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ABSTRACT

The Internet of Things (IoT) is a rapidly growing field that holds potential to transform

our everyday lives by placing tiny devices and sensors everywhere. The ubiquity and scale

of IoT devices require them to be extremely energy efficient. Given the physical exposure

to malicious agents, security is a critical challenge within the constrained resources. This

dissertation presents energy-efficient hardware designs for IoT security.

First, this dissertation presents a lightweight Advanced Encryption Standard (AES) ac-

celerator design. By analyzing the algorithm, a novel method to manipulate two internal

steps to eliminate storage registers and replace flip-flops with latches to save area is discov-

ered. The proposed AES accelerator achieves state-of-art area and energy efficiency.

Second, the inflexibility and high Non-Recurring Engineering (NRE) costs of Application-

Specific-Integrated-Circuits (ASICs) motivate a more flexible solution. This dissertation

presents a reconfigurable cryptographic processor, called Recryptor, which achieves perfor-

mance and energy improvements for a wide range of security algorithms across public key /

secret key cryptography and hash functions. The proposed design employs circuit techniques

in-memory and near-memory computing and is more resilient to power analysis attack. In

addition, a simulator for in-memory computation is proposed. It is of high cost to design

and evaluate new-architecture like in-memory computing in Register-transfer level (RTL).

A C-based simulator is designed to enable fast design space exploration and large workload

simulations. Elliptic curve arithmetic and Galois counter mode are evaluated in this work.

Lastly, an error resilient register circuit, called iRazor, is designed to tolerate unpre-

dictable variations in manufacturing process operating temperature and voltage of VLSI

x



systems. When integrated into an ARM processor, this adaptive approach outperforms com-

peting industrial techniques such as frequency binning and canary circuits in performance

and energy.
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CHAPTER I

Introduction

1.1 Internet of Things (IoT)

Following the rapid trend of semiconductor industry over the past 50 years, Moore’s

Law has accurately predicted the single-chip evolution of doubling the number of transistors

every two years. While Moore’s Law slows down, Bell’s Law [10] emphasis more on the

computer classes, saying that a new computer class forms approximately every decade, as

shown in Figure 1.1. As electronic devices are getting smaller and smaller, these embedded

processors or small sensors can be integrated into different systems for numerous applications

to transform the everyday lives of people, such as autonomous cars, smart city and smart

home. Such kind of system is usually called the Internet of Things (IoT).

The Internet is used to send and receive information for the communication of different

objects, or Things (Figure 1.2). Although a general purpose computer can achieve most of

these functions, we don’t want to carry a laptop anywhere. The idea of the Internet of Things

suggests that rather than having few powerful computing devices, instead, it’s preferable to

have a larger number of devices which could be less powerful to assist with our lives.

1



Figure 1.1: Bell’s law of computer scaling and computer class [68, 74]

Figure 1.2: Internet of Things

2



1.2 IoT Security

Security is of utmost concern for IoT applications due to the potential pervasiveness of

IoT devices. Classical system security for distributed systems and databases also applies to

the IoT systems. For example, an adversary can eavesdrop on the communication, analyze

the network behavior, then inject false messages or replay old messages to attack the network.

He can also do the denial-of-service (DoS) attack to jam the wireless channel and violate the

availability of networks. In addition to these classical attacks, sensor networks are especially

vulnerable to physical attacks, due to the direct access to the sensor node hardware for

attackers.

As some real world attack examples, a Jeep Cherokee is hacked by researchers in 2015,

through the messages on the local network of the car over a cellular connection [30, 48].

Another example is that researchers use a smart lamp connected to the network to create a

ZigBee Chain Reaction, and they make the statement that these attacks can get catastrophic

results by naming it “IoT Goes Nuclear” [24].

In order to ensure secure communications, IoT networks require authentication for trust-

worthiness, data encryption for confidentiality and integrity, and fault tolerance for resilient

operation under attack.

1.3 Design Principles

The security frameworks for sensor networks need to satisfy the following requirements

• Energy Efficiency: Energy efficiency is one of the most important criteria for designing

IoT devices, since most of them operate on the limited battery life. For example, an

IoT network example - I3Mote [45] reports to sustain 1.4 years of operation with 2

AAA batteries, while it needs to explore low power techniques in order to target 10

years of operation for industrial IoT applications.

• Lightweightness: Since sensor nodes usually have constraint resources, a major chal-

3



Figure 1.3: Energy/bit of IoT building blocks (Adapted from [76])

lenge for IoT security is to implement the security primitives efficiently (i.e. less

power/energy, computational time and area), while still maintains security strength.

• Flexibility: Security standards will evolve over time. Also, depending on different appli-

cations, the IoT system requires different standards and level-of security.

• Scalability: The network should have minimum overhead and is functionally not affected

by adding and deleting nodes.

• Performance: There is a low latency requirement for control-oriented and mission-critical

applications, for example in a driverless car which captures sensor data to control

steering wheels.

1.4 Dissertation Outline

The goal of this thesis is to design energy efficient hardware for IoT security. Figure 1.3

shows the energy per bit cost of three IoT building blocks to be optimized and their results

within the range of state-of-art works. The proposed designs include an accelerator for

symmetric key cipher, a crypto-coprocessor for asymmetric key cryptography, and in-situ

variation detection technique for general purpose processor.

The remainder of this disseration is structured into the following chapters, which will

explore the related topics in detail.

Chapter 2 discusses the theory of security algorithms covered in this thesis, including

advanced encryption standard (AES), elliptic curve cryptography (ECC), authenticated en-

4



cryption with associated data (AEAD) and Keccak function. In addition, some existing

secure IC examples are shown in this section.

Chapter 3 proposes an energy efficient and low cost implementation of the AES algorithm

in 40nm CMOS [81]. The proposed design eliminates the ShiftRow stage in conventional

AES implementations, replaces flip-flops in data and key storage with latches using re-timing,

uses a 2-stage Sbox in native GF(24)2 composite-field computation and glitch reduction

techniques.

Chapter 4 proposes a reconfigurable cryptographic processor, called Recryptor [79], which

exploits in-memory (with custom 10T bitcell) and near-memory computing (custom shifter,

rotator and sbox designs) to achieve energy efficiency, performance, and programmability for

IoT security applications. We demonstrate Recryptor’s programmability by implementing of

the cryptographic primitives of various public/secret key cryptography and hash functions.

Chapter 5 provides a simulator design for in-memory computing, to shorten the evaluation

time for large workloads. We demonstrate the speedup for elliptic curve arithmetic which

can take up to multi-million cycles and AES based galois counter mode.

Chapter 6 proposes a lightweight error detection and correction approach, called iRa-

zor [77], to suppress the cycle time margin that is traditionally added to VLSI systems to

tolerate process, voltage and temperature variations. iRazor is based on a novel current-

based detector requiring only 3 additional transistors, which is embedded in flip-flops on

potentially critical paths. The proposed scheme is implemented in an ARM Cortex-R4 mi-

croprocessor in 40nm through an automated iRazor flip-flop insertion flow. iRazor is also

compared to other popular techniques that mitigate the impact of variations.
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CHAPTER II

Theory and Background

This chapter discusses the security algorithms covered in this thesis, ranging from Elliptic

Curve Cryptography, Advanced Encryption Standard, to Galois Counter Mode and Keccak

function. In addition, we introduce some existing secure ICs from industrial products im-

plementing these algorithms.

2.1 Security Primitives

Cryptographic primitives provide the insurance for basic functional security and are foun-

dations to create secure protocols. Those security primitives can be divided into three types:

• Secret Key Cryptography (SKC): shares a single secret key between the two commu-

nicating peers for both encryption and decryption. SKC provides data confidentiality.

For example, the Advanced Encryption Standard (AES) is a commonly used symmet-

ric block cipher, approved by NIST in 2001 [53]. By using mode of operation, SKC

can also provide integrity and authentication. These algorithms are usually easy to

implement.

• Public Key Cryptography (PKC): uses a key pair - private keys to be kept private

and public keys which is publicly known. Any operation done with a private key

can only be reversed with the paired public key, and vice versa. PKC is useful for
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authentication, while the computation cost is high. The well-known RSA crypto-system

was proposed by Ron Rivest, Adi Shamir and Len Adleman in 1977 [63]. Elliptic Curve

Cryptography (ECC) [41,49] was discovered in 1985 and is becoming a popular option

for PKC; for example, the STSAFE-A100 chip uses ECC for authentication [69]. For

the desired security level, ECC needs significantly smaller keys than RSA, as shown in

Table 2.1 [63], which results in smaller energy and memory requirements.

Table 2.1: Key length of ECC and RSA for different security levels

Security Level (bits) Elliptic Curve (bits) RSA (bits)

80

(SKIPJACK)
160 1024

112

(Triple-DES)
224 2048

128

(AES-Small)
256 3072

192

(AES-Medium)
384 8192

256

(AES-Large)
512 15360

• Hash primitives: provide a ‘digital fingerprint’ of the data as a hash value, which is used

to detect changes. Hash functions irreversibly ‘encrypt’ information by compressing

a set of data of variable length into a set of fixed length data. Hash functions assure

the integrity of the information flow, providing a unique fingerprint in the form of a

Message Authentication Code (MAC). MAC is usually computed using SKC with a

special mode of operation called CBC-MAC. The Keccak hash function won the SHA-3

competition hosted by NIST in 2012 [27].

Typically, public (or asymmetric) key cryptography is used for key exchange, and sym-

metric (or secret) key cryptography is used for efficiently encrypting data. Hash function is

used for message integrity.
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2.2 Elliptic Curve Cryptography

Elliptic curves have been studied by mathematicians for more than a hundred years to

solve a wide range of problems. In 1985, Neal Koblitz and Victor Miller independently

designed public-key cryptography based upon elliptic curves. Three kinds of fields - prime

fields, binary fields, and optimal extension fields - are good for efficient implementations of

elliptic curve systems. In this research, we mainly target at binary Koblitz curves.

Finite fields of order 2m are called binary fields and the elements are the binary polyno-

mials of degree at most m− 1.

F2m = am-1z
m-1 + am-2z

m-2 + · · ·+ a2z
2 + a1z

1 + a0, ai ∈ {0, 1}

2.2.1 Field Arithmetic

Field Addition

The addition of two binary field polynomials is performed as bitwise exclusive or (XOR).

Field Multiplication

Algorithm 1 López-Dahab left-to right comb method with windows of width ω

Input x = (xm-1, . . . , x0)2, y = (ym-1, . . . , y0)2
Output c = xy = (c2m-1, . . . , c0)2

1: Compute T (µ)← µy for all polynomials µ of degree at most ω − 1
2: C ← 0
3: for j ← dm/ω − 1e down to 0 do
4: µ = ( µω−1 , . . . , µ0 ) = (x >> j · ω)’s lowest ω bits
5: Add Tµ to C
6: if j 6= 0 then
7: C ← C· zω
8: end if
9: end for

10: return c

An optimized method of polynomial multiplication is the López-Dahab (LD) left-to right

comb method with windows of width ω (see Algorithm 1).
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Field Squaring

If a(z) = am-1z
m-1 + · · ·+ a2z

2 + a1z
1 + a0, then

a(z)2 = am-1z
2m-2 + · · ·+ a2z

4 + a1z
2 + a0

Field Reduction

For either field multiplication or squaring, the results have degree at most 2m−2. Then,

the result c(z) needs to be reduced back to degree of at most m − 1. For any arbitrary

reduction polynomials f(z) = zm+r(z), where r(z) is a binary polynomial of degree at most

m− 1, reduction c(z)modulof(z) can be done one bit at a time from the leftmost bit.

In addition, fast reduction has been proposed with f(z) being a trinomial or a pen-

tanomial with middle terms close to each other. Data is processed with the unit of words

(commonly 32-bit or 64-bit) in modern processors, therefore, reduction can be efficiently

performed one word at a time. For the fast reduction, the following reduction polynomials

are recommended by NIST in the FIPS 186-4 standard [55]:

f(z) = z163 + z7 + z6 + z3 + 1

f(z) = z233 + z74 + 1

f(z) = z283 + z12 + z7 + z5 + 1

f(z) = z409 + z87 + 1

f(z) = z571 + z10 + z5 + z2 + 1

An example of fast reduction modulo of 233-bit with word (W=32) is shown in Algorithm

2.

Field Inversion

The inverse of a nonzero element a ∈ F2m is an unique element g ∈ F2m , such that ag = 1

in F2m . The inverse can be efficiently computed by the extended Euclidean algorithm.
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Algorithm 2 Fast reduction modulo f(z) = z233 + z74 + 1 (W=32)

Input: A binary polynomial c(z) of degree at most 464
Output: c(z) mod f(z)

1: for i from 15 downto 8 do
2: T ← C[i]
3: c[i− 8]← C[i− 8]

⊕
(T << 23)

4: c[i− 7]← C[i− 7]
⊕

(T << 9)
5: c[i− 5]← C[i− 5]

⊕
(T << 1)

6: c[i− 4]← C[i− 4]
⊕

(T >> 31)
7: end for
8: T ← C[7] >> 9
9: C[0]← C[0]

⊕
T

10: C[2]← C[2]
⊕

(T << 10)
11: C[3]← C[3]

⊕
(T >> 22)

12: C[7]← C[7]&0x1FF
13: Return (C[7], C[6], C[5], C[4], C[3], C[2], C[1], C[0])

2.2.2 Elliptic Curve Arithmetic

Point addition and doubling

Assume that P = (x1, y1) and Q = (x2, y2) are two points on the elliptic curve, and

R = P + Q. To get R, we need to draw a line through point P and Q, then extend it in

both directions. The intersection of this line between the curve is at point R′, and the final

result R can be found by reflecting R′ around the x-axis, as shown in Figure 2.1.

For point doubling, i.e. P = Q, we draw a line to be the tangent of the curve at point

P . Similarly as point addition, the result is found by reflecting the intersection point of this

line and the curve.

Coordinate systems

In the standard affine coordinate system, both the point addition and doubling require

some field inversions, which are very expensive. It’s common to represent the point in another

coordinate system, where no inversions are needed during calculation and there only needs

two inversions to transfer to the new system and back.

• Affine coordinates (A) The affine coordinate (x, y) represents a point on the elliptic
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Figure 2.1: Elliptic curve point addition

Table 2.2: The number of operations for different coordinate systems (I: field inversion, M:
field multiplication)

Coordinate system Doubling General Addition Mixed Addition

Affine 1I + 1M 1I + 1M -

Projective 7M 13M 12M (P+A)

Jacobian 5M 14M 10M (J+A)

López-Dahab 4M 14M 8M (LD+A)

curve.

• Standard Projective coordinates (P) The standard projective point (X, Y, Z), Z 6= 0

corresponds to the affine point (X/Z, Y/Z).

• Jacobian Projective coordinates (J) The Jacobian projective point (X, Y, Z), Z 6= 0

corresponds to the affine point (X/Z2, Y/Z3).

• López-Dahab coordinates (LD) The López-Dahab point (X, Y, Z), Z 6= 0 corresponds

to the affine point (X/Z, Y/Z2).

The number of operations required to perform a point addition and point doubling for

these four coordinates are shown in Table 2.2.

Point multiplication
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Point multiplication is the operation of multiplying a scalar k with a point P on the

elliptic curve.

kP = P + P + · · ·+ P ; ((k − 1) additions)

Random point addition means that P is random; while fixed point addition is that P is

fixed. The most basic algorithm for random point addition is the double-and-add method (see

Algorithm 3). And the expected number of running time of this algorithm is approximately

m/2 point additions (A) and m point doublings (D), as:

m
2
A+mD

Algorithm 3 Double-and-add method for point multiplication in F2m

Input: k = (km-1, . . . , k0)2, P ∈ E(F2m)
Output: kP

1: Q←∞
2: for i from 0 to m− 1 do
3: if ki = 1 then
4: Q← Q+ P
5: end if
6: P ← 2P
7: end for
8: Return Q

Koblitz curves

Koblitz curves are defined over F2 as follows. The main advantage of these curves is that

point multiplication algorithms don’t need to use any point doublings.

E0 : y2 + xy = x3 + 1

E1 : y2 + xy = x3 + x2 + 1

τ-adic non-adjacent form (TNAF)
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For any positive integer k, it can be written in the form k =
∑l−1

i=0 µiτ
i where each

µi ∈ 0,±1. This τ -adic non-adjacent representation can be calculated by repeatedly dividing

k by τ .

With the τ -adic representation for k, it would have a small number of nonzero digits,

which results in decreasing the number of point additions. This TNAF method for point

multiplication on Koblitz curves (see Algorithm 4) has an expected running time of

m
3
A

Algorithm 4 TNAF method for point multiplication on Koblitz curves

Input: Integer k ∈ [1, n− 1], P ∈ E(F2m) of order n
Output: kP

1: Compute ρ′ = k partmod δ
2: Compute TNAF(ρ′) =

∑l−1
i=0 µiτ

i

3: Q←∞
4: for i from l − 1 downto 0 do
5: Q← τQ
6: if µi = 1 then Q← Q+ P
7: end if
8: if µi = −1 then Q← Q− P
9: end if

10: end for
11: Return Q

2.2.3 Elliptic Curve Protocols

The Ellpitic Curve Discrete Logarithm Problem (ECDLP) is the fundamental for Elliptic

Curve Cryptosystems, including Elliptic Curve Diffe Hellman (ECDH) and Elliptic Curve

Digital Signature Algorithm (ECDSA). ECDH is a key agreement protocol. ECDSA is for

signature generation and verification. More details can be found at [33].

2.3 Advanced Encryption Standard (AES)

In 2001, the national institute of standards and technology selected AES, which is short

for advanced encryption standard, as the new symmetric key cipher standard. AES is a
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Figure 2.2: AES Sbox example

widely-used block cipher algorithm for symmetric encryption in a large range of applications.

The number of rounds of AES is 10 for the 128-bit encryption key, 12 for 192-bit, and 14

for 256-bit. For encryption, each round consists of the following four steps:

• SubBytes is a byte substitution. Sbox is a nonlinear byte substitution function (Fig-

ure 2.2). The input is an 8-bit data in galois field GF(28). The operation of multiplica-

tive inversion is applied first. Then an affine transformation is applied, which means

multiply an 8-by-8 matrix and add an 8-by-1 array. In this galois field, addition is

bit-wise XOR and multiplication is bit-wise AND.

• ShiftRows means the bytes are being shifted within each row. For AES-128bits, the 16

bytes of data is shown in the 4-by-4 matrix format Figure 2.3. In more detail, the 4

bytes in the 1st row of this matrix will shift left by 0 position, which means they stay in

the same location in the ShiftReg. The bytes in the 2nd row will shift left by 1. Similar

operations apply to the 3rd and 4th rows, which will shift left by 2 and 3 positions.

• MixColumns is an operation that a predetermined matrix will multiply the data in

the ShiftReg and the result is stored in the MixColumn register. Based upon matrix

multiplication, the original data bytes D15, D10, D5 and D0 in the first column will

perform multiplication and addition, with the first row of this predetermined matrix
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Figure 2.3: AES ShiftRows Operation

and to produce the new data byte D15. Similar operation is performed to get the

new data byte D14, D13 and D12. So the first column in ShiftReg is the input to the

calculation to produce the first column data in the MixColReg. Therefore, MixColumn

operation retrieves 4 bytes of data as inputs and outputs 4 bytes of data every 4 cycles.

• AddRoundKey is the last step that data would be XORed with the round key that is

generated at each iteration.

2.4 Authenticated Encryption with associated data (AEAD)

There have been practical attacks due to the separation of confidentiality and authentica-

tion of block cipher operation modes (eg. Electronic codebook (ECB), Cipher block chaining

(CBC)) [11]. Authenticated Encryption with associated data (AEAD) provides data’s confi-

dentiality, integrity and authenticity simultaneously. Galois/Counter Mode (GCM) has been

standardized as the authenticated encryption modes [37].

2.4.1 Galois/Counter Mode (GCM)

GCM provides data confidentiality with a symmetric key block cipher of a 128-bit block

size, e.g. AES. Also, GCM provides authenticity of encrypted data with a universal hash

function defined over binary Galois field. In addition, GCM can provide authentication for

additional data without encryption.

The input of GCM includes:

· P : plaintext
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· K : secret key

· A : additional authenticated data

· IV : initialization vector

The output of GCM includes:

· C : ciphertext

· T : authentication tag

The authenticated encryption operation of GCM is as follows [1]:

· H = E(K, 0128)

·Y0 =


IV ||0311, if len(IV) = 96

GHASH(H, {}, IV ) otherwise

· Yi = incr(Yi−1) for i = 1, ..., n

· Ci = Pi ⊕ E(K,Yi) for i = 1, ..., n

· Cn* = Pn
* ⊕MSBu(E(K,Yn))

· T = MSBt(GHASH(H,A,C)⊕ E(K,Y0))

where GHASH(H, A, C) = Xm+n+1 is defined as:
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Xi =



0, for i = 0

(Xi−1 ⊕ Ai) ·H for i = 1, ..., m-1

(Xm−1 ⊕ (Am
*||0128−v)) ·H for i = m

(Xi−1 ⊕ Ci) ·H for i = m+1, ..., m+n-1

(Xm+n−1 ⊕ (Cm
*||0128−u)) ·H for i = m+n

(Xm+n ⊕ (len(A)||len(C))) ·H for i = m+n+1

2.5 Keccak Hash Function

The Keccak hash function is the winner of SHA-3 selection [56] and it uses a sponge

construction. For hashing, the message is absorbed every 1600 bits, and the Keccak-f[1600]

is the speed-critical part.

The Keccak-f permutation function goes through 24 iterations of the following 5 steps on

1600 bits of data, which are treated as a block of 5×5 64-bit words:

· θ step: XOR the 5 lanes of each column.

· ρ step: Rotate lanes with a defined offset.

· π step: Transpose lanes in a fixed pattern.

· χ step: Non-linearly combine AND gates and INV gates for each row and

then XOR with the rwo.

· ι step: XOR a single lane with a round constant

2.6 Existing Secure ICs

CryptoMemory
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Atmel’s Cryptomemory [8] is the first ‘secure memories with authentication’ [7], which

appeared in 1999. This device offers cost-efficient, high-security electrically erasable pro-

grammable memory chips (EEPROMs) and host-side security for applications requiring

comprehensive data protection.

The advantage of such kind of IPs is their security features, low cost and ease of de-

ployment. They can serve as an add-on item to exiting platforms, providng a safe place for

sensitive data. There are plenty of applications of these devices, for example, AT88SCxxxxC

series are used to store High Bandwidth Digital Content Protection (HDCP) keys in products

such as NVidia grahpic cards [58].

However, the authentication protocol inside this chip is simple, and is shown to be vul-

nerable in some academia papers. [28] demonstrates that the secret key can be recovered

in 2 to 6 days, using 200 CPU cores. [75] improves the attack by using ASIC, and the key

can be retrieved in 0.55 days. Also, there are flaws on the physical implementations. [9]

discovers that Atmel CryptoMemory doesn’t protect against power analysis attacks. The

author enables ‘RST’ signal to disable counter increment, then they are able to recover the

64-bit authentication key with 100 power traces in 20 minutes.

Authenticators

Another type of secure IC product is Authenticator, which is provided by plenty of

companies, such as Atmel, NXP and Maxim. Authenticators are for IP protections, by

preventing illegal copies of products as counterfeit protection. These devices are usually low

cost by supporting one specific algorithm, and can be easily integrated for authentication

solutions into end products.

The functionality of Authentication is that host system giving challenges and sensors

sending back response calculated with pre-stored secrets. Only ‘good’ sensors can calculate

the correct response, the host system will validate the result (shown in Figure 2.4).

The authentication protocol can be categorized into three different methods as shown in

Table 2.3. From easy to complicated regarding the computation and applications, they are
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Figure 2.4: Authenticator WorkScheme

Table 2.3: Authenticator Summary

SHA-based, AES-based and ECC-based methods.

First, symmetric keys can be used for two-way authentication. With symmetric keys, the

host and slave must operate from the same secret key, and the secret has to be protected

from disclosure attack on both sides. SHA-based devices have fast authentication, while

AES-based devices have authentication plus encryption in a single protocol.

Two disadvantages associated with symmetric key-based systems are: (1) key distribu-

tion/management, and (2) the need to protect the secret key inside the host system as well

as the slave system.

To address these drawbacks, cryptographic algorithms involving asymmetric keys, like

ECDSA, are advantageous because the party that is authenticating the peripheral doesn’t

have to securely store a secret. Instead, the authenticating party can use a public key that can

be distributed freely. Thus, asymmetric algorithms solve both the key distribution problem

and the need to secure the key in the host system. However, asymmetric key cryptography

is usually of higher cost than symmetric-key based algorithms.
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CHAPTER III

A Compact AES Accelerator for Mobile SoCs and IoT

This work [81] presents a voltage-scalable AES accelerator targeting mobile SoCs and

IoT devices with ∼50 - 500 Mbps throughput, while achieving best-in-class area and energy

efficiency. The proposed accelerator is fully synthesizable and implements 128-bit AES using

only 2228 logic gates. By eliminating the ShiftRow and MixColumn registers and replacing

data and key storage with latches, area is reduced by 41%. This, along with retiming of a

2-stage Sbox design in native GF(24)2 composite-field computation, leads to a 3.38× energy

efficiency improvement over a baseline implementation at nomial voltage with four 128-bit

registers and 1-cycle GF(24)2 Sbox methods. The proposed design achieves 1.3 GHz at 0.9V,

peak throughput of 494 Mbps, and peak energy efficiency of 446Gbps/W. Implemented in

40nm CMOS, the accelerator area is only 0.00429mm2, marking the state-of-art smallest

AES accelerator considering technology scaling.

3.1 Previous Work

For mobile devices, silicon area (i.e., cost), throughput, and energy efficiency are all key

design constraints. There are several options to perform AES. First we can execute AES on

a general purpose processor, however, this is very energy inefficient. For instance, executing

AES on an Intel i7 processor requires 7.8 nJ/bit (calculated from [31]).

The 2nd option is to use a standard ASIC implementation. Highly parallelized imple-
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mentations [47] provide Gbps throughput, which is critical in server applications. However,

their large silicon footprint is disadvantageous in cost-sensitive mobile SoCs. Recently, sev-

eral energy efficient AES implementations are presented [51,82]. However, their kbps-range

throughput cannot meet the demands of mobile devices with high-speed data streaming. For

instance, the ARM Cricket chip [51] uses a standard AES accelerator, however, the energy

remains relatively high, at 0.21nJ/bit, which is approximately 300x higher than the energy

per bit required for the arithmetic operations in that processor. At the same time, the stan-

dard AES accelerator occupies 0.104 mm2, which is comparable to the size of the processor

core in the cricket chip.

3.2 Baseline implementation

(a) Datapath (b) Data flow described in matrix

Figure 3.1: AES

An AES-128bit is implemented as a baseline comparison, whose datapath is shown in

Figure 3.1a. 128bits of plaintext goes through 4 stages of AddRoundKey, Sbox, ShiftRow

and MixColumn for 10 iterations. It also requires 128bits of key as inputs, which goes

through key generation logic to provide each iteration’s key for encryption. The output
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of AES is a 128bit ciphertext. Figure 3.1b illustrates the operations on the 128-bit vector

represented by the 4-by-4 matrix.

3.3 Proposed Energy Efficient AES

3.3.1 DataReg & ShiftRow

3.3.1.1 Previous Work

A number of efforts have been make in prior work to optimize the DataReg & ShiftRow

steps. For example, the Intel work [46] suggests eliminating the ShiftRow register. Instead it

achieves the ShiftRow operation when the data is copied back from MixColReg to DataReg,

by permutating the data by hardwiring as it is being copied (Figure 3.2). For instance,

instead of storing the first column with data byte 15, 14, 13 and 12 which is the standard

way, the new data register will store data byte 15, 10, 5 and 0, which is the location after the

shiftRow operation. So the technique used in this paper saves the hardware of shift register,

which reduces the register count in datapath by 33% and is quite effective.

3.3.1.2 Proposed Datapath

Building upon the above shiftRow technique in [46], our goal is to further reduce the

register count by also eliminating the MixColReg.

The idea is shown in Figure 3.3. In each iteration, the data is read directly out of

dataReg and stored back in the same register. However, since the location from which the

data is retrieved and stored differ, there are cases that the original data hasn’t been retrieved

yet before the new data is stored, creating a conflict. There are 6 cases of this confict, as

highlighted in the matrix. So these 6 bytes need to be delayed and we temporarily store them

in the 48-bits storage register. This further reduces the overall register count by additional

21%.

In addition, we implement the dataReg and StorageReg with latches (Figure 3.3), by
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Figure 3.2: Optimized ShiftRow [46]

Figure 3.3: Proposed DataReg & ShiftRow Technique
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Figure 3.4: Detailed hardwired solution

retiming the path. Because the critical path is not within this stage, it’s easy to achieve this

retiming during synthesis, place and route steps. This way, we can further save area and

power.

The detailed implementation of the hardwired part is shown in Figure 3.4. The 32bits

output from mixcolumn state comes in, and goes through 4 muxes and wires, and is finally

stored in the correct byte locations in the dataReg. Six byte locations need storage register

to hold the new data has been retrieved.

To summarize the proposed architecture, we remove the shiftRow registers and add 48bits

storage register for intermediate values. In addition, latches are used as these storage ele-

ments.

3.3.1.3 Results

Table 3.1 lists the simulated energy and area results of the three methods discussed

before. The proposed approach has a 2.7× energy improvement over a conventional design

and has 1.8× energy improvement over [46] work for these three registers. So this table

indicates the proposed design is energy efficient and compact.
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Table 3.1: Comparison table of DataReg & ShiftRow

Energy Area

(pJ/cycle) (µm2)

Conventional 2.98 1355

[46] 1.99 903

Proposed [81] 1.12 466

Figure 3.5: One-hot shift encoding

3.3.2 KeyReg

[46] implements the key generation step by shifting all the data down by 1 byte, where

the keyReg works as a FIFO, which consumes a lot of power.

Instead of shifting all the 128bits data, our implementation shifts in the decoder part.

One-hot shift-based addressing is used for the decoder (Figure 3.5). It uses a cyclic address

generator with a single chain of 16 registers, similar to [39]. This way, we reduces the shift

power by 80% in the keyReg. In addition, KeyReg is changed from a 128-bit flip-flop register

to a 128-bit latch register to further save power and area.
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3.3.3 Sbox

3.3.3.1 Previous Work

The 8-bit inversion defined in Sbox is complex and has been the focus of a number of

optimization methods. The straightforward approach to implement Sbox is to have a 256-

byte SRAM to store precomputed results, since the Sbox operation is just a map of 8 bit

input data to determine an 8 bit output data. The 2nd approach is to synthesize this map

directly using logic. The 3rd way involves some math calculations called composite field. The

data in Sbox stage is in GF(28) , and it has an isomorphism transformation to GF((24)2). So

we first do the isomorphism to GF((24)2), then do inverse and affine operations, and finally

transform back to GF(28). The reason to do this field transformation, is that inverse in

GF(24) is much easier to implement than GF(28), so we can obtain an area reduction using

this composite field approach.

The simulated results of area, power and cycle time for these three Sbox approaches are

shown in Table 3.2. The composite field method achieves the smallest area but has relatively

high power and longer cycle time. Therefore, we look into the critical path of this composite

field approach to dig into this longer cycle time and higher power.

3.3.3.2 Proposed Technique

As shown in Figure 3.6, the 8-bits data in GF(28) comes in and is mapped to GF((24)2),

then the two 4-bits number goes through squaring, multiplication, addition and inverse. The

two AND gates before the inverse map have three 4-bits data.

We make the observation that, 2 of these paths are fast, while 1 is a long path. The

difference in signal arrival time of fast and slow paths will result in dynamic glitches and

cause high power. Therefore, we re-time the Sbox datapath by adding 12 flip-flops before

the datapath re-converges (Figure 3.6). This equalizes the path delays, therefore saves the

power. In addition, the cycle time is reduced by efficiently inserting a pipeline stage.
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Figure 3.6: Proposed Sbox datapath in GF((24)2) with 2 cycles

Table 3.2: Comparison table of different Sbox implementations

S-box Area Power Cycle Time

Architecture (µm2) (mW) (ns)

Look-up table
2175 1.7 0.55

(SRAM)

Look-up table
816 1.15 0.4

(Logic)

GF(24)2
558 1.42 0.64

in 1 cycle

GF(24)2
582 0.9 0.46

in 2 cycles

3.3.3.3 Results

As shown in Table 3.2, the proposed method incurs a modest 4.3% area overhead while

providing power savings of 37% over the 1-cycle GF((24)2) implementation. Also, splitting

Sbox into two cycles shortens the critical path, decreasing clock cycle time by 28%.

Since the stages are pipelined in the AES accelerator, splitting Sbox into 2 cycles only

increases the total number of cycles by 1, which is less than 0.3% out of the total 336 cycles

in the baseline design.
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Figure 3.7: AES Chip micrographs

3.4 Testchip and Measurements

Figure 3.7 is the chip micrograph, where both a baseline AES and a proposed AES design

are implemented in 40nm. A phase-locked loop (PLL) IP provides clock on chip.

A baseline is implemented for a fair and clear comparison of each technique. Synthesized

in 40nm, it can achieve a frequency of 1.13 GHz at 0.9V, consumes 8.3 mW with area of

0.0057 mm2, using about 3000 gates (Figure 3.8a). Figure 3.8b shows the simulated power

breakdown across different units, showing a relatively balanced design.

The proposed AES accelerator used three lightweight technique, with two for register

optimization and one for logic power reduction. At 0.9 V, the proposed design consumes

4.39 mW power and achieves 1.3 GHz frequency with only 0.00429 mm2 area. Figure 3.9 and

Figure 3.10 show the performance and energy measurements of the baseline and proposed

AES. The proposed design is fully synthesized, enabling operation across a wide voltage

range. At 1V, performance of 1.47 GHz is obtained while peak energy efficiency of 446

Gbps/W is achieved at 0.47V.
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(a) Chip Summary (b) Baseline power breakdown

Figure 3.8: AES baseline implementation

Figure 3.9: Measured performance across voltages of the proposed AES design

Figure 3.11 shows how each of the proposed techniques contribute to power reduction.

The total power shown is from measurements, and the relative percentage of each module

is from simulation. The first DataReg & ShiftRow technique increases the dataReg power

by 20% because of the added storage register. But we see big savings from reducing the

MixColReg and ShiftRow operation. The 1-bit shift encoding saves the key generation

datapath power by 18%. The 2-cycle Sbox technique saves 33% power in the Sbox stage.

Also, the other circuits which includes controls also sees saves 46% power savings. As a

result, the total power savings are 47% over baseline design.
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Figure 3.10: Measured energy across voltages of the proposed AES design

Figure 3.11: Power breakdown of baseline and proposed AES designs
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Table 3.3: Chip measurement summary and comparison table of AES designs

[32] [82] [47] [46] Proposed [81]

Technology 130nm 130nm 45nm 22nm 40nm

Voltage Not 0.8 1.1 0.9 0.9

(V) Reported 0.75 0.32 0.43 0.47

Power 17.98 0.099 125 13 4.39

(mW) 3.9 0.000692 0.409 0.45 0.10

Frequency
290 MHz 12 MHz 2.1 GHz 1.1 GHz 1.3 GHz

130 MHz 100 KHz 32 MHz 220 MHz 122 MHz

Throughput
232 Mbps 34 Kbps 53 Gbps 432 Mbps 494 Mbps

104 Mbps 280 bps 800 Mbps 83.6 Mbps 46.2 Mbps

Energy Efficiency 12.9 0.343 424 33 113

(Gbps/W) 26.7 0.405 1955 186 446

Energy/bit 77.5 2915 2.36 31 8.85

(pJ/b) 37.5 2469 0.512 5.38 2.24

Number 3200 5500 Not 1947 2228

of Gates 3900 Reported

Area Not <1 0.15 0.0022 0.00429

(mm2) Reported (0.119) (0.0073)

Table 3.3 shows the comparison with previous works. For the area comparison, the

number in bracket is our calculation to normalize to 40nm for easier comparison, and our

design achieves the smallest area considering the technology scaling. For the number of

gates comparison, not all paper use the same definition of equivalent gate counts, hence it is

hard to give a consistent comparison. The technique used in [46] about optimizing logic for

composite field is quite effective, and can also be applied to our design, which could further

save the area. Regarding the energy efficiency, we achieve the highest energy efficiency of

446 Gbps/W at 0.47 V among compact AES implementations. The Intel design [47] has a

128bit wide datapath and is optimized for high performance, not compact design, hence it

achieves high energy efficiency, but was more than an order of magnitude larger in area.
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3.5 Conclusion

To conclude this chapter, security is critical for modern electronic devices in mobile and

IoT applications. AES is a widely-used block cipher algorithm for symmetric encryption

in a large range of applications. Silicon area, throughput, and energy are all key design

constraints. The proposed design achieves high energy efficiency with only 2228 gates. Also,

the proposed AES design runs at 1.47 GHz at 1.0V, which satisfies the high throughput

requirement for mobile devices.
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CHAPTER IV

Recryptor: A Reconfigurable Cryptographic

Cortex-M0 Processor with In-Memory and

Near-Memory Computing

Providing security for the Internet of Things (IoT) is increasingly important, but support-

ing many different cryptographic algorithms and standards within the physical constraints

of IoT devices is highly challenging. Software implementations are inefficient due to the

high bit width cryptographic operations, domain-specific accelerators are often inflexible,

and reconfigurable crypto-processors generally have large area and power overhead.

This chapter proposes Recryptor [78, 79], a reconfigurable cryptographic processor that

augments the existing memory of a commercial general-purpose processor with compute

capabilities. It supports in-memory bit-line computing by using a 10-transistor based bit-

cell to support different bitwise operations up to 512-bits wide. Custom-designed shifter,

rotator, and Sbox modules sit near the memory, providing high throughput near-memory

computing capabilities. We demonstrate Recryptor’s programmability by implementing the

cryptographic primitives of various public/secret key cryptography and hash functions. Re-

cryptor runs at 28.8 MHz in 0.7 V, achieving 6.8× average speedup and 12.8× average energy

improvements over state-of-the-art software and hardware-accelerated implementations with

only 0.128 mm2 area overhead in 40nm CMOS.
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4.1 Motivation and Previous Works

IoT platforms have limited computational resources for energy/area reasons. Crypto-

graphic functions typically require high bit-width calculations (64-512 bits), but embedded

processors’ datapaths tend to be 32-bit wide. Executing these crypto algorithms in software

on microcontrollers is simple but energy inefficient and slow. The first option to address

this is to optimize software for cryptographic calculations on microcontrollers. For exam-

ple, [6, 20] propose efficient assembly implementations by manipulating the data flow to

maximize the register use, achieving around two to three orders of magnitude of speedup.

A second option is to use application specific integrated circuits (ASICs), or accelerators,

to run a specific algorithm. ASICs [61, 73, 81] achieve high performance with low energy

consumption, but they are only useful for a single purpose, so multiple ASICs are required

to cover a range of applications. Even for the same function, there are many different de-

signs optimized for various performance and power requirements [46, 47]. Finally, a third

option is to build cryptographic coprocessors for supporting different algorithms, which can

give higher throughput and maintain flexibility. The key idea in coprocessor designs is that

they try to share as much logic as possible among the supporting algorithms to save area;

nonetheless, they still tend to have high area and power overhead since they implement an

entire separate processor with fetch, decode, register file and local memory [35,43,64]. Also,

existing co-processor designs only cover a limited range of cryptographic algorithm types;

for example, [35] supports only symmetric and asymmetric crypto algorithms, while [64]

supports only symmetric and hash functions.

The importance of security and the limitations in existing solutions motivates a new

architecture in favor of the requirements for IoT devices. In this paper, we propose a re-

configurable cryptographic processor, called Recryptor [79], which exploits in-memory and

near-memory computing to achieve high energy efficiency, performance, and programmabil-

ity for IoT security applications. We measure Recryptor’s speed-up and energy gains on core

functions for symmetric and asymmetric cryptography as well as hash functions. Compared
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Figure 4.1: Proposed Recryptor architecture.

with a Cortex-M0 baseline, we achieve energy gains of 9.1× for AES, > 6.7× for elliptic curve

cryptography (ECC) finite field multiplication and reduction (FFMR) and 4.9× for SHA-3

Keccak function, with energy gains of > 4.1× across crypto algorithms relative to the liter-

ature. To the best of our knowledge, this is the first work that can accelerate public/secret

key cryptography and hash functions at the same time.

4.2 Proposed Recryptor Overview

Recryptor contains a standard ARM Cortex-M0 microcontroller with 32KB memory, a

low power serial bus to access off-chip data, and an arbiter as its internal bus, as shown in Fig-

ure 4.1. The optional finite state machines (FSMs) for further acceleration will be discussed

in Section 4.5. The 32KB memory is composed of four 8KB banks. Three are implemented

using a standard memory compiler while the fourth is a custom designed Crypto-SRAM

Bank (CSB).

The CSB can operate as a normal memory with 32-bit read and write, but it also supports

large bitwidth in-memory and near-memory computing. As shown in Figure 4.2, the CSB

uses a 10T bitcell, which has dual read ports in order to enable different bitwise operations.

Each cycle, two words are accessed simultaneously in the bank and perform a bit-wise logic

operation which is read out with standard sense amps. The memory sub-banks are set to
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Figure 4.2: Proposed Crypto-SRAM Bank (CSB).

different widths to support different lengths of vector computation. After the sense-amps

‘ReadOut Data’, there are three near-memory logic functions: a shifter, an arbitrary 64-bit

rotator, an SBOX. These three options, together with DIN from the arbiter interfacing with

the processor, provide the write-back data to memory.

Equipped with in-memory and near-memory computing capabilities, users can directly

program the Cortex-M0 to use the CSB through a memory-mapped decoder to accelerate

different crypto algorithms. We optimize and demonstrate AES, FFMR with four different

word lengths, and the Keccak hash function in this design.
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Figure 4.3: 10T bitcell and supported bitwise operations on two words.

4.3 Recryptor’s In-Memory Computing

4.3.1 10T Bitcell and Accelerated Bitwise Operations

The 10-transistor bitcell is used in the CSB (Figure 4.2). For normal read operation,

only read bitline (RBL) is precharged to high. RBL will be discharged if the stored data is

1 and remain high if the stored data is 0. The data is read out by a skewed inverter-based

sense-amp. For in-memory computing, either or both RBL and read bitline bar (RBLB) will

be pre-charged, depending on the required bitwise operations. Figure 4.3 shows about how

to get the bitwise operations on two words. First, A OR B is achieved by pre-charging RBL

to high and then enabling two words’ RWL. If at least one of the stored data A or B is 1,

RBL will be discharged, which is the function of A NOR B. Similarly, A AND B works the

same way, but operates on RBLB. Lastly, A XOR B is achieved by pre-charging both RBL

and RBLB, and adding a NOR gate between them.

The supported bitwise operations of CSB are OR/AND/XOR on two words and Copy/NOT

on one word. All of these operations are performed in one memory cycle. Like an 8T bitcell,
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we achieve robust operation at low voltage using decoupled read. Since both RBL and RBLB

are needed for different logic operations, we have two read ports leading to 10 transistors in

the bit cell. Smaller SRAM cells could be used for smaller area. However, conventional 6T

bitcell [38] has degraded read noise margins and worse performance at low voltages, and the

4+2T bitcell [21] requires additional voltage supplies.

4.3.2 The Configuration of Bank Division

The subbank is configured and implemented as shown in Figure 4.4. The 8KB CSB is

comprised of 16 slices, each with 128 32-bit words. During a normal 32-bit memory access,

just one slice is activated to save energy. During in-memory computing, by enabling different

sub-banks or a combination of them, we can support up to 512-bit single-cycle computations.

The size and placement of these sub-banks were optimized at design time to support a wide

range of security primitives with efficient signal gating, which will be discussed in Section

4.5.1.

4.4 Recryptor’s Near-Memory Computing

4.4.1 Shifter

The shifter implemented is a compact, wiring-based custom design, which is pitch-

matched with the SRAM bitcell. There are different MUX options depending on the sup-

ported functionality. Table 4.1 shows the functions implemented under each sub-bank, which

are used in Algorithm 5/6/7 in Section 4.5. In the 3-to-1 MUX example in Figure 4.5a: ver-

tical wires contain nearby bits’ data and a MUX is used to select one of them as the write

back data. Figure 4.5b demonstrates a small sample of the physical implementation to show

that it is a wiring intensive design. The top is wire with 4 metal layers for horizontal routing

and 1.5 minimum spacing. The routing pattern is consistent by shifting 1 via for nearby bits

so the design and layout complexity is low.
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(a) Normal 32-bit memory access by enabling 1 slice

(b) In-memory computing by enabling sub-banks.

Figure 4.4: The subbank configuration and implementation.

In the Recryptor testchip, the memory read and shifter operations are implemented as a

single-cycle operation, before writing back to the write flip-flop as shown in Figure 4.2.

4.4.2 Rotator

The rotator is a custom 2-stage design for arbitrary 64-bit rotation. As shown in Fig-

ure 4.6, the 1st stage rotates 0-7 bits and the 2nd stage rotates in multiples of 8 bits. This

architecture is similar as [67], which requires much less area than the long wires needed of

directly rotating 0 to 63-bits. We use the same physical implementation, similar as a barrel

shifter [62], for both stages in our design. However, transmission gates are used for the muxes

to achieve low energy and stable operation at low voltages. By using wire meshes, the same

custom compact layout can be used for the first and second stage, which reduces the area of

long wires for shifting multiples of 8 bits and design time.
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Table 4.1: Shifter Supported Functions

Shifter Options Function Supported subBank

LS1 Left shift 1 bit 0,1,2,3

LS4 Left shift 4 bit 0,1,2,3

LS64 Left rotate 64 bits 0,1

RS64 Right rotate 64 bits 0,1

ROT1 w64 Right rotate 1 bit within 64 bits 0,1

ROT8 w64 Right rotate 1 byte within 64 bits 2

S.Row
Shift nth bytes in the ith sub-subBank

2
to ((n+i) mod 4)th sub-subBank

KG Shift ith sub-subBank words to
2

((i+2) mod 4)th sub-subBank

(a) Shifter 3-to-1 MUX example (b) Shifter physical implementation sample

Figure 4.5: Shifter design

4.4.3 Sbox

Sbox is a commonly used component in block ciphers for byte substitution. It is a

nonlinear function that performs a multiplicative inversion on GF(28), followed by an affine

transformation. This algorithm is more efficient with a transformation into the composite

field GF(24)2 [46]. Our previous design [81] proposed a 2-stage implementation by adding

flip-flops to reduce glitch power due to the presence of fast and slow paths. In this design

as shown in Figure 4.7, we further replace the middle flipflops with latches due to a longer

clock-cycle, which enables a 1 cycle latency of this block as well as saving a bit of area.
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Figure 4.6: Arbitrary 64-bit Rotator.

Figure 4.7: Proposed SBOX implementation.
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4.5 Programmability and Optimized Algorithm Implementations

Users can write software to configure Recryptor to accelerate different cryptographic

algorithms. We demonstrate one algorithm for each category to show Recryptor’s flexibility

and performance. First, we will analyze Finite Field Multiplication and Reduction (FFMR),

the basic operations for ECC. Then, we will analyze AES for secret key cryptography and

Keccak-f for hash functions.

4.5.1 Finite Field Multiplication and Reduction

Field multiplication computes x · y = z, where x and y are binary polynomials of degree

at most (m− 1), and z is of degree at most (2m− 2). In order to return the multiplication

results to degree of at most (m − 1), field reduction computes z mod r = c, where r is a

polynomial of degree m.

The López-Dahab (LD) field multiplication algorithm [33] uses a windowing method with

a precomputed table. With a window width of ω bits, the input x is shifted right to scan its

last ω bits at a time. Then each ω bits are used as an index for the precompute table lookup.

However, the number in the finite field needs m bits, and the inputs/output/intermediate

values are stored in the memory. Due to register spilling on the M0, using this algorithm

tends to create a large memory accesses. [6, 20] optimizes the overflow to solve this spilling

problem by maximizing the register reuse.

We propose a new optimization to combine the (LD) field multiplication and reduction

algorithm with the goal of reducing the number of operations on Recryptor, as shown in

Algorithm 5. The problem of register spilling doesn’t need to be considered in this proposed

method since all the calculations are computed in /or near memory with m bits of parallelism

. Table 4.2 lists the estimated number of operations needed for each step in Algorithm 5,

with respect to the curve degree m and window width ω. The first step computes 2ω of m bits

numbers; 0·y and 1·y need memory reads with copy and data writeback; and all others need

the XOR operation between two words. For 2t·y (t = 0. . . ω-1), additional SHIFT operations
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Table 4.2: Estimated # operations according to Algorithm 1.

before XOR are needed to remove the overflowing bits. Step 5 would apply SHIFT to the

input x and use the first ω bits as the index to the precompute table in Step 1. Then, in

Step 6, we do an XOR and a 4 bit SHIFT. Reduction is considered within our algorithm

with steps of 2/7/8, in order to reduce the size of intermediate values.

Algorithm 5 López-Dahab multiplication and reduction in F2m with windows of width
ω = 4 on Recryptor

Input x = (xm-1, . . . , x0)2, y = (ym-1, . . . , y0)2, r = (rm, . . . , y0)2
Output c = xy mod r = (cm-1, . . . , c0)2

1: Compute T (µ)← µy mod r for all polynomials µ of degree at most ω − 1
2: Compute T ′(µ)← µr for all polynomials µ of degree at most ω − 1
3: C ← 0
4: for j ← dm/ω − 1e down to 0 do
5: µ = ( µω−1 , . . . , µ0 ) = (x >> j · ω) & 0xF
6: C ← SHIFT(C

⊕
T (µ), LS4) (Syntax: SHIFT(x,y): apply y shifts to x using Shifter)

7: µ′ = (c >> m) & 0xF
8: c← c

⊕
T ′(µ′) (Note: reduction step, c stays to be m bits)

9: end for
10: return c

Table 4.3 shows where to perform calculations of different word lengths by activating

different sub-banks. The sub-bank is configured to select nearby banks for the options listed,

with efficient signal routing for shift operations. With the estimated number of operations

in the column 2/3/4 to be 2, and the last column to be 1, the total number of estimated

operations for multiplication in F2233 is 330, compared to 4980 on a baseline Cortex-M0

software implementation and 2968 with register optimization [20].
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Table 4.3: Enabled sub-bank of different word length for FFM.

4.5.2 AES

Algorithm 6 shows in detail the implementation of AES on Recryptor. Steps 1/3/4

use 128-bit operations, and step 5 uses the Sbox block on one byte for 16 cycles in total.

Steps 7-10 implements the MixColumn operation by left rotating by 1/2/3 bytes, adding

intermediate values D and E, and then multiplying based upon the MSB for each byte in

H[j]. The KeyGen operation is achieved using 32-bit operations in Steps 11/13/14 and 8-bit

operations in Step 12.

Algorithm 6 AES Encryption on Recryptor

Input: plaintext P , key K, where P/K is 128bits and at 1 physical line in bank, K =
[k[0]; k[1]; k[2]; k[3]]
Output: ciphertext C

1: C ← P
2: for i← 0 to nr − 1 do
3: AddRoundKey: C = C

⊕
K

4: ShiftRows: D = SHIFT(C, SRow)
5: SubBytes: D[j] = SBOX(D[j]), j ∈ [0, 15]
6: if j 6= nr − 1 then
7: MixColumns: E = SHIFT(D, ROT8); F = SHIFT(E, ROT8)
8: G = SHIFT(F , ROT8); H = D

⊕
E

9: I[j] = H[j][7]? 0x1B : 0x0
10: C = H

⊕
I
⊕

E
⊕

F
⊕

G
11: KeyGen: k[4] = SHIFT(k[3], KG)
12: k[4][j] = SBOX(k[4][j]), j ∈ [0, 3]
13: k[4] = k[4]

⊕
Rcon[i]; k[0] = k[0]

⊕
k[4]

14: k[j + 1] = k[j + 1]
⊕

SHIFT (k[j], KG), j ∈ [0, 2]
15: end if
16: end for
17: Return C
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The input/output/intermediate 128-bit values are all stored in the CSB’s sub-bank 2,

where more shifting options used by AES are supported (see Table 4.1). Compared with an

AES ASIC design, our solution only needs an additional Sbox block, which occupies 30% of

the area of the current smallest AES ASIC design [81].

4.5.3 Keccak-f

The Keccak-f permutation function [27] with b= 1600, goes through 24 iterations of 5

steps on 1600 bits of data, which are treated as a block of 5×5 64-bit words. Algorithm 7

shows the detailed implementation of the Keccak function on Recryptor. The 320bit-wide

operations include the in-memory bitwise operations of AND/NOT/XOR/COPY and the

near-memory operations of left/right 64-bit shifts.

Algorithm 7 Keccak-f on Recryptor

Input: Keccak[b](S), where S ′ = S[0 : 4, y] is at 1 physical line, y ∈ [0, 4]
Output: S

1: for i← 0 to nr − 1 do
2: θ step: C = S ′[0]

⊕
S ′[1]

⊕
S ′[2]

⊕
S ′[3]

⊕
S ′[4]

3: D = SHIFT(C, LS64)
⊕

SHIFT(SHIFT(C, RS64), ROT1)
4: S ′[y] = S ′[y]

⊕
D, y ∈ [0, 4]

5: ρ step: read S ′[y] in 1 cycle, then S[x, y] = ROT(S[x, y], r[x, y])
6: π′ step: S ′[y] = do SHIFT(S ′[y], LS64) for y iterations
7: [Note: π′ step result is the transpose of π step in odd iterations]
8: χ step: E[y] = SHIFT(S ′[y], LS64)
9: S ′[y] = S ′[y]

⊕
(NOT E[y]) AND SHIFT(E[y], LS64)

10: ι step: S[0, 0] = S[0, 0]
⊕

RC[i]
11: end for
12: Return S

Keccak is slow to run on a 32-bit processor since it operates on 64-bit words. More

specifically, there are two main issues with implementing this function on Recryptor. First,

the arbitrary rotation of a 64-bit number in the ρ step would be expensive on 32-bit MCUs

like the Cortex-M0. [65] proposes the bit-interleaving technique in software, by collecting

even and odd positions of a 64-bit data into two 32-bit data. In contrast, Recryptor applies

a custom 2-stage 64-bit rotator placed in the near-memory computation block to save energy
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and time on this step. The second problem is that the array transpose in the π step [72]

would be very hard to do in-memory since in-memory operations require aligned data. To

address this problem, the proposed π′ step combines the even/odd iterations and modifies the

intermediate results of each iteration, which helps avoid the large memory accesses needed

for matrix transpose.

4.5.4 Cryptographic Finite State Machines

Programming Recryptor in software requires only writing a command to a memory-

mapped decoder. The command indicates the opcode and which word lines to compute on

and write back to. For in-memory operations, input data must be aligned inside memory.

This requires operand locality and is addressed in [2].

Since loads and stores on the M0 are somewhat expensive, to further improve perfor-

mance, we implemented optional FSMs to automatically issue the commands at a small area

overhead.

4.6 Testchip and Measurements

4.6.1 Testchips and Measurements

Both the baseline and the Recryptor designs, based upon the ARM Cortex-M0 processor,

were implemented on a testchip in 40nm CMOS. Chip micrographs are shown in Figure 4.8.

The switch from an 8KB compiled SRAM to a custom compute memory increases its area

from 55k µm2 to 180k µm2. The layout of CSB is compact, with bitcell banks around the

side, memory decoders in between banks, and the shifter, timing generation, and rotator in

the center. The area overhead of crypto-FSMs for AES/ECC/Keccak are 0.29k/2.67k/0.62k

µm2, respectively. The total area overhead of Recryptor over the baseline is 36%, including

the interface bus.

However, we used design-rule bitcells for the CSB, and if we shrunk them to push-rule
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Figure 4.8: Die photo of baseline and Recryptor in 40nm CMOS.

bitcells (with bitcell area shrunk by 50% and row peripherals area shrunk by 30%), the

memory could be expected to drop to 102k µm2. Therefore, area overhead over the existing

SRAM is only 47k µm2. The total area overhead would drop to 18%.

Figure 4.9 shows the measured maximum frequency (Fmax) of the custom 10T SRAM.

The blue line shows the Fmax of normal 32-bit reads, while the red line shows the operation

sequence of wide in-memory computing reads, near memory shifts, and then data writeback.

Since the same sense-amp is used for the normal and in-memory computing reads, the worst

case Fmax for them should be the same. At low voltages, the Fmax of in-memory computing

is limited by the shifter. Figure 4.10 shows the minimum functional voltage (Vmin) across

temperatures for normal CSB reads. The Vmin of 25 ◦C/125 ◦C is 0.46V/0.66V, respectively.

Figure 4.11 shows the measured performance of the baseline and Recryptor chips. They

both achieve similar frequencies, with a slight difference attributed to die-to-die variation.

Recryptor’s power is at most 30% larger than the baseline across voltages (Figure 4.12), but

this overhead is outweighed by the application speedup. The overall performance improve-

ment and energy reduction of each algorithm will be discussed in the next subsection.
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Figure 4.9: Measured Fmax of the custom 10T SRAM.

Figure 4.10: Measured Vmin across temperature of the custom 10T SRAM.
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Figure 4.11: Measured frequency of Baseline and Recryptor across voltages.

Figure 4.12: Measured power of Baseline and Recryptor across voltages.
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Figure 4.13: Simulated power breakdown of different security functions.

4.6.2 Results Among Algortihms and Comparisons

Different in-memory operations and near-memory logic are activated when running dif-

ferent crypto functions. Figure 4.13 shows the simulated CSB power breakdown. Table 4.4

provides the overall comparison results of three implemented algorithms running on the

baseline Cortex-M0, Recryptor, and other processor-based implementations [20, 35,64].

For Finite Field Multiplication and Reduction, we support word lengths of 163-409 bits.

Recryptor achieves > 11× speedup and > 6.7× energy savings over the baseline software

[6]. The performance improvements and energy reductions increase as the word length

increases, showing that Recryptor scales well to large bit-width operations. An assembly-

code optimization [20] is included for 233-bit, and this method requires extra effort when

the word width changes, which is inefficient regarding the design time.

For Keccak, we use as our baseline the implementation from [50]. To the best of our

knowledge, there has not been any co-processor implementation supporting Keccak, so an

ASIC design [61] is included in Table 4.4 for comparison.

For AES, we use as our baseline the software implementation from [42]. Compared to

this, Recryptor achieves around 9x speedup and energy. Figure 4.14 shows further com-

parisons in log scale, including an ASIC [81] and a crypto-coprocessor [64] design. Overall,

Recryptor serves as an intermediate solution among the compared architectures in terms of

area, throughput, energy and programmability.
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Table 4.4: Comparison table of different crypto algorithms and designs.

51



Figure 4.14: Comparison of an ASIC [81], Recryptor, Baseline and a coprocessor [64] design
for AES.

4.7 Discussion

4.7.1 Recryptor Optimization

The above performance comparisons among Recryptor, ASICs, and coprocessors depend

on the parallelism exploited by the hardware implementations. For example, on AES, Re-

cryptor can perform 128-bit wide XORs, however we used an 8-bit Sbox design with a one

cycle delay for area and energy reasons. This creates a performance bottleneck, which ex-

plains why the average performance of AES on Recryptor is lower than that of a pipelined

ASIC design [81]. However, significantly higher performance can be achieved with a larger

Sbox or more shift functions on other sub-banks. On the other hand, on Keccak, our Recryp-

tor implementation achieves throughput similar to that of an ASIC design. This is because

Recryptor can exploit 320-bit wide parallelism in Keccak, which is also true of ASIC de-

signs [61].

Table 4.5 shows the minimum required memory capacity for computing and the mod-
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Table 4.5: The effective memory capacity for computing and the required modules.

ules required for each algorithm, with the last row summarizing all implemented algorithms.

Only 1.84KB of memory is required to support the chosen algorithms, although the CSB as

implemented here supports 8KB of in-memory computing for greater flexibility. Future opti-

mizations can explore different bank sizes, bitwidths of in-memory operations, and different

near-memory modules, depending on the desired algorithms.

4.7.2 Recryptor vs. Near-memory-computing-Only

This section does an ideal calculation and comparison between Recryptor and Near-

memory-computing (NMC). Here, NMC refers to the architecture with a normal SRAM

bank and near memory logic. The SRAM bank in NMC can read data from a single

physical line with N-bits per cycle. The near memory logic in NMC can perform bitwise

XOR/AND/OR/INV with up to N-bits per cycle.

In this comparison, both Recryptor and NMC can support algorithms including AES,

Elliptic Curve Finite field multiplication (binary elliptic curve up to 409 bits), and Keccak

function.

4.7.2.1 Performance

Regarding the long bit-width single cycle operation, followings are the required cycles

related with this operation for Recryptor and NMC.
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Table 4.6: # Cycles to run Binary Elliptic Curve Finite Field Multiplication and Reduction

#Cycles 163-bits 233-bits 283-bits 409-bits

Cortex-M0 7904 (1X) 10152 (1X) 12485 (1X) 19598 (1X)

Recryptor 905 (8.7X) 1157 (8.8X) 1284 (9.7X) 1789 (11X)

NMC (Calculated) 1255 (6.3X) 1604 (6.3X) 1780 (7.0X) 2476 (7.9X)

• Recryptor :

· Cycle 1: Read 2 words and Execute bitwise operation

· Cycle 2: Write back

• NMC :

· Cycle 1: Read word 1

· Cycle 2: Read word 2

· Cycle 3: Execute bitwise operation

· Cycle 4: Write back

Therefore the calculated number of for NMC is to add 2 times the number of in-memory-

computing counts on the Recryptor cycles. The performance comparison between Cortex-

M0, Recryptor and NMC on running FFMR is shown in Table 4.6. Here, the Cortex-M0

and Recryptor results are from simulator discussed in the next Chapter, which also includes

the cycles for data alignment.

4.7.2.2 Area Overhead

Regarding the area overhead compared with a baseline Cortex-M0 implementation with

8-transistor SRAM bitcell, followings are the required elements for Recryptor and NMC.

• Recryptor :

· 10-transistor bitcell
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Table 4.7: Calculated Area Overhead of Recryptor and Near-memory-computing (NMC)

(Unit: k µm2) Recryptor NMC

SRAM-bank 3.1 -

SRAM-peripherals 22.8 -

Near-memory-logic - 15

Shifter 18.2 18.2

Rotator 3.2 3.2

Sbox 1.3 1.3

Total (k µm2) 48.6 37.7

· SRAM peripherals: N pairs of one sense-amp, latch, precharge driver, NOR, and

3-to-1 MUX

· Shifter / Rotator / Sbox

• NMC :

· Near memory logic: N pairs of XOR, AND, OR, INV, 4-to-1 MUX and buffer

· Shifter / Rotator / Sbox

· N bits of flip-flops to store the intermediate word

To calculate the area overhead, we assume Recryptor only supports maximum 409-bits of

single cycle bitwise operation, and 1.84 KB of memory supporting in-memory-computation.

Also, Recryptor is implemented with push-rule bitcell design. Table 4.7 shows the area

overhead comparison between Recryptor and NMC architecture.

4.7.3 Power Analysis Attack

The memory bus is not trusted and is vulnerable to physical attacks, for example, by

probing [36]. There have been expensive techniques addressed to solve this problem, for

example, oblivious RAM [29] uses address obfuscation and InvisimMem [3] requires 3-D

integration to stack DRAM layers on top of logic layers. The Recryptor’s idea of compute
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Figure 4.15: Simulated DPA on an AES ASIC with 20 traces.

memories could provide inexpensive encryption to protect the memory bus, taking the attack

model to treat in-memory and near-memory as a whole module, but not to probe the internal

connection inside CSB.

In addition, a preliminary differential power analysis (DPA) attack is analyzed on Re-

cryptor, for key extractions in AES algorithms. An AES ASIC with 8-bit datapath is also

included as a baseline. The attack setup is to first run Hspice simulation on the netlist of

the baseline and Recryptor’s CSB, and then use MATLAB [59] to calculate correlations and

extract every 8-bit key. Each power trace has 20 executions of the 128-bit plaintexts with

1ns sampling time, while keep the same key each time. The DPA result of baseline and

Recryptor’s CSB is shown in Figure 4.15 and Figure 4.16 . The minimal number of traces

to reveal the 1st byte of the correct key (0x2b) is 20 traces for baseline, and 300 traces

for Recryptor’s CSB. An ideal analysis of DPA attack is shown here, but considerations of

real-world problems (e.g. clock jitter) and other attacks (e.g. fault injection attack) are

suggested for further analysis.
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Figure 4.16: Simulated DPA on Recryptor’s CSB with 300 traces.

4.8 Conclusion

There are many challenges in IoT security due to the limited computational resources and

required flexibility. Current ASICs and coprocessors have limitations in different aspects.

In this paper, we proposed a new architecture called Recryptor, which uses in-memory and

near-memory computing to efficiently support large vector calculations for crypto algorithms.

It maintains programmability and has over 80% runtime and energy savings compared with a

baseline processor architecture. Overall, Recryptor is a good intermediate solution in terms

of balancing area, energy, throughput and programmability.
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CHAPTER V

Recryptor M-ulator: A Simulator for In-Memory

Computation

5.1 Motivation and Background

Hardware acceleration has been shown to enable efficient, high performance computation

by optimizing datapaths and exploring new architectures. However, building RTL imple-

mentations is a time consuming and error prone process. Not only does the generation,

verification and synthesis of RTL take days to weeks, but simulating large workloads using

RTL is extremely slow and hard to debug. Thus, there exists a need for higher level accelera-

tor design flows which enable rapid design space exploration of new customized architectures.

For many years, computer architects have relied on simulation in order to perform these

design space explorations on large workloads. For example, the gem5 simulator [12] sup-

ports most commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC and x86), simulates

at a high level with reasonable accuracy, and is among the most widely used simulators in

the community. The ARM Keil simulator [44] supports ARM7, ARM9 and Cortex-M CPUs

with relatively detailed cycle-level pipeline models. However, gem5 does not support micro-

controllers, and Keil is not open source, making it difficult to model specialized hardware

connected to such CPUs, which represent the types of IoT platforms this dissertation focuses

on.
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In this chapter, we built Recryptor M-ulator, which extends the M-ulator simulation

framework [60] with support for Recryptor functions, to enable simulation of larger workloads

with much higher speed than RTL simulations. We use Recryptor M-ulator to evaluate the

performance of large workloads like elliptic curve arithmetic and AES-GCM, which may

require more memory and/or accelerated hardware functions (such as a right-shifter) that

the test chip does not have.

5.2 Proposed Framework

The proposed simulator is based upon the M-ulator project [60], an open source simulator

for ARM Cortex M0 and M3 targets. We implemented Recryptor functions by augmenting

the memory map to include a new region. All loads and stores to this region would be

interpreted and handled by the Recryptor backend. This effectively models the memory-

mapped decoder that we implemented in the test chip. Because every Cortex M0 and

Recryptor operation is of fixed latency (as there are no non-uniform memory access effects),

modeling performance with high accuracy is very straightforward.

There are two ways to trigger computation with Recryptor. The first way is to program

a task specification, which includes the desired operations, base addresses, and number of

banks/words to use, into Recryptor via the memory-mapped decoder. In this way, Recryptor

runs operations one at a time, with each subsequent operation requiring a new task specifi-

cation. This mode is called “Recryptor (w/o FSM)” in the following text. The second way

is to program a set of task specifications into Recryptor’s internal FSMs, so that after being

triggered, the FSM will run multiple operations back-to-back without requiring reprogram-

ming in between. This mode reduces Recryptor launch overhead and provides significant

speedup over the first mode. In the following text, this second mode is called “Recryptor

(w/FSM)”. The López-Dahab finite field multiplication is one example of a workload that

benefits greatly from this FSM mode.

The implementation of this simulator is available on GitHub [80].
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Table 5.1: Number of cycles for Finite Field Multiplication and Reduction

#Cycles (Speedup) 163-bits 233-bits 283-bits 409-bits

Cortex-M0 7904 (1×) 10152 (1×) 12485 (1×) 19598 (1×)

Recryptor (w/o FSM) 1962 (4.0×) 2492 (4.1×) 2742 (4.6×) 3682 (5.3×)

Recryptor (w/ FSM) 905 (8.7×) 1157 (8.8×) 1284 (9.7×) 1789 (11×)

5.3 Case study: Elliptic Curve Arithmetic

In this section, we evaluated the performance gains of Recryptor on elliptic curve arith-

metic operations, specifically binary Koblitz curves of order 2163, 2233, 2283, 2409. We use

the RELIC toolkit [5] for the baseline software implementation. To evaluate Recryptor

speedups, we make the appropriate modifications to replace specific software functions with

Recryptor-accelerated functions.

5.3.1 Field Arithmetic

For field multiplication, the López-Dahab left-to-right comb method is used with a win-

dow of ω=4; Reduction is done with the fast reduction method; Inversion is performed with

the Extended Euclidean algorithm.

Table 5.1 compares the performance (in cycles) for a finite field multiplication between

the baseline Cortex-M0, Recryptor without FSM, and Recryptor with FSM. Without using

the FSM, Recryptor provides between 4-5.3× speedup over the baseline Cortex M0 across

the range of 163-409 bits. However, by applying the FSM, this speedup increases to between

8.7-11×.

The difference between the simulation data (Table 5.1) and test chip data (Table 4.4)

is mostly due to the fact that the test-chip data does not include memory move operations

that are needed to satisfy data-alignment requirements of Recryptor’s in-memory compute

operations, but the simulation data includes this overhead.
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Table 5.2: Number of cycles on F2163 Koblitz curve

#Cycles (Speedup) Point addition Random point mult Fix point mult

Cortex-M0 44491 (1×) 3656365 (1×) 3405931 (1×)

Recryptor (w/o FSM) 14584 (3.1×) 1970110 (1.9×) 1852503 (1.8×)

Recryptor (w/ FSM) 9281 (4.8×) 1670827 (2.2×) 1576869 (2.2×)

Table 5.3: Number of cycles on F2233 Koblitz curve

#Cycles (Speedup) Point addition Random point mult Fix point mult

Cortex-M0 55241 (1×) 5921036 (1×) 5607359 (1×)

Recryptor (w/o FSM) 16460 (3.4×) 2851831 (2.1×) 2697891 (2.1×)

Recryptor (w/ FSM) 9950 (5.6×) 2334388 (2.5×) 2206819 (2.5×)

5.3.2 Curve Arithmetic

López-Dahab and affine mixed coordinates are used for point addition. Point multipli-

cation uses TNAF with the sliding window method. For both fixed-point and random-point

multiplications, the window parameter is set to ω=4.

Tables 5.2, 5.3, 5.4 and 5.5 compare the performance (in cycles) of point addition as

well as random-point and fixed-point multiplications of binary Koblitz curves for each of

the three scenarios. For binary elliptic curve with 163 to 409 bits, Recryptor (w/o FSM)

has speedup of 3.1-4.2× on point addition, 1.9-2.6× on random point multiplication and 1.8-

2.6× on fix point multiplication; while Recryptor (w/ FSM) has speedup of 4.8-6.9× on point

addition, 2.2-3.1× on random point multiplication and 2.2-3.2× on fix point multiplication.

For 233 bits, the average number of finite field multiplications are 5 for point additions,

397 for random-point multiplications and 377 for fixed-point multiplications. The speedups

measured in simulation are in good agreement with test-chip data (Table 5.1).

5.4 Case study: AES-GCM

To run AES-GCM, we need an efficient right-shift for multiplication. However, the Re-

cryptor test-chip only supports a left-shift operation. In the simulator, we augment Recryptor
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Table 5.4: Number of cycles on F2283 Koblitz curve

#Cycles (Speedup) Point addition Random point mult Fix point mult

Cortex-M0 69184 (1×) 9072592 (1×) 8686064 (1×)

Recryptor (w/o FSM) 10394 (6.7×) 4557208 (2.0×) 4282838 (2.0×)

Recryptor (w/ FSM) 13002 (5.3×) 3800480 (2.4×) 3645475 (2.4×)

Table 5.5: Number of cycles on F2409 Koblitz curve

#Cycles (Speedup) Point addition Random point mult Fix point mult

Cortex-M0 104142 (1×) 17714966 (1×) 16987883 (1×)

Recryptor (w/o FSM) 24534 (4.2×) 6932240 (2.6×) 6621715 (2.6×)

Recryptor (w/ FSM) 15069 (6.9×) 5650537 (3.1×) 5390265 (3.2×)

with the necessary shifter functionality to efficiently run AES-GCM. This is the only change

that is required to run AES-GCM. The results of this workload across a varying number of

input bytes is shown in Table 5.6. Our setup has similar results compared with the reference

baseline ( [13]), when running the CIFRA library, as shown of column 2 and 3 in the table.

For inputs with 4 to 64 bytes, Recryptor has speedup of more than 12.8× when compared

with the reference baseline.

5.5 Conclusion

Point multiplication is a key step for elliptic curve based cryptographic protocols, but it is

very expensive to compute in software, taking millions of cycles for fundamental operations

on Cortex M0 platforms. These operations are well suited for hardware acceleration, but

evaluating larger workloads in RTL simulation is infeasible. In this chapter, we proposed

Recryptor M-ulator, a simulator that can be used to perform design space explorations and

evaluate the speedup of the Recryptor architecture on large workloads like AES-GCM and

elliptic curve arithmetic.
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Table 5.6: Number of cycles for AES- GCM

Input
CIFRA

( [13])

CIFRA

(Our setup)
Recryptor

Speed up

(Recryptor / [13])

(Bytes) #Cycles #Cycles #Cycles -

4 57345 62278 4465 12.8

8 57137 63431 4465 12.8

12 56863 64067 4465 12.7

16 56551 64960 4444 12.7

20 77169 85554 5552 13.9

24 76532 85301 5552 13.8

28 76258 86232 5552 13.7

32 75286 85906 5571 13.5

36 95772 106018 6664 14.4

40 95333 106209 6664 14.3

44 94432 106030 6664 14.2

48 93097 105852 6663 14.0

52 113319 126038 7738 14.6

56 113342 126895 7738 14.6

60 112045 126938 7738 14.5

64 124186 126834 7741 16.0
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CHAPTER VI

iRazor: A Current-Based Error Detection and

Correction Scheme for PVT variation

This chapter presents iRazor, a lightweight error detection and correction approach to

suppress the cycle time margin that is traditionally added to VLSI systems to tolerate pro-

cess, voltage and temperature variations. iRazor is based on a novel current-based detector,

which is embedded in flip-flops on potentially critical paths. The proposed iRazor flip-flop

requires only three additional transistors, yielding only 4.3% area penalty over a standard

D flip-flop.

The proposed scheme is implemented in an ARM Cortex-R4 microprocessor in 40nm

through an automated iRazor flip-flop insertion flow. To gain an insight into the effectiveness

of the proposed scheme, iRazor is compared to other popular techniques that mitigate the

impact of variations, through the analysis of the worst-case margin in 40 silicon dies. To

the best of the authors’ knowledge, this is the first work that compares the measured cycle

time margin and the power efficiency improvements offered by frequency binning and various

canary approaches. Results show that iRazor achieves 26%-34% performance gain and 33%-

41% energy reduction compared to a baseline design across the 0.6 to 1V voltage range, at

the cost of 13.6% area overhead.
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6.1 Motivation

Processors and Systems-on-Chip (SoCs) are traditionally designed to accommodate for

worst-case variations, with a cycle time target that incorporates process, voltage, tempera-

ture, and aging (PVTA) margins, which in turn substantially degrade performance and en-

ergy efficiency. Adaptive designs with in-situ error detection and correction capability have

been widely explored to suppress the cycle time margin, using specialized registers on criti-

cal paths that perform timing error detection and correction (EDAC) [15–19, 23, 40, 52, 57].

Unfortunately, such specialized registers typically incur a large area overhead compared to

conventional registers. For example, Razor requires 44 extra transistors per register [23],

double sampling with time borrowing (DSTB) [15] needs 26 extra transistors, and Razor-

lite [40] requires 8 extra transistors, which is currently the EDAC approach with smallest

overhead. The significant area overhead has been an obstacle to the adoption of EDAC

approaches in commercial designs, and currently there is no significant commercial proces-

sor implementing EDAC approaches [4]. In addition, the performance and energy gains

from EDAC approaches have not been thoroughly quantified in relation to competing ap-

proaches to mitigate variations at lower overhead, such as frequency binning, critical path

monitors [14,22,34,66] and canary circuits [71].

6.2 Previous Works

Traditionally, processors are margined to tolerate process, voltage and temperature (PVT)

variations. Among the existing techniques to reduce their impact on the related cycle time

margin, frequency binning entails the lowest overhead as it relies on additional testing time

to perform coarse-grained discrete frequency tuning to mitigate process variations at given

environmental conditions.

More sophisticated self-adapting design techniques introduce process and environmental

sensors (e.g., ring oscillators) to further reduce the margin, and are customarily adopted in
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today’s processor and SoC designs. These approaches can adapt to variations to some extent,

monitoring them through “canary” circuits that mimic the delay of the critical path(s), and

fitting the actual margins. However, the design margin cannot be completely eliminated

by these approaches, due to the residual mismatch between the on-chip sensors (e.g., ring

oscillator frequency) and the actual critical path delay.

EDAC approaches can virtually eliminate the design margin, based on the insertion

of specialized registers on critical paths to perform timing error detection and correction.

Among the proposed techniques, output waveform analysis [26], time-redundant latches [54],

transition detector with time borrowing (TDTB) [15], DSTB [15] and different Razor latches

[17, 19, 25, 40] have been proposed. For example, the Razor approach eliminates the design

margin by allowing for reducing the clock cycle until timing constraints are barely met. This

occurs right before timing failures are detected by specialized registers, such as Razor-I [23],

Razor II [19], Bubble-Razor [25] and Razor-lite latches [40]. The key idea of Razor latches is

that the data comes into the main flip-flop and is also tapped off to a shadow latch, which

is clocked slightly later. The mismatch between the output of the main flip-flop and the

shadow latch reveals the occurrence of the timing error. Once an error is detected, it can

be corrected in several manners as proposed in previous work. For example, [25] uses a

bubble propagation algorithm to send stalling signals to neighbors in half a cycle assuming a

2-phase latch clocking. As another example, global clock gating and counterflow pipelining

were proposed in Razor I [23]. In the former technique, the whole processor is stalled until

correct values are reloaded. Through counter-flow pipelining, a bubble is sent upstream and

downstream pipeline stages at every clock cycle to prevent the propagation of errors and

perform their correction.

Although EDAC techniques fundamentally eliminate the design margin, they suffer from

relatively large area and energy overhead due to the complexity of the detection mechanism.

For example, [15–17,19,23,40] require eight additional transistors per flip-flop or more. The

direct and significant impact on cost has limited the diffusion of prior EDAC techniques,
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as confirmed by the lack of adoption in any significant commercial design to date, and

motivates the introduction of novel lightweight EDAC schemes that can be truly afforded in

real designs.

6.3 Proposed iRazor Circuit and Analysis

6.3.1 The iRazor Flip-flop

The iRazor Flip-Flop supplements a latch circuitry [70] with asynchronous reset (signal

Rstn) in Figure 6.1 (drawn in black) with the lightweight error detection circuit (highlighted

in red). The latter consists of a novel 3-transistor current detector that reveals whether the

latch is transiently drawing any transistor on-current after the clock edge, thus effectively

detecting transitions occurring at the input of the iRazor flop. In the following, positive

edge-triggered timing is assumed with no loss of generality.

Timing violations are caught within an error detection window during which the first

tristate inverter (M1-M5 in Figure 6.1) is transparent, and it represents the portion of the

clock cycle when the input should not transition to avoid timing violations. The detection

window is defined by setting the signal CTL in Figure 6.1 as low, and timing violations

are signaled by the active-low error signal ERR in Figure 6.1. As discussed below, the

error detection window starts after the falling edge of CTL, thus enabling some amount of

time borrowing at the very beginning of the clock cycle, in addition to the capability of

subsequently detecting timing violations.

When the iRazor input correctly transitions before the rising clock edge and after the

falling clock edge as in Figure 6.2a, CTL is high and transistor M14 in Figure 6.1 is ON,

thus tying the virtual ground (VVSS) to ground. Accordingly, the iRazor circuit in 6.1

operates like a conventional flip-flop and updates its output at the rising clock transition,

which makes the first tristate inverter transparent. In this case, the active-low error signal

ERR is deasserted (i.e., ERR is set to 1) by the skewed inverter in red, as required. Instead,
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Figure 6.1: Schematic of the proposed iRazor flip-flop with error detection capability, and its
energy, delay and area compared with conventional flip-flop standard cell (both
positive edge triggered)
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when the iRazor input D transitions after the rising clock edge and before the beginning of

the error detection window as in Figure 6.2b, the iRazor latch is transparent and allows for

timing borrowing. In this case, moderately late arriving inputs are forgiven and no error is

flagged (i.e., ERR=1).

(a) Input D is correctly switching before the rising
clock edge

(b) D is switching within the time borrowing win-
dow

(c) An error is occurring due to the transition of
the input D from 0 to 1 during the error detection
window

(d) An error is occurring due to the transition of
the input D from 1 to 0 during the error detection
window

Figure 6.2: Waveforms in iRazor flip-flop

During the error detection window as in Figure 6.2c, 6.2d, the CTL signal is set to 0,

transistor M1 is turned off and the virtual ground is disconnected from the ground. If no

input transition occurs during the error detection window, the virtual ground is dynamically
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held at ground, and no error is flagged by the skewed inverter in 6.1 (i.e., ERR is kept

at 1). Instead, if the flip-flop input D performs a transition during the error detection

window, the voltage of the floating virtual ground is raised by the charge provided by either

the first tristate inverter (M1-M5) or the subsequent inverter (M7-M8), as discussed in the

following. The red inverter in 6.1 is skewed low so that the raised virtual ground voltage

lies beyond the inverter logic threshold, and hence ERR is set to 0, thus signaling an error.

In particular, if D transitions from 0 to 1 during the error detection window (see 6.2c), the

initially discharged capacitance at the virtual ground node VVSS is charged by transistors

M1-M2 and M5. This is due to the charge sharing with the capacitance at the output of the

tristate inverter M1-M5, which was precharged at VDD by M1-M5 before the input transition,

since the input D was initially equal to 0. Similarly, when D transitions from 1 to 0 during

the error detection window (see Figure 6.2d), the capacitance at the virtual ground node

is charged by transistor M7, due to the charge sharing with the capacitance at its output.

In both cases, the virtual ground voltage VVSS is raised and complemented by the skewed

inverter in Figure 6.1 to flag the error and hence set ERR to 0. According to the above

considerations, the VVSS node is dynamic and its signal integrity needs to be preserved

through routine layout strategies, such as shielding or proper spacing of strong aggressors.

To ensure correct error detection, the error detection window has to be correctly aligned

with the clock cycle. In particular, from Figure 6.2a the falling edge of CTL marks the start

of the detection window and must occur with sufficient delay after the rising clock edge.

Otherwise, correct output transitions right after the clock edge would be incorrectly flagged

as errors, due to the subsequent transition in the first tristate inverter (M1-M5) occurring a

clock-to-Q delay after the clock edge. This minimum delay from the rising clock edge and

between the beginning of the error detection window is here referred to as the front timing

constraint TFR, and must certainly exceed the flip-flop clock-to-Q delay to allow the data

to pass through the slave latch M9-M13 without triggering an error. Larger values of TFR

allow time borrowing as in Figure 6.2b, although at the expense of a shorter error detection
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window.

To assure that the input data is correctly latched into the cross-coupled inverter pair

(M7-M13 in Figure 6.1) during the error detection window, the latter needs to end before

the falling clock edge by an appropriate back time constraint TBK as in Figure 6.2c, 6.2d.

Quantitatively, TBK needs to be greater than (or equal to) the latch setup time Tsetup, so

that metastability is prevented during the error detection window.

6.3.2 Analysis of Robustness, Area and Energy

In general, increasing TFR leads to a wider time borrowing window at the expense of a

shorter error detection window. Also, larger TFR reduces the probability of false positive

errors due to the transition in the output of the first tristate inverter M1-M5 right after the

rising clock edge, and ending some time after a clock-to-Q delay (i.e., when the output of

the tristate inverter is close to the steady state). More quantitatively, TFR needs to be large

enough to give transistor M14 enough time to bring the virtual ground VVSS back to the

ground voltage (since CTL=1), after its temporary increase due to the above transition in

M1-M5.

Monte Carlo simulations in Figure 6.3a illustrate the relationship between TFR and

the VVSS increase during time borrowing (i.e., when no error occurs), including variations.

From this figure, large enough TFR values keep the VVSS upward transition small when no

error occurs. As shown in Figure 6.3b, large enough values of TFR make the temporary

VVSS increase caused by data transitions in the time borrowing window smaller than the

skewed inverter threshold voltage, and avoid false error triggering (shown by the blue line).

In case of timing error occurrence (see black line in Figure 6.3b), the VVSS increase exceeds

the skewed inverter threshold voltage to trigger an error. However, the ability to detect

an error is potentially compromised at very low voltages, for a given TFR. For example,

Figure 6.3b shows that some error may not be occasionally flagged at 0.6V and below,

as the VVSS increase might be higher than the skewed inverter logic threshold in some
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rare cases. Indeed, the whiskers of VVSS and the threshold of the skewed inverter start

overlapping at 0.6V in Figure 6.3b.

(a) No Error Operation (b) Error Detection

Figure 6.3: Statistical analysis of a) virtual ground voltage under errors vs. TFR (1,000
Monte Carlo runs). Whiskers indicate 3 standard deviations around the mean
value

Results of post-layout analysis of the iRazor flip-flop relative to a standard flip-flop are

reported in Figure 6.1. The added 3 transistors in red in Figure 6.1 increase the area by

4.3%, due to the large gate length of the PMOS transistor in the skewed inverter, as required

to make its logic threshold closer to ground to better capture the VVSS increase. In the

adopted technology, increasing the gate length of PMOS to reduce the logic threshold is

preferable to stacking, as the latter would entail a larger area penalty of 11.8%. The total

dynamic energy of the iRazor flip-flop is decreased by 17% compared to the conventional flip-

flop, when sharing the CTL generation circuitry, as discussed in the final chip implementation

in Section 6.4. This figure also gives the breakdown of the energy across cell VDD, clock,

input driver and CTL driver. The iRazor clock-to-Q delay increases by 11% compared with

the conventional flip-flop.

72



Figure 6.4: Overall iRazor EDAC scheme diagram

6.4 Error Detection and Correction Scheme

This subsection describes the global error detection and correction scheme for iRazor, as

shown in Figure 6.4. This is similar to the global clock gating scheme mentioned in Section

6.2. Local clock generators are used as the last level of the clock tree to generate the clock

and the CTL signals in iRazor, as shown in Figure 6.4. These generators are shared between

registers to minimize the area and energy overhead, and control the TFR and TBK windows

in Section 6.3 to avoid the power overhead and the inter-clock skew that would be needed

by two clock distribution networks.

Under normal operation when no error occurs, data arrives before the rising clock edge

and the iRazor output Q latches the value after the clock rises, with ERR staying high.

When an error occurs due to a data transition within the detection window, the ERR signal

is pulled low by the skewed inverter in Figure 6.1 of the relevant flip-flop. The resulting ERR

signal experiences a negative pulse, which is captured by a PMOS-based dynamic OR-latch,
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which is shared by up to 10 iRazor flip-flops, as shown in Figure 6.4. The aggregate output

of the OR-latch is then ORed together with all other aggregate error signals within the

processor by using conventional dynamic OR gates, thus generating the global Razor error

signal in Figure 6.4. This global Razor error signal then propagates through the Razor timing

control in the same figure. Razor timing control skips the clock edge following the occurrence

of an error, providing the pipeline with a further cycle to resolve the error, as shown in the

third cycle at the left of Figure 6.5 (the error occurs in the second cycle). Following error

resolution, the dynamic OR-latches are reset using the i-RESET signal. . Normal operation

resumes in the next cycle (fourth cycle in Figure 6.5), as the global razor error signal is

reset to 0 when clock gating is released. The dynamic OR latch stages (Figure 6.4) are

reset through the i-RESET signal, which can catch the ERR signal generated by the iRazor

flip-flop when the clock is either low or high. The dynamic OR propagation stages are reset

using the gated CLK signal to keep the global Razor error signal to be high within the error

recovery stage (in Figure 6.5) to avoid glitches of the gated local clocks.

Using local detection and clock stalling, the pipeline is halted within one cycle of a

detected error, allowing the EDAC technique to be integrated into the processor without

requiring rollback or architectural changes. To accomplish this, the error signal must prop-

agate through the above logic within one clock cycle. As shown at the right of Figure 6.5),

the error critical path includes: the clock tree delay to reach the clock tree leaves from the

clock root first, then the TFR delay, the detection window itself, the error detection delay, the

dynamic OR latch stage and three dynamic OR propagation stages, and finally the Razor

timing control to ultimately generate the clock gating signal.

6.5 Automated iRazor Design Flow

The automated and architecture-independent iRazor flow in Figure 6.6 was developed and

adopted to design an ARM Cortex-R4 processor, which is used as reference design example

in the following.

74



(a) (b)

Figure 6.5: (a)iRazor timing diagram; (b) timing analysis of the error critical path

The iRazor design flow starts with a placed and routed baseline design. Then, flip-flops

to be razorized are selected, based on the tradeoff between the path coverage and the area

overhead due to iRazor flip-flops, the transistor upsizing to meet timing, and the additional

hold buffers, which are required to make the min-delay larger than the transparency window

in the covered paths. As shown in Figure 6.7, iRazor flip-flops are progressively inserted

to cover paths with increasing timing slack (i.e., from the most to the least critical one),

and higher path coverage entails a larger number of iRazor flip-flops and area. A high path

coverage also makes the design hard to route. In the considered ARM Cortex-R4 design,

from Figure 6.7 a reasonable compromise between path coverage and overhead is to cover

paths with 200 ps timing slack or lower, replacing the corresponding conventional flip-flops

with iRazor flip-flops. This leads to the replacement of 8.7% of the total flip-flop count. The

resulting datapath delay histogram after razorizing is shown in Figure 6.8 together with the
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Figure 6.6: Architecture-independent automated flow for iRazor flip-flop replacement and
clustering

baseline histogram. Overall, path delays in iRazor are pushed to the right because of the

addition of hold buffers. The last two columns represent paths with iRazor flops.

After iRazor insertion, placement of dynamic ORs needs to be optimized. According to

the initial placement of the baseline design, automated clustering of iRazor cells is performed

to share the local clock generator and the different levels of dynamic OR trees. Both the

physical locations and the loading in each stage are key factors for clustering. A threshold

distance is set first for the iRazor flip-flop clustering into the same group, creating a new

group once the threshold is exceeded. In this design, the distance threshold is set to 60 µm,

300 µm and 1,000 µm for the first, the second and the third stage. Figure 6.9 shows the

resulting placement of iRazor flip-flops, dynamic OR latches and subsequent stages.

Then, place and route is performed, checking the timing of the overall error control

feedback loop since the wirelength from the skewed inverter output to the dynamic OR-latch

is critical for timing closure (see Figure 6.5 on the right). If timing is not met, hierarchical

iterations of clustering are performed followed by a new placement, while freezing the original

iRazor flip-flop locations to facilitate convergence. Further iterations of clustering/placement

are performed until the timing is closed. Then, a final iRazor place and routed design is
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Figure 6.7: Design complexity (in number of iRazor flip-flops) vs. targeted timing slack of
iRazor

Figure 6.8: Path delay histogram of baseline and iRazor design
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Figure 6.9: iRazor cluster spatial position within the on-die processor footprint

Figure 6.10: iRazor effective overhead explicit calculation

achieved, with all prior steps performed in a fully automated fashion. As well known for all

EDAC approaches, timing closure might not be guaranteed in very large designs, although

iRazor is demonstrated to work in a microprocessor core that is an order of magnitude more

complex than prior demonstrations (see Figure 6.1).

The effective overhead of the iRazor scheme relative to a conventional flip-flop based

design is shown in Figure 6.10. First, three additional transistors are included in each latch,

although the latch itself has eight fewer transistors than a conventional flip-flop. Then, 240

local clock generation blocks are used in the final design, each comprising 30 transistors.

The additional transistors are amortized across the 1,115 iRazor flip-flops, resulting to an

effective overhead of only 1.46 transistors per flip-flop.
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Figure 6.11: Die photo of baseline and iRazor Cortex-R4 processor in 40nm CMOS

6.6 Testchip

Both the baseline and the iRazor designs of the targeted processor were implemented on

a testchip, whose micrograph is shown in Figure 6.11. The ARM Cortex-R4 processor was

implemented in 40nm CMOS, with a total number of flip-flops of approximately 13,000, of

which 8.7% were razorized. The total number of gates increased by 13.4% when applying

iRazor, due to the addition of minimum-sized hold time buffers, iRazor flip-flops, the OR

tree, and the CTL tree, which respectively contributed by 10.06%, 0.95%, 0.27 and 0.36%

to the overall area increase, while the remaining 1.76% is due to signal routing. The total

iRazor core area includes 8-KB instruction/data cache and 12-KB memory, and increased

by about 13.6% compared to the baseline. Note that buffer insertion takes most of the area

in logic in this specific design, although the memory size can be much larger in many other

modern processors, in which case the percentage overhead is expected to be significantly

reduced. Compared with previous EDAC testchips, this design marks a significantly more

complex processor implementation, particularly in terms of the number of total and replaced

flip-flops, other than gate count.
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6.7 Comparisons with Binning and Canary Techniques

Based upon the techniques discussed in Section 6.2, 40 baseline chips were measured to

gain an insight into the effectiveness of iRazor, compared to a baseline margined design,

frequency binning and ring oscillator-based canary methods.

The worst-case margining of 85◦C temperature, 10% supply drop, and 3σ process vari-

ation is used to define the baseline. As shown in Figure 6.12a, the histogram in red is the

maximum operating frequency of 40 baseline chips at 1V and room temperature, whereas

the margined frequency able to work across all PVT variations is plotted in green. The

margined frequency is typically 25% lower and up to 32% than the maximum frequency

allowed by the measured chips. The detailed margin breakdown into process, voltage and

temperature across 0.6-1V is plotted in Figure 6.12b, which shows that voltage margin gives

the largest contribution. As the processor voltage approaches the threshold voltage, the

margin contributions increase substantially (i.e., 2X or more).

(a) (b)

Figure 6.12: (a) Detailed frequency histogram and margin analysis of baseline at 1V; (b)
Baseline frequency margin across 0.6 1V voltage range, including 10% voltage
margin, 60◦C temperature margin, 3 sigma process margin. The frequency mar-
gin is normalized to the average across dice of its actual frequency at nominal
voltage/temperature conditions.

Let us now consider the case of frequency binning, with dies being divided into three

bins based on their process corner labeled as slow, typical and fast in Figure 6.13. Then,
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Figure 6.13: Detailed frequency histogram and margin analysis of frequency binning method
at 1V

each bin is margined for worst-case temperature and voltage (85◦C, 10% supply drop). The

frequency histogram under frequency binning for the 40 chips at 1V is shown in Figure 6.13,

whose comparison with Fig. 12a clearly shows that some margin is removed from the baseline

approach. For completeness, the detailed margin histogram of the frequency binning is shown

in Figure 6.14b.

As third variation-aware mainstream design approach, let us consider the “simple canary”

method, under which the baseline processor is equipped with a ring oscillator (RO) used

as processor frequency predictor. Figure 6.15 shows measured processor frequency versus

RO frequency across 0.6-1V and 20-85◦C. Exploiting the correlation between the processor

frequency and the RO across voltages and temperatures in the available 40 dice in Figure 6.15,

the processor frequency is obtained by fitting the RO frequency data points. 2σ fitting

error calculated across dies and PVT conditions is applied to evaluate the RO-processor

mis-tracking. In addition, the fitting is de-rated by a 5% voltage margin to account for fast

transient voltage excursions that the canary cannot capture. The final frequency histogram of

simple canary after including fitting error and the 5% voltage margin is shown in Figure 6.16.
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(a) Baseline(process, 10% voltage, temperature)

(b) Binning(10% voltage, temperature)

(c) Simple Canary(process, 5% voltage, temperature)

(d) Canary T/V Spec (process, 10% voltage)

Figure 6.14: Margin histogram for different methods (1V, room temperature).
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Figure 6.15: Fitting of operating frequency vs. ring oscillator frequency in simple canary
fitting method

The margin histogram of the simple canary approach is also shown in Figure 6.14c.

A further comparison, a less simplistic canary approach is considered where each data

point is treated as a temperature/voltage-specific canary, to suppress the margin due to

temperature and voltage. This is customarily achieved by introducing on-die temperature

and voltage sensors, which quantify temperature and voltage of each data point. In this

approach, the linear correlation between processor and RO frequency is determined for each

temperature and voltage condition. The measurements of 0.6, 0.8 and 1V and the fitting

to the ring oscillator frequency are shown in Figure 6.17, where blue dots refer to 25◦C and

the red ones refer to 85◦C. The linear fit is again de-rated with 5% voltage margin and 2%

fitting error, but here the latter is computed only across dies (i.e., without considering voltage

and temperature margins). The resulting margin histogram of temperature/voltage-specific

canary is shown in Figure 6.14d, which clearly shows a further margin reduction compared

to the above variation-aware approaches.
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Figure 6.16: Detailed frequency histogram and margin analysis of simple canary method at
1V.

Figure 6.17: Fitting of processor frequency vs. ring oscillator frequency for T/V-specific
canary at 25◦C and 85◦C.
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Figure 6.18: iRazor frequency at point of first failure (PoFF) vs. optimal frequency across
voltages.

6.8 Experimental Results and Overall Comparison

40 dies of the iRazor design of the ARM Cortex-R4 processor were characterized and

compared to the above mainstream variation-aware design methods. The Razor point-of-

first-failure (PoFF) frequency is the operating frequency beyond which errors occur (see,

e.g., [19] for the details on its measurement). Since iRazor is able to correct errors lying in

the transparency window, it can work in a performance-optimal mode where the frequency

is pushed beyond the PoFF to allow errors, which are then corrected through the stalling

mechanism in Section 6.4. In the performance-optimal mode, the resulting performance in-

cludes the effect of both the overscaled frequency and the corresponding stalling cycles due to

the resulting errors. The results of the iRazor PoFF frequency and the performance-optimal

frequency across 0.6, 0.8 and 1.0V is shown in Figure 6.18. The PoFF represents a conserva-

tive 4.4-6.9% timing margin, compared to the performance-optimal iRazor frequency, which

corresponds to a 2.4-3% voltage margin. As a comparison, the simple canary approach adds

5% voltage margin to iRazor performance-optimal operating voltage.
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Figure 6.19: Performance comparison between the margined iRazor and other methods
across 0.6-1V voltage range.

The previous Razor papers assume that the detection window will surely cover all the

PVT variation margins, which is however not always the case. Indeed, the transparency

window size depends on the hold margin achieved at design time through the inserted hold

buffers, hence practical constraints on the overhead due to the inserted hold buffers may

prevent the designer from achieving a detection window that fully covers PVT variations.

Therefore, this paper enhances the comparison by considering the margined iRazor frequency,

rather than the iRazor PoFF frequency. The maximum frequency allowed by the margined

iRazor and all the methods discussed in Section 6.7 is summarized in Figure 6.19. As shown

in this figure, a simple canary approach is about twice as effective as binning. The T/V

specific canary offers ∼15-18% performance increase over the margined baseline across 0.6V

- 1V, while the margined iRazor shows 26-34% performance increase, when considering the

same voltage margin as canary methods. This translates into a performance gains of 26%,

19%, and 15% compared to standard, binned, and canary-equipped versions of the Cortex-R4

processor, respectively.

The power consumption at a fixed frequency is compared in Figure 6.20. In this com-
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Figure 6.20: Power comparison with the margined iRazor across 0.6 1V voltage range.

parison, we first select the margined baseline frequency at 0.6, 0.8 and 1V as the target, and

then we find the required supply voltage to meet this frequency using other techniques. The

resulting power for each case is shown in this plot. Simple canary provides a power benefit

of ∼20% over baseline across voltage, and the margined iRazor improves power by another

17%∼26% over simple canary from 0.6 to 1V.

As reported in Figure 6.1, iRazor is able to improve the performance by 34% at nominal

voltage, and the energy by up to 41% when running at the same performance as the baseline

design, thanks to the voltage scaling that it enables.

6.9 Conclusion

The iRazor technique has been proposed as very lightweight technique to enable error

detection and correction, with only three additional transistors per flip-flop. An automated

design flow assuring time closure has been introduced and applied to implement an ARM

Cortex-R4 microprocessor in 40nm. The resulting number of additional transistors compared

to a baseline design is 1.54 transistors per flip-flop, which is the lowest reported to date.

iRazor has been compared to industry-standard techniques to address variations. iRazor
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Table 6.1: Comparison table of EDAC approaches and iRazor.

88



achieves 26-34% performance (power) gain (33-41%) compared to a baseline design across

the 0.6 to 1V voltage range. Power reduction becomes 17-26% when comparing to the

popular canary approach, at the cost of 13.6% area overhead.
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CHAPTER VII

Conclusions and Future Directions

7.1 Contributions

This dissertation focuses on designing energy-efficient secure chips for securing IoT sys-

tems. Other design criteria like flexibility, lightweightness and resistance to attacks are also

taken into considerations.

Chapter 2 discusses about the cryptography-related mathematics related in the following

chip designs. Chapter 3 presents a dedicated AES accelerator, which achieves best-in-class

area and energy efficiency by manipulating datapath and optimizing registers. Chapter

4 provides a crypto-coprocessor design to accelerate a wide range of security algorithms.

Recryptor proposes a new reconfigurable platform which accelerates cryptographic primitives

by replacing the standard SRAM bank with a custom bank using in-memory and near-

memory computing elements. To further easily exploring the architecture and analyzing high

workload simulations, Chapter 5 desribes a simulator for in-memory computation. Elliptic

curve arithmetic and AES-GCM are evaluated. Chapter 6 proposes an error resilient circuit

design to tolerate unpredictable variations in operating temperature and voltage, variations

in the manufacturing process, and transistor aging of VLSI systems. This adaptive approach

against competing industrial techniques such as frequency binning, critical path monitors and

canary circuits.
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7.2 Future Directions

Building energy-efficient cryptosystems has been the primary focus of my research thus

far. However, many of the circuit techniques commonly employed to reduce power and energy

consumption actually expose an inherent tradeoff between energy and security: side-channel

attacks. For example, power-based side-channel attacks gather information about power

consumption of a device over time to deduce the secret key and other protected information,

and since IoT devices are physically exposed to attackers, this is an important threat to

address. Simply implementing theoretically proven crypto-algorithms is not enough for this

domain. The future research would investigate ways to build energy-efficient cryptosystems

that are also protected against invasive and noninvasive side channel attacks.

Also, it would be useful to build power sources that can both increase the lifetime of

devices and help reduce information leakage through power side-channels. In this vein, new

methods of energy-harvesting and modeling of will be very useful for designing secure IoT

cryptosystems.
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