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ABSTRACT 

Water-solute interactions still remain a challenge to study experimentally, though 

they are critical to protein and biomacromolecule stability, structure, and function. 

Hydration dynamics at interfaces are generally slower than bulk water. While 

many investigations into the dynamics of water using advanced spectroscopy 

methods have occurred, considerably less specific attention has been paid to 

biologically relevant highly crowded solutions. Macromolecular crowding is the 

result of both steric and chemical interactions of the crowding agent with the 

targeted molecule of study. Considering steric effects of crowding agents is not 

enough, and studies of chemical interactions are increasingly being done. 

Crowding agents typically are polymers, proteins, reverse micelles, or hydrogels, 

and in this study, we focus on polymers. We seek to understand how polymer 

crowders affect hydration dynamics. Using ultrafast two-dimensional infrared 

(2D-IR) spectroscopy of a new water-soluble transition metal complex acting as a 

vibrational probe, we look at a range of polymers at various lengths, 

concentrations, and temperatures. We find that PEG, which exhibits unusual 

structural and thermodynamic trends, has a very stable hydration shell at room 

temperature. The stable hydration shell promotes bulk like hydration dynamics 

even at high concentrations and viscosities. From temperature variance 

experiments, we calculate activation energies and find that the results are similar 

to activation energies of water. Our studies provide fundamental information 

about the hydration dynamics of concentrated polymer solutions and we find 

evidence for distinct dynamics sensed by the probe depending on the crowding 

agent. 
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Chapter 1 Introduction 
 

1.1 PRESERVATION OF HYDRATION SHELL DYNAMICS 
Water makes up 71% of the earth’s surface, and makes up on average 

60% of a human body. Though water is vital to life on earth, there is still much to 

learn, especially regarding how water interacts with proteins and other 

biomacromolecules within organisms.1 The most important aspect of water-solute 

interactions is the hydration shell, which remains a challenge to investigate 

experimentally. An intuitive definition that includes all of the water molecules 

within the first layer of water around a biomolecule, which is typically 3.5 

angstroms, is commonly denoted “biological water” by the biochemical and 

structural biology communities, largely due to the presence of these water 

molecules in x-ray crystal structures. For computational studies, one can be very 

specific as to which molecules will be interrogated, though it can be difficult to 

link aspects of arbitrary water shells to experimental measurements.2 Often, the 

water molecules in the hydration shell behave differently from the bulk, which is 

why there is an interest in studying aspects of hydration dynamics of both bulk 

and interfacial water molecules on timescales ranging from ultrafast (fs-ps) to 

much slower dynamics. Hydration dynamics arise from time-dependent 

fluctuations of the complex structural network of water molecules reflecting 

cooperative and directional hydrogen bonding. Processes that can be studied by 

various experimental techniques included in water dynamics are vibrational 

lifetimes, hydrogen bond (H-bond) lifetimes, structural fluctuations, energy 

transfer, and energy dissipation, which occur on a picosecond timescale.3  

This work focuses on the hydration dynamics of various aqueous polymer 

solutions. Aqueous polymer solutions and hydrogels have a wide variety of 

applications in modern society. The food industry uses polymers as stabilizers, 
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thickeners, and gelling agents for texture and taste,4-6 while the pharmaceutical 

and biomedical industries use polymer solutions and hydrogels for clinical 

applications, drug delivery, tissue engineering, and much more.7, 8 Hydraulic 

fracturing liquid is an effective substance used to extract natural gas from shales, 

and this liquid uses guar gum to increase viscosity.9-11  

In particular, we focus primarily on a remarkable polymer—poly ethylene 

glycol (PEG)—that is one of the most widely used biocompatible molecular 

materials. PEG is a polyether that is used in a wide range of applications, from 

improving bioavailability of drugs and other payloads, to serving as a coating for 

medical devices. 12, 13 In basic science research, PEG is used as a chemically 

neutral macromolecule for studies of crowding14 as well as a promoter of protein 

crystallization. 15 PEG’s water solubility largely arises from the favorable spacing 

of the oxygen atoms in the –O(CH2)2–O(CH2)2– chain, which matches 

geometrically the natural spacing of oxygens in water’s hydrogen bonded 

network.16 Chemically very similar polyethers –O(CH2)–O(CH2)– 

[(poly(methylene oxide)] and –O(CH2)3–O(CH)3– [(poly(trimethylene oxide)] are 

insoluble in water. Although the thermodynamics of PEG hydration are well 

understood, there is little known about the dynamical nature of PEG hydration. In 

light of recent work to probe interfacial water in the vicinity of biological 

macromolecules, this work aims to characterize the nature of PEG hydration 

dynamics in a range of concentrations, molecular mass, and temperature.  

There are many reviews that have been published that discuss hydration 

water: examining the dynamics of water itself, how various solutes, such as 

proteins or macromolecules, in dilute concentration influence the dynamical 

aspects of water, and how more concentrated solutes influence water by studying 

crowding and confinement of water molecules using macromolecules such as 

proteins and polymers. 1-3, 17-71 Key aspects of the current understanding of 

hydration dynamics are summarized here. 
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1.1.1 Water Dynamics 
While much work has been done to understand the dynamics of water, 

there is still much to learn due to its importance in many biological processes and 

to life on earth.1, 72 Studies of OH/OD stretch of liquid, supercooled, and 

crystalline water has revealed that vibrational spectroscopies are able to extract 

information about local interactions, stability, and rearrangement dynamics of the 

H-bond network of water because vibrational frequencies are very sensitive to 

local environments. Comparing the time-dependent fluctuations measured to MD 

simulations can help determine structural information of water H-bond 

networks.17-21  

The hydrogen bond network of water is constantly experiencing the 

breaking and forming of h-bonds due to water molecule reorientation, and adapts 

to solute inclusion. The extended jump model developed by Laage and Hynes 

describes this mechanism of water reorientation, and it is consistent with 

experimental results. In this mechanism, the reorienting water molecules 

experiences concerted H-bond breaking and forming through a large angular 

jump. 30, 31, 73 

Studies of molecular structure of water at air and biological interfaces seek 

to determine, compared to bulk water, how water structure and dynamics are 

influenced by the H-bond network interruption. The hydration shells of proteins 

have been increasingly studied in the past couple of decades. However, interest 

in understanding protein hydration goes further back.32, 33 Since the development 

of ultrafast spectroscopy, we have been able to significantly build on these 

studies of the interactions between water and macromolecules. There are a 

number of reviews detailing work relating to the interactions of proteins and 

water. 1, 3, 34-46 These interfaces can be studied using Overhauser dynamics 

nuclear polarization (ODNP) enhanced NMR spectroscopy, interface specific 

SFG spectroscopy, dynamic stokes shift spectroscopy, pump-probe 

spectroscopy, 2DIR, and MD simulations. While much work has been done, 

different timescale results from these experimental methods for interfacial studies 

still need to be addressed.22-24  
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Similarly to studies of water at interfaces, studies of confined and crowded 

water seek to determine how dynamics are different from water in the bulk. 

Reverse micelles, hydrogels, and other macromolecules have been used as 

confining and crowding agents, and have found that depending on the crowding 

agent and size of confinement, there are various affects on the water dynamics 

timescales, generally a slowing of dynamics. 2, 25-27, 29, 74 

1.1.2 Macromolecular Crowding and Concentrated Aqueous Polymer 
Solutions 
Understanding the dynamics of water and water interacting with 

macromolecules aid us in our quest to understand how water and solute 

interactions change as solute concentration increases. Traditionally, 

mechanisms, equilibria, rates, and dynamics of biochemical solutions have been 

studied containing concentrations of less than 1 mg/mL of total macromolecule, 

DNA, or protein, when living systems exist in crowded environments of 50-400 

mg/mL.47-52, 75 In response to this, studies of how macromolecular crowding and 

confinement affect the dynamics of biological and non-biological solutions have 

increased. 

There are several reviews that describe the principles and importance of 

considering macromolecular crowding.47-53 To take into account physiological 

conditions and confined spaces, artificial crowding agents are being used to 

create more realistic environments for experiments. Macromolecular crowding 

creates an excluded volume effect, where a crowding agent takes up space that 

can no longer be occupied by another molecule, which doesn’t necessarily occur 

in dilute conditions. Excluded volume is made up of both steric effects and soft 

interactions, which are chemical interactions.64, 76 There has been much work 

done that only consider the steric effects, without considering possible chemical 

interactions in studying protein aggregation54, protein stability and folding56, 

nucleic acid structure and function60-63, and MD simulations65, 66.  

Challenges to crowding studies include: can studies that utilize 

supposedly inert crowding agents an accurate imitate in vivo crowded 

environments? Are there any crowding agents that are actually inert, or will there 
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always be chemical interactions to keep in mind? While PEG is not necessarily 

inert, because it is used in so often in industries, it is good to try to understand its 

interactions with biological media.64 Crowding agents should be inert to what is 

being studied, where only steric interactions occur and not chemical 

interactions.51 

Research has started to examine how other aspects of macromolecular 

crowding must be taken into account for a more complete picture, such as 

viscosity, soft interactions, perturbed diffusion, and crowder shape, confinement, 

and concentration, all of which affect the crowded solution. 55, 57-59, 64, 67-71 In order 

to think about the whole picture, both hard and soft interactions must be 

considered individually. Hard core repulsions, or steric interactions, are entropic 

in nature because it involves molecular arrangement. Using the lens of the 

equilibrium principle, these steric interactions favor compact arrangements. Soft 

interactions, chemical in nature, are repulsive or attractive. Favorable attractive 

(nonspecific) interactions with proteins can lead to unfolding, which has an 

enthalpic part. Repulsive soft interactions are stabilizing, similar to steric 

repulsions.77 In a crowding study done comparing the effects of Ficoll-70 and its 

monomer, sucrose, by Pielak and coworkers, it was determined that sucrose and 

Ficoll had almost the same enthalpy-driven stabilization effect on a chymotrypsin 

inhibitor.78 There have also been studies that explicitly show crowding agents 

destabilizing proteins rather than stabilize and that soft interactions can help 

regulate protein interactions with other proteins.79, 80 These results indicate that 

soft interactions are important phenomena to consider, and sometimes are of a 

greater influence than excluded volume. It is in this direction we taken this 

dissertation. 

 

1.2 HOW DO WE STUDY SOLUTE HYDRATION? 
The water hydration shell has been studied by many methods, all which 

give us different pieces to this puzzle of understanding water dynamics. There 

are several reviews that detail the variety of methods used to study hydration 
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dynamics.2, 20, 23, 29, 81 Briefly, I will go through other techniques and how they are 

used to study hydration dynamics. 

 Linear spectroscopies such as FTIR and Raman are commercially 

available, and used for characterization of dynamics and structure of water of 

water molecules directly. However, the line shapes are broadened by both 

homogeneous and inhomogeneous broadening, without being able to distinguish 

between the two.20 Sum frequency generation (SFG) spectroscopy can provide 

much information about water’s interactions at interfaces because it is a surface 

specific technique.23 It is possible to gain spectral diffusion information similarly 

to 2DIR with the 2D extension of SFG.20 Pump probe spectroscopy is a one 

dimensional nonlinear ultrafast spectroscopy and directly probes water 

molecules. Pump-probe can provide information on vibrational population 

relaxation and anisotropy decay.20, 23 Photon echo spectroscopy is the 

predecessor to 2DIR and measures water molecules directly by vibrational 

dephasing time and can separate inhomogeneous and homogeneous 

broadening.20 NMR directly probes water dynamics and measures water 

reorientation times, however, the signal is averaged over all water molecules.2, 29, 

81 However, Overhauser dynamics nuclear polarization (ODNP) enhanced NMR 

can report on interfaces by attaching a radical spin probe attached to an 

interface. To enhance the NMR signal, the probe transfers spin polarization to 

the area water protons.23, 81 Optical Kerr-effect (OKE) spectroscopy is a one-

dimensional nonlinear time-resolved spectroscopy that is able to measure 

collective and intermolecular dynamics of water. The response function 

measured by OKE is the same as depolarized light scattering, but in the time 

domain.20, 29, 81 Depolarized light scattering (DLS) probes collective water 

dynamics, measuring structural dynamics of water.29, 81 Quasi-elastic and 

inelastic neutron scattering (QENS, INS) directly probe water molecules, 

providing collective water information. QENS and INS both can study ultrafast 

translational and rotational motions.2, 29, 81 Dielectric relaxation (DR) spectroscopy 

studies collective reorientation of water by measuring the electric dipole 
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relaxation.29, 81 Terahertz (Thz) spectroscopy probes collective motion of water 

molecules and intermolecular vibrations of the hydrogen bond network.2, 29, 81 

Time-Dependent Stoke stokes shift spectroscopy (TDSS) uses a probe to study 

water dynamics instead of studying the water molecules directly. TDSS excites a 

chromophore within the biomolecule of interest,  and this chromophore has a 

radiative lifetime much longer than probes used in 2DIR.2, 23, 81 

In this dissertation, we use two-dimensional infrared (2DIR) spectroscopy 

to examine the hydration dynamics of aqueous solutions of various shapes and 

lengths of polymers. 

 

1.3 INTRODUCTION TO VIBRATIONAL SPECTROSCOPY 
The molecular environment is sensitive to vibrational spectroscopy, which 

makes it a useful technique to study the dynamics and structure of molecules in 

the condensed phase. Linear IR spectroscopy can provide information about the 

chemical groups of an unknown molecule, but spectral congestion and a lack of 

significant spectral differentiation causes spectral overlap and interference that 

makes assignment of complex heterogeneous systems nearly impossible. 

Further complicating the use of linear IR spectroscopy, is its inherent time-

averaging, and the fact that it is impossible to differentiate between 

inhomogenous and homogeneous broadening.82 These qualitatively different 

broadening mechanisms are described in detail below. 

 

1.3.1 Nonlinear and Multidimensional Spectroscopy  
Absorption, reflection, light propagation, and refraction from a weak light 

field are related to the creation of a linear polarization in a medium. Nonlinear 

spectroscopies are related to nonlinear polarization induced by multiple field-

matter interactions (multi-wave mixing). As typically implemented, multi-wave 

mixing results from the interaction of more than one laser field with a system, 

generating a coherent signal field, often in a unique, background-free direction.83 

Nonlinear spectroscopies can be one-dimensional or multidimensional. One-
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dimensional nonlinear spectroscopies include pump-probe, photon echo, and 

optical Kerr effect spectroscopy.20 To make a spectroscopy multidimensional, two 

or more excitation pulses separated by time are combined along with a probe 

pulse, where the pump pulse and probe pulse frequencies are resolved.82 More 

formally, a multidimensional spectroscopy method should give access to a multi-

time interval correlation function. For example 2DIR, a third-order technique, is 

governed by the three-point (two-interval) time correlation function of the dipole 

moment: C(t1,t2,t3) = <µ(t1+t2+t3)µ(t1+t2)µ(t1)>.  

 

1.4 TWO-DIMENSIONAL INFRARED SPECTROSCOPY 
Two-dimensional infrared spectroscopy (2DIR) is a multidimensional 

nonlinear optical technique. Nonlinear multidimensional spectroscopies have 

been reviewed previously.82, 84-93 2DIR is able to directly probe water molecules. 

However, it is also possible to use transition metal carbonyl complexes, as they  

are powerful probes of solution environments.94-99 

 

 
Figure 1.1 2DIR pulse sequence 

In its current implementation, an output centered around 800 nm from a 

regeneratvely amplified Ti:sapphire laser is used. This output has a 1 KHz 

repetition rate and uses a dual optical parametric amplifier with beta barium 

borate crystals to generate near IR pulses. These pulses are then used to 

generate two mid-IR pulses by difference frequency generation in separate GaSe 

crystals. The mid IR pulses are centered around 2000 cm-1 with about 100 cm-1 

FWHM bandwidth. Using beam splitters, these two beams are split into three IR 

pulses, the tracer, and the local oscillator.95 
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The three infrared femtosecond laser pulses interact with the sample and 

create a third-order nonlinear signal (Figure 1.1). The three fields are E1, E2, or 

E3 with corresponding wave vectors k1, k2, and k3. The fields are separated by 

time delays t1, t2 (the so-called “waiting time”), and t3. The pulses interact with the 

sample in a noncollinear box geometry in order to generate a signal in a 

background free direction during t3. The two directions are kR = -k1 + k2 +k3 and 

kN = k1 - k2 + k3 which are the “rephasing” and “nonrephasing” signals, 

respectively. By interchanging the pulse ordering with delay stages, it is possible 

to generate the rephasing and nonrephasing signals in the same physical 

direction in the space (though not at the same time). The phase and amplitude of 

the signal field (with wavevector kR or kN) are measured directly with a 

spectrometer via optical heterodyne detection by interference with the local 

oscillator. 86, 89  

During the experiment, the waiting time is incrementally stepped over a 

range of picoseconds. At each waiting time, the time delay between the first two 

pulses is scanned continuously. The complex electric field that is collected during 

this delay is Fourier transformed with respect to the first the time delay to yield 

the excitation frequency axis (ω1). The spectrometer measures the signal field 

emitted during t3 directly in the frequency domain, creating the detection axis 

directly. The IR signal, the local oscillator, and a chirped 800 nm pulse are 

combined and upconverted by sum frequency generation to roughly 690 nm and 

detected using a silicon CCD.95 

Increasing the waiting time between excitation and detection reveals 

dynamical changes in the 2D spectral features, which can be related to 

processes such as solvation dynamics, vibrational energy transfer, and 

vibrational energy relaxation. A recent review summarizes several of the 

observables from 2DIR.93 Here we will provide a brief overview of spectral 

diffusion as the major observable discussed in this work. 

1.4.1 Spectral Diffusion 
In linear FTIR spectroscopy, homogeneous and inhomogeneous 

broadening cannot be separated, and provides time averaged spectra. 
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Inhomogeneous broadening results when different microscopic environments in 

the solvent are sampled, and it leads to a variation of transition energies. 

Homogeneous broadening is a result from rapid fluctuations, whereas 

inhomogeneous broadening is from slower fluctuations. Using 2DIR, it is possible 

to separate inhomogeneous broadening from homogeneous broadening and 

extract information about solvent-solute interactions, vibrational dynamics, and 

molecular structure.89  

During the incrementally increasing waiting times, the probe molecule is 

able to sample these microscopically distinct environments because of stochastic 

fluctuations of the system, causing their frequencies to evolve. At early waiting 

times, the excitation and detection frequencies are well correlated, with an 

inhomogenously broadened peak shape, because the probe has not had the 

chance to sample many microscopic environments. As the waiting time 

increases, correlation is lost as the probe samples more solvent environments, 

causing the peak shape to become more homogeneously broadened. The 

timescale for this loss in correlation can be related to characteristic timescales of 

the solvent dynamics. This process is known as spectral diffusion. Spectral 

diffusion reports on the chemical dynamics of the system of study. 2DIR is able 

to directly measure the timescales for spectral diffusion.  

The frequency fluctuation correlation function (FFCF), which is often 

interpreted as arising from spectral diffusion, is denoted as C(τ)=<δω(τ)δω(0)> , 

where δω(τ) is the instantaneous fluctuation from the average frequency.83 The 

inhomogeneous index, I(t), which is directly proportional to the FFCF, is extracted 

from 2DIR spectra as the amplitude difference of the rephasing and 

nonrephasing signals: I(t2) = (Ar – An)/(Ar + An), where Ar is the rephasing signal 

amplitude, and An is the nonrephasing signal amplitude.100 The function that 

transforms the inhomogeneity index to the FFCF is: C(t2) = sin[(π*I(t2))/2].  

1.5 THESIS OUTLINE 
This dissertation is organized as follows: Chapter 2 describes the 2DIR 

experiments of a new water-soluble transition metal complex acting as a 

vibrational probe. These experiments show that over a range of concentration 



 11 

and polyethylene glycol (PEG) molecular mass (2000, 8000, and 20,000 Da), the 

time scale of the sensed hydration dynamics has the signature of bulk-like water, 

even where there are slower time scale dynamics. A notable exception is PEG-

400, where we observe a sharp dynamical slowdown near the critical overlap 

concentration, indicating that chain interactions and possibly collective hydration 

alters the water dynamics in a manner similar to previous observations in 

crowded protein solutions. PEG is well known to establish a highly stable 

hydration shell because the spacing between adjacent ethereal oxygens nearly 

matches water's hydrogen bonding network. Although these first-shell water 

molecules are likely significantly retarded, they present an interface to 

subsequent hydration shells, and thus diminish the largely entropic perturbation 

to water’s orientational dynamics. Comparison between these dynamical results 

and previously reported steady-state infrared spectroscopy of aqueous PEG-

1000 solutions reveals a strikingly identical dependence on number of water 

molecules per ethylene oxide monomer, scaled according to the critical overlap 

concentration. 

Chapter 3 describes temperature variation experiments that follow up the 

work of chapter 2, where it was found that over a wide range of concentration 

and molecular weights of PEG, the time scale of sensed hydration dynamics 

differed negligibly from bulk water with an exception of PEG-400, where a 

dynamical slowdown was observed. The time scale was attributed to the stability 

of the hydration shell around the long chain PEGs. By looking at thermodynamic 

trends of aqueous PEG, it was concluded that shorter PEGs promote a less 

stable hydration shell than do the longer chain polymers, which in turn enables a 

collective slowdown of hydration dynamics. Building on that study, temperature 

variation was done to observe how thermodynamics of aqueous PEG solutions 

may change, and how that might affect the hydration dynamics measured. Using 

two-dimensional infrared spectroscopy of a water-soluble transition metal 

complex acting as a vibrational probe, we will report on the hydration dynamics of 

PEG 400 at low and high concentrations from 283 K to 325 K.  
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Chapter 4 describes studies of concentrated aqueous polysaccharide 

polymer solutions of guar and Ficoll. We investigate how structural properties, 

such as branching and size, affect the hydration dynamics. Guar, a linear 

polymer, and Ficoll, a hard, spherical polymer, serve as model macromolecular 

crowders, while their monomer units serve as control solutes and allow us to 

isolate the effects of polymer size and shape. By studying the fundamental 

properties of these mixtures, we learn how crowding and confinement affects the 

structural and dynamical properties of liquids on both a micro- and a macroscale. 

We explore how hydration dynamics depend on connectivity of the monomer 

units (i.e. polymerized vs. discrete) and how polymer shape (i.e. linear vs. 

spherical) affects hydration dynamics of heterogeneous mixtures.  

Chapter 5 summarizes the content of this dissertation and provides future 

directions for this research.  

 

1.6 REFERENCES 

1. Ball, P., Water as an active constituent in cell biology. Chemical Reviews 
2008, 108 (1), 74-108. 
2. Fogarty, A. C.; Duboué-Dijon, E.; Sterpone, F.; Hynes, J. T.; Laage, D., 
Biomolecular hydration dynamics: A jump model perspective. Chemical Society 
Reviews 2013, 42 (13), 5672-5683. 
3. Laage, D.; Elsaesser, T.; Hynes, J. T., Water Dynamics in the Hydration 
Shells of Biomolecules. Chemical Reviews 2017, DOI: 
10.1021/acs.chemrev.6b00765. 
4. Chang, Y.-Y.; Li, D.; Wang, L.-J.; Bi, C.-H.; Adhikari, B., Effect of gums on 
the rheological characteristics and microstructure of acid-induced SPI-gum mixed 
gels. Carbohydrate polymers 2014, 108, 183-91. 
5. Rosell, C. M.; Collar, C.; Haros, M., Assessment of hydrocolloid effects on 
the thermo-mechanical properties of wheat using the Mixolab. Food 
Hydrocolloids 2007, 21 (3), 452-462. 
6. Torres, M. D.; Hallmark, B.; Wilson, D. I., Effect of concentration on shear 
and extensional rheology of guar gum solutions. Food Hydrocolloids 2014, 40, 
85-95. 
7. Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F., Polysaccharide 
hydrogels for modified release formulations. Journal of controlled release : official 
journal of the Controlled Release Society 2007, 119 (1), 5-24. 



 13 

8. Van Thienen, T. G.; Horkay, F.; Braeckmans, K.; Stubbe, B. G.; 
Demeester, J.; De Smedt, S. C., Influence of free chains on the swelling pressure 
of PEG-HEMA and dex-HEMA hydrogels. International Journal of Pharmaceutics 
2007, 337 (1-2), 31-39. 
9. Vidic, R. D.; Brantley, S. L.; Vandenbossche, J. M.; Yoxtheimer, D.; Abad, 
J. D., Impact of shale gas development on regional water quality. Science (New 
York, N.Y.) 2013, 340, 1235009. 
10. Xu, B.; Hill, A. D.; Zhu, D.; Wang, L., Experimental Evaluation of Guar-
Fracture-Fluid Filter-Cake Behavior. 2011. 
11. Zhang, J.; Chen, G., Improve the Temperature Resistance of Guar Gum 
by Silanization. Advanced Materials Research 2012, 415-417, 652-655. 
12. Harris, J. M.; Chess, R. B., Effect of pegylation on pharmaceuticals. 
Nature Reviews Drug Discovery 2003, 2 (3), 214-221. 
13. Veronese, F. M.; Pasut, G., PEGylation, successful approach to drug 
delivery. Drug Discovery Today 2005, 10 (21), 1451-1458. 
14. Hirano, A.; Shiraki, K.; Arakawa, T., Polyethylene Glycol Behaves Like 
Weak Organic Solvent Polyethylene Glycol Behaves Like Weak Organic Solvent. 
Biopolymers 2011, 97. 
15. McPherson, A., Crystallization of Proteins from Polyethylene-Glycol. 
Journal of Biological Chemistry 1976, 251 (20), 6300-6303. 
16. Kjellander, R. F., Ebba, Water structure and changes in thermal stability of 
the system poly(ethylene oxide)-water. Journal of the Chemical Society, Faraday 
Transactions 1: Phyiscal Chemistry in Condensed Phases 1981, 77 (9), 2053-
2077. 
17. Nibbering, E. T. J.; Elsaesser, T., Ultrafast Vibrational Dynamics of 
Hydrogen Bonds in the Condensed Phase. Chemical Reviews 2004, 104 (4), 
1887-1914. 
18. Roberts, S. T.; Ramasesha, K.; Tokmakoff, A., Structural Rearrangements 
in Water Viewed Through Two-Dimensional Infrared Spectroscopy. ACCOUNTS 
OF CHEMICAL RESEARCH 2009, 42 (9), 1239-1249. 
19. Skinner, J. L.; Auer, B. M.; Lin, Y.-S., Vibrational Line Shapes, Spectral 
Diffusion, and Hydrogen Bonding in Liquid Water. Advances in Chemical Physics 
2009, 142, 59-103. 
20. Perakis, F.; de Marco, L.; Shalit, A.; Tang, F.; Kann, Z. R.; Kühne, T. D.; 
Torre, R.; Bonn, M.; Nagata, Y., Vibrational Spectroscopy and Dynamics of 
Water. Chemical Reviews 2016, 116, 7590-7607. 
21. Bakker, H.; Skinner, J., Vibrational spectroscopy as a probe of structure 
and dynamics in liquid water. Chemical reviews 2010, 110, 1498-1517. 
22. Bonn, M.; Nagata, Y.; Backus, E. H. G., Molecular structure and dynamics 
of water at the water-air interface studied with surface-specific vibrational 



 14 

spectroscopy. Angewandte Chemie - International Edition 2015, 54 (19), 5560-
5576. 
23. Kubarych, K. J.; Roy, V. P.; Daley, K. R., Interfacial Water Dynamics. 1 
ed.; Elsevier: 2018; p 443-461. 
24. Buntkowsky, G.; Vogel, M.; Winter, R., Properties of Hydrogen-Bonded 
Liquids at Interfaces. Zeitschrift fur Physikalische Chemie 2018, 232 (7-8), 937-
972. 
25. Fayer, M. D.; Levinger, N. E., Analysis of water in confined geometries 
and at interfaces. Annual review of analytical chemistry 2010, 3, 89-107. 
26. Park, S.; Moilanen, D. E.; Fayer, M. D., Water Dynamics - The Effects of 
Ions and Nanoconfinement. Journal of Physical Chemistry B 2008, 112, 5279-
5290. 
27. Fayer, M. D., Water in a Crowd. Physiology 2011, 26, 381-392. 
28. Bakker, H. J., Structural Dynamics of Aqueous Salt Solutions. Chem. Rev. 
2008, 108 (4), 1456-1473. 
29. Comez, L.; Paolantoni, M.; Sassi, P.; Corezzi, S.; Morresi, A.; Fioretto, D., 
Molecular properties of aqueous solutions: A focus on the collective dynamics of 
hydration water. Soft Matter 2016, 12 (25), 5501-5514. 
30. Laage, D.; Stirnemann, G.; Hynes, J. T., Why Water Reorientation Slows 
without Iceberg Formation around Hydrophobic Solutes. Journal of Physical 
Chemistry B 2009, 113 (8), 2428-2435. 
31. Laage, D.; Hynes, J. T., A molecular jump mechanism of water 
reorientation. SCIENCE 2006, 311 (5762), 832-835. 
32. Kuntz, I. D., Jr.; Kauzmann, W.  , Hydration of Proteins and Polypeptides. 
Advances in Protein Chemistry 1974, 28 (C), 239-345. 
33. Rupley, J. A.; Careri, G., Advances in Protein Chemistry Volume 41. 
Advances in Protein Chemistry 1991, 41, 37-172. 
34. Fayer, M. D., Fast Protein Dynamics Probes with Infrared Vibrational Echo 
Experiments. Annual review of physical chemistry 2001, 52 (12), 315-356. 
35. Fayer, D., Dynamics of Liquids, Molecules, and Proteins Measured with 
Ultrafast 2D IR Vibrational Echo Chemical Exchange Spectroscopy. Annual 
review of physical chemistry 2009, 60, 21-38. 
36. Zhuang, W.; Hayashi, T.; Mukamel, S., Coherent multidimensional 
vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges. 
Angewandte Chemie - International Edition 2009, 48 (21), 3750-3781. 
37. Bellissent-Funel, M. C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, 
P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A. E., Water Determines the 
Structure and Dynamics of Proteins. Chemical Reviews 2016, 116 (13), 7673-
7697. 



 15 

38. Smith, J. C.; Merzel, F.; Bondar, A. N.; Tournier, A.; Fischer, S., Structure, 
dynamics and reactions of protein hydration water. Philosophical Transactions of 
the Royal Society B: Biological Sciences 2004, 359 (1448), 1181-1190. 
39. Bagchi, B., Water Dynamics in the Hydration Layer Around Proteins and 
Micelles. Chemical Reviews 2005, 105 (9), 3197-3219. 
40. Halle, B., Protein hydration dynamics in solution: a critical survey. 
Philosophical Transactions of the Royal Society of London Series B-Biological 
Sciences 2004, 359 (1448), 1207-1223. 
41. Pal, S. K.; Zewail, A. H., Dynamics of water in biological recognition. 
Chemical Reviews 2004, 104 (4), 2099-2123. 
42. Levy, Y.; Onuchic, J. N., Water mediation in protein folding and molecular 
recognition. Annual review of biophysics and biomolecular structure 2006, 35, 
389-415. 
43. Berkowitz, M. L.; Bostick, D. L.; Pandit, S., Aqueous solutions next to 
phospholipid membrane surfaces: Insights from simulations. Chemical Reviews 
2006, 106 (4), 1527-1539. 
44. Jungwirth, P., Biological Water or Rather Water in Biology? Journal of 
Physical Chemistry Letters 2015, 6 (13), 2449-2451. 
45. Helms, V., Protein dynamics tightly connected to the dynamics of 
surrounding and internal water molecules. ChemPhysChem 2007, 8 (1), 23-33. 
46. Zhong, D.; Pal, S. K.; Zewail, A. H., Biological water: A critique. Chemical 
Physics Letters 2011, 503 (1-3), 1-11. 
47. Zimmerman, S. B.; Minton, A. P., MACROMOLECULAR CROWDING: 
Biochemical, Biophysical, and Physiological Consequences. Annual review of 
biophysics and biomolecular structure 1993, 22, 27-65. 
48. Ellis, R. J., Macromolecular crowding : obvious but under appreciated. 
TRENDS in Biochemical Sciences 2001, 26, 597-604. 
49. Minton, A. P., The Influence of Macromolecular Crowding and 
Macromolecular Confinement on Biochemical Reactions in Physiological Media. 
Journal of Biological Chemistry 2001, 276, 10577-10580. 
50. Minton, A. P., Macromolecular crowding. Curr Biol 2006, 16 (8), R269-71. 
51. Zhou, H.-X.; Rivas, G.; Minton, A. P., Macromolecular crowding and 
confinement: biochemical, biophysical, and potential physiological 
consequences. Annual review of biophysics 2008, 37, 375-397. 
52. Rivas, G.; Minton, A. P., Macromolecular Crowding In Vitro, In Vivo, and In 
Between. Trends in Biochemical Sciences 2016, 41 (11), 970-981. 
53. Gnutt, D.; Ebbinghaus, S., The macromolecular crowding effect - From in 
vitro into the cell. Biological Chemistry 2016, 397 (1), 37-44. 
54. Ellis, R. J.; Minton, A. P., Protein aggregation in crowded environments. 
Biological Chemistry 2006, 387, 485-497. 



 16 

55. Musiani, F.; Giorgetti, A., Protein Aggregation and Molecular Crowding: 
Perspectives From Multiscale Simulations. 1 ed.; Elsevier Inc.: 2017; Vol. 329, p 
49-77. 
56. Samiotakis, A.; Wittung-Stafshede, P.; Cheung, M. S., Folding, stability 
and shape of proteins in crowded Environments: Experimental and computational 
approaches. International Journal of Molecular Sciences 2009, 10 (2), 572-588. 
57. Zhou, H. X., Influence of crowded cellular environments on protein folding, 
binding, and oligomerization: Biological consequences and potentials of atomistic 
modeling. FEBS Letters 2013, 587 (8), 1053-1061. 
58. Spitzer, J., From Water and Ions to Crowded Biomacromolecules: In Vivo 
Structuring of a Prokaryotic Cell. Microbiology and Molecular Biology Reviews 
2011, 75 (3), 491-506. 
59. Theillet, F.-x.; Binol, A.; Frembgen-kesner, T.; Hingorani, K.; Sarkar, M.; 
Kyne, C.; Li, C.; Crowley, P. B.; Gierasch, L.; Pielak, G. J.; Elcock, A. H.; 
Gershenson, A.; Selenko, P., Physicochemical Properties of Cells and Their 
Effects on Intrinsically Disordered Proteins (IDPs). Chem. Rev 2014, 114, 6661-
6714. 
60. Nakano, S. I.; Miyoshi, D.; Sugimoto, N., Effects of molecular crowding on 
the structures, interactions, and functions of nucleic acids. Chemical Reviews 
2014, 114 (5), 2733-2758. 
61. Miyoshi, D.; Fujimoto, T.; Sugimoto, N., Molecular Crowding and 
Hydration Regulating of G-Quadruplex Formation. Topics in Current Chemistry 
2013, 330, 87-110. 
62. Huet, S.; Lavelle, C.; Ranchon, H.; Carrivain, P.; Victor, J. M.; Bancaud, 
A., Relevance and limitations of crowding, fractal, and polymer models to 
describe nuclear architecture. 1 ed.; Elsevier Inc.: 2014; Vol. 307, p 443-479. 
63. Yanagisawa, M.; Sakaue, T.; Yoshikawa, K., Characteristic behavior of 
crowding macromolecules confined in cell-sized droplets. 1 ed.; Elsevier Inc.: 
2014; Vol. 307, p 175-204. 
64. Elcock, A. H., Models of macromolecular crowding effects and the need 
for quantitative comparisons with experiment. Current Opinion in Structural 
Biology 2010, 20 (2), 196-206. 
65. Długosz, M.; Trylska, J., Diffusion in crowded biological environments: 
Applications of Brownian dynamics. BMC Biophysics 2011, 4 (1). 
66. Kim, J. S.; Szleifer, I., Crowding-induced formation and structural 
alteration of nuclear compartments: Insights from computer simulations. 1 ed.; 
Elsevier Inc.: 2014; Vol. 307, p 73-108. 
67. Weiss, M., Crowding, diffusion, and biochemical reactions. 1 ed.; Elsevier 
Inc.: 2014; Vol. 307, p 383-417. 
68. Dix, J. A.; Verkman, A. S., Crowding Effects on Diffusion in Solutions and 
Cells. Annual Review of Biophysics 2008, 37 (1), 247-263. 



 17 

69. Giesa, T.; Buehler, M. J., Nanoconfinement and the Strength of 
Biopolymers. Annual Review of Biophysics 2013, 42 (1), 651-673. 
70. Kuznetsova, I. M.; Zaslavsky, B. Y.; Breydo, L.; Turoverov, K. K.; Uversky, 
V. N., Beyond the excluded volume effects: Mechanistic complexity of the 
crowded milieu. Molecules 2015, 20 (1), 1377-1409. 
71. Shahid, S.; Hassan, M. I.; Islam, A.; Ahmad, F., Size-dependent studies of 
macromolecular crowding on the thermodynamic stability, structure and 
functional activity of proteins: in vitro and in silico approaches. Biochimica et 
Biophysica Acta - General Subjects 2017, 1861 (2), 178-197. 
72. Ball, P., Water is an active matrix of life for cell and molecular biology. 
Proceedings of the National Academy of Sciences 2017, 114 (51), 13327-13335. 
73. Laage, D.; Hynes, J. T., On the molecular mechanism of water 
reorientation. The Journal of Physical Chemistry B 2008, 112 (45), 14230-14242. 
74. Yan, C.; Kramer, P. L.; Yuan, R.; Fayer, M. D., Water Dynamics in 
Polyacrylamide Hydrogels. Journal of the American Chemical Society 2018, 140 
(30), 9466-9477. 
75. Minton, A. P., How can biochemical reactions within cells differ from those 
in test tubes? Journal of cell science 2006, 119, 2863-9. 
76. Sarkar, M.; Li, C.; Pielak, G. J., Soft interactions and crowding. 
Biophysical Reviews 2013, 5 (2), 187-194. 
77. Wang, Y.; Sarkar, M.; Smith, A. E.; Krois, A. S.; Pielak, G. J., 
Macromolecular Crowding and Protein Stability. Journal of the American 
Chemical Society 2012, 134 (40), 16614-16618. 
78. Benton, L. A.; Smith, A. E.; Young, G. B.; Pielak, G. J., Unexpected effects 
of macromolecular crowding on protein stability. Biochemistry 2012, 51 (49), 
9773-9775. 
79. Sarkar, M.; Lu, J.; Pielak, G. J., Protein crowder charge and protein 
stability. Biochemistry 2014, 53 (10), 1601-1606. 
80. Guseman, A. J.; Speer, S. L.; Perez Goncalves, G. M.; Pielak, G. J., 
Surface Charge Modulates Protein-Protein Interactions in Physiologically 
Relevant Environments. Biochemistry 2018, 57 (11), 1681-1684. 
81. Laage, D.; Elsaesser, T.; Hynes, J. T., Water Dynamics in the Hydration 
Shells of Biomolecules. Chemical Reviews 2016, 117 (16), 10694-10725. 
82. Cho, M. H., Coherent two-dimensional optical spectroscopy. Chemical 
Reviews 2008, 108 (4), 1331-1418. 
83. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford 
University Press: Oxford, U.K., 1995. 
84. Hamm, P.; Zanni, M., Concepts and methods of 2D Infrared 
Spectroscopy. Cambridge University Press: New York, 2011. 



 18 

85. Ogilvie, J. P.; Kubarych, K. J., Multidimensional Electronic and Vibrational 
Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction 
Dynamics. 2009; Vol. 57, p 249-321. 
86. Mukamel, S., Multidimensional Femtosecond Correlation Spectroscopies 
of Electrionic and Vibrational Excitations. Annual Review of Physical Chemistry 
2000, 51, 691-729. 
87. Wright, J. C., Coherent multidimensional vibrational spectroscopy. 2002; 
Vol. 21, p 185-255. 
88. Jonas, D. M., Two-dimensional Femtosecond Spectroscopy. Annual 
Review of Physical Chemistry 2003, 54, 425-63. 
89. Khalil, M.; Demirdöven, N.; Tokmakoff, a., Coherent 2D IR 
Spectroscopy:  Molecular Structure and Dynamics in Solution. The Journal of 
Physical Chemistry A 2003, 107, 5258-5279. 
90. Park, S.; Kwak, K.; Fayer, M. D., Ultrafast 2D-IR vibrational echo 
spectroscopy: A probe of molecular dynamics. Laser Physics Letters 2007, 4, 
704-718. 
91. Zheng, J.; Kwak, K.; Fayer, M. D., Ultrafasf 2D IR Vibrational Echo 
Spectroscopy. Accounts of Chemical Research 2007, 40, 75-83. 
92. Anna, J. M.; Baiz, C. R.; Ross, M. R.; McCanne, R.; Kubarych, K. J., 
Ultrafast equilibrium and non-equilibrium chemical reaction dynamics probed with 
multidimensional infrared spectroscopy. International Reviews in Physical 
Chemistry 2012, 31, 367-419. 
93. Kiefer, L. M.; Kubarych, K. J., Two-dimensional infrared spectroscopy of 
coordination complexes: From solvent dynamics to photocatalysis. Coordination 
Chemistry Reviews 2018, 372, 153-178. 
94. Treuffet, J.; Kubarych, K. J.; Lambry, J.-C.; Pilet, E.; Masson, J.-B.; Martin, 
J.-L.; Vos, M. H.; Joffre, M.; Alexandrou, A., Direct observation of ligand transfer 
and bond formation in cytochrome c oxidase by using mid-infrared chirped-pulse 
upconversion. Proceedings of the National Academy of Sciences of the United 
States of America 2007, 104, 15705-10. 
95. Nee, M. J.; McCanne, R.; Kubarych, K. J.; Joffre, M., Two-dimensional 
infrared spectroscopy detected by chirped pulse upconversion. Optics letters 
2007, 32, 713-5. 
96. Baiz, C. R.; Nee, M. J.; McCanne, R.; Kubarych, K. J., Ultrafast 
nonequilibrium Fourier-transform two-dimensional infrared spectroscopy. Optics 
letters 2008, 33, 2533-5. 
97. Anna, J. M.; Ross, M. R.; Kubarych, K. J., Dissecting enthalpic and 
entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 
2DIR chemical exchange spectroscopy. The journal of physical chemistry. A 
2009, 113, 6544-7. 



 19 

98. King, J. T.; Ross, M. R.; Kubarych, K. J., Water-assisted vibrational 
relaxation of a metal carbonyl complex studied with ultrafast 2D-IR. The journal 
of physical chemistry. B 2012, 116, 3754-9. 
99. Osborne, D. G.; King, J. T.; Dunbar, J. a.; White, A. M.; Kubarych, K. J., 
Ultrafast 2DIR probe of a host-guest inclusion complex: Structural and dynamical 
constraints of nanoconfinement. The Journal of Chemical Physics 2013, 138, 
144501. 
100. Roberts, S. T.; Loparo, J. J.; Tokmakoff, A., Characterization of spectral 
diffusion from two-dimensional line shapes. The Journal of chemical physics 
2006, 125, 084502. 



 20 

Chapter 2 An “Iceberg” Coating Preserves Bulk Hydration Dynamics in 
Aqueous PEG Solutions 

 

The work in this chapter has been published in the following paper: 

Daley, K. R.; Kubarych, K. J., An “Iceberg” Coating Preserves Bulk Hydration 

Dynamics in Aqueous PEG Solutions. The Journal of Physical Chemistry B 2017, 
121 (46), 10574-10582. 

 

 

2.1 INTRODUCTION 
Macromolecular hydration is central to biomolecule structure and 

function.1 Agents that alter hydration have applications ranging from practical 

methods to increasing solubility or shielding payloads from immune response, to 

enabling fundamental studies of cell-like environments and crowding.2-11 

Polyethylene glycol (PEG) is a widely used polymer due to its water solubility, 

biocompatibility, and ready availability over a wide range of molecular masses. 

For example, pegylation of proteins protects them from immune response, and 

pegylation of therapeutics can enhance solubility of typically hydrophobic 

molecules.12-13 In biochemistry, PEG is a common additive to concentrated 

protein solutions facilitating protein crystallization,14 an effect attributed to the 

differential affinity for water between PEG and the protein.10 In biophysical 

investigations of macromolecular crowding PEG often plays the role of a 

chemically inert species that mimics the highly concentrated environment of 

cells.15 In our own work, we used a short PEG (PEG-400) as a crowding agent, 

investigating the role of crowding on the perturbation of protein hydration water 

dynamics.16 PEG’s appeal in protein crowding studies derives from its apparent 

inertness to proteins, high solubility, and lack of charges.11, 15, 17  
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There is ample evidence, however, from biochemical and biophysical 

studies that PEG is actually rather unusual, and is likely not an ideal model for 

universal macromolecular interactions.18-19 In addition to the structured hydration 

shell discussed in detail below, PEG tends to aggregate in solution, rather than 

forming a homogeneous mixture.20 In the present work, we find that even in 

highly concentrated and viscous PEG solutions, the water dynamics sensed with 

a vibrational probe differ negligibly, if at all, from bulk water. Complementary 

ultrafast IR spectroscopy measurements by Cho et al.21 and by Fayer et al.75 

have reached similar conclusions, though using different spectroscopic 

observables. Inspired by the NMR approach taken by Han et al.,22 we can 

rationalize the experimental results found here, as well as those recently reported 

by Cho et al., using a picture based on a structured hydration shell combined 

with the entropic hydrogen bond jumping framework developed by Laage et al.23-

24 We find that for PEGs with molecular masses greater than ~400 Dalton, the 

hydration dynamics is essentially bulk-like, even in concentrated solutions. In 

contrast, in low molecular mass PEG-400, we find strongly concentration 

dependent dynamics.  

The influence of solutes on the dynamical aspects of water has been 

investigated using several experimental approaches. Considerable progress has 

been made using NMR, both 17O spin relaxation and Overhauser dynamic 

nuclear polarization (ODNP) employing radical probes, providing complementary 

views of interfacial hydration. 17O spin relaxation probes directly the orientational 

dynamics of the water molecules in the vicinity of macromolecules such as 

proteins, yielding a dynamical readout that averages over the whole hydration 

shell.25-26 ODNP provides site-specific translational dynamics of the hydration 

water.27-28 Ultrafast IR pump-probe and 2D-IR spectroscopy have been used to 

study water in concentrated solute solutions, or within micelles.29-32 2D-IR has 

also been used to study solute transitions under dilute conditions avoiding the 

effects of crowding.33-36 In the case of these small molecule probes, whether 

neutral or ionic, the spectral dynamics obtained with 2D-IR correspond to the 

same time scales measured for neat water using 2D-IR without a probe. Ultrafast 



 22 

dynamic fluorescence Stokes shift spectroscopy has been applied to protein 

hydration using tryptophan mutations that permit site-specific solvation 

dynamics.37-40 THz spectroscopy of various aqueous solutions can isolate 

concentration dependent interfacial water dipole relaxation, and provided a 

notable observation of long-range hydration perturbation in protein solutions.41-44 

Optical Kerr effect (OKE) spectroscopy can provide dynamical information that is 

complementary to the THz studies, though due to water's nearly isotropic 

polarizability, OKE is sensitive to the collective intermolecular motions rather than 

to the dipolar reorientation.45-47 The aspect of hydration dynamics perturbation 

that we address here is that which arises from macromolecular crowding or 

confinement. Based on previous work on proteins,16, 43, 48 polymers,21, 44 

micelles,32, 49-50 and carbohydrates,51 it would be reasonable to expect that the 

extended networks macromolecular polymers have would create pools of water 

similar to micelles, and thus collectively slow the hydration water dynamics. As 

detailed in the following, we find both expected and unexpected trends, though 

we propose a unifying explanation based on the thermodynamics of PEG 

hydration52 as well as the extended jump model for hydrogen bond 

reorientation.23, 53-55  

2.2 EXPERIMENTAL METHODS 

2.2.1 Equilibrium 2DIR Spectroscopy 
2DIR spectroscopy uses three infrared femtosecond laser pulses to 

interact with the sample and create a third-order nonlinear signal that is 

proportional to the material response function.56 There are three time delays in 

the experiment, which include the coherence evolution period (t1), the waiting 

time delay (t2), and the detection coherence period (t3). Each delay follows the 

corresponding pulse of E1, E2, or E3. The pulses interact with the sample in the 

noncollinear box57 geometry in order to generate the signal in a background-free 

direction. Based on the possible field interactions, the responses can be divided 

into rephasing and nonrephasing responses, which are easily isolated 

experimentally.58 In the rephasing pathway, the coherences produced during t1 
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have phases that are conjugates of those generated during the detection 

period.59 In the nonrephasing pathway, coherences evolve with the same phases 

during t1 and t3.60 

During the experiments, t1 is scanned using an optical delay line and the 

signal at each detection frequency ω3 via a grating-based spectrometer is Fourier 

transformed to yield the ω1 frequency axis. The phase and amplitude of the 

signal are measured directly in a spectrometer61 via heterodyne detection and 

spectral interference with a local oscillator field.57 Increasing the waiting time (t2) 

between excitation and detection steps reveals dynamical changes in the 2D 

spectral features, which can be related to processes such as solvation dynamics, 

vibrational energy transfer, and vibrational energy relaxation.62 Using 2D-IR, it is 

possible to extract information about solvent-solute interactions, vibrational 

dynamics, and molecular structure.58 We have previously shown that transition 

metal carbonyl complexes are powerful probes of solution environments.63-68 

A 2D-IR spectrum correlates an excited and detected frequency and 

spectral inhomogeneity is manifested in the 2D peak shape as a slant along the 

frequency diagonal. As the solute probe vibrations sample new environments, 

the correlation between the excited and detected frequencies is lost—a process 

known as spectral diffusion—and the peak shape becomes more symmetric. 

Spectral diffusion is an observable linked to the solvent environment of the probe 

used in experiments.69 It has been shown by numerous studies that a variety of 

measures of the peak shape asymmetry can be related to the correlation function 

of frequency fluctuations.70 The frequency-fluctuation correlation function (FFCF) 

is denoted as C(t) = <δω(0)δω(t)>, where δω(t) is the instantaneous fluctuation 

from the average frequency.70 The inhomogeneous index, I(t), which is directly 

proportional to the FFCF,71 is extracted from 2DIR spectra as the amplitude 

difference of the rephasing and nonrephasing signals: I(t) = (Ar – An)/(Ar + An),71 

where Ar is the rephasing signal amplitude, and An is the nonrephasing signal 

amplitude. 

At early waiting times (t2), the excitation and detection frequencies are well 

correlated because the probe has not had the chance to sample many 
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microscopic environments. As the waiting time (t2) increases, correlation is lost 

as the probe samples more solvent environments. The timescale for this loss in 

correlation can be related to characteristic timescales of the solvent dynamics.56 

2.2.2 Molecular Dynamics Simulation 
The MD simulation of a short six-mer of PEG was done simply to 

investigate reasonable structural models for PEG hydration geometries. Similarly 

to a previously reported simulation by Oelmeier et al.,72 we employed YASARA 

14.6.5 using the Amber03 force field (TIP3P for the water), and the built-in 

function AutoSMILES to generate force field parameters for the PEG atoms. The 

simulation was run for more than 500 ps, and the figure in the main text is the 

final snapshot of that simulation. The simulation box had dimensions of 42 x 26 x 

26 Å. Future work will investigate the structure and dynamics of hydrated PEG in 

more detail.  

2.2.3 Sample Preparation 
A water-soluble variant of [Ru(CO)3]2(µ-Cl)2 (Strem Chemicals), a carbon 

monoxide releasing molecule (CORM) commonly referred to as CORM-2, was 

synthesized for use in these studies. To create the water-soluble variant, the 

CORM-2 was sonicated in D2O and heated up to 62°C for 24 minutes until no 

changes were observed in the FTIR spectrum. CORM-2 has the following IR-

active carbonyl stretches: 1972, 2004, 2051, and 2075 cm-1, whereas the water-

soluble variant only has 2 observed bands at 1972 and 2051 cm-1. We denote 

this water-soluble variant as Ru3C.  
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Figure 2.1 A new vibrational probe Ru3C is generated by reacting CORM-2 with water. This probe is 
water soluble and reports bulk water dynamics (1.76±0.2 ps) through the decay of the frequency-
fluctuation correlation function in neat D2O. Ru3C is the probe used to determine the hydration 
dynamics in aqueous solutions of poly(ethylene) glycol. (A) Linear FT-IR spectrum of CORM-2 in D2O 
with its molecule structure; there are numerous carbonyl stretching bands due to a heterogeneity of 
structures. (B) The FT-IR of Ru3C in D2O has two simple peaks consistent with a single tricarbonyl 
coordination. The asterisk denotes the band shown in (C) and analyzed in (D). (C) 2D-IR spectra of 
Ru3C at early (t2 = 100 fs) and later (t2 = 2.3 ps) waiting times. The slight diagonal elongation 
indicates a mild degree of inhomogeneous broadening, which disappears due to spectral diffusion. 
(D) The frequency-fluctuation correlation function of Ru3C in D2O gives a single exponential time 
constant of 1.76±0.2 ps, which is consistent with bulk D2O solvation dynamics. 

PEG 400 (FW 400) is a linear macromolecule and an 8-9mer. PEG 2000 

is a 45-mer, PEG 8000 is a 181-mer, and PEG 20000 is a 450-mer. Ru3C was 

combined with each of PEG 2000, PEG 8000, and PEG 20000 in concentrations 

ranging from 1% to saturation in D2O. The number following PEG refers to the 

number of monomer units. PEG 400, a liquid, was dissolved in D2O at increasing 

concentrations as separate samples with Ru3C. The specific concentrations 

used for this series of experiments were 0-90% PEG 400 by volume.  
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Figure 2.2 Hydration dynamics probed with the 1972 cm-1 band of Ru3C in D2O/PEG mixtures The 
maximum t2 delay collected for all spectra is 30 ps. For the high polymer concentrations the FFCF 
decays become biexponential; the slower component for each case is reported in the figure. 

2.3 RESULTS 

2.3.1 Water Soluble Transition Metal Complex Senses Bulk Water 
Dynamics 
Previous studies have found that the hydration dynamics of water can be 

probed using the carbonyl stretch of transition metal carbonyl complexes, and 

that the frequency-fluctuation correlation function (FFCF) decays of the carbonyl 

stretch agree quantitatively with the spectral diffusion time scales of the OH 

stretch of water determined with 2D-IR spectroscopy of neat water.16, 36 We use 

metal carbonyls because they provide an intense signal in an isolated region of 

the IR spectrum. The FTIR spectrum in D2O (Fig. 2.1 A) of [Ru(CO)3]2(µ-Cl)2, a 

carbon monoxide releasing molecule (CORM) commonly referred to as CORM-
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2,73 shows several bands in the CO stretching region near 2000 cm-1. CORM-2 is 

sparingly soluble in polar solvents, and reacts on a relatively slow time scale 

under ambient conditions, enabling 2D-IR measurements in water and 

methanol.36, 74 The community that uses CORMs to deliver CO in biological 

contexts, however, typically employs the more soluble gycinate derivative, known 

as CORM-3, which is a mononuclear Ru complex with three carbonyl ligands. 

 
Table 2.1 Fitting results for PEG 400 data 

PEG 400 5% PEG 400 20% PEG 400 50% PEG 400 75% PEG 400 90% 

General model: 
     f(x) = a*exp(-
x/b)+c 
Coefficients (with 
95% confidence 
bounds): 
       a =      0.2041  
(0.1737, 0.2344) 
       b =       1.304  
(0.9283, 1.68) 
       c =      0.1097  
(0.097, 0.1224) 
 
Goodness of fit: 
  SSE: 0.04648 
  R-square: 0.7915 
  Adjusted R-
square: 0.7838 
  RMSE: 0.02934 

General model: 
     f(x) = a*exp(-
x/b)+c 
Coefficients (with 
95% confidence 
bounds): 
       a =      0.2145  
(0.1963, 0.2328) 
       b =       2.485  
(2.027, 2.943) 
       c =      0.1231  
(0.1124, 0.1339) 
 
Goodness of fit: 
  SSE: 0.02254 
  R-square: 0.9128 
  Adjusted R-
square: 0.9096 
  RMSE: 0.02025 

General model: 
     f(x) = a*exp(-
x/b)+c 
Coefficients (with 
95% confidence 
bounds): 
       a =      0.2075  
(0.194, 0.2209) 
       b =       3.518  
(2.976, 4.059) 
       c =      0.2964  
(0.2869, 0.306) 
 
Goodness of fit: 
  SSE: 0.01347 
  R-square: 0.9472 
  Adjusted R-
square: 0.9453 
  RMSE: 0.01565 

General model: 
     f(x) = a*exp(-
x/b)+c 
Coefficients (with 
95% confidence 
bounds): 
       a =      0.2588  
(0.2373, 0.2804) 
       b =       7.345  
(5.648, 9.043) 
       c =      0.3434  
(0.3213, 0.3655) 
 
Goodness of fit: 
  SSE: 0.0278 
  R-square: 0.936 
  Adjusted R-
square: 0.9337 
  RMSE: 0.02248 

General model: 
     f(x) = a*exp(-
x/b)+c 
Coefficients (with 
95% confidence 
bounds): 
       a =      0.2824  
(0.2599, 0.3048) 
       b =       8.763  
(6.904, 10.62) 
       c =      0.2835  
(0.2589, 0.3081) 
 
Goodness of fit: 
  SSE: 0.01907 
  R-square: 0.9498 
  Adjusted R-
square: 0.9479 
  RMSE: 0.01879 
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Table 2.2 Fitting results for PEG-2000 data 

PEG 2000 1% PEG 2000 3% PEG 2000 63% 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.2751  (0.2577, 
0.2926) 
       b =       1.843  (1.613, 2.073) 
       c =    -0.04929  (-0.05786, -
0.04072) 
 
Goodness of fit: 
  SSE: 0.01615 
  R-square: 0.9538 
  Adjusted R-square: 0.9521 
  RMSE: 0.01762 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.2937  (0.2768, 
0.3106) 
       b =       1.842  (1.633, 2.051) 
       c =    -0.03723  (-0.04554, -
0.02891) 
 
Goodness of fit: 
  SSE: 0.01521 
  R-square: 0.9616 
  Adjusted R-square: 0.9601 
  RMSE: 0.0171 

General model: 
     f(x) = a*exp(-x/b)+c*exp(-
x/d)+e 
Coefficients (with 95% 
confidence bounds): 
       a =      0.1073  (0.09643, 
0.1181) 
       b =       2.137  (1.651, 2.623) 
       c =    0.006689  (-0.0636, 
0.07698) 
       d =     0.05312  (-0.2388, 
0.3451) 
       e =       0.523  (0.5164, 
0.5295) 
 
Goodness of fit: 
  SSE: 0.003595 
  R-square: 0.9478 
  Adjusted R-square: 0.9431 
  RMSE: 0.008938 

 

 When heated in water, CORM-2 reacts with water rapidly to form a stable 

complex.  CORM-2 is not stable in water, and according to previous work, we 

hypothesize that it reacts to form RuCl2(CO)3(OH2), which we denote "Ru3C" 

(Fig. 2.1 B).75-78 Ru3C is water soluble with two simple CO stretching bands. The 

2D-IR spectrum of Ru3C in D2O (Fig. 2.1 C) shows moderate inhomogeneous 

broadening indicated by the elongated line shape at early waiting time (t2 = 100 

fs), which becomes more homogeneously broadened with increased waiting time 

delay. The asymmetry is due to slight reabsorption. The emitted field can be 

reabsorbed as it propagates through an optically dense sample; subsequent 

signal absorption can cause spectral distortion.79 The exponential spectral 

diffusion (Fig. 2.1 D) time constant for Ru3C in D2O is 1.76±0.2 ps, which is 

consistent with the time scale determined directly using 2D-IR spectroscopy of 

HOD in D2O.80 Tables of fitting functions of all FFCFs are located in Tables 2.1-
2.4. The maximum t2 delay collected for all spectra is 30 ps, and we do not see 

appreciable decay on that timescale (Fig. 2.2). 
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Table 2.3 Fitting results for PEG 8000 data 

PEG 8000 1% PEG 8000 3.30% PEG 8000 61% 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.2675  (0.2264, 
0.3086) 
       b =       1.496  (1.053, 1.939) 
       c =     0.09139  (0.07323, 
0.1096) 
 
Goodness of fit: 
  SSE: 0.08319 
  R-square: 0.8189 
  Adjusted R-square: 0.8119 
  RMSE: 0.04 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.2964  (0.2512, 
0.3415) 
       b =       1.465  (1.035, 1.895) 
       c =      0.1078  (0.08801, 
0.1275) 
 
Goodness of fit: 
  SSE: 0.09973 
  R-square: 0.8001 
  Adjusted R-square: 0.7924 
  RMSE: 0.04379 

General model: 
     f(x) = a*exp(-x/b)+c*exp(-
x/d)+e 
Coefficients (with 95% 
confidence bounds): 
       a =      0.1339  (0.1001, 
0.1676) 
       b =       2.462  (1.075, 3.849) 
       c =     0.06244  (0.01265, 
0.1122) 
       d =      0.2839  (0.02201, 
0.5458) 
       e =      0.5137  (0.4954, 
0.532) 
 
Goodness of fit: 
  SSE: 0.007602 
  R-square: 0.9357 
  Adjusted R-square: 0.9294 
  RMSE: 0.01362 

 
Table 2.4 Fitting results for PEG 20000 data 

PEG 20000 1.50% PEG 20000 3.20% PEG 20000 4.90% PEG 20000 55% 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.2639  
(0.2361, 0.2918) 
       b =       1.567  
(1.247, 1.887) 
       c =    -0.05921  (-
0.07183, -0.04659) 
 
Goodness of fit: 
  SSE: 0.03896 
  R-square: 0.8818 
  Adjusted R-square: 
0.8773 
  RMSE: 0.02737 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.2654  
(0.2412, 0.2895) 
       b =       1.766  
(1.452, 2.081) 
       c =    -0.03496  (-
0.04657, -0.02334) 
 
Goodness of fit: 
  SSE: 0.03051 
  R-square: 0.9125 
  Adjusted R-square: 
0.9091 
  RMSE: 0.02422 

General model: 
     f(x) = a*exp(-x/b)+c 
Coefficients (with 95% 
confidence bounds): 
       a =      0.1842  
(0.1491, 0.2192) 
       b =        1.32  
(0.8239, 1.817) 
       c =     -0.1012  (-
0.1167, -0.08564) 
 
Goodness of fit: 
  SSE: 0.05969 
  R-square: 0.6866 
  Adjusted R-square: 
0.6746 
  RMSE: 0.03388 

General model: 
     f(x) = a*exp(-
x/b)+c*exp(-x/d)+e 
Coefficients (with 95% 
confidence bounds): 
       a =      0.1259  
(0.1081, 0.1437) 
       b =       3.869  
(2.003, 5.735) 
       c =      0.1795  
(0.1541, 0.2048) 
       d =      0.1804  
(0.1493, 0.2114) 
       e =      0.4802  
(0.456, 0.5044) 
 
Goodness of fit: 
  SSE: 0.003939 
  R-square: 0.9663 
  Adjusted R-square: 
0.963 
  RMSE: 0.009802 
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Figure 2.3 Hydration dynamics probed with the 1972 cm-1 band of Ru3C in D2O/PEG mixtures. For the 
high polymer concentrations the FFCF decays become biexponential; the slower component for 
each case is reported in the figure. (A) FFCFs for Ru3C in D2O/PEG-2000 mixtures, ranging from 1% 
PEG concentration to saturation at 63% PEG concentration. (B) FFCFs for Ru3C in D2O/PEG-8000 
mixtures, ranging from 0.7% PEG concentration to saturation at 61% PEG concentration. (C) FFCFs 
for Ru3C in D2O/PEG-20000 mixtures, ranging from pure D2O (0% PEG) to saturation at 55% PEG 
concentration. At the high concentrations, the decays appear biexponential, and the time constants 
quoted are the slow component. Despite some variations with concentration, the overall trend is that 
the probed solvation dynamics are weakly dependent on concentration, if at all. 

2.3.2 Solutions of PEG-2000, PEG-8000, and PEG-20000 Exhibit Bulk-like 
Hydration Dynamics  

Using the Ru3C probe, we studied the ultrafast spectral dynamics using 2D-IR in 

a series of PEG solutions, varying both the molecular mass of the polymer and 

its concentration in D2O. In contrast to our previous studies of covalently labeled 

proteins in crowded solutions, for all of the concentrations of each mixture (Fig. 
2.3) we find that the timescales of spectral diffusion do not significantly vary 

between 1-5 wt% for all lengths of PEG examined. The spectral diffusion time 

constant for each mixture of each polymer yields a similar value to that of Ru3C 

in D2O, within error. This finding is somewhat unexpected since the viscosities of 

the solutions, though molecular mass dependent, are very high. For example, a 

3% solution of PEG-2000 has a viscosity of 1197 cP, and a 3% solution of PEG-

20000 has a viscosity of 2593 cP.81 It is nevertheless not uncommon that 

dynamical processes slip from a simple hydrodynamic (i.e. viscosity dependent) 
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behavior.82-83 Linear FT-IR Spectra of Ru3C in D2O/PEG-2000, D2O/PEG-8000, 

and D2O/PEG-20000 mixtures of increasing concentrations are shown in Fig 
2.4-2.6.  

 
Figure 2.4 Linear'FT*IR'Spectra'of'Ru3C'in'D2O/PEG*2000'mixtures'of' increasing'concentrations.'The asterisks 
denote the mode analyzed.' (A)'Linear FT-IR of Ru3C in increasing concentrations of PEG-2000 in 
D2O; the peaks show some shifts and changes in intensity. (B) Fitted' linear' FT*IR' spectra' of' Ru3C' in'
D2O/36%'PEG'2000''(C)'Fitted'linear'FT*IR'spectra'of'Ru3C'in'D2O/46%'PEG'2000'(D)'Fitted'linear'FT*IR'spectra'of'
Ru3C'in'D2O/63%'PEG'2000'

Even at very high polymer concentration, we observe either a bulk-like or 

only slightly slowed spectral diffusion time constant in PEG-2000, 8000, and 

20000. The higher concentrations appear to exhibit biexponential decays, though 

fitting with single exponentials yields similar time scales for PEG-2000 and 8000. 

The fast component may arise from a wobbling-in-cone motion, as has been 

observed in studies of other vibrational chromophores under confinement.84-85 
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We also note that the saturated samples are more highly scattering, which may 

add a spurious fast component. Since we cannot distinguish these two origins, 

we choose to focus on the clear slower component of the correlation function 

decay. At saturation, 63% PEG-2000 yields a very similar time scale (2.14±0.2 ps 

slow and 0.053 ps fast) compared with the more dilute solutions, but this FFCF 

does not decay to zero, implying a significant contribution due to dynamics on 

time scales longer than can be accessed with the finite probe lifetime of 11.5±0.3 

ps. We would anticipate that the structural heterogeneity and associated motion 

of the polymer chains, as well as water-mediated cross-linking is responsible for 

the slower time scale.86-87 

 
Figure 2.5 Linear FT-IR Spectra of Ru3C in D2O/PEG-8000 mixtures of increasing concentrations. The'
asterisks'denote'the'mode'analyzed. (A) Linear'FT*IR'of'Ru3C'in'increasing'concentrations'of'PEG*8000'in'D2O;'the'
peaks'show'some'shifts'and'changes'in'intensity.'(B)'Fitted linear FT-IR spectra of Ru3C in D2O/34% PEG 
8000  (C) Fitted linear FT-IR spectra of Ru3C in D2O/44% PEG 8000 (D) Fitted linear FT-IR spectra of 
Ru3C in D2O/61% PEG 8000 
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Both high concentration PEG-8000 and 20000 exhibit the same general 

features seen in PEG-2000, though we do note that the saturated (55%) PEG-

20000 solution shows a slower time scale. The spectral diffusion time constants 

are 0.18±0.02 ps (fast) and 3.87±0.9 ps (slow). A significant offset is also present 

in the lower 4.9% concentration of PEG-20000, which indicates the contribution 

from the slow phase of chain motion. 

 
Figure 2.6 Linear FT-IR Spectra of Ru3C in D2O/PEG-20000 mixtures of increasing concentrations. 
The asterisks denote the mode analyzed. (A) Linear FT-IR of Ru3C in increasing concentrations of 
PEG-20000 in D2O; the peaks show some shifts and changes in intensity. (B) Fitted linear FT-IR 
spectra of Ru3C in D2O/29% PEG 20000  (C) Fitted linear FT-IR spectra of Ru3C in D2O/38% PEG 
20000 (D) Fitted linear FT-IR spectra of Ru3C in D2O/55% PEG 20000  
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Figure 2.7 2D-IR spectra of Ru3C + PEG at various lengths and concentrations at early (t2 = 100 fs) 
and later (t2 = 2.3 ps) waiting times. The slight diagonal elongation indicates a mild degree of 
inhomogeneous broadening, which disappears due to spectral diffusion. 

2.3.3 A Dynamical Transition in PEG-400 at the Overlap Concentration (c*) 
Our earlier work on protein crowding used the lower molecular mass PEG-

400 primarily because its radius of gyration (~2 nm) is similar in size to a 

protein.16 It is also a liquid, and is more soluble in water than the higher 
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molecular mass PEGs discussed so far. FTIR spectra of Ru3C in a range of 

PEG-400 solutions in D2O (Fig 2.7) clearly indicate that multiple species are 

present at higher PEG-400 concentration. At high concentrations, Ru3C is 

possibly binding, or tightly associating, to PEG-400, which could lead to the new 

peaks in the spectrum (Fig. 2.8 A). Similarly to how crown ethers act as 

ionophores, linear PEGs have also been found to associate with cations.88-89  

 
Figure 2.8 Linear FT-IR Spectra of Ru3C in D2O/PEG-400 mixtures of increasing concentrations. The'
asterisks'denote' the'mode'analyzed. (A) Fitted linear FT-IR spectra of Ru3C in D2O/20% PEG 400  (B) 
Fitted linear FT-IR spectra of Ru3C in D2O/50% PEG 400 (C) Fitted linear FT-IR spectra of Ru3C in 
D2O/75% PEG 400 (D) Fitted linear FT-IR spectra of Ru3C in D2O/90% PEG 400 

 

The shift of the spectrum back to the blue at high PEG-400 concentration is 

qualitatively distinct from what we observe in the longer PEGs (see Fig 2.4-2.6), 

where we do not see the non-monotonic band shifting. Because the maximum 
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concentration is limited by saturation, it is not known what the spectrum would be 

for very high concentrations of the longer chains.  

 
Figure 2.9 Linear FTIR Spectra, FFCFs and hydration dynamics of Ru3C in D2O/PEG-400 mixtures. 
(A) Linear FT-IR of Ru3C in increasing concentrations of PEG-400 in D2O; the peaks show some 
shifts and changes in intensity. The asterisks denote the mode analyzed in (B). (B) FFCFs for the 
lowest frequency CO stretching mode of Ru3C in D2O/PEG-400 mixtures, ranging from pure D2O to 
90% PEG by volume. (C) Spectral diffusion timescale plotted as a function of mixture composition 
(% v/v). There appear to be two roughly linear regimes, with a slight transition around 50%. The lines 
are guides to the eye. 

With increasing concentrations of PEG-400, the spectral dynamics (Fig. 
2.8 B) do exhibit a monotonic and gradual slowdown, as well as an offset 

increase. As the concentration is increased to 90% (v/v), the spectral diffusion 

time constant slows to 8.76±0.9 ps. Plotting the spectral diffusion time constant 

versus the volume % of PEG-400 shows a gradual dependence (Fig. 2.8 C), and 

two lines drawn to guide the eye hint at a transition near 50%. This concentration 

is very close to the critical overlap concentration, where chains from different 

PEG molecules begin to overlap in a good solvent. We discuss this point in 

greater detail below.  

2.3.4 Spectral Analysis 
The homogeneous and inhomogeneous contributions to the total line 

width were extracted using a procedure introduced by Kwak et al. where the 

homogeneous widths are taken to be Lorentzian and the inhomogeneous widths 

are Gaussian.90 For any given PEG, increasing the concentration causes 

increases in both the homogeneous and inhomogeneous contributions to the 

total line width (see Table 2.5 and Fig 2.9). At low concentration, increasing 

molecular mass leads to decreased inhomogeneous line widths, whereas at high 

concentration, the trend appears to be reversed, and the inhomogeneity grows 

with greater chain length. The homogeneous widths, with the exception of PEG-
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400, increase with chain length at low concentration. At high concentration all of 

the solutions show decreased homogeneous width with chain length.  

 
Table 2.5 Line shape contributions for low and high concentration solutions. 

  
PEG 400 PEG 2000 PEG 8000 PEG 20000 

low % WG 7.4 7.1 6.6 4.9 

 
WL 12.6 6.9 8.0 9.2 

high % WG 11.9 10.3 14.3 17.0 

 
WL 17.3 27.0 25.9 21.3 

 

 
Figure 2.10 Bar plots of the line shape data shown in Table S7. 

 

2.4 DISCUSSION 

2.4.1 PEG’s Stable Water Shell Templates a Bulk-like Iceberg 
In the case of the longer PEGs, we find that the water dynamics of 

concentrated solutions sensed with the Ru3C vibrational probe differ very little, 
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with the main difference apparent as an offset reflecting slow chain dynamics. 

We note that work by Cho et al. has found orientational and population relaxation 

dynamics of three different probes in PEG-1000 solutions to exhibit a similar 

weak concentration dependence, except at concentrations where the 

conformation of the polymer is thought to change.21 Rubinson et al. have 

conducted several small angle neutron scattering and vibrational spectroscopy 

measurements of a wide range of PEGs, finding some support for a collective 

hydration picture from a structural perspective.91-93 

There are other studies of macromolecular crowding where despite very 

high protein concentrations, in some cases only a bulk-like water signature 

emerges. For example, Han et al., used NMR Overhauser dynamic nuclear 

polarization to probe the hydration dynamics at the protein surface of wild-type 

human γS-crystallin (γS-WT) and the G18V mutant (γS-G18V), which leads to 

aggregation and cataracts.22 The wild-type protein was found to be associated 

with bulk-like water dynamics, whereas the mutant protein induced a slowdown 

of the water dynamics. These differences were interpreted as being due to a 

more stable hydration shell around the wild-type protein, which somehow 

becomes disrupted by the mutation.  

Fayer et al. used IR pump-probe spectroscopy to measure vibrational and 

orientational relaxation of water hydrating a short tetramer of PEO (tetraethylene 

glycol dimethyl ether).94 They found two time scales corresponding, respectively, 

to the tightly associated water molecules, and to the bulk. The reported time 

scales were not found to be strongly dependent on the solute concentration. Due 

to the small size of the tetramer it is likely that collective crowding does not occur, 

which explains the lack of a concentration dependence. Similar results have 

been found for protein hydration in water-glycerol solutions.36  

 



 39 

 
Figure 2.11 Clathrate structure and extended angular jump model. (A) MD simulations shows that 
water adopts constrained clathrate like packing to avoid the hydrophobic ethylene units, but is 
nevertheless able to maintain much of its hydrogen bonding network due to the favorable O–O 
spacings, which effectively template a bulk water structure. (B)-(D) Within the extended angular jump 
model describing hydrogen bond rearrangements,54 a highly stable first hydration layer presents a 
bulk water like surface to subsequent hydration layers. A water molecule (highlighted in yellow) 
attempting to switch hydrogen bonding partners is unimpeded due to the availability of the three-
body transition state structure. The highly stable first hydration shell cloaks the polymer's presence 
from the other water, and lacking the entropic reduction typically induced by extended interfaces, 
most of the water behaves like the bulk liquid.  

The question that remains to be addressed is: why would a "stable" 

hydration shell promote bulk-like hydration dynamics? For the case of PEG, we 

can rationalize this finding by combining the current picture of hydrogen bond 

reorientation with the specific thermodynamics of aqueous PEG. With the 

identification by Laage and Hynes of extended angular jumps as the major 

contribution to hydrogen bond rearrangements,95 a solute's inhibition of these 

jumps hinges on its ability to alter the availability of hydrogen bonding partners 

(Fig. 2.10 B-D).23, 96 With this entropic origin of the interface's influence, for 

extended interfaces it is straightforward to predict the slowdown of angular jumps 

to be roughly a factor of two because the surface depletes half of the potential 

hydrogen bonding partners for interfacial water molecules.23 Our prior 

experiments are consistent with this excluded volume explanation, where we find 

hydration dynamics to slow by roughly a factor of two in the vicinity of proteins 

and membranes.36, 97 Simulations by Laage et al. of several different proteins 

support the theoretical prediction as well.53 It would seem obvious that a large 

polymer would also slow the dynamics of water since it is likely to present an 

extended interface, or to create water pools similar to reverse micelles, where 

slowed water is also found.49 

There is an aspect of PEG hydration that has been known for decades, 

but now assumes added importance in PEG's preservation of bulk water 

dynamics. It is well established that PEG exhibits somewhat unusual solution 

thermodynamics. The enthalpy of solution of PEG in water is negative, indicating 
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that there are more favorable interactions in the solution than in the separated 

species.52 Since the primary energetic contribution is hydrogen bonding, the 

exothermicity of solution indicates that water loses very few hydrogen bonds, 

since it can form them with PEG's oxygen atoms. The entropy of solution is also 

negative, indicating that despite the intrinsic entropy increase associated with 

mixing, and the potentially increased configurational flexibility of the polymer, the 

constraints on the water overwhelm the net entropy balance. It is worth noting 

that a trans-gauche-trans helical conformation in solution, which is similar to the 

PEG crystal structure, does not contribute as much entropy as would be 

expected for a random coil polymer. The water becomes constrained specifically 

so that it can make the new hydrogen bonds with the polymer. In other words, 

both the entropy and enthalpy are driven by the same underlying microscopic 

structural origin of maintaining water’s hydrogen bonding network.  

Within the framework of the Lum-Chandler-Weeks picture of hydration, the 

preservation of hydrogen bonds suggests that PEG of any molecular mass 

functions practically as a “small” solute.98-99 Of course, it is not small. Rather, it 

can preserve the network due to the particular arrangement of oxygen atoms. 

Although the CH2–O–CH2–CH2– units are chemically inert,11, 17 the specific 

structural arrangement of the oxygen atoms, coupled with the hydration shell, 

imparts remarkable activity to the PEG.52 This peculiar aspect of PEG is further 

magnified when compared to the apparently similar polyethers 

poly(methylene)glycol (–OCH2–O–) and poly(trimethylene)glycol (–

OCH2CH2CH2–O–), neither of which is soluble in water to any extent because the 

oxygen spacings are incommensurate with the water network. 

When PEG is dissolved in water, the water network is extended because 

of the incorporation of the PEG ether oxygens. The interstitial methylene units 

decidedly restrict hydrogen-bonding opportunities and become surrounded by 

local water cages. In those regions the water adopts a clathrate hydrate like 

packing that enhances the water structure templated by the polymer. In the 

clathrate structure (Fig. 2.10 A), water voids provide free volume to 

accommodate temporary solvent repacking without suffering high-energy density 
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increases. A simple molecular dynamics simulation illustrates that the stable 

water molecules form hexagonally arranged water structures connecting adjacent 

oxygens.72 This hexagonal motif is the primitive building block of an ice 1h 

structure, though clearly lacking a long-range ice structure due to the twisted 

conformation of the underlying polymer. 

Because PEG's oxygens are geometrically compatible with the bulk liquid 

water network, the tight integration of the PEG/water interface results in a highly 

"structured" hydration layer. Although those hydration shell water molecules are 

excessively constrained dynamically,94 they are nevertheless fully capable of 

participating passively in the hydrogen bond rearrangements of the second 

hydration shell. In other words, except for the water molecules directly in contact 

with the PEG, there should be little, if any, dynamical perturbation to the majority 

of hydrogen bond rearrangements. It is interesting to consider the case of DNA, 

which also has been found to cause tight association of water using 2D-IR 

spectroscopy,100 but appears to promote mobile water signatures when viewed 

using ODNP NMR spectroscopy.27  

Absent an increased entropic barrier, there is no excluded volume effect 

for PEG-2000, 8000, and 20000. Here, the idiosyncratic structure of PEG 

imposes a new contribution that lies in between these two regimes. Because of 

the periodic and fortuitous placement of the oxygen atoms, hydrogen bond 

acceptors constructively support a bulk water hydration interface. An entropic 

penalty must ultimately be paid in creating iceberg-like structures.  

2.4.2 Degree of Monomer Hydration (water/EO) Reveals a Sharp Transition 
Near the Overlap Concentration 
Clearly, PEG-400 alters the hydration dynamics more than the longer 

chain polymers. It is therefore possible that PEG-400 has a less stable hydration 

shell. Because it is a short 8-9-mer, the end groups of PEG-400 have the 

potential to contribute significantly to the concentration dependent hydration 

dynamics.52  

Several aspects of PEG's solution thermodynamics have been shown to 

be chain length and concentration dependent. Diluting PEG/water solutions is 
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exothermic. A study of PEG-6000 found that heats of dilution become less 

exothermic at increasing concentrations.101 Similarly, the heat of solution of PEG-

20000 in water at increasing concentration becomes less exothermic.102 In 

general, heats of dilution and solution increase in exothermicity with decreased 

molecular mass,102-104 which is consistent with the high solubility of PEG 400 and 

with the decreased saturation concentrations of larger chain PEGs. As molecular 

mass increases, the exothermicity of solution is unable to compensate the 

entropic cost of constraining the hydration water, and the solubility limit 

decreases.105   

The Flory-Huggins theory provides a framework to decompose solution 

thermodynamics into polymer-polymer, polymer-solvent and solvent-solvent 

interactions using the interaction parameter χ. χ>0 corresponds to polymer-

solvent contacts being less favored than polymer-polymer or solvent-solvent 

contacts. χ<0 corresponds to polymer-solvent contacts being more favored, 

promoting solvation of the polymer. Kagemoto et al. found the interaction 

parameter χ to decrease with decreasing molecular mass of the PEG polymer 

chain.103 Also, short chain PEGs have more negative χ, which correlates to 

PEG’s solubility increases as chain length decreases.106 In addition to chain 

length trends, it has been found that for increasing concentrations, the χ value 

becomes less negative,102 indicating that polymer-polymer and solvent-solvent 

contacts are more preferred at higher concentrations. Combining these 

thermodynamic trends (increased concentrations creating less exothermic 

solutions and trends in χ), we feel it is reasonable to conclude that the shorter 

PEGs do indeed promote a less stable hydration shell than do the longer chain 

polymers, which in turn enables a collective slowdown of hydration dynamics 

leading to a crowding transition. 

It is possible to compare our findings with structural information obtained 

using neutron scattering. Modeling the structure factor with an ansatz based on 

the formation of planar sheets in solution, Rubinson et al.92 propose that 

molecule-thick sheets are separated by water on length scales (10-40 Å) 

comparable to what we16 and others41, 44, 107-108 have found in the context of 
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collective hydration of biomolecules. Within this picture, one would expect a 

pronounced slowdown due to the extended interface, coupled with the collective 

influence of two or more such interfaces. The observed lack of a pronounced 

concentration-dependent slowdown is, nevertheless, compatible with the stable 

hydration shell PEG establishes because water molecules beyond the first shell 

see a bulk-water-like interface. The inter-sheet water molecules are effectively 

masked from the PEG by the highly constrained first hydration shell. Although 

our experiments are unable to address the nature or existence of the 

hypothesized sheets, future simulation studies should be able to test these 

models.109 

 
Figure 2.12 A comparison between D2O/PEGME-1000 mixtures and D2O/PEG-400 mixtures showing 
identical hydration dependence when concentrations are scaled to the overlap concentrations of the 
different molecular mass polymers. A detailed explanation of how this comparison was constructed 
is given in the SI. The magenta data are from FT-IR spectroscopy by Cho et al. (Ref. 21), reported as 
the ratio of absorbance at two different CH stretching bands (2883 and 2919 cm-1). The blue data are 
spectral diffusion time constants using the Ru3C probe in this work. The only arbitrary scaling for 
these two distinct data sets is the vertical scale. The critical overlap concentration c* is denoted by 
the vertical dashed line.  

Finally, we compare our dynamical measurements with steady-state 

spectroscopy results of a similar molecular weight PEG derivative. A comparison 

between the results of Cho et al., who studied poly(ethylene glycol) methyl ester 

(PEGME) as PEGME-1000, and the present work with PEG-400 shows the 

nearly identical dependence of the distinct experimental observables on the 

degree of hydration (Fig 2.11 and 2.12). Using a common basis for quantifying 

PEG hydration, namely, the number of water molecules per ethylene oxide unit, 

we find a striking universality by analyzing previous infrared spectroscopy studies 

of PEG-1000.21 Both our ultrafast dynamics measurements and the previous ratio 
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of conformation specific CH band amplitudes show identical hydration 

dependence when concentrations are appropriately scaled to the overlap 

concentrations of the different molecular mass polymers, detailed below.  

2.4.3 Determination of Water Molecules Per EO Monomer and the Critical 
Overlap Concentrations for PEG-400 and PEG-1000 
From the concentration values, we determine the mole fraction. Since the 

average number of monomer units per PEG-400 is 8.5,110 we multiply the mole 

fraction of PEG by 8.5 to get mole fraction of EO units. The number of water 

molecules per EO unit is the ratio of xD2O to xEO. For our PEG-400 results these 

are the relevant values: 
Table 2.6 Values for mole fraction (xPEG) and water molecules per ethylene oxide units for PEG-400. 

v/v (%) xPEG D2O/EO D2O/EO*(400/342) 

0 0 –  

5 0.0026 45.1 52.8 

20 0.0125 9.29 10.9 

50 0.048 2.33 2.73 

75 0.131 0.78 0.912 

90 0.312 0.26 0.303 

$

We note that we have scaled the number of water molecules per EO unit 

by the ratio of the average formula mass (400) and the effective mass accounting 

for the hydration. The same scaling was used by Cho et al., and we use it below 

in considering the water per EO unit in PEG-1000.  

Values for Cho’s study of PEG-1000 are given in weight percent due to 

the fact that PEG-1000 is a solid at room temperature. The determination of the 

water per EO unit is similar, except that PEG-1000 has an average number of 

EO units of 21.21 To compute the mole fraction, we must use the molecular 
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weight of the PEG-1000, which although the chemical mass has an average of 

1000 g/mol, the effective mass from the point of view of hydration is actually less, 

so we use the cited value of 699 g/mol.17 
$
Table 2.7 Values for mole fraction (xPEG) and water molecules per ethylene oxide units for PEG-1000 
from Cho's study. 

w/w (%) xPEG D2O/EO 

10.046 0.0029 16.56 

19.941 0.0064 7.42 

30.140 0.0110 4.29 

40.031 0.0169 2.77 

50.072 0.0252 1.84 

59.893 0.0370 1.24 

70.070 0.0569 0.790 

80.013 0.0935 0.462 

85.031 0.1276 0.325 

$

Next we need to determine the critical overlap concentration c*. A simple 

definition is the following from polymer theory, where c* is the polymer chain 

concentration: 

$

 

$

where M is the mass of a polymer chain, and NA is Avogadro’s number. The 

radius of gyration (Rg) has been determined for aqueous PEG to be:111 

$

$

c* 4
3
Rg
3⎛

⎝⎜
⎞
⎠⎟
=
M
NA

Rg = 0.0215 MW( )0.583



 46 

$

(in units of nm). There are alternative relationships in the literature, but the 

exponent is generally similar to 0.5. We can take the ratio of two different overlap 

concentrations to be: 

$

$

The ratio of the radii of gyration is 
$

$

$

and we note that only the exponent and the molecular weight part of the Rg is 

retained, since the prefactors cancel.   

$

So we have 
$

$

$

In other words, for case of the longer polymer, the chains begin to come 

into contact at a lower chain concentration.  

From the work of Jora et+ al.112 the overlap concentration of PEG-400 

occurs at an EO/water ratio of 0.3 (i.e. 3.33 water/EO). Scaling this result for the 

longer polymer, we would expect that PEG-1000 critical overlap occurs at a 

concentration that 50% of the concentration of PEG-400 at its c*. The 

concentration of PEG-1000 polymer chains is 50% that of PEG-400, but the 

longer polymer contains more EO units, so in terms of EO/water, there will be 

about 23% more EO units (0.5*21/8.5 = 1.23) in the overlap concentration 

solution of PEG-1000 than there will be in the PEG-400 solution. So, if there are 

c1000
*

c400
* =

3
4
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NA

1
Rg,1000
3

3
4
M 400
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1
Rg,400
3
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3
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3.33 waters per EO in the PEG-400 solution, there will be (3.33/1.23 = 2.71) 

waters per EO in the PEG-1000 solution.  

 
Figure 2.13 . (Left) Spectral diffusion decay times for PEG-400 as a function of the number of water 
molecules per ethylene oxide unit. (Right) Relative absorption of PEG-1000 at two bands that report 
different chain conformation as a function of the number of water molecules per ethyelene oxide 
unit.21 

Cho’s work compares the C-H stretching vibrations of PEGME at 2883 

(random-coil conformation) and 2919 cm-1 (includes both random-coil and trans-

gauche-trans conformations). They note that increased hydration leads to a 

reduced band ratio, suggesting a reduction in random coil segments.21 We also 

observe a transition that is evident in the pronounced changes in the FTIR 

spectra, which may also be attributable to a structural transition. The spectral 

diffusion results, however, add a key dynamical signature to this conformational 

change, and likely provide evidence for a crowding transition similar to what we 

observed in the protein case.16 This perspective highlights the importance of 

chain overlap, and potentially collective hydration, on the structure and dynamics 

of aqueous PEG solutions.   

2.5 CONCLUSIONS 
Using 2D-IR, we find clear evidence for qualitatively distinct dynamics 

sensed by the probe depending on the crowding agent. For PEG-2000, 8000, 

and 20000, there is extreme decoupling between the solvent and the solute: 

viscosity is high but we see bulk-like hydration dynamics. We attribute the lack of 

a pronounced slowdown to the stability of the hydration shell around these long 
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chain PEGs, and explain how a small-scale iceberg-like structure that preserves 

the stability is also able to maintain the extended hydrogen bond jump dynamics 

of bulk water. Thus aqueous PEG solutions may be viewed as being composite 

materials from the perspective of dynamics.91 This finding also adds a new 

aspect to PEG's biocompatibility, not only does PEG preserve water's hydrogen 

bond network, it also facilitates the maintenance of water's motional dynamics. 

For PEG-400, however, the spectral diffusion depends on polymer concentration, 

and exhibits a sharp slowdown in dynamics. Using the number of water 

molecules per ethylene oxide to quantify PEG hydration, we find that our results 

from PEG-400 are consistent with recent results by Cho et al. of PEG-1000. This 

comparison highlights the effects of chain overlap on the dynamics and structure 

of PEG mixtures. By perturbing the local water dynamics, the collective 

slowdown originally observed in crowded protein solutions is possible once the 

PEG-400 chains are able to overlap.93 
$
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Chapter 3  Investigations of Temperature on Aqueous Polymer Solutions 

3.1 INTRODUCTION 
Traditional biochemical investigations of mechanisms, equilibria, reaction 

rates, and dynamics are studied under dilute conditions, with concentrations of 

less than 1 mg/mL of total macromolecule, DNA, or protein. In contrast to such 

idealized solutions, living systems exist in highly crowded environments 

containing macromolecules at concentrations of 100s of mg/mL.1-7 The extent to 

which crowded macromolecular environments alter structure and dynamics in 

real biological systems remains an active area of current research. The main 

thermodynamic considerations driving crowding-induced perturbations were 

discussed in Chapter 2, but we highlight the key points here since temperature 

influences these changes in subtle ways.  

A typical descriptions of crowding is based on an excluded volume picture. 

A biomacromolecule, such as a protein, is considered to be stabilized in the 

folded state due to the limitation of extended conformations due to the volume 

occupied by crowders. This entropic stabilization would be expected to be 

responsible for a significant temperature dependence (-T∆S) to the folding free 

energy change. The simplicity of the excluded volume argument often obfuscates 

an alternative, but also highly relevant, countervailing influence: favorable 

interactions between the protein and the crowding agents. Since so many 

molecules interact through a variety of noncovalent forces, it is important to keep 

in mind that favorable interactions with crowders can in fact promote unfolded 

conformations. This enthalpic destabilization of the folded state therefore 

contributes a temperature dependence to the overall free energy when these 

protein-crowder interactions become thermally disrupted. To the extent that these 

distinct thermodynamic influence may be reinforcing or opposing, it is not 

sufficient to use temperature to gauge the role of crowding in biochemical 
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activity. The main consequence of the alternative “chemical” (i.e. enthalpic) and 

“physical” (i.e. entropic) perturbations is that crowding studies often find 

significant dependence on the chemical nature of the crowding species. 

Unfortunately this important complication raises serious questions about the 

generality of studies performed with one or only a small set of macromolecular 

crowding agents.  

Perhaps the most commonly used molecule used as a crowding agent in 

these experiments is the synthetic polymer polyethylene glycol (PEG). PEG is 

also used in many biomedical and biotechnical applications due to its water 

solubility and biocompatibility over a wide range of molecular weights. For 

example, PEG has applications in cell separation8, purification of proteins9, 

protein modification10, and others.11 PEG is often used to model crowded cellular 

environments, and how crowded envirnoments might affect protein and enzyme 

hydration12-14, protein aggregation15, conformational properties of intrinsically 

disordered proteins16, RNA folding mechanisms17, DNA-functionalized gold 

nanoparticles18, and DNA structure conformations19-21. PEG’s appeal in protein 

crowding studies derives from its apparent inertness to proteins, high solubility, 

and lack of charges.7, 22, 23  

Research has started to examine how other aspects of macromolecular 

crowding must be taken into account for a more complete picture, such as 

viscosity, soft interactions, perturbed diffusion, and crowder shape, confinement, 

and concentration, all of which affect the crowded solution. 24-28 There is ample 

evidence that PEG is possibly not an ideal model for “inert” macromolecular 

interactions.29, 30 It is important to understand the interactions PEG has with 

solvents, like water, first before relying on it as a inert macromolecular crowder. 

In many of the above-mentioned biologically pertinent crowding studies, 

experiments are conducted at physiological relevant temperature, which is 37° C 

(310 K).  A recent study of UV-irradiated glycogen phosphorylase b shows that at 

37° C, aggregation is irreversible31, while at 10°C (283 K) it is a reversible 

process and therefore a good temperature to learn about the initial stages of 
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protein aggregation.15 It is therefore necessary to understand the behavior of 

aqueous PEG solutions through at least this range of temperatures. 

Recently, we found that at room temperature and over a wide range of 

concentration and molecular weights of PEG, the time scale of sensed hydration 

dynamics differed negligibly from bulk water with an exception of PEG-400, 

where a dynamical slowdown was observed.32 The time scale was attributed to 

the stability of the hydration shell around the long chain PEGs. By looking at 

thermodynamic trends of aqueous PEG, it was concluded that shorter PEGs 

promote a less stable hydration shell than do the longer chain polymers, which in 

turn enables a collective slowdown of hydration dynamics.  

Building on that study, using two-dimensional infrared spectroscopy of a 

water-soluble transition metal complex acting as a vibrational probe, we will 

report on the hydration dynamics of PEG 400 at low and high concentrations 

from 283 K to 325 K. We observe how thermodynamics of aqueous PEG 

solutions may change, and how that affects the hydration dynamics measured. 

Based on temperature dependent thermodynamic trends of PEG and previous 

results of PEG crowding at room temperature32, at increasing temperatures, the 

hydration shell becomes less stable and we would see a slow down in dynamics. 

However, the temperature dependence of PEG in D2O can be more complex 

than its behavior at room temperature due to entropic, enthalpic, and viscosity 

effects.  

 

EXPERIMENTAL METHODS 

3.1.1 Equilibrium 2DIR Spectroscopy 
Two-dimensional infrared spectroscopy (2DIR) is a multidimensional 

nonlinear optical technique. The 2DIR set up used here has been described in 

Chapter 2.33 In its current implementation, an output centered around 800 nm 

from a regeneratvely amplified Ti:sapphire laser is used. This output has a 1 KHz 

repetition rate and uses a dual optical parametric amplifier with beta barium 

borate crystals to generate near IR pulses. These pulses are then used to 



 60 

generate two mid IR pulses by difference frequency generation in separate 

AgGaS2 crystals. The mid IR pulses are centered around 2000 cm-1 with about 

100 cm-1 FWHM bandwidth. Using beam splitters, these two beams are then split 

into three pump pulses, a tracer, and the local oscillator.33 

The three infrared femtosecond laser pulses interact with the sample and 

create a third-order nonlinear signal. The three fields are E1, E2, or E3 with 

corresponding wave vectors k1, k2, and k3. The fields are separated by time 

delays t1, t2 (the so-called waiting time), and t3. The pulses interact with the 

sample in a noncollinear box geometry in order to generate a signal in a 

background free directions during t3. The phase and amplitude of the signal field 

are measured directly with a spectrometer via optical heterodyne detection by 

interference with the local oscillator. 34, 35 During the experiment, the waiting time 

is incrementally stepped over a range of picoseconds. At each waiting time, the 

time delay between the first two pulses is scanned continuously. The complex 

electric field that is collected during this delay is Fourier transformed with respect 

to the first time delay to yield the excitation frequency axis (ω1). The 

spectrometer measures the signal field emitted during t3 directly in the frequency 

domain, creating the detection axis directly. The IR signal, the local oscillator, 

and a chirped 800 nm pulse are combined and upconverted by sum frequency 

generation to roughly 690 nm and detected using a silicon CCD.33 

Increasing the waiting time between excitation and detection reveals 

dynamical changes in the 2D spectral features, which can be related to 

processes such as solvation dynamics. In this work we will primarily use spectral 

diffusion.  

3.1.2 Variable Temperature Experiment Set Up 
 A hand built temperature cell was used to control the temperature of the 

sample cell. A water bath is used as a reservoir for the peltier heat pumps that 

are attached to the sample cell. The electronics are connected to a personal 

computer through a USB interface. Labview is used to control the temperature 

cell. The temperature limits are 276 K to 325 K.  
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3.1.3 Sample Preparation 
A water-soluble variant of [Ru(CO)3]2(µ-Cl)2 (Strem Chemicals), a carbon 

monoxide releasing molecule (CORM) commonly referred to as CORM-2, was 

synthesized for use in these studies. To create the water-soluble variant, the 

CORM-2 was sonicated in D2O and heated up to 62°C for 24 minutes until no 

changes were observed in the FTIR spectrum. CORM-2 has the following IR-

active carbonyl stretches: 1972, 2004, 2051, and 2075 cm-1, whereas the water-

soluble variant only has 2 observed bands at 1972 and 2051 cm-1. We denote 

this water-soluble variant as Ru3C.  

PEG 400 (FW 400) is a linear macromolecule and an 8-9mer. PEG 400, a 

liquid, was dissolved in D2O at increasing concentrations as separate samples 

with Ru3C. The specific concentrations used for this series of experiments were 

5% and 75% PEG 400 by volume.  

 
Figure 3.1$ Linear$ FT0IR$ Spectra$ of$ Ru3C$ in$D2O/PEG0400$mixtures$ of$ increasing$ concentrations$ and$ temperatures.$

(Left)$Linear FT-IR of Ru3C in D2O at increasing temperatures. (Middle) Linear FT-IR of Ru3C and 5% PEG 
400 in D2O at increasing temperatures. (Right) Linear FT-IR of Ru3C and 75% PEG 400 in D2O at 
increasing temperatures. There is no significant temperature dependence seen in the spectra.  

 

3.2 RESULTS 
Water Soluble Transition Metal Complex Senses 2x Slow Down of Water 
Dynamics from 325 K to 283 K.$$

Studying hydration dynamics using metal carbonyl probes is useful 

because they have an intense vibration in an isolated part of the infrared 

spectrum. Previously, we synthesized a new water soluble metal complex from 

[Ru(CO)3]2(µ-Cl)2, a carbon monoxide releasing complex (CORM-2), that can be 
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used to sense bulk water dynamics.32 This new probe, denoted as Ru3C, has an 

exponential spectral diffusion time constant of 1.76 ±0.2 ps in D2O (Fig 3.2 A-C). 

This timescale is consistent with the spectral diffusion timescale of an HOD 

probe in D2O studied with 2D-IR spectroscopy.36 Using Ru3C as a vibrational 

probe, we found that over a wide range of concentration and molecular weights 

of PEG, the time scale of sensed hydration dynamics differed negligibly from bulk 

water with an exception of PEG-400, where a dynamical slowdown was 

observed. The time scales were attributed to the stability of the hydration shell 

around the long chain PEGs. By looking at thermodynamic trends of aqueous 

PEG, it was concluded that shorter PEGs promote a less stable hydration shell 

than do the longer chain polymers, which in turn enables a collective slowdown 

of hydration dynamics.32 

 
Figure 3.2 A: The FT-IR of Ru3C in D2O has two peaks consistent with a single tricarbonyl coordination. The 
asterisk denotes the band shown in (B) and analyzed in (C). B: 2D-IR spectra of Ru3C at early (t2 = 100 fs) 
and later (t2 = 2.3 ps) waiting times. C: The frequency-fluctuation correlation function of Ru3C in D2O gives a 
single exponential time constant of 1.76±0.2 ps, which is consistent with bulk D2O solvation dynamics. (D) 
FFCFs for the lowest frequency CO stretching mode of Ru3C at increasing temperatures, ranging from 283 
K to 325 K. 
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Using the 1972 cm-1 peak of Ru3C to track hydration dynamics of D2O, we 

measured the exponential spectral diffusion time constant (Fig 3.2 D). It was 

consistently found that the hydration dynamics of Ru3C slow about by about 2-

fold from the measurements taken at 325 K and the measurements taken at 283 

K. The maximum t2 delay collected for all spectra is 20 ps. Figure 3.1 (left) 
shows the FTIR of Ru3C in D2O at increasing concentrations, with no significant 

temperature dependence.  

 
Figure 3.3 Hydration dynamics probed with the 1972 cm-1 band of Ru3C in D2O/PEG 400 mixtures at 
various temperatures. (A) FFCFs for Ru3C in D2O/ 5% PEG-400 mixtures, ranging from 283 K to 325 K. (B) 
FFCFs for Ru3C in D2O/ 75% PEG-400 mixtures, ranging from 283 K to 325 K. The overall trend is that the 
probed solvation dynamics are dependent on temperature. 

 

3.2.1 Solutions of PEG 400 Exhibit Increased Hydration Dynamics from 
283 K to 325 K. ~2.5 Slow Down From 325 K to 283 K 
Ru3C is the metal carbonyl probe used to sense the hydration dynamics in 

aqueous PEG 400 solutions at varying temperatures. Using 2D-IR, we observed 

aqueous PEG solutions at increasing concentrations of PEG 400. At the 5% PEG 

400 aqueous solution, we measured the hydration dynamics at both 283K, 297 

K, and 325 K. Previously we found that the hydration dynamics at low 

concentrations of aqueous PEG 400 solutions at room temperature were similar 

to that of Ru3C in D2O at room temperature.32 Presently, we consistently find that 

the hydration dynamics of 5% PEG 400 aqueous solutions slow about by about 

2.5-3-fold from the measurements taken at 325 K and the measurements taken 

at 283 K (Fig 3.3 A).  

(A) (B)
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The hydration dynamics of the 75% PEG 400 aqueous solution were also 

measured at 283 K, 297 K, and 325 K. Previously we found that the hydration 

dynamics at 75% PEG 400 aqueous solution at room temperature were 

significantly slower than that of Ru3C probe in D2O. In this study, we find that is 

still consistent, and that the hydration dynamics slow about 2.5-3 times from the 

measurements taken at 325 and the measurements taken at 283 K (Fig 3.3 B). 

The hydration dynamics measured at 283 K are similar to those of 90% PEG 400 

aqueous solution at room temperature.  Figure 3.1 (middle and right) show the 

FTIR spectra of PEG 400 5% and 75% in D2O, respectively. There is no 

significance temperature dependence seen in the spectra.  

 

3.3 DISCUSSION 

3.3.1 Ru3C and D2O solutions 
It was observed that the hydration dynamics of Ru3C/D2O solutions slow 

as temperature decreases. These results are consistent with temperature 

dependent 2DIR results of pure water measured previously by Tokmakoff et 

al..37, 38 Using 2DIR, they examined dilute HOD in H2O from 278-345 K, which is 

a 67 K difference in temperature. It was found that the spectral diffusion time 

constant decreased from 2.4 ps to 0.7 ps, which is a 3.4-fold increase in time 

scale and about 0.05-fold increase in dynamics timescale per 1 K increase. We 

examined Ru3C in D2O from 283-325 K and 283-318K. Each of these 

experiments showed a 0.05-fold increase in dynamics timescale per 1 K as well. 

Hence, it is clear that a solvation dynamics probe is capable of detecting the 

solvent dynamics even under conditions of varying temperature. This finding has 

not previously been reported in the literature by any other researchers.  

3.3.2 Aqueous PEG 400 Hydration Dynamics at Room Temperature 
In order to address the present temperature dependent results, we first 

review the results from room temperature experiments.32 There is a lengthy 

discussion regarding the water-PEG interactions and thermodynamics of solution 

in Chapter 2. We provide a brief overview here. It was found that as the PEG 
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lengths decrease, the stability of the hydration shell decreases, with PEG 400 

having the least stable hydration shell out of the PEGs studied. It was suggested 

that by combining the discussed thermodynamic trends described, that shorter 

PEGs do promote a less stable hydration shell than do the longer chain 

polymers, which in turn enables a collective slowdown of hydration dynamics 

leading to a crowding transition.  

3.3.3 PEG-Water Structure 
When PEG is dissolved in water, the ether oxygens participate in 

hydrogen bonds with water. The spacing between ethereal oxygens nearly 

matches water’s hydrogen-bonding network. Although the CH2–O–CH2–CH2– 

units of PEG are chemically inert,7, 23 the specific structural arrangement of the 

oxygen atoms, coupled with the hydration shell, imparts remarkable activity to the 

PEG.39 This becomes obvious when compared to apparently similar polyethers 

poly(methylene)glycol (–OCH2–O–) and poly(trimethylene)glycol (–

OCH2CH2CH2–O–), neither of which is soluble in water to any extent because the 

oxygen spacings are incommensurate with the water network.  

A highly structured hydration layer exists around PEG molecules, which 

incorportates the ether oxygens of PEG. This allows for the water network to 

extend and participate in the hydrogen bond rearrangements of the second 

hydration shell. According to the extended jump model, which describes a 

hydrogen reorientation mechanism, extended angular jumps are a major 

contribution to hydrogen bond rearrangements,40 and a solute's ability to inhibit 

these jumps depends on its ability to change the availability of hydrogen bonding 

partners.41, 42  

Because it is a short 8-9-mer, the end groups of PEG-400 have the 

potential to contribute significantly to the concentration dependent hydration 

dynamics.39 It has been previously determined that the primary enthalpic 

contribution was from the hydroxyl end groups.43 Also, high molecular mass 

PEGs adopt a helical conformation, while low molecular mass PEGs, which do 

not form a helix, experience more hydrophobic interactions that control the 

solution's dynamics.  
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3.3.4 Thermodynamics of Aqueous PEG Solutions 
In general, the enthalpy of solution of PEG in water is negative, indicating 

that there are more favorable interactions in the solution than in the separated 

species.39 The entropy of solution is also negative, indicating that despite the 

intrinsic entropy increase associated with mixing the constraints on the water 

overwhelm the net entropy balance. Diluting PEG/water solutions is an 

exothermic process. At increasing concentrations of PEG, the heat of dilution 

becomes less exothermic, making the hydration shell less stable. 44, 45 In general, 

heats of dilution and solution increase in exothermicity with decreased molecular 

mass, which is consistent with the high solubility of PEG 400 and with the 

decreased saturation concentrations of larger chain PEGs. 43, 45, 46 As molecular 

mass increases, the exothermicity of solution is unable to compensate the 

entropic cost of constraining the hydration water, and the solubility limit 

decreases.47   

The Flory-Huggins theory provides a framework to decompose solution 

thermodynamics into polymer-polymer, polymer-solvent and solvent-solvent 

interactions using the temperature-dependent interaction parameter χ. Positive 

values of χ correspond to polymer-polymer or solvent-solvent contacts being 

favored. Negative values of χ correspond to polymer-solvent contacts being more 

favored, promoting solvation of the polymer. It was found that the interaction 

parameter χ decreases with decreasing molecular mass of the PEG polymer 

chain.43 Also, short chain PEGs have more negative χ, which correlates to PEG’s 

solubility increases as chain length decreases.48 In addition to chain length 

trends, for increasing concentrations, χ becomes less negative,45 indicating that 

polymer-polymer and solvent-solvent contacts are more preferred at higher 

concentrations.  
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3.3.5 Temperature-Dependent PEG Characteristics 
PEG solubility is temperature dependent in water. When heating an 

aqueous solution of PEG near water’s boiling point, the polymer will separate 

from the water. This is called the lower consolute temperature, lower critical 

solution temperature, or cloud point. Above 100°C the solution will separate as 

PEG becomes insoluble. The specific temperature is dependent on molecular 

weight, concentration and pH.49 As the length of PEG decreases, the separation 

temperature increases. For PEG 1900, this is 180°C50, 51, and for PEG 200,000, it 

is around 100°C52, depending on concentration. Looking at this process with the 

water iceberg structure in mind, as the temperature increases, this layer of water 

is disturbed in favor of more polymer-polymer and solvent-solvent interactions, 

and is an entropic process. Salts lower the precipitation temperature of aqueous 

PEG solutions.52 

The Flory-Huggins parameter χ is temperature dependent, and generally 

as temperature increases, χ decreases, but for a hydrogen-bonding pair, χ may 

increase.53 A small-angle x-ray scattering experiment confirms this. PEG 

4600/D2O solutions from 1-20 wt% were studied.54 It was determined that χ = α + 

β/T was the temperature dependence of χ, where α is the entropic free energy 

and β is the enthalpic free energy. From this equation, it was determined that the 

majority of the free energy is entropy related. It was also determined that as 

temperature increased, χ also increased, which means that as temperature 

increases, polymer-polymer and solvent-solvent interactions are preferred. Flory-

Huggins theory decently describes the data collected. This study also confirms 

that as the temperature increases, the hydration shell becomes more disordered.  

 

3.3.6 Aqueous PEG 400 Solutions at Varying Temperatures 
PEG 400 solutions had hydration dynamics slow as temperature 

decreased and that the spectral diffusion time constant slowed by ~0.07 x per 1 

K. Similarly, PEG 400 75% solutions showed the same change in spectral 

diffusion. Both the lower critical solution temperature discussion and the 

temperature-dependent χ indicate that at increasing temperatures, the hydration 
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shell becomes less stable. Polymer-polymer and solvent-solvent interactions 

become preferred for both increases in concentration and temperature. In our 

previous study32, we argued that a less stable hydration shell leads to slower 

hydration dynamics experienced by the probe, and a more stable hydration shell 

led to sensed bulk water dynamics. Here, we see that as the temperature 

increases and the hydration shell of PEG becomes less stable, the spectral 

diffusion time constants have a faster decay. As the temperature decreases, the 

spectral diffusion time constant slows.  

What could be happening is that the temperature dependent behavior of 

D2O is more prominent than the temperature dependence of χ and other 

thermodynamics of PEG. While at 283 K PEG’s hydration shell should be very 

stable, the probe is sensing the slowed hydrogen bond reorientation. At 

increasing temperatures, the barriers to hydrogen bond reconfiguration are low, 

which could lead to faster spectral diffusion.37 At higher temperatures, H-bonds 

are broken, which can cause defects in the hydration water network and 

disruption in the “iceberg” coating. Such a disruption could induce more collective 

hydration.  

The viscosity of solutions if generally temperature dependent, with 

increases in temperature leads to a lowering of the shear viscosity.55, 56 A 

commonly employed phenomenological model is that of an Arrhenius 

temperature dependence: 

  
η T( ) =η0e

Ea
RT  (3.1) 

where the sign in the exponent is positive due to the fact that viscosity decreases 

with increased temperature. If we assume that the time scale for spectral 

diffusion is viscosity dependent, as it has been found previously in pure water38, 

57, we can estimate the activation barrier from spectral diffusion measurements at 

two different temperatures similar to how chemical reaction barriers can be 

determined: 
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which can be rearranged to give Ea: 
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Table 3.1 shows the results of this Arrhenius analysis using FFCF decays 

at 283 and 325 K in water (D2O), PEG 400 (5%), and PEG 400 (75%). For the 

case of pure D2O, we find an activation energy of 3.1 kcal/mol, which agrees 

remarkably well with experiments on pure water using 2D-IR spectroscopy. Using 

all-parallel field polarizations, both Tokmakoff et al. and Hamm et al. measured 

apparent activation energies of 3.5 kcal/mol. This agreement with the pure liquid 

reinforces the fidelity of metal carbonyl probes to access the hydration dynamics 

of the water solvent, while also serving to confirm that small solutes do not 

perturb the hydration dynamics appreciably. Repeating the analysis on the PEG 

solutions, we find a rather weak concentration dependence. At 5% (0.0026 mole 

fraction) and 75% (0.133 mole fraction), the apparent activation energies are only 

slightly larger, 3.9 and 4.7 respectively.  

 
Table 3.1 Time constants for spectral diffusion of Ru3C in water (D2O), and two aqueous PEG solutions (5 
and 75% v/v). Activation energies can be obtained using Eq. 3.3. Error bars on the activation energies are 
obtained by propagating the error bars of the fitted time constants. 

 
 

From measured viscosity data for aqueous PEG solutions55 (Fig. 3.4), we 

find that although the 5% solution is essentially indistinguishable from neat water, 

the 75% solution has an activation energy of about 42 kJ/mol (10.0 kcal/mol), 

which is more than a factor of 2 greater than our experiments would suggest. For 

such a high activation barrier, the temperature dependence would be much more 

 D2O PEG-400 (5%) PEG-400 (75%) 

τ  (283 K) (ps) 1.7 2.2 8.6 

τ  (325 K) (ps) 0.83 0.9 2.9 

Ea (kJ/mol) 13.1±0.7 16.3±0.6 19.8±1 

Ea (kcal/mol) 3.1±0.2 3.9±0.1 4.7±0.2 
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pronounced, and would indeed induce a slowdown factor of 10. That is, we would 

expect the 283 K dynamics to be an order of magnitude slower than the 325 K 

case, instead of the more modest 3-fold slowdown. 

Viewed from the perspective of viscosity-slaved dynamics, the 

temperature dependent results serve to highlight the degree to which the water 

dynamics we sense in PEG solutions is bulk-like. Without a temperature 

dependent set of data, it is difficult to make strong conclusions about the validity 

of a viscosity dependence to spectral diffusion. Indeed, in many cases, we find 

that viscosity does not correlate well with spectral diffusion timescales58, though 

in other cases, for example, in a series of alcohols, there is a clear linear 

viscosity dependence.59, 60 By changing temperature, we can be more confident 

that spectral diffusion differences do not result from variations in chemical 

composition, as could occur in a solvent series or even in a concentration series 

involving a co-solvent. Rather, we expect a more direct readout of the solvation 

dynamics.  

 
Figure 3.4 Viscosity analysis. (Top Left) Contour plot depicting how as the mole fraction of PEG 400 
increases and as temperature decreases, the viscosity increases.  (Top Right) Viscosity-dependent 
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Arrhenius fits for each mol fraction of PEG 400. (Bottom Left) Activation energies calculated from the 
viscosity-dependent Arrhenius fits for each mole fraction, indicating the activation energy for PEG 400 at 
75% in D2)  (Bottom Right) Normalized plot of activation energy versus mole fraction.  

 

3.4 CONCLUSIONS 
Temperature dependence adds another dimension to our extensive data set that 

so far has examined concentration and chain length influences on hydration 

dynamics. Changing temperature alters both structure and dynamics, and in 

aqueous PEG solutions is a complex combination of chain length, hydrogen 

bonding, entropy and transport properties. Our picture, that the bulk-like 

hydration is promoted by a clathrate-like ice structure of water molecules 

surrounding the PEG polymer, could have supported a predicted slowdown due 

to the disruption of this stable hydration shell. Competing influences, however, 

are significant, and include faster transport reflected in lower viscosity at higher 

temperatures, as well as an increase in chain extension due to the well-known 

temperature dependence of the radius of gyration.61 Increasing the temperature 

lowers the solubility of PEG in water, and likely leads to changes in the polymer’s 

helicity. This trend is due largely to the breaking of the favorable hydrogen bonds 

that bear the full cost of decreased entropy of solution.  

 Despite these complex and often competing effects of temperature, we 

observe a clear trend in the spectral diffusion results. The Ru3C proves to be 

capable of reporting the temperature dependent dynamics of neat water, wherein 

we find a 3.1±0.2 kcal/mol apparent viscosity activation energy, which agrees 

quantitatively with previous measurements of neat water using 2D-IR 

spectroscopy without a probe. Comparing the time scales for spectral diffusion 

measured at two different PEG 400 concentrations, we find in both cases 

apparent activation energies that are very similar to that of neat water. The 

results are clearly at odds with a simple solution viscosity dependence, since the 

literature viscosity values give much larger activation barriers than are consistent 

with our ultrafast data. We do observe significant, but small, increases in the 

activation barriers with increased PEG concentration, but the resemblance to 
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neat water lends further evidence to a picture of bulk-like water hydrating the 

polymer.  
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Chapter 4 CROWDED VERSUS BULK DYNAMICS IN GUAR AND FICOLL 
SOLUTIONS 

4.1 INTRODUCTION 
Two-dimensional infrared (2DIR) spectroscopy is an experimental 

technique that can be used to observe solvent dynamics and provide bond-

specific structural resolution.1 While linear FTIR spectroscopy provides only time-

averaged information regarding chemical processes, 2DIR allows for resolution 

on a picosecond timescale due to the utilization of femtosecond pulses.2 This 

technique has been used to study a multitude of subjects such as glass formers,3 

proteins,4-6 and biological membranes,7 focusing particularly on aspects of 

hydration dynamics.  

Though 2DIR has been helpful in elucidating a wide array of physical 

challenges in condensed phases, the fundamental properties of heterogeneous 

mixtures of polymers remains generally unexplored. Heterogeneous mixtures 

consist of various components that are either known to or are expected to exhibit 

complex multiscale dynamics ranging from femtoseconds and picoseconds to 

much longer timescales.3 In cases where water is a major component, its role is 

as both a solvent and as a mediator of dynamical coupling,5 with likely 

complicated dependencies on composition, concentration, and other 

thermodynamic parameters such as temperature, pressure, and strain. 

Heterogeneous mixtures of polymers have rarely been studied using 2DIR 

spectroscopy, and little is known about how hydration dynamics are affected by 

these crowded solutions, which have applications in cell biology, heterogeneous 

catalysis,22 and in hydraulic fracturing liquid8. Confined liquids also have an 

important role in the fields of cellular dynamics, lubrication, and microfluidic 

technology.9-10 
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Hydraulic fracturing liquid (HFL) is a relevant polymer mixture that inspires 

this study. For more than a decade, the natural gas industry has used hydraulic 

fracturing to remove natural gas from shale. HFL is a viscous solution typically 

made of sand, emulsifier (the polymer guar)11, and water. HFL is injected into a 

well at high pressures to create fractures in the shale. Guar is used to make the 

water viscous so that the sand remains in solution.12 Sand is not water soluble, 

so the fact that HFL has embedded sand indicates the solution is intrinsically out 

of equilibrium. Also, during the injection process, HFL exhibits nonlinear and non-

equilibrium (i.e. non-Newtonian) dynamics. This leads to properties such as 

shear thinning, where viscosity becomes a function of shear.11 Little research has 

been conducted on the basic chemical dynamics of polymer solutions, like HFL, 

using the ultrafast spectroscopic techniques that have been so successful in 

enhancing our understanding of other complex systems such as 

proteins/peptides and hydrogen bonded liquids.13-15  

 
Figure 4.1 Structure of guar and mannose. 

Since little is known about the dynamics of HFL,16 before moving on to 

model the whole mixture, we first investigate aqueous guar solutions. Figure 4.1 

depicts the structure of guar, and the monomer unit mannose. This model system 

can provide fundamental information on the hydration dynamics of concentrated 

polymer solutions, such as how viscosity may relate to the picosecond hydration 
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dynamics and the effect of macromolecular crowding. We focus on hydration 

dynamics of polymer solutions and how water behaves as the polymer chains 

begin to overlap and entangle. We investigate how structural properties, such as 

branching and size, affect the hydration dynamics. Guar, a linear polymer, and 

Ficoll (Figure 4.2), a hard, spherical polymer, serve as our model 

macromolecular crowders, while their monomer units will serve as control solutes 

and allow us to isolate the effects of polymer size and shape.  

By studying the fundamental properties of these mixtures, we learn how 

crowding and confinement affects the structural and dynamical properties of 

liquids on both a micro- and a macroscale. We explore how hydration dynamics 

depend on connectivity of the monomer units (i.e. polymerized vs. discrete) and 

how polymer shape (i.e. linear vs. spherical) affects hydration dynamics of 

heterogeneous mixtures.  

 
Figure 4.2 Structure of Ficoll and its monomer unit sucrose.  

4.2 EXPERIMENTAL METHODS 

4.2.1 2DIR Spectroscopy 
The experimental set up has been described in full elsewhere.17 Briefly, 

2DIR spectroscopy uses three infrared femtosecond laser pulses to interact with 

the sample and create a third-order nonlinear signal.18 There are three time 

delays in the experiment, which include the evolution period (t1), the waiting 
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period (t2), and the detection period (t3). Each delay follows the corresponding 

pulse of E1, E2, or E3. The pulses interact with the sample in the noncollinear box 

geometry in order to generate the signal in a background free direction.19 During 

the experiments, t1 is scanned using an optical delay line and the signal at each 

detection frequency ω3 is Fourier transformed to yield the ω1 frequency axis. The 

phase and amplitude of the signal are measured directly with a spectrometer20 

via heterodyne detection by spectral interference with a local oscillator field.19  

Using 2D-IR, it is possible to extract information about solvent-solute 

interactions, vibrational dynamics, and molecular structure.21 We have previously 

shown that transition metal carbonyl complexes are powerful probes of solution 

environments, and use one as a probe in this study22-27 The frequency-fluctuation 

correlation function (FFCF) is denoted as C(t) = <δω(0)δω(t)>, where δω(t) is the 

instantaneous fluctuation from the average frequency.28 The inhomogeneous 

index, I(t), which is directly proportional to the FFCF,29 is extracted from 2DIR 

spectra and informs on spectral diffusion. At early waiting times (t2), the excitation 

and detection frequencies are well correlated because the probe has not had the 

chance to sample many microscopic environments. As the waiting time (t2) 

increases, correlation is lost as the probe samples more solvent environments. 

The timescale for this loss in correlation is spectral diffusion and can be related 

to characteristic timescales of the solvent dynamics.18 

4.2.2 Sample Preparation 
[Ru(CO)3]2(µ-Cl)2 (Strem Chemicals), a carbon monoxide releasing 

molecule (CORM) commonly referred to as CORM-2, was used in these studies. 

CORM-2 has the following IR-active carbonyl stretches: 1972, 2004, 2051, and 

2075 cm-1. The spectral diffusion time constant of CORM-2 in D2O is 1.5 +/- 0.4 

ps, which is the same value as is obtained from 2DIR studies probing the OH 

stretch of diluted HOD.30 
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Figure 4.3 CORM-2 FTIR spectrum 

Guar is a polymer made of mannose and galactose monomer units. The 

polymer is linearly shaped and flexible, allowing for polymer strands to become 

entangled at the molecular level.31 Guar is naturally occurring, so its molecular 

weight can vary from 50,000-8,000,000. Ficoll is a highly branched copolymer 

that is composed of sucrose and epichlorohyrdan. This polymer is a compact, 

rigid, and spherical molecule.9 The radius of a single Ficoll-400 molecule ranges 

from 15-30 nm while the radius of Ficoll-70 ranges from 2-7 nm.32 The weight of 

Ficoll 400 is 400,000 Da, and the weight of Ficoll 70 is 70,000 Da. Ficoll-70 is 

about the size of the lysozyme proteins previously studied with a surface-bound 

metal carbonyl probe.5 

CORM-2 was combined with guar at increasing concentrations (0.1-2.7 

wt%) in D2O. CORM-2 FTIR is depicted in Figure 4.3. The same was done to 

prepare samples of mannose, Ficoll, and sucrose. Data collected from each of 

the samples were analyzed to compare each C(t) and see how the spectral 

diffusion timescales change as a function of composition and concentration. 
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4.3 RESULTS  

4.3.1 Solutions of Guar Experience a Dynamical Transition While 
Solutions of Mannose Exhibit Bulk-Like Hydration Dynamics 

 
Figure 4.4 Hydration dynamics probed with the 1972 cm-1 band of CORM-2 in D2O/mannose mixtures.  

In simple liquids like alcohols, using metal carbonyl probes, several 

studies show that the decays of the FFCFs are proportional to solvent 

viscosity.14-15 In other cases studying complex systems, such as proteins and 

glass-forming liquids, the group has found highly non-exponential dynamics 

indicative of a range of relaxation times due to structural and purely dynamical 

heterogeneity.3 The linear polymer guar is of particular interest due to its use as 

an emulsifier in hydraulic fracturing, pharmaceutics, and in other industrial 

applications. We are particularly interested in understanding how water responds 

to being crowded by the macromolecular molecule guar and its monomer 

mannose. This model system can provide fundamental information on the 

hydration dynamics of concentrated polymer solutions, such as how viscosity or 
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gel point may relate to the picosecond hydration dynamics of polymer solutions, 

as well as how water behaves as the polymer chains begin to overlap and 

become entangled. 

 
Figure 4.5 FFCFs for the lowest frequency CO stretching mode of CORM-2 in D2O/guar mixtures, ranging 
from pure D2O to 2.5% PEG by volume. 

Using CORM-2 as the probe, the hydration dynamics of aqueous guar 

mixtures were studied, varying the concentration and effective length of the 

polymer (comparing the monomer to the full polymer). First, we looked at 

aqueous solutions of mannose (Figure 4.4). We looked at the hydration 

dynamics for increasing approximate concentrations (wt % of monomer in 

solution): 0.1%, 0.6%, 1.3%, 1.8%, and 2.8%. At low mannose concentrations, 

the correlation function exponentially decays with a 1.42 +/- 0.4 ps decay time 

constant, similar. As concentration was increased, the spectral diffusion time 

constant does not significantly change, revealing bulk hydration dynamics 

consistent at all concentrations studied. The spectral diffusion time constant for 
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each mixture of each polymer yielded a similar value to that of CORM-2 in D2O, 

within error. 

Next, we looked at the hydration dynamics for increasing concentrations of 

aqueous guar solutions (Figure 4.5). We looked at the hydration dynamics for 

increasing approximate concentrations (wt % of polymer in solution): 0.2%, 0.6%, 

1.2%, 2.3%, and 2.5%. As the concentration of guar increased in the aqueous 

solutions, we find that the spectral dynamics experience an abrupt slow down. At 

low concentrations of guar, the correlation function exponentially decays with a 

1.23 +/- 0.3 ps decay time constant, which is consistent with bulk-like water.6 At 

2.3 % aqueous guar solution, the spectral diffusion shows an abrupt transition 

and slows to 8.4 +/- 1.5 ps. The decay constant is only weakly coupled with guar 

concentration on either side of this transition. 

 
Figure 4.6 FFCFs for the lowest frequency CO stretching mode of CORM-2 in D2O/sucrose mixtures, 
ranging from 0.15% to 2.79% sucrose by volume. 
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4.3.2 Aqueous Ficoll and Sucrose Solutions Reveal Bulk Hydration 
Dynamics 
We also considered the role of polymer shape in hydration dynamics by 

comparing Ficoll at various sizes. We studied aqueous mixtures of Ficoll-400, 

Ficoll-70, and one of its monomer units, sucrose. First, we looked at how the 

hydration dynamics of aqueous solutions of sucrose might change with increased 

concentration (Figure 4.6). We looked at the hydration dynamics for increasing 

approximate concentrations: 0.1%, 0.6%, 1.3%, 1.8%, and 2.8%. The spectral 

diffusion time constant for each mixture of each polymer yields a similar value to 

that of CORM-2 in D2O, within error. This was consistent with the data we 

collected for the increasing concentrations of aqueous mannose solutions.  

 
Figure 4.7 FFCFs for the lowest frequency CO stretching mode of CORM-2 in D2O/Ficoll 70 mixtures, 
ranging from 0.13% to 2.6% Ficoll 70 by volume. 

Next, we conducted experiments with Ficoll-70 (Figure 4.7) and Ficoll-400 

(Figure 4.8), which are bulky polymers. Ficoll-400 is 400,000 Da and Ficoll-70 is 

70,000 Da. We looked at the hydration dynamics for increasing approximate 

concentrations: 0.1%, 0.6%, 1.0%, 2.0%, and 2.7%. The spectral diffusion time 

constant for each mixture of each polymer yields a similar value to that of CORM-
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2 in D2O, within error. There was no abrupt change in hydration dynamics as we 

saw with guar.  

 
Figure 4.8 FFCFs for the lowest frequency CO stretching mode of CORM-2 in D2O/Ficoll 400 mixtures, 
ranging from 0.12% to 2.7% Ficoll 400 by volume. 

4.4 DISCUSSION  

4.4.1 Aqueous Guar Solutions Experience Slowed Hydration Dynamics at 
Small Concentrations 
At relatively low concentrations of guar, aqueous guar solutions 

experience an abrupt slow down in hydration dynamics. This abrupt slow down 

can be compared to results examining PEG 40033, and also increasing lengths of 

PEG34 to gain more insight. In the first example, HEWL was crowded with PEG 

400 and it was found that at 50 wt% PEG 400, there was an abrupt slow down in 

hydration dynamics.33 This abrupt slow down was attributed to a transition from 

independent to collective hydration induced by crowding. In the second example, 

it was found that due to the stability of the hydration shell, aqueous solutions of 
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PEG 2000, PEG 8000, and PEG 20000 experienced little to no change in 

hydration dynamics as compared to the probe in D2O. PEG 400 experienced a 

linear slow down in hydration dynamics due to a less stable hydration shell 

experienced by the PEG 400 strands.34  

Compared to guar, whose molecular weight varies from 50,000-8,000,000 

Da, PEG 20,000 has a molecular weight of 20,000 Da. Aqueous solutions of 

PEG 20,000 did not experience a significant change in hydration dynamics, but 

aqueous solutions of guar did. Because guar is a naturally occurring polymer, 

each strand is not a consistent length or weight. Low concentration aqueous guar 

solutions (2.3 wt%) become extremely viscous as compared to aqueous 

solutions of PEG 20,000, which only became as viscous as guar solutions at 55 

wt%. While there appears to be a similar abrupt slow down in hydration dynamics 

similar to PEG 400 crowding HEWL, this occurs at a much lower concentration. A 

possible reason this occurs is that similar to PEG 400, guar may not have a 

stable hydration shell and due to its inconsistent length and weight of strands, 

induces a transition from independent to collective hydration in the aqueous 

solutions. More experiments will need to be completed to confirm this hypothesis.  



 88 

 
Figure 4.9 Spectral diffusion timescale plotted as a function of mixture concentration. Guar experiences an 
abrupt slow down, while the other molecules experience consistent hydration dynamics as concentration 
increases.  

 

4.4.2 Aqueous Mannose, Sucrose, and Ficoll Solutions Experience Bulk-
Like Dynamics at Low Concentrations 
Figure 4.9 depicts the spectral diffusion plotted as a function of mixture 

concentration. Sucrose and mannose are monomers of Ficoll and guar, 

respectively. Variable concentration experiments were done with aqueous 

solutions of both monomers at increasing concentrations up to about 3 wt %.  

There were no changes in hydration dynamics across the increasing 

concentrations. It is possible that at higher concentrations there could be 

changes in hydration dynamics. However, we wanted to use similar 

concentration ranges as for Ficoll and guar for comparison purposes.  Without 

doing experiments at higher concentrations, it isn’t really possible to draw 

conclusions about the aqueous mannose and sucrose solutions. Aqueous Ficoll 

400 and Ficoll 70 solutions did not exhibit a change in hydration dynamics in 

solutions up to 3 wt%, as aqueous solutions of guar did. Ficoll 400 and Ficoll 70 
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are larger in molecular weight per strand than PEG 20,000. Ficoll 400 is closer in 

molecular weight to guar, so it is possible we might see a change in hydration 

dynamics at higher concentrations of Ficoll 400 in aqueous solution. Because 

Ficoll is a synthetic polymer like PEG, it is possible that the strands are more 

consistent in length and weight than guar, and therefore may follow the same 

patterns that we saw for longer lengths of PEG: that there are little changes in 

hydration dynamics for high concentrations of Ficoll. More experiment would 

need to be conducted in order to test this hypothesis.  

4.5 CONCLUSIONS 
The description of dynamical molecular interactions in solutions, such as 

concentrated solutions of polymers, represents a frontier in scientific inquiry. 

Complex polymer mixtures, such as model HFL, have not been thoroughly 

investigated by modern spectroscopic techniques. We have undertaken an initial 

study of mixtures of guar and Ficoll, and the following conclusions have been 

made: (1) Guar experiences collective hydration at high concentrations, where 

mannose, its monomer, experiences independent hydration, regardless of 

concentration. (2) No collective hydration is observed for Ficoll-400 or Ficoll-70 in 

the same concentration range as guar, possibly due to polymer shape and size. 

It is important to increase the concentrations of Ficoll-400 and Ficoll-70 to 

see if a dynamical transition occurs as predicted above. Further experiments are 

necessary to expand knowledge of hydration dynamics in polymer solutions. 

Such studies could include: looking at each aqueous polymer solution at 

increasing concentrations to saturation. Other experiments with guar indicated its 

lack of ease for dissolution because it is naturally occurring. To make it easier to 

work with guar, using a shaker to mix polymers could be useful and letting it mix 

for longer periods of time.   

To better model HFL, experiments will be conducted to see how hydration 

dynamics are related to pressure and temperature in crowded solutions. Finally, 

to see if probe dependence exists in the results, anionic, neutral, and cationic 

probes will be examined. With only two polymers explored here, there is room for 

much more research on how the nature of crowding agents affect dynamical 
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transitions. Other polymers of interest include linear polymers, such as poly(N-

isopropylacrylamide) due to its known thermoresponsive properties.35  
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Chapter 5 Conclusions and Future Direction 

5.1 Key Results 
This work detailed how hydration dynamics are affected by the 

interactions with polymers. We find evidence for distinct dynamics sensed by the 

probe depending on the crowding agent. Polymers used as crowding agents 

throughout this thesis include PEG, Ficoll, and guar, as well as use of two 

monomers, sucrose and mannose. We find experimental evidence contributing to 

the importance of consider both steric effects and chemical effects of a crowding 

agents on proteins.1-5 

Using a spectroscopic probe in 2DIR to study macromolecular crowding 

and confinement of water is useful for several reasons. Biological interfaces are 

typically in aqueous conditions. Using molecular probes removes the need for 

really high solute concentration.  If –OH stretch was studied directly, at low 

concentrations the signal would be dominated by bulk water and we wouldn’t 

necessarily see how water affected by the polymer would be different than bulk 

water. Linear FTIR spectra shown throughout this thesis show, for the most part, 

little change as concentration, polymer length, and temperature compared to the 

measure dynamical changes with these changing variable using 2DIR. 

At room temperature, the Ru3C spectral diffusion time constant in D2O is 

1.76±0.2 ps, which is consistent with the time scale determined directly using 2D-

IR spectroscopy of HOD in D2O.6 As a temperature dependent probe, Ru3C 

measures viscosity dependent activation energy that agrees with previously 

collected 2D-IR results without a probe.7, 8 This result indicates that metal 

carbonyls are useful probes of hydration dynamics, even at varying 

temperatures.  

We focus mainly on PEG and its affects on hydration dynamics of water. 

PEG is a very widely used polymer for a range of biomedical, pharmaceutical, 
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and engineering applications, as well as used as an artificial crowding agent to 

make experimental conditions more physiologically relevant. While PEG is widely 

used and has been for decades, its interactions with biomolecules do not seem 

well understood. PEG interesting structural and thermodynamical properties that 

make its use as a crowding agent questionable.  

PEG is very water soluble as compared to other polyethers, and has a 

very stable hydration shell. The stability of the hydration shell decreases with 

increasing temperature. PEG solubility is temperature dependent in water and 

becomes less soluble as the temperature increases. The lower critical solution 

temperature dependent on molecular weight, concentration and pH.9 As the 

length of PEG decreases, the lower critical solution temperature increases. Salts 

lower the precipitation temperature of aqueous PEG solutions.10 

High molecular mass PEGs adopt a helical conformation, while low 

molecular mass PEGs, which do not form a helix, experience more hydrophobic 

interactions that control the solution's dynamics. Temperature increases of PEG 

solutions lowers the solubility of PEG in water, and possibly changes the 

polymer’s helicity. This trend is due largely to the breaking of the favorable 

hydrogen bonds that bear the full cost of decreased entropy of solution. 

Generally the entropy of solution for aqueous PEG is negative, indicating 

constraints on the water overwhelm the net entropy balance, and the enthalpy of 

solution of PEG in water is negative, indicating that there are more hydrogen 

bonding in the solution than in the separated species.11  

PEG has a stable hydration shell at room temperature, so even in very 

viscous and concentrated solutions, PEG still promotes bulk-like hydration 

dynamics. This stable hydration shell is able to maintain hydrogen bond 

acceptors and donors for water, preserving bulk water interactions. We find that 

as chain length decreases, hydration shell stability also decreases, which in turn 

enables a collective slowdown of hydration dynamics. At variable temperatures, 

we find interesting results in terms of activation energy. For PEG 400 at 5% and 

75%, activation energies are similar to neat water. If we were to consider typical 

viscosity dependence in solutions, the results are much different and give a much 



 95 

larger activation energy. These results (activation energies experimentally 

determined to be similar to neat water) indicate that it is probably the polymer is 

hydrated by bulk-like water. 

5.2 Future Direction 
It is important that more work be done to understand both the chemical and steric 

effects crowding has on biological systems. There are many directions in which 

to take this work that can add to its applicability to biological systems. To make 

these experiments physiologically relevant, higher temperature conditions and 

multiple crowding agents in one system can be explored. To accomplish this, 

experimental crowding studies, experimental temperature studies, and 

computational explorations are proposed:  

Crowding experiments from dilute to saturation with commonly used crowding 

agents: Ficoll, mannose, sucrose can be done to further understand how different 

shapes and sizes of crowding agents will chemically and sterically effect 

biological systems. We can begin to do this by determining the time scale of 

sensed hydration dynamics for these concentration ranges. The logical next step 

in this investigation is to conduct crowding experiments with two or more different 

polymers. In general, crowding environments are not crowded by a large 

concentration of one type of molecule, but smaller concentrations of a variety of 

molecules, which constitute an overall crowded environment. It is of interest to 

look at various combinations of smaller and larger crowding agents first to 

determine how heterogeneity might affect sensed hydration dynamics. Studies of 

heterogeneous mixtures of crowding agents, which have not been considered at 

all in ultrafast dynamical experiments, are particularly important since we expect 

preferential and cooperative interactions to be pronounced. Finally, since there is 

virtually no neat water in nature, it is imperative to explore how the addition of 

salts affects the hydration dynamics of crowded polymer mixtures. Ions play an 

important role in biology, and are always present at physiological conditions. 

Different ions have been shown to interact with proteins through different 

mechanisms, but have been generally found to interact with macromolecular 

solutes.12-14 Having a deeper understanding of how these ions interact in 
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solutions of macromolecular crowding agents without proteins will aid in building 

a more complete understanding in the case where proteins are crowded with 

macromolecules.  

There are several temperature experiments that can be done to explore how 

more physiological conditions affect hydration dynamics, as well as temperature 

ranges that are more extreme. In this dissertation, it was discussed that PEG has 

an interesting temperature dependence from the perspective of thermodynamics 

of solubility. Conducting further temperature experiments with longer lengths of 

PEG with a wider temperature range can provide further information regarding 

PEG’s interesting behaviors at higher temperatures. In experiments at 

temperatures of 100°C or higher at various lengths of PEG, we can learn how the 

hydration dynamics are affected as PEG becomes less and less soluble. Also, 

conducting variable temperature experiments with other commonly used 

crowding agents in a range from below freezing to over 100° C, with a focus 

around 37° C can provide information for how the hydration dynamics of these 

solutions changes at a wide range of temperatures, focusing around a 

biologically similar temperature. Of course, both of these studies will have to 

confront practical complications that may arise from scattering that make 2D-IR 

spectra hard to interpret.  

Finally, computer simulations can be used to explore and systematically vary 

specific variables in these crowded solutions. We can use computational 

methods to specifically study soft interactions, such as how crowding can affect 

the electrostatics of binding energy.15 Specific to the previously described 

temperature experiments, systematically controlling different variables of 

crowded aqueous mixtures can add to our understanding of how temperature 

affects the hydration dynamics. Molecular dynamics simulations enable analyses 

that are impossible experimentally. We can compute structural and dynamical 

properties of the water as a function of distance from the polymer. Work along 

this direction is already under way, and will connect directly to the experimental 

results in this dissertation. 
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Appendix A 

A.1 PEG 1000k Results 
 

Table A.1 Hydration dynamics probed with the 1972 cm-1 band of Ru3C in D2O/PEG 1000k mixtures. 
Results are similar to PEG 2000, PEG 8000, and PEG 20,000, in that PEG 1000k in viscous solutions still 
exhibits bulk like water.  

 
 

 


