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Abstract 

Global Navigation Satellite Systems Reflectometry (GNSS-R) has shown that multipath 

interference signals offer an opportunity for passive devices to make measurements of the soil 

moisture, snow pack depth, and other quantities of scientific interest here on Earth. We expand 

upon this technique and propose that X-band microwave telecom signals can similarly be used to 

infer the sub-surface dielectric profile of the Earth, Mars, and other planetary bodies. The 

dielectric profile may reveal changes in the soil water content, the depth of a layer of sand, 

thickness of a layer of ice, and identify a subsurface layer of brine. We have created a numerical 

ray-tracing model to understand the potential of different microwave frequencies to probe the 

subsurface, to understand the trade between different polarizations, and to understand the 

sensitivity to changes in incidence angle and surface roughness features. This model has been 

validated through laboratory experiments using controlled layered beds of sand and bedrock. 

And finally, the model is used to extrapolate how this technique may be applied to future Mars 

missions.  

Here we present new results demonstrating how to characterize a multipath interference 

pattern as a function of frequency and/or incidence angle to measure the thickness of a dielectric 

layer of sand or ice. Our results demonstrate that dielectric discontinuities in the subsurface can 
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be measured using X-band bistatic radar to effectively measure the thickness of a dielectric layer 

in the proximity of a landed spacecraft. In the case of an orbiter, we believe this technique would 

be effective at measuring the seasonal thickness of CO2 ice in the polar regions and potentially 

identify the presence of brines underneath that ice. This is exciting because our method can 

produce results similar to traditional ground penetrating radar without the need to have an active 

radar transmitter onboard the spacecraft. It is possible that future telecommunications systems 

can serve as both a radio and a scientific instrument, thereby reducing the mass and power 

required for future interplanetary missions.


