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Abstract

With the advent of the advanced gravitational wave detector era, the Laser

Interferometer Gravitational-wave Observatory (LIGO) has made several detections

of gravitational waves from coalescing binary black holes and binary neutron stars,

but other sources are also predicted to exist. Among these are continuous waves

from isolated neutron stars. This type of signal is expected to be significantly

weaker than the sources observed so far, but to last for years. In this work we

discuss the efforts and obstacles involved in searching for continuous gravitational

waves. In particular, we give details of the PowerFlux analysis pipeline and evaluate

its performance compared to other pipelines. We also discuss searches in the first

observing run of Advanced LIGO, including methods for mitigating the effects of

the many spectral noise lines present at low frequencies. Finally, we discuss

approximations to the barycentering routines used by LIGO to account for the

Earth’s motion, approximations that provide justification for more computationally

efficient loosely coherent searches.
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Chapter I

Introduction

On September 14, 2015 a new window was opened on the universe. The Laser

Interferometer Gravitational-wave Observatory (LIGO) made the first-ever direct

detection of gravitational waves [10]. Such waves had been predicted by Einstein

100 years ago, but until this date only indirect evidence had been observed. Most

notably, after Hulse and Taylor found the first known binary pulsar system [42],

changes in its orbit measured over decades precisely matched the predictions from

General Relativity of energy lost due to gravitational radiation.

Just as electromagnetic waves can be produced by time-dependent charge

dipoles, gravitational waves rely on time-dependent mass quadrupoles. Several

objects are predicted to have such quadrupoles strong enough to be accessible to

LIGO. The detections so far have come from binary black hole, and binary neutron

star mergers, which fall into the category of compact binary coalescences (CBCs).

Other potential sources include bursts from supernovae, a stochastic background

radiation left over from the Big Bang, and the focus of this work, continuous waves

(CWs) from isolated pulsars. The nature of gravitational waves and their detection

is described in Chapters II and III, respectively.

Different methods for detecting CWs in LIGO data have been developed. This
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work focuses on improving searches carried out with the PowerFlux program,

developed by Vladimir Dergachev [30]. The program was created during his

graduate work at the University of Michigan, but it has evolved greatly over the

years. PowerFlux is a multi-stage quick-look pipeline, designed for all-sky pulsar

searches. A description of the PowerFlux algorithms is given in Chapter IV.

After completing analysis of the 6th Science run (S6), PowerFlux participated in

a Mock Data Challenge, in which pipelines were compared in their ability to detect

artificial signals added to the S6 data after collection [75]. The parameters and

results of this challenge, focusing on stages 3 and 4, are given in Chapter V.

The first observing run of Advanced LIGO (O1) was plagued by many spectral

noise lines at low frequency, making detections difficult in these regions. Tools have

been developed to clean noisy data, reducing false-positives [8]. We investigate the

use of cleaning with PowerFlux searches, including validations of upper-limits, in

Chapter VI.

Since LIGO is sensitive to waves coming from many different directions, we rely

on changes in the signal frequency from Doppler shifts to resolve a source in space.

However, Doppler shift depends on source frequency, and at low frequencies causes

shifts too small to be well resolved by the standard 30-minute Fourier transforms

previously used in the analysis. Therefore we also investigate the use of longer

coherence times, which have finer frequency resolution, but pose other challenges.

The results are discussed in Chapter VII.

Like other pipelines, PowerFlux makes use of the LIGO Analysis Library (LAL)

for common astronomical calculations. However, some of LAL’s models are more

precise than necessary for portions of our analysis. In particular LALBarycenter,

which tracks the position of the detectors relative to the Solar System Barycenter

(SSB), is used where a faster, more approximate tool would suffice. In

2



Chapter VIII, we examine the original model for LALBarycenter, TEMPO2 [34],

and suggest a more appropriate calculation.

Some results presented in this work are preliminary, and have not been reviewed

yet by the LIGO Scientific Collaboration.
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Chapter II

Gravitational Waves

2.1 General Relativity

General Relativity is based on the principle that there is no special frame of

reference – fundamental laws should work regardless of position and motion in

space. A classic thought-experiment is to imagine observing a ball fall to the floor in

a lab at 9.8 m/s2. It could be that the lab is on Earth, but based on the ball’s

motion alone, it’s equally possible that the lab is accelerating through space at 9.8

m/s2 in the opposite direction.

This suggests that being in a gravitational field is equivalent to observing from

an accelerating reference frame. Einstein explained this equivalence by describing

gravity as a warping of spacetime. The precise shape of spacetime is given by the

metric tensor,

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33


. (2.1)

This tensor is required to be symmetric (gµν = gνµ) and non-singular. It describes
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the relationship between coordinates. This is analogous to the way unit vectors for

non-Cartesian coordinate systems change direction depending on position. In

plane-polar coordinates,

r̂ = cos(θ)x̂ + sin(θ)ŷ. (2.2)

Similarly, in the presence of a massive object, warping of space changes the path

that particles follow, leading to effects like gravitational lensing. The metric tensor

gives the information needed to measure distance, and determine how particles

move in space.

The line element used to find distances is given by

ds2 = gµνdx
µdxν . (2.3)

The motion of particles is determined by the geodesic equation,

d

dλ
(gµν ẋ

ν)− 1

2

∂gσρ
∂xµ

ẋσẋρ = 0, (2.4)

where λ is a parameterization of the curve, ẋµ = dxµ

dλ
, and Einstein summation

notation is used (repeated indices are summed). This equation tells us that the

acceleration of a particle is intimately connected to the shape of the space around it.

John A. Wheeler summarized this equivalence principle (EP) as, “Spacetime tells

matter how to move; matter tells spacetime how to curve” [83].

The curvature of a metric space is described by the Christoffel symbols,

Γγαβ = 1
2
gγµ (∂βgµα + ∂αgµβ − ∂µgαβ) , (2.5)
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and the Riemann tensor,

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (2.6)

Using these, we can write Einstein’s equation

Rµν −
1

2
Rgµν = −8πGN

c4
Tµν , (2.7)

where Tµν is the stress-energy tensor

Tµν =



energy density energy flux

momentum density stress tensor


. (2.8)

Using this, we can determine the properties of space around a given mass/energy

distribution. A common analogy for spacetime warping is to imagine a bowling ball

on a trampoline (see Fig. 2.1 for a miniature version). The weight of the ball pulls

down the surface, drawing in smaller objects. This might lead one to wonder

whether the trampoline could be made to vibrate, sending out ripples in the surface

far from a massive object.

2.2 Theoretical Derivation of Gravitational

Waves

We begin by assuming a small perturbation, hµν , to flat spacetime,

gµν = ηµν + hµν , (2.9)
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Figure 2.1: Model of a star system made by the University of Michigan Physics Demo
Lab [72]. An object placed on the surface would fall inward toward the weight in the
same way the curvature created by our Sun allows the Earth to orbit.

where ηµν is the Minkowski metric,

ηµν ≡


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (2.10)

The curvature of the perturbed metric is given by the Christoffel symbols, rewritten

as

Γγαβ =
1

2
(ηγµ − hγµ) (hµα,β + hµβ,α − hαβ,µ) . (2.11)
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For small hµν though, we can drop higher orders:

Γγαβ =
1

2
ηγµ (hµα,β + hµβ,α − hαβ,µ) . (2.12)

From those, we get the Riemann tensor

Rα
µβν =

1

2
ηαδ (∂µ∂βhδν + ∂δ∂νhµβ − ∂δ∂βhµν − ∂µ∂νhδβ) , (2.13)

and hence the Ricci tensor

Rµν = Rα
µαν =

1

2

(
∂α∂νh

α
µ + ∂µ∂αh

α
ν −�hµν − ∂µ∂νh

)
, (2.14)

and Ricci scalar

R = ηγλRγλ = ∂γ∂λh
γλ −�h, (2.15)

where h is the trace of hµν and � ≡ ∂µ∂
µ.

We introduce the trace-reversed strain, h̄µν ≡ hµν − h
2
ηµν , and choose the Lorentz

gauge, ∂µh̄µν = 0. Applying these constraints to Eq. (2.14) and Eq. (2.15) gives

Rµν = −1
2
�hµν and R = −1

2
�h, respectively. We now plug into Eq. (2.7) to find

�hµν −
1

2
ηµν�h = �h̄µν = −16πGN

c4
Tµν . (2.16)

When Tµν = 0, this takes the form of the wave equation, suggesting the existence of

freely propagating gravitational waves:

[
1

c2
∂2

∂t2
−∇2

]
h̄µν = 0. (2.17)
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2.3 Source Requirements

The question now becomes, what sort of mass configurations will produce

gravitational waves? To determine potential sources, we first need to express the

stress-energy tensor, Tµν , in terms of the mass configuration. Following Cheng’s

derivation [26], energy conservation requires DµTµν = 0; since hµν is small, however,

this requirement can be approximated with the regular derivative, ∂µTµν = 0.

Differentiating the conservation equation with respect to time gives

∂2T 00

c2∂t2
= − ∂2T 0j

c∂t∂xj
(2.18)

where Roman indices are summed only over spatial dimensions. Applying the

conservation equation ∂0T
0j = −∂iT ij once again gives

∂2T 00

c2∂t2
=

∂2T ij

∂xi∂xj
. (2.19)

We now multiply both sides by xkxl and integrate over the source volume:

∂2

c2∂t2

∫
T 00xkxld3x =

∫
∂2T ij

∂xi∂xj
xkxld3x (2.20)

=

∮ [
xkxl

∂T kj

∂xj
− 2xkT kj

]
dS + 2

∫∫∫
T kld3x, (2.21)

where Eq. (2.21) is obtained through two integrations by parts. The terms in the

first integral extend only over the surface of the source, and may be neglected.

Thus, we have

∂2

c2∂t2

∫
T 00xkxld3x = 2

∫
T kld3x. (2.22)

In the Newtonian limit, T00 = ρc2 for mass-density ρ. Substituting into the previous

equation, we recognize the form of the quadrupole moment tensor,

9



Iij =
∫
ρ(x)xixjd

3x, resulting in∗

∂2Iij
∂t2

= 2

∫
Tijd

3x. (2.23)

Inside the source, we can write the solution to Eq. (2.16) as

h̄µν(x, t) =
4GN

c4

∫
Tµν(x

′, t− |x− x′|/c)
|x− x′| d3x′, (2.24)

where the integration is over the volume of mass. In the limit of long-wavelength

and long-range, we can approximate the vector differences in Eq. (2.24) as a

constant distance r:

h̄µν(x, t) =
4GN

rc4

∫
Tµν(x

′, t− r/c)d3x′. (2.25)

At this point, we make one more gauge transformation to make the perturbation

transverse, kµhµν = 0 for wave vector kµ, and traceless, hµµ = h̄µµ = 0. In this

gauge, hµν = h̄µν , so substituting in Eq. (2.23) we have

hij(x, t) =
2GN

rc4
∂2

∂t2
Iij

(
t− r

c

)
. (2.26)

This suggests any mass configuration with a time-varying quadrupole moment

tensor will produce gravitational waves.

In the transverse-traceless gauge, the polarization of the wave may be written

∗Note that we have lowered the indices on both sides. The equation remains valid, since it is
linear in the tensors.
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(for a wave traveling along the z-axis)

hµν =


0 0 0 0

0 ε+ ε× 0

0 ε× −ε+ 0

0 0 0 0


, (2.27)

where ε+ and ε× are the two linear polarization amplitudes for gravitational waves.

An illustration of these polarization modes can be seen in Fig. 2.2.

t →

Figure 2.2: Plus (top) and cross (bottom) linear polarizations for wave traveling into
the page. Blue curves show the movement of a ring of mass as the wave passes.

2.4 Expected Sources

In Eq. (2.26), the factor 2GN
c4
≈ 1.65× 10−44 Newtons−1 indicates that extreme

sources are needed to produce a detectable signal. In spite of this high bar, there

are a few astronomical objects that are predicted to produce waves strong enough to
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detect.

2.4.1 Compact Binary Coalescences

Compact Binary Coalescence (CBC) signals are produced by pairs of black holes

(BH–BH), neutron stars (NS–NS), or a combination (BH–NS) that spiral around

each other before colliding [21, 27]. As the bodies get closer, their orbital velocities

increase, which produces a characteristic “chirp” in the frequency of the emitted

waves.

Starting with GW150914, LIGO has made several detections in the advanced

detector era, all from this category [10, 9, 12, 13, 14, 15]. In doing so, LIGO has

discovered definitive proof of the existence of gravitational waves, and of black holes,

neither of which had been directly measured before. With the discovery of binary

neutron star merger GW170817 and its electromagnetic counterpart, LIGO was also

able to set limits on the speed of gravity, and provide an explanation for observed

short gamma-ray bursts. Together, the detections serve as a test of General

Relativity. The results so far all include the predicted behavior within their errors.

2.4.2 Bursts

During a supernova, a star goes through rapid density changes as it first collapses,

then explodes. If there is any anisotropy during this process, there is the potential

to release a burst of powerful gravitational waves. This type of source was once

believed to be the most promising for detection [76]. Ott et al. predict strains of

order 3× 10−23, which would be detectable by LIGO in the event of a galactic

supernova [59].
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2.4.3 Stochastic Background

Just as light from the rest of the universe impinges on the Earth from all directions,

it should be possible to detect a sum total of all gravitational radiation. More

specifically, we also expect gravitational waves from the Big Bang, analogous to the

Cosmic Microwave Background. Such a background could be detected through

correlation between the two detector outputs. With a long enough observation time,

even a weak signal could be found [16].

2.4.4 Continuous Waves

While CBC and burst signals overcome the inherent weakness of gravity via their

large source masses and rapid changes, continuous wave signals offer the possibility

of long integration times, which reduce the effect of noise. Since continuous waves

are expected to maintain coherence for long periods, adding up the detected strain

at specific frequencies will tend to enhance the signal, while the incoherent noise

cancels itself.

In 1968, pulsars were identified as rotating neutron stars [70], which have the

potential to generate continuous gravitational waves. If a neutron star has an axial

asymmetry, e.g. a bump on the surface, the star’s rotation will give the

time-varying quadrupole moment tensor needed to produce waves. For small

ellipticity, ε ≡ Ixx−Iyy
Izz

, we can write the amplitude of Eq. (2.26) as

h0 ≈
16π2G

Rc4
εIzzf

2 (2.28)

where f is the rotational frequency of the pulsar. There are a number of mechanisms

predicted to create ellipticities that would emit gravitational waves [64, 49].

In general, ellipticity scales with the square of the average magnetic field inside
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the star [40], but there is uncertainty in the strength of this field. Younger,

fast-spinning pulsars are expected to have the strongest fields, and therefore are the

most promising sources of continuous gravitational waves.

For non-isolated neutron stars that are accreting matter, observations have

shown a mismatch in the angular momentum transferred to the star, and its

rotational frequency [25]. One possibility is that the accreted matter is producing

gravitational waves, which carry the excess energy [74]. We can set a torque-balance

limit on the strength of the gravitational waves by assuming all the missing energy

is accounted for by GW emission.

Pulsars have been observed to change frequency suddenly, or “glitch”, gradually

returning to their original frequency band. This is believed to be due to transfers in

angular momentum between the star’s core and its crust [39]. Along with the initial

burst of waves from the glitch, a continuous wave signal is possible as the star

recovers.

Based on estimates of the neutron star equation of state, Krastev et al. put the

maximal value of ε at 2.4× 10−6, and the resulting h0 at [0.4− 1.5]× 10−24 [47].

This falls above the upper limits for emission strength reported in the O1 search,

4× 10−25 [11], suggesting the detector is capable of picking up waves from a

spinning neutron star if a suitable source can be found. This type of signal is the

focus of this work, and further details of search efforts will be given in Chapter IV.
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Chapter III

LIGO

The previous chapter discussed the sources of gravitational waves, so now we turn

to the issue of detecting them. A number of methods have been proposed, including

Weber’s pioneering work with resonant masses [77, 78] and pulsar timing suggested

by Hulse, Taylor, and Weisberg [42, 79]. This work focuses on the efforts of the

Laser Interferometer Gravitational-wave Observatory (LIGO). The idea of using

lasers to sense gravitational strain was first proposed by Gertsenshtein and

Pustovoit in 1963 [38]. Rainer Weiss expanded on the idea in 1972 [80], developing

the models LIGO would be based on. Conceptually, the detector is similar to an

“L”-shaped laser interferometer. As a gravitational wave passes, one arm is

compressed, while the other extends. This causes the photons in the shorter arm to

arrive at the photodetector sooner, producing an interference pattern. In practice,

the detectors are more complicated, employing resonant cavities, and

noise-reduction techniques [3].

The LIGO detectors sense GWs from all directions, with varying sensitivity. To

localize signals, multiple observations are needed, either from separate observatories,

or separate times due to the movement of the Earth. The latter option is not as

helpful for short-lived events, so LIGO uses multiple detectors: in Hanford, WA
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in the next section) varies inversely with the 
square root of the number of photons in the 
measurement “period” (0.01 sec for a 100 Hz 
lower measurement band frequency)l lo’* 
photons are required in 0.01 sec. This corre- 
sponds to about 20 W of power (at 1.064 
microns). The amplitude of vibrational 
motion of the atoms in the mirrors exceeds 
the GW signal but occurs at a frequency of 

Hz, far above LIGO’s GW band (-3 
kHz). However, thermal excitation does 
excite the normal modes of the mirrors at 
frequencies of - 20 kHz with amplitudes on 
the order of m. The interferometer 
averages this effect over many periods and is 
sensitive only to the changes of amplitude, 
which are made small by giving the mirrors 
high mechanical Qs. 

Two methods are employed to increase the 
light power used to sense the motion of the 
test mass mirrors (and thereby decrease the 
effect of shot noise). The first method is to 
incorporate resonant (Fabry-Perot) cavities 

in the Michelson arms [12]. The second method 
is to “recycle” the light from the bright fringe 
output port of the Michelson (i.e. light going 
back from the interferometer toward the laser) 
by reflecting it back into the interferometer [ 121, 
[13]. This arrangement, called a power recy- 
cling interferometer, can result in an additional 
gain of about 30 in power. 

All the optical components in the phase sensitive 
part of the interferometer are suspended as pen- 
dula to reduce the coupling to seismic and ther- 
mal noise and to provide a mleans to control the 
optical path lengths in the interferometer. A 
highly stabilized laser beam is injected into the 
two arms of the interferometer via a beamsplitter 
and servo-locked to the average length of the 
arms of the interferometer. The path lengths are 
maintained by servo systems to hold the light 
incident on the detector, placed at the antisym- 
metric port of the beam splitter, at a dark fringe. 

A GW incident normal to the plane of the inter- 
ferometer and appropriately polarized, disturbs 
this condition by inducing an antisymmetric path 

39 

Figure 3.1: Diagram of Initial LIGO detectors [29, Fig. 5]

(LHO), and in Livingston, LA (LLO). LIGO was joined by Virgo and the European

Gravitational Observatory in August, 2017 adding a third detector to the network.

3.1 LIGO Design Principles

The LIGO detectors are based on a Michelson interferometer with Fabry-Perot

resonant cavities (Fig. 3.1). In such a setup, a laser, which produces coherent light,

is sent into a beam splitter and then through two perpendicular arms. At the end of

each arm, a mirror reflects the light back into the beam splitter, and combines the

two beams at a photodetector. With the addition of input mirrors in the arms, the

light can be made to circulate in the arms many times before exiting.

For a mathematical description of the interferometer, we follow Saulson’s
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derivation [65]. Suppose the electric field of the input light is

Ein = E0e
i(2πft−kx). (3.1)

An ideal 50-50 beam splitter has a reflection coefficient of R = 1/
√

2 and

transmission coefficient T = i/
√

2, so the beams traveling along the x- and y-axes

have electric fields

Ex = (iE0/
√

2)ei(2πft−kxx)

Ey = (E0/
√

2)ei(2πft−kyy)
(3.2)

After reflecting at the end mirror, each electric field gets a factor of −1. When

recombined at the beam splitter, the electric field at the output is

Eout = (−iE0/2)ei(2πft−2kxLx) + (−iE0/2)ei(2πft−2kyLy)

= (−iE0/2)e2πift(e−2ikxLx + e−2ikyLy)

= (−iE0/2)ei(2πft−kxLx−kyLy) (exp[i(kxLx − kyLy)] + exp[−i(kxLx − kyLy)])
= −iE0e

i(2πft−kxLx−kyLy) cos(kxLx − kyLy).
(3.3)

Since the power P ∝ |E|2, we find the time-averaged power delivered to the

photodetector is

Pout = Pin cos2(kxLx − kyLy). (3.4)

This implies that the power measured at the photodetector depends on the

difference in phase accumulated along each of the arms. This derivation is a

simplified description of the interferometer’s function. Its response to gravitational

waves is discussed in the next section.
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3.2 Initial LIGO

The LIGO detectors’ arms are each 4 km in length, with light-storage times of

about 1 ms, due to circulation in resonant cavities: (1 ms)×c
8 km

≈ 37 round trips. The

differential arm-length (DARM) is calibrated to create a nearly dark fringe at the

photodetector. A linearly polarized gravitational wave compresses space in one

direction, while expanding it in the perpendicular direction, leading to a change in

DARM. The photodetector registers this difference as a change in intensity, allowing

us to detect the wave.

One might object that the spatial stretching also changes the wavelength of the

light beams, canceling the change in travel distance, and resulting in no phase

change. This neglects the fact, however, that the speed of light remains constant,

and the beam in one arm will complete the round trip faster than the other [66]. As

an example, consider a GW with strain h(t), traveling along the z-axis, and aligned

in polarization with the detector. The metric will be

ds2 = −c2dt2 + [1 + h(t)]dx2 + [1− h(t)]dy2 + dz2. (3.5)

For light, ds2 = 0, so the proper time for a round-trip along the x-axis will be

τx =
2

c

∫ L

0

√
1 + h(t)dx. (3.6)

Since h(t)� 1,
√

1 + h(t) ≈ 1 + 1
2
h(t) and

τx ≈
L

c
[2 + h(t)] . (3.7)
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Similarly, for the y-axis,

τy ≈
L

c
[2− h(t)] . (3.8)

The phase of the signal along each axis is

φr = ωτr − 2π
r(ds/dr)

λ(ds/dr)
. (3.9)

As stated above, the spatial component is unchanged, due to cancelation of the

distance and wavelength changes. Therefore, the total phase difference is

∆φ =
2

c
h(t)ωL =

4πL

λ
h(t). (3.10)

3.3 Advanced LIGO Upgrades

The initial upgrades to the detector that constituted the first stages of Advanced

LIGO were completed in 2015. A diagram of the optical configuration is shown in

Fig. 3.2, and some of the physical parameters that changed between Initial and

Advanced LIGO are shown in Table 3.1.

The increased laser power gives LIGO access to higher frequencies by reducing

shot noise:

(∆I)2 ∝ I (3.11)

for laser intensity I. The extra power, though, increases radiation pressure noise, so

to compensate, the test masses were made heavier. The increased number of

pendulum stages allow for better seismic isolation, reducing the low-frequency noise.

Improved mirror finesse results in longer light storage times, increasing sensitivity

overall.

In total, the Advanced LIGO upgrades will give a 10-fold strain sensitivity
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Figure 1. Advanced LIGO optical configuration. ITM: input test mass; ETM: end test 
mass; ERM: end reaction mass; CP: compensation plate; PRM: power recycling mirror; 
PR2/PR3: power recycling mirror 2/3; BS: 50/50 beam splitter; SRM: signal recycling 
mirror; SR2/SR3: signal recycling mirror 2/3; FI: Faraday isolator; φm: phase modulator; 
PD: photodetector. The laser power numbers correspond to full-power operation. All of 
the components shown, except the laser and phase modulator, are mounted in the LIGO 
ultra-high vacuum system on seismically isolated platforms. 

The top-level parameters of the interferometers are listed in Table 1. The 
motivations behind these and other system design choices are described in this section. 
The various interferometer subsystems and components are described in section 4. 
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Figure 3.2: Advanced LIGO optical configuration [3, Fig. 1]

increase [3]. This will result in a 1000x increase in observation volume, but even the

upgrades so far have given us access to several BBH and BNS events

[10, 9, 12, 13, 14, 15].

3.4 Detector Noise

As with any sensitive detector, LIGO has a number of sources of instrumental error,

which fall into a few categories: fundamental, technical, and environmental [54].

Fundamental noise sources are those that are due to limitations of the detector’s

design, including susceptibility to Brownian motion and shot noise. Technical noises

also originate within the detector, but can be mitigated without major
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Table 3.1: Summary of upgrades to LIGO systems. Advanced LIGO storage time is
calculated from cavity finesse: τ = 2L

c
F
π

Initial [29] Advanced [3]

Laser Power (W) 6 125
Test Mass Mass (kg) 12 40
Test Mass Diameter (cm) 28 34
Input Mirror Transmission 3% 1.4%
Pendulum Stages 1 4
Light Storage Time (ms) 0.88 3.8

modifications, like charging noise from excess electrons on the masses.

Environmental noise results from sources outside the detector, such as seismic noise.

See Fig. 3.3 for a comparison of the ideal expected noise budgets between the initial

and advanced detectors.

LIGO R&D 4LIGO-G010206-00-M

Noise budget

ï ìFundamentalî noise sources 
(seismic, thermal,  
shot) estimated by detail models
ï Models validated by prototype 

interferometers
ï Non-fundamental noise sources all 

budgeted at 
10% in amplitude of fundamental 

noise
ï Laser intensity noise
ï Electronics noise
ï Frequency noise
ï Thermal noise in non-fundamental 

degrees of freedom
ï Scattering
ï Ö

(a) Initial LIGO noise budget from Weiss and
Shoemaker [82]

 

3.1 Quantum noise 
Quantum noise encompasses the effects of statistical fluctuations in detected photon 
arrival rate (shot noise) and radiation pressure due to photon number fluctuations. 
Quantum noise is calculated using the formulation of Buonanno and Chen [14]. We 
assume 75 ppm round-trip loss in each arm cavity, and 10-3 loss in the power recycling 
cavity, which leads to 5.2 kW of power at the beamsplitter and 750 kW of power in each 
arm cavity. A detection efficiency of 90% is assumed; this accounts for finite 
transmission through the output Faraday isolator and output mode cleaner, as well as 
photodetector quantum efficiency. 

3.2 Test mass thermal noise 
Coating Brownian noise is the dominant of the various test mass thermal noise terms. It 
arises from mechanical dissipation in the coatings, and is calculated according to 
reference [15]. The coating design and material parameters are described in section 4.3. 
Coating thermo-optic noise arises from thermal dissipation in the coatings, producing 
noise via the thermoelastic and thermorefractive coefficients of the coating materials. The 
two effects are calculated coherently, according to reference [16]. Mechanical loss in the 

 
Figure 2 Principal noise terms for the nominal (high power, broadband) mode of 

operation of Advanced LIGO. 

 

(b) Advanced LIGO noise budget from LSC
[3]

Figure 3.3: Noise budget for initial and advanced detectors

Most of these sources contribute to a “noise floor” that varies slowly in

frequency, but some create sharp spectral artifacts with strain far above the
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surrounding points. These “lines” can create spurious outliers during analysis.

There are a number of sources of these lines, some of which will be detailed in

Chapter VI. Here we discuss the example of “violin modes”, the resonant

frequencies of the mirror suspensions [52].

Violin modes are vibrationally resonant frequencies of the silica fibers that

suspend the test masses. The modes can be excited by coupling with thermal noise.

Most LIGO searches are carried out in the frequency range 50-2000 Hz, which

contains the resonant frequency of the test mass suspensions, and several harmonics.

An example of the strain-frequency distribution using a spectral average from many

7200-second duration short Fourier transforms (SFTs) for LHO at the start of O1 is

shown in Fig. 3.4. Notice the large sets of spikes near 500, 1000, 1450, and 1950 Hz.

These correspond to the fundamental, 2nd, 3rd, and 4th harmonics of the

suspension resonance. Noise lines like these can cause problems for continuous

gravitational wave searches, since sources are also very narrowband.

Figure 3.4: Sample strain spectrum at LHO from start of O1 showing significant
effects from mass suspensions (violin modes), marked in red.

Efforts to reduce the noise in the detector are ongoing, and improvements are still
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being made to bring the detectors up to design specifications. With every decrease

in the noise floor, our reach out toward potential sources extends a little further.
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Chapter IV

Detecting Continuous Waves

The sources observed by LIGO so far have been collisions between pairs of black

holes and neutron stars, referred to as compact binary coalescences (CBCs). These

signals are some of the loudest we expect to see, with strain magnitude of order

10−21. Continuous wave signals on the other hand are expected to be significantly

weaker, with current upper limits of order 10−25 [11]. Promising sources of this type

of gravitational wave are spinning neutron stars with axial asymmetries.

4.1 Neutron Stars as GW Sources

Neutron stars are compact objects that result from supernova collapse of stars not

massive enough to create a black hole. Some neutron stars spin rapidly; charged

particles near the surface are accelerated by the powerful magnetic field surrounding

the star, and emit light in the star’s magnetosphere. Such stars are called pulsars,

after the pulsed signals received by Earth due to the misalignment of their magnetic

and rotational poles [46].

The possibility of neutron stars was first postulated by Landau, based on

balancing gravitational forces with outward nuclear pressure derived from quantum
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mechanics [48]. Baade and Zwicky suggested that such an object could result from

supernovae [20]. When a star undergoes supernova, the neutron star remnant

retains much of the angular momentum and charge, but the significantly smaller

radius (O(35 000) times smaller) creates a far more powerful, rapidly rotating

magnetic field. This field will accelerate nearby charged particles as the star rotates.

Accelerating charges emit light, and if the field axis has some misalignment from the

spin axis, the light traveling toward Earth will be broken into regular short bursts,

characteristic of a pulsar. However, most pulsars have been observed to slow their

rotation gradually, indicating a loss of rotational energy. Some loss can be

accounted for in the light emitted, but this is not enough to match observations [61].

If this energy deficit is to be made up with gravitational wave emission, the

neutron star must have some non-axisymmetry. Neutron star structure is broadly

divided into three regions: the surface, a crust, and a core. The surface is relatively

low-density, at 106 g/cm3, with a strong magnetic field. The actual strength of the

field depends on the rotational properties of the star:

B ∝
√
PṖ , (4.1)

where P and Ṗ are the rotation period and its time-derivative. Young pulsars

recently formed from supernovae tend to have a high spindown, corresponding to a

large B-field, O(1012 Gauss). Millisecond pulsars have high rotation rate, low

spindown, and low B-field, O(108 Gauss). The crust of a neutron star is thought to

be of similar density to the surface with a thickness of 1–2 km, but made up almost

entirely of neutrons. The core contains 99% of the total mass, in a homogeneous

neutron-proton fluid. Here, the density rises to 1014 g/cm3 [24].

One possible GW emission from pulsars is from a defect in the surface that

creates a time-varying quadrupole moment. An analysis of the neutron star

25



equation of state by Ushomirsky et al. suggests that temperature gradients within

the crust could create a quadrupole moment that would emit gravitational waves

[73]. Temperature governs the distribution of electrons within the crust, so a

laterally-varying temperature leads to asymmetric distribution of mass. As

described in Chapter II, ellipticities in a rotating object lead to GW emission.

4.2 Inherent Difficulty of Detection

By analyzing known pulsars, estimates can be made of expected strain. Zimmerman

calculates the strains from the Crab and Vela pulsars as O(10−26), based on

misalignments between the spin axis and symmetry axis [85]. Even at Advanced

LIGO design sensitivity the noise floor is not expected to go below O(10−24 Hz−1/2)

[54]. How then do we expect to detect such signals? The key is integration:

continuous wave signals are expected to be coherent, maintaining a consistent phase

evolution over long periods. Noise sources, on the other hand, are generally

incoherent and/or transient. By adding up a signal over several weeks or months,

we increase our sensitivity to gravitational waves, while decreasing the influence of

uncorrelated noise.

4.3 Search Inputs

During operation, the detectors produce a time-series of strain measurements. Since

continuous wave signals are long lasting, and change frequency only gradually, we

typically divide this data into segments of length Tcoh, called the coherence time,

and perform a discrete Fourier transform to extract the frequency information. The
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number of samples in a Fourier transform is inversely related to the resolution,

∆f =
1

Tcoh
. (4.2)

For the data used with PowerFlux, the typical Tcoh is 30 minutes, with time

segments overlapping by 50%. We apply a Hann window [57] to each time-series

before performing the Fourier transform. These are referred to as Short Fourier

Transforms (SFTs). The SFTs covering a particular run, such as O1, are divided

into frequency chunks 29 Hz in width, overlapping by 4 Hz, and SFTs for each

frequency band are joined. This allows us to load a single data set for any given

search.

4.4 Search Classes

There are three broad classes of CW search performed by the LSC: targeted,

directed, and all-sky [62, 64]. For known sources, like the Crab Pulsar,

electromagnetic observations give us precise sky positions and rotation frequency,

related to GW frequency by

fGW = 2frot. (4.3)

With this information, we’re able to run targeted searches over a narrow band of

frequencies and sky positions. In some cases, we know the location of an object that

could be a pulsar, such as a supernova remnant, but we have yet to make any

electromagnetic observations. We can do a directed search in the area of the object

over a broad frequency spectrum. The final type of CW search makes no

assumption of sky direction or frequency. These all-sky searches are

computationally expensive, but offer the possibility of detecting previously

unknown, or unexpected sources. These search classes are summarized in Table 4.1.
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Table 4.1: Types of Continuous Wave Search

Class Position Known? Frequency Known?

Targeted X X
Directed X ×
All-Sky × ×

4.5 PowerFlux

There are several methods used by the CW group to search for continuous

gravitational waves. The pipeline used in this work is PowerFlux [5], similar to

StackSlide [55], but more powerful.

4.5.1 StackSlide

The StackSlide pipeline was designed to sum the powers in sequential SFTs to

estimate signal strength. SFT frequency bins are laid out in columns, such that

each row is constant in frequency, and each column is constant in time. For each

column i, the total bin-shift due to source spindown and Doppler shift is calculated,

and the column is shifted that many bins up or down:

∆bi = f0(ê · v(ti))Tcoh + ḟTcohti, (4.4)

where Tcoh is the coherence time of the SFT, f0 is the frequency of the source at t0,

ê is the sky direction vector, v(ti) is the detector velocity vector (in units of c), ḟ is

the frequency derivative, and ti is the median time for SFT i. The total power for a

template can then be summed from a single row. See Fig. 4.1 for an example.
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Figure 4.1: Example of bin realignment used in StackSlide. Doppler shift and spin-
down are calculated for each time, and the total ḟ used to adjust the frequencies.

4.5.2 Power Sum

The primary difference between StackSlide and PowerFlux is that PowerFlux

weights SFT data based on detector sensitivity to a signal template at each time

and frequency [7]. The signal estimator is defined as

R =
2

Tcoh

(∑
i

[(F i
ψ)2]2

(P̃i)2

)−1∑
i

(F i
ψ)2Pi

(P̃i)2
, (4.5)

where F i
ψ is the antenna pattern for polarization ψ, Pi is the power in SFT bin i,

and P̃i is an estimate of the power spectral density of noise in the bin. This

weighting scheme results in SFTs with high noise and poor antenna response being

devalued.

4.5.3 Software Injections

Because we have yet to detect a continuous wave signal, the best way to test our

ability to detect them is with fake data, where a generated signal has been added to
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Stage Instrument sum Phase coherence Spindown step Sky refinement Frequency refinement SNR increase
rad Hz/s %

0 Initial/upper limit semi-coherent NA 1 ⇥ 10�10 1 1/2 NA
1 incoherent ⇡/2 1.0 ⇥ 10�10 1/4 1/8 20
2 coherent ⇡/2 5.0 ⇥ 10�11 1/4 1/8 10
3 coherent ⇡/4 2.5 ⇥ 10�11 1/8 1/16 10
4 coherent ⇡/8 5.0 ⇥ 10�12 1/16 1/32 7

TABLE I. PowerFlux analysis pipeline parameters. Starting with stage 1, all stages used the Loosely Coherent algorithm for
demodulation. The sky and frequency refinement parameters are relative to values used in the semicoherent PowerFlux search.
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FIG. 1. PowerFlux upper limit validation. Each point
represents a separate injection in the 50-200 Hz frequency
range. Each established upper limit (vertical axis) is com-
pared against the injected strain value (horizontal axis, red
line) (color online).

The outlier follow-up procedure used in [16, 20] has
been extended with additional stages (see Table I) to
reduce the larger number of initial outliers, expected be-
cause of non-Gaussian artifacts and larger initial search
space.

The entire dataset is partitioned into 3 stretches of
equal length, and power sums are produced indepen-
dently for any contiguous combinations of these stretches.
As is done in [20, 22], the outlier identification is per-
formed independently in each stretch.

High-SNR outliers are subject to a coincidence test.
For each outlier with SNR > 7 in the combined H1 and
L1 data, we require there to be outliers in the individual
detector data of the same sky area that had SNR > 5,
matching the parameters of the combined-detector out-
lier within 83 µHz in frequency, and 7 ⇥ 10�11 Hz/s in
spindown. The combined-detector SNR is additionally
required to be above both single-detector SNRs.

The identified outliers using combined data are then
passed to the followup stage using the Loosely Coherent
algorithm [24] with progressively tighter phase coherence
parameters �, and improved determination of frequency,
spindown, and sky location.

As the initial stage 0 sums only powers, it does not
use the relative phase between interferometers, which re-
sults in some degeneracy among sky position, frequency,
and spindown. The first Loosely Coherent followup stage
also combines interferometer powers incoherently, but
demands greater temporal coherence (smaller �) within
each interferometer, which should boost the SNR of vi-
able outliers by at least 20%. Subsequent stages use data
coherently, providing tighter bounds on outlier location.

Testing of the pipeline was performed for frequencies
above 50 Hz. Injection recovery e�ciencies from simu-
lations covering the 50-200 Hz range are shown in Fig-
ure 2. The same followup parameters were applied to the
20-50 Hz region, but with stage 0 utilizing twice as dense
spindown stepping.

Because the followup parameters were not tuned for
the 20-50 Hz low frequency region and because of the
highly disturbed spectrum, we do not expect a 95% re-
covery rate.

Only a mild influence from parameter mismatch is ex-
pected, as the parameters are chosen to accommodate
the worst few percent of injections. The followup proce-
dure establishes very wide margins for outlier followup.
For example, when transitioning from the semi-coherent
stage 0 to the Loosely Coherent stage 1, the e↵ective co-
herence length increases by a factor of 4. The average
true signal SNR should then increase by more than 40%.
But the threshold used in followup is only 20%, which ac-
commodates unfavorable noise conditions, template mis-
match, and detector artifacts.

The followup code was verified to recover 95% of in-
jections at or above the upper limit level for a uniform
distribution of injection frequencies. (Figure 2).

The recovery criteria require that an outlier close to
the true injection location (within 2 mHz in frequency f ,
3 ⇥ 10�10 Hz/s in spindown and 12 rad·Hz/f in sky lo-
cation) be found and successfully pass through all stages
of the detection pipeline. As each stage of the pipeline
passes only outliers with an increase in SNR, this resulted
in simulated outliers that stood out strongly above the

Figure 4.2: PowerFlux upper limit validation. Each point represents a separate
injection in the 50-200Hz frequency range. Each established upper limit (vertical
axis) is compared against the injected strain value (horizontal axis, red line) [11,
Fig. 1].

the detector’s strain. PowerFlux includes tools for injecting, then running a search

for, fake signals. This allows us to test signals of varying parameters to quantify our

detection capabilities. In particular, PowerFlux sets 95% upper limit confidence

intervals on the power of actual signals. Injections are regularly used to verify these

limits. An example of the UL validation for the O1 All-sky search is shown in

Fig. 4.2. Upper limits are tuned such that hUL > h0 for 95% of injections.

4.5.4 Line Detection

PowerFlux includes a test for sharp, isolated strain in a single bin used to remove

lines [5]. The procedure is as follows:

1. Sort bins from a narrow search band in descending magnitude, z[i]

2. Set median M = z[Nbins/2]

3. Set Qlines = z[Nlines]
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Table 4.2: Parameters for line detection

Parameter Value

Nbins 501
Nlines 5
Nlittle 30
Nclust 5

4. Set Qmost = z[Nlittle]

5. For each bin (Pass 1):

(a) If z[i] > Qmost mark as HIGH

(b) If z[i] > Qlines mark as CANDIDATE

(c) If z[i] > 2Qmost −M mark as VERY HIGH

6. For each bin (Pass 2), if there are at least Nclust HIGH bins in a row, mark all

as CLUSTERED

7. Any bins marked CANDIDATE and VERY HIGH, but not CLUSTERED are vetoed.

The parameter values currently in-use are listed in Table 4.2

4.5.5 Skymarks

Since saving every point searched would use an excessive amount of disk space,

PowerFlux includes the ability to divide the sky into regions, with only the

highest-SNR point saved for each. These regional designations are referred to as

skymarks. In the initial search stage, the sky is divided into bands according to the

z-component of sky direction, e3. Another form of skymark is the vetos (see

Section 4.7), which remove points showing characteristics of noise lines, leaving the

other bands clean.
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Table 4.3: Parameters used for each stage of the O1 analysis. For all stages > 0, the
loosely coherent pipeline was used. [11, Tab. 1]

Stage Instrument
sum

Phase coherence
(rad)

Spindown
step (Hz/s)

Sky refinement Frequency
refinement

SNR increase
(%)

0 semi-
coherent

NA 1× 10−10 1 1/2 NA

1 incoherent π/2 1× 10−10 1/4 1/8 20
2 coherent π/2 5× 10−11 1/4 1/8 10
3 coherent π/4 2.5× 10−11 1/8 1/16 10
4 coherent π/8 5× 10−12 1/16 1/32 7

4.6 Stages of Analysis

PowerFlux is a multi-stage pipeline, which marks outliers for followup in subsequent

stages. Each stage refines the search region, and imposes stricter requirements on

coherence. One of the key parameters defining the stages of analysis is the degree of

coherence required. Increasing coherence emphasizes errors in template parameters,

meaning that more searches must be carried out for the same space. A correct

template, however, will gain significant SNR with more coherence. Due to

computational costs, fully coherent searches are only performed in the later stages

of followup, when few candidates remain. The parameters for the various stages in

the O1 search are shown in Table 4.3.

4.6.1 Semi-coherent

In the initial PowerFlux stage, phase changes from one SFT to the next are

disregarded. Coherence is maintained within each SFT, but the phase with the

maximum SNR is selected in each case. By ignoring phase change between SFTs,

semi-coherent searches can account for mismatch from the true signal template. This
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approach is illustrated in Fig. 4.3a. The power estimate for a semi-coherent sum is

P =
N∑
l=1

|al|2 (4.6)

for N SFTs with signal amplitude al.

4.6.2 Fully Coherent

The most stringent requirement for coherence is to maintain phase over the full

observation period. A downside is that any mismatch in template parameters could

lead to a significant penalty in SNR. Many searches are required to cover the dense

parameter space, so to reduce computational costs, full coherence is only used for

candidates that have passed followup requirements. The power estimate for a fully

coherent sum is

P =
N∑

k,l=1

a∗kale
i(φk−φl), (4.7)

where φ is the phase of the signal.

4.6.3 Loosely Coherent

The loosely coherent method [31, 32, 33] was introduced into PowerFlux during the

S5 search, and has been used in the searches that followed [4, 6, 11]. The concept is

illustrated in Fig. 4.3. In an initial PowerFlux search, change in signal phase across

SFTs is disregarded (Fig. 4.3a), but a true signal would maintain coherence over the

span of the search (Fig. 4.3b). However, if the template’s frequency does not

precisely match the signal’s, the phase can drift in a systematic fashion (Fig. 4.3c).

The loosely coherent method is designed to account for this.
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(a) Semi-coherent (b) Fully coherent

(c) Loosely coherent

Figure 4.3: Accounting for signal phase in PowerFlux searches. Curves show
true/assumed wave amplitude in time.
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Table 4.4: Maximum phase changes (in degrees) due to template mismatch for 1800s
SFTs [31, Tab. 1]

Phase shift cause 100 Hz 500 Hz 1000 Hz 2000 Hz

Frequency mismatch of ∆f = 0.1/∆t 36 36 36 36
Sky position mismatch of ∆r = 1◦ 1.1 6 11 23

Spindown mismatch of ∆ḟ = 10−12 Hz s−1 for T = 1 yr 20 20 20 20
Source modulation for ρ = 1 and r = 0.1 AU 0.1 0.6 1 2

Mathematical Statement

In a typical CW search, the detector output is broken into N segments and Fourier

transformed. In the ideal case, we want to find a signal that resides in a single bin,

{ak}Nk=1 in the kth transform, with phase {φk}Nk=1. For a fully coherent signal, we

would have φl+1 − φl = 0. However, if the template does not match the signal

exactly, the phase would change from one SFT to the next in a systematic way. The

power estimate for the loosely coherent sum is [31, Eq. 10]

P =
N∑

k,l=1

a∗kal

(
sin δ

δ

)|k−l|
, (4.8)

where δ is the phase error due to template mismatch. Some example values for δ are

given in Table 4.4.

4.7 Vetos

To reduce the effect of noise lines, a number of methods have been developed to

identify and/or eliminate spurious outliers. These vetos create special skymark

designations that prevent anomalous templates from being selected for followup. If

a template matches one of these vetos, it will not be included in the usual skybands,

and may be discarded or examined separately.
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4.7.1 S Parameter

The S parameter, introduced in the S4 analysis [7], is a measure of how stationary a

template is in detector frequency. It is defined as

S = ḟ + [(Ω× vEarth/c) · n̂] f̂0, (4.9)

where Ω is the Earth’s angular velocity, vEarth is the average velocity of the Earth

for the current SFT, and f̂0 and ḟ are the frequency and frequency derivative of the

potential signal. See Fig. 4.4 for an example of the S Parameter applied to O1 data.

Templates with |S| < Slarge are considered at-risk for contamination, and for the

S4 run, were not included in upper limits. By default,

Slarge =
Ndet

TobsTcoh
, (4.10)

where Ndet is the minimum number of occupied bins for detection, and Tobs is the

total observing time of the run. However, in practice the limit needs to be increased

to remove outliers due to pervasive combs.

4.7.2 Line Response Veto

Similar to the S Parameter Veto, the Line Response Veto introduced in the S5 and

S6 analyses [4, 6] looks for templates that remain stationary in detector frequency.

However, this veto sets a limit on the fraction of weight accumulated in a given

binwidth over the run. This gives more precision than the S parameter

approximation, by vetoing only points that are specifically inflated by a narrow

frequency source.

The procedure is as follows:
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Figure 4.4: Max SNR of O1 templates over full sky. Frequency change in detector
frame depends on both source spindown and frequency (via Doppler modulation).
Note enhancement to the right of a chosen S Parameter line. These templates are
stationary in detector frequency, and potentially pick up noise lines.

1. For each SFT, calculate the weight wi = Tiwd, where Ti is the background

strain calculated for SFT i, and wd is the overall weight for detector dataset d

2. For each SFT, calculate the total bin change ∆bi over the integration. This is

the same as Eq. (4.4)

3. Calculate the offset b0 = (
∑

iwi∆bi)/(
∑

iwi)

4. Calculate adjusted bin change, ∆b′i = ∆bi − b0
5. Calculate fraction of weight with |∆b′i| < btol
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Figure 4.5: Weight histogram for outlier near 77.5 Hz line. Note concentration of
weight in a few frequency bins.

For recent searches, the veto threshold was at least 5% weight in any 3 bins. An

example weight histogram is shown in Fig. 4.5.

4.8 Pipeline Performance

A comparison of the upper limits set by the various CW pipelines is shown in

Fig. 4.6. PowerFlux offers upper limits for both circularly polarized, and linearly

polarized waves, which tend to bracket the results given by other pipelines. By

distinguishing these two, PowerFlux is able to set the strictest upper limits in most

cases. The next chapter addresses PowerFlux’s performance compared to other

continuous wave pipelines in detection capability. In general, PowerFlux is

significantly more computationally efficient than other search techniques, while still

maintaining good detection efficiency.
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FIG. 21. (Color online) Upper limit comparison for the four search pipelines used in this analysis. The curves represent the
source strain amplitude h0 at which 95% of simulated signals would be detected. Three of the pipelines (FrequencyHough,
SkyHough, Time-Domain F-statistic) present population-averaged limits over the full sky and source polarization, while one
pipeline (PowerFlux) presents strict all-sky limits for circular-polarization (most favorable orientation – black) and linear-
polarization (least favorable orientation – cyan) sources. Converting the PowerFlux upper limits to validated population-
averaged upper limits would require extensive, band-dependent Monte Carlo simulations, but previous studies suggest that
such limits would lie in a region similar to that of the other pipelines. In addition, the population-averaged upper limits from
the most recent Einstein@Home search are shown for comparison [32]. The Einstein@Home search explored the low frequencies,
and a narrower spindown range using a much longer coherence length (210 hours).

Idx SNR Segment Frequency Spindown RAJ2000 DECJ2000 Description
Hz nHz/s degrees degrees

1 10532 [0, 2] 256.00854 �1.475 255.225 �85.537 Extremely strong bin-centered line at 256.0 Hz
33 352 [1, 2] 52.80829 0.000 301.148 �84.274 Hardware injection ip5
36 269 [0, 2] 191.03127 �8.663 351.292 �33.643 Hardware injection ip8
37 236 [1, 2] 265.57551 �0.013 71.719 �56.276 Hardware injection ip0
39 227 [0, 1] 21.41061 �0.500 230.715 �1.630 Sharp line in L1 near 21.41 Hz, H1 and L1 SNR inconsistent
46 172 [1, 2] 146.16942 �6.775 356.992 �65.953 Hardware injection ip6
47 170 [0, 1] 31.11704 �7.362 56.406 �22.568 Coincident combs with di↵erent morphology between H1 and L1
52 145 [1, 2] 108.85708 0.037 176.861 �34.170 Hardware injection ip3
56 110 [0, 1] 59.60507 0.113 283.407 68.377 Coincident lines in spectrum, signal nearly stationary in detector frame
70 63 [1, 2] 99.96961 1.775 99.689 35.244 Coincident regions between H1 and L1
72 52 [1, 2] 30.63391 �6.688 357.777 �40.140 Both H1 and L1 spectra are contaminated
74 48 [1, 2] 412.00362 �0.588 84.695 �71.077 Sharp bin-centered line in L1 at 412.0 Hz
78 39 [0, 1] 93.75912 0.062 279.035 �13.320 Sharp and coincident lines in H1 and L1, SNR inconsistent
85 33 [0, 1] 299.42508 1.175 317.303 46.331 All SNR comes from large artifact in H1
95 23 [0, 2] 90.74396 0.250 86.019 �18.203 Coincident bin-centered lines at 90.75 Hz, 0.25 Hz comb
98 19 [0, 2] 33.59221 0.300 359.165 �18.874 Both H1 and L1 spectra are disturbed, H1 does not see anything
99 19 [1, 2] 306.01509 �2.275 130.248 33.827 Large artifact in L1, H1 does not see anything

100 19 [0, 2] 299.39436 �0.287 116.867 73.521 Large artifact in H1, L1 does not see anything
102 17 [0, 2] 307.31880 �6.612 181.054 �25.115 Large artifact in L1, H1 does not see anything
109 16 [0, 1] 452.88717 0.238 82.204 �67.295 Large artifact in H1
122 14 [1, 2] 452.86305 �2.350 198.764 49.143 Large artifact in H1
128 13 [1, 2] 29.63552 0.312 107.619 1.373 Coincident disturbances with di↵erent morphologies in H1 and L1
134 13 [1, 2] 265.75911 �2.112 67.964 �28.799 Not confirmed by Einstein@Home followup
138 13 [0, 1] 178.60606 �3.275 194.163 51.285 Sharp line in L1 at 178.7 Hz is outside signal range
154 12 [1, 2] 404.79214 �6.675 136.431 38.381 Not confirmed by Einstein@Home followup

TABLE VIII. Outliers that passed PowerFlux detection pipeline spanning more than one segment and excluding those near a
0.25-Hz comb. Only the highest-SNR outlier is shown for each 0.1-Hz frequency region. Outliers marked with “line” had strong
narrowband disturbances identified near the outlier location. The “Segment” column reports the set of contiguous segments of
the data that produced the outlier, as described in Section V. Frequencies are converted to epoch GPS 1130529362.

Figure 4.6: O1 Upper Limits for each pipeline in low-frequency search [11, Fig. 21].
PowerFlux’s best/worst-case polarizations tend to bracket other pipeline results.
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Chapter V

S6 Mock Data Challenge

As we have yet to make the first detection of continuous gravitational waves, we

have no real data with which to compare the sensitivity of different detection

algorithms. Therefore, to fill this void, the LIGO collaboration has added fake

signals to its data sets to model the detector’s response to various theoretical

sources.

A number of such “signal injections” were added to data from the 6th Science

run of LIGO (S6). The Mock Data Challenge (MDC) was designed to compare the

CW pipelines in their ability to detect these signals. The challenge was divided into

4 stages, summarized in Table 5.1, though this work concerns only stages 3 and 4,

the results of which were published in [75].

Table 5.1: S6 MDC Parameters

Stage No. of Inj. Frequency Rng. (Hz) Visibility

1 21 200–240 Open
2 184 100–500 Open
3 1561 40–2000 Open
4 1550 40–2000 Blind
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5.1 Hardware Injections

Some of the signal injections performed by LIGO use the detectors’ Photon

Calibrators (PCAL) to apply radiation pressure to the mirrors (Fig. 5.1). During

S6, eleven such CW signals were injected, including one blind injection for which

parameters were not immediately released [51]. Hardware injections give a more

accurate test of the sensitivity of our analysis pipelines, but they run the risk of

contaminating true signals. For high-statistics studies, injections are inserted into

data copies after collection, using software tools.
The Advanced LIGO Photon Calibrators 3

Suspended
test mass

Vacuum envelope

Stray light
baffle

Beam-relay
periscope

Test Mass

Penultimate
Mass 

Transmitter 
Module

Receiver 
Module

Pcal Beams

 ifo beam

Main interferometer beam

Figure 2. Schematic diagram of an Advanced LIGO photon calibrator in plan view (left). The transmitter module contains
the laser, power modulator, and beam conditioning optics. The in-vacuum periscope structure relays the input beams to avoid
occlusion by the stray-light ba✏ing and to impinge on the end test mass at the desired locations. It also relays the reflected
beams to a power sensor mounted inside the receiver module. Schematic diagram of beams impinging on a suspended test mass
surface (right). The Pcal beams are displaced symmetrically above and below the center of the optic. The main interferometer
beam is nominally centered on the surface.

Figure 3. The periscope structure that supports the relay
optics that provide optical paths for the Pcal beams and the
beam localization camera system being installed during the
Advanced LIGO upgrade.

vanced LIGO upgrade is shown in Fig. 3. The beams
from the in-vacuum periscope impinge on the test mass
at 8.75 deg., displaced vertically by approximately 111.6
mm above and below the center of the mirror (see Fig. 2).

The power reflectivity of the end test mass, measured
in-situ with the Pcal beams, is 0.9979 ± 0.0010.20 The
reflected beams are relayed by a second set of mirrors
mounted to the in-vacuum periscope structure and exit
the vacuum enclosure through an identical vacuum win-
dow. These beams enter the receiver module and are
directed by a pair of mirrors to a power sensor mounted
inside the receiver module. Capturing the light reflected
from the test mass is an important upgrade because it
enables tracking changes in the overall optical e�ciency
of the Pcal system. Furthermore, it enables measurement
of the full power, rather than just a sample of the power
that is subject to changes in the reflectivity of the beam
sampling optic.

Reducing calibration uncertainties requires higher
signal-to-noise ratios (SNRs) for the fiducial length mod-
ulations, which requires increased laser power and thus
Advanced LIGO Pcals have 2-watt lasers, four times the
initial LIGO laser power. However, because they oper-
ate continuously at high SNR levels during observation
runs, broadband laser power noise as well as harmonics
of the injected modulations resulting from non-linearities
in the modulation process must be minimized. To meet
the Advanced LIGO requirement that unwanted noise in-
jected by the Pcals be at least a factor of ten below the
noise floor of the detector21, a high-bandwidth feedback
control servo known as the Optical Follower Servo (OFS)
has been implemented.22 The features and performance
of this servo are described in detail in Sec. II B.

Another important aspect of the performance of the
Pcal systems is the locations of the Pcal beam spots on
the test mass surface. To minimize calibration errors re-
sulting from local deformations of the test mass surface
that are sensed by the interferometer beam, the Pcals
use two beams with equal powers and displaced from the
center of the mirror surface (the nominal location for
the interferometer beam). To minimize inducing rota-
tion of the test mass, the two Pcal beams are displaced

Figure 5.1: Photon calibrator beam path [44, Fig. 2]. Laser applies varying pressure
to the test mass, simulating a gravitational wave.

5.2 Software Injections

Since the MDC required a large sample size, it made more sense to use software

injections to avoid over-contamination of the data. Sets of data were created with

generated signals added on top of the real detector output for the S6 run. From

these, 30-minute SFTs were created for analysis by the various CW pipelines.
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Table 5.2: Pipeline search parameters [75]. In cases with multiple values, initial stage
and low frequency parameters are shown.

Pipeline Tcoh (h) δf (Hz) δḟ (Hz/s)

PowerFlux 0.25 2.78× 10−4 2× 10−10

Time-domain F -statistic 48 5.79× 10−6 3.3× 10−11

Frequency Hough 0.284 9.76× 10−4 2.4× 10−11

Sky Hough 0.5 5.55× 10−4 1.37× 10−11

Einstein@Home 60 3.61× 10−6 1.16× 10−10

5.3 Pipelines

The pipelines participating in the challenge were PowerFlux, Time-domain

F -statistic, Frequency Hough, Sky Hough, and Einstein@home. With the exception

of PowerFlux, detailed previously, these are briefly described below, with some

differences in search parameters summarized in Table 5.2.

5.3.1 Time-domain F-statistic

For signal parameters A, and Doppler modulation λ, the signal model is

h(t;A, λ) = Aµhµ(t;λ), (5.1)

and we can define the maximum likelihood as

F ≡ maxA logL(x;A, λ) =
1

2
xµMµνxν , (5.2)

whereMµν is the Fisher matrix for the parameters A, and xµ is the detected strain.

The detection statistic is given by

2F = AµMLMµνAνML, (5.3)
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where AµML ≡Mµνxν . The data are split into chunks of 2 sidereal days each, and

2F is calculated. Candidates above a certain threshold are checked for coincidence

within each 2-day period. [2, 18]

5.3.2 Frequency/Sky Hough

The Hough pipelines digitize SFTs by using a power threshold to set each bin to

either 0 or 1. For each template, a path is plotted through this peakgram, and the

bins are summed and compared to Gaussian noise. Sky Hough groups candidates by

frequency and sky location, and checks for coincidence. Coincident candidates are

clustered and passed on for followup. Frequency Hough maps points from the

peakgram onto a set of templates with high resolution in frequency. Candidates for

followup are once again chosen from groups of frequencies and sky locations, but

with wider frequency bands than Sky Hough. [1, 5, 17, 19]

5.3.3 Einstein@Home

The Einstein@Home pipeline uses distributed processing on volunteers’ computers

to perform searches of LIGO data. Before analysis, SFTs are cleaned of known noise

lines, replacing the removed frequency bins with Gaussian noise. The data are split

into segments of a few days each, and 2F values calculated. These values are

averaged over all segments, and ranked according to the logBSGL statistic. [45, 69]

5.4 Challenge Parameters

For each injected signal, a window for each parameter is given to be searched: 0.1 Hz

in frequency, max(2× 10−9 Hz/s,±3× true ḟ) in spindown, and a sky region with

radius 30 degrees × min(200 Hz/injected frequency, 1). For 25% of the injections, a
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braking index n is applied, giving second and third frequency derivatives [60],

f̈ =
nḟ 2

f
,

...
f =

nḟ

f

(
2f̈ − ḟ 2

f

)
. (5.4)

None of the pipelines explicitly search for second or higher order frequency

derivatives, so the presence of a braking index can degrade detection ability. The

critical f̈ that would cause a signal to smear over multiple frequency bins is defined

as

f̈crit =
δf

T 2
obs

. (5.5)

Comparisons between the injected braking indices and the f̈crit for each pipeline is

shown in Fig. 5.2.
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FIG. 4. Detection e�ciency measured for injections with
small spindown (< �1⇥10�13 Hz/s, 1260 injections), large
spindown (�1⇥10�13 to 0 Hz/s, 1517 injections) and with
spinup (> 0 Hz/s, 149 injections). Frequency Hough results
are shown with a hatched error band because the e�ciency is
measured for a subset of the MDC injections (793, 919, and
457 injections respectively). The curves and error bands are
obtained by fitting sigmoids to the data, see Section VII A.
The error bands represent the statistical uncertainty on the
detection e�ciency measured for the search implemention and
data used in the MDC.

of the searches. Some signals have f̈ � f̈critical for the
Einstein@Home, Time domain F-statistic and Powerflux
searches. However, in each case, there are too few signals
with f̈ � f̈critical to determine if they have an appreciable
e↵ect on the detection e�ciency.

The stability of the detection e�ciency for signals with
f̈ > 0 is important as none of the pipelines search explic-
ity over second order spindown, and to do so would add
a significant computational burden to the searches. Fig-
ure 6 shows that the detection e�ciency is the same for
signals with f̈ = 0 and f̈ > 0, with at least 99% of injec-
tions having f̈ < f̈critical. Due to the lack of injections
with f̈ � f̈critical, the impact on detection from these
injections not examined.

For the Sky Hough and Frequency Hough searches the
impact of f̈ � f̈critical is less of a concern for future
searches, due to the short coherent segment length used
by these searches. The f̈critical of the Time domain F-
statistic search will be larger than the value in the MDC
for the first advanced LIGO searches, which will have a
lower Tobs than the 15 months of the MDC data.

The Powerflux f̈critical is calculated for refinement
stage 1 in Table II. The �f decreases in the next
refinement stages, so f̈critical will decrease. The Ein-
stein@Home search refinement stages also have reduced
�f and f̈critical. Therefore, the impact on detection
e�ciency of f̈ � f̈critical may warrant further study for
these two searches.

FIG. 5. Distribution of f̈ values for 781 injections with f̈ > 0.
The vertical lines show f̈critical for each of the pipelines. The
f̈critical is calculated after the first refinement stage for Power-
flux and for the 40 to 500 Hz search setup for Einstein@Home.

B. Signal parameter recovery

The distance between the signal and recovered candi-
dates is of interest as it determines the region in param-

Figure 5.2: Critical frequency second derivatives [75, Fig. 5]. Few injections exceed
the limit for any pipeline.

Each pipeline has requirements that define detection, which were applied to the

injected signals. For PowerFlux, we demanded that outliers survive the first

followup search stage, which requires coincident signals in both detectors, and

increased SNR from the combined data. The detection efficiency (no. detected/no.
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injected) is measured as a function of sensitivity depth,

d =

√
Sh(f)

h0
, (5.6)

where h0 is the injected strain amplitude, f is the injected frequency, and Sh is the

harmonic sum of the power spectral density over the detectors at that frequency.

This measure quantifies the difficulty of detection by accounting for the level of

noise that may cover an injected signal.

Approximately half the injections were classed as “open,” and the others “blind.”

The open injections provided both a search region, and the precise signal

parameters that were injected. This allowed for self-assessment and tuning during

the first phase of the MDC, to optimize the pipelines’ sensitivity in the injection

bands. The second phase used blind injections, meaning that only the search

regions were known a priori. True injection parameters were revealed only after the

search groups submitted their final results. The blind injections were designed to

emulate a real all-sky search, where signal parameters are unknown. The pipelines

had similar performance between the open and blind injections, so the efficiency

plots shown below do not distinguish between the classes.

5.5 Results

There are two measures used for the success of each pipeline: the detection

efficiency, and the accuracy of recovered parameters. Comparisons of the former are

shown in Fig. 5.3, and those for the latter in Fig. 5.6. Due to the prevalence of

detector artifacts, particularly at low frequencies, the injections were separated into

those intersecting known lines (Fig. 5.4a) and those in quiet bands (Fig. 5.4b).

Larger Doppler shifts also affect detection capability, so the results are separated by
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frequency band (Fig. 5.5).

The results show the value in using multiple strategies to analyze data.

Einstein@Home is extremely sensitive in the absence of noise lines, but the cleaning

procedure used severely degrades its efficiency for signals that overlap with noise.

PowerFlux tends to fall in the middle as far as detection efficiency, but has some of

the best parameter recovery. It is also computationally efficient, using the widest

spindown step of the pipelines as well as the shortest coherence time. PowerFlux

finished the MDC analysis earliest, and the actual O1 search finished 9 months

before other pipelines.

PowerFlux achieves optimum sensitivity only after after extensive tuning, which

was not performed for the MDC data. Instead, the parameters from the previous S6

search were used, which did not include frequencies < 400 Hz. After tuning for O1,

PowerFlux proved to be the most sensitive of the CW searches, reporting the lowest

upper limits [11].

Given that no real CW signals have been yet detected, it’s important to maintain

a wide variety of search techniques, increasing our chances of discovery. At the same

time, testing against simulated signals offers the opportunity to optimize pipelines,

and identify the strengths and weaknesses present in each. The MDC was an

important test case heading into the advanced detector era, to evaluate both our

data, and the status of our search methods.
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sensitive to these standard CW signals. At the same e�-
ciency, the Einstein@Home search is a factor of two more
sensitive than the next most sensitive search. This di↵er-
ence can be attributed to a combination of the significant
computing resources of the Einstein@Home project, the
longer coherent segment length, recent method improve-
ments, and the intensive refinement procedure which al-
lows for the follow-up of many candidates from the all-sky
search.

In Figure 1 it is clear that the detection e�ciency
does not reach 100% for very strong signals. For
Einstein@Home, this is due to signals which overlap
with known noise lines, as shown in Section VII A 1. For
Powerflux, this due to signals below 400 Hz, as shown in
VII A 2.

FIG. 1. Detection e�ciency measured for all 3110 injections.
The Frequency Hough results are shown with a hatched error
band because the e�ciency is measured for a subset (1920) of
the MDC injections. The curves and error bands are obtained
by fitting sigmoids to the data, see Section VII A. The error
bands represent the statistical uncertainty on the detection
e�ciency measured for the search implemention and data used
in the MDC.

1. Robustness in the presence of detector artifacts

Each method has a di↵erent procedure for excluding
candidates caused by detector artifacts, also known as
noise lines, described in Section III. In Figure 2 we sepa-
rate the detection e�ciency measured in quiet data, and
the detection e�ciency measured for injections whose fre-
quency overlaps with known noise lines.

The top panel of Figure 2 shows that the e�ciency
for the Sky Hough, Time domain F-statistic and Fre-
quency Hough searches remains unchanged, within the
measurement uncertainty, in the presence of noise. The
Frequency Hough procedure for handling lines are not

included in the MDC, therefore these results are not rep-
resentative of noise handling in a real search.

As Einstein@Home applies an aggressive cleaning pro-
cedure, where known noise lines are replaced by Gaussian
noise, any signal which overlaps with a noise line in both
detectors is removed. When signal overlaps with a noise
line in one detector, the signal is suppressed by the logB-
SGL statistic which downweights signal appearing in one
detector. In the case of Powerflux, signals overlapping
with noise lines is suppressed by the procedure where
SFTs are weighted according to their noise level.

The bottom panel of Figure 2 shows that, in the
absence of known lines, the e�ciency for strong signals
has increased for Powerflux and reaches almost 100% for
Einstein@Home.

2. Dependence on signal frequency or spindown

Here we consider the detection e�ciency only for injec-
tions that do not overlap with known noise lines. Figure
3 shows the detection e�ciency separately for injections
in the frequency ranges of 40 to 500 Hz, 500 to 1000Hz
and 1000 to 1500 Hz.

The Sky Hough, Time domain F-statistic and Fre-
quency Hough results do not depend on frequency. This
indicates the Frequency Hough results would not change
if injections above 1000 Hz were included. Powerflux
measures lower e�ciency in the low frequency range.
This is expected as the S6 analysis applied in the MDC
was only tuned for signals above 400 Hz. In the higher
frequency bands, for which the search is designed, the
detection e�ciency approaches 100% for the strongest
signals.

The drop in e�ciency for the Einstein@Home search
at higher frequencies is expected due to the choice of
having equal computing cost assigned to the searches
in each of the three frequency bands in Table V. As
the frequency increases a higher sky-grid density, and
therefore a higher computing cost, is required to achieve
the same sensivity. In order to keep the computing
cost fixed, a coarser search grid is used in the higher
frequency bands.

Figure 4 shows the detection e�ciency for injections
with large spindown, small spindown and with spinup.
There is no dependence on the frequency derivative of
the signal for any of the searches.

3. Dependence on signal second order spindown

A loss in detection e�ciency is expected when the sig-
nal f̈ is greater than the f̈critical for a search, where

Figure 5.3: Overall detection efficiency [75, Fig. 1]. Error regions represent binomial
distributions.
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FIG. 2. Detection e�ciency measured for injections overlap-
ping with known noise lines (top, 184 injections), and when
injections which overlap with known noise lines are excluded
(bottom, 2926 injections). The Frequency Hough results are
shown with a hatched error band because the e�ciency is mea-
sured for a subset of the MDC injections (top: 117, bottom:
1803). The curves and error bands are obtained by fitting
sigmoids to the data, see Section VII A. The error bands rep-
resent the statistical uncertainty on the detection e�ciency
measured for the search implemention and data used in the
MDC.

f̈critical is given by

f̈critical =
�f

Tobs
2 . (7)

f̈critical is the value of f̈ at which the signal frequency will
vary by more than a frequency bin, �f , over the obser-
vation time of the data, Tobs. In practice, the e�ciency
loss for f̈ � f̈critical is expected to be mitigated to some
degree by apparent displacement of the signal parameters
in the space of (f0, ḟ , ↵, �).

Figure 5 shows the non-zero second order spindown

FIG. 3. Detection e�ciency measured for injections in the
the frequency ranges of 40 to 500 Hz, 500 to 1000 Hz and 1000
to 1500 Hz (859, 944, and 1123 injections respectively). The
Frequency Hough results are complete for injections below
1000 Hz. The curves and error bands are obtained by fitting
sigmoids to the data, see Section VII A. The error bands rep-
resent the statistical uncertainty on the detection e�ciency
measured for the search implemention and data used in the
MDC.

values of the MDC signals, for the range specified in Sec-
tion IVA. The vertical lines show the f̈critical for each

(a)
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FIG. 2. Detection e�ciency measured for injections overlap-
ping with known noise lines (top, 184 injections), and when
injections which overlap with known noise lines are excluded
(bottom, 2926 injections). The Frequency Hough results are
shown with a hatched error band because the e�ciency is mea-
sured for a subset of the MDC injections (top: 117, bottom:
1803). The curves and error bands are obtained by fitting
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Figure 5.5: Detection efficiency for each frequency band [75, Fig. 3].13

candidates at the edge of the refinement region shows
that the parameter space can not be reduced without
losing detection e�ciency.

FIG. 7. The distance between the signal and the recovered
candidate, in frequency, spindown and sky position, when the
candidate with the highest SNR is chosen. The red line is
the median. The blue box begins and ends at the first and
third quartile respectively. The vertical black bars (whiskers)
extend 1.5 times the inner quartile range outside the blue box.
The blue crosses are candidates outside this range.

FIG. 8. The distance between the signal and the recovered
candidate, in frequency, spindown and sky position, when the
candidate with the highest SNR is chosen. This is an alter-
native representation of the same data as in Figure 7.
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Figure 5.6: Difference between injected parameters, and parameters associated with
highest SNR point in band [75, Fig. 8].
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Chapter VI

Line Cleaning in O1 Searches

The first observing run of Advanced LIGO began on September 18, 2015 and ran

through January 12, 2016. While a significant improvement over Initial LIGO, the

resulting data contain instrumental artifacts. Many of the artifacts in the

low-frequency region (10-150 Hz) are sharp “lines” that each contribute significant

power to a few detector frequency bins. Examples of lines include the resonant

frequencies of the test mass suspension (“violin modes”), and excitations from

power systems at 60 Hz. While most CW signals will show a time-varying detector

frequency, some templates remain stationary for extended periods. If the template

overlaps with one of these lines, its inferred power may be erroneously inflated by

the artifact, giving a false-positive. Extraneous outliers are expensive to follow-up,

so the collaboration makes efforts to mitigate these noise sources, both by tracking

and eliminating their cause before further data collection, and by cleaning the data

already in hand.
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6.1 Low-Frequency Lines

6.1.1 Combs

Many of the lines in the low-frequency range of O1 have been identified as combs –

series of lines with equal spacing, due to harmonics of the noise source. One

example, a comb spaced at 1 Hz intervals and offset from zero by 0.5 Hz, is shown

in Fig. 6.1.

Figure 6.1: H1 low-frequency normalized spectrum from 3600s O1 SFTs. Dots mark
members of half-Hertz comb. Normalization sets the median power in each frequency
bin to 1.

This set of lines, dubbed the “half-Hertz comb,” was the result of blinking LEDs

on the GPS timing cards at the detector end stations. The cards indicated their

GPS synchronization by cycling between on for one second, then off for one second.

This precisely-timed minute current draw coupled to the GW strain channel,

creating the noise lines. Harmonics of the square-wave appear in the data as a series

of evenly-spaced peaks. The problem was resolved by reprogramming the cards to
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keep the LEDs on after synchronization rather than blinking, which significantly

reduced the strength of the comb [28]. The improved O2 spectrum is shown in

Fig. 6.2.

Figure 6.2: H1 low-frequency normalized spectrum from 3600s O2 SFTs. The half-
Hertz comb (red dots) is almost non-existent.

6.1.2 Non-Stationary Lines

Most lines have a relatively stable frequency and power, but sometimes a line’s

power can fluctuate, which leads to problems with the background subtraction used

by PowerFlux. The algorithm is described in [7]. SFT powers are laid out in a grid,

with each row indexed by time, and each column indexed by frequency. The

following procedure is then carried out

1. For each row, subtract the median log(power) from each element in the row

2. For each column, subtract the median log(power) from each element in the

column

3. Repeat from (1) until changes are sufficiently small
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In the case of a non-stationary line, however, this algorithm can subtract too much

or too little in different grid regions. See Figures 6.3 and 6.4, for example. The line

gets stronger partway through the run, which results in a median that does not

represent the true noise behavior in that band. The algorithm assumes a consistent

statistic for the noise, and cannot remove this line.

6.1.3 Excessive Outliers

The presence of these instrumental lines can lead to extraneous outliers. As

discussed regarding the S parameter veto (Section 4.7.1), some signal templates can

spend long periods of time in a single detector frequency bin. If that bin contains a

line, the template can yield an inflated SNR that causes it to be marked for

followup. Because of the limited computational resources available, we have a strong

incentive to reduce the number of outliers that are unlikely to be useful.

6.2 Cleaning

In the case of known instrumental lines, the contaminated frequency regions can be

“cleaned” by replacing the affected regions with Gaussian noise. The mean and

standard deviation of the noise generated are determined from the noise floor at

either end of the cleaned region, and interpolated between. This technique has been

used extensively by the Einstein@Home search group since the S4 search [8], and we

explored its use in the low-frequency PowerFlux searches. The non-stationary line

at 75.5 Hz described above is among the lines removed by the cleaning process

(Fig. 6.5).
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Figure 6.3: Example of non-stationary line in O1 at 75.5 Hz in raw frequency-time
spectrogram. Horizontal gaps represent times detector was offline.
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Figure 6.4: 75.5 Hz line in residual spectrogram after subtraction. Excess power
remains, due to non-stationarity of the line.
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Figure 6.5: Spectrogram with 75.5 Hz line removed after cleaning.
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6.2.1 SFTClean

The SFTClean tool was introduced in the Einstein@Home S4 search because of the

large number of narrow spectral lines from sources such as harmonics of the power

mains and violin modes of the mirror suspensions [8]. The tool takes a list of line

regions and a complex-valued SFT as input and removes the data in the specified

frequency bands from the SFT. The lost data are replaced with generated Gaussian

noise, with mean corresponding to an assumed noise floor interpolated between the

end points of each removed region.

The analysis carried out here used the Version 1 line lists for O1, released

January 31, 2016 [28].

6.2.2 PEM Correlations

When choosing frequency bands for cleaning, it’s important to ensure the excess

power removed could not be due to a true signal. The LIGO detectors are equipped

with a wide array of physical environment monitors (PEMs), shown in Table 6.1.

Any strain line that correlates with a line in one of these monitor channels would be

highly suspect, and acceptable to remove.

A number of lines remained in the O1 data after cleaning, so we attempted to

match these to PEM channels so they could be added to the next version of the line

list. An example is shown in Figure 6.6. This plot shows coherence between the H1

strain channel, and the magnetic field detected in an area of the Y end-station. The

coherence is calculated by the tool gwpy [53] according to

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(6.1)

for cross-spectral density Sxy and auto-spectral densities Sxx and Syy. There is
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Table 6.1: Summary of physical environment monitors [81]

Type Sensor Type Sensor

Seismic noise 3-axis seismometer Cosmic ray muons Scintillation detector
Seismic noise 2-axis tiltmeter Power line fluctuations Line monitor
Seismic noise 1-axis accelerometer Residual gas Gas analyzer
Acoustic noise Electret microphone Contamination Crystal monitor head
Magnetic field 3-axis magnetometer Contamination RGA head
Radio interference Multichannel receiver Contamination Control

intermittent coherence at 29.8 Hz during the latter half of O1, suggesting some

terrestrial interference in the strain channel, though further investigation would be

needed before adding this frequency to the H1 line list.

6.2.3 Comparison

As a test of the cleaning procedure, we ran all-sky searches of O1 data over the

frequency range 50–135 Hz. The first set of searches used standard PowerFlux

parameters. The second did not perform background subtraction on the SFTs

before searching. The third used SFTs that had been cleaned of known lines, and

background subtracted. Each PowerFlux run covers 501 frequency bins, or about

69.6 mHz for the 7200-second SFTs used here. SNR values are based on the

estimated noise in each frequency band.

As discussed in Section 6.1.2, non-stationary lines can result in the background

subtraction removing too much or too little from bins. The effect of this can be seen

in Fig. 6.7 – For small assumed |ḟ |, the SNR of the original run (with background

subtraction) is artificially lowered as a result of too much power being removed from

certain bins. Background subtraction can be disabled, but doing so inflates the SNR

because of the lines that are no longer removed. Removing the known lines via

cleaning avoids most of the SNR increase from detector artifacts, including those

that the background subtraction misses. There remains some SNR increase,
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Figure 6.6: Coherence between detector strain channel, and LHO Y end-station vac-
uum equipment area magnetometer channel. Data are from 60-second SFTs, averaged
over one hour, and sampled once per day.
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Figure 6.7: Median SNR across spindowns. Dotted line marks beginning of S pa-
rameter veto for Slarge = −2.5 × 10−11. Templates to the right of this line may be
stationary in detector frequency, and pick up noise lines. Also note excessive back-
ground subtraction in original run.

however, since only well-vetted lines are included in the list for removal, so some

artifacts are still present.

The stationarity of a template also depends on frequency, due to Doppler shift.

Fig. 6.8 shows the changes in SNR for runs with/without background subtraction

and cleaning over the full range of templates tested. As above, the enhanced SNR

region to the right of the S parameter line is greatly diminished with cleaning.

In addition to determining maximum SNR, PowerFlux also sets upper limits on

the strength of signals. Until a CW detection is made, these upper limits should

represent the weakest signal the pipeline could detect. Typically, noise lines appear
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(a) Original run (b) No background subtraction

(c) Cleaned

Figure 6.8: Max SNR for each frequency/spindown in test run. Dotted line marks S
parameter veto for Slarge = −2.5× 10−11.
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in the upper limits, since a stationary signal at the same frequency would need to

exceed the noise to be detected. Sample upper limits reported by PowerFlux are

shown in Fig. 6.9.

The vast majority of lines do not appear in the cleaned upper limits, but we must

question whether this is an accurate representation of the detectors’ capabilities. If

a signal lay on top of one of these lines, it would be removed as well. In light of this,

we investigated the extent to which certain templates would be affected by cleaning.

6.2.4 Fraction Cleaned

By its nature, cleaning introduces artificial data into the analysis. It’s important to

keep track of how much data has been replaced for any affected outlier. For

example, it may happen that a line is wider than recorded in the line list, and as a

result is not completely removed. The artificial data that replaces the removed

region is based on the end points, so in this case we would be inserting a block of

elevated signal. The pipeline finds the template with the highest SNR, but if a

significant amount of that SNR is coming from artificial data, we should veto that

outlier just as we did for noise lines in Section 4.7.

By calculating the Doppler shift and spindown for each time in O1, we can track

a source’s frequency in the detector frame. We mark each time for which the

frequency intersects with a cleaned region. We may wish to set an upper limit on

the amount of time a signal is in a certain frequency band. We can also use this tool

to measure how much of a signal in an uncleaned search comes from a known

contaminated region.

There are some lines wide enough to cover a full search band when using 2-hour

SFTs. As above, the search bands are 69.6 mHz wide. In the H1 line list, there are

20 lines wider than this, and in L1 there are 25. Among these is the 60 Hz line
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Figure 6.9: Upper limits in search band. Most lines are absent from cleaned runs.
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resulting from the U.S. power mains, which is within the frequency band searched.

This line, including shoulders, has a width of 120 mHz, enough to cover almost 2

search bands.

Figure 6.10: Distribution of time outliers spent in cleaned regions. Error bars esti-
mated as ∆N =

√
N .

Fig. 6.10 shows a histogram of the fraction of SFTs for which outliers were in a

cleaned region. The runs with and without background subtraction yield nearly
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Figure 6.11: Relation between time outliers spent in cleaned regions and spindown.
Error bars estimated as ∆y = σy/N .

equal distributions, but the cleaned data histogram shows less time in the regions

marked as lines. This shows that cleaning does indeed help to disfavor outlier

templates that get much of their power from an instrumental line. The spike at

100% cleaned is due to the issue discussed above.

Fig. 6.11 shows a similar plot to Fig. 6.7, where low |ḟ | results in Doppler
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Figure 6.12: Relation between time outliers spent in cleaned regions and SNR. Error
bars estimated as ∆y = σy/N .

stationarity. The cleaned searches tend to choose templates that spend less time in

marked regions, in spite of their stationarity.

Fig. 6.12 shows a significant drop in SNR for the cleaned plots, mainly for

templates with around 50% cleaning. Also of note is the relative SNR of the runs

with/without background subtraction. In most cases, the templates without
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Table 6.2: Average ratio of SNRs, Run 2
Run 1

Run 1 Run 2 SNR ratio

original no bkgd sub 0.9826544
original cleaned 0.7637940
no bkgd sub cleaned 0.7499136

Table 6.3: Number of templates with SNR above threshold. Cleaned runs show sharp
decline in high-SNR points.

Run SNR > 5 SNR > 7 SNR > 9

original 58958 18825 3982
no bkgd sub 58950 19352 4327
cleaned 58591 15708 1461

background subtraction have higher SNR, as we might expect, but near 50%

cleaning, the relation inverts. This is likely due to the background subtraction issue

described in Section 6.1.2. The overall change in SNR is shown in Table 6.2, and the

distribution of SNR is summarized in Table 6.3. The SNR of the cleaned runs is

significantly diminished, while the runs with background subtraction disabled trend

toward lower SNR, but retain some exceptionally high cases.

In summary, cleaning shows promise for reducing outliers from known noise lines,

though care must be taken to keep track of affected templates. Further testing and

validation will be required to use cleaning in production of upper limits should

future LIGO data runs exhibit the level of line contamination seen in the O1 run.
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Chapter VII

Exploiting Longer Coherence

Times

Broadband CW analyses are typically carried out by taking the detectors’ output

strain over time, dividing it into segments, and performing a Fourier transform on

each. The duration of each segment is referred to as the coherence time, Tcoh. This

quantity determines the frequency resolution,

δf =
1

Tcoh
, (7.1)

and the time resolution,

δt = Tcoh. (7.2)

As discussed in Chapter VI, the data contain many narrow-frequency lines. By

increasing the coherence time, we make the frequency bins narrower, allowing the

evolving or modulated signal to move off of a line more quickly; this choice,

however, comes at the cost of worse time resolution, which can cause a signal to be

smeared across multiple bins in a single SFT. In this chapter, we examine the

advantages and limitations of using long coherence times in a search, and compare

67



the results of searches using different coherence times.

7.1 Losses and Gains

7.1.1 Line Avoidance

Due to coherence with GPS timing, most of the lines in the low-frequency O1 data

are narrow and bin-centered. For Hann-windowed SFTs, this means the line will

occupy 3 bins, regardless of the coherence time used. The total frequency band

contaminated will therefore be

∆fline =
3

Tcoh
. (7.3)

This means that when we use tools like the line response veto or cleaning, the

amount of data lost is significantly smaller than for the typical 30 minute coherence

time. As a signal moves in detector frequency due to Doppler shift and spindown, it

will also change bins more rapidly with longer coherence time.

7.1.2 Signal Smear

The rapid bin changes introduce a problem, though: If the signal occupies multiple

bins during a single SFT, the power will be spread among them, diminishing the

strength for the nominal bin. The total number of bins a signal will enter during a

single SFT is, to a good approximation,

∆b = |ḟdet|(Tcoh)2, (7.4)

where ḟdet is the total frequency rate of change in the detector frame, from both

source spindown and Doppler modulation. Since Doppler modulation depends on

frequency, the requirement of a signal remaining in one bin imposes a limit on the
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Table 7.1: Maximum frequency to prevent Doppler shift for sources in the ecliptic
plane from occupying multiple bins.

Tcoh (hours) Max f (Hz)

0.5 16 000
1 4 000
2 1 000
4 250
8 60

maximum frequency searched for each coherence time (see Table 7.1).

7.1.3 Antenna Pattern

The sensitivity of the LIGO detectors depends in part on the direction of the

source. As the detectors change orientation during the Earth’s daily rotation, this

sensitivity will vary. With short coherence times, we can downweight SFTs with

poor sensitivity, but long coherence requires averaging the antenna pattern over the

integration time. Using the antenna pattern expressions in Jarankowski, et al. [43],

we can see the effect of this degradation. For a set of times, we calculate the antenna

pattern Fψ(t) for polarization ψ. Normally, two parameters are required to specify

polarization, but by decomposing the signal into plus and cross polarizations, we can

shift ι into the strain equations, and use only ψ in the antenna response functions:

h(t, ψ, ι, α, δ, d) = F+(t, ψ, α, δ, d)h+(t, ψ, ι) + F×(t, ψ, α, δ, d)h×(t, ψ, ι) (7.5)

We assign a weight to the pattern proportional to the power, for circular and linear

polarizations,

W ◦(t) = (F+(t))4 + (F×(t))4, (7.6)

W+(t) = (F+(t))4, (7.7)
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W×(t) = (F×(t))4. (7.8)

We then average this pattern over the coherence time to get a value for SFT n,

F̃ψ
n =

1

Tcoh

∫ (n+1)Tcoh

nTcoh

Fψ(t)dt, (7.9)

and calculate the weight for each SFT,

W̃ ◦
n = (F̃+

n )4 + (F̃×n )4, (7.10)

and similarly for W̃+
n (t) and W̃×

n (t). The variation in these functions over an

example day is shown in Fig. 7.1 for sources aligned with the equatorial pole, the

equatorial plane, and halfway in between.

7.2 Choosing Coherence Length

Before carrying out a full analysis using longer coherence time, it is helpful to

consider the various ways this parameter affects the data. Ideally, we would like to

formulate a figure of merit that characterizes the expected performance of a given

Tcoh value.

To prevent signal smearing, we should only use long coherence times when |ḟdet|
is small. Since Doppler shift increases with frequency, this suggests that coherence

time should be inversely proportional to signal frequency, in cases where Doppler

shift dominates over source spindown. In the ideal case, the signal frequency in the

detector frame would change by less than one bin during a single SFT, but still

move several bins over the course of the run to better avoid artifacts. The frequency
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(a) W̃ ◦n

(b) W̃+
n

Figure 7.1: Median binned weight over signal polarizations (ψ) for SFTs of various
coherence times. Sources refer to equatorial coordinates.
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bin offsets visited due to Doppler shift are

b(t) = b(ê · v(t)/c)Tcohf0c. (7.11)

For each SFT we define ticount, the total time spent in each bi. From this, we can

define a signal concentration for each SFTn,

tnconc =
max(ticount)

Σiticount
. (7.12)

This quantity is shown in Fig. 7.2. Choosing the bin with the longest time, we

assign a particular bin bnSFT to each SFTn. To avoid narrow lines in the detector, we

would like the signal bin to change over the course of the run. The standard

deviation of bnSFT is shown in Fig. 7.3. Detector observing periods are broken up

over the run, which limits the time that longer SFTs can cover. The total live-time

tlive for O1 is shown in Fig. 7.4. We considered a function to measure the quality of

a particular Tcoh for given signals,

Q(Tcoh, f0, ê) = meann

(
W̃nt

n
conc

)
tliveσb, (7.13)

where σb is the standard deviation of bnSFT. This contains the key metrics that

interest us: It devalues cases where antenna pattern is poor, or where the signal

occupies many bins in a single SFT, while also favoring cases that sample many

frequencies across SFTs. We can calculate this quantity for a source on the equator

at the start of O1 for several coherence times, and pick the one with the largest

result. The mean coherence time chosen over a range of wave orientations is shown

in Fig. 7.5. As expected, the chosen Tcoh decreases as frequency (and Doppler

modulation) increases. Unfortunately, tests of this measure, though generally
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conforming to expectations, showed it lacks consistency. Nearby templates could

receive starkly different coherence times, and the measure favors significantly longer

coherence times than typically used. In spite of this, the parameters going into Q

(Figs. 7.1 to 7.4) provide valuable insight into the choice of Tcoh.

Figure 7.2: Mean signal concentration for test data.
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Figure 7.3: Standard deviation of signal bins over SFTs.
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Figure 7.4: Total available H1 observation time for each Tcoh during the O1 run.

Figure 7.5: Average Tcoh chosen for sources on the equator for various wave orienta-
tions during the O1 run. As expected, Tcoh decreases with frequency. There is little
difference in results between linear and circular polarizations.
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7.3 Comparison Search

As a test of the performance of long coherence time searches, we ran searches in the

O1 data for 5000 injected signals using 2- and 4-hour SFTs. The injections were

distributed over the whole sky, with frequency in the range 90-100 Hz, and

spindowns between −1× 10−8 and 1× 10−9 Hz/s. Searches were nearly centered on

the injections, with a spindown range of ḟ ± 2× 10−10 and a sky search radius of

0.15 radians. PowerFlux searches usually cover 501 frequency bins, but 4-hour SFTs

have twice the resolution, so we used 2 searches to cover the same band as the

2-hour SFTs, a total of 69.6 mHz. For each injection, we choose the outlier from the

4-hour runs that was nearest to the injected frequency.

Fig. 7.6 shows the errors between injected and recovered signal frequency,

spindown, and sky position. In each case, the 4-hour SFTs yielded values closer to

the correct values. Fig. 7.7 shows the respective SNR and UL values for each point

in the run for the two coherence times. The 4-hour searches had increased SNR, and

in many cases increased UL, but the minimum UL is lower (Fig. 7.8b). Comparing

the upper limits to the injected strain shows that the 4-hour searches are exceeding

the 95% confidence level demanded for the upper limits (Fig. 7.8). For this set of

injections, 97.5% of the 2-hour searches reported upper limits above the injected

strain, but 99.1% of 4-hour searches were above. Normally, PowerFlux parameters

are tuned to give a conservative estimate of upper limits, but as this is an

exploratory study, that has not yet been done.

We also wish to know what advantages are to be gained from long coherence

time when there is no signal present. We repeated the searches described, using the

same sky disks and spindown ranges, but with the injections disabled. The SNR

and UL for these runs are shown in Fig. 7.9. Without injections, the 4-hour runs
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(a)

(b) (c)

Figure 7.6: Errors in recovered parameters with respect to injected values. In each
case, the 4-hour runs achieve better matching to the true parameters.

achieve better upper limits in spite of being overestimates. The SNRs though, show

a collection of 2-hour points with abnormally high values. These points are due to

instrumental artifacts, discussed in the next section.

7.3.1 Wandering Lines

A number of the cases with high SNR disparity had signal templates that

overlapped with a wandering line near 99.975 Hz. This line shifted in frequency at

the beginning of the run, causing the background subtraction to miss part of the

line. In both spectrograms, an area of over-subtraction is visible (Fig. 7.10), but the
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(a) (b)

Figure 7.7: Comparison of values for SNR and UL between injection runs. Red line
marks equality. 4-hour runs show increased SNR and UL in the presence of injections.

maximum SNR for the 2-hour SFTs was 40.12, while for the 4-hour SFTs it was

18.30, indicating different behavior in the background subtraction between the two

coherence times.

To test this explanation, we created a model of a wandering line, with frequency

f(t) =


f0 t < T/2

f0 +
(

(t−T/2)
T/2

)2
∆f t ≥ T/2

(7.14)

for base frequency f0, total time T , and frequency deviation ∆f . The line remains

fixed for the first half of the run, then moves by ∆f quadratically over the second

half. We do not expect a Doppler-modulated source to show this type of behavior.

We can construct a time-series for the line with

h(t) = sin (2πtf(t)) . (7.15)
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(a) Full range

(b) Zoomed: Blue lines show minimum upper limit reported for each run.

Figure 7.8: Validation of upper limits. Ideally, 95% of injections would lie above red
line.
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(a) (b)

Figure 7.9: Comparison of values for SNR and UL between runs with no injec-
tions. Red line marks equality. 4-hour runs generally show decreased SNR and UL,
indicating less sensitivity to noise.

(a) 2 hour SFT (b) 4 hour SFT

Figure 7.10: Wandering line at 99.975 Hz after background subtraction. Curve shows
template path selected by each search. Note over-subtraction (blue) to the right of
the curve, and under-subtraction (yellow) to the left.
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(a) Tcoh = 2 hours (b) Tcoh = 4 hours

Figure 7.11: Hypothetical wandering line to study background subtraction. The line
has fixed-frequency for the first half of the timespan, then shifts quadratically by a
small amount. Some aliasing is present due to low sampling rate.

For the test data, we calculate this value for 0 < t < 200 hours, sampled at fs = 50

Hz, with ∆f = 0.28 mHz, or 2 frequency bins for the 2-hour SFTs. The time series

is then divided into segments of Tcoh with 50% overlap, and a Hann window applied

[57]:

h[i] =

(
1

2
− 1

2
cos

(
2πi

N

))
h(ti), (7.16)

where ti are the time samples within each segment, and the total number of samples

is N = Tcohfs. We then apply a discrete Fourier transform to each segment to create

the spectrograms shown in Fig. 7.11a for Tcoh = 2 hours, and Fig. 7.11b for Tcoh = 4

hours. We now perform background subtraction, using the algorithm described in

Section 6.1.2. The results are shown in Fig. 7.12.

The frequency shift in the line causes part to be missed by background

subtraction, while also subtracting too much in the region the line left. We can sum

the total power for a template that remains stationary in detector frequency
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(a) Tcoh = 2 hours (b) Tcoh = 4 hours

Figure 7.12: Wandering line after background subtraction. As in the real data, the
change in frequency causes the background subtraction to miss part of the line, as
well as over-subtracting the region it left.

(Fig. 7.13). We consider the effect of changing the base frequency of the template,

in essence sweeping the spectrogram horizontally.

In the band shown, the power found from the 4-hour SFTs is less than that from

the 2-hour SFTs in 98% of the fixed-frequency trajectories. This suggests that the

increased frequency resolution of the 4-hour SFTs makes them less sensitive to

instrumental lines. These results support the decreased SNR and upper limits seen

above when no injections were present (Fig. 7.9).

7.4 Conclusions

The use of coherence times beyond 2 hours has the potential to give greater

sensitivity to signals, while decreasing the effects of instrumental lines. The

increased frequency resolution that brings these benefits also carries costs. For

signals with large spindown or Doppler shift, long coherence times can smear the
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Figure 7.13: Power sums along stationary frequency. Frequency shifts represent dif-
ference from f0.

power over several bins. The increased requirements on detector live-time can also

decrease the amount of usable data. Considering the limitations, long coherence

searches can prove useful for low-frequency bands, where Doppler shifts are smaller,

and the advantages gained by line avoidance outweigh the costs.
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Chapter VIII

LALBarycenter Approximations

The LIGO detectors are better described as antennas than telescopes, because they

pick up signals from all directions with varying sensitivity. This means that to

localize signal sources, we must precisely determine each detector’s position in space

at any given time. The LIGO Analysis Library (LAL) Suite provides two functions

for this purpose: LALBarycenterEarth, and LALBarycenter [50]. LALBarycenter

also considers the effects other Solar System bodies have on a GW traveling to

Earth, such as Shapiro and Roemer delays, to determine the signal’s emission time

from a distant body. This allows us to transform from the detector reference frame

to the source frame, and measure the parameters associated with the source.

Calling these routines for every time and sky-point in a search can become

expensive. Ideally, we would be able to account for the small differences in emission

times in a region of the sky. The Loosely Coherent method for PowerFlux was

developed to reuse signal templates and allow for a continuous drift in signal phase

[31, 32, 33]. In this chapter, we discuss the origins and capabilities of

LALBarycenter, and present a model for approximating emission times for points

near a reference. This model serves as a proof-of-concept for the template reuse

employed by loose coherence.
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Table 8.1: Summary of EarthState and EmissionTime structures

EarthState EmissionTime

Earth position and velocity Detector position and velocity
Einstein delay Roemer delay
Greenwich Mean Sidereal Time Shapiro delay
Sun-Earth vector Travel time from source to SSB

Much of the work in this chapter has been submitted for publication in Physical

Review D [67].

8.1 Capabilities of LALBarycenter

LALBarycenter is based on the widely-used radio astronomy timing package

TEMPO2 [34, 41]. LALBarycenter generates two structures of importance to our

calculations: EarthState and EmissionTime. The elements of these structures are

summarized in Table 8.1.

8.1.1 LALBarycenterEarth

LALBarycenterEarth takes as input the time of measurement and ephemeris data

giving details of Sun/Earth position and velocity at reference times. Since this

routine is only concerned with the Earth’s center of mass, sky direction is not

needed. For the input time, positions and velocities for the Earth and Sun are

interpolated from the given ephemeris data. The Sun-Earth vector is calculated

simply by taking the difference in positions. Calculation of the Einstein delay uses a

truncated form of the equation in TEMPO2. Greenwich Mean Sidereal Time

(GMST) is calculated with the equation in [68, p. 50].
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8.1.2 LALBarycenter

LALBarycenter takes as input: observation time, source direction and distance,

detector site, and EarthState from LALBarycenterEarth. Using the inputs, the

routine calculates the Earth’s rotational state, as well as Shapiro and Roemer

delays. All the information is added together to find the signal’s emission time.

This procedure allows us to translate measurements made at the detectors into the

source frame.

8.2 TEMPO2

LALBarycenter adapts several features developed for TEMPO2 in calculating

emission times. The time difference between the detector and the SSB is

summarized in [35, Eq. 8]:

∆� = ∆A + ∆R� + ∆p + ∆D� + ∆E� + ∆S� (8.1)

The terms used are:

∆A Atmospheric delays

∆R� Roemer delay describing light travel-time from observatory to SSB

∆p Parallax delay due to curved wavefront

∆D� Dispersion due to free electrons in solar wind

∆E� Einstein delay, including both gravitational redshift and special rela-

tivistic time dilation

∆S� Shapiro delay from curved spacetime around Solar System bodies

Gravitational waves are believed to travel at light speed regardless of medium

and frequency, so no dispersion is present, and the terms ∆A and ∆D� are neglected
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in the LALBarycenter implementation.

8.3 Principles of Fits

8.3.1 Fitting Methods

The purpose of fitting a model to data is to make the model match the data as

closely as possible, but there are several ways to measure the degree of matching. In

fitting emission times, we are also fitting signal phase for an assumed frequency. We

decided that the maximum tolerable error was a 30-degree phase change for a 2 kHz

signal, which is equivalent to a 42 µs error in emission time, in order to lose no more

than ∼15% SNR in all-sky CW searches reaching as high as 2 kHz. Since we do not

want to exceed this error for any single point, our fitting routine would ideally

determine the set of coefficients that minimizes the maximum error for any point:

min
i

[
max
j
|fi(xj,1, ..., xj,k)− yj|

]
(8.2)

where fi is the fitting function for input training points xj,k, with corresponding

coefficients {ak}i, and yj are the output training points.

There is no generalized method to find the coefficient set that satisfies this

equation; however, there are methods for approximately minimizing functions. In

the statistical analysis program R [63], a variety of such methods are implemented

in the package Optimx [56]. The methods implemented in Optimx are listed in

Table 8.2.

Unfortunately, these methods are computationally expensive, so we also used the
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Table 8.2: Fitting methods used in Optimx

Name Reference

BFGS Nocedal and Wright (1999)
CG Fletcher and Reeves (1964)
Nelder-Mead Nelder and Mead (1965)
L-BFGS-B Byrd et. al. (1995)
nlm Dennis and Schnabel (1983) and Schnabel et al. (1985)
nlminb http://netlib.bell-labs.com/cm/cs/cstr/153.pdf

spg Varadhan and Gilbert (2009)
ucminf H. B. Nielsen (2000)
newuoa M. J. D. Powell (2009)
bobyqa M. J. D. Powell (2009)
nmkb Varadhan and Borchers (2011)
hjkb Varadhan and Borchers (2011)

more typical least-squares fitting, which minimizes the sum of the squared errors:

min
i

[∑
j

(fi(xj,1, ..., xj,k)− yj)2
]

(8.3)

The model can be written as a matrix equation,

y = Xa + ε, (8.4)

where Xjk is the kth fitting term of the jth input vector (and X is generally not

square), a is a vector of coefficients, and ε is a vector of errors. We can write the

sum of the squared errors as

εTε = (y −Xa)T (y −Xa) (8.5)

= yTy − 2(Xa)Ty + (Xa)TXa (8.6)

= yTy − 2(Xa)Ty + aTXTXa (8.7)
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Note that yTXa = (Xa)Ty, since both are 1x1 scalars. We now take the derivative

with respect to a, and set it to zero:

0 = 2XTXa− 2XTy (8.8)

The requirement of minimizing the squared errors gives

a =
(
XTX

)−1
XTy. (8.9)

8.4 Earth Fit

Since the bodies that determine the orbit of the Earth affect, by definition, the

shape of spacetime in the vicinity of the detectors, we began by making fits to the

position of the Earth given by LALBarycenterEarth. We hoped these fits would

inform the choice of parameters for the emission time fits.

The Earth’s x-position for a ∼95 year period is shown in Fig. 8.1a. The

frequency spectrum of this data is shown in Fig. 8.1b, with various solar system

periods labeled. We performed the fits by examining the residual after including

each period in the fit, and choosing the next period to add. These residuals are

shown in Figs. 8.2a to 8.8a. The model functions are of the form

x(t) =
N∑
i=1

Ai cos

(
2π
t− φi
Ti

)
, (8.10)

where Ai and φi are fitting parameters, and Ti is the period of the body under

consideration. Periods used are listed in Table 8.3.
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(a)

(b)

Figure 8.1: x-position of Earth in ICRF [37]
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(a)

(b)

Figure 8.2: Fit residual after including solar year
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(a)

(b)

Figure 8.3: Fit residual after including half solar year
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(a)

(b)

Figure 8.4: Fit residual after including period of Jupiter
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(a)

(b)

Figure 8.5: Fit residual after including period of Saturn
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(a)

(b)

Figure 8.6: Fit residual after including half period of Jupiter
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(a)

(b)

Figure 8.7: Fit residual after including period of Moon
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(a)

(b)

Figure 8.8: Fit residual after including period of Uranus
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Table 8.3: Orbital periods used in Earth position fit

Body Period (days)

Earth 365.256363004
Half Earth 182.628181502
Jupiter 4332.589
Saturn 10759.22
Moon 27.3217
Uranus 30689.0222
Half Jupiter 2166.2945

98



Figure 8.9: Emission time-difference function. For a search over a small patch of sky,
emission times for each point in the patch can be calculated from T + ∆.

8.5 Emission Time Fit

The fits for emission time are designed to use an exact value for the center of a

patch of sky, then calculate the difference in emission time for surrounding points in

the patch. Mathematically stated, the emission time T is a function of detection

time t, source location u, and source parameters p (for a moving source).

Calculating T (t, u, p) directly for every point is expensive, so instead we’re looking

for a less expensive function ∆ such that

T (t, u, p) ≈ T (t, u0, p0) + ∆(t, u, p), (8.11)

where (u0, p0) is a reference point that can be reused for all the points in a patch.

The principle is illustrated in Fig. 8.9.

We chose to use points shifted in right ascension (α) and declination (δ) to

generate the differences in emission time input to the fits. For right ascension, this

corresponds to a rotation around the equatorial pole, but the shift in declination is

not a proper rotation; instead, it is a flow toward either the North or South Pole.

This means we must impose the requirement π
2
− |δ| > ∆δ to avoid crossing the

poles. Without this limit, some fit terms would be discontinuous (see e.g.
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Figure 8.10: Emission time T (u, p) for the start of O1 over the sky.

Figs. 8.13e to 8.13f). Fig. 8.10 shows the emission times for a set of points covering

the sky. Fig. 8.11 and Fig. 8.12 show the emission time difference between those

points, and ones shifted by 0.01 radians in α and δ, respectively.

The fits were performed in R, using the tool lm (Linear Model), which is an

implementation of the least-squares method described above. Terms were selected

by comparing residuals to maps of various combinations of right ascension,

declination, and locations of solar system bodies. Some selected terms are shown in

Fig. 8.13. Note, for example, the similarities of Fig. 8.11 and Fig. 8.12 to Fig. 8.13p

and Fig. 8.13q.

8.5.1 Fitting Procedure

The fits use as input data points drawn from the search space of O1. The data use a

set of times T , and a set of skypoints Gt, with minimum spherical separation ε. We

add to Gt a set of N� ×N� points with spacing ε� covering the Sun, to account for

Shapiro and Roemer delays. The points in Gt are shifted in right ascension and

declination by a set ∆G. The parameters used in this study are listed in Table 8.4.
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Figure 8.11: Emission time-difference ∆(u, p) for ∆α at the start of O1.

Figure 8.12: Emission time-difference ∆(u, p) for ∆δ at the start of O1.
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(a) cos(α) (b) cos(δ) (c) sin(α)

(d) sin(δ) (e) cos(α) cos(α) (f) cos(α) sin(α)

(g) cos(δ) cos(α) (h) cos(δ) cos(δ) (i) cos(δ) sin(α)

(j) cos(δ) sin(δ) (k) sin(δ) cos(α) (l) sin(δ) sin(α)

(m) e1S1 (n) e2S2 (o) e3S3

(p) ∆e1 with ∆α (q) ∆e1 with ∆δ (r) ∆e2 with ∆α

(s) ∆e2 with ∆δ (t) ∆e3 with ∆α (u) ∆e3 with ∆δ

Figure 8.13: Example skymaps of selected fit terms at the start of O1
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Table 8.4: Parameters used in fits

Parameter Value

T Every hour between tmin and tmax

tmin From start to end of O1, spaced every 200 000 seconds
tmax tmin + 250 000
ε 0.1040524 radians
∆G All combinations of ∆α and ∆δ
Gt,r Random subset of Gt with 7.5× 105 points
∆α {−0.01,−0.00667,−0.00333, 0, 0.00333, 0.00667, 0.01}
∆δ {−0.01,−0.00667,−0.00333, 0, 0.00333, 0.00667, 0.01}
N� 5
ε� 0.001 radians

For clarity, we divide the terms into several categories:

• Direction-independent terms depending on GPS time and shift in sky position

• Direction differential-independent terms depending on source sky position and

GPS time

• Time-independent terms depending on source sky position and shift in position

8.5.2 Definitions of Variables

The sky position variables are defined as

e1 = cos(δ) cos(α)

e2 = cos(δ) sin(α)

e3 = sin(δ)

(8.12)

with α ∈ [−π, π] and δ ∈ [−π
2

+ 0.01, π
2
− 0.01]. The adjustment by 0.01 radians

prevents flow over the poles, which would lead to ambiguous right ascension, as well

as discontinuities in some terms. The change in ei for a shift in right ascension ∆α,
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and in declination ∆δ can be approximated via Taylor expansion:

∆e1 = (−1
2
∆α2 cosα cos δ − 1

2
∆δ2 cosα cos δ + 1

4
∆α2∆δ2 cosα cos δ −∆α cos δ sinα

+1
2
∆α∆δ2 cos δ sinα−∆δ cosα sin δ + 1

2
∆α2∆δ cosα sin δ + ∆α∆δ sinα sin δ)

∆e2 = (∆α cosα cos δ − 1
2
∆α∆δ2 cosα cos δ − 1

2
∆α2 cos δ sinα− 1

2
∆δ2 cos δ sinα

+1
4
∆α2∆δ2 cos δ sinα−∆α∆δ cosα sin δ −∆δ sinα sin δ + 1

2
∆α2∆δ sinα sin δ)

∆e3 = (∆δ cos δ − 1
2
∆δ2 sin δ)

(8.13)

LALBarycenter provides vectors with information on the state of the Sun and Earth

that are useful:

S Vector pointing from Sun to Earth

v Detector velocity vector

∆t Time since reference point

Ω⊕ 2π/sidereal day.

(8.14)

We also define an array of the sin/cos of the reference point’s right ascension and

declination:

z = {sinα, sin δ, cosα, cos δ} (8.15)

and the second-order terms, excepting sin2 terms due to identity:

z′ = {cos2 α, cos2 δ, sinα sin δ, sinα cosα,

sinα cos δ, sin δ cosα, sin δ cos δ, cosα cos δ}
(8.16)

8.5.3 Direction-independent terms

The following terms are constant in sky-direction, and can be precomputed for every

GPS time, and direction difference.
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∑
i

a1,i∆ei (8.17)

(Figs. 8.13p to 8.13u)

8.5.4 Difference-independent terms

The following terms are constant in direction-difference.

∑
i

a2,i sin(Ω⊕∆t)z′i + b5,i sin(Ω⊕∆t)z′i (8.18)

a3,1∆t cos δ + a3,2∆t
2 cos δ + a3,3∆t cos2 δ (8.19)∑

i

a4,i∆t
2z′i (8.20)

∑
i

a5,iSiei (8.21)

(Figs. 8.13m to 8.13o)

8.5.5 Time-independent terms

The following terms vary only in sky-direction.

∑
i

a6,izi (8.22)

(Figs. 8.13a to 8.13d) ∑
i

a7,iz
′
i (8.23)

(Figs. 8.13e to 8.13l)

Each of the terms in Eqs. (8.17) to (8.23) is multiplied by
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Table 8.5: Term significance analysis. The max error column shows errors when the
specified terms are omitted.

Term Group Equation Max Fit Error (s)

2nd Order Sinusoids 8.23 3.4319967642
1st Order Sinusoids 8.22 0.4335595581
∆t 8.19 0.0235629364
∆t2 8.20 0.0010017764
Sun Direction 8.21 0.0002486640
Sidereal Rotation 8.18 0.0001820357
Direction-difference 8.17 0.0001655650

∆α,∆δ,∆α2,∆δ2,∆α∆δ. In addition, we include direction-time differential terms

∑
i

a8,i∆t∆ei (8.24)

without ∆α/∆δ factors. Each term goes to zero when the rotation angle goes to

zero. Note that Sun-Earth and detector velocity vectors are those for the saved

points. In each term, any parts greater than order 3 in ∆α and ∆δ are removed.

The effect of removing any terms is shown in Table 8.5.

8.6 Application to Loosely Coherent Searches

The phase change due to mismatches in template and source parameters shown in

Table 4.4 can cancel and lead to multiple templates with the same relative phase,

e.g. the template’s frequency depends in part on Doppler shift, which is determined

by sky position. The loosely coherent method employs bundles of sky positions to

reuse templates. That is, the difference in phase between one sky position and a

neighboring point is taken to be a smoothly varying function. The approximations

to LALBarycenter described in this chapter show exactly that.

We also note that the fit depends on the difference in sky-direction, implying
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that error in source position can lead to significant differences in emission time.

Such errors could therefore severely degrade the sensitivity of fully coherent

searches, requiring finely spaced templates. Computational resource limitations

make this infeasible, so the advantages of loosely coherent searches are appealing.

In principle, the fits presented in this chapter could be used as a substitute for

those in LALBarycenter, but careful implementation would be required for any

sizable gain in efficiency. Instead, they serve better as both a proof-of-concept, and

justification for using an efficient implementation of the loosely coherent method in

followup searches [33].
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Chapter IX

Conclusions

With the existence of gravitational waves definitively proven, the field has seen a

surge of interest. This work described the principles behind these waves and their

detection with LIGO. As part of the S6 Mock Data Challenge, we evaluated the

performance of PowerFlux against other pipelines [75]. We investigated lines in the

first O1 all-sky search [11], and tested the effects of cleaning in low frequency

regions. Longer coherence times can also allow for noise reduction through finer

frequency resolution. We examined the tradeoffs present in increasing coherence

time to 4 hours. Finally, we developed approximations to the barycentering routines,

which provide justification for the loosely coherent search technique. Continuous

wave signals are among the most difficult to detect, but the methods described here

show promise, and the algorithms are always being improved. The first continuous

wave signal may already reside in our data, simply waiting to be recognized.
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