol, 2002), more quantitative approaches often reduce complex, multifaceted theoretical concepts, to a list of keywords, the frequency of which are then counted. The list of constructs that researchers have attempted to capture via word counts is long, including the valence of the text (Loughran and McDonald, 2011; Bednar, Boivie, and Prince, 2013), future vs. past orientation (König et al., 2018), the ‘grammar’ of decision making (Crilly, Hansen, and Zollo, 2016) and institutional logics (Ocasio and Joseph, 2005). Although a particular dimension of meaning may be captured via vocabularies (Tausczik and Pennebaker, 2010; Loewenstein, Ocasio, and Jones, 2012), word usage is nevertheless just one lens through which language can be characterized (Fairclough, 1992), and the approach quickly becomes unfeasible for understanding complex ideas or how these complex ideas evolve over time. Moreover, although there is growing computational linguistics research on ways in which textual communications can be analyzed (e.g., Chowdhury, 2003; Aggarwal and Zhai, 2012), and certain fields such as biology and medicine have seen considerable interest in standardizing and extracting textual information (Cohen and Hersh, 2005; Simpson and Demner-Fushman, 2012; Lacey et al., 2017), there has been very little consideration of the ways in which computational linguistics can yield new theoretical insight in strategy and management research, nor has there
been a cumulative effort to systematically capture the spectrum of relationships discussed by firms in their communications.

This research endeavor seeks to enable analysis of the relationships and meaning discussed in organizational communications, by developing an approach to systematically capture and represent the nature and form of the meaning conveyed, which can ultimately be extended to the communications of the various stakeholders with which the organization interacts. Specifically, this research seeks to address three fundamental limitations with approaches that count words (or predefined phrases) that restrict theoretical development by constraining the types of concepts that can be measured; limitations that, as discussed later, are shared with other approaches which take words as the fundamental unit of analysis (e.g., topic modeling: Wilson and Joseph, 2015; Kaplan and Vakili, 2015; Bao and Datta, 2014).

The first limitation of word-based measures derives from the key assumption that meaningful concepts can be captured by analyzing words, or clusters of words, in isolation. Although this assumption may hold for certain concepts (e.g., arguably, the valence of the text Tausczik and Pennebaker, 2010; or high-level logics: Ocasio and Joseph, 2005), sentences are used to express relationships between concepts. At the simplest level, these relationships express connections between objects or attributes, for example, how much experience a particular manager has in a particular industry. Textual information can also express more nuanced and complicated relationships, such as justification for particular decisions, expectations of future states, and caveats to an argument. Since all but the simplest of relationships are comprised of multiple words, it is essentially impossible to characterize the underlying message, or meaning of the communications, by analyzing words in isolation.\(^1\) Moreover, while it could be argued that

\(^1\) While it could be argued that certain ‘ideas’ can be captured through a single word, such as ‘success’ or ‘pleased’, the meaning of even very simple concepts changes depending on the surrounding words: ‘our
word-count approaches could be extended to capture more complex concepts by searching for phrases (e.g., ‘experience in the manufacturing sector’), it quickly becomes unfeasible to foresee every way in which even the simplest relationships can be conveyed. Thus, while it may be possible to capture high-level themes or changes to those themes over time (Ocasio and Joseph, 2005), characterizing the relationships between concepts, and how the discussed relationships are evolving and diffusing, is essentially impossible through word counts alone. This may be especially true for capturing the relatively subtle, nuanced, and complex concepts in management and strategy theory. Thus, although textual archives may provide the best record of the process by which organizational, institutional, and societal change occurs (e.g., Maguire and Hardy, 2009; Funk and Hirschman, 2014), it is fundamentally difficult to systematically capture this change process for more quantitative analysis, with scaling limitations restricting ability to manually hand code meaning at the overall field level.

The second fundamental issue with current word-based approaches is that they give little consideration to structure; word counts ignore the syntax of how the words are combined to construct meaning (e.g., Matthews and Matthews, 1981; Van Valin and LaPolla, 1997), and how the components of a message are aggregated into an overall meta-structure. Indeed, given the limitations of existing approaches to capture a representation of the relationships discussed in the

customers are pleased’ and ‘our shareholders are pleased’ convey different relationships. While it has been argued that meaning can be captured through topic modeling (Kaplan and Vakili, 2015) (an approach which still takes the word as the fundamental unit of analysis, but clusters documents together based on usage of sets of co-occurring words, or so-called ‘topics’) this ignores how slight differences in the words and syntax can result in substantial differences in meaning, and that documents with broadly similar themes can nevertheless express very different or opposing ideas. While topic modeling and related approaches may thus be suitable to group documents based on similar broad topics, the approaches were never designed to extract the specific relationships discussed in the text. Moreover, as discussed in more detail later, approaches that take the whole sentence as a unit of analysis (such as classifying sentences into a predefined categories through machine learning: e.g., Pang, Lee, and Vaithyanathan, 2002; Caruana and Niculescu-Mizil, 2006), are likewise ill-suited to identifying the relationships within sentences nor the structure of those sentences.

2 The term meta-structures is used to expand upon the concept of ‘narratives’ (e.g., Franzosi, 1998; Martens, Jennings, and Jennings, 2007), a term that although also concerned with the overall structuring of a document, is used in a slightly narrower sense, to refer to the sequencing of the components of an event.
text, it is difficult to conceive how it could be possible to examine an added layer of complexity, namely how those underlying relationships are structured. Thus, while structure can be conceived of in many different ways (Fairclough, 1992), automated approaches focus on characterizing the language used (such as measures of complexity derived from sentence and word length: Courtis, 1986; Li, 2008; Rennekamp, 2012), rather than how the underlying components of the message are themselves constructed and presented. Specifically, there is very little consideration of the argumentation structure (Harmon, Green, and Goodnight, 2015), or how the order in which information is presented shapes interpretation (Leung, 2014). Research that does consider the impact of the structure of the language tends to be either qualitative in nature (e.g., Martin et al., 1983; Boje, 1991), or derive from hand-coding the structure of the sentences (e.g., Bettman and Weitz, 1983; Harmon, 2018).

While qualitative approaches, including hand coding of sentence structure, may yield substantial insight, their application is constrained to instances where it is feasible to read or hand code each sentence. Although it is possible to dismiss the scalability difficulties of qualitative approaches (e.g., that it is unnecessary to scale, or that the issue can simply be solved by scaling the number of research assistants), scalability difficulties pose a substantial constraint to theoretical development. This may be best illustrated by considering the next level of structure: how individual relationships are combined into overall meta-structures. While there are qualitative studies that examine how components of a message are combined into overall meta-structures (such as work on narratives or storytelling: Martin et al., 1983; Boje, 1991), these are limited to case studies or very small numbers of firms; there has been very little theoretical or empirical consideration of the causes of variations in meta-structures at the field level. Moreover, it is especially difficult to examine interactions between the meta-structures of different firms;
development and testing of theory examining how field-level meta-structures form and evolve is beyond the ability of even the largest conceivable number of research assistants to hand code. The lack of an ability to systematically ‘capture’ relationships, the structure of those relationships, and how those relationships are structured into overall meta-structures, thus explains the void of research beyond limited qualitative studies examining how structures and meta-structures form and evolve at the field level.

The final issue with using word-lists to capture constructs of interest is that the approach relies on the ability of researchers to specify lists of all relevant words. While this may be appropriate for capturing concepts that can be represented through a small number of words (or phrases), there are some concepts where it would essentially be impossible to anticipate all words (or phrases) in advance. Although theory may help define concepts of interest, theory typically offers little guidance of the specific words that underlie those concepts. For example, it would be unfeasible to define in advance all of the experiences that a manager may have (e.g., to compare a how a manager’s prior experiences are recharacterized over time); while certain words are common and easy to anticipate (e.g., ‘financial experience’), other phrases are much more obscure and hard to anticipate (e.g., ‘substantial accounting experience, with a focus on mergers and acquisitions’). Similarly, while it would be possible to identify ‘manufacturing experience’ and ‘accounting experiences’ as types of experience, it is hard

3 Multi-word offerings, in particular, are hard to identify because it is not possible to simply examine all of the individual words used. While, as discussed later, there are lots of entity-extraction tools that can extract certain types of information from text, without the need to specify words in advance (e.g., NLTK: Bird and Loper, 2004; or Stanford NER: Finkel, Grenager, and Manning, 2005), the information types that these tools capture is relatively limited to a narrow range of concepts, typically: company names, location names, people names, dates, and contact information; although there may be certain research questions that can be answered with just this type of information (e.g., using co-citations of company names to capture categories: Kennedy, 2005), simply extracting these types of information only captures a relatively narrow dimension of what is said, and certainly not the relationships between concepts.
to foresee all possible aggregations, such as ‘manufacturing, accounting, and human resource experience’. ⁴

This dissertation tackles head-on the issue that current text analysis approaches are more concerned with counting ‘words’ than capturing the meaning and form of the communications, by developing an approach, initially targeted at strategy and management scholars, to extract and standardize the relationships conveyed in organizational communications, as well as the form and structure of those ideas, with the ultimate intent that this analysis approach can be extended across the social sciences. This research has a dual intention. First, by allowing scholars to capture more nuanced and complex theoretical constructs, it seeks to facilitate theoretical development. Since a close match between theory and measurement of theoretical constructs is generally required (Campbell and Stanley, 1963; Allen and Yen, 1979; Blackstone, 2012), theoretical nuance tends to reflect the capability of measuring that nuance in the underlying data. Limitations in being able to capture rich constructs may, in turn, lead to theoretical simplification. By allowing multi-faceted ideas to be directly extracted and easily manipulated, more rich and nuanced theory can be developed and tested. Moreover, in addition to being able to enrich theory by more closely capturing multi-faceted constructs, the ability to directly measure variables of interest (rather than distant proxies) allows theory on cross-medium communications to be more easily developed and tested. Specifically, being able to directly

⁴ There are clearly other challenges that analyzing languages entails, for example, that the meaning of words can change depending on their usage, and that often just one word can fundamentally change the meaning of a sentence (Hannigan, 2015). This challenge becomes more apparent when moving past managerial backgrounds; for example, ‘the risk of default is high’ is clearly different to ‘the risk of default is low’, yet simply counting the ‘risk’ words ignores such difference.
capture nuanced concepts from large volumes of information facilitate comparisons despite the presence of substantial extraneous variation between mediums.\footnote{For example, as discussed in more detail later, while there is growing interest in audience-specific perceptions (Bourdieu, 1984; Jensen, Kim, and Kim, 2012; Ertug et al., 2016), there is little theory considering how firms tailor their communications to different audiences, or their ability to create audience-specific perceptions. A potential difficulty with analyzing this question is that communications using different mediums typically differ in ways that are unrelated to the variation that a specific research question seeks to examine. While similarity measures based on word-overlap may identify differences between mediums, other extraneous differences between the communication mediums may nevertheless make it hard to know what is driving the differences (e.g., whether it is just different words used to convey similar information, or whether actually different information is being presented). More targeted measures, specifically capturing the construct of interest, allow comparisons to be made across communication mediums, by specifically identifying the difference of interest (i.e., without capturing substantial, or nonsystematic, noise from other forms of variation).}

The second intention of this research is that once it is possible to systematically capture nuanced information from text, it becomes possible to conceive of and analyze a whole new set of theoretical questions that inherently require large volumes of rich, nuanced data. For example, it is hard to envision how progress can be made in understanding field level evolution of the meta-structure of texts, without first making progress in systematically capturing and representing the meaning of the communications, and the aggregation of meaning into overall structures. Indeed, since many forms of communication are long in length (e.g., the text detailing managerial backgrounds is typically several pages per firm, and other components of company filings and conference calls can each take several hours to read), quantitative analysis of the structure of such documents, beyond measures of complexity derived from sentence and word length (e.g., Courtis, 1986; Li, 2008; Rennekamp, 2012), is inherently unfeasible for all but the smallest number of firms. Systematically capturing the relationships discussed in organizational communications not only facilitates quantitative studies on the structure of text, but it also makes it easy to expand this research across industries and time periods, allowing the contingencies under which relationships hold or are especially strong to be theorized and assessed.
Overview of Existing Computational Approaches

Before the approach developed in this paper is introduced, and the specific contributions to the management and strategy literatures are discussed, it is first useful to briefly summarize computational linguistic approaches. While computational linguistics is a broad field, and it is thus unfeasible to cover all aspects of the literature in detail here (for a recent overview, see: Jurafsky and Martin, 2018), key paradigms include: i) unsupervised (i.e. fully automated) characterizations; ii) machine-learned classification of texts into predefined categories; and iii) extraction of information into standardized ontologies. As discussed further below, while a lack of connections to theoretical constructs limits the general applicability of unsupervised approaches to test management and strategy theories, and machine-learned classification of sentences has limited ability to analyze the relationships conveyed within the sentences, information extraction offers opportunities for developing constructs that closely correspond to variables of theoretical interest to management and strategy scholars, as well as other researchers in the broader social sciences.

Unsupervised Computational Linguistic Approaches

There are a broad array of unsupervised computational linguistic approaches that characterize textual communications, without requiring any domain-specific understanding of the underlying material. Although topic models are one of the more widely used approaches in management and strategy research to date (e.g., Magerman, Looy, and Song, 2010; Wilson and Joseph, 2015; Kaplan and Vakili, 2015; Bao and Datta, 2014),\(^6\) other uses of unsupervised approaches include data visualization (Grimmer and King, 2011) and determining document

\(^6\) Topic modeling is a general term used to describe a variety of closely related latent clustering approaches, some of the most common being: Latent Semantic Analysis (LSA) (Papadimitriou et al., 2000); Probabilistic Latent Semantic Analysis (pLSA) (Hofmann, 1999); and Latent Dirichlet Allocation (LDA) (Pritchard, Stephens, and Donnelly, 2000; Blei, Ng, and Jordan, 2003).
Each of the approaches builds on varying forms of basic linguistics principles, for example, that words occurring in similar contexts tend to be semantically close (the distributional hypothesis: Firth, 1957), or that pairs of co-occurring words tend to have similar semantic relations (the latent relation hypothesis: Turney, 2008). These basic principles enable text to be reduced to a vector, and inference between texts to be made using vector-based similarity measures (for a review see: Turney and Pantel, 2010). The key advantage of such unsupervised approaches is their versatility; since it is unfeasible to conceive of every possible concept that may be discussed across the universe of all communications, basic linguistic assumptions allow documents to be compared without the need for a priori theory to inform relevant similarity dimensions (Turney and Pantel, 2010).

For many real-world applications, the use of unsupervised approaches to identify latent dimensions, without the need for a priori theory, is an advantage; it is often desirable that measures function well ‘out of the box’ without the need to determine, or extract, a basis for similarity. As such, implementations of unsupervised computational linguistic approaches are common, with applications including: suggesting related articles on news websites (Kanhabua, Blanco, and Matthews, 2011; BBC News Labs, 2016); analyzing the content of websites to determine contextually relevant adverts (Google, 2003); and identifying keywords from scholarly articles (Rose et al., 2010). The primary requirements in each of these settings is that the approach works in an automated manner, across the universe of encountered texts, and

7 Since language has an unbounded number of possible words, that can, in turn, be organized in an unbounded number of ways, unsupervised approaches reduce the dimensions of the text (with different approaches based on different basic linguistic principles) (Turney and Pantel, 2010). Once the text is represented as a vector, it is easy to manipulate, and calculate similarity scores between documents. For example, topic modeling involves first creating buckets (or ‘topics’) of co-occurring words (Papadimitriou et al., 2000), (which relies on the distributional hypothesis, that words that are used in similar contexts are likely to have similar meanings: Firth, 1957); once topics have been created, a document can be represented as a vector based on usage of each of the different topics, and in turn, similarity scores (e.g., cosine similarity) calculated.
produces results that are deemed accurate (or sufficiently accurate) by humans; the specific basis, or assumptions, by which these approaches function is a secondary, (or non) consideration.

However, while it is undeniable that unsupervised approaches have substantial real-world applications, it is less clear that such approaches are well suited for developing and testing social science theories. It is generally accepted that theory testing requires a clear rationale for measuring predefined concepts of interest (e.g., Campbell and Stanley, 1963; Allen and Yen, 1979; Blackstone, 2012). While manual coding allows researchers to construct variables that closely match theoretical concepts, unsupervised computational linguistic approaches are explicitly not intended to capture predefined concepts. Moreover, since the predominant paradigm in quantitative management and strategy research (as well as much of the broader social sciences), is testing predefined theory, it is unlikely that inductive research (e.g., Magerman, Looy, and Song, 2010; Grimmer and King, 2011), where insight is drawn from the data in the absence of predefined theory, will have a substantial impact on the overall field.8

Supervised Machine-Learned Classification of Texts

An intermediary approach, which may have applications in testing management and strategy research questions (although for substantially different questions than this dissertation seeks to allow) involves training a machine learning model to automatically classify blocks of

8 There may be a role for unsupervised approaches including identifying potentially relevant dimensions that the literature may not have previously considered (e.g., Bao and Datta, 2014), in a comparable manner to how qualitative research contributes to informing basis for theoretical consideration (e.g., Eisenhardt, 1989). However, while one of the arguments often presented in favor of latent approaches is that they do not impose assumptions or structure on the data, this is arguably an over-simplification. Specifically, latent approaches have their own sets of assumptions (e.g., that words can be interpreted in isolation: Turney and Pantel, 2010), and as such, the latent concepts still reflect some underlying assumptions of the analysis approach. Moreover, at least in social science research, it is typical to re-impose structure onto the data, if only to make sense of the latent concepts. For example, topic modeling gives no direct guidance as to the underlying meaning behind topics: such interpretation typically requires researchers to deduce the likely meaning of the buckets of words (e.g., Bao and Datta, 2014: 1382). As such, even if word lists are derived without direct manual involvement, inferring the meaning by labeling the topics re-imposes structure, inherently relying on human knowledge of likely corresponding concepts, and in turn further offsetting one of the purported benefits of latent approaches.
text, such as sentences or whole documents, into predefined categories (Pang, Lee, and Vaithyanathan, 2002; Caruana and Niculescu-Mizil, 2006). This approach has wide commercial applications, for example using manually flagged ‘inappropriate’ or spam communications to train pattern recognition algorithms to automatically identify other material that shares similar characteristics (Drucker, Wu, and Vapnik, 1999; Sebastiani, 2002). In the social sciences, researchers could, for example, manually classify a relatively small number of sentences or documents into predefined categories, and then use machine learning to automatically classify a much larger number of sentences or documents into these predefined categories. A benefit of this approach for management and strategy research is its ability to categorize material into predefined concepts desired by researchers, rather than ‘latent’ concepts in unsupervised approaches.

However, while this may be appropriate for some research questions, analyzing sentences (or documents) as the fundamental unit of analysis introduces its own limitation: namely, it is hard to reduce meaning to a small number of categories. For example, a simple sentence may be: ‘We use hedging to minimize foreign exchange risk’. While it is possible to classify this sentence as ‘hedging’ or ‘foreign exchange risk’, and this may be suitable for certain purposes, it is less suited to capturing the relationships underlying the sentence, specifically that the use of hedging minimizes the firm’s foreign exchange risk.9 This limitation restricts the sort of questions that can be answered through machine-learned classification of texts, to the same sort of questions that it is possible to investigate with word counts. While overall trends such as ‘high-level institutional logics’ could be captured by classifying sentences into concepts, this approach is less suited to capturing the specific relationships, or the micro-foundations

9 As discussed further in the Discussion Section, the approach developed in this dissertation is intended to be applicable beyond managerial backgrounds, to capture justifications such as this.
underpinning institutional logics (e.g., Seo and Creed, 2002; Munir and Phillips, 2005; Lawrence and Suddaby, 2006), or to analyze how these foundations are adapted and evolve over time. Thus, although machine-learned classification of text may be more appropriate for testing some types of management and strategy research questions than unsupervised approaches, it is nevertheless inherently limited to situations where the research question can be examined by classifying units of texts (e.g., sentences or documents) into a limited number of predefined categories.

Information Extraction Approaches

The final group of approaches, which this paper draws upon and explains in greater detail in due course, involves directly extracting information from text and representing this information in a standardized format, or ontology (Aggarwal and Zhai, 2012; Biega, Kuzey, and Suchanek, 2013). While most factual information throughout history was originally written as text (e.g., books, research papers, and more recently webpages), there are many benefits in representing the information in a consistent manner. Once in an ontology, it is possible to easily query the information, make comparisons between items, aggregate the information to produce an overall summary, and to connect the information to other databases (Auer et al., 2007; Suchanek, Kasneci, and Weikum, 2007).\(^\text{10}\) The intent of the process is outlined in Figure I.1.

\(^{10}\) While the terms ‘unstructured data’ is used in computer science to refer to raw text, and ‘structured data’ is used to refer to data that is represented into a standardized format or ontology (e.g., Gupta and Lehal, 2009), these terms are avoided to prevent confusion with discussion of linguistic structure discussed in this paper (e.g., Fairclough, 1992).
Although information extraction is an area of continuing research, and specific implementations vary, the overall approaches are broadly similar (e.g., Suchanek, Kasneci, and Weikum, 2007; Gupta and Lehal, 2009; Han, Pei, and Kamber, 2012). Specifically, the approach involves first identifying concepts such as people, companies, and dates, and then inferring meaning from the semantic-relationships (or connecting words) between the concepts (Chklovski and Pantel, 2004; Lample et al., 2016). For example, in the sentence ‘John Doe was born on January 12th 1975 in Ann Arbor, Michigan’ in Figure I.1, an entity recognition model could

11 While the terms including ‘entity recognition’ and ‘entity extraction’ are commonly used in the computer science literature to describe the process of recognizing concepts in text (e.g., Lample et al., 2016: 1), reflecting that they are typically used to capture entities such as people, companies and places, the term ‘concept recognition’ is used throughout this dissertation to reflect the broadening of the information types identified in the text, to include more abstract concepts such as experiences and company descriptions.
be trained using a sample of tagged sentences, to recognize ‘John Doe’ is likely a **PERSON_NAME**, and ‘January 12th, 1975’ is likely a **DATE**. The connecting words ‘was born on’, (as well as any synonymous connecting words as appropriate), could then be used to infer that a **PERSON_NAME**, called John Doe, was born on the **DATE** January 12th, 1975. Similarly, the approach can be extended to recognize that a date of birth, followed by the word ‘in’ and then a **LOCATION**, indicates the birth location.\(^\text{12}\)

There are a large number of active research projects that use similar information extraction approaches to harvest factual information from Wikipedia and the wider internet, representing the extracted information in a consistent, standardized format. These include: YAGO (Biega, Kuzey, and Suchanek, 2013); NELL (Carlson et al., 2010); PROSPERA (Nakashole, Theobald, and Weikum, 2011); SOFIE (Suchanek, Sozio, and Weikum, 2009) and DBpedia (Auer et al., 2007). Moreover, many commercial entities are also engaged in information extraction. For example, Google’s Knowledge Graph initiative gathers information from across the internet to provide direct answers to questions (Google, 2012), and the recent rise of digital personal assistants (e.g., Alexa and Siri) furthers demand to capture factual information from text, that can be queried in response to user questions (for a recent discussion see: Rajpurkar et al., 2016).\(^\text{13}\) These projects have amassed an impressive volume of factual knowledge; typically millions of entities (including people, places, organizations, music album,

\(^{12}\) When extracting facts to populate a knowledgebase from a large source (e.g., the internet or Wikipedia), additional steps may be required to disambiguate between people who share the same name (Cucerzan, 2007). In this dissertation, disambiguation does not pose a substantial issue; since the name of the firm from which a background was obtained is known, and at least within a particular firm, manager names tend to be unique, there is little ambiguity over who a statement refers to.

\(^{13}\) It should be noted that the word ‘fact’ is intended here in a relatively narrow sense; most approaches to extract textual information from text tend to be structured to capturing properties of an entity (e.g., the data firm is founded), or relationships between entities (e.g., the CEO of A is B) (e.g., Suchanek, Kasneci, and Weikum, 2007). Although it is possible to construe any statement as a fact (e.g., for any given sentence in a firm’s annual report it is a ‘fact’ that the firm made that statement, even if the sentence itself is subjective), this is not the intended meaning here.
movies, etc.), each populated with associated properties such as dates, family relations, sizes (e.g., the heights of people) and locations.

However, while ‘facts’ may form the basis for answering many forms of questions (and especially questions commonly searched for on the internet), the uses of textual data in the social sciences is qualitatively different from merely extracting facts from text. Specifically, there is a much greater interest in analyzing the manner in which information is conveyed (e.g., Bettman and Weitz, 1983; Boje, 1991; Harmon, 2018), as well as using what is said to infer and analyze other concepts, such as how categories form (Kennedy, 2005; Navis and Glynn, 2010), how concepts evolve (Ocasio and Joseph, 2005; Hsu and Grodal, 2015), how identity is presented (Chreim, 2005), and attention patterns (D’Aveni and MacMillan, 1990). These areas of research consider not only what is said, but how it is said, and how what is said changes, with research often drawing from multiple sources to consider how different audiences discuss the same information. Indeed, much social science research involves characterizing the source material, rather than treating the source material merely as a conduit of desired facts.

Despite the breadth of information extraction projects capturing factual properties (e.g., Nakashole, Theobald, and Weikum, 2011; Biega, Kuzey, and Suchanek, 2013), there is little evidence of comparable effort to characterize the source material or to capture subjective information and the structuring of texts. This is likely in part because there is limited demand for characteristics of the source material or subjective information outside of academia; knowing how a manager’s experiences are characterized across historical filings has limited applications outside of scholarly research. The predominant focus on factual information may also in part be because while facts have a ‘right’ answer (e.g., the location of a company’s headquarters, that can be returned in response to a question), subjective information does not. Paradoxically, part of
the reason why subjective information can be interesting to social science research, including that it can be framed to present a desired state (e.g., Fiss and Zajac, 2006), and de-coupled from reality (e.g., Meyer and Rowan, 1977), may limit the overall interest of data scientists to extract such relationships.

Overview of the Approach Developed in this Dissertation

This dissertation draws from information extraction research, extending the approaches to allow entire texts to be systematically represented, with particular attention to capture subjective dimensions while preserving the structure of the text.\(^\text{14}\) While the developed qualitative and computational approach is general, it is illustrated in the context of managerial backgrounds, allowing each of the stages to be described in a domain with clear research opportunities.\(^\text{15}\) The key premise of the approach is that, within a particular communication medium, there is typically substantial deep-level similarity in the dimensions of discussion; there is a large degree of similarity in broad areas discussed in managerial backgrounds. Overlayed, however, is

\(^\text{14}\) While this dissertation draws on information extraction approaches (e.g., Suchanek, Kasneci, and Weikum, 2007; Gupta and Lehal, 2009; Han, Pei, and Kamber, 2012: 113) and recent advancements in machine learning (e.g., Hochreiter and Schmidhuber, 1997; Srivastava et al., 2014; Lample et al., 2016) since systematically capturing a representation of the text is qualitatively different from capturing specific facts, the approach developed also adapts and extends the approaches. Specifically, particular qualitative consideration is given to the underlying material, considering the dimensions on which sentences vary, and how to represent entire sentences in ontologies to represent the entire meaning of what is said. The approach also extends the concepts that are captured to the relative domain-specific and subjective information characteristic of managerial backgrounds (e.g., management titles, committees, company descriptions, etc.), developing standardization approaches to facilitate comparisons and connections to external databases. The need to capture relatively domain-specific concepts also means that, in commonality with other domain-specific information extraction approaches (see, e.g., Cohen and Hersh, 2005), the ability to draw on existing ‘general purpose’ information extraction approaches is limited. Thus, while there are many tools for extracting certain common types of information from text, for example people names, company names, dates, locations, contact information such as email addresses and phone numbers, and sometimes products (e.g., OpenNLP: Baldridge, 2005; NLTK: Bird and Loper, 2004; and Stanford NER: Finkel, Grenager, and Manning, 2005), in order to capture the specific information desired, the actual implementation is custom; all of the code is custom written (with the exception of various OpenSource standard Python libraries such as Google TensorFlow: Abadi et al., 2016).

\(^\text{15}\) While the data source used in this dissertation comprises approximately 8 million sentences taken from the proxy statements of US public firms across the period 2007-2017, the ontologies and population approach are intended to serve as the basis for extension across other communications mediums, such as company websites, and extended time periods.
substantial surface-level variation, with names, acronyms, synonyms, and slight differences in sentence construction introducing substantial variation into the sentences, while making little to no difference to the underlying meaning. These surface level variations mean that in the context of top manager experiences, the only occurrences of identical sentences are year-to-year re-use of sentences for the same manager.16 By identifying the underlying similarities on which the sentences are comparable, ontologies can be developed to represent the information, while abstracting surface-level variations.

Through careful qualitative consideration of managerial backgrounds, five primary information types were identified: background information, typically not the focus of a sentence, such as a manager’s name or age (\textsc{background}), a manager’s current/past positions (\textsc{positions}), experiences that a manager has gained (\textsc{experiences}), qualifications that a manager has received (\textsc{qualifications}), and professional licenses that a manager holds (\textsc{professionallicenses}).17 Each of these primary information types captures qualitatively different types of discussion, and together represent substantively all of the information in managerial backgrounds. As will be discussed, by systematically considering the dimensions on which sentences in these primary information types are comparable, it is possible to successively parse each information type, progressively forming the basis of the ontologies. Through this process, the standardized ontologies can be developed that preserve the meaning of what is said, and the structuring of that meaning, while abstracting surface-level variations, such that it is possible to directly compare the texts on dimensions of interest. Using information extraction techniques, that are extended to characterize entire sentences including subjective information, this dissertation illustrates how

16 This is was true in various other domains explored as part of the dissertation process: essentially every sentence in on technology company websites; description of business; and risk statements were unique, with the exception of occasional boilerplate (e.g., ‘Contact us for more information’).
17 Full details of the design and specification of the ontologies, development approach to populate the information, and envisioned theoretical contributions of the approach are given in due course.
the developed ontologies shown in Figures I.2-4 can be systematically populated, allowing a consistent, standardized, representation of what is said to be captured across the population of managers.\(^\text{18}\)

\begin{verbatim}
{"ORIGINAL_SENTENCE": "From October 2001 to November 2004, she served as Vice President of Operations and a director for QRS Corp., a gold mining company, and between March 1996 and May 2001 was the CEO of Vaynol Clothing, a leading US retailer of women's clothing",
"POSITIONS": [
{"ORIGINAL": "From October 2001 to November 2004, she served as Vice President of Operations and a director of QRS Corp., a retail supply chain software and services company",
"START_DATE": {"ORIGINAL": "October 2001", "YEAR": 2001, "MONTH": 10},
"END_DATE": {"ORIGINAL": "November 2004", "YEAR": 2004, "MONTH": 11},
"JOB_TITLES": [{"ORIGINAL": "Vice President of Operations", "LEVEL": "VICE_PRESIDENT", "AREA": ["OPERATIONS"]},
{"ORIGINAL": "Director", "LEVEL": "DIRECTOR"}],
"COMPANY": {"ORIGINAL": "QRS Corp.", "CLEANED": "QRS"},
"COMPANY_DESCRIPTION": {"ORIGINAL": "NYSE-listed gold mining company", "LISTING-OWNERSHIP": {"OWNERSHIP_TYPE": "PUBLICALLY_LISTED", "EXCHANGE": [{"EXCHANGE_NAME": "NYSE", "COUNTRY": "USA"}]}},
"INDUSTRY": {"NAICS_3_DIGIT": 212, "NAICS_3_DESCRIPTION": "Mining (except oil and gas)"}],
{"ORIGINAL": "between March 1996 and May 2001 was the CEO of Vaynol Clothing, a leading US retailer of women's clothing",
"START_DATE": {"ORIGINAL": "March 1996", "YEAR": 1996, "MONTH": 3},
"END_DATE": {"ORIGINAL": "May 2001", "YEAR": 2001, "MONTH": 5},
"JOB_TITLES": [{"ORIGINAL": "CEO", "LEVEL": "CEO"}],
"COMPANY": {"ORIGINAL": "Vaynol Clothing", "CLEANED": "VAYNOL COTHING"},
"COMPANY_DESCRIPTION": {"ORIGINAL": "leading US retailer of women's clothing", "INDUSTRY": {"NAICS_3_DIGIT": 448, "NAICS_3_DESCRIPTION": "Clothing and Clothing Accessories Stores"}, "REGION": [{"COUNTRY": "USA"}], "CHARACTERIZATION": [{"TERM": "leading", "AREA": "LEADING"}]}]
}
\end{verbatim}

Figure I.2. Example of a Sentence Discussing a Manager’s Position History Represented in a Standardized Manner\(^\text{19}\)

\(^{18}\) The hierarchical (JSON) structure shown here is increasingly used to transfer information between organizations, and is very flexible, allowing a hierarchical structure to be defined as needed.

\(^{19}\) All examples of managerial backgrounds contained in this dissertation are pseudo-examples, written to convey the form and the style of the underlying material, while not directly based on any one example.
Mr. Doe earned a Bachelor degree in engineering from the University of Michigan and a Master of Business Administration from the Stanford Graduate School of Business.

Figure I.3, Example of a Sentence Discussing a Manager’s Qualifications Represented in a Standardized Manner

Figure I.4, Example of a Sentence Discussing a Manager’s Experiences Represented in a Standardized Manner

Figure I.5. Example of a Sentence Discussing a Manager’s Professional License Represented in a Standardized Manner

As well as describing an approach to develop and populate the ontologies, various ways of assuring the validity of the populated ontologies are introduced and discussed. These include: i) significant qualitative consideration to develop the ontologies; ii) validation of properties by dissecting terms to their components; iii) validation of terms through external data-checks (such
as university names, and locations); iv) validation of concepts by the context in which they appear in the text; v) manual oversight to ensure the ontologies are populated as expected; and vi) illustration of terms in each concept, to provide face validity of the classifications. Other fully and semi-automated approaches to help ensure terms are appropriately categorized, and categorizations of terms validated, are discussed, including an automated approach to connect industries to associated NAICS-codes irrespective of whether the term directly appears in the NAICS classification manual, using surrounding discussion of the terms on Wikipedia. The series of validation approaches are intended to increase confidence in the populated ontologies, and have applications beyond this dissertation, broadly facilitating theoretically-centered research inherently requiring large volumes of rich, nuanced textual data, where it is unfeasible to manually verify every term individually.

The dissertation also considers specific research questions facilitated by systematically representing information in standardized ontologies. As will be discussed, there are several layers of opportunity, the first arising from the ability to precisely measure very specific relationships, such as how the descriptions of the firms that a manager has worked for are adjusted between years. By first representing the information in a consistent manner, it becomes feasible to capture specific changes of interest, including differences that may be hard to manually code, even on a relatively small scale. For example, the ontologies allow blocks of text to be ‘subtracted’ from one another, allowing consideration of how particular sentences, in much larger documents, change from year to year (even if the order of the sentences in the documents differ). Being able to capture such specific differences also helps enable comparisons between mediums, despite the presence of extraneous variation unrelated to the dimension of interest.

20 Going forward, the face-validity is intended to be built into the approach, with classification summaries providing high overall transparency to the approach.
Being able to systematically and consistently represent textual information in ontologies also facilitates research considering multiple layers of information structuring. By preserving the order of information within sentences, and the overall order of sentences, it is possible to characterize the multiple layers of structuring, including how sub-structures combine to overall meta-structures. Managerial backgrounds are well suited for considering the layers of structuring, allowing separate consideration of how information is structured within a managerial background, and how the backgrounds of individual managers combine at the top management team level. The ontologies make direct examination of the evolution of the different levels of structuring feasible, including consideration of subtle changes that may be hard to manually code, such as adjustments over time to the ordering of information.

Being able to systematically characterize entire populations of text also allows greater identification and awareness of the occurrence of gradual societal changes. A large proportion of organizational theories are ‘mid-range’ in nature (Merton, 1957), grounded in the real world phenomenon that they help explain (e.g., research on poison pills: Davis, 1991; acquisitions: Haunschild, 1993; adoption of TQM practices: Westphal, Gulati, and Shortell, 1997; or the difficulties faced by females and racial minorities in organizations: Eagly and Carli, 2007). Although theory may guide our understanding of these areas, theoretical development rarely occurs in a vacuum, and studying and explaining organizational change requires at least an awareness of the occurrence of the phenomenon itself (Eisenhardt and Graebner, 2007). While certain organizational changes may be readily apparent to researchers due to the suddenness of the change (e.g., the rapid diffusion of poison pills) or societal-level discussion of the issue (e.g., discrimination in the work-place), much societal change occurs gradually, garnering little mainstream attention. This may be particularly true for changes to corporate management practices,
where the sheer volume of textual information in corporate filings, external communications, and conference calls, make it inherently difficult to for any individual to synthesize. Indeed, the ‘black-box’ of corporate governance (e.g., Daily, Dalton, and Cannella, 2003) may be as much a factor of the excessive volume of available information, rather than an absence. Systematically standardizing textual information allows gradual and nuanced changes in corporate leadership to be more easily identified, providing new contexts for theoretical development.

Overview of the Dissertation

The remainder of this dissertation develops and describes the approach to capture and represent meaning from textual information, and the theoretical opportunities enabled by doing so, with a particular focus on managerial backgrounds. Chapter 2 illustrates the largely qualitative approach by which the ontologies were developed. Chapter 3 describes each of the three key stages in the information extraction process: i) concept identification, ii) interpretation of meaning from semantic relationships, and iii) information standardization. This is then extended in Chapter 4, which explains in greater detail how key challenges in systematically transforming the managerial backgrounds to the developed ontologies were addressed. Chapter 5 describes aggregation and comparison approaches, with consideration of theoretical dimensions that the ontologies facilitate examining. This discussion continues in Chapter 6, with greater consideration of specific questions enabled in the context of managerial backgrounds. Finally, the dissertation concludes in Chapter 7 with a discussion of overall contributions, illustrating further theoretical opportunities from extending the approach to capture a broader array of meaning.
CHAPTER II

Qualitative Development Process

This chapter explains the qualitative approach by which the ontologies in this dissertation were developed. The approach draws from research on identifying themes, considering similarity and differences to identify relevant dimensions on which texts vary (Glaser and Strauss, 1967; Ryan and Bernard, 2003). As described further below, this process began by reading a substantial number of managerial backgrounds from the proxy statements of US public firms from 2007-2017, to understand the nature of the material, and continued until theoretical saturation was reached, where further reading gave little additional insight (Strauss and Corbin, 1990). This provided the basis to initially classify the sentences into five primary information types (BACKGROUND, POSITIONS, EXPERIENCES, QUALIFICATIONS, PROFESSIONAL_LICENSES), and continued until ontologies for each information type were developed. These initial ontologies were then extended during the implementation process to allow less common dimensions to also be captured. Over this process, many thousand managerial backgrounds were read in whole or in part, providing a high level of familiarity with the material.

Unit of Analysis and Primary Information Types

The first consideration in representing the information was deciding an appropriate unit of text to represent. While sentences in some communication mediums use pronouns to refer to previously introduced terms, the sentences in managerial backgrounds were almost entirely self-
contained, with very few references to terms in prior sentences. Since each sentence could be interpreted independently, the sentence was taken as the unit of analysis (Weber, 1985: 22). Thus, while Chapter 5 will discuss how it is possible to aggregate individual sentences at the manager and top management team level, the remainder of this and the next two chapters will focus on capturing representations of individual sentences.

Just as résumés tend to cover similar material (McGrimmon, 2014), there is inherent similarity in the material discussed in managerial backgrounds. By considering the themes underlying each sentence (Glaser and Strauss, 1967; Ryan and Bernard, 2003), five commonly occurring primary information types were relatively easily identified. The first information type, BACKGROUND, included details such as name, age, and salutation, that while typically not the focus of the sentence, indicated who the description referred to. This information was usually included in the first sentence of a manager’s background, with subsequent sentences referring to the manager as ‘he’, ‘she’ or by first name. The second information type, POSITIONS, described a manager’s current and prior positions, including board and committee appointments. This description typically included job titles, dates of employment, names of the firms worked for, and often a short description of those firms (e.g., ‘... he served as vice president of Gorilla Parts, a leading NYSE-listed manufacturer of automotive components’). The third information type, EXPERIENCES, discussed the more subjective elements of a manager’s experiences, including the industries and functional areas worked in, and the length of these experiences. The fourth information type, QUALIFICATIONS, described the degrees that a manager had obtained, including graduation dates, the name of the granting universities, and usually the

21 The only substantial use of pronouns was the use of personal pronouns to refer to a manager after the first sentences (e.g., ‘he’, ‘she’), and use of the terms such as ‘the company’ or ‘our’ (e.g., ‘has worked for the company since 1996’, or ‘has served on our board since 1996’). Neither of these pose a problem to interpreting the meaning; the subject of personal pronouns is always the focal manager, and the company is likewise the focal company, both of which are known for sentences under consideration.
subjects of the degrees. The final information type, **PROFESSIONAL_LICENSES**, discussed managers’ professional licenses, often including the issuing state or country (e.g., ‘Certified Professional Accountant’, or ‘registered engineer in the State of Michigan’).

As illustrated in Table II.1, with the exception of background details (**BACKGROUND**), each information type was typically the focus of an entire sentence, and each discussed relatively distinct material. While there are some similarities between **QUALIFICATIONS** and **PROFESSIONAL_LICENSES** they are usually discussed in separate sentences and have quite different dimensions; professional licenses were often associated with specific states, may expire, and while not noted in the text, often have legal implications.

<table>
<thead>
<tr>
<th>BACKGROUND</th>
<th>Mr. John Doe (age 56) is the…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mrs. Doe is the…</td>
</tr>
<tr>
<td></td>
<td>Dr. Doe, Ph.D., is the…</td>
</tr>
<tr>
<td></td>
<td>Mr. John Doe III has worked…</td>
</tr>
</tbody>
</table>

POSITIONS	Mr. Doe served as Executive Vice President and Chief Financial Officer at Gorilla Software from September 1997 until his retirement in January 2003.
	From 1992 to 1993, Mr. Doe was Vice President of Business Development at Gorilla Software, a clinical research organization in Detroit, MI.
	He has been a Director of the Company since 2002 and chairman of the Compensation Committee since 2005.
	Prior to joining Oculi Machined Parts, Ms. Doe was the Executive Vice President for Gorilla Software, a company developing speech recognition software.
	Mr. Doe has been Vice President, Secretary, Treasurer and a director of Gorilla Software since 1980 and held other positions with Oculi Machined Parts prior thereto.

EXPERIENCES	Mr. Doe also brings noteworthy business sector executive officer experience.
	Mr. Doe also has a solid understanding of the Company’s electric operations and the Florida market.
	He has over 35 years of experience in the information technology and security marketplace.
	Mr. Doe has over 20 years of investment industry experience.
	Mr. Doe has over 35 years of experience in finance in the banking industry.

| **QUALIFICATIONS** | He also holds a BBA from the Ross School of Business at the University of Michigan and holds a Juris Doctorate from Yale University. |
| | Dr. Doe received his Ph.D. in Biochemistry from Case Western Reserve University in Cleveland, Ohio and his B.A. with honors in Chemistry from Taylor University in Upland, Indiana. |
Mr. Doe has an undergraduate degree in accounting from DePaul University and an MBA from the University of Chicago.

He graduated from Massachusetts Institute of Technology with a Bachelor’s degree in Mechanical Engineering, and he earned an MBA in General Management from Harvard Graduate School of Business in 1968.

He is a graduate of California State University, Northridge, with a B.S. degree in accounting.

Mr. Doe received a Bachelor’s degree and a Master’s degree in Accounting from Tianjin University of Finance and Economics.

Ms. Doe is a Certified Public Accountant.

Mr. Doe is a licensed attorney in Colorado, New York, and Texas.

He is a California licensed certified public accountant.

<table>
<thead>
<tr>
<th>PROFESSIONAL_LICENSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Doe is a licensed attorney in Colorado, New York, and Texas.</td>
</tr>
<tr>
<td>He is a Certified Public Accountant and is licensed to practice law in the Commonwealth of Puerto Rico.</td>
</tr>
<tr>
<td>He is a California licensed certified public accountant.</td>
</tr>
</tbody>
</table>

Table II.1 Illustration of Sentences Typical of Each Information Type.

Development of the Primary Ontologies

The five information types form the basis of the overall standardized representation. As illustrated in Figure II.1, it is possible to cleanly split sentences into these information types.

a)

"ORIGINAL_SENTENCE":"John Doe was the CFO of Gorilla Software from 1997 until 2000 and then was the Vice President of Finance for Bridge Analysis from 2001 until March 2008",

"BACKGROUND": -- John Doe --

"POSITIONS": -- CFO of Gorilla Software from 1997 until 2000 --

-- Vice President of Finance for Bridge Analysis from 2001 until March 2008 --

}

b)

"ORIGINAL_SENTENCE":"John Doe received a BA in Mathematics from the University of Michigan in 1996, an MBA from Stanford in 2001, and most recently became licensed as a certified public accountant in the state of California in 2007",

"BACKGROUND": -- John Doe --

"QUALIFICATIONS": -- BA in Mathematics from the University of Michigan in 1996 --

-- MBA from Stanford in 2001 --

"PROFESSIONAL_LICENSES": -- became licensed as a certified public accountant in the state of California in 2007 --

}

c)

"ORIGINAL_SENTENCE":"John Doe has substantial financial experience, with a particular emphasis on valuing mergers and acquisitions",

"BACKGROUND": -- John Doe --

"EXPERIENCES": -- substantial financial experience, with a particular emphasis on valuing mergers and acquisitions --

}

Figure II.1. Illustration of Sentences Split into the Five Primary Ontologies
The examples in Figure II.1 also illustrate several important characteristics of the sentences. First, sentences can contain more than one type of information, commonly just **BACKGROUND** and one other, although occasionally more. For example, the sentence a) includes information in the **BACKGROUND** and the **POSITIONS** types, b) includes information in the **BACKGROUND, QUALIFICATIONS**, and **PROFESSIONAL_LICENSES** types, and c) includes information in the **BACKGROUND** and **EXPERIENCES** types. Second, as illustrated in examples a) and b), there may be more than one distinct part within each information type; there are two distinct positions mentioned in example a) and two distinct qualifications mentioned in example b). Both of these characteristics are reflected in the specification of the overall sentence representation shown in Figure II.2. This representation provides the basis for dissecting the sentences and shows how, with the exception of **BACKGROUND**, each of the primary-ontologies comprises a list of sub-ontologies, representing distinct positions, qualifications, experiences and professional licenses, in the order that they appear in the sentence.\(^\text{22}\)

```json
{
  "ORIGINAL_SENTENCE": Original text
  "BACKGROUND": All background details discussed (e.g., person name, age)
  "POSITIONS": List of POSITION sub-ontology
  "EXPERIENCES": List of EXPERIENCE sub-ontology
  "QUALIFICATIONS": List of QUALIFICATION sub-ontology
  "PROFESSIONAL_LICENSES": List of PROFESSIONAL_LICENSE sub-ontology
}
```

Figure II.2. Overall Sentence Representations

There was also substantial commonality in the dimensions discussed within each information type. The approach used to represent the meaning within the sub-ontologies was thus to identify the commonly occurring concepts, dissecting each component separately. For

\(^{22}\) Since backgrounds focus on a single manager, there is no need to structure the **BACKGROUND** primary-ontology as a list. While the representation allows all five primary ontologies to be captured from a particular sentence, there are no instances where all five information types are simultaneously discussed in a single sentence. Similarly, while the structure allows an unlimited number of separate positions, experiences, qualifications and professional licenses to be captured, typically this will be a small number.
example, in the text describing an individual POSITION, such as ‘Chief Financial Officer of Gorilla Software from 1997 until 2000’, the job title (‘Chief Financial Officer’), company name (‘Gorilla Software’), start date (‘1997’) and an end date (‘2000’) can easily be recognized. Similarly, in the text describing an individual QUALIFICATION, such as ‘MBA from the University of Michigan in 1996’, the degree (‘MBA’), the university (‘University of Michigan’) and the graduation date (‘1996’) can again be readily identified. The underlying similarity within information types made it possible to develop the POSITION, QUALIFICATION, EXPERIENCE, and PROFESSIONAL_LICENSE sub-ontologies in Figure II.3.

POSITIVE:

"ORIGINAL":"Chief Financial Officer of Gorilla Software Inc. from April 1997 until March 2000",
"JOB_TITLE": -- Chief Financial Officer --
"COMPANY_NAME" -- Gorilla Software --
"START_DATE": -- April 1997 --
"END_DATE": -- March 2000 --

EXPERIENCE:

"ORIGINAL":"substantial financial experience, with a particular emphasis on valuing mergers and acquisitions",
"CHARACTERIZATION": -- substantial --
"AREAS": -- financial experience, with a particular emphasis on valuing mergers and acquisitions --

QUALIFICATION:

"ORIGINAL":"BA in Mathematics from the University of Michigan in 1996",
"QUALIFICATION": -- BA in Mathematics --
"EDUCATION_INSTITUTION": -- University of Michigan --
"GRADUATION_DATE": -- 1996 --

PROFESSIONAL_LICENSE:

"ORIGINAL":"licenced CPA in the state of Michigan",
"LICENSE": -- CPA --
"LOCATION": -- state of Michigan --

Figure II.3. Managerial Position in the POSITION Sub-Ontology

23 Certain concepts such as job titles, company names, dates correspond to natural concepts, or concepts that are widely shared and easily recognized (Rosch, 1973; Murphy, 2002). While other concepts are slightly more abstract such as ‘experiences’, the engagement with the material again indicated that this was a relatively meaningful basis on which to characterize the text.
The process of simplifying continued until all sub-components were dissected to the most basic element. The dimensions of variation were again identified by considering similarities and differences across a large number of items of a particular type (e.g., Glaser and Strauss, 1967). For example, as indicated in Figure II.4, functional area and seniority level were identified as two meaningful dimensions on which managerial backgrounds could be characterized; two dimensions that as well as appearing qualitatively distinct, are also considered separately within the academic literature (e.g., functional area: Michel and Hambrick, 1992; Ocasio and Kim, 1999; and seniority level: Wooldridge and Floyd, 1990; Radner, 1992).

Figure II.4. Illustration of Managerial Titles Dissected by Key Dimensions

A small number of dimensions characterized information types: qualifications can typically be characterized by level and subject; dates by day, month, year; and people names by title, first name, last name, and salutation. Identifying the key dimensions also facilitated identifying less common, although qualitatively distinct, dimensions of variation. For example, managerial titles sometimes included a region, either specifically (e.g., ‘Head of Operations in China’) or more generally (e.g., ‘Head of International Sales’). Since the region that a manager works in is qualitatively different from their functional area (e.g., Allred, Snow, and

24 There are a limited number of positions, including ‘CEO’ and ‘Director’, where the functional area is more general and integral to the layer (i.e., with the overall management or oversight of the firm); the functional area for such area for such positions are currently classed as ‘GENERAL/OVERSIGHT’.
it was considered a distinct dimension. Similarly, the managerial titles sometimes included the industry in which the manager worked (‘Head of Pharmaceutical Operations’), which is also a qualitatively distinct dimension from functional area, level, and region.

Moreover, during the implementation stage (described in Chapter 3 and 4) it was possible to identify much less common dimensions of the text. For example, by reviewing the parts of the management title not captured within the initial sub-ontology across the population of identified managerial titles (e.g., from 2007-2017) other dimensions discussed in the literature, including ‘interim’ and ‘co–’, were identified (Ballinger and Marcel, 2010; Krause, Priem, and Love, 2015). Full details of all sub-ontologies, including possible values that properties can take, discussion of how unusual cases are handled, and examples of populated ontologies are included in Appendix D. As described later, the ontologies also ensure that terms such as ‘CEO’ and ‘Chief Executive Officer’, and ‘BBA’ and ‘Bachelors in Business Administration’ are treated the same. Figure II.5 shows examples of the POSITION, EXPERIENCE, QUALIFICATION, PROFESSIONAL_LICENSE sub-ontologies.

POSITION:

EXPERIENCE:
{"ORIGINAL":"worked in the automotive industry for 5 years","LENGTH_OF_TIME":{"ORIGINAL":"5 years","UNIT":"YEAR","QUANTITY":5},"AREAS":{"ORIGINAL":"automotive industry","NAICS_3_DIGIT":336,"NAICS_3_DESCRIPTION":"Transportation Equipment Manufacturing"},"EXPERIENCE_TYPE":{"ORIGINAL":"worked","TYPE":"WORK"}"

QUALIFICATION:
{"ORIGINAL":"received a BEng in 1990 with a from the University of Illinois","DEGREE":{"ORIGINAL":"BEng","DEGREE_LEVEL":"UNDERGRADUATE/BACHELORS","SUBJECTS":{"ENGINEERING"}},"EDUCATION_INSTITUTION":{"ORIGINAL":"University of Illinois","UNIVERSITY":"UNIVERSITY OF ILLINOIS"},"GRADUATION_DATE":{"ORIGINAL":1990,"YEAR":1990}"}
Figure II.5. Managerial Position Standardized in the POSITION, EXPERIENCE, QUALIFICATION, and PROFESSIONAL_LICENSE Sub-Ontologies

Removal of Surface Level Variation

Once the text has been standardized, the four sources of surface-variation shown below in Table II.2 are either removed or captured. Specifically permutations in sentence constructions, acronyms and synonyms are removed, and label names (e.g., people names) are captured, such that comparisons can be made on dimensions of interest, ignoring label names as appropriate.\(^{25}\)

<table>
<thead>
<tr>
<th>Surface-variation type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronyms</td>
<td>The CEO of Gorilla Software is John Doe vs. The Chief Executive Officer of Gorilla Software is John Doe</td>
</tr>
<tr>
<td>Synonyms</td>
<td>John Doe works for Gorilla Software vs. John Doe is employed by Gorilla Software</td>
</tr>
<tr>
<td>Slight variations in sentence construction(^{26})</td>
<td>The CEO of Gorilla Software is John Doe vs. John Doe is the CEO of Gorilla Software</td>
</tr>
<tr>
<td>Differences in specific labels (e.g., people and organization names)</td>
<td>John Doe is the CEO of Gorilla Software vs. Jane Roe is the CEO of Oculi Machined Parts</td>
</tr>
</tbody>
</table>

Table II.2. Summary of Surface-Level Variation

\(^{25}\) As explained in greater detail later, while the sentence seeks to represent all dimensions of what is said, it is likely that only one or two parts will be of interest to a particular research question; any dimensions not relevant may be ignored. This is similar to how, while COMPUSTAT has thousands of financial variables about organizations, allowing the spectrum of questions concerning financial information to be examined, typically only a handful of variables are of relevance to a particular research question.

\(^{26}\) It should be noted that while effort has been made to ensure that key dimensions of ordering within the sentence are preserved (e.g., the order experiences are introduced, the order positions are introduced, etc.), the process of standardizing the sentence inherently, and intentionally, abstracts some slight within-sentence variations in order. For example, ‘from 1997 to 2000 he was CEO’ and ‘he was CEO from 1997 and 2000’ standardize the same. While it is hard to see how, at least for the vast majority of possible research question, that this could be a meaningful difference, it would be is feasible at some point in the future to have an option to number the position in the sentence of every component extracted, allowing very slight within-sentence variations to be captured, should they be desired. To date though, this has not been added since it makes the structures much harder to understand and explain, while offering very little value.
To illustrate the power of this process to abstract surface-level variations, Figure II.6 provides sentences that while superficially varying from those in Figure II.5 (i.e., acronyms, synonyms, different label names and slight differences in sentence constructions), standardize the same on all properties except the original text, and label names.

```
POSITION:
  "ORIGINAL":"from April 1997 through March 2000 was the Chief Finance Officer of Bridge Analysis",
  "JOB_TITLE":{"ORIGINAL":"Chief Finance Officer","LEVEL":"CHIEF-OFFICER","AREA":{"FINANCE"}}
  "COMPANY_NAME":{"ORIGINAL":"Bridge Analysis","NAME_CLEANED":"BRIDGE ANALYSIS"}
  "START_DATE":{"ORIGINAL":"April 1997","YEAR":1997,"MONTH":4}
  "END_DATE":{"ORIGINAL":"March 2000","YEAR":2000,"MONTH":3}

ALTERNATIVE_ABOVE:"chief financial officer of gorilla software inc. from april 1997 until march 2000",

EXPERIENCE:
  "ORIGINAL":"spent 5 years working in the automotive sector"
  "LENGTH_OF_TIME":{"ORIGINAL":"5 years","UNIT":"YEAR","QUANTITY":5}
  "AREAS":{"ORIGINAL":"automotive sector","NAICS_3_DIGIT":336
  "NAICS_3_DESCRIPTION":"transportation equipment manufacturing"}
  "EXPERIENCE_TYPE":{"ORIGINAL":"working","TYPE":"WORK"}

ALTERNATIVE_ABOVE:"worked in the automotive industry for 5 years"

QUALIFICATION:
  "ORIGINAL":"earned an undergraduate degree in engineering from the University of Illinois in 1990"
  "DEGREE":{"ORIGINAL":"BEng","DEGREE_LEVEL":"UNDERGRADUATE/BACHELORS","SUBJECTS":{"ENGINEERING"}}
  "EDUCATION_INSTITUTION":{"ORIGINAL":"University of Illinois","UNIVERSITY":"UNIVERSITY OF ILLINOIS"}
  "GRADUATION_DATE":{"ORIGINAL":"1990","YEAR":1990}

ALTERNATIVE_ABOVE:"received a BEng in 1990 with a from the University of Illinois"

PROFESSIONAL_LICENSE:
  "ORIGINAL":"licensed in the State of New Jersey to practice law",
  "AREA":"LAW",
  "REGION_LIST":{"COUNTRY":"USA","STATE":"NJ"}

ALTERNATIVE_ABOVE:"licensed to practice law in new jersey",
```

Figure II.6. Illustration of How Different Sentence Constructions Standardize the Same
CHAPTER III
Overview of the Information Extraction Process

This chapter introduces the three stages of populating the ontologies: i) concept recognition, ii) semantic interpretation, and iii) standardization, using simple, stylized examples to explain each stage. Chapter 4 then builds on these examples to explain how the approach was expanded to the complex and varied sentence structures common in managerial backgrounds, with greater consideration to validate the information.

Stage 1: Concept Recognition

The process by which the information is populated into the ontologies has direct parallels with the process by which the ontologies were developed. While the ontologies were developed by systematically dissecting the sentence to underlying concepts, the approach to populate these ontologies begins by mapping words in the sentence to underlying concepts. Moreover, just as the similarity in the dimensions allowed the ontologies to be developed, reducing the text to concepts substantially simplifies the sentences. For example, despite sharing little common words, the two sentences ‘John Doe is a CEO of Gorilla Software’, and ‘Jane Roe is the Vice President of Oculi Parts’ both reduce to the underlying concepts PERSON_NAME IS MANAGEMENT_TITLE OF COMPANY_NAME.

27 Greater consideration will be given in Chapter 4 of the level of the granularity of the initial concepts captured; for the time being the term ‘concept’ corresponds to what could be considered ‘natural concepts’ (e.g., Rosch, 1973; Murphy, 2002) such as MANAGEMENT_TITLE, DATES, PERSON_NAME, COMPANY_NAME, DEGREE, EDUCATION_INSTITUTION, and are typically the lowest level of sub-ontologies.
These concepts (e.g., PERSON_NAME, DATES, COMPANY_NAME) broadly correspond to natural categories, or concepts that are widely shared and easily recognized (Rosch, 1973; Murphy, 2002), and being able to read and comprehend sentences depends on our ability to identify these underlying concepts (Bower and Trabasso, 1963; Swinney, 1979; Perfetti and Hart, 2001). As such, we can readily identify in the sentence ‘John received a BBA from the University of Michigan’ that ‘John’ is the name of a PERSON, ‘BBA’ is a QUALIFICATION and ‘University of Michigan’ is a university, or EDUCATION_INSTITUTION. Our ability to identify patterns in text means that we can also recognize concepts even if we are not familiar with the words. For example, in the sentence ‘Shareve received a BBA from Panear Tech’, we can readily deduce that ‘Shareve’ is likely a person and that ‘Panear Tech’ is likely an EDUCATION_INSTITUTION, despite not necessarily being familiar with either. Like people, computers are adept at pattern recognition, and despite lacking a direct understanding of what concepts such as people or universities are, can be trained to recognize the concepts in the text (e.g., Lample et al., 2016).

Stage 2: Semantic Interpretation

While concept identification helps reduce the variation between sentences, the second key stage, semantic interpretation, involves deducing the meaning based on the structure of concepts and the connecting words. For example, in the sentence ‘John received a BBA’, by recognizing the PERSON_NAME concept and the QUALIFICATION concept, connected with the term ‘received’, it is possible to deduce that a person called John received a qualification of type BBA. While information extraction is often implemented by interpreting relationships between

28 While the vast majority of qualifications discussed in managerial backgrounds are from Universities, there are some community colleges; as such a more general term is used throughout.
just two concepts in a sentence (e.g., Nakashole, Theobald, and Weikum, 2011; Biega, Kuzey, and Suchanek, 2013), as illustrated in Figure III.1, it is possible to extend the approach to populate the ontologies by interpreting the sequencing of several concepts.

![Diagram of information populated to ontologies]

Figure III.1 Illustration of the Process by which Information is Populated to the Ontologies

Thus, although computers do not have a direct understanding of the connecting words, they can use rules to capture the relationships and populate the ontologies. Moreover, other connecting words such as ‘obtained’ or ‘achieved’ can be interpreted in this context the same as ‘received’. This illustrates why reducing the text to concepts simplifies the semantic interpretation; while it is possible to write semantic rules to populate the ontologies at the concept level, since there are so many possible people names, university names and different ways of saying ‘received’, it is unfeasible to construct such rules at the word level. By first reducing the sentence to underlying concepts, the process of interpreting the meaning based on the sequencing of these concepts is greatly simplified.

Stage 3: Standardization

While the first two stages, entity recognition and semantic interpretation, remove or capture surface-level variations in sentence construction, label names, and synonymous connecting
terms, the final stage, information standardization, addresses surface-level variations from acronyms and synonymous phrases in the main concepts (e.g., ‘financial experience’, vs. ‘experience in finance’). For some concepts, this is feasible by continuing the dissection process, standardizing the terms by dissection them to properties. Recognizing the meaning of acronyms and terms without repetitions of words, however, requires a level of external knowledge not directly known from the text. While humans can draw on background knowledge to recognize that a BBA is a bachelor level degree in business, or that the term USA and United States are the same, computers do not directly have this knowledge. This information can, however, be supplementally added, through a variety of approaches including manually specifying the degree and subject of terms such as ‘BBA’, or by looking up the information on external databases to standardize ‘USA’ and ‘United States’ as the same location. As illustrated in Figure III.2, decomposing concepts to the sub-ontologies developed in Chapter 2 (and included in Appendix D), and standardizing each dimension, facilitates direct comparisons, irrespective of how the text is written.

![Figure III.2 Illustration of Standardization of Concepts](image)

While additional consideration will be given to extend these approaches to represent entire sentences (which can be aggregated to represent entire managerial backgrounds), the three stages, i) concept identification, ii) semantic interpretation, and iii) standardization, provide the foundation for capturing representations of managerial backgrounds.
CHAPTER IV
Managerial Backgrounds Implementation Specifics

This chapter explains how the approach introduced in the previous chapter can be extended from individual relationships and simple sentences to populate the ontologies developed in Chapter 2, and illustrated in Figure IV.1 below.

Figure IV.1. Illustration of Indicative Sentence Complexity and the Intent of the Process

While the process described in the previous chapter drew closely from information extraction approaches (e.g., Lample et al., 2016; Jurafsky and Martin, 2018), the relatively complex sentence structures in managerial backgrounds require separate consideration. This chapter begins by explaining the approach to reduce the sentence complexity so that the long and varied sentences can be populated to the ontologies. This is followed by more specific details
involved in transforming the sentences to the developed ontologies for each of the three stages: concept recognition, semantic interpretation, and standardization. Since the intention of this dissertation is to develop an approach that is sufficiently flexible to be capable of representing the breadth of managerial backgrounds, a large pool of managerial backgrounds were first collected. The managerial backgrounds used throughout the development process were sourced from the proxy statements of all US public firms over the period 2007-2017 (obtained directly from SEC/EDGAR).29 This comprised of around 8 million sentences, including both directors and top managers, and the breadth of experiences, sentence structures, and acronyms included in these backgrounds helps ensure the flexibility and scalability of the population approach.30

Extension of the Information Extraction Approaches to Represent Entire Sentences

As indicated above, the primary way that representing entire sentences differs from the last chapter is the level of sentence complexity. While the prior approach is well suited to relationships between a small number of concepts, (ignoring sentences parts not specifically desired, e.g., Nakashole, Theobald, and Weikum, 2011; Biega, Kuzey, and Suchanek, 2013), the sentences in managerial backgrounds are typically long, often discussing multiple positions, experiences and qualifications. This is illustrated in Figure IV.2, showing how as the sentence length increases, the number of concept orderings substantially grows.

29 Proxy statements were identified as by far the most consistent source of discussion on the backgrounds of executive officers and the board members.

30 Specifically, the breadth and volume of material means that only modest adaptations are envisioned necessary to extend the approach to earlier and future time periods, and other communication mediums. Further details on how the material was extracted from the managerial backgrounds is included in Appendix B, and descriptive statistics of the material, derived through the development of the ontologies, are included in Appendix D.
Figure IV.2 Illustration of How Increasing the Sentence Length Increases Complexity

Since there are tens of thousands of unique concept orderings, it is unfeasible to directly write rules to populate the ontologies from concepts. The approach to allow the more complex sentence orders to be captured involves two important considerations, that while not ultimately impacting the populated ontologies developed in Chapter 2, substantially simplify the population process. These considerations are: i) capturing concepts at a relatively high level of granularity, and ii) temporarily grouping concepts before interpreting the meaning. Capturing concepts at a relatively high level of granularity involved avoiding unnecessarily complicating the semantic interpretation from too fine concepts. Specifically, while it is possible to represent ‘BA in Engineering’ as DEGREE IN ENGINEERING or DEGREE IN SUBJECT, semantic interpretation is simplified if the term is represented as DEGREE, and then split into level and area in a second stage. Similarly, while ‘Vice President of Manufacturing’ could be represented as MANAGEMENT_TITLE OF MANUFACTURING or MANAGEMENT_TITLE OF AREA, representing the whole term as MANAGEMENT_TITLE, and then separating it into parts, simplifies the semantic interpretation.31

31 This level of concepts are used throughout the dissertation (including Figure IV.2 above) and are detailed further in Appendix C. While, as illustrated in Figure IV.2, this ordering is not simple, there is nevertheless less variation than if concepts had been split further.
There are, however, trade-offs from using higher level concepts. While capturing concepts at a high level reduces the complexity of interpreting the meaning, it also increases the number of terms in the concepts. For example, further aggregation such as combining management titles and companies (e.g., ‘Vice President of Manufacturing of Gorilla Software’) or degrees and universities (e.g., ‘Bachelor in Engineering from the University of Michigan’) means that the number of different terms substantially increases. While terms such as ‘Vice President of Manufacturing’ are sufficiently general that they appear across managerial backgrounds, the aggregate of the management title and company name tend to be manager-specific. Temporarily grouping blocks of related concepts together achieves the benefits of reduced complexity, while avoiding increasing the number of terms in the concepts. As explained further below, concept orders such as MANAGEMENT_TITLE OF COMPANY_NAME can be temporarily grouped together, simplifying the overall ordering to facilitate semantic interpretation. As illustrated in Figure IV.3, this enables long, complex concept orderings to be simplified, substantially reducing the overall number of unique orderings.

![Figure IV.3 Illustration of Grouping Concepts](image)

The remainder of this chapter will describe further considerations at each stage, including specifics of how the concepts were identified, greater consideration of the semantic interpretation, and the standardization and verification process.
Concept Recognition

The first stage of populating the ontologies is concept recognition. As noted previously, since concepts including MANAGEMENT_TITLES, COMPANY_DESCRIPTION, and COMMITTEE are not identified in standard packages (e.g., OpenNLP: Baldridge, 2005; NLTK: Bird and Loper, 2004; and Stanford NER: Finkel, Grenager, and Manning, 2005), as outlined in Figure IV.4, it was necessary to develop training data, allowing further terms in the concepts to be identified through machine learning.

Figure IV.4. Summary of the Overall Process to Classify Terms into Concepts.

The initial training data was built up by manually tagging words to concepts, supplemented with various manually defined ‘rules’. For example, capitalized words proceeding ‘inc.’, ‘corp’, and ‘LLC’ were identified as likely company names and terms following ‘degree in’ as likely degrees. As the number of fully classified sentences increased, machine learning was used, using neural networks (Specht, 1991) on the Tensor Flow platform (an open source machine learning platform released by Google: Abadi et al., 2016) to automatically classify words and phrases based on the training data.32 This uses pattern recognition on the trained data to fit a model, allowing the terms in subsequent sentences to be classified.33 While machine

32 To avoid over-fitting, a dropout of 0.5 was used (Srivastava et al., 2014).

33 For example, while the ability to recognize that QUALIFICATION IN unknown_word could likely be combined to a QUALIFICATION, based on classified data with a similar underlying pattern, the machine learning process is able to identify this and other groupings. In this way, new sentences, containing unknown words and phrases can be passed through the model, and each word or sequence of words, classified into a particular concept, allowing the process to be scaled with only manual oversight.
learning helped speed up the process of classifying terms, the entire process was heavily supervised to ensure the validity of the concepts, and avoid “semantic drift”, a potential issue of recursive classification where the introduction of errors causes more errors to be introduced (Riloff and Jones, 1999; Curran, Murphy, and Scholz, 2007: 172). To ensure the accuracy of the terms in the concepts, and reduce the need for manual verification, a variety of automated and semi-automated approaches described below were used to verify the terms, and identify classification errors; the overall accuracy of the machine learnt classification of concepts is now in excess of 99%. With manual verification helping ensure that mistakes are identified.

Semantic Interpretation

The next stage in the process, semantic interpretation, involves populating the concepts to the ontologies. As noted, while there is substantial variation in the overall concept orders, this can be reduced by first grouping related concepts, and then interpreting the meaning from the ordering of the groupings. Figure IV.5 illustrates how by grouping related concepts, a single rule can interpret a wide variety of sentence orderings.

34 That is, when run over the training data, in excess of 99% of the machine-learned classifications correspond to the expected concepts. While the training data currently comprises several million fully classed sentences, and using the full sample achieves the most accurate model, to allow relatively quick iterations and incorporations changes and corrections, typically the models are trained on a sub-sample of around 100,000 sentences. This achieves high classification rates on new sentences, while only taking several hours to re-train the model.
These groupings were arrived at through consideration of similarity in the underlying material, grouping concepts that typically occur in similar places in the text, and populate the same parts of the ontology. The approach to interpreting the overall meaning was then combined with more detailed semantic interpretation for each of the groupings. At this level, the task of associating concepts to appropriate parts of the ontologies is greatly simplified. Each of these used relatively simple rules, for example, that terms with the PERSON_NAME concept in the PERSON_GROUP should be associated with the PERSON_NAME property in the BACKGROUND_DETAILS primary ontology, or that the DATA concept in the SINCE_GROUP should be associated with the START_DATE property. This overall process is illustrated in Figure IV.6. While the number of groups increases with more complex sentences, the rate of growth is substantially less than at the concept level.

35 As noted, these groupings are arrived at to facilitate implementation, and do not directly impact the populated ontologies. It would, for example, have been feasible to have grouped MANAGEMENT_TITLE_GROUP and the SINCE_GROUP together. While there would have been trade-offs from doing so (between a simpler overall sentence, but more varied orders within the grouping), it would not have ultimately impacted the populated ontology.
Standardization and Verification of Concepts

While the populated ontologies capture the properties of the text, to facilitate comparisons between sentences, the third stage involves standardizing the individual properties. The standardization approaches used included: i) standardization from dissecting terms to parts; ii) standardization from manual classifications; and iii) standardization from external databases. Standardizing by dissecting terms to parts parallels the process of standardizing the overall sentence, focused on capturing the specific properties of the terms. For example, some of the most commonly occurring properties in the MANAGEMENT_TITLE sub-ontology are LEVEL, AREA, COUNTRY. As illustrated in Figure IV.7 below, it is possible to break down management titles to these components, and populate the sub-ontologies in a similar manner as at the overall sentence level.
This process reduces the complexity; while there are around 50,000 unique management titles, the number of unique terms in each property of the sub-ontology is much less. For example, there are only around 2,000 unique levels, ranging from commonly occurring terms such as ‘Vice President’, to less common permutations such as ‘Acting Senior Vice President’. Moreover, Figure IV.8 illustrates how by continuing the dissection process, splitting up the level property to its components, the 2,000 permutations can also be fully standardized.

As illustrated in Table IV.1 below, a large proportion of concepts can be dissected to the components of the sub-ontologies, with the number of unique terms reducing at each stage of the dissection process.
<table>
<thead>
<tr>
<th>Concept</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUALIFICATIONS</td>
<td>Bachelor of Engineering, summa cum laude</td>
</tr>
<tr>
<td>PERSON_NAME</td>
<td>Mr. John Doe, First Name: John, Last Name: Doe, determined based on position of word</td>
</tr>
<tr>
<td>EDUCATION_INSTITUTION</td>
<td>Ross School of Business at the University of Michigan</td>
</tr>
<tr>
<td>LENGTHS_OF_TIME</td>
<td>over 5 years</td>
</tr>
<tr>
<td>DATES</td>
<td>January 1, 2010</td>
</tr>
<tr>
<td>MANAGEMENT_TITLES</td>
<td>Vice President of Operations for the China Region</td>
</tr>
<tr>
<td>COMMITTEE</td>
<td>Audit and the Nominations Committees</td>
</tr>
<tr>
<td>PROFESSIONAL_LICENSE</td>
<td>Licensed engineer in the State of Michigan</td>
</tr>
<tr>
<td>COMPANY_DESCRIPTION</td>
<td>Leading producer of automotive components</td>
</tr>
</tbody>
</table>

Table IV.1 Summary of the Standardization Approaches

Once fully dissected, the number of terms at each property is typically small, amenable to manually standardizing any remaining variations. For example, as illustrated in Figure IV.10, in the terms ‘over 5 years’ and ‘more than five years’, both ‘over’ and ‘more than’ are treated synonymously, and ‘5’ and ‘five’ are both standardized to the number 5, populating the sub-ontologies described in Appendix D.\(^\text{36}\)

\(^\text{36}\) Dissecting can also be extended to allow larger numbers to be interpreted from the sequencing; ‘five hundred’, can be dissected to QUANT HUNDRED, which is then amenable to interpreting as 500. Larger numbers, such as ‘four million six thousand and twenty-five’ is also amenable to be interpreted in a similar manner.
As well as making terms consistent, the additional benefit of dissecting the terms into components is that it helps ensure the validity of the terms in the concepts: although there are tens of thousands of terms at the concept level, making manual verification of each difficult, there are a much smaller number of terms in each of the properties. Manually reviewing the component terms, and checking the overall terms in the concepts conform to an expected sequencing of components (for example that management titles in the order LEVEL OF AREA or LEVEL OF AREA AND AREA, etc.) helps ensure that the terms are appropriately classified while identifying potential mistakes. This is illustrated in Figure IV.10, illustrating how by successively dissecting terms, the difficulty of verification is much simplified.
As discussed further in Appendix E, while effort is still on-going to fully dissect terms, a high level of conformance is achieved across the majority of concepts (e.g., greater than 95% of terms fully dissected). This helps ensure i) that the ontologies are sufficiently flexible to capture the breadth of properties ii) the semantic rules and classification of terms to sub-properties are functioning as expected, iii) and the validity of the terms underlying the concepts. Moreover, while 95% is sufficiently high to illustrate the potential of dissecting terms to the sub-ontologies, as the classification process continues, much higher classifications rates are anticipated.

While the approach to dissect the terms to components works for the majority of concepts, it is less suited for i) terms are obscured by acronyms, and ii) concepts that lack the inherent repetition in the underlying words to facilitate standardization through dissection. For example, it is not feasible to ascertain from the label the level or area of ‘CFO’, nor that ‘Michigan’ is a state, while ‘Canada’ is a country. Both of these pose challenges to interpreting the meaning, and require a level of understanding of the term not directly inferable from the text. Since there are only a relatively small number of acronyms in the context of managerial backgrounds (e.g., COO, CTO, VP, EVP, SVP and BEng, Med, BBA) it is feasible to manually specify the properties as appropriate. For example, for the term CFO, the level (CHIEF-OFFICER) and the area (FINANCE) are manually specified, and for the qualification BEng, the level (UNDERGRADUATE/BACHELOR) and the subject (ENGINEERING) are manually specified, allowing acronyms to be dealt with relatively easily.\(^{37}\) There are however limits to manually specifying terms, and manually standardizing concepts such as LOCATIONS (e.g., ‘Texas’),

\(^{37}\) As discussed further in Appendix D, while many qualifications such as BBA, BEng, MEd include the subject as part of the degree title (i.e., business, engineering, and education), other degree titles such as BA and PhD do not (i.e., they are not necessarily in art or philosophy); care was taken to only infer the subject appropriately. Moreover, care was taken to extend classifications of degrees beyond common degrees to include various university-specific idiosyncrasies, such as the bachelor level S.B. and A.B. degrees issued by Harvard.
EDUCATION_INSTITUTIONS (‘University of Michigan’), and COMPANY-INDUSTRY AREAS (e.g., ‘manufacturer of application specific integrated circuits’) would be unfeasible.

To ensure that these terms are appropriately standardized, terms in the LOCATIONS, EDUCATION_INSTITUTIONS and COMPANY-INDUSTRY AREAS concepts were each connected with external databases. As illustrated in Figure IV.11, for education institutions, standardization was based on searching the top result on a search engine (Yandex), and then connecting the domain of the first result to a standardized database (Hipo, 2015). Similarly, the location details were standardized based on a geocoding service (currently Google Geocoding: Google, 2018).

As well as helping to standardize the terms, this process also helps ensure the validity of the terms in the concepts; the domains of education institutions are typically .edu or .ac domain address, and domains not matching an associated university were flagged for manual review, as were locations that did not result in any matches on a geocoding service. Before describing the path for further standardization and validation, Table IV.2 summarizes the layers of validation.

38 In this instance, connecting terms via the search result has the slight advantage over ‘fuzzy matching’ (e.g., Zwick, Caristein, and Budescu, 1987), since it allows permutations that are very different, such as ‘UCLA’ and ‘University of California Los Angeles’ to be connected together.
that are incorporated throughout the process, each amenable to the large-scale textual analysis that help ensure that the ontologies reflect the underlying material and errors are identified.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Description and Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative development of ontologies</td>
<td>As described in Chapter 2, the ontologies were developed with substantial qualitative consideration of the underlying material. This ensures that the dimensions on which the text is dissected are relevant, and that the ontologies reflect the underlying text.</td>
</tr>
<tr>
<td>Validation by dissection</td>
<td>By dissecting concepts to underlying properties, and manually verifying the much reduced number of terms in the sub-concepts, and the sequencing of the sub-concepts, it is possible to validate a much larger number of terms. For example, the validity of concepts comprised of separate parts (e.g., MANAGEMENT_TITLE) can be assessed, despite there being tens of thousands of unique titles at the overall level.</td>
</tr>
<tr>
<td>Validation by external data-checks</td>
<td>By connecting terms to external databases, it is possible to verify concepts underpinned by a large number of labels, such as location information, that are unfeasible to manually verify, and lack the repetition in underlying words to allow dissection.</td>
</tr>
</tbody>
</table>
| Validation by context | Checks that the context in which a term occurs in a sentence is appropriate; for example, while the concept sequencing PERSON_NAME IS MANAGEMENT_TITLE AT COMPANY_NAME is common, and appropriate, a concept sequencing such as PERSON_NAME RECEIVED COMPANY_NAME FROM UNIVERSITY_NAME is not common, and not likely to be correct (i.e., likely indicating that a degree acronym has incorrectly been classified as a company name). This validation includes three components:
 i. Manual checks to identify unlikely concept sequencing.
 ii. Machine-learned identification, where classifications through machine-learning are inconsistent with the classified concept.
 iii. Identification as concept sequencing that does not conform to that expected in the ontology
This helps identify incorrectly classified concepts, irrespective of whether the concept has common terms (e.g., both concepts such as LOCATION and MANAGEMENT_TITLE), and in conjunction with validation through dissection and external checks, helps ensure the validity of concepts. |
| Manual oversight | Checks throughout the process to ensure that the ontologies are being populated in-line with those developed. |
| Face validity | Beyond documenting the ontologies, the examples, and summary statistics included in Appendix D illustrate that the ontologies, properties, and classifications have a high correspondence to what would be expected. |

Table IV.2 Summary of Validation Approaches

The final standardization level is of the specific properties of the ontology. While at the specific property level the boundaries between classifications can be fuzzy (Lakoff, 1975; Zwick, Caristein, and Budescu, 1987; Murphy, 2002), as described further in Chapter V below, and in Appendix D, the intent is to reflect the dimensions of the underlying material, while allowing the

39 While the ontologies are largely defined, and the process by which they are populated is largely functioning across managerial backgrounds with the vast majority terms classified appropriately, this validation is an on-going effort, and the current stage of development could be characterized as at a ‘beta’ stage (e.g., Abrahamsson et al., 2017), with the current status of verification reflected in Appendix E.
specific properties of the ontologies to be recoded, with properties combined as appropriate for a research question.40 Full details of the levels captured is included in Appendix D. While the numbers of terms in many properties are sufficiently small to allow manual categorization, in the \textbf{COMPANY-INDUSTRY_AREA} property there remained a large number of terms describing the firm operations. Appendix E describes an approach, using surrounding discussion of the terms on Wikipedia, to enable terms not directly appearing in the NAICS classification manual to be connected to appropriate classification codes. This appendix also describes further developments intended to validate the classification of other fuzzy concepts, describing how crowdsourced verification (e.g., Kittur, Chi, and Suh, 2008) is intended to allow validation of the dimensions of the characterizations sub-ontology, and occurrence of subjects on department websites is intended to help validate groupings of subjects.

40 For example, functional areas in the \texttt{MANAGEMENT_TITLE} concept including ‘Finance’, ‘Marketing’, ‘Operations’ are distinct from one another, the functions have some underlying connections with ‘Accounting’, ‘Advertising’ and ‘Manufacturing’ respectively, with research on functional areas aggregating the areas together (e.g., Michel and Hambrick, 1992; Ocasio and Kim, 1999). While these are each treated separately (along with other areas such as law and auditing), they can easily be combined as appropriate.
CHAPTER V

Dimensions of Interest, Aggregation, and Comparisons

This and the next chapter are intended to illustrate the theoretical opportunities of the developed approach. This chapter begins by systematically considering dimensions of the backgrounds most amenable for theoretical development, before giving more specific consideration to how dimensions can be captured and compared. While the discussion so far has illustrated how it is feasible to characterize individual sentences, since managerial backgrounds are comprised of multiple sentences, and the overall description of the top management team comprises multiple top managers, this discussion incorporates consideration of how the individual sentences can be aggregated. This is followed by examining how the ontologies facilitate consideration of the structuring of information. After providing the foundations to illustrate how the ontologies can be used to capture potentially interesting dimensions, the next chapter illustrates specific research questions facilitated.

Consideration of Theoretically Interesting Dimensions

While the ontologies capture substantially all the information in managerial backgrounds, their envisioned usage is forming constructs underpinned by specific, relevant, dimensions of the text. The research opportunities arise from the fundamental way in which the information departs from existing databases of employment histories; while existing databases seek to represent objective aspects of a manager’s past, the approach developed here represents how that past is characterized. While certain aspects of managerial backgrounds are factual, such as dates of
employment or qualifications received (and manipulating these risks dismissal: Abrams, 2014), much of what is written, and especially how it is written, can be tailored. Specifically, since top managers will have accumulated varied skills across their careers, there is substantial opportunity to selectively draw on experiences, to highlight certain areas, while downplaying or omitting others. Similarly, it is possible to describe the organizations that managers have worked for in many ways, for example, highlighting success, pace of growth, and an international presence. The ontologies developed allow three fundamental forms of characterization to be explored: i) re-characterizations over time (e.g., Reger et al., 1994; Bolman and Deal, 2017), ii) different characterizations across mediums and audiences (e.g., Sutton and Callahan, 1987; Boje, 1991), and iii) deviations between characterizations and reality\(^41\) (Meyer and Rowan, 1977; Westphal and Zajac, 2001).

By allowing direct comparisons between the dimensions of the text, the standardized representations facilitate comparisons of sentences, such as across mediums or over time, even in the presence of surface-level variations. For example, as illustrated in Figure V.1, once the text has been represented in a standardized manner, sentences can be compared on each individual dimension of the text.\(^42\)

\(^{41}\) For example, omitting certain positions from positional history, or disproportionally discussing other experiences.

\(^{42}\) The standardized structure of the ontologies make a variety of operations relatively easy (e.g., adding sentences, subtracting sentences, comparing orders within sentences etc.); the intention going forward is that functions will be made available to facilitate comparisons.
From October 2001 to November 2004, she served as Vice President of Operations of QRS Corp., a gold mining company.

Between October 2001 and November 2004, she was previously the VP of Operations at QRS Corp., a large international gold mining company.

Figure V.1 Illustration of Position Comparisons

In the above example, the subtle adjustment made to note that the company QRS Corp is large and international can be identified, despite the presence of surface-level differences (e.g., ‘VP’ vs. ‘Vice President’) that can complicate manually identifying changes. It is also possible to undertake comparisons, despite variations in the surrounding material or the order in which information is presented. This is important in facilitating comparisons between long communications, or different communication mediums, where differences in the order that information is presented are common. For example, the two texts in Figure V.2 below, describe a manager’s background at two different companies (Gorilla Software and Oculi Parts); although

43 To conserve space, and make the figures easier to compare, only relevant dimensions of the ontologies are displayed in this chapter.
the material is in a different order, and includes various other extraneous differences, by subtracting the description, it is possible to identify how the firms are characterized differently. While identifying such differences is not impossible by hand, it is non-trivial to consistently identify characterization differences between just two sentences; systematically comparing entire documents is almost impossible.

TEXT 1:
"ORIGINAL_TEXT": "Between October 2001 and November 2004, John was the head of marketing at Gorilla Software Inc., and then between 2005 and 2009 he worked as the Vice President of Sales for Oculi Parts Inc., an automotive parts manufacturer."

TEXT 2:
"ORIGINAL_TEXT": "Previously, John has worked as the VP of Sales for Oculi Parts, a leading manufacturer of automotive components. Before that, he also worked for Gorilla Software, a large international software development company."

DIFFERENCES:
"COMPANY": "GORILLA_SOFTWARE",
"ADDITIONS":

 "COMPANY_DESCRIPTION":
 "REGION": "INTERNATIONAL",
 "CHARACTERIZATION": "SIZE_LARGE"

 "INDUSTRY": "NAICS_3_DIGIT": 511"

"SUBTRACTIONS":

"COMPANY": "OCULI_PARTS",
"ADDITIONS":

 "COMPANY_DESCRIPTION":
 "CHARACTERIZATION": "LEADING"

"SUBTRACTIONS":

Figure V.2 Illustration of Position Comparisons Across Multiple Sentences

Mathematical Approaches to Compare Text

The above examples illustrate how once texts are in a standardized representation, operations with mathematical analogies are facilitated. Table V.1 describes in greater detail the foundational operations that allow comparisons between the standardized representations: i) simplification of sentences; ii) re-coding of dimensions, iii) additions, to aggregate sentences into blocks; iv) subtractions of sentences from one another to compare material; v) division of blocks
of text to allow relative comparisons of text. Each of these operations can be implemented to enable different forms of comparisons; over time, across mediums; and comparisons in different audience responses to communications.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Simplification | **Purpose:** Remove dimensions unnecessary for the research question from the ontologies
While the ontologies are intended to represent substantively all of the discussion in the text, only certain parts are likely to be relevant for a particular question (in a similar manner to how only certain accounting measures are likely to be relevant to a particular research question). As such, an integral stage is determining desired dimensions, either ignoring, or removing dimensions superfluous to the research question. For example, dimensions such as the original text, or data of employment, are unlikely to be useful in many research questions, and removing them may make the ontologies easier to view and work with. While other properties, such as PERSON_NAME and COMPANY_NAME, may not provide the basis for comparison, they may be necessary for meaningful comparisons (e.g., seeing recharacterizations at specific companies). |
| Recoding (if necessary) | **Purpose:** Adjust any classifications based on the nature of the research question
While the ontologies are intended to capture the dimensions of the text as noted earlier, at the very specific property level concepts can be ‘fuzzy’ (e.g., Murphy, 2002), and differences between concepts such as MARKETING and ADVERTISING may or not be desired. Thus, despite continuing effort to ensure a basis for classifications and validate the levels used, it is anticipated that a degree of re-coding may sometimes be required. The ontologies facilitate recoding of dimensions, with the ability to combine labels or further split concepts as desired. By providing the basis for a majority of dimensions, this task is much simplified; it is far easier to recode a limited number of functional-labels (such as designating that MARKETING and ADVERTISING should be combined) than to manually code the tens of thousands of permutations in the raw titles. |
| Additions (aggregation) | **Purpose:** Aggregate the properties as desired to summarize dimensions
As described in Chapter 2, in the context of managerial backgrounds, it is appropriate to analyze each sentence separately, since in the vast majority of cases, the meaning of the sentence can be determined independently of surrounding discussion (i.e., limited use of pronouns such as ‘this’ to refer to discussion in earlier sentences). Nevertheless, meaningful comparisons are likely to require comparisons at a higher level of analysis (e.g., the manager or top management team level). The nature of the aggregation is likely to depend on the question. At the highest |

44 While qualitative research inherently incorporates simplification and comparisons of aggregates of text, this typically relies on researchers’ ability to synthesize the aggregate and differences (e.g., Glaser and Strauss, 1967; Eisenhardt, 1989), rather than the mathematical approach illustrated here. The more mathematical approach developed through the ontologies may have opportunities to complement more qualitative research; while qualitative research is well suited for considering the idiosyncratic information (that lacks the basis for directly represent in ontologies), the mathematical operations are more systematic, relying less on researchers’ ability to synthesize the material, while facilitating very specific consideration of the ways in which the information is changing that is hard to capture even on a relatively small scale.
level it would be possible to count a particular dimension, for example, the different forms of experiences that are discussed, or the breadth of industries, to allow a general characterization of a manager’s profile (e.g., Crossland et al., 2014) as illustrated below.

```
SUMMARY_OF_FUNCTIONALAREAS: {
   "TECHNOLOGY":3,
   "OPERATIONS":2,
   "MARKETING":1
}
```

It is also possible to restrict aggregations to certain dimensions (i.e., crosstab-aggregation). For example, it is possible to aggregate company descriptions, restricted to specific companies, facilitating firm-specific comparisons.

```
SUMMARY_OF_BYCOMPANY: [ {
   "COMPANY_NAME":"GORILLA SOFTWARE",
   "CHARACTERIZATION":{ "SIZE_LARGE":2}
   },
   { "COMPANY_NAME":"OCULI PARTS",
     "CHARACTERIZATION":{ "LEADING":1}
   } ]
```

Aggregation on particularly dimensions is particularly important when considering other communication mediums, where discussion on a particular topic may span multiple sentences.

<table>
<thead>
<tr>
<th>Subtractions (comparison)</th>
<th>Purpose: Compare the nature of the material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtractions are one way in which the material can be compared, with the ontologies facilitating comparisons on each dimension of the text separately (e.g., like-for-like comparisons restricted to the same company), as well as overall comparisons.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisions (relative comparisons)</th>
<th>Purpose: An alternative approach to compare the nature of the material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>While subtractions are one way in which separate blocks of material can be compared, an alternative is to consider the ratios of concept usage between mediums, allowing consideration of the relative differences of materials.</td>
</tr>
</tbody>
</table>

Table V.1 Mathematical Operations Feasible with Ontologies

While the above tables illustrate the primary ways in which the material can be compared, it is by no means restrictive. Specifically, the ontologies are essentially a multi-dimensional vector; by extracting a vector on a dimension of interest (e.g., a count of the functional areas that a manager has worked for), it is possible to make comparisons using measures common in management and strategy research, such as Euclidean distance/cosign similarities (e.g., O’Reilly III, Caldwell, and Barnett, 1989).
Figure IV.3 illustrates the process by which the ontologies allow relevant dimensions of the text to be captured, providing the basis for more traditional research analysis (e.g., regression analysis), where the captured dimensions can be dependent variables, independent variables, or controls.

Text represented in the ontologies, capturing the dimensions of the text in a standardized manner.

Operations performed on the text to aggregate and compare the texts (removing or ignoring dimensions that are not relevant)

These aggregates and comparisons (e.g., ratios, counts, vector-based similarities) form the basis of more traditional measures that can be used in various subsequent analysis.

Variables amenable to regression analysis:
- Independent variables
- Dependent variables
- Control variables

Summary statistics
- Allow changes over time to be identified/visualized

Other traditional analysis (e.g., network/diffusion analysis)

Figure V.3 Illustration of How the Process Integrates with Traditional Research

Facilitation of Like-for-Like Comparisons

One of the main advantages of having the information in the ontologies is that they allow like-for-like comparisons between texts, with the ability to see precisely the source of changes.
For example, changes to managerial backgrounds may arise from three qualitatively different reasons: i) the addition of new positions (such as a new outside direct position, or a change to the director’s primary position), ii) recharacterizations of prior positions, iii) omission of prior positions. Being able to isolate the differences enables much more nuanced theorizing. An ability to identify systematic changes to how prior positions are characterized allows a level of theorizing beyond aggregate changes.

The ability to isolate the sources of differences may be particularly important when aggregating to the overall top management team; changes to the managerial profile resulting from appointing a new manager are qualitatively different to changes resulting from re-characterizing the presentation of existing managers’ prior employment. Comparisons between the ontologies allow these differences to be easily separated. For example, Figure V.4 illustrates changes that can be identified by comparing the overall top management teams (either between years, or across mediums), indicating i) differences arising from recharacterizations of appointments; ii) differences arising from changes to the appointments mentioned for the same managers (e.g., new director roles, or complete omission of roles); and iii) changes arising from changes to the overall management composition. Since each of these are qualitatively different ways in which the positioning of the top management team can be adjusted, allowing the specific changes to be identified facilitates theorizing on the causes and consequences of the changes separately.45

45 For example, appointing a manager with a significant financial background is arguably more substantive change than adjusting a manager’s prior experiences so that they are presented with more of a financial focus.
Note: Since the ontologies for an entire management team are relatively long, to conserve space, an example of only the file result are displayed (these are however derivable from the underlying ontologies through aggregation/subtractions).

Figure V.4 Illustration of Comparison of Overall Top Management Team

Structuring of Information

While the discussion so far has focused on comparisons irrespective of order, the ontologies also provide the basis for considering information sequencing, an area that, with limited exceptions (Abbott, 1990; Kim and Jensen, 2011), has received little theoretical attention from strategy and management scholars beyond qualitative research (e.g., Martin et al., 1983; Boje, 1991). While there are a large number of possible ways in which sequencing can be examined as described in Table V.2 below, the developed ontologies allow the sequencing of information to be captured and aggregated.47

46 While sequencing is an important aspect of competitive dynamics, including work on first-mover advantage (e.g., Liberman and Montgomery, 1988; Anderson and Tushman, 1990; Hambrick, Cho, and Chen, 1996), the focus of these areas is on temporal differences, rather than the broader impact of the order itself.

47 While, as with structure more broadly (Fairclough, 1992), there are many possible ways in which order can be compared; the intentions is that it is possible to use the sequencing to capture constructs that have a close theoretical basis (e.g., Kim and Jensen, 2011; Harmon, 2018), with the aggregation and comparison approaches driven by theoretical considerations. Research areas that give substantial consideration to information ordering include
Table V.2 Approaches for Extracting the Order

The operations illustrated in the above table extend readily across other dimensions of discussion (e.g., the order that companies are listed in the text); just as it was possible to systematically identify slight changes to the presented information (e.g., across mediums or time), it is possible to use the ontologies to systematically identify changes to the ordering.

Experience specific colors are added to facilitate connections to the theoretical discussion of sequencing in the next chapter.
CHAPTER VI
Large-Scale Theoretically-Centered Textual Research Opportunities

This chapter builds on the previous by illustrating specific research questions enabled by the ability to systematically capture standardized representations of managerial backgrounds. The discussion will be organized in two distinct levels: i) research questions at the individual manager level, and ii) research questions at the top management team level.

Individual Top Managers

While the impact of managerial backgrounds on decision making has received substantial academic attention (Hambrick and Mason, 1984; Cannella, Park, and Lee, 2008; Crossland et al., 2014), and significant research indicates that managerial backgrounds influence audience evaluations (Higgins and Gulati, 2003; Cohen and Dean, 2005; Chen, Hambrick, and Pollock, 2008; Zhang and Wiersema, 2009), background characteristics are typically taken as given, with little attention to the subtle ways in which firms may influence presentation. Consideration of how managerial backgrounds influence audience perceptions and decision making is focused on changes to the top management team’s composition, such as appointing managers with specific backgrounds and demographic characteristics (e.g., Higgins and Gulati, 2003; Chen, Hambrick, and Pollock, 2008), or removing tainted managers (e.g., Arthaud-Day et al., 2006; Gomulya and Boeker, 2016), rather than on how managerial identity may be crafted without changes to composition. Research on impression management, however, illustrates how organizations can decouple perceptions from reality (Fiss and Hirsch, 2005; Westphal and Graebner, 2010; Rhee
and Fiss, 2014), and thus, rather than being an objective characterization of experiences (as typically assumed in upper echelon theory: Michel and Hambrick, 1992; Ocasio and Kim, 1999), managerial backgrounds can be considered a socially constructed phenomenon, with firms having opportunities to subtly tailor the presentation of experiences.

The ability to capture a representation of managerial backgrounds enables consideration of how the backgrounds are presented to external parties, and how these presentations impact back on the focal organization. Managerial backgrounds are well suited for analyzing impression management because they allow the ‘content’ to be analyzed independently of the way it is presented. While it can be difficult to separate deliberate impression management from more passive forms of communication, the ability to assess experiences independently of their presentation makes it possible to ‘control’ for the content. Specifically, firms may influence presentation, while still conveying the same underlying information, by changing the ordering (which can in turn influence what is considered important: McGraw, Lodge, and Stroh, 1990; Leung, 2014) or adjusting which experiences are elaborated on. It is also possible to examine changes to the presentation of information over time (e.g., re-characterization of prior experiences), or across mediums; since it is easier to use the same background across mediums and over time, such changes are likely to be purposeful. Moreover, since there exist archival databases of managerial career histories (e.g., BoardEx or ISS/RiskMetrics), it is possible to ascertain which experiences are being omitted or downplayed. The discussion below focuses on two specific opportunities for theoretical enrichment facilitated with the ontologies developed in this dissertation: i) how the presentation of managerial backgrounds may be tailored to specific audiences, and ii) how the personas created through the backgrounds may influence back on the firm.
Audience-Specific Impression Management

While substantial research indicates firms attempt to shape external perceptions (e.g., Elsbach, 2006; Pfarrer et al., 2008; Westphal and Graebner, 2010), and there is growing recognition that perceptions are audience-specific (e.g., Jensen, Kim, and Kim, 2012; Ertug et al., 2016), there is very little research systematically considering how managers and firms portray themselves differently to different audiences, beyond limited case study analysis (e.g., Sutton and Callahan, 1987; Boje, 1991). Research tends to take an audiences-perspective to explain perception differences, considering how heterogeneity in audience needs and expectations leads to variation in evaluations (Kovács and Sharkey, 2013; Jensen and Kim, 2014; Cattani, Ferriani, and Allison, 2014), rather than how audience-specific perceptions may be intentionally influenced by firms.49 Given that most external audiences have limited direct managerial contact (Brown et al., 2015), adjusting how managers are presented across mediums may be particularly influential in shaping audience perceptions. By allowing variations in managerial positioning across different communication mediums to be examined, the ontologies provide an opportunity for researchers to consider audience-specific identity formation.

Specifically, the ontologies facilitate examining differences between the presentation of managerial experiences in corporate filings, which are focused on the investment community, and on company websites, which are more customer-focused, allowing subtle differences in presentations across mediums to be identified. As described in the previous chapter, by making it

49 One exception to this would be work that considers how firms try and hide their identity to particular audiences for example through pseudonyms (Phillips and Kim, 2009) or contract brewers concealing the origins of their beer (Carroll and Swaminathan, 2000). Nevertheless, hiding one’s identity from certain audiences is qualitatively different from the more subtle tailoring of a message for different audiences described here. Similarly, while institutional theory does give consideration to how firms may seek to satisfy different stakeholder demands, for example through ceremonial adoption of activities (Meyer and Rowan, 1977; Zajac and Westphal, 2004), there is less consideration as to how a firm may manage the impression of different audiences of the same activity (i.e., managerial backgrounds), and specifically how the language usage in different communication mediums are used to cater to audience-specific demands.
feasible to ‘subtract’ backgrounds from one another, the ontologies enable differences between backgrounds that would be hard to identify by hand to be systematically revealed; entire backgrounds can be substracted from one another, even in the presence of significant surface-level variations. Given that different organizational stakeholders have different needs and concerns, comparisons between settings enables consideration of how firms may engage in audience-specific impression management, highlighting different information to the two audiences, such as presenting the team’s management as having a technology background to customers, while a strong financial background to the financial community. Moreover, while this relatively sophisticated form of impression management may be interesting to examine in itself, it also provides the foundations for broader theorizing, such as considering the extent to which firms can maintain separate identities across mediums, and the broader consequences from attempting to do so.

Conformance to Personas

While the ontologies enable examination of how firms may influence the perceptions of external parties about a manager’s experiences, they also allow consideration of the influence of the created personas back on management. While a large body of research indicates that individuals conform to expected behaviors (e.g., Goffman, 1959; Philipsen, 1975; Hochschild, 1983; March and Olsen, 1984), how personas shape managerial action has received little theoretical consideration. Specifically, while substantial research in the upper-echelon tradition illustrates that managerial backgrounds influence decisions (e.g., Michel and Hambrick, 1992; Marcel, 2009; Crossland et al., 2014), the reasons why prior experiences influence decision making is less theorized; explanations still rest on the assumption that backgrounds influence
managerial attention and preferences (Hambrick and Mason, 1984; Hambrick, 2005). Although the argument that experience influences attention and preferences is relatively taken-for-granted in the literature, it is not necessarily the entire explanation: rather the personas that managers create in presenting their backgrounds could influence audience expectations, and conformance to these role expectations (e.g., Merton, 1957), could contribute to the differences in managerial behavior, above and beyond the manager’s direct experiences. The ability to measure the decoupling of conveyed managerial experiences, including what is emphasized or omitted, from the manager’s actual experiences, provides opportunities to examine the extent to which behavior is influenced by conveyed personas, above and beyond prior experiences.

Individual Top Managers: General Discussion

The two areas are outlined in Figure VI.1 below, illustrating the possibility of dynamics in the impression management of managerial backgrounds, with presentation influencing audience expectations, which in turn may impact back on firm management. The envisioned expansion of the ontologies to other communication mediums, using the approach developed in the dissertation, would allow the broader evolution process to be examined. While the developed ontologies allow examination of impression management and the impact of the created personas on firm management, extending the ontologies to capture audience perceptions, for example through analyst reports, would allow the dynamics in the overall influence process to be explored.

50 Writing in 2005, Hambrick noted that the way in which background filters attention “has not been studied as much as it needs to be; nor, to be honest, has [the process] ever been verified” (Hambrick, 2005: 114).
Overall Top Management Team

While the opportunities discussed so far consider just the positioning of an individual manager or CEO, the analysis can be extended to the group level. The relative simplicity and consistency of managerial backgrounds make them well suited to develop theory concerning how ideas are structured together, and how that structuring evolves. Specifically, managerial backgrounds offer a relatively clean way to capture and compare information ordering. Despite significant psychological research indicating that ordering fundamentally shapes information interpretation (e.g., McGraw, Lodge, and Stroh, 1990), with a limited number of exceptions (e.g., Kim and Jensen, 2011; Leung, 2014), little consideration has been given by strategy and management scholars to how information is ordered into an overall structure, and the impact of this ordering on audience perceptions. As noted in the previous chapter, there is very little systematic research on the influence of ordering, and being able to systematically capture the ordering that information is presented in documents is a necessary stage in furthering advancement of this area. As illustrated in Figure VI.2, the representations of the managerial backgrounds captured in the ontologies, allows consideration of the meta-structures at the top
management team and field level to be examined.51 In addition to allowing the variations across communication mediums, and the evolution of structure to be explored, as discussed below, the ontologies enable consideration of two specific areas: i) the presentation of top management team diversity, and ii) the relative presentation of the board of directors and the top management team.

Note: The colors are used to represent a different dimension of experience.

Figure VI.2. Illustrations of the Multiple Layers of Structure

Presentation of the Diversity of the Top Management Team

The first opportunity at the group-level is to build on research examining diversity in top management team experiences (e.g., Michel and Hambrick, 1992; Simons, Pelled, and Smith, 51 As noted, once the high-level theoretical overview of the ‘broad research opportunities’ discussed has been presented for each communication medium, a more specific focused discussion will be given to domain-specific contributions. For example, not only do managerial backgrounds provide opportunities to enrich the literature on information ordering (e.g., Abbott, 1990), but they also provide opportunities to contribute to the top management team literature on the portrayal of diversity (e.g., Bernardi, Bean, and Weippert, 2002).
by examining how diversity in experiences are externally conveyed. Although there is research considering the presentation of the managerial team’s demographic diversity (e.g., Bernardi, Bean, and Weippert, 2002), there is much less research considering how the broader types of diversity are presented. Considering the presentation of diversity is a theoretically interesting topic, partly because it can be theorized at different levels, including within individual diversity of experiences and between individual diversity, and also because there is no clear ‘right’ level of diversity (Hambrick, Cho, and Chen, 1996; Crossland et al., 2014). As such, there may be benefits to projecting different diversity depending on audience expectations, with the possibility for presentation to be tailored either based on the firm’s context, or building on the discussion of audience-specific impression management above, based on specific audience expectations. The approach developed in this dissertation allows rich theorizing on the applicability of different diversity compositions, and the conditions under which firms try and project each of the four compositions illustrated in Figure VI.3.

Each horizontal bar corresponds to an individual manager, and each color illustrates a different type of experience.

Figure VI.3. Stylized Illustration of Different Forms of Managerial Diversity.
Presentation of Board Control

The final research opportunity using the developed ontologies is to examine the relative positioning of the top management team and the board of directors. Building on work indicating firms seek to influence perceptions of external control (i.e., Finkelstein and D’Aveni, 1994; Westphal and Graebner, 2010; Cohen, Frazzini, and Malloy, 2012), the ontologies make it possible to consider how the backgrounds of the top management team are presented relative to the board of directors. While research has examined ways that firms can indicate a separation of control between management and directors (e.g., Westphal and Graebner, 2010; Cohen, Frazzini, and Malloy, 2012), this work tends to focus on the portrayal of director independence. Control is however a relationship driven by relative power differences (Pfeffer, 1981), and in addition to the possibility that firms elevate the ‘power’ of external directors, firms may also create the perception of control by shifting how the experiences of internal directors are portrayed. The ability to capture the structuring of information in the ontologies allows identification of subtle changes to the presentation of internal and external managers, to increase the relative strength of external directors.
CHAPTER VII

Discussion

By developing an approach to transform textual information into a standardized representation, this dissertation illustrates how it is feasible to systematically capture meaning from text, enabling research that necessitates large volumes of rich, nuanced data. The approach developed is intended to allow an array of theoretically underpinned textual constructs to be directly measured, facilitating research on how meaning, the structuring of that meaning, and higher-level layers of meta-structures evolve. Moreover, the scalability of the approach allows the evolution process to be explored across entire populations of firms and extended time periods. While attempts in organizational theory to draw from computation analysis have to-date focused on latent analysis approaches (e.g., topic models: Magerman, Looy, and Song, 2010; Wilson and Joseph, 2015; Kaplan and Vakili, 2015), these approaches have inherent limitations in capturing nuanced, multi-dimensional constructs common in strategy and management theory. This dissertation draws from a fundamentally different computational approach, information extraction (e.g., Aggarwal and Zhai, 2012; Biega, Kuzey, and Suchanek, 2013), extending its scope to transform entire sentences into representations that capture the underlying meaning while preserving qualitative dimensions of what is said, allowing direct comparisons on specific dimensions of interest, and enabling easy aggregation to capture layers of textual structure.

The approach to systematically capturing a representation of meaning is developed in the context of managerial backgrounds. By detailing all stages in the approach, from the qualitative considerations of identifying the dimensions of the ontologies, to the computational process to
standardize the text into the ontologies, this dissertation provides a path for expansion into other communication mediums. The approach illustrates how representing the text in a limited number of primary ontologies (i.e., BACKGROUND, POSITIONS, EXPERIENCES, QUALIFICATIONS, and PROFESSIONAL LICENSES) removes surface-level variation that has little to no impact on the underlying meaning, including acronyms, synonyms, slight differences in sentence constructions, and labels such as names. Throughout the development process, careful attention was given to capture or preserve abstract and subjective information, including characterization of past experiences, descriptions of the organizations that a manager has worked for, and the structuring of the information within and across sentences. The dissertation then shows how the standardized representations can be aggregated, at different levels of analysis, and compared on specific dimensions of interest.

The choice of managerial backgrounds for initial development also illustrates the potential of theoretically-centered textual analysis, with clear research opportunity using the developed approach. While research in the upper echelon tradition considers how the accumulated experiences can influence organizational leadership (Hambrick and Mason, 1984; Cannella Jr., Park, and Lee, 2008; Crossland et al., 2014), there has been little attempt to integrate impression management research (e.g., Bettman and Weitz, 1983; Elsbach, 2006; Fiss and Zajac, 2006) to explore subtle ways that the presentation of managerial experiences may be adjusted. Despite the importance of the perceptions of various external audiences to the ability of management to successfully lead their firms (e.g., Fredrickson, Hambrick, and Baumrin, 1988; Wiesenfeld, Wurthmann, and Hambrick, 2008; Westphal and Graebner, 2010), limited consideration has been given to the ways in which experiences may be recharacterized over time, or tailored to different audiences. By allowing managerial backgrounds to be systematically
represented, this dissertation makes it possible to identify differences in how specific experiences are described over time and across mediums. The representations also make it possible to examine multiple layers of information structuring, allowing consideration of how the structures of individual managerial backgrounds aggregate to meta-structures at the organizational level, and how these meta-structures evolve.

In a similar manner to how financial databases, board composition information, and the USPTO patent database have facilitated research where hand-collecting the data would have been unfeasible (e.g., Davis, 1991; Geletkanycz and Hambrick, 1997; Fleming and Sorenson, 2001; Carnabuci, Operti, and Kovács, 2016), systematically representing textual information across communication mediums can complement a wide range of scholarly inquiry. The nuanced characterization of the text in the ontologies allows scholars from diverse theoretical orientations to capture dimensions of theoretical interest, facilitating qualitatively different questions than possible with the more objective characteristics of firms, such as financial measures, patent counts, or existing board composition data.

While examining the organizational-stakeholder interface (e.g., Salancik and Meindl, 1984; Elsbach, 2006; Zott and Huy, 2007; Westphal and Graebner, 2010; Hiatt and Sangchan Park, 2013) may be the most direct opportunity from standardized representations of organizational and stakeholder communications, the approach has the potential to have a broader impact on the strategy and management field. Specifically, by allowing entire landscapes of communication to be characterized, the approach provides a qualitatively different setting to systematically examine the dynamics of firm interactions and how they adapt to environmental change. While the dynamics of how firms respond to the actions of competitors and adapt to their environment is a foundational pillar of strategy research, central to research on innovation (e.g., Bettis and
Hitt, 1995; Stuart and Podolny, 1996; Fleming and Sorenson, 2001), competitive dynamics (Barnett and Hansen, 1996), and evolutionary theories (Nelson and Winter, 1982; Levinthal, 1997), there are limited ways to capture representations of organizational landscapes. Researchers often generate simulated landscapes (e.g., Levinthal, 1997; Rivkin, 2000; Csaszar and Siggelkow, 2010), or focus on specific domains, such as the airline industry, (e.g., Baum and Korn, 1996; Hambrick, Cho, and Chen, 1996; Tsai, Su, and Chen, 2011) or patents (e.g., Stuart and Podolny, 1996; Carnabuci, Operti, and Kovács, 2016), where consistent data is systematically available across firms. Despite the abundance of available information, the ability of researchers to characterize the environment of public firms tends to be relatively coarse, proxying strategic positioning with financial indicators or the broad industries firms have operations in (e.g., Finkelstein and Hambrick, 1990; Geletkanycz and Hambrick, 1997; Crossland et al., 2014). An ability to systematically capture a rich representation of a communication landscape, and the dynamics of how firms are influenced by the communications of one another, provides a qualitatively different environment to explore and elaborate core strategy theories.52 For example, drawing from research in the Carnegie tradition, it would be possible to characterize changes to organizational communications as a search process (e.g., Cyert and March, 1963; Levinthal, 1997), and to explore the dynamics of how firms tailor their communications to fit a changing multi-faceted environment. Moreover, as an increased number of communication types are systematically characterized (e.g., analyst reports or regulatory statements), it becomes possible to examine search dynamics across multiple distinct entity types.

52 While studies to date do draw from textual information in analyzing competitive dynamics (e.g., Hambrick, Cho, and Chen, 1996; Boyd and Bresser, 2008), typically that research is focused on one variable, normally used to infer a strategic action; the approach developed in this dissertation allows a much richer characterization of the entire textual landscape, allowing greater consideration of the dynamics of how organizations present their operations (i.e., the competitive dynamics of organizational identity: Livengood and Reger, 2010).
This dissertation also attempts to re-center efforts to draw from computational linguistic advancements on theoretically relevant dimensions with direct connections to the text. While close theoretical connections between constructs and the underlying material has long been regarded as an important principle in social science research (e.g., Campbell and Stanley, 1963; Allen and Yen, 1979; Blackstone, 2012), the latent approaches that scholars have recently drawn from computer science (e.g., topic models: Magerman, Looy, and Song, 2010; Wilson and Joseph, 2015; Kaplan and Vakili, 2015) inherently have very weak connections between the constructs and theory. Even if it is possible to draw some forms of inference directly from data (e.g., Magerman, Looy, and Song, 2010; Grimmer and King, 2011; Bao and Datta, 2014), constructs with weak theoretical connections are unlikely to provide solid foundations for continued theoretical development. By allowing direct and transparent connections between the text and the information extracted, the developed ontologies help ensure that the relationship between constructs and the underlying material can be clearly made and conveyed, while allowing more nuanced theorizing than feasible with weakly connected measures.

Connections Between the Approach and High-Level Logics

By developing an approach to capture nuanced characterizations of text, this research also allows greater consideration of the levels of textual influence. While this dissertation takes the perspective that there is an important layer of meaning beyond merely individual words, captured only when considering the syntax of how those words are organized together (e.g., Matthews and Matthews, 1981; Van Valin and LaPolla, 1997), word usage still conveys a particular level of meaning (e.g., Hirsch, 1986; Abrahamson and Hambrick, 1997; Ocasio and Joseph, 2005; Loewenstein, Ocasio, and Jones, 2012). However, despite recognition of the different layers of meaning (e.g., Loewenstein, Ocasio, and Jones, 2012), there is very little
consideration of the conditions under which the layers are likely to impact; while qualitative research tends to emphasize the nuances in how meaning is constructed and conveyed (e.g., Gamson and Modigliani, 1989; Boje, 1991; Gioia and Chittipeddi, 1991; Martens, Jennings, and Jennings, 2007), more macro research tends to focus on higher-level logics (Ocasio and Joseph, 2005; Fiss and Zajac, 2006) with considerably less consideration of the dual influences. By systematically allowing consideration of both the nuance underlying the text, and the high-level logics, this research offers the possibility for greater consideration of when the two layers of meaning are most influential. One specific opportunity to examine the different layers of influence may be to systematically consider differences between immediate and delayed responses to the release of organizational information. While an initial skim-read of released information is likely to reveal the high-level logics in the material, a more careful read is likely to reveal the more nuanced contextualization (Kintsch and van Dijk, 1978; Duggan and Payne, 2011), including explanation, justification, attribution, and discussion of mitigating factors (e.g., Scott and Lyman, 1968; Staw, McKechnie, and Puffer, 1983; Wade, Porac, and Pollock, 1997; Sonenshein, 2007). Analyzing temporal differences in the market response to the release of organizational communications, between the immediate reaction where only skim-reads are feasible, and slightly delayed response once there is time for more careful read, may help reveal the impact of the contextualizations.

The ability to consider different layers of meaning also offers opportunities to examine attempts to simultaneously indicate conformity and distinctiveness. While typically considered opposing concepts (e.g., Finkelstein and Hambrick, 1990; Deephouse, 1999; Phillips and

53 i.e., by aggregating without taking into the account the underlying nuance.
54 While these contextualizations are uncommon in managerial backgrounds, they are common in other organizational communications, including annual reports and other stakeholder communications (e.g., Bettman and Weitz, 1983; Staw, McKechnie, and Puffer, 1983; Wade, Porac, and Pollock, 1997).
Zuckerman, 2001), the ability to assess the high-level logics independently of the lower nuance would allow consideration of how texts may be written to indicate conformity on an initial read while distinctiveness on more careful reads. Although there is growing awareness that individuals have inconsistent and contradictory preferences that may change over time (Tversky and Kahneman, 1981; Hoch and Loewenstein, 1991; Nordgren and Dijksterhuis, 2009), and that evaluation criteria often vary between initial screening and selection decisions (e.g., Gensch, 1987; Manrai and Andrews, 1998; Jensen and Roy, 2008), there is less consideration of the specific ways firms seek to meet changing evaluation criteria. The approach developed here allows for the exploration of attempts by firms to initially project overall conformity to expectations, while also indicating distinctiveness from other firms, with the salience of the two levels depending on engagement with the material

Development Process Going Forward

While this dissertation has developed the foundations to systematically capture representations of textual information, there are significant opportunities to develop on the approach. In addition to pursuing theoretical opportunities identified in the paper, future developments include: i) refinements to verify the concepts and ontologies, ii) elaboration of comparison approaches, iii) expansion into other forms of organizational communications, and iv) developments to allow qualitatively different forms of research questions to be explored. First, as explained in greater detail in Appendix E, as the ontologies become increasingly formed, the intention is to gradually expand the standardization and verification process to further identify any miscategorizations and validate the concepts. Part of this development includes expanding the automated verification so that a broader number of machine-learned terms can be automatically verified. This will then be supplemented with more qualitative
approaches including crowdsourced verification (e.g., Kittur, Chi, and Suh, 2008) of the CHARACTERISTICS sub-ontology, to help validate the dimensions, while facilitating its expansion to a broader range of characterizations (e.g., including negative characterizations of organizations by stakeholders).

The second intended development is to elaborate on the description of the approaches to aggregate and compare the ontology structures, illustrating the range of ways in which the ontologies can be used to capture constructs of interest. As well as describing the process by which the ontologies can be directly incorporated into research questions, specific consideration will be given to illustrate the ways that the ontologies facilitate theoretical examination beyond existing approaches (e.g., topic models: Magerman, Looy, and Song, 2010; Wilson and Joseph, 2015; Kaplan and Vakili, 2015). By illustrating the ability to directly capture a range of nuanced constructs from the text, this discussion is intended to complement the theoretical considerations in Chapter 1, illustrating how the ontologies facilitate examining questions that existing approaches are ill-suited to examine. Specific attention will be given to illustrate the ability of the ontologies to represent a level of meaning beyond merely the individual words, captured only when considering the syntax of how words are structured into sentences, and how sentences aggregate to meta-structures.

The third envisioned development is to extend the approach to represent a broad array of other textual information across the strategy, management, and social science fields. The approach was designed specifically to capture representations where there exists some form of deep-level similarity between texts (e.g., to a provide a basis on which to make the information consistent), allowing comparisons on desired dimensions despite the presence of surface-level variation (e.g., acronyms, synonyms, different label names, and slight differences in sentence
constructions). A large number of company and stakeholder communications have some deep-level similarities, and extending the range of source materials captured allows greater consideration of how communications evolve across mediums. For example, one relatively close extension is to capture the selection and evaluation criteria of management discussed by firms, allowing consideration of the reciprocal relationships between the presentation of managerial experience and the assessment decisions.55

The final envisioned development is to extend the approach to allow qualitatively different questions to be explored. As discussed in Appendix F, one envisioned development is to capture textual representations irrespective of the language used. Differences in the lexicon and the grammar structure (e.g., Stockwell, Bowen, and Martin, 1965), can both be considered surface variations, which the ontologies are already well suited to abstract, and developments in machine translations (Koehn et al., 2007; Wu et al., 2016) making it increasingly feasible to extend the approach to allow the multi-lingual evolutions of discussions to be explored.56

Another potential extension is to capture discourse between two or more participants, for example, analyst conference calls. By considering who was on conference calls and exposed to a particular chain of questioning, the ability to systematically represent the information discussed makes it possible to use the approach developed, together with work on networks, to gain a nuanced understanding of how discourse evolves across the analyst network.

This dissertation is intended as one of the first pieces in a big picture. The start of a new journey, that while building on the past, is able to enrich strategy, management, and social

55 An initial mockup, showing a possible way in which selection decisions could be represented, while also illustrating how the ontologies may be extended beyond managerial backgrounds, is included in Appendix F.

56 Examples of how Spanish material could be represented without needing any changes to the developed ontologies are shown in Appendix F.
science theory, by allowing a new series of questions to be explored. Whether it takes five, ten or a hundred years to see the whole picture, I consider it an important future to be working towards.
APPENDICES
Appendix A

Text Colors Used in Dissertation

To make connections between the text and the figures easier to follow, a consistent color scheme, detailed in Table A.1 below, is used throughout this dissertation.\(^{57}\)

<table>
<thead>
<tr>
<th>Description</th>
<th>Format</th>
<th>Format Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original ‘raw’ text</td>
<td>Example of unprocessed text, as it appears in the original source.</td>
<td>Colored dark green, in the original case.</td>
</tr>
<tr>
<td>Primary concepts</td>
<td>Used to represent the underlying type of the data.</td>
<td>Blue, uppercase, with underscores between words</td>
</tr>
<tr>
<td>Connecting concepts</td>
<td>Used to interpret the meaning, and how information populates the ontologies</td>
<td>Gray, upper case</td>
</tr>
<tr>
<td>Concept groupings</td>
<td>Used to group concepts together to reduce.</td>
<td>Red, upper case</td>
</tr>
<tr>
<td>Primary ontologies</td>
<td>Used to signify the five primary data-structures</td>
<td>Dark yellow, uppercase, with underscores between words</td>
</tr>
<tr>
<td>Sub-ontologies</td>
<td>Used for all data-structures other than the primary data-structures.</td>
<td>Purple, uppercase, with underscores between words</td>
</tr>
</tbody>
</table>

Table A.1. Summary of Text Colors Used in the Dissertation

\(^{57}\) Such colors are purely for visual purposes and are not necessary to follow the dissertation nor utilize the ultimate standardized representations of the text.
Appendix B

Collection of Managerial Background Data

As noted in the main text, the primary data source in this dissertation comprises approximately 8 million sentences extracted from proxy statements filed by US public firms from 2007-2017. All proxy statements were downloaded from EDGAR, and the sentences including the terms indicating reference to a manager (e.g., ‘he’, ‘she’, ‘Mr.’, ‘Mrs.’, ‘Ms.’, ‘Dr.’, as well as surrounding sentences) were extracted, with sentences not part of managerial backgrounds (for example discussing compensation decisions or performance targets), then filtered out. This data source serves as the basis for the descriptive statistics included throughout the appendix.\(^{58}\)

\(^{58}\) It should be noted, that while the descriptive statistics are reflective of the underlying data, their primary purpose is to illustrate the face-validity of the extracted information; while they are indicative of the underlying material, because the process to refine the extraction approach is on-going, with refinements also being made to more accurately filter non-desired sentences, they should not be considered definitive.
Appendix C
Classifying the Text to Concepts

As described in the main text, to allow meaning to be interpreted from the text, the text is reduced to concepts. These concepts are split into two types, ‘primary concepts’ and ‘connecting concepts’. The primary concepts form the basis of the information in the ontologies and account for much of the variation within the text. Connecting concepts are the semantic links that enable meaning to be interpreted.

Primary concepts

Table C.1 below includes details on all of the concepts that are classified, including an explanation of the concept, and example terms.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Explanation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUALIFICATIONS</td>
<td>Full qualification (professional license are treated separately)</td>
<td>BBA, BEng in Mechanical Engineering, undergraduate degree in English, MBA</td>
</tr>
<tr>
<td>COMPANY_NAME</td>
<td>All company names, indulging company endings such as ‘inc.’, ‘corp.’ (note, education institutions are captured separately in a dedicated concept).</td>
<td>Gorilla Software Inc., Oculi Machined Parts Corp.</td>
</tr>
<tr>
<td>PERSON_NAME</td>
<td>All people names including name titles and suffix.</td>
<td>John Doe, Mr. John Doe, Mr. John Doe III, Jane, Mrs. Jane Doe, Dr Doe</td>
</tr>
<tr>
<td>EDUCATION_INSTITUTION</td>
<td>All universities and colleges, including department names. While high schools are very rare in managerial backgrounds, this concepts could be expanded to include them.</td>
<td>University of Michigan, University of Michigan, Ross School of Business, MIT, Stanford University</td>
</tr>
<tr>
<td>LENGTHS_OF_TIME</td>
<td>All time periods, and any modifiers. While in the current data, this is largely comprised of years, the concept also incorporates months, weeks and days as appropriate.</td>
<td>5 years, in excess of 5 years, more than 5 years, around 5 years</td>
</tr>
<tr>
<td>DATES</td>
<td>Any dates or partial dates including modifiers to those dates (e.g., ‘around’). Date-like-events are also treated as dates, provided it is preceded by concepts including SINCE and TO59</td>
<td>2010, January 2010, January 1st 2010, 01/01/2010</td>
</tr>
<tr>
<td>MANAGEMENT_TITLES</td>
<td>All job titles, including modifier including</td>
<td>CEO, VP of Operations, Vice President of</td>
</tr>
</tbody>
</table>

59 The approach for identifying date-like-events (i.e., descriptions of when something occurred, that take the place of dates) is slightly more complex than other dates. Specifically, while ‘January 1st, 2010’ can easily be identified as a date ‘our founding’ only indicates when something happened if preceded by words such as ‘since’ (e.g., ‘since our founding’ is treated as a date, while ‘is one of our founding directors’ is not).
Table C.1 Summary of the Primary Concepts

Connecting concepts

While the terms that underpin the primary ontologies fit relatively directly within a particular concept, and the meaning of such terms tend not to vary by context (e.g., CEO almost refers to a management title), the meaning of many connecting words do vary depending on their usage. For example, the word ‘from’ is used in managerial backgrounds to indicate when something happens from (e.g., ‘from 2010’), or university where someone got a qualification ‘from’. This makes it less feasible to group the terms into unambiguous concepts; while ‘since’ sometimes has the same meaning as ‘from’ (e.g., indicating when something began, such as ‘from 2010’ vs. ‘since 2010’) in other contexts it does not (e.g., ‘since the University of Michigan’ vs. ‘from the University of Michigan’). Rather than attempt to force connecting terms together that sometimes have the same meaning, but other times do not, the approach taken was to only group terms that consistently shared the same meaning, while allowing multiple connecting concepts to serve as the same role when interpreting meaning. That is, in the ordering **Since Date Person_Name Has...** and **From Date Person_Name Has...** the two terms are treated synonymously, while in other contexts they may not.

Table C.2 shows the primary concepts that are used and examples of the usage.
<table>
<thead>
<tr>
<th>Connecting concept</th>
<th>Example usage</th>
<th>Percentage of sentence concept occurs in</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF</td>
<td>PERSON_NAME IS MANAGEMENT_TITLE OF COMPANY_NAME</td>
<td>50.2</td>
</tr>
<tr>
<td>AND</td>
<td>PERSON_NAME SERVED AS MANAGEMENT_TITLE AND ON OUR BOARD</td>
<td>41.1</td>
</tr>
<tr>
<td>WHO (e.g., he, she, his, her)</td>
<td>WHO IS MANAGEMENT_TITLE</td>
<td>34.0</td>
</tr>
<tr>
<td>AS</td>
<td>PERSON_NAME SERVED AS MANAGEMENT_TITLE</td>
<td>33.4</td>
</tr>
<tr>
<td>DET (a, the)</td>
<td>PERSON_NAME IS MANAGEMENT_TITLE FOR COMPANY_NAME DET COMPANY_AREA</td>
<td>30.5</td>
</tr>
<tr>
<td>SERVED</td>
<td>PERSON_NAME SERVED ON OUR BOARD</td>
<td>30.5</td>
</tr>
<tr>
<td>TO</td>
<td>FROM DATE TO DATE</td>
<td>29.5</td>
</tr>
<tr>
<td>FROM</td>
<td>i) FROM DATE TO DATE</td>
<td>25.3</td>
</tr>
<tr>
<td>IN</td>
<td>PERSON_NAME JOIN COMPANY_NAME IN DATE</td>
<td>24.9</td>
</tr>
<tr>
<td>HAS BEEN</td>
<td>PERSON_NAME HAS BEEN MANAGEMENT_TITLE</td>
<td>21.8</td>
</tr>
<tr>
<td>SINCE</td>
<td>SINCE DATE</td>
<td>16.2</td>
</tr>
<tr>
<td>WAS</td>
<td>PERSON_NAME WAS DET MANAGEMENT_TITLE</td>
<td>15.9</td>
</tr>
<tr>
<td>TIME BEFORE (e.g., Before/Prior to)</td>
<td>TIME BEFORE JOIN COMPANY_NAME</td>
<td>14.1</td>
</tr>
<tr>
<td>IN</td>
<td>PERSON_NAME IS MANAGEMENT_TITLE</td>
<td>10.8</td>
</tr>
<tr>
<td>OUR</td>
<td>PERSON_NAME SERVED ON OUR BOARD</td>
<td>10.6</td>
</tr>
<tr>
<td>FOR</td>
<td>PERSON_NAME SERVED FOR COMPANY_NAME FROM DATE TO DATE</td>
<td>10.3</td>
</tr>
<tr>
<td>ON</td>
<td>PERSON_NAME SERVED ON COMMITTEE</td>
<td>9.7</td>
</tr>
<tr>
<td>WITH</td>
<td>PERSON_NAME HAS BEEN MANAGEMENT_TITLE WITH COMPANY_NAME</td>
<td>9.2</td>
</tr>
<tr>
<td>AT</td>
<td>PERSON_NAME SERVED AT COMPANY_NAME</td>
<td>9.0</td>
</tr>
<tr>
<td>JOIN (e.g., Join/Joining)</td>
<td>PERSON_NAME JOIN COMPANY_NAME AS MANAGEMENT TITLE</td>
<td>6.3</td>
</tr>
<tr>
<td>POSITION</td>
<td>PERSON_NAME POSITION INCLUDE</td>
<td>6.1</td>
</tr>
<tr>
<td>HELD</td>
<td>WHO HAS HELD WHO POSITION SINCE DATE</td>
<td>5.9</td>
</tr>
<tr>
<td>INCLUDE</td>
<td>PERSON_NAME POSITION INCLUDE</td>
<td>4.5</td>
</tr>
<tr>
<td>CURRENTLY</td>
<td>PERSON_NAME CURRENTLY SERVES AS</td>
<td>3.7</td>
</tr>
<tr>
<td>BRING-PROVIDE</td>
<td>PERSON_NAME BRING-PROVIDE EXPERIENCE</td>
<td>3.7</td>
</tr>
<tr>
<td>COMPANY</td>
<td>PERSON_NAME HAS BEEN MANAGEMENT_TITLE AT DET COMPANY</td>
<td>3.6</td>
</tr>
<tr>
<td>BY</td>
<td>PERSON_NAME WAS MANAGEMENT_TITLE UNTIL ACQUIRED BY COMPANY_NAME</td>
<td>3.5</td>
</tr>
<tr>
<td>WHERE</td>
<td>PERSON_NAME ATTENDED EDUCATION_INSTITUTION WHERE WHO RECEIVED QUALIFICATION</td>
<td>3.0</td>
</tr>
<tr>
<td>THROUGH</td>
<td>PERSON_NAME WAS MANAGEMENT_TITLE FROM DATE THROUGH DATE</td>
<td>2.8</td>
</tr>
<tr>
<td>APPointed</td>
<td>PERSON_NAME WAS APPOINTED MANAGEMENT_TITLE IN DATE</td>
<td>2.4</td>
</tr>
<tr>
<td>RECEIVED</td>
<td>PERSON_NAME RECEIVED QUALIFICATION</td>
<td>2.3</td>
</tr>
<tr>
<td>RETIRE</td>
<td>PERSON_NAME RETIRE IN DATE</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table C.2 Summary of the Connecting Concepts

60 To simplify the orderings, determinants (e.g., ‘a’, ‘the’) are incorporated with surrounding connecting terms, such that ‘with a’ is part of the WITH connecting concept. The connecting concept DET is thus only used when there is no other shrouding connecting concepts, such as COMPANY_NAME DET COMPANY_AREA.
While the above concepts account for the majority of interpretation, less common concepts are gradually being added to enable a broader spectrum of sentence constructions to be captured. For example, while the term ‘respectively’ only occurs in about 0.1% of sentences, it can impact the meaning of those sentences (e.g., PERSON_NAME RECEIVED QUALIFICATION AND QUALIFICATION FROM EDUCATION_INSTITUTION AND EDUCATION_INSTITUTION RESPECTIVELY).
Appendix D

Specifications of the Ontologies

This appendix is designed to fully specify each of the ontologies, including overall architecture of each of the ontologies, a description of key design considerations, and examples of how information is populated to the structure.

As discussed in the text, the overall approach to represent the meaning of the sentence is to dissect a sentence into simpler components and to dissect each element further until each of the dimensions of the text are captured and standardized. Specifically, as discussed in the main text, there are five primary information types (e.g., BACKGROUND, POSITIONS, EXPERIENCES, QUALIFICATIONS, and PROFESSIONAL_LICENSES), with essentially all of the discussion in a managerial background falling into one of these types. Each of these primary ontologies is then comprised of sub-ontologies (e.g., the sub-ontologies forming POSITIONS structure include DATES, JOB_TITLES, COMPANY_DESCRIPTION, etc.). This dissecting process is continued until every component is simplified to its most basic elements. For example, the text in COMPANY_DESCRIPTION such as ‘a US manufacturer of automotive components traded on the NYSE’, is dissected further into the sub-structures REGION_OF_OPERATION (e.g., ‘US’), AREA_OF_OPERATION (e.g., ‘manufacturer of automotive components’) and LISTING-OWNERSHIP (e.g., ‘traded on the NYSE’), with each of these sub-structures standardizing the individual text.

This section begins by documenting the most basic sub-ontologies that have no sub-dependencies (e.g., DATES, LISTING-OWNERSHIP). Next, sub-ontologies that have these dependencies are introduced (e.g., COMPANY_DESCRIPTION), and finally the overall the five primary-ontologies (BACKGROUND, POSITIONS, EXPERIENCES, QUALIFICATIONS, and PROFESSIONAL_LICENSES) are introduced. In this manner, the complexity of the ontologies is gradually built, and only after the more simple components are specified.

A summary of each of the data-structures, their dependencies, and the associated pages of the specification in this appendix is provided below in Table D.1.
<table>
<thead>
<tr>
<th>Ontology</th>
<th>Dependencies</th>
<th>Component of</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>-</td>
<td>POSITION, QUALIFICATION, COMPANY_DESCRIPTION</td>
<td>91</td>
</tr>
<tr>
<td>LENGTH_OF_TIME</td>
<td>-</td>
<td>EXPERIENCE</td>
<td>93</td>
</tr>
<tr>
<td>DEGREE</td>
<td>-</td>
<td>QUALIFICATION</td>
<td>94</td>
</tr>
<tr>
<td>EDUCATION_INSTITUTION</td>
<td>-</td>
<td>QUALIFICATION</td>
<td>98</td>
</tr>
<tr>
<td>LOCATION</td>
<td>-</td>
<td>PROFESSIONAL_LICENSE, MANAGEMENT_TITLE, EXPERIENCE</td>
<td>100</td>
</tr>
<tr>
<td>FUNCTIONAL_AREA</td>
<td>-</td>
<td>MANAGEMENT_TITLE, EXPERIENCE</td>
<td>101</td>
</tr>
<tr>
<td>MANAGEMENT_LEVEL</td>
<td>-</td>
<td>MANAGEMENT_TITLE</td>
<td>103</td>
</tr>
<tr>
<td>COMPANY-INDUSTRY_AREA</td>
<td>MANAGEMENT_LEVEL, FUNCTIONAL_AREA, LOCATION, COMPANY-INDUSTRY_AREA, CHARACTERIZATIONS</td>
<td>MANAGEMENT_TITLE, COMPANY_DESCRIPTION, EXPERIENCE</td>
<td>106</td>
</tr>
<tr>
<td>MANAGEMENT_TITLE</td>
<td>MANAGEMENT_LEVEL, FUNCTIONAL_AREA, LOCATION, COMPANY-INDUSTRY_AREA, CHARACTERIZATIONS</td>
<td>POSITION</td>
<td>108</td>
</tr>
<tr>
<td>COMMITTEE</td>
<td></td>
<td>POSITION</td>
<td>109</td>
</tr>
<tr>
<td>BOARD</td>
<td></td>
<td>POSITION</td>
<td>111</td>
</tr>
<tr>
<td>FIRM_FINANCIAL</td>
<td></td>
<td>COMPANY_DESCRIPTION</td>
<td>112</td>
</tr>
<tr>
<td>LISTING-OWNERSHIP</td>
<td></td>
<td>COMPANY_DESCRIPTION</td>
<td>113</td>
</tr>
<tr>
<td>CHARACTERIZATIONS</td>
<td>COMPANY-INDUSTRY_AREA; LOCATION; LISTING-OWNERSHIP; CHARACTERIZATIONS, FIRM_FINANCIAL, DATE</td>
<td>COMPANY_DESCRIPTION</td>
<td>115</td>
</tr>
<tr>
<td>COMPANY_DESCRIPTION</td>
<td>COMPANY-INDUSTRY_AREA; LOCATION; LISTING-OWNERSHIP; CHARACTERIZATIONS, FIRM_FINANCIAL, DATE</td>
<td>POSITION</td>
<td>117</td>
</tr>
<tr>
<td>COMPANY_NAME</td>
<td></td>
<td>POSITION</td>
<td>118</td>
</tr>
<tr>
<td>PERSON_NAME</td>
<td></td>
<td>BACKGROUND DETAILS</td>
<td>119</td>
</tr>
<tr>
<td>BACKGROUNDDETAILS</td>
<td>PERSON_NAME</td>
<td>OVERALL_ONTOLOGY</td>
<td>120</td>
</tr>
<tr>
<td>POSITION / POSITIONS</td>
<td>MANAGEMENT_TITLE, COMPANY_NAME, BOARD, COMMITTEE, DATE, COMPANY_DESCRIPTION</td>
<td>OVERALL_ONTOLOGY</td>
<td>121</td>
</tr>
<tr>
<td>EXPERIENCE / EXPERIENCES</td>
<td>LENGTH_OF_TIME, CHARACTERIZATION, FUNCTIONAL_AREA, COMPANY-INDUSTRY_AREA, REGION, LOCATION</td>
<td>OVERALL_ONTOLOGY</td>
<td>123</td>
</tr>
<tr>
<td>QUALIFICATION / QUALIFICATIONS</td>
<td>DEGREE, EDUCATION_INSTITUTION, DATE</td>
<td>OVERALL_ONTOLOGY</td>
<td>124</td>
</tr>
<tr>
<td>PROFESSIONAL_LICENSE / LICENSES</td>
<td>LOCATION</td>
<td>OVERALL_ONTOLOGY</td>
<td>126</td>
</tr>
</tbody>
</table>

Table D.1. Overall Summary of the Sub-Ontologies
Dates and Date-Like-Events

```
DATE:
    "ORIGINAL": Original text [String]
    "YEAR": Year, standardized [Integer]
    "MONTH": Month, standardized [Integer]
    "DAY": Day, standardized [Integer]
    "AROUND": Around/approximately [True/False]
    "EVENT": Event that occurs on that day [String: See Table D.2 below]
}
Used in: POSITION, QUALIFICATION
```

Figure D.1. Specification of the DATE Sub-Ontology

This sub-ontology is designed to capture a representation of dates (e.g., ‘January 1st 2010’), partial dates where the day/month may not be included (e.g., ‘January 2010’ or ‘2010’), as well as date-like-events, which are used in the text in place of a specific date to signify when something occurred (e.g., ‘[since] our founding’ or ‘[until] he retired’, or in conjunction with a data/partial-date, such as ‘[since] our founding in 2010’). As illustrated in Figure D.1, this information is also standardized, with ‘February’ is converted to the month ‘2’, with date-like-events likewise standardized (e.g., ‘since our founding’ and ‘since we were founded’ are both treated as the firm’s founding).

<table>
<thead>
<tr>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANY FOUNDING</td>
<td>[since] our founding</td>
</tr>
<tr>
<td>MERGER/ACQUISITIONS</td>
<td>[until] we acquired them in 1996 [until] 1996 when the company was acquired by Gorilla Software</td>
</tr>
<tr>
<td>DEPARTURE</td>
<td>[since] his retirement [until] he left the company in 2010 [following] his resignation</td>
</tr>
<tr>
<td>JOINING FIRM</td>
<td>[since] she joined the firm in 2010</td>
</tr>
<tr>
<td>IPO</td>
<td>[Following] our IPO in 1996</td>
</tr>
<tr>
<td>RETIREMENT</td>
<td>[until] he retired in 2010</td>
</tr>
</tbody>
</table>

Table D.2. Summary of Date-Like Events

While the date-like-events currently captured are currently limited to events that occur in the context of managerial backgrounds, largely to indicate dates of employment (specifically, founding of the firm, acquisitions of other firms and retirements), the underlying representation can be readily be extended in the future to capture other date-like-events that occur in other company communications (e.g., ‘We have supplied Gorilla Software since the contract...’)
was signed in 2010’). Examples of the populated DATE sub-ontology are included in Figure D.2 below.

Figure D.2. Examples of the DATE Sub-Ontology
Length of Time

LENGTH_OF_TIME:
"ORIGINAL": Original text [String]
"UNIT": DECADE/YEAR/MONTH/WEEK/DAY [String]
"QUANTITY": Number of the units [Decimal]
"NON_SPECIFIC_QUANTITY": Textual description of the amount: SEVERAL, A_NUMBER_OF etc. [Decimal]
"OVER": Over/more than [True/False]
"UNDER": Under/less than [True/False]
"AROUND": Around/approximately [True/False]

USED_IN: EXPERIENCES

Figure D.3. Specification of the LENGTH_OF_TIME Sub-Ontology

This sub-ontology captures a representation of how long something has occurred for (e.g., days, months, years, decades, etc.), as well as any modifications made to that description (e.g., ‘approximately a year’ or ‘more than three decades’ etc.). In the context of managerial backgrounds lengths of time are typically used to describe how much experience a manager has in a role, and although this is generally described in years, may also be in decades (which could in turn easily be converted into a different base). The sub-ontology is designed to be flexible to capture common modifiers (e.g., ‘over’ or ‘around’), as well as imprecisely specified lengths (e.g., ‘several years’ or ‘a couple of years’).61

61 Although the sub-ontology does not make an assumption for what say constitutes ‘several years’, it would be easily possible to code subjective pieces of information, treating “a couple of years” as 2 years.

Figure D.4. Examples of the LENGTH_OF_TIME Sub-Ontology
Degree

DEGREE:

- "ORIGINAL": Original text
- "DEGREE_LEVEL": Education level
- "SUBJECTS": List of all subjects
- "GRADE_NOTES": e.g., "summa cum laude"/
- "HONORARY": Honorary degree

USED IN: QUALIFICATION

Figure D.5. Specification of the DEGREE Sub-Ontology

This sub-ontology is designed to represent qualifications that individuals may receive, broken down and standardized into qualification level and subject. As would be expected, and illustrated in Table D.3, the vast majority of degree-level naturally fall into distinct levels: associated degrees (‘associate degree’), undergraduate (e.g., ‘undergraduate degree’, ‘bachelor’, ‘BA’), graduate (e.g., ‘graduate degree’, ‘MA’, ‘Master’s degree’), and postgraduate (e.g., ‘PhD’, ‘Doctoral degree’). While the corresponding level could be easily ascertained for most degree acronyms based on the first letter of the qualification, with the letter ‘B’ signifying Bachelors (e.g., ‘BA’, ‘BS’, ‘BBA’, ‘BEng’ etc.) and ‘M’ signifying masters (e.g., ‘MA’, ‘MEng’, ‘MED’), care was taken to ensure that less common designations were associated with the appropriate degree level (e.g., the ‘AB’ and ‘SB’ designations, both Bachelor-level degrees issued by Harvard).

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Examples</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERGRADUATE/BACHELOR</td>
<td>Most common qualification, typically a 4-year qualification.</td>
<td>Undergraduate degree, BEng, BA, B.B.A., Bachelor of Arts degree, Bachelor degree, AB, SB</td>
<td>53.4</td>
</tr>
<tr>
<td>GRADUATE/MASTERS</td>
<td>Graduate program, typically taken after a bachelors degree</td>
<td>Master’s Degree, Graduate degree, MBA, MEng</td>
<td>30.3</td>
</tr>
<tr>
<td>DOCTORATE</td>
<td>Doctorate degrees</td>
<td>Doctorate, Ph.D., MD, Juris Doctor, Doctor of Law Degree</td>
<td>12.9</td>
</tr>
<tr>
<td>ASSOCIATE</td>
<td>A qualification below undergraduate level. In the US, typically 2-year degrees offered by community colleges.</td>
<td>Associate Degree, Associate of Science Degree, Associate of Arts Degree</td>
<td>0.2</td>
</tr>
<tr>
<td>UNSPECIFIED</td>
<td>Degree level is not specified.</td>
<td>degree, degree in mathematics, diploma, engineering degree</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table D.3 Summary of Qualification Levels

62 In due course, it is anticipated that grade-notes will also be made consistent.

63 While the split into the different levels appeared relatively direct (e.g., the vast majority of qualifications directly appeared in distinct categories of Associated, Bachelor, Masters, PhD), reference was also made to various guides discussing degree options (e.g., study.com), providing further validation of the four distinct degree levels.
The second component of the qualification is the subject. Typically the degree subject follows the degree level (e.g., ‘a Bachelor’s degree in Mathematics’, or a ‘BA in Computer Science’), however in some cases formed part of the degree name/acronym (e.g., an M.B.A. or a MEng, where the subjects, if not further specified, were taken as BUSINESS|GENERAL and ENGINEERING respectively). Although most degrees typically have a single subject, there are cases where two or more subjects are listed (e.g., ‘Bachelors of Arts Degree in mathematics and economics’). In such cases, subjects are extracted and represented in the order in which that they occur.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Examples</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSINESS-ACCOUNTING</td>
<td>Accounting, Accountancy</td>
<td>13.1</td>
</tr>
<tr>
<td>BUSINESS-GENERAL/UNSPECIFIED</td>
<td>Business, BBA, Business Administration</td>
<td>12.9</td>
</tr>
<tr>
<td>BUSINESS-FINANCE</td>
<td>Finance</td>
<td>8.2</td>
</tr>
<tr>
<td>BUSINESS-MANAGEMENT</td>
<td>Management Studies</td>
<td>3.9</td>
</tr>
<tr>
<td>BUSINESS-MARKETING</td>
<td>Marketing, Management and Marketing</td>
<td>1.7</td>
</tr>
<tr>
<td>BUSINESS-COMMERCE</td>
<td>Commerce</td>
<td>0.4</td>
</tr>
<tr>
<td>OTHER: BUSINESS-ADVERTISING,</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>BUSINESS-BANKING, BUSINESS-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTREPRENEURSHIP, BUSINESS-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMAN_RESOURCE, BUSINESS-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATIONS, BUSINESS-ORGANIZATIONAL_BEHAVIOR,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUSINESS-STRATEGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>Mathematics, Applied Mathematics</td>
<td>2.0</td>
</tr>
<tr>
<td>COMPUTER_SCIENCE</td>
<td>Computer Science, Computer Sciences, Computer Systems</td>
<td>2.1</td>
</tr>
<tr>
<td>NATURAL SCIENCE-CHEMISTRY</td>
<td>Chemistry, Organic Chemistry, Physical Chemistry</td>
<td>3.7</td>
</tr>
<tr>
<td>NATURAL SCIENCE-BIOLOGY</td>
<td>Biology, Molecular Biology, Cell Biology</td>
<td>2.3</td>
</tr>
<tr>
<td>NATURAL SCIENCE-PHYSICS</td>
<td>Physics, Applied Physics, Nuclear Physics</td>
<td>1.9</td>
</tr>
<tr>
<td>NATURAL SCIENCE-GENERAL/</td>
<td>Science, Sciences, Applied Science</td>
<td>1.8</td>
</tr>
<tr>
<td>UNSPECIFIED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATURAL SCIENCE-BIOCHEMISTRY</td>
<td>Biochemistry</td>
<td>1.1</td>
</tr>
<tr>
<td>NATURAL SCIENCE-GEOL OGY</td>
<td>Geology</td>
<td>0.9</td>
</tr>
<tr>
<td>NATURAL SCIENCE-MICROBIOLOGY</td>
<td>Microbiology</td>
<td>0.5</td>
</tr>
</tbody>
</table>

64 Since many institutions grant degrees with formal titles that do not convey the actual subject (i.e., ‘Bachelor of Arts’, ‘Bachelor of Science’, and ‘PhD’ are typically not in art, science or philosophy respectively), the subject was only taken from the degree name if that degree name was typically not followed by a separate subject. Specifically, for each degree title, a count was made of whether the degree was followed by a separately indicated subject (e.g., ‘BA in mathematics’); for degree titles including ‘BA’, ‘BS’, ‘Bachelor of Arts’, ‘PhD’, in line with expectation, the degree title typically was followed by a subject, (and typically that subject was not art or science). In other cases such as ‘BBA’ or ‘BEng’ it was less common to specify a subject separately (although naturally there were cases where the subject was included, such as ‘BBA in business’, or where further specification was included, such as a ‘BEng in electrical engineering’). As such, in cases where the degree qualification indicates the subject (e.g., ‘BBA’, ‘BEng’, ‘Bachelors of Engineering’, etc.), if no other subject is listed, then the subject is taken based on the degree title; in cases where the degree title typically does not convey the subject (e.g., ‘BA’, ‘BS’, ‘Bachelor of Arts’, etc.), then if no other subject is listed, then the default specification is to leave the subject as unknown.
Table D.4 Summary of Qualification Subjects

Examples of degrees standardized by subject and levels are included in Figure D.6 below.

```json
{
    "ORIGINAL": "B.S. degree, magna cum laude, in accounting",
    "DEGREE_LEVEL": "UNDERGRADUATE/BACHELORS",
    "SUBJECTS": ["BUSINESS-ACCOUNTING"]
    "GRADE_NOTES": "magna cum laude"
}
{
    "ORIGINAL": "Bachelor of Arts degree in Music and History",
    "DEGREE_LEVEL": "UNDERGRADUATE/BACHELORS",
    "SUBJECTS": ["MUSIC", "HISTORY"]
}
{
    "ORIGINAL": "M.B.A.",
    "DEGREE_LEVEL": "GRADUATE/MASTERS",
    "SUBJECTS": ["BUSINESS-GENERAL/UNSPECIFIED"]
}
```
Figure D.6. Examples of the DEGREE Sub-Ontology

A slight difficulty in capturing the degree information occurs when the degree is ‘split’ between a university, for example, ‘received a Bachelors from the University of Michigan in Engineering’ or ‘has an undergraduate degree from MIT in mathematics’. The solution currently being adopted\(^6\) for this is to create a concept for subject only, such that this standardizes as RECEIVED QUALIFICATION FROM EDUCATION_INSTITUTION IN SUBJECT., and then to interpret the qualification and subject together, combing QUALIFICATION IN SUBJECT ‘on the fly’ to reveal the qualification (as discussed in the main text though, in general it is generally easier to interpret the meaning from semantic ordering without such modifiers, so in general this approach is avoided).

```
{
  "ORIGINAL":"Bachelor [from the University of Michigan] in Engineering",
  "DEGREE_LEVEL":"UNDERGRADUATE/BACHELORS",
  "SUBJECTS":["ENGINEERING"]
}
```

```
{
  "ORIGINAL":"PhD degree [from Stanford University] in Engineering",
  "DEGREE_LEVEL":"DOCTORATE",
  "SUBJECTS":["ENGINEERING"]
}
```

Figure D.7. Example of a Split-Degree in the DEGREE Sub-Ontology

\(^6\) This has yet to be fully implemented, but will in due course.
Education Institution

EDUCATION_INSTITUTION:

'ORIGINAL': Original text [String]
'UNIVERSITY': University name (standardized) [String]
'DEPARTMENT': Department name [String]

USED_IN: QUALIFICATION

Figure D.8. Specification of the EDUCATION_INSTITUTION Sub-Ontology

This sub-ontology is designed to capture institutions, as commonly included in managerial backgrounds to describe the institution issuing the qualification. As illustrated in Figure D.9, this may also include the department in the university. Since there are multiple possible ways of writing the same university name, the university name is also included in a standardized format (i.e., represented the same, irrespective of who the information is entered). This is achieved by first searching the name of the universities on the internet\(^66\). For each result, the domain of the first search result was taken (e.g., ‘UCLA’, ‘University of California Los Angeles’, ‘University of California at Los Angeles’ all had the top search result ucla.edu), and then this domain was connected to the associated university in a database of university domain addresses (Hipo, 2015). Table Figure D.5 illustrates face validity of connecting universities to the standardized name; as well as illustrating the broad range of permutations standardized, the universities that managers most commonly received their qualifications from correspond with what would be expected: large, prestigious, US universities.

\(^66\) It is anticipated that in due course department names will also be standardized, making partial department names such as ‘Ross Business School [University of Michigan]’, consistent to ‘Stephen M. Ross School of Business’, while also categorizing the department area as ‘BUSINESS’.

\(^67\) The English version of the search engine Yandex was used to allow automated searches; if the top search result was a ‘generic’ result (e.g., a directory of universities), the next result was used (or manually reviewed/corrected as appropriate). As well as ultimately allowing the information to be subsequently integrated with other information, such as the location of the University (information also contained in the database connected to), the approach also had the advantage over ‘fuzzy string matching’ approaches (see Cohen, Ravikumar, and Fienberg, 2003) by allowing terms that share very few character, and hence are considered very different on fuzzy matching approaches (e.g., ‘UCLA’ vs. ‘University of California Los Angeles’) to be associated together.
<table>
<thead>
<tr>
<th>Standardized Education Institution</th>
<th>Examples</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANFORD UNIVERSITY</td>
<td>Stanford; Stanford University</td>
<td>4.5</td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA, BERKELEY</td>
<td>University of California, Berkeley; University of California at Berkeley</td>
<td>2.1</td>
</tr>
<tr>
<td>HARVARD UNIVERSITY</td>
<td>Harvard; Harvard University; Harvard University, Massachusetts</td>
<td>2.1</td>
</tr>
<tr>
<td>UNIVERSITY OF TEXAS AT AUSTIN</td>
<td>University of Texas at Austin; University of Texas, Austin; University of Texas</td>
<td>1.9</td>
</tr>
<tr>
<td>UNIVERSITY OF MICHIGAN</td>
<td>University of Michigan; University of Michigan, Ann Arbor; University of Michigan at Ann Arbor</td>
<td>1.8</td>
</tr>
<tr>
<td>UNIVERSITY OF CHICAGO</td>
<td>University of Chicago</td>
<td>1.8</td>
</tr>
<tr>
<td>YALE UNIVERSITY</td>
<td>Yale; Yale University</td>
<td>1.7</td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA, LOS ANGELES</td>
<td>University of California at Los Angeles; University of California, Los Angeles; UCLA</td>
<td>1.6</td>
</tr>
<tr>
<td>CORNELL UNIVERSITY</td>
<td>Cornell University, Cornell</td>
<td>1.6</td>
</tr>
<tr>
<td>MASSACHUSETTS INSTITUTE OF TECHNOLOGY</td>
<td>M.I.T; Massachusetts Institute of Technology</td>
<td>1.5</td>
</tr>
<tr>
<td>PRINCETON UNIVERSITY</td>
<td>Princeton University</td>
<td>1.3</td>
</tr>
<tr>
<td>UNIVERSITY OF SOUTHERN CALIFORNIA</td>
<td>University of Southern California</td>
<td>1.3</td>
</tr>
<tr>
<td>UNIVERSITY OF ILLINOIS</td>
<td>University of Illinois</td>
<td>1.3</td>
</tr>
<tr>
<td>UNIVERSITY OF VIRGINIA</td>
<td>University of Virginia</td>
<td>1.3</td>
</tr>
<tr>
<td>UNIVERSITY OF WISCONSIN</td>
<td>University of Wisconsin</td>
<td>1.1</td>
</tr>
<tr>
<td>DARTMOUTH COLLEGE</td>
<td>Dartmouth College,</td>
<td>1.1</td>
</tr>
<tr>
<td>DUKE UNIVERSITY</td>
<td>Duke University</td>
<td>1.1</td>
</tr>
<tr>
<td>PENNSYLVANIA STATE UNIVERSITY</td>
<td>Penn State University; Pennsylvania State University</td>
<td>0.9</td>
</tr>
<tr>
<td>BOSTON UNIVERSITY</td>
<td>Boston University</td>
<td>0.9</td>
</tr>
<tr>
<td>UNIVERSITY OF NOTRE DAME</td>
<td>University of Notre Dame</td>
<td>0.9</td>
</tr>
<tr>
<td>OTHER (1236 Standardized Institutions)</td>
<td>Other Institutions</td>
<td>68.0</td>
</tr>
</tbody>
</table>

Table D.5 Most Common Standardized Universities

Examples of the populated ontologies are shown in Figure D.9 below.

"ORIGINAL": "University of Michigan, Ross School of Business",
"UNIVERSITY": "UNIVERSITY OF MICHIGAN",
"DEPARTMENT": "Ross School of Business"

"ORIGINAL": "Harvard",
"UNIVERSITY": "HARVARD UNIVERSITY"

"ORIGINAL": "Stanford University"s Law School",
"UNIVERSITY": "STANFORD UNIVERSITY"
"DEPARTMENT": "Law School"

Figure D.9. Examples of the EDUCATION_INSTITUTION Sub-Ontology
Location

LOCATION:{
 "ORIGINAL": Original text [String]
 "COUNTRY": Country [String]
 "STATE": US State / Canadian Province [String]
 "CITY": City [String]
 "LAT-LONG": GPS coordinates (based on the center of the region) [List of two floats]
}

USED_IN: PROFESSIONAL_LICENSE, MANAGEMENT_TITLE, EXPERIENCE

Figure D.10. Specification of the LOCATION Sub-Ontology

This structure is designed to represent specific location information discussed in the text (e.g., in the countries that a manager discusses having experience in, or the location of companies that they have worked for). To facilitate comparisons, this structure standardizes all of the location details, with supplemental information populated as appropriate (e.g., if a US state is listed, then to add the country as USA), and is also supplemented with latitude and longitude information based on the center of the region (this information is currently sourced from Google Geocoding: Google, 2018). Although naturally there are cities that share the same name (e.g., London in the United Kingdom vs. London in Ontario, Canada), typically either one city has a much larger population than the other, or sufficient disambiguation information is already included (e.g., while ‘Washington’ may be ambiguous, it is typically written as ‘Washington DC’ or ‘Washington State’); going forward, it is intended that there will be fine-grained options to adjust how ambiguous cases are handled.

| "ORIGINAL": "United States of America"
| "COUNTRY": "USA"
| "LAT-LONG": [37.09024, 95.71289]
|
| "ORIGINAL": "Michigan"
| "COUNTRY": "USA"
| "STATE": "MI"
| "LAT-LONG": [44.31484, -85.60236]
|
| "ORIGINAL": "Ann Arbor, Michigan"
| "COUNTRY": "USA"
| "STATE": "MI"
| "CITY": "ANN ARBOR"
| "LAT-LONG": [44.31484, -85.60236]

Figure D.11. Examples of the LOCATION Sub-Ontology
Functional Area

```
FUNCTIONAL_AREA: {
  "ORIGINAL": "Original text"  [String]
  "PRIMARY_AREA": "Original text"  [String see Figure D.6]
  "SUB_AREA": "Original text"  [String]
}
```

USED_IN: MANAGEMENT_TITLE, EXPERIENCE

Figure D.12. Specification of the **FUNCTIONAL_AREA** Sub-Ontology

This sub-ontology is designed to capture functional areas, used in context of managerial backgrounds as part of managerial titles and experiences. As noted in the text, while permutations in label names are removed as part of the standardization (e.g., finance vs. financial), the primary areas broadly reflect the labels in the underlying material, with recoding allowing areas such as ADVERTISING and MARKETING to be combined if desired, and less frequently occurring functional areas to be collapsed into an OTHER category (e.g., Ocasio and Kim, 1999). The sub-area reflects any permutations on the primary (e.g., ‘consumer marketing’), with the ontology expandable to allow these modifications to ultimately also be standardized (such permutations are not common among management titles, they are more common when describing experiences).

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Examples of job titles including functional area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINANCE</td>
<td>Chief Financial Officer; Vice President of Finance; Senior Vice President, Finance; Senior Vice President of Finance, CFO</td>
<td>45.5</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>Senior Vice President of Operations; Vice President, Operations; Chief Operations Officer; Director of Operations; Executive Vice President of Operations, COO</td>
<td>8.2</td>
</tr>
<tr>
<td>MARKETING</td>
<td>Chief Marketing Officer; Vice President of Marketing; Director of Marketing; Vice President, Marketing; Marketing Director</td>
<td>6.2</td>
</tr>
</tbody>
</table>

68 When classifying managerial titles and experiences, a distinction is made between functional areas, and industry area. This is based on the generality of the experiences, and specifically whether the area transcends industries (a distinction that is reflective of existing research on functional areas: Michel and Hambrick, 1992; Ocasio and Kim, 1999). For example, areas such as finance, marketing, operations, legal transcend organizations; financial experiences for example is important to businesses in areas far from financial-focused institutions, and a majority of firms have a Chief Financial Officer. This is in comparisons to pharmaceutical experiences, which are most pertinent to the pharmaceutical industry. While a more systematic quantitative approach is intended to supplement the qualitative split (based on how specific areas are to particular industry segments), it is not envisioned that will result in any substantial differences from the qualitative considerations used currently.
<table>
<thead>
<tr>
<th>Area</th>
<th>Positions</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES</td>
<td>Vice President of Sales; Vice President, Sales; Director of Sales; Sales Manager; Senior Vice President of Sales</td>
<td>4.4</td>
</tr>
<tr>
<td>HUMAN_RESOURCES</td>
<td>Vice President of Human Resources; Senior Vice President, Human Resources; Director of Human Resources; Chief Human Resources Officer; Human Resources Manager</td>
<td>3.4</td>
</tr>
<tr>
<td>ADMINISTRATION</td>
<td>Chief Administrative Officer; Vice President of Administration; Chief Financial and Administrative Officer; Chief Administration Officer</td>
<td>3.1</td>
</tr>
<tr>
<td>RESEARCH/TECHNOLOGY</td>
<td>Director of Research; Vice President of Research; Research Director</td>
<td>2.5</td>
</tr>
<tr>
<td>INVESTMENTS</td>
<td>Chief Investment Officer; Senior Investment Officer; Global Chief Investment Officer; Director of Investments</td>
<td>2.3</td>
</tr>
<tr>
<td>STRATEGY</td>
<td>Chief Strategy Officer; Senior Vice President, Strategy</td>
<td>1.8</td>
</tr>
<tr>
<td>COMPLIANCE</td>
<td>Chief Compliance Officer; Compliance Officer; Corporate Compliance Officer</td>
<td>1.8</td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>Vice President of Engineering; Director of Engineering; Vice President, Engineering; Engineering Manager</td>
<td>1.5</td>
</tr>
<tr>
<td>BANKING</td>
<td>Chief Banking Officer; Head of Investment Banking; Head of Commercial Banking</td>
<td>1.5</td>
</tr>
<tr>
<td>AUDITING</td>
<td>Audit Manager; Senior Audit Manager; Head of Internal Audit</td>
<td>1.4</td>
</tr>
<tr>
<td>RELATIONS</td>
<td>Director of Investor Relations; Vice President of Investor Relations; Manager of Media Relations</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table D.6 Summary of Managerial Functional Areas

Figure D.13. Examples of the FUNCTIONAL_AREA Sub-Ontology

The ontologies can also handle the acronyms, such as CFO or COO. For such acronyms, the ‘original’ term also appear in the MANAGEMENT_LEVEL sub-ontology, with the standardized level CHIEF-OFFICER.

Figure D.14. Examples of acronyms in the FUNCTIONAL_AREA Sub-Ontology
Management Level

MANAGEMENT_LEVEL:

"ORIGINAL": Original text [String]
"PRIMARY_LEVEL": Primary seniority level of manager, e.g., 'President' [String, See Table D.7 below]
"ASSISTANT": [True/False]
"DEPUTY": e.g., Deputy Vice President [True/False]
"VICE": e.g., Vice President / VP [True/False]
"SENIOR": e.g., Senior Vice President [True/False]
"EXECUTIVE": e.g., Executive Vice President69 [True/False]
"LEAD": e.g., Lead Director [True/False]
"DIVISIONAL": e.g., Divisional manager [True/False]
"GENERAL": e.g., General Manager [True/False]
"CO-LEVEL": e.g., CO-CEO [True/False]
"FOUNDING": e.g., Founding Manager [True/False]
"INDEPENDENT": e.g., Independent Director70 [True/False]
"NON-INDEPENDENT": e.g., Non-Independent Director [True/False]
"ACTING/INTERIM": e.g., Acting CEO [True/False]
"OTHER": ACTIVE, VISTING, TENURED, DESIGNATED, HONORARY, INCUMBENT, CLINICAL, ADJUNCT, PRESIDING, EMERITUS, SOLE
"CLEANED": Representing desired dimensions of title71 [String]

USED_IN: MANAGEMENT_TITLE

Figure D.15. Specification of the MANAGEMENT_LEVEL Sub-Ontology

This sub-ontology is a component of MANAGEMENT_TITLE, designed to capture the components of a manager's title that are associated with the seniority level (with functional areas, industry areas, and regions represented separately). In order to represent the approximately 2,000 different permutations on the manager’s title, the sub-ontology is comprised of two parts: the overall designation (e.g., ‘President’ or ‘Director’), and then a series of modifiers (e.g., ‘Vice’, ‘Senior’, ‘Deputy’), that cover the breadth of possible adjustments that can be made to the primary title. While an individual job title can have only one primary level, it is possible to have multiple modifiers.

69 The term Executive can occur in two usages, either as a modifier or the main job title. When ‘executive’ occurs as part of a job title, such as ‘Executive Vice President’, it is treated as a modifier; when it occurs independently e.g., ‘[is an] Executive’, it is treated as the primary title.

70 While it is unfeasible to be both independent and non-independent simultaneously, they are treated separately, taking the value True if directly if the title directly is stated as independent / non-independent and omitted if not stated (this is consistent with other modifiers).

71 Since many modifications to a job title are unlikely to be unnecessary for particular research questions, the intention is that a ‘cleaned’ version of the title could also be returned, standardizing the level to a single string that represents the desired dimensions, while suppressing non-desired dimensions. At present, the default is set to incorporate the main job permutations (specifically Executive, Vice, Senior, Deputy and General), such that both ‘Acting Co-Vice President’ and ‘Vice President’ standardizing as VICE_PRESIDENT. The dimensions that are included/suppressed will ultimately be able to be specified; whether or not a particular dimension is relevant or not is research question dependent.
<table>
<thead>
<tr>
<th>PRIMARY_LEVEL</th>
<th>Examples</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESIDENT</td>
<td>President</td>
<td>25.6</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>Director</td>
<td>21.6</td>
</tr>
<tr>
<td>CHIEF-OFFICER</td>
<td>Chief Technology Officer, Chief Financial Officer, CEO, CTO, COO</td>
<td>9.7</td>
</tr>
<tr>
<td>CEO</td>
<td>CEO, Chief Executive Officer, Chief Executive</td>
<td>9.3</td>
</tr>
<tr>
<td>MEMBER (e.g., of</td>
<td>Member</td>
<td>9.1</td>
</tr>
<tr>
<td>the committee)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAIR</td>
<td>Chairman, Chair, Chairperson, Chairwoman, Chaired</td>
<td>7.8</td>
</tr>
<tr>
<td>PARTNER</td>
<td>Partner</td>
<td>2.3</td>
</tr>
<tr>
<td>MANAGER</td>
<td>Manager</td>
<td>2.1</td>
</tr>
<tr>
<td>MANAGING DIRECTOR</td>
<td>Managing Director</td>
<td>1.7</td>
</tr>
<tr>
<td>SECRETARY</td>
<td>Secretary</td>
<td>1.6</td>
</tr>
<tr>
<td>TREASURER</td>
<td>Treasurer</td>
<td>1.2</td>
</tr>
<tr>
<td>COUNSEL</td>
<td>General Counsel</td>
<td>1.1</td>
</tr>
<tr>
<td>EXECUTIVE</td>
<td>Executive</td>
<td>0.9</td>
</tr>
<tr>
<td>TRUSTEE</td>
<td>Trustee</td>
<td>0.6</td>
</tr>
<tr>
<td>HEAD</td>
<td>Head, Headed</td>
<td>0.5</td>
</tr>
<tr>
<td>OTHER/UNCLASSIFIED</td>
<td>PROFESSOR; COMMISSIONER; GOVERNOR; DEAN; FELLOW; LECTURER; CHANCELLOR; PROVOST; EDITOR</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table D.7. Primary Managerial Levels

Examples of the sub-ontologies are shown in Figure D.20 below. As illustrated, for acronyms and where the title is ‘split’ with a functional area between, the (e.g., ‘Chief Technology Officer’), the entire term is included in the original field.

```
{
  "ORIGINAL":"Interim Chief Technology Officer",
  "LEVEL":"CHIEF-OFFICER",
  "INTERIM":true,
  "CLEANED":"CHIEF-OFFICER"
}
```

```
{
  "ORIGINAL":"CO-CEO",
  "LEVEL":"CEO",
  "CO-LEVEL":true,
  "CLEANED":"CEO"
}
```

```
{
  "ORIGINAL":"Vice President",
  "LEVEL":"PRESIDENT",
  "Vice":true,
  "CLEANED":"VICE PRESIDENT"
}
```

72 While the gendered terms ‘Chairman’ and ‘Chairwoman’ are by default grouped together with ‘Chair’, and ‘Chairperson’, reflecting the underlying role, the intention, as part of a broader future development to allow gendered language to be examined across organizational communications (e.g., Kendall and Tannen, 1997), is to have an option to also split out these terms.
Figure D.16. Examples of the `MANAGEMENT_LEVEL` Sub-Ontology
Company-Industry Area

{ "ORIGINAL": Original text , "NAICS_3_DIGIT": The associated 3-digit NAICS-code , "NAICS_3_DESCRIPTION": Description of the associated 3-digit NAICS-code , "ENTITY_TYPE": General characterization of the entity in the text - See Table D.8 below , "MULTIPLE": Whether notes 'several', or plural such as 'companies' }

USED_IN: COMPANY_DESCRIPTION, MANAGEMENT_TITLE, EXPERIENCE

Figure D.17. Specification of the COMPANY–INDUSTRY AREA Sub-Ontology

This sub-ontology captures a representation of the industry. As described separately in Appendix E, the description of the industries that the firm works for are connected to associated NAICS codes, using the surrounding context that the terms are used in Wikipedia, to allow terms not directly appearing in the classification manual to be connected. This approach also provides the basis to increase the precision that industries can be identified (e.g., NAICS 4–6 digit level).

<table>
<thead>
<tr>
<th>ENTITY_TYPE</th>
<th>EXAMPLE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERIC</td>
<td>Company, business, firm, entity, organization, enterprise, entity</td>
<td>65.0</td>
</tr>
<tr>
<td>PROVIDER</td>
<td>provider, company that provides, firm that provides, company which provides</td>
<td>6.6</td>
</tr>
<tr>
<td>MANUFACTURER</td>
<td>Manufacturer, company that produces, company that manufactures, company engaged in manufacturing</td>
<td>4.7</td>
</tr>
<tr>
<td>DEVELOPER</td>
<td>Developer, company that develops, firm which develops, company engaged in developing</td>
<td>2.5</td>
</tr>
<tr>
<td>BANK</td>
<td>Bank, banks</td>
<td>2.4</td>
</tr>
<tr>
<td>CONSULTANCY</td>
<td>consultancy</td>
<td>1.9</td>
</tr>
<tr>
<td>DISTRIBUTOR</td>
<td>distributor, company that distributes</td>
<td>1.3</td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>supplier, suppliers, company that supplies</td>
<td>1.0</td>
</tr>
<tr>
<td>RETAILER</td>
<td>retailer</td>
<td>0.8</td>
</tr>
<tr>
<td>OPERATOR</td>
<td>operator, company that operates</td>
<td>0.5</td>
</tr>
<tr>
<td>PRODUCER</td>
<td>producer</td>
<td>0.5</td>
</tr>
<tr>
<td>MARKETER</td>
<td>Marketers, company that markets, firm which markets</td>
<td>0.4</td>
</tr>
<tr>
<td>DESIGNER</td>
<td>Designer, company that designs</td>
<td>0.3</td>
</tr>
<tr>
<td>CHAIN</td>
<td>chain</td>
<td>0.2</td>
</tr>
<tr>
<td>SELLER</td>
<td>Seller, company that sells,</td>
<td>0.2</td>
</tr>
<tr>
<td>UTILITY</td>
<td>utility, utilities</td>
<td>0.2</td>
</tr>
<tr>
<td>CARRIERS</td>
<td>Carriers, carrier</td>
<td>0.1</td>
</tr>
<tr>
<td>PUBLISHER</td>
<td>publisher, firm that publishes</td>
<td>0.1</td>
</tr>
<tr>
<td>INDUSTRY</td>
<td>industry, market, sector</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: Percentages based upon descriptions of firms that a manager has worked for

Table D.8 Summary of Main Entity Types

73 While the ‘multiple’ property has yet to be fully implemented, but will in due course.
Figure D.18. Examples of the COMPANY–INDUSTRY_AREA Sub-Ontology
Management Title

MANAGEMENT_TITLE:

"ORIGINAL": Original text [String]
"LEVEL": Seniority level of manager [MANAGEMENT_LEVEL]
"FUNCTIONAL_AREA": List of functional areas [FUNCTIONAL_AREA]
"INDUSTRY_AREA": List of industrial areas [COMPANY-INDUSTRY_AREA]
"LOCATION": Specific locations that the manager resides over [LOCATION]
"REGION": all non-specific regions, based on the REGION property of the CHARACTERIZATION ontology [CHARACTERIZATION-REGION]

USED_IN: POSITION

Figure D.19. Specification of the MANAGEMENT_TITLE Sub-Ontology

This sub-ontology represents a manager’s job-title, separating out the components of the title into the key dimensions of variation: i) level (e.g., ‘Vice President’), ii) functional area (e.g., ‘Marketing’), iii) industrial area (‘pharmaceutical’) and iv) region (e.g. ‘China’).

Figure D.20. Examples of the MANAGEMENT_TITLE Sub-Ontology

74 Specifically, the levels and classifications are parallel the REGION property in the characterizations sub-ontology used to describe firms; other dimensions such as DIVERSIFICATION or SIZE however are not relevant in the context of managerial titles.
Committee

COMMITTEE: {
 "ORIGINAL": Original text [String]
 "COMMITTEES": List of committees [String - see Table D.9 below]
 "SUB-COMMITTEE": If noted as a sub-committee [True/False]
}

USED_IN: Position

Figure D.21. Specification of the COMMITTEE Sub-Ontology

This sub-ontology captures the range of the board’s committees that managers can be members of. As illustrated in Table D.9, and Figure D.22, slight variations in committee names are standardized together.

<table>
<thead>
<tr>
<th>Committee type</th>
<th>Example</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIT</td>
<td>Audit Committee</td>
<td>32.5</td>
</tr>
<tr>
<td>COMPENSATION</td>
<td>Compensation Committee, Remunerations Committee</td>
<td>17.5</td>
</tr>
<tr>
<td>NOMINATING</td>
<td>Nominating Committee</td>
<td>12.5</td>
</tr>
<tr>
<td>GOVERNANCE</td>
<td>Governance Committee, Corporate Governance Committee</td>
<td>12.4</td>
</tr>
<tr>
<td>EXECUTIVE</td>
<td>Executive Committee, Executive Management Committee</td>
<td>7.4</td>
</tr>
<tr>
<td>FINANCE</td>
<td>Finance Committee</td>
<td>2.6</td>
</tr>
<tr>
<td>INVESTMENTS</td>
<td>Investment Committee</td>
<td>2.5</td>
</tr>
<tr>
<td>RISK</td>
<td>Risk Committee, Risk Management Committee</td>
<td>1.2</td>
</tr>
<tr>
<td>HUMAN RESOURCES</td>
<td>Human Resources Committee, Personnel Committee, HR Committee</td>
<td>1.0</td>
</tr>
<tr>
<td>LOAN</td>
<td>Loan Committee</td>
<td>0.9</td>
</tr>
<tr>
<td>ENVIRONMENTAL</td>
<td>Environmental Committee</td>
<td>0.3</td>
</tr>
<tr>
<td>OTHERS</td>
<td>AFFAIRS, COMPLIANCE, ETHICS, HEALTH & SAFETY, LIABILITY, OVERSIGHT, PLANNING, POLICY, STRATEGY, TECHNOLOGY</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Table D.9. Primary Committee Types

```json
{
  "ORIGINAL":"Compensation, Nominating and Investment Committees",
  "COMMITTEES": ["COMPENSATION","NOMINATIONS","INVESTMENT"]
}

{
  "ORIGINAL":"Nominating and Corporate Governance Committee",
  "COMMITTEES": ["NOMINATIONS","GOVERNANCE"]
}
```
Figure D.22. Examples of the COMMITTEE Sub-Ontology
This ontology is designed to represent the board that a manager serves on.76 There are inherently very few dimensions to this piece of information, with three types: in the case of companies, boards of directors (DIRECTORS), in the case of universities, boards of governors (GOVERNORS), and in the case of non-profits boards of trustees (TRUSTEES).

75 While there are instances in which the board type is not specified, since in the majority of board types are over companies, it is reasonable to assume that at least in the majority of cases the board type is also DIRECTORS. In due course, it is intended that there will be an option to populate the type based on the organizational form that the board presides over.

76 It should be noted that while boards are clearly an important aspect of the positions that a manager can serve, and boards are distinct from other information types (e.g., COMMITTEES), unlike most concepts there is inherently little variation in board types. While the data has been split out by type for completeness (e.g., DIRECTORS, GOVERNORS and TRUSTEES), the vast majority of occurrences are DIRECTORS and the difference between the board types at least in part a reflecting merely a different label depending on the organizational form that the board is presiding over (although see: Fama and Jensen, 1983, which although indicating that boards play similar oversight roles across companies, non-profits and universities nevertheless also notes differences in the nature of the oversight:).
Firm Financial

{ "ORIGINAL": Original text
"CURRENCY": DOLLAR, EURO
"UNITS_MILLION": Number of units, converted to millions
"OVER": Over/more than
"AROUND": Around/approximately
"VALUE_TYPE": VALUE, REVENUE, ASSETS
}

USED_IN: COMPANY_DESCRIPTION

Figure D.25. Specification of the FIRM_FINANCIAL Sub-Ontology

This sub-ontology is intended to represent any mention of the financial position of organizations that a manager has worked for, converting numbers into a standardized format. It should be noted, that in the vast majority of cases, the values are specified without clearly specifying what the value corresponds to, e.g., ‘a $1.5 billion dollar retailer’. While this value may well correspond to the market value of the firm, there is inherent ambiguity, and maybe especially for private firms, where the value is less objectively ascertained. This sub-ontology reflects the inherent ambiguity in the text.

{ "ORIGINAL":"$11 billion", (e.g., a $11 billion company)
"CURRENCY":DOLLAR,
"UNITS_MILLION":11000
}

{ "ORIGINAL":"approximately $330 million",
"CURRENCY":DOLLAR,
"AROUND":True
"UNITS_MILLION":330
}

{ "ORIGINAL":"revenue of $200 million",
"CURRENCY":DOLLAR,
"AROUND":True
"VALUE_TYPE":"REVENUE",
"UNITS_MILLION":200
}

Figure D.26. Examples of the FIRM_FINANCIAL Sub-Ontology
Figure D.27. Specification of the LISTING-OWNERSHIP Sub-Ontology

This sub-ontology is designed to capture the listing and ownership details of a company, typically used when describing companies that a manager has worked at, capturing and standardizing information on the exchanges that the company is listed on. If an exchange is provided, then the firm is considered publically listed. As indicated in Table D.10, sub-markets on an exchange (e.g., the ‘Alternative Investment Market’, a sub-market on the London Stock Exchange, or the ‘Toronto Venture Exchange’, a sub-market on the Toronto Stock Exchange) are given standardized names that make their connections to the primary exchange clear. The country is populated by looking up the exchange.

<table>
<thead>
<tr>
<th>EXCHANGE_NAME</th>
<th>COUNTRY</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYSE</td>
<td>USA</td>
<td>New York Stock Exchange. NYSE</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>USA</td>
<td>NASDAQ.NASDAQ_Stock exchange. NASDAQ_Stock Market</td>
</tr>
<tr>
<td>LSE</td>
<td>UNITED_KINGDOM</td>
<td>London_Stock_Exchange</td>
</tr>
<tr>
<td>LSE</td>
<td>AIM</td>
<td>UNITED_KINGDOM</td>
</tr>
<tr>
<td>TSX</td>
<td>CANADA</td>
<td>Toronto Stock Exchange. Toronto Exchange</td>
</tr>
<tr>
<td>TSX</td>
<td>VENTURE</td>
<td>CANADA</td>
</tr>
</tbody>
</table>

Note: At present, details are included for approximately 40 exchanges which encompass essentially the entirety of the exchanges discussed in managerial backgrounds since 2007 (with North American exchanges naturally being by far the most commonly discussed). In due course, it is anticipated that this will be expanded to encompass the spectrum of exchanges globally.

Table D.10. Summary of Stock Exchanges

```json
"ORIGINAL": "listed on the New York Stock Exchange",
"OWNERSHIP_TYPE": "PUBLICLY_LISTED",
"EXCHANGE": [{"EXCHANGE_NAME": "NYSE", "COUNTRY": "USA"}]
```
"ORIGINAL": "traded on both the NASDAQ and the London Stock Exchange",
"OWNERSHIP_TYPE": "PUBLICALLY_LISTED",
"EXCHANGE": [{"EXCHANGE_NAME": "NASDAQ", "COUNTRY": "USA"},
 {"EXCHANGE_NAME": "LSE", "COUNTRY": "UNITED_KINGDOM"}]
)

"ORIGINAL": "a public firm",
"OWNERSHIP_TYPE": "PUBLICALLY_LISTED"
)

"ORIGINAL": "a state-owned company",
"OWNERSHIP_TYPE": "STATE"
)

Figure D.28. Examples of the LISTING-OWNERSHIP Sub-Ontology
Characterizations

"ORIGINAL": Original text [String]
"SIZE": Original text [String, see Table D.11]
"REGION": Original text [String, see Table D.11]
"LEADING": Original text [String, see Table D.11]
"DIVERSIFICATION": Original text [String, see Table D.11]
"PROFIT_STATUS": Original text [String, see Table D.11]
"STAGE": Original text [String, see Table D.11]

USED_IN: COMPANY_DESCRIPTION, EXPERIENCE, MANAGEMENT_TITLE

Figure D.29. Specification of the CHARACTERIZATION Sub-Ontology

This sub-ontology is designed to represent qualitative characterizations, which, within the context of managerial backgrounds, are used to describe the organizations that the manager has worked for, and the experience that a manager has gained. The intention is that this ontology will provide the basis to represent a broader range of qualitative descriptions that may, for example, be used to describe products, or used by stakeholders to describe firms (which may include negative descriptions). As such, while the dimensions characterized in this ontology reflect the dimensions that are discussed within managerial backgrounds, more dimensions will be added in due course to increase the flexibility of this ontology to capture a broader spectrum of discussion.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
<th>Examples</th>
<th>% OF PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>LARGE</td>
<td>largest, major, large, one of the largest</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>MEDIUM</td>
<td>medium, mid-sized</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>SMALL</td>
<td>small, smallest</td>
<td>21.2</td>
</tr>
<tr>
<td>REGION</td>
<td>GLOBAL/INTERNATIONAL</td>
<td>global, international, worldwide, multinational</td>
<td>73.5</td>
</tr>
<tr>
<td></td>
<td>NATIONAL</td>
<td>national, nationwide</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>REGIONAL/LOCAL</td>
<td>local, regional</td>
<td>6.9</td>
</tr>
<tr>
<td>LEADING</td>
<td>LEADING</td>
<td>leading, premier, world-leading, one of the leading</td>
<td>n/a</td>
</tr>
<tr>
<td>DIVERSIFICATION-FOCUS</td>
<td>DIVERSIFIED</td>
<td>diversified</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>FOCUS</td>
<td>focused</td>
<td>negligible</td>
</tr>
<tr>
<td>PROFIT_STATUS</td>
<td>NOT_FOR_PROFIT</td>
<td>non-profit, charitable, not-for-profit</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>FOR_PROFIT</td>
<td>for profit, for-profit</td>
<td>0.2(^77)</td>
</tr>
</tbody>
</table>

\(^{77}\) For-profit organizations are rarely explicitly labeled as such (while non-profits are more commonly labeled non-profits); this explains why the non-profit label more commonly occurs in describing the organizations worked for than the for-profit.
<table>
<thead>
<tr>
<th>STAGE</th>
<th>Characterization</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARLY/START UP</td>
<td>start-up, early-stage</td>
<td>45.2</td>
</tr>
<tr>
<td>GROWING</td>
<td>Growing</td>
<td>21.3</td>
</tr>
<tr>
<td>BOUTIQUE</td>
<td>boutique</td>
<td>12.8</td>
</tr>
<tr>
<td>EMERGING</td>
<td>Emerging</td>
<td>10.5</td>
</tr>
<tr>
<td>DEVELOPMENT</td>
<td>Development stage</td>
<td>3.3</td>
</tr>
<tr>
<td>OTHER</td>
<td>pre-IPO, clinical-stage</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Table D.11. Summary of Characterization Areas

```
{  
  "ORIGINAL":"leading, diversified"  
  "LEADING":"LEADING"  
  "DIVERSIFICATION-FOCUS":"DIVERSIFIED"  
}
```

```
{  
  "ORIGINAL":"one of the largest"  
  "SIZE":"LARGE"  
}
```

Figure D.30. Examples of the CHARACTERIZATION Sub-Ontology
Company Description

COMPANY_DESCRIPTION:

"ORIGINAL": Original text [String]
"INDUSTRY": List of industrial areas [LIST: INDUSTRY]
"REGION": Regions that the listed as operating in [LIST: LOCATION]
"FIRM_FINANCIAL": Description of the value of firm [FIRM_FINANCIAL]
"LISTING-OWNERSHIP": Listing/exchange, and ownership details [LISTING-OWNERSHIP]
"CHARACTERIZATION": Qualitative discussion of the firm (e.g., leading) [CHARACTERIZATION]
"FOUNDED_DATE": A date that the firm is listed as founded [DATE]

USED_IN: POSITION

Figure D.31. Specification of the COMPANY_DESCRIPTION Sub-Ontology

This sub-ontology represents the qualitative description of the firms that a manager has worked for. This description is broken down by details of the INDUSTRY in which the firm is discussed as operating in, any REGION that is discussed, the STAGE of the firm, and other CHARACTERIZATION, where other subjective characteristics such as whether the firm is "leading" are discussed.

{ "ORIGINAL":"NYSE-listed gold mining company" "INDUSTRY":{"NAICS_3_DIGIT":212,"NAICS_3_DESCRIPTION":"Mining (except oil and gas)"}, "LISTING-OWNERSHIP":{"OWNERSHIP_TYPE":"PUBLICALLY_LISTED" "EXCHANGE":{"EXCHANGE_NAME":"NYSE","COUNTRY":"USA"}}}

{ "ORIGINAL":"leading US retailer of women's clothing" "INDUSTRY":{"NAICS_3_DIGIT":212,"NAICS_3_DESCRIPTION":"Mining (except oil and gas)"}, "REGION":{"COUNTRY":"USA"}, "CHARACTERIZATION":{"TERM":"leading","AREA":"LEADING"}}

Figure D.32. Examples of the COMPANY_DESCRIPTION Sub-Ontology
This sub-ontology is designed to represent company names. As well as the original company name, a cleaned version is included, removing organization endings (e.g., Inc., Corp, etc.) to facilitate connections between slight permutations in the way organizational names are written. As illustrated below, if the focal company is referred to, then the cleaned version will be "FOCAL_COMPANY".

Figure D.34. Examples of the COMPANY_NAME Sub-Ontology

78 In due course it is intended to connect the company names to other databases, making it easier to integrate the extracted information to external databases.
Person Name

PERSON_NAME:

"ORIGINAL": Original text [String]
"NAME_TITLE": Name title, standardized to MR, MS, DR, MRS [String]
"FIRST_NAMES": First name (including initials) [String]
"LAST_NAME": Last name [String]
"SUFFIX": Suffix [String]

USED_IN: BACKGROUNDDETAILS

Figure D.35. Specification of the PERSON_NAME Sub-Ontology

This sub-ontology is designed to represent people names, splitting the name up by part, such that it is possible to connect individuals with the same name, irrespective of whether the name is written in exactly the same format in subsequent filings. The name is split into appropriate properties based on the sequencing of the name, following a standard structure. Some of the most common sequences being: i) NAME_TITLE FIRST_NAMES LAST_NAME (e.g., ‘Mr. John Doe’), ii) FIRST_NAME LAST_NAME, (e.g., ‘John Doe’) iii), NAME_TITLE LAST_NAME, (e.g., ‘Mr. Doe’) iv) FIRST_NAME (e.g., ‘John’). For example, if the name contains a name title followed by several words (e.g., ‘Mr. John Doe’), then ‘Mr.’ is taken as the NAME_TITLE, the next word (John) is taken as the FIRST_NAME, and the last word (‘Doe’) is taken as the LAST_NAME. Similarly, if just one word is given (e.g., ‘John’), this is taken as the first name.79

| "ORIGINAL":"Mr. John F. Doe III"
| "NAME_TITLE”:MR"
| "FIRST_NAMES":"JOHN F."
| "LAST_NAME":"DOE"
| "SUFFIX":"III"

| "ORIGINAL":"Mrs. Doe"
| "NAME_TITLE":"MRS"
| "LAST_NAME":"DOE"

| "ORIGINAL":"Jane Doe"
| "FIRST_NAMES":"JANE"
| "LAST_NAME":"DOE"

| "ORIGINAL":"John"
| "FIRST_NAMES":"JOHN"

Figure D.36. Examples of the PERSON_NAME Sub-Ontology

79 It is common to specify a manager’s full name in the first instance in the managerial background, and then either use their first name or ‘he’/‘she’. That is, while only knowing the first name may not be sufficient to uniquely identify a manager, the full name is typically mentioned several sentences earlier.
Background Details

Figure D.37. Specification of the BACKGROUND_DETAILS Primary-Ontology

This structure is designed to capture descriptive information about the manager not typically the focus of the sentence. This includes post-nominal letters that are sometimes included after a manager’s name, but are not the focus of the sentence, which are standardized in this ontology in a similar manner to how qualifications/professional license are captured.

Figure D.38. Examples of the BACKGROUND_DETAILS Primary-Ontology

80 These qualifications also tend to be discussed separately as part of a later sentence.
Position

```json
POSITION:
  "ORIGINAL_TEXT": Original text [String]
  "JOB_TITLE": [MANAGEMENT_TITLE]
  "COMPANY_NAME": [COMPANY_NAME]
  "COMPANY_DESCRIPTION": [COMPANY_DESCRIPTION]
  "BOARD": Incorporates a manager's role on the board [BOARD]
  "COMMITTEE": Incorporates a manager's role on the committee [COMMITTEE]
  "START_DATE": [DATE]
  "END_DATE": [DATE]

USED_IN: POSITIONS
```

Figure D.39. Specification of the POSITION Sub-Ontology

This data structure integrates the components of an individual position, including the committees and boards that a manager has worked on (described below).

```json
POSITION:
  "ORIGINAL": "Chief Financial Officer of Gorilla Software Inc. from April 1997 until March 2000",
  "JOB_TITLE": {"ORIGINAL": "Chief Financial Officer", "LEVEL": "CHIEF-OFFICER", "AREA": ["FINANCE"]}
  "COMPANY_NAME": {"ORIGINAL": "Gorilla Software", "NAME_CLEANED": "GORILLA SOFTWARE"}
  "START_DATE": {"ORIGINAL": "April 1997", "YEAR": 1997, "MONTH": 4}
  "END_DATE": {"ORIGINAL": "March 2000", "YEAR": 2000, "MONTH": 3}

POSITION:
  "ORIGINAL": "between 1997 and 2000 he was the Vice President of OPERATIONS at GORILLA Software Inc.",
  "JOB_TITLE": {"ORIGINAL": "Vice President of OPERATIONS", "LEVEL": "CHIEF-OFFICER", "AREA": ["OPERATIONS"]}
  "COMPANY_NAME": {"ORIGINAL": "Gorilla Software", "NAME_CLEANED": "GORILLA SOFTWARE"}
  "START_DATE": {"ORIGINAL": "1997", "YEAR": 1997}
  "END_DATE": {"ORIGINAL": "2000", "YEAR": 2000}

POSITION:
  "ORIGINAL": "VP of Marketing and Sales at Gorilla Software Inc. until he retired in 2010",
  "JOB_TITLE": {"ORIGINAL": "VP of Marketing and Sales", "LEVEL": "VP", "AREA": ["MARKETING", "SALES"]}
  "COMPANY_NAME": {"ORIGINAL": "Gorilla Software", "NAME_CLEANED": "GORILLA SOFTWARE"}
  "END_DATE": {"ORIGINAL": "retired in 2010", "YEAR": 2000, "EVENT": "RETIREMENT"}
```

Figure D.40. Examples of the POSITION Sub-Ontology
For board and committee positions, the position title (e.g., 'member' or 'chair') are incorporated into the BOARD and COMMITTEE sub-ontologies (i.e., because such positions are relative to the committee/board, rather the overall company).81

Figure D.41. Examples of the POSITION Sub-Ontology with Boards/Committees

As illustrated in Figure D.46 below, the POSITIONS primary-ontology, is then made up as a list of the POSITION type, allowing multiple positions discussed in the same sentence to be represented.

Figure D.42. Examples of the POSITIONS Primary-Ontology

81 As of August 1st 2018, this has yet to be implemented, but will in due course (i.e., they are currently treated as any other position).
Experience

```
EXPERIENCE:
"ORIGINAL": Original text
"LENGTH_OF_TIME": all specific lengths of time e.g., 5 years
"EXPERIENCE_TYPE": [see Table D.12 below]
"CHARACTERIZATION": all qualitative description of experience
"FUNCTIONAL_AREA": functional areas corresponding to functional background
"INDUSTRY": all industries
"REGION": all non-specific regions (e.g., 'global'), based on the REGION property of the CHARACTERIZATION ontology
"GEOGRAPHIC_AREA": specific countries / regions mentioned

USED_IN: EXPERIENCES
```

Figure D.43. Specification of the EXPERIENCE Sub-Ontology

<table>
<thead>
<tr>
<th>Experience Type</th>
<th>Example usage</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIENCE</td>
<td>significant experience in marketing, accounting and economics</td>
<td>75.7</td>
</tr>
<tr>
<td>KNOWLEDGE</td>
<td>knowledge of accounting</td>
<td>11.1</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>accounting background</td>
<td>5.0</td>
</tr>
<tr>
<td>INSIGHT</td>
<td>broad understanding of the operational, financial and strategic issues</td>
<td>2.4</td>
</tr>
<tr>
<td>PERSPECTIVE</td>
<td>unique perspective</td>
<td>2.3</td>
</tr>
<tr>
<td>CAREER</td>
<td>career in the engineering, procurement, and construction industry</td>
<td>1.3</td>
</tr>
<tr>
<td>QUALIFICATIONS</td>
<td>qualifications [and experience] in accounting</td>
<td>1.3</td>
</tr>
<tr>
<td>FAMILIARITY</td>
<td>familiar with the Company’s business and industry</td>
<td>0.5</td>
</tr>
<tr>
<td>ABILITY</td>
<td>ability to lead</td>
<td>0.1</td>
</tr>
<tr>
<td>SKILL</td>
<td>management skills</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table D.12. Summary of Experience Types

```
EXPERIENCE | "ORIGINAL":"worked in the automotive industry for 5 years",
"LENGTH_OF_TIME": {"ORIGINAL":"5 years", "UNIT":"YEAR", "QUANTITY":5},
"AREAS": {"ORIGINAL":"automotive industry", "NAICS_3_DIGIT":336,
"NAICS_3_DESCRIPTION":"Transportation Equipment Manufacturing"},
"EXPERIENCE_TYPE": {"ORIGINAL":"worked", "TYPE":"WORK"}
}

EXPERIENCE: |
"ORIGINAL": "20 year career in the global oil and gas industry",
"LENGTH_OF_TIME": {"ORIGINAL": "5 years", "UNIT": "YEAR", "QUANTITY":5},
"AREAS": {"ORIGINAL": "oil and gas industry", "NAICS_3_DIGIT":211,
"NAICS_3_DESCRIPTION": "Oil and Gas Extraction"},
"REGION": {"ORIGINAL": "global", "TYPE": "GLOBAL/INTERNATIONAL"},
"EXPERIENCE_TYPE": {"ORIGINAL": "career", "TYPE": "CAREER"} 
```
Qualification

QUALIFICATION: {
 "ORIGINAL": Original text [String]
 "DEGREE": [DEGREE]
 "EDUCATION_INSTITUTION": Original text [EDUCATION_INSTITUTION]
 "GRADUATION_DATE": Original text [DATE]
}

USED_IN: QUALIFICATIONS

Figure D.45. Specification of the QUALIFICATION Sub-Ontology

This sub-ontology represents a single qualification, made up of the components the DEGREE, EDUCATION_INSTITUTION, and DATE.

{ "ORIGINAL": "graduated from the University of Michigan in 1987 with a BBA"
 "DEGREE": { "ORIGINAL": "BBA", "DEGREE_LEVEL": "UNDERGRADUATE/BACHELORS", "SUBJECTS": ["BUSINESS"]}
 "EDUCATION_INSTITUTION": { "ORIGINAL": "University of Michigan", "UNIVERSITY": "UNIVERSITY OF MICHIGAN"}
 "GRADUATION_DATE": { "ORIGINAL": "1987", "YEAR": 1987 }
}

{ "ORIGINAL": "received a BEng in 1990 with a from the University of Illinois"
 "DEGREE": { "ORIGINAL": "BEng", "DEGREE_LEVEL": "UNDERGRADUATE/BACHELORS", "SUBJECTS": ["ENGINEERING"]}
 "EDUCATION_INSTITUTION": { "ORIGINAL": "University of Illinois", "UNIVERSITY": "UNIVERSITY OF ILLINOIS"}
 "GRADUATION_DATE": { "ORIGINAL": "1990", "YEAR": 1990 }
}

{ "ORIGINAL": "earned a Bachelor of Business Administration from the University of Stanford in 1996"
 "DEGREE": { "ORIGINAL": "Bachelor of Business Administration",
 "DEGREE_LEVEL": "UNDERGRADUATE/BACHELORS", "SUBJECTS": ["BUSINESS"]}
 "EDUCATION_INSTITUTION": { "ORIGINAL": "University of Stanford", "UNIVERSITY": "STANFORD UNIVERSITY"}
 "GRADUATION_DATE": { "ORIGINAL": "1996", "YEAR": 1996 } }

Figure D.46. Examples of the QUALIFICATION Sub-Ontology

As illustrated in Figure D.47 below, the QUALIFICATIONS primary-ontology, is then made up as a list of the QUALIFICATION type, allowing multiple qualifications discussed in the same sentence to be represented.

124
Mr. Doe earned a Bachelor of Science in engineering from the University of Michigan in 1980 and a Master of Business Administration from the Stanford Graduate School of Business in 1985.

Figure D.47. Examples of the QUALIFICATIONS Primary-Ontology
Professional License

PROFESSIONAL_LICENSE:

"ORIGINAL": Original text [String]
"AREA": Area that the license is in [String - see Table D.13 below]
"REGIONS": List of all regions that they are licensed in [LOCATION]
"INACTIVE": e.g., inactive/no longer active [True/False]

USED_IN: PROFESSIONAL_LICENSES

Figure D.48. Specification of the PROFESSIONAL_LICENSE Sub-Ontology

This sub-ontology is designed to represent professional licenses that a manager may hold. Depending on the profession, such designated included ‘licensed’ (e.g., ‘licensed to practice law’), ‘registered’ (e.g., ‘registered professional engineer’), ‘certified’ (e.g., ‘certified public accountant’) or ‘chartered’ (e.g., ‘chartered surveyor’), with the terms often stating a particular state or country in which they are valid. Although these could be considered a form of education, they are treated separately, because unlike other qualifications they are not issued by universities (and typically the entity issuing the license is not directly mentioned), often mention the region in which they are valid, and typically confer some legal responsibility (e.g., the ability to certify accounts).

82 For simplicity, the LAT-LONG and the ORIGINAL properties of the REGION sub-ontology have been are omitted here; the intention is that ultimately the tools will have options to allow uncommon/undesired properties to be suppressed/unsuppressed.
<table>
<thead>
<tr>
<th>Area</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCOUNTING</td>
<td>CPA(^{83})</td>
</tr>
<tr>
<td>ACCOUNTING</td>
<td>CMA(^{83})</td>
</tr>
<tr>
<td>FINANCE</td>
<td>CFA(^{83})</td>
</tr>
<tr>
<td>ENGINEER</td>
<td>Licensed Professional Engineer, Registered Professional Engineer</td>
</tr>
<tr>
<td>LAWYER</td>
<td>Licensed to Practice Law</td>
</tr>
<tr>
<td>PHARMACIST</td>
<td>Registered Pharmacist</td>
</tr>
<tr>
<td>ARCHITECT</td>
<td>Registered Architect</td>
</tr>
<tr>
<td>NURSE</td>
<td>Registered Nurse</td>
</tr>
<tr>
<td>REAL_ESTATE_BROKER</td>
<td>Registered Real Estate Broker</td>
</tr>
<tr>
<td>PHYSICIAN</td>
<td>Registered Pharmacist</td>
</tr>
<tr>
<td>SURVEYOR</td>
<td>Chartered Surveyor</td>
</tr>
</tbody>
</table>

Table D.13. Summary of Professional License Areas

```json
{"ORIGINAL":"licensed to practice law in New York and New Jersey",
"AREA":"LAW",
"REGION_LIST": [["COUNTRY":"USA","STATE":"NY"], ["COUNTRY":"USA","STATE":"NJ"]]
}

{"ORIGINAL":"inactive C.P.A License in Missouri",
"AREA":"ACCOUNTING|CPA",
"REGION_LIST": [["COUNTRY":"USA","STATE":"MO"]]
"INACTIVE": true
}

{"ORIGINAL":"licensed as a Chartered Financial Accountant in the state of Michigan",
"AREA":"ACCOUNTING|CFA",
"REGION_LIST": [["COUNTRY":"USA","STATE":"MI"]]
}

{"ORIGINAL":"Registered nurse in Canada and the United Kingdom",
"AREA":"NURSE",
"REGION_LIST": [["COUNTRY":"CANADA"], ["COUNTRY":"UNITED_KINGDOM"]]
}
```

Figure D.49. Examples of the PROFESSIONAL_LICENSE Sub-Ontology

\(^{83}\) There are two common accounting certificates, the CPA (Certified Public Accountant) and CMA (Certified Management Accountant), as well as the more finance-focused CFA (Chartered Financial Analyst). While each is split out separately here due to differences in content between the qualifications (The Constant Analyst, 2013), with a label indicating whether they have a finance or accounting focus, the categories can easily be aggregated together as deemed appropriate.
Appendix E

Standardization and Verification

Summary of Standardization and Verification Status

This appendix describes the current status of each of the sub-ontologies, while describing the path to future developments. As noted in the text, many of the concepts are comprised of very large number of terms, with a long tail of relatively uncommon terms. For example, Figure E.1 illustrates the cumulative occurrence of the first 10,000 terms in the `MANAGEMENT_TITLE` concept. As illustrated, while a large proportion of terms are common, a sizable percentage of management titles are comprised of low-frequency terms. Since sentences typically comprise many separate concepts, unless classifications within concepts are very high, (which necessitates capturing the low-frequency terms), mistakes at the sentence level would be common. As described in the text however, the process of dissecting the managerial backgrounds is able to automatically characterize these low frequency terms, while there is a slight divergence at the low-frequency end of the graph between the fully-dissected terms (blue line) and the overall numbers of terms (brown line), the majority of terms are fully captured.\(^{84}\)

![Figure E.1 Cumulative Distribution of Managerial Titles (Logarithmic Scale)](image)

\(^{84}\) As noted previously, fully dissected terms refers to splitting terms to the underlying properties of the ontologies, (i.e., every word classed to sub-concepts, with the sequencing of those sub-concepts conforming to the expectations of the semantic-interpretation). Effort is on-going to fully dissect remaining terms in the tails; while there are various unusual titles, such as ‘Chief of Staff’ or ‘Branch Manager’, that do not neatly conform to the existing ontology, it is expected that the rate of classification will ultimately exceed 99%.
As discussed in the main text, while dissecting each of the concepts to the sub-ontologies is an integral to populating the ontologies, it also ensures the validity of the classifications, and the flexibility of the ontologies to capture the underlying dimensions of the text. As illustrated in Table E.1 below, in addition to standardizing the text, fully dissecting terms helps ensure various potential issues involved in the interpretation process are addressed.85

<table>
<thead>
<tr>
<th>Issue</th>
<th>Example</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect concept ordering</td>
<td>MANAGEMENT_TITLE: Vice President of Gorilla Software COMPANY_NAME</td>
<td>Terms with incorrect concept orderings flagged and removed from the concept</td>
</tr>
<tr>
<td>Ontology not sufficiently flexible</td>
<td>Interim Vice President</td>
<td>Ontology extended to incorporate dimensions as needed</td>
</tr>
<tr>
<td>Semantic rules not sufficiently</td>
<td>Engineering Subject Bachelors suma cum laude GRADE NOTES</td>
<td>Increase flexibility of the semantic-rules to allow a broader number of</td>
</tr>
<tr>
<td>included in dimensions</td>
<td></td>
<td>terms to be represented.</td>
</tr>
<tr>
<td></td>
<td>Bachelors in Egyptian Studies LEVEL IN UNCLASSIFIED</td>
<td>Increase terms in each dimension, to allow classifications.</td>
</tr>
</tbody>
</table>

Table E.1 Sources of Non-Conformance to Ontologies

The standardization process involves addressing each of these issues, either by removing incorrectly classified terms, increasing the flexibility of the ontologies, or extending the semantic interpretations and classification of terms in each dimension. While a general high level of oversight is maintained across all terms in concepts (with the multiple layers to the validation approach discussed in the text), being able to identify and focus on the proportion of terms most likely to have various forms of mistakes is critical to allowing manual oversight across large volumes of terms.

To illustrate the feasibility of the overall approach to classify a broad array of terms, an initial target was set at 90% of all terms to be fully-classified. As illustrated in Table E.2, this

85 While conforming to the expected dimensions of the ontologies do not necessarily mean that the information is correctly extracted. For example, if sub-concepts include incorrect terms, it is possible for items to be fully classified, while still having mistakes in how they are populated to the sub-ontologies. While this is possible, and effort is made to ensure that this does not occur, there is little to no evidence of this form of error. More broadly, while this appendix is intended to provide an illustration of the success of the current approach, many additional layers of verification are gradually getting incorporated, with the intent that ultimately it is possible to achieve over 99% of sentences fully and correctly dissected, and substantially higher than would be feasible with manual coding.
target has been satisfied across many concepts, with other concepts expected to reach this target shortly, and in turn, the targets gradually increased.

<table>
<thead>
<tr>
<th>Sub-ontology</th>
<th>Number of unique terms (2007-2017)</th>
<th>Percentage of occurrences classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>17,374</td>
<td>99.9</td>
</tr>
<tr>
<td>LENGTH_OF_TIME</td>
<td>597</td>
<td>95.5</td>
</tr>
<tr>
<td>DEGREE</td>
<td>18,356</td>
<td>91.5</td>
</tr>
<tr>
<td>EDUCATION_INSTITUTION</td>
<td>4,216</td>
<td>93.8</td>
</tr>
<tr>
<td>LOCATION</td>
<td>407</td>
<td>86.8</td>
</tr>
<tr>
<td>FUNCTIONAL_AREA</td>
<td>1,942</td>
<td>97.3</td>
</tr>
<tr>
<td>MANAGEMENT_LEVEL</td>
<td>1,129</td>
<td>96.2</td>
</tr>
<tr>
<td>MANAGEMENT_TITLE</td>
<td>58,122</td>
<td>85.8</td>
</tr>
<tr>
<td>COMMITTEE</td>
<td>3,358</td>
<td>87.4</td>
</tr>
<tr>
<td>BOARD</td>
<td>299</td>
<td>99.9</td>
</tr>
<tr>
<td>COMPANY-INDUSTRY_AREA</td>
<td>25,892</td>
<td>n/a</td>
</tr>
<tr>
<td>FIRM_FINANCIAL</td>
<td>163</td>
<td>86.2</td>
</tr>
<tr>
<td>COMPANY_DESCRIPTION</td>
<td>40033</td>
<td>81.3</td>
</tr>
<tr>
<td>LISTING-OWNERSHIP</td>
<td>303</td>
<td>86.5</td>
</tr>
<tr>
<td>CHARACTERIZATIONS</td>
<td>594</td>
<td>81.2</td>
</tr>
<tr>
<td>PERSON_NAME</td>
<td>141,641</td>
<td>n/a</td>
</tr>
<tr>
<td>COMPANY_NAME</td>
<td>137,917</td>
<td>n/a</td>
</tr>
<tr>
<td>PROFESSIONAL_LICENSE</td>
<td>1,086</td>
<td>97.9</td>
</tr>
</tbody>
</table>

Table E.2 Proportion and Number of Terms Classified by Sub-Ontology Type

Approaches Under Development to Classify and Verify Fuzzy Concepts

While the approach to dissect terms to properties is appropriate with many concepts, and particularly so for modifiers that can be represented as dichotomous values (e.g., True/False), for certain concepts, there is inherent ambiguity over classifications. As discussed in the text, concepts can be ‘fuzzy’ (Murphy, 2002), with less defined boundaries. For certain concepts, pre-existing classification schemas exist that are widely used (e.g., NAICS codes). For other concepts, the coding schemas are less defined; while people may have a conception of categories for university subjects (e.g., sociology, chemistry, psychology), there are different ways of grouping such subjects, and although there will be commonality between universities in departmental groupings of subjects, there will also be variations. The guiding approach intended to serve as the basis for classifications, is to reflect typical groupings; for university subjects, the
typical departments under which the subjects fall. To reflect groupings of university subjects, the envisioned approach will be to download every department website across universities (e.g., top 100 or 500 universities, representing the majority of universities attended by the top managers), and use the department most typically associated with the subject. This builds on the approach discussed to classify NAICS codes below, with the attempt to capture an aggregate of the underlying groupings. For concepts where online-textual data is not amenable to categorize the items, a more traditional classification approach will be used, using crowdsourced verification on a on-line platform, such as Amazon-Turk, to group terms to concepts (e.g., Kittur, Chi, and Suh, 2008), which has scalability advantage over research-assistant coders.

Initial Development of Automated Standardization of Industry and Company Areas to NAICS Codes

As noted in the text, while it was possible to standardize some of the information types through manual consideration, for some information types, there were too many terms for this to be a feasible approach (for example, the tens of thousands of distinct company areas, such as ‘distributor of engineering plastics’, ‘lighting manufacturing company’, ‘men's and women's apparel retailer’, ‘developer of automatic data capture software’ etc.). To allow terms to be connected to appropriate NAICS codes, irrespective of whether the term directly appeared, an approach is being developed to automatically connect terms to an appropriate concept, irrespective of whether the specific term itself appeared in the coding manual, using the context surrounding the discussion of the term on a large encyclopedia (namely Wikipedia) to infer the most relevant area.\(^8^6\) As described in Figure E.2, by using the terms included in the index of the NAICS classification manual, and the surrounding discussion of the company’s area on Wikipedia, it is possible to infer a likely NAICS code. In the illustrated example, the phrases ‘manufacturer of Application Specific Integrated Circuit’ can be connected to the NAICS code 334, ‘Computer and Electronic Product Manufacturing’ (with

\(^{8^6}\) It should be noted for the outset, that while this approach shows significant promise, and a high proportion of terms are associated with appropriate NAICS codes, the approach is still being refined. While the number of misclassifications is currently higher than desired (e.g., roughly 20% misclassified), various refinements are yielding improvements. Specifically, using the firm’s overall area to restrict classifications to specific NAICS ranges (e.g., restricting firms described as ‘manufacturer’ to codes 31-33) are gradually improving the classifications; while it is still too early to merit more validation, with further improvements envisioned before this is worthwhile, the more systematic validation is intended in due course.
other permutations such as ‘manufacturer of ASICs’) matching up similarly. Thus, while neither of these terms directly appear in the NACI classification manual (and may be hard for manual coders to connect), they are associated with an appropriate category.

STAGE 1: Development of word list using index of NAICS classification manual to develop lists of words associated with each NAICS code.

For example, the words in every index value are taken, with words that are commonly occur in a particular category, but few others, used to form the basis of word list associated with each NAICS code.

The terms here reflect words that occur at least twice in the index of the 3-digit NAICS code 334, and have over 50% of their occurrences in that category.

STAGE 2: Download top search results for terms requiring matching.

Currently the top ten search results are used, using the product/service in the firm’s operations (e.g., ‘application specific integrated circuit’, absent terms such as ‘manufacturer’, ‘distributor’, ‘reseller’).

STAGE 2: Match up the content to corresponding NAICS codes.

All of the words in the articles are summed, and the category of the greatest over-45 taken.

334 (Computer and electronic product manufacturing): 2000,
423 (Merchant Wholesalers, Durable Goods): 1667,
336 (Operative trade contractors): 1440,
541 (Professional, Scientific, and Technical Services): 752,
561 (Administrative and Support Services): 508

Wikipedia articles included in this figure under the Creative Commons license.

Figure E.2 Illustration of Connecting Company Areas to Associated NAICS codes through Wikipedia Data
Appendix F

Expansion of the Approach

Expansion to Capture Top Manager Selection Decisions

While the ontologies developed in this dissertation are in the context of managerial backgrounds, the overall approach is flexible and can be extended to other situations where there exists some underlying deep-level similarity between the materials. As discussed in the text, not only does expanding to other textual sources allow different forms of questions to be examined, but it also enables more complex theoretical questions, such as how discussion in one medium influences discussion in a different medium. For example, once it is possible to capture representations of discussion of the selection process to appoint top managers, it becomes possible to examine the reciprocal process by which evaluation criteria influence how managerial backgrounds are presented. Figure F.1 below shows a mock-up of a possible extension of the approach to represent discussions of selection procedures. This figure also illustrates the flexibility of the approach to other communication mediums, supplementing the sub-ontologies developed in this dissertation to capture other domain-specific material.
Candidates may come to the attention of the Nominating Committee through executive search firms, stockholders, management and board members.

When considering a non-incumbent candidate, the Nominating Committee will take into integrity, educational background and knowledge of our business.

Multi-Lingual Representations

The approach developed in this dissertation is also well suited for capturing representations of sentences in languages other than English. While the specific words differ by language and the way in which sentences are constructed can also vary (for example, adjectives usually come before nouns in English, but afterwards in Spanish: Stockwell, Bowen, and Martin, 1965), both can be considered a slightly different forms of surface variation, that the approach developed is specifically designed to abstract away. For example, ‘director ejecutivo’, the Spanish term for ‘Chief Executive Officer’ can be considered, like the term ‘CEO’, as just another synonym. The task of translating terms between languages (and maybe especially Indo-European languages such as English, French, Spanish, Italian, German) is becoming increasingly feasible, such that while several years ago this would have been a daunting task, the difficulty with advanced machine translations is now substantially reduced (Koehn et al., 2007; Wu et al., 2016). Similarly, the ontologies are already designed to allow multiple sentence constructions to be captured (e.g., ‘John is the CEO’ vs. ‘the CEO is John’); only modest adjustments are thus necessary to expand the semantic rules to interpret differing orderings in different languages. The
flexibility of the ontologies to represent information in a different language – in this case, Spanish – is illustrated in Figure F.2.

a) {
 "ORIGINAL_SENTENCE": "Desde marzo de 2010 hasta mayo de 2015, Nicolás ha sido director ejecutivo de AMT de México.",
 "BACKGROUND": { "PERSON_NAME": { "ORIGINAL": "Nicolás", "FIRST_NAME": "NICOLÁS" } },
 "POSITIONS": [
 { "START_DATE": { "ORIGINAL": "marzo de 2010", "YEAR": 2010, "MONTH": 3 },
 "END_DATE": { "ORIGINAL": "mayo de 2015", "YEAR": 2004, "MONTH": 5 },
 "POSITION": { "ORIGINAL": "ha sido director ejecutivo de AMT de México", "JOB_TITLES": [{ "ORIGINAL": "director ejecutivo", "LEVEL": "CEO" }], "COMPANY": { "ORIGINAL": "AMT de México", "CLEANED": "AMT DE MÉXICO" } } }
]
}

b) {
 "ORACION_ORIGINAL": "Pedro recibió una licenciatura en ingeniería de la Universidad Madero Puebla",
 "ANTECEDENTES": { "NOBRE_PERSONA": { "ORIGINAL": "Pedro", "PRIMER_NOBRE": "PEDRO" } },
 "CALIFICACION": [
 { "EDUCATION_INSTITUTION": { "ORIGINAL": "Universidad Madero Puebla", "UNIVERSIDAD": "UNIVERSIDAD MADERO PUEBLA" } },
 { "QUALIFICATION": { "ORIGINAL": "licenciatura en ingeniería", "LEVEL": "LICENCIATURA", "SUJETOS": ["INGENIERIA"] } }
]
}

Figure F.2. Illustrations of Ontologies Populated in Spanish, with either a) English or b) Spanish Ontology Labels

Although it may be necessary to increase the flexibility of various sub-ontologies to incorporate country-specific variations in governance practices not discussed in the backgrounds of US managers (e.g., the separation between Management and Supervisory boards in two-tier structuring of Germany firms: Fiss and Zajac, 2004), the underlying ontologies should largely transcend the US context. Being able to systematically capture meaning in a standardized manner, irrespective of whether the researcher speaks the language, offers researchers possibilities to develop theory that inherently require rich, multi-lingual information. Thus, while the ability to capture a representation of meaning across languages may help extend social science research beyond its English-language focus (Henrich, Heine, and Norenzayan, 2010), it also offers the possibility to develop and explore qualitatively different theories, including how information evolves within and across different global contexts.
BIBLIOGRAPHY

Abbott, A.

Abrahamson, E., and D. C. Hambrick

Abrahamsson, P., O. Salo, J. Ronkainen, and J. Warsta

Abrams, R.

Aggarwal, C. C., and C. Zhai

Allen, M. J., and W. M. Yen

Allred, B. B., C. C. Snow, and R. E. Miles

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman

Anderson, P., and M. L. Tushman

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives

Baldridge, J.
2005 The OpenNLP Project. opennlp.apache.org.
Ballinger, G. A., and J. J. Marcel
2010 “The use of an interim CEO during succession episodes and firm performance.”

Bao, Y., and A. Datta
2014 “Simultaneously Discovering and Quantifying Risk Types from Textual Risk Disclosures.”
Management Science, 60: 1371–1391.

Barley, S. R., and G. Kunda

Barnett, W. P., and M. T. Hansen
1996 “The red queen in organizational evolution.”

Baum, J. A. C., and H. J. Korn
1996 “Competitive dynamics of interfirm rivalry.”

BBC News Labs
2016 “Topic Modelling on BBC data.”

Bednar, M. K., S. Boivie, and N. R. Prince
2013 “Burr under the saddle: How media coverage influences strategic change.”

Benner, M. J.
2010 “Securities analysts and incumbent response to radical technological change: Evidence from digital photography and internet telephony.”

Berger, P. L., and T. Luckmann

2002 “Signaling gender diversity through annual report pictures: A research note on image management.”
Accounting, Auditing & Accountability Journal, 15: 609–616.

Bettis, R. A., and M. A. Hitt
1995 “The new competitive landscape.”

Bettman, J. R., and B. A. Weitz

Carnabuci, G., E. Operti, and B. Kovács

Carroll, G. R., and A. Swaminathan

Caruana, R., and A. Niculescu-Mizil

Cattani, G., S. Ferriani, and P. D. Allison

Chatterjee, A., and D. C. Hambrick

Chen, G., D. C. Hambrick, and T. G. Pollock

Chen, M.-J., and D. C. Hambrick

Chklovski, T., and P. Pantel

Chowdhury, G. G.
Chreim, S.

Cohen, A. M., and W. R. Hersh

Cohen, B. D., and T. J. Dean

Cohen, L., A. Frazzini, and C. J. Malloy

Cohen, W., P. Ravikumar, and S. Fienberg

Courtis, J. K.

Crilly, D., M. Hansen, and M. Zollo

Crossland, C., Jinyong, Zyung, N. J. Hiller, and D. C. Hambrick

Csaszar, F. A., and N. Siggelkow

Cucerzan, S.

Curran, J. R., T. Murphy, and B. Scholz
Cyert, R. M., and J. G. March

Daily, C. M., D. R. Dalton, and A. A. Cannella

Davis, G. F.

Deephouse, D. L.
1999 “To be different, or to be the same? It’s a question (and theory) of strategic balance.” Strategic Management Journal, 20: 147–166.

Drucker, H., D. Wu, and V. N. Vapnik

Duggan, G. B., and S. J. Payne

Eagly, A. H., and L. L. Carli

Edgar, R. C.

Eisenhardt, K. M.

Eisenhardt, K. M., and M. E. Graebner

Elsbach, K. D.

Ercan, G., and I. Cicekli

Ertug, G., T. Yogev, Y. G. Lee, and P. Hedström

Fairclough, N.

Fama, E. F., and M. C. Jensen

Finkel, J. R., T. Grenager, and C. Manning

Finkelstein, S., and R. A. D’Aveni

Finkelstein, S., and D. C. Hambrick

Fiol, C. M.

Firth, J. R.

Fiss, P. C., and P. M. Hirsch

Fiss, P. C., and E. J. Zajac

Fleming, L., and O. Sorenson

Franzosi, R.
1998 “Narrative analysis—or why (and how) sociologists should be interested in narrative.” Annual Review of Sociology, 24: 517–554.

Fredrickson, J. W., D. C. Hambrick, and S. Baumrin

Funk, R. J., and D. Hirschman

Gamson, W. A., and A. Modigliani

Geletkanycz, M. A., and D. C. Hambrick

Gensch, D. H.

Gioia, D. A., and K. Chittipeddi

Glaser, B., and A. Strauss

Goffman, E.

Gomulya, D., and W. Boeker
Google
2003, September 24 “Serving advertisements based on content.”

Grimmer, J., and G. King

Gupta, V., and G. S. Lehal

Hambrick, D. C.

Hambrick, D. C., T. S. Cho, and M. J. Chen

Hambrick, D. C., and P. A. Mason

Han, J., J. Pei, and M. Kamber

Hannigan, T.

Harmon, D.

Harmon, D. J., J. Green Sandy E., and G. T. Goodnight

Haunschild, P. R.

Henrich, J., S. J. Heine, and A. Norenzayan

Hiatt, S. R., and Sangchan Park

Higgins, M. C., and R. Gulati
2003 “Getting off to a good start: The effects of upper echelon affiliations on underwriter prestige.” Organization Science, 14: 244–263.

Hipo

Hirsch, P. M.

Hoch, S. J., and G. F. Loewenstein

Hochreiter, S., and J. Schmidhuber

Hochschild, A. R.

Hofmann, T.

Hsu, G., and S. Grodal

Hulth, A.
Jensen, M., and B. K. Kim
2014 “Great, Madame Butterfly again! How robust market identity shapes opera repertoires.”

Jensen, M., H. Kim, and B. K. Kim

Jensen, M., and A. Roy
2008 “Staging exchange partner choices: When do status and reputation matter?”

Jurafsky, D., and J. H. Martin
2018 Speech and Language Processing (3rd edition: draft).

Kahl, S. J., and S. Grodal

Kanhabua, N., R. Blanco, and M. Matthews
2011 “Ranking related news predictions.”

Kaplan, S., and K. Vakili
2015 “The double-edged sword of recombination in breakthrough innovation.”

Kendall, S., and D. Tannen
1997 “Gender and language in the workplace.”
Gender and Discourse, 81–105.

Kennedy, M. T.
2005 “Behind the one-way mirror: Refraction in the construction of product market categories.”
Poetics, 33: 201–226.

Kim, B. K., and M. Jensen
Administrative Science Quarterly, 56: 238–256.

King, B. G.
2008 “A political mediation model of corporate response to social movement activism.”

Kintsch, W., and T. A. van Dijk

Kittur, A., E. H. Chi, and B. Suh

König, A., J. Mammen, J. Luger, A. Fehn, and A. Enders
2018 “Silver bullet or ricochet? CEOs’ use of metaphorical communication and infomediaries’ evaluations.” Academy of Management Journal, Forthcoming.

Kovács, B., and A. Sharkey

Krause, R., R. Priem, and L. Love

Lakoff, G.

Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer
2016 “Neural architectures for named entity recognition.” ArXiv, 1603.01360.

Lawrence, T. B., and R. Suddaby

Leung, M. D.
Levinthal, D. A.

Li, F.

Lieberman, M. B., and D. B. Montgomery

Livengood, R. S., and R. K. Reger

Loewenstein, J., W. Ocasio, and C. Jones

Loughran, T., and B. McDonald

Magerman, T., B. V. Looy, and X. Song

Maguire, S., and C. Hardy

Manrai, A. K., and R. L. Andrews

Marcel, J. J.

March, J. G., and J. P. Olsen

Martens, M. L., J. E. Jennings, and P. D. Jennings
2007 “Do the stories they tell get them the money they need? The role of entrepreneurial narratives in resource acquisition.” Academy of Management Journal, 50: 1107–1132.

Martin, J., M. S. Feldman, M. J. Hatch, and S. B. Sitkin

Matsuo, Y., and M. Ishizuka

Matthews, P. H., and P. H. Matthews

McGraw, K. M., M. Lodge, and P. Stroh

McGrimmon, L.

Merton, R. K.

Meyer, J. W., and B. Rowan

Michel, J. G., and D. C. Hambrick

Munir, K. A., and N. Phillips

Murphy, G. L.

Nakashole, N., M. Theobald, and G. Weikum
2011 “Scalable knowledge harvesting with high precision and high recall.” Proceedings of the Fourth ACM International Conference on Web Search and Data Mining: 227–236. ACM.

Navis, C., and M. A. Glynn

Nelson, R. R., and S. G. Winter

Nordgren, L. F., and A. Dijksterhuis

Ocasio, W., and J. Joseph

Ocasio, W., and H. Kim

Pang, B., L. Lee, and S. Vaithyanathan

Perfetti, C. A., and L. Hart

Pfarrer, M. D., K. A. Decelles, K. G. Smith, and M. S. Taylor

Pfeffer, J.

Philipsen, G.
Phillips, D. J., and Y.-K. Kim

Phillips, D. J., and E. W. Zuckerman

Potter, J.

Pritchard, J. K., M. Stephens, and P. Donnelly

Radner, R.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang
2016 “SQuAD: 100,000+ questions for machine comprehension of text.” ArXiv, 1606.05250.

Rennekamp, K.

Rhee, E. Y., and P. C. Fiss

Riloff, E., and R. Jones

Rivkin, J. W.
Rosch, E. H.

Rose, S., D. Engel, N. Cramer, and W. Cowley

Ryan, G. W., and H. R. Bernard

Salancik, G. R., and J. R. Meindl

Scott, M. B., and S. M. Lyman

Sebastiani, F.

Seo, M.-G., and W. E. D. Creed

Sillince, J., P. Jarzabkowski, and D. Shaw

Simons, T., L. H. Pelled, and K. A. Smith

Simpson, M. S., and D. Demner-Fushman

Sonenshein, S.

Specht, D. F.

Staw, B. M., P. I. McKechnie, and S. M. Puffer

Stockwell, R. P., J. D. Bowen, and J. W. Martin

Strauss, A., and J. Corbin

Stuart, T. E., and J. M. Podolny

study.com

Suchanek, F. M., G. Kasneci, and G. Weikum

Suchanek, F. M., M. Sozio, and G. Weikum

Sutton, R. I., and A. L. Callahan

Swinney, D. A.

Tausczik, Y. R., and J. W. Pennebaker

The Constant Analyst

Tripsas, M., and G. Gavetti

Tsai, W., K. Su, and M.-J. Chen

Turney, P. D.

Turney, P. D., and P. Pantel
2010 “From frequency to meaning: Vector space models of semantics.” Journal of Artificial Intelligence Research, 37: 141–188.

Tversky, A., and D. Kahneman

Van Valin, R. D., and R. J. LaPolla

Wade, J. B., J. F. Porac, and T. G. Pollock

Weber, R.

Westphal, J. D., and M. E. Graebner

Westphal, J. D., R. Gulati, and S. M. Shortell

Westphal, J. D., and E. J. Zajac

Wiesenfeld, B. M., K. A. Wurthmann, and D. C. Hambrick

Wilson, A. J., and J. Joseph

Wooldridge, B., and S. W. Floyd

Yoon, B., and Y. Park

Zajac, E. J., and J. D. Westphal

Zhang, Y., and M. F. Wiersema

Zott, C., and Q. N. Huy

Zwick, R., E. Caristean, and D. V. Budescu