
  

Transparent and Flexible Radio 

Frequency (RF) Structures 

 

 
by 

 

Taehee Jang 

 

 

 
A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Electrical Engineering) 

in the University of Michigan 

2017 

 

 

 

 

 

 

 

Doctoral Committee: 

Professor L. Jay Guo, Chair 

Assistant Professor Neil Dasgupta  

Associate Professor Anthony Grbic  

Professor Kamal Sarabandi 

 

 



  

 

 

 

 

 

 

 

© Taehee Jang 2017 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 



  

ii 
 

 

 

 

 

  

 

 

 

 

 

 

To my father Dong Won Jang and my mother Kyeong Ja Kim 

To my wife Myunghye Yoo and my daughter Yuna Jang 

For their love, support, and dedication 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

iii 
 

 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to sincerely express my gratitude to my advisor 

Professor L. Jay Guo. He has been providing invaluable guidance and full support during 

the whole process of my research. I have been learned many things from him including 

technical knowledge, research methodologies, and communication skills. I truly appreciate 

his patience, wisdom, encouragement and understanding which help me to get through 

many difficult times during my research. I could not have achieved any of the 

accomplishments without his support.  

I would like to extend my sincere gratitude to my other committee members, Prof. 

Kamal Sarabandi, Prof. Anthony Grbic, and Prof. Neil Dasgupta for devoting their time to 

review this thesis and advising me with valuable suggestions. I also grateful that Dr. Adib 

Nashashibi spent time discussing with me about measurements. 

I would like to thank my colleagues and friends at Guo group, Radiation Laboratory 

and EECS for constructive and insightful discussions. Many thanks to former members, 

Prof. Hui Joon Park, Prof. Moon Kyu Kwak, Prof. Hongseok Youn, Dr. Jing Zhou, Dr. 

Young Jae Shin, Dr. Yi-Kuei, Dr. Alex Kaplan, Dr. Jae Yong Lee, Dr. Kyu-tae Lee, Dr. 

Taehwa Lee, Dr. Ashin Panday, and Andrew Hollowell. I am thankful to current members, 

Sangeon Lee, Cheng Zhang, Long Chen, Chengang Ji, Qiaochu Li, Xi Chen, Suneel 

Joglekar, Qingyu Cui for sharing their experiences and time with me. I also appreciate Dr. 

Kyusang Lee, Hyunsoo Kim, Seungku Lee, Kyungun Jung, Jihun Choi, and Hyeongseok 

Kim for their great help. 



  

iv 
 

Last, but most importantly, I would like to express my deep appreciation to my dear 

wife, Myunghye Yoo, and my family, including my parents, younger brother, for their 

constant encouragement, unconditional love, and unfailing support. Especially, my special 

thanks go to my beloved wife, Myunghye Yoo, for support and dedication. I couldn’t have 

done this without the support of my wife. Thank you to my great and adorable daughter 

Yuna Jang. I am truly blessed to have you in my life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

v 
 

 

TABLE OF CONTENTS 
  

 

 

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . ii 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . viii 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...xv 

CHAPTER 

1. Introduction……………………………...…………………………………….1 

1.1 Background and Motivation……...……...……………………….……1 

1.2 Thesis Outline …………..…………………...……………………...…4 

 

2. Transparent and Flexible Polarization-Independent Microwave Broadband 

Absorber ................................................................................................................7 

2.1 Introduction............................................................................................7 

2.2 Principle of Double Resonance...............................................................9 

2.3 The design of Broadband Absorber .………………………...……….11 

2.4 Absorber Simulation ………….……………………………………...14 

2.5 Bi-static Scattering from Absorber…………………………………...17 

2.6 Realization of the Transparent and Flexible Structure………………..21 

2.7 Multi-layered Ultra Broadband Absorber……………………...……..27 

2.8 Conclusion…………………………………………………..……….29 

 

3. Semi-Transparet and Stretchable Mechanically Reconfigurable 

Electrically Small Antennas Based on Tortuous Metallic Micromesh……...30 

3.1 Introduction……………………………………………………….….30 

3.2 Mechanically Reconfigurable Antenna Design…………………..…..33 



  

vi 
 

3.2.1 Zeroth-order Resoannt Antenna Theory Based on Composite Right-

handed/Left-handed (CRLH) Transmission Line (TL)…………………..34 

3.2.2 CPW-Fed Inductor-Loaded Zeroth-Order Resonant Antenna……...37 

3.2.3 Analysis of Symmetric and Asymmetric CPW-fed ZOW Antennas..41 

3.3 The Orientation of Meander Line…………………………………….43 

3.4 The Design of Tortuous Micromesh……………………………...…..47 

3.5 Antenna Fabrication and Measurement……………………...…….…52 

3.6 Conclusion……………….…………….………………………….....60 

 

4. Ultra-Low Profile Flexible Triple-polarized Antenna Using Flexible Silver 

Nanowires and Substrate with High Isolation……………….…………….....61 

4.1 Introduction..........................................................................................61 

4.2 The Configuration of the Low-profile Tri-polarization Antenna.........63 

4.2.1 The Comparison between Monopole Antenna and ZOR Array 

Antenna…………………………………………………………………..67 

4.3 Flexible Metallic Via Based on AgNWs……………….……………..69 

4.4 Simulation and Measurement Results………………………………...71 

4.5 Conclusion…………………………………………………………...74 

 

5. Dual-Band/Tri-Polarized Metamaterial Antenna Based on Half-Mode 

Hexagonal (HMH) Substrate Integrated Waveguide (SIW) Using Flexible 

Substrate and Vias for WBAN Communications …………………………....75 

5.1 Introduction…………………………………………………………..75 

5.2 Half-Mode Hexagonal Substrate Integrated Waveguide……………..77 

5.3 The Configuration of the Dual-band/Tri-polarization antenna Based on 

Half-mode Hexagonal SIW………………………………………...…….82 

5.4 Simulation and Measurement Results………………………………...86 

5.5 Conclusion…………………………………………………………...90 

 

6. Conclusions and Future Work……………………………………..………………..91 

6.1 Summary of Achievements………………………......………………91 



  

vii 
 

6.2 Future Works………………………………………………………....92 

 

Bibliography…………………………………………………………...............………..96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

viii 
 

 

LIST OF FIGURES 

 

Figure 

1.1. Landscape of electronics…………………………………………………………..2        

1.2. Flexible electronics (a) on paper (b) on textile (c) on PET…………………………3 

1.3.   Transparent electronics (a) skin-like pressure and strain sensors (b) slot antenna 

using AgHT-4 (c) neural micro-electrode arrays……………………………….....4 

2.1.   (a) Unit cell of absorber structure (b) Equivalent circuit model……………..……9 

2.2.   (a) Equivalent circuit at low frequency (b) Equivalent circuit at high frequency…10 

2.3.   Schematic of broadband absorber (perspective view)…………………………..…11 

2.4.  The design of unit cell (a) top view (design parameters: w1=4mm, w2=1mm, 

l1=4.2mm, l=10mm). (b) Calculated real and imaginary part of impedance……..12 

2.5.   Simulated and measured absorption according to the frequency………………….14 

2.6.   (a), (b) represent the electrical amplitude on the top view at 7.4GHz and 10.1GHz 

and power flow at 7.4GHz and 10.1GHz, respectively. (c), (d) The color represent 

the amplitude of the electric field and the arrows represent the direction of the 

electric field on the central cross section of unit cell at 7.4GHz and 10.1GHz, 

respectively. (e), (f) The color represent the amplitude of the power flow and the 

arrows represent the direction of the power flow on the central cross section of unit 

cell at 7.4GHz and 10.1GHz, respectively…………………………........………..16 

2.7.   (a) Schematic of electric field and poynting vector localized in the gap between the 

two bow-tie structures at the low resonant frequency. (b) Schematic of electric field 



  

ix 
 

and pointing vector localized around the edges of the bow-tie structure at high 

resonant frequency……………………………………………………………….17 

2.8. (a) Model construction for the bistatic scattering calculation. (b) Field Calculator for 

post-processing in Ansys HFSS………………………………………….………18 

2.9. (a) Reflection at normal incidence (b) Reflection with and without bistatic scattering 

calculation……………………………………………………………….……….20 

 2.10. (a) Simulated absorption at the different width of bow-tie (w1) (the 90% absorption 

bandwidth at w1=1mm : 50.4%, at w1=2mm : 61.6%, at w1=3mm : 68.2%, at 

w1=4mm : 72%) (b) Simulated absorption at the different width of bow-tie (t) The 

inset shows the equivalent circuit model of the proposed absorber according to the 

frequency………………………….……………………………………………...22 

2.11.   (a) Fabricated metallic bow-tie array on top of a flexible and transparent PET layer 

(Scale bar = 100um) (b) Optical transmittance…………………………………...23 

2.12.  (a) Measurement set-up (b) Time gating in vector network analyzer……………..25 

2.13.   Measured absorptions at different polarization angle Φ.(0, 30, and 45 deg)……..26 

2.14.   (a) Ansys HFSS simulation model of two unit cells. (b) Absorption according to 

the different incident angles (0˚, 20˚, 50˚, 60˚, and 70˚)…………………..….…27 

2.15.   Configuration of the multi-layer absorber structure (a) Perspective view (b) Top 

view………………………………………………………………………..……28 

2.16. Simulated absorption. (Wm1=1.6m, Wm2=2.2mm, Wm3=2.8mm, lm1=5.1mm, 

lm2=10.8mm, lm3=19.4mm, t1=2.4mm, t2=2.2mm, and t3=4mm)…………………29 

3.1.    The configuration of transparent and mechanically reconfigurable antenna..........33 

3.2.   (a) Equivalent circuit model of the CRLH unit cell (b) Dispersion curve of the CRLH 

unit cell..................................................................................................................34 



  

x 
 

3.3.   (a) The unit cell of epsilon negative (ENG) meta-structured transmission line (MTL) 

(b) Equivalent circuit model of ZOR antenna.........................................................37 

3.4.   Dispersion disagram of the unit cell.........................................................................38 

3.5.  Electric field (a) Vector distribution on the antenna (b) The magnitude of electric 

field at zeroth-order mode………………………………………………………...40 

 3.6.  The relationship between frequency and the number of unit cells…………………41 

 3.7. CPW-fed ZOR antennas using (a) one symmetric unit cell (b) two asymmetric unit 

cell (c) two symmetric unit cells…………………………………………………..42 

3.8.  Return losses for (a) one symmetric unit cell (b) two asymmetric unit cell (c) two 

symmetric unit cells………………………………………………………………42 

3.9.  (a) CPW-fed ZOR antenna with larger ground planes (b) Measured return loss for 

the CPW-fed ZOR antenna with and without larger ground planes……………….43 

3.10.  Simulated and measured transmission spectra of individual colors (blue, green, and 

red) at normal incidence………………………………………………………….44 

3.11. The change of vertical-oriented and horizontal-oriented meander lines with the 

different tensile strains……………………………………………………………45 

3.12. Unit cell based on micromesh to extract equivalent circuit parameters…………..46 

3.13.   Topology modification for transparent and stretchable micromesh.......................47 

3.14.   Mechanical simulation of micromesh....................................................................49 

3.15.   (a) Unit cell of micromesh using both tortuous wires in horizontal and longitudinal 

direction (tortuous micromesh design 1) (b) Unit cell of micromesh using tortuous 

wire in horizontal direction and straight wire in longitudinal direction one tortuous 

(tortuous micromesh design 2)...............................................................................50 

3.16.   The schematic of the fabrication for micromesh………………………………..52 



  

xi 
 

3.17.   The fabricated transparent and stretchable antenna...............................................53 

3.18.   The resonant frequency according to the increase of strains (a) for antenna with 

both tortuous lines (b) for antenna with only horizontal tortuous line (Solid line : 

Simulated results, Dashed lines : Measured results)…………………………….54 

3.19.  The measured optical transmission of the stretchable antenna embedded in 

PDMS…………………………………………………………………………..56 

3.20.   The radiation patterns (a) E-plane (xz-plane) (b) H-plane (xy-plane)……………57 

3.21.   A mechanically stretchable device …………………..…..………………...…….58 

3.22.  The radiation patterns in response to different tensile strains (0%, 20%, and 

40%)…………………………………………………………………………….59 

4.1. The configuration of Triple-polarized antenna system …………………………….62 

4.2. (a) Perspective view of the antenna (shows port assignments and polarization 

orientation) (b) top view of tri-polarized antenna. (Dimension [mm] of the antenna 

are: w1 = 1.88, w2= 0.8, ws = 1, l1 = 3, lS = 45.72)………………………………….63 

4.3.   Simulated surface current distribution with different ports being excited: (a) at port1, 

(b) at port 2……………………………………………………………………….64 

4.4. (a) ZOR array antenna (Dimension [mm] of the antenna are: w1 = 1.88, w2= 8, wl = 

1.2, g = 0.2, l2 = 1, ll = 3.6, lg = 1, lp = 10) (b) Unit cell of length p (c) Dispersion 

diagram.……………………………………………………………………….65 

4.5.  Simulated electric field vector distribution on the ZOR array antenna …………..67 

4.6. (a) Configuration of monopole array antenna (Dimension: W=60mm, L=240mm, 

H=41mm) (b) Return loss (c) Radiation patterns in terms of phase progression….67 

4.7.  (a) Configuration of ZOR array antenna (b) Radiation pattern……………………68 



  

xii 
 

4.8.  The SEM images of uniform, ultralong and thin AgNWs prepared by hydrothermal 

method at 160ᵒC-22hours reaction. ……………………………………………....69 

4.9.   (a) Side view of AgNW via. (b) Fabricated AgNW via on the PCB substrate..........70 

4.10.   Fabricated the low-profile, flexible tri-polarized antenna using AgNW vias (a) Top 

view (b) Bottom view………………………...........………………………………71 

4.11.   Measured and simulated return loss of each port the tri-polarized antenna.……..72 

4.12. Measured and simulated isolation between each two ports of the tri-polarized 

antenna…………………………………………………………………..……….72 

4.13. Radiation patterns of the tri-polarized antenna (a) E-plane (+45 deg cut) at Port 1 

(b) H-plane (-45 deg cut) at Port 1 (c) E-plane (-45 deg cut) at Port 2 (d)  

H-plane (+45 deg cut) at Port 2 (e) E-plane (XZ-plane) at Port 3 (f) H-plane (XY-

plane) at Port 3……………………………………………………………………73 

5.1.  On-body communication and off-body communication in wireless body area 

network (WBANs)………………..……………………………………………...76 

5.2.  Configuration of SIW structure ……………………………………………………78 

5.3. Simulated magnitude of the total E-field distributions of (a) full-mode SIW, (b) 

HMSIW, (c) triangular  SIW, (d) hexagonal SIW (e) half-mode hexagonal SIW at 

their dominant resonant frequencies (w=l=38mm).……………………………...…80 

5.4. Simulated magnitude of the total E-field distributions of (a) full-mode SIW, (b) 

HMSIW, (c) triangular  SIW, (d) hexagonal SIW at their higher-order resonant 

frequencies (w=l=38mm).……………………………………………………….…81 

5.5.  The configuration of the use of half-mode hexagonal SIW with the arbitrary internal 

angle……………………………………………………………………………….81 



  

xiii 
 

5.6. (a) Equivalent circuit model of a CRLH SIW unit cell. (b) General Dispersion 

comparison between conventional half wavelength antenna and metamaterial 

antenna.…………………………………………………………………………...83 

5.7. (a) Perspective view of the dual-band tri-polarized antenna (a) Dual-band cross-

polarized CRLH HMHSIW antenna (b) Dual-band ZOR HMHSIW antenna. 

(Dimension [mm] of the antenna are: wm1 = wz1 =1.87, wz2 =1.19, wz3 =0.3, wz4 =1.5, 

wm2 = 1.5, lm2 = 6, ls = 6, ls1 = 3.5, gm1 = gm2 = gz1 = 0.2, rz1 = 

0.7)……………………………………………………………..………………….85 

5.8.    The fabricated dual-band tri-polarized antenna based on half-mode hexagonal SIW 

structure ………………………………………………………………………….87 

5.9. Measured and simulated return loss of each port of the of the tri-polarized SIW 

metamaterial antenna.…………………………………………………………….88 

5.10. Measured and simulated isolation between each two ports of the of the tri-polarized 

SIW metamaterial antenna.……………………………………………………….88 

5.11. Measured and simulated radiation patterns of the proposed HMHSIW at both 

frequencies (a) & (c) E-planes at n=-1st mode (b) & (d) E-planes at n=+1st mode 

(e) 0th mode at lower frequency (f) 0th mode at higher frequency……………….89 

6.1.  (a) Pure Cyclic Olefin Copolymer (COC) grains (b) Heat-Pressure Imprinting 

Process…………………………………………………………………….……..94 

 6.2.  (a) COC-based SIW slot antenna (b) S-parameter………………………………..95 

 

 

 

 

 



  

xiv 
 

 

 

LIST OF TABLES 

 

 

 

Table 

3.1.   Inductance of meander line according to the orientations and tensile strains……..47 

3.2.   Comparison between metallic patch, straight mesh, and tortuous mesh…………...48 

3.3.   Relationship between optical transparency and electrical conductivity in terms of 

the design of micromesh………………………………………………………….51 

3.4.   Bandwidth of proposed antenna……………………………………………….…56 

3.5.   Antenna summary and comparison results for proposed and reference antennas….60 

5.1.   Comparison between full-mode SIW, HMSIW, TMSIW, and HMHSIW………...82 

6.1. Properties of cyclic olefin copolymer………………………………………………94 

 

 

 

 

 

 

 

 

 

 

 



  

xv 
 

 

 

ABSTRACT 

 

Transparent and Flexible Radio Frequency (RF) Electronics 

by 

Taehee Jang 

 

Chair: L. Jay Guo 

 

With increasing demand for a wearable devices, medical devices, RFID, and small 

devices, there is a growing interest in the field of transparent and flexible electronics. In 

order to realize optically transparent and flexible microwave components, novel materials 

can be used. The combination of new materials and radio frequency (RF) structures can 

open interesting perspectives for the implementation of cost effective wireless 

communication system and wearable device design. The transparent and flexible RF 

structures can facilitate its application in the transparent and curved surfaces. 

In this dissertation, we present several demonstrations, all based on optically 

transparent and flexible materials and structures. We firstly demonstrate an optically 

transparent, flexible, polarization-independent, and broadband microwave absorber. The 

bow-tie shaped array which possesses double resonances is designed and measured. The 

combined resonances lead to more than 90% total absorption covering a wide frequency 

range from 5.8 to 12.2 GHz. Due to the use of thin metal and PDMS, the whole structure 

is optically transparent and flexible. Secondly, we demonstrate a new method for 



  

xvi 
 

fabricating transparent and stretchable radiofrequency small antennas by using stretchable 

micromesh structures. Size reduction is achieved by using the zeroth-order resonant (ZOR) 

property. The antennas consist of a series of tortuous micromesh structures, which provides 

a high degree of freedom for stretching when encapsulated in elastomeric polymers and is 

optically transparent. Accordingly, these antennas can be stretched up to 40% in size 

without breaking. The resonant frequency of the antennas is linearly reconfigurable from 

2.94 GHz to 2.46 GHz upon stretching. Next, we describe an ultra-low profile and flexible 

triple-polarization antenna. It is realized by using ZOR array antenna with high port-to-

port isolation. This flexible antenna is fabricated with a flexible substrate and silver 

nanowire vias to be used in various wearable applications. Lastly, we demonstrate a dual-

band tri-polarized antenna based on half-mode hexagonal (HMH) SIW structure. CRLH 

HMHSIW antenna and ZOR HMHSIW antenna are designed to have dual-band operating 

frequencies. This novel antenna can provide much improved wireless communication 

efficiency for the WBAN system under various incident field angles and polarizations. 
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Chapter 1 

 

Introduction 

 

1.1 Background and Motivation 

With increasing demand for a wearable devices, medical devices, RFID, and small 

devices, there is a growing interest in the field of transparent and flexible electronics. In 

order to realize the optically transparenft and flexible microwave components, the use of 

novel materials can open up new possibilities for implementation of microwave design and 

applications.  

Flexible electronics is a technology applied in electronic circuits by mounting 

electronic devices on a flexible substrate. Flexible electronics have been integrated with a 

variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-

like pressure sensors, and conformable radio frequency identification (RFID) tags. In 

addition, the transparent electronics are a technology for realizing electronic circuits by 

replacing with transparent structures or materials. Transparent electronics have been used 

in a variety of applications such as transparent circuits, transparent display, transparent 

solar cells, and transparent sensors. Given the benefits of these two kinds of technology, if 

they could be combined in novel ways in such areas as radiofrequency electronics, it could 

be possible to develop optically transparent and mechanically flexible radio frequency (RF) 

electronics have opened a gate to next-generation technologies for the RF electronics that 
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can be seen through and can be applied to a transparent or conformal object. Some work in 

this area having done leading to advancements in RF electronics that have focused on 

producing light weight, high performance RF electronics. Figure 1.1 shows the landscape 

of electronics. The optical transparency and structural flexibility add another level of 

complexity for designing radio frequency (RF) electronics because they are required to 

have the similar performance of rigid and opaque electronics in spite of the use of 

transparent and flexible materials. 

 

Figure 1.1. Landscape of electronics 

Many studies have already been conducted on the transparent and flexible 

electronics. In the flexible electronics, flexible substrates such as paper, textiles, and PET 

provides many properties that differ from those of polymide plastics used in conventional 

flexible PCB technology [1-3]. Flexible electronics based on paper substrates with high 

flexibility can be folded, easily disposed of, and trimmed with scissors. Paper substrates 

also have other advantages such as low production costs and light weight. In the production 

of paper substrate, the metallic patterns are printed onto the paper by evaporation, sputter 

deposition, or spray deposition as shown in Figure 1.2(a) [4].  Electronic textiles (E-textiles) 
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are fabrics that can communicate with other devices, transform signals, and conduct energy 

which are impossible with traditional fabrics. To realize flexible electronics, the electronic 

elements are integrated with E-textile. In [5], textile-based antenna to create a body area 

network was used because it is bendable and comfortable enough to be easily inserted into 

garments in Figure 1.2(b). Even when bent, this antenna could still have excellent 

performance as well as be connected with radio module. Plastics have also been widely 

used because they are very cheap and easily controllable materials. In Figure 1.2(c), the 

mechanically flexible device was fabricated on the polyimide (PI) substrate. The ultrathin 

molecular-monolayer-based devices can operate reliably when bent, twisted or deformed 

into helical structures [6]. 

       

(a)                                                (b)                                      (c) 

Figure 1.2. Flexible electronics (a) on paper (b) on textile (c) on PET 

Many transparent materials such as glass, PET, and transparent film have been 

exploited, all of which show promising characteristics. The optical transparency of 

electronic devices can be obtained from the material properties or structural properties [7, 

8]. In Figure 1.3(a), the pressure and strain sensors are realized by spray-depositing the 

single-walled carbon nanotubes on PDMS substrate, so that it can be rendered stretchable 

by applying strain along each axis [9]. The transparent antenna was fabricated on the glass 

substrate by using the AgHT-4 film, with an operating frequency of 2.3GHz as shown in 

Figure 1.3(b) [10]. Although AgHT-4 has lower gain compared to their copper 
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counterparts, it allow the transmission of electric current while still retaining the optical 

transparency. Figure 1.3(c) shows the transparent optogenetic brain implants that were 

realized with gold pattern and four stacked single-atom-thick grapheme layers [11]. Thus, 

it could remain reliable in various bending configurations, including the twisted and helical 

structure.  

   

(a)                                                     (b)                                              (c) 

Figure 1.3. Transparent electronics (a) skin-like pressure and strain sensors (b) slot antenna 

using AgHT-4 (c) neural micro-electrode arrays 

The combination of new materials and radio frequency (RF) electronics can open 

interesting avenues for the implementation of cost effective wireless communication 

system and wearable device design. The transparent and flexible radio RF electronics can 

facilitate its application in the transparent and curved surfaces. Thus, my research focuses 

on investigation of transparent and flexible RF devices, with an aim of new materials and 

fabrication techniques. 

1.2 Thesis outline 

This thesis explores the optically transparent and structurally flexible radio frequency 

electronics which can be applied to the transparent and curved surfaces. In the sections that 

follow, the design objectives and principles of operation are presented. 
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Chapter 2: Transparent and Flexible Polarization-Independent Microwave 

Broadband Absorber 

A polarization-independent broadband absorber with optical transparency and 

structural flexibility is introduced and discussed in this chapter. These are the highly 

desired properties for a wide variety of applications such as stealth ship and airplane. In 

this chapter, we will also discuss how the absorption bandwidth can be improved. The 

absorber is designed to have the double resonance, so that it can have broader bandwidth 

by merging the double resonance.  

 

Chapter 3: Semi-transparent and Stretchable Mechanically Reconfigurable 

Electrically Small Antennas Based on Tortuous Metallic Micromesh 

Chapter 3 describes the optically transparent and mechanically reconfigurable small 

antenna based on the use of micromesh. Due to the transparency and flexibility, it can be 

smoothly integrated with interiors and exteriors of electronic devices, such as cell phones, 

laptops, and tablets. This mechanical tenability enables the broadband operation of the 

small antenna to be efficiently utilized.  

 

Chapter 4: Ultra-Low Profile Flexible Triple-Polarized Antenna Using Flexible Silver 

Nanowires and Substrate with High Isolation 

Chapter 4 presents a flexible triple-polarization antenna and discusses its great 

potential applications such as WBAN network and MIMO. The omni-directional 

horizontal polarization and conical vertical radiation patterns are obtained by using cross-
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polarized slot antennas and ZOR array antenna. A silver nanowires are used to realize the 

flexible vias in the design. 

 

Chapter 5: Dual-Band/Tri-Polarized Metamaterial Antenna Based on Polagon-Mode 

(PM) Substrate Integrated Waveguide (SIW) Using Flexible Substrate and Vias for 

WBAN communications 

Chapter 5 describes a half-mode hexagonal substrate integrated waveguide (HMHSIW) 

structure which can to reduce the size and efficiently integrate with other SIW structures 

in a single elements. Since it operates at dual frequency bands, it can be used for 

simultaneously transmitting and receiving these two bands. The dual-band tri-polarized 

HMHSIW structure which four HMHSIW can be closely placed is designed, fabricated, 

and analyzed. 

 

Chapter 6 summarizes the main findings of each chapter, followed by future plans. 
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Chapter 2 

 

Transparent and Flexible Polarization-Independent 

Microwave Broadband Absorber 

 

2.1 Introduction 

Broadband absorbers can reduce the reflection and scattering of electromagnetic (EM) 

waves from the structures over a wide frequency range. Because of these characteristic, 

they can be exploited to enhance the efficiency of photovoltaic devices [12, 13] and thermal 

detectors [14], and can also render objects undetectable by EM waves [15]. Absorbers can 

be designed by using classical electromagnetic wave theory or by engineered metamaterials. 

Metamaterial absorbers have been designed by manipulating the effective permittivity ε(ω) 

and permeability μ(ω) to match the impedance to free space [16-20]. Due to the lossy 

components of permittivity and permeability, the structure is then able to the transmitted 

power. Although metamaterial based absorbers offer the potential advantages of perfect 

absorption and thin thickness, their use in practical applications is limited due to their very 

narrow bandwidths. In order to improve the bandwidth, multi-band absorbers have been 

introduced that utilize multiple layered structures [21, 22]. However, significant challenges 

rise because these multilayered structures are thick and require a complicated fabrication 

process. Another approach is classical electromagnetic absorbers, which can be realized by 
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placing one or more additional resistive sheets in the structure to generate losses to the 

incident field. One of the classic electromagnetic absorbers is Salisbury screen, which have 

a resistive sheet placed at  over a ground plane [23]. This absorber also has some 

drawbacks similar to other structures such as narrow bandwidth and relatively large 

thickness. Another classical absorber is the Jaumann absorber, which utilizes a multi-layer 

structure to increase the bandwidth [24, 25]. However, to obtain the broad bandwidth, the 

structure becomes very thick and bulky. A further weakness is that the absorbers 

constructed from the conventional materials are typically rigid and optically opaque. If the 

absorber can be made optically transparent and structurally flexible, it can provide high 

design freedom for practical applications [26, 27]. For example, optically transparent and 

flexible absorber can be applied to applications such as window glass and curved surfaces. 

In this chapter, we propose and demonstrate an optically transparent, flexible, 

polarization-independent, and broadband microwave absorber. The absorber is based on 

two principles: 1) it utilizes resonant structure to provide the impedance match to the air, 

such that EM energy can be coupled into the structure with little reflection; 2) the resonator 

is made of Al wire grid to induce ohmic loss and effectively dissipates the coupled EM 

energy to heat. We found that a bow-tie shaped resonator provides easy tunability of the 

resonance bandwidth. The new structure is designed to possess two resonances resulting 

from the symmetric bow-tie structures as well as the coupling between the neighboring 

bow-tie structures. Therefore, the bow-tie array collectively provides a broadband 

response. The symmetric bow-tie structure also provides a polarization-independent 

property. The proposed structure is realized using an Al wire grid, transparent and flexible 

Polyethylene terephtalate (PET) film, and Polydimethylsiloxane (PDMS) layers. The 

4/
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overall structure is transparent and flexible, facilitating its application in curved surfaces. 

The fabricated absorber structure produces the absorption above 90% in the frequency 

range of 5.8-12.2GHz, and the bandwidth is 71.1% of the center frequency. 

2.2 Principle of Double Resonance 

    

                                         (a)                                                           (b) 

Figure 2.1. (a) Unit cell of absorber structure (b) Equivalent circuit model 

Figure 2.1(a) shows the structure for achieving broadband absorption. Based on the 

equivalent circuit as shown in Figure 2.1(b), the total impedance of the structure is 

composed of the impedances of metallic resonator and dielectric layer with the ground 

plane. The metallic resonator can be regarded as the series resonant circuit, so that its 

impedance (Zs) is given by 

1
sZ R j L

j C



                                               (2.1) 

where C and L represent the capacitance and the inductance of resonant structure 

respectively, and R is the resistivity from the ohmic loss of the metal.  
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                             (a)                                                                   (b) 

Figure 2.2. (a) Equivalent circuit at low frequency (b) Equivalent circuit at high frequency 

As you can see in Figure 2.2, Zs behaves like a capacitor at low frequency, and an inductor 

at high frequency. The quality factor of series resonant circuit is given by 

1
S

L
Q

R C


                                                     (2.2) 

which shows that Q decreases as R increases. In addition, the impedance of the dielectric 

layer with ground is given by 

0 tan( )d

r

Z
Z j d


                                               (2.3) 

where Z0 is the characteristic impedance of free space and d is the thickness of dielectric 

layer. 0 0 r      is propagation constant in the dielectric layer. Zd behaves as an inductor 

at low frequency, and a capacitor at high frequency. The Q of this resonator is determined 

by 

2
dQ




                                                    (2.4) 

where 2 /    is the propagation constant and  is the attenuation constant. Since the 

impedance of top metallic pattern and the dielectric slab with ground are connected in 

parallel, the total impedance is given by
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 
s d

total s d

s d

Z Z
Z Z Z

Z Z
 


                                    (2.5)

 

The resonance for the equivalent circuit occurs when Ztotal is matched to the free space 

impedance. According to the change of frequency, Zs and Zd are changed and can have the 

two kinds of equivalent circuit. Since the resonances occur when Ztotal matches the free 

space impedance, the double resonance can occur as shown in Figure 2(c). Then, the two 

resonances are merged to have a broad bandwidth. The total Q-factor is determined by the 

parallel combination of Qs and Qd. High Q factor naturally leads to narrow band operation. 

To achieve broadband absorption, we want to lower the total Q factor by increasing the 

resistance R in the equivalent circuit model, and the increased resistance also has the 

additional benefit of dissipating the energy, therefore result in minimized reflection. This 

can be accomplished by using a very thin metal film to construct the resonant structure.  

2.3 The Design of Broadband Absorber 

 

Figure 2.3. Schematic of broadband absorber (perspective view) 
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In order to achieve perfect absorption, the impedance of the absorber is matched to 

the air and then the transmitted waves are dissipated due to the loss components of the 

structure. The previously reported experiment of concealing an object by a carbon nanotube 

(CNT) coating across the entire visible band follows the same principle [18], where the 

aligned CNTs with low fill ratio provided the index/impedance match to air; and also 

absorb the light energy coupled into the CNT layer. However, if we attempted to extend 

the approach to the microwave range, the required CNT thickness would be impractically 

thick. To avoid this problem, we used an array of resonant structure to achieve the 

impedance matching function.  

  

(a)                                                                      (b) 

Figure 2.4. The design of unit cell (a) top view (design parameters: w1=4mm, w2=1mm, 

l1=4.2mm, l=10mm). (b) Calculated real and imaginary part of impedance. 

Figure 2.3 shows the structure used to achieve broadband absorption. The total 

impedance of the structure is obtained from the combination of the impedances of the 

metallic resonator and dielectric layer with the ground plane. The effective impedance of 

the structure can be obtained from [19] 
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2 2

11 21
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( ) (1 )
( )

( ) (1 )

eff

eff

eff

S S
Z

S S

 


 

 
 

 
                     (2.2.1) 

where ( )eff   and ( )eff   are the effective permittivity and permeability, respectively. The 

real and imaginary part of the impedance are calculated from the simulated complex S-

parameters and plotted in Figure 2.4(b). The effective impedance of the structure has two 

matched bands that result from the change of the electric and magnetic response 

corresponding to the change of permittivity and permeability. This impedance matching 

condition causes the reflected wave to be minimized. 

The resonant structure having a high Q factor can be utilized in applications such as 

narrow band filters and oscillators that require the high selectivity and low loss. In such 

applications, broadband absorption can be achieved by reducing the Q factor of the 

structure, which can be accomplished by increasing the resistance. This increased 

resistance has the additional benefit of dissipating the energy, resulting in minimized 

reflection over a broad frequency range. To increase the resistance, Al wire grid in a bow-

tie pattern is used to construct the resonant structure. For our design, we used bow-tie 

shaped resonator, which has a symmetric configuration that is less sensitive to the 

polarization of the incident wave. More importantly, we will show that the bow-tie shape 

can offer a broader response range by exploiting not only its own resonance, but also the 

coupling between the neighboring unit cells in a periodic array via the side of the bow-ties. 

Regardless of the number of unit cells, the resonant frequency of the cascaded circuit is 

determined by the resonant frequency originating from the two kinds of equivalent circuit. 

By merging the two resonances, we achieved a broad bandwidth 71.1% of the center 

frequency. 
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2.4 Absorber Simulation 

The RF reflectance and the transmittance are measured at normal incidence. The 

measured reflectance is normalized with respect to a metal plane, while the measured 

transmittance is normalized with respect to the incident wave in free space. The measured 

transmission and reflection are then used to obtain the absorption, which is defined as 

                                      (2.2.2) 

where , and  are the reflectance and transmittance obtained from the 

measured frequency-dependent complex S-parameter, respectively. In principle, when the 

impedance of the structure is matched to the air to minimize the reflection, a perfect 

absorption can be achieved because the metallic ground plane prevents any transmission 

through the structure. The simulated and measured  are plotted in Figure 2.5. As 

expected, transmission represented by 
 
is nearly zero in the entire operating 

frequency range.  

 

Figure 2.5. Simulated and measured absorption according to the frequency. 

A( ) 1 T( ) R( )     
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As can be seen in Figure 2.5, there are two absorption peaks; the low frequency is 

mainly attributable to the coupling field between bow-tie structures and the high frequency 

resonance is due to the fundamental resonant mode of bow-tie structure, as discussed 

below. To understand the origin of these two absorption peaks, the electrical field 

distribution and power flow are simulated and analyzed by using Ansys high frequency 

structure simulator (HFSS) software. In the simulations, the top metallic wire grid bow-tie 

resonators are modeled as an impedance sheet with a sheet resistance of 30 sq  and the 

dielectric constant and loss tangent of the dielectric spacer are 2.25 and 0.01, respectively. 

A unit cell of the structure is simulated using periodic boundary conditions along the x and 

y directions. The proposed absorber with w1 = 4mm has two resonances, one at 7.4GHz 

and the other at 10.1GHz. Besides the simulation, as can be seen in Figure 2.4(b), we 

calculated real and imaginary parts of impedance. The real part of impedance is almost 

unity and the imaginary part of impedance is nearly zero between 7.4 GHz and 10.1GHz. 

Therefore impedance matching with air was achieved, which minimizes the reflection from 

the absorber. Figure 2.6(a) and (b) show the top view of the simulated electrical field 

distribution of the absorber structure at the two absorption peak frequencies (f1=7.4GHz 

and f2=10.1GHz), while Figure 2.6(c) and (d) show the simulated electrical field 

distribution at the central cross section. The electric fields are strongly localized in the gap 

between the two bow-tie structures at the low resonant frequency, and are localized around 

the edges of the bow-tie structure at high resonant frequency. Figure 2.7(e) and (f) show 

the power flow of the absorber at two absorption peak frequencies. Figure 2.7(a) and (b) 

show the schematic of the electrical fields and power flows localized at low and high 

resonant frequencies, respectively. The behavior is similar to that of magnetostatic 
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interference [28] in metallic slit structures, where the polarized electric charge produces a 

strong localized E-field, which guide the poynting energy flow, as shown in Figure 2.7(a) 

and (b). At low resonant frequency, most incident power flows through the gap between 

the bow-tie structures; while at high resonant frequency, the power flow is toward the 

center of bow-tie resonator. In both cases, the energy flowing into the bow-tie eventually 

dissipates in response to the high ohmic loss of the Al wire grid that is used to form the 

bow-tie structure. These results verify that the two absorption peaks are a product of the 

fundamental resonance of the bow-tie structure and the coupling between bow-tie 

structures, respectively. The merging of the two resonances with overlap spectra ensures 

the broadband performance of the proposed absorber. 

 

                                       (a)                                                                  (b) 

 

                                        (c)                                                                (d) 

 

                                       (e)                                                                  (f) 
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Figure 2.6. (a), (b) represent the electrical amplitude on the top view at 7.4GHz and 

10.1GHz and power flow at 7.4GHz and 10.1GHz, respectively. (c), (d) The color represent 

the amplitude of the electric field and the arrows represent the direction of the electric field 

on the central cross section of unit cell at 7.4GHz and 10.1GHz, respectively. (e), (f) The 

color represent the amplitude of the power flow and the arrows represent the direction of 

the power flow on the central cross section of unit cell at 7.4GHz and 10.1GHz, 

respectively. 

 

                                    (a)                                                                     (b) 

Figure 2.7. (a) Schematic of electric field and poynting vector localized in the gap between 

the two bow-tie structures at the low resonant frequency. (b) Schematic of electric field 

and pointing vector localized around the edges of the bow-tie structure at high resonant 

frequency. 

2.5 Bistatic Scattering from Absorber 
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                     (a)                                                                       (b) 

Figure 2.8. (a) Model construction for the bistatic scattering calculation. (b) Field 

Calculator for post-processing in Ansys HFSS. 

A large filed is scattered in the specular direction; i.e., the angle of reflection is equal 

to the angle of incidence. On the other hand, the reflected wave can be scattered to the other 

directions because of the structural properties. Thus, the absorber scattering model is used 

to examine the biscattering properties of our design in this section.  Ansys HFSS is capable 

of computing plane-wave scattering solutions. For a normal incidence, scattering solution 

can be calculated using a waveguide simulation approach with port excitations. However, 

since the off-normal incidence requires field post-processing for the data extraction from 

plnae-wave excited solutions, the field post-processing for data extraction from plane-wave 

excited solutions is used. The Ansys HFSS model for bistatic scattering measurement is 

constructed as shown in Figure 2. 8(a). For incidence angle of arrival (0, θ), where θ=0-

60˚, Master/Slave phase relation is set to (180, θ) to correspond to the specular angle. The 
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same variables are used in master/slave boundary setting. Thus, the incident wave varies 

from normal to 60˚ incidence angles. The height of air on each side of the absorber is 

considered as the necessary evaluation planes for the field calculator, and PML slabs are 

added on the top and bottom of the air box. The linked boundary phase setting is changed 

with the incidence angle.  

Since minimum height to clear 60˚ angled plane is 2×tan(60˚)+λ/10, the height of the 

air should be higher than 25 mm. The cut planes for the calculation are generated from the 

geometry menu, and those are created normal to both the incident and the scattered ray 

directions. The height of air on each side of the dielectric must consider the necessary 

evaluation planes for post-processing. The cut plane for magnitude (or phase) integration 

data cannot intersect the dielectric itself because of the very high reactive near fields. For 

the post-processing, the field calculator is used to extract two quantities, incident 

magnitude (Pinc) and reflected magnitude (Pref). Then these quantities are used to compute 

reflection coefficient.  

 

 

1
( ) ( )( ) 2( )

1( )
( ) ( )

2

ref ref
Sref

inc
inc inc
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
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 





                (2.5.1) 

Because the field calculator provides the RMS Poynting vector, the desired surface is 

selected directly and integrated. The Poynting vector is calculated using only the E and H 

field components of interest for the reflection. The calculated reflection at normal incidence 

is plotted in Figure 2.9(a).  The reflections with and without bistatic scattering calculation 

are plotted in Figure 2.9(b), respectively. Blue dots shows the reflection magnitude when 

the angle of reflection is equal to the angle of incidence. Red dots represent the reflection 
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which includes all reflections of the side wall of air box. As the incidence angle increases, 

the reflection with bistatic scattering calculation becomes higher than the reflection without 

it. 

 

(a) 

 

(b) 

Figure 2.9. (a) Reflection at normal incidence (b) Reflection with and without bistatic 

scattering calculation. 
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2.6. Realization of the Transparent and Flexible Structure 

The proposed absorber is composed of top Al wire grid metallic patterned patches, 

PET, PDMS, and metallic wire grid ground. Figure 2.3(a) shows the schematic of the 

proposed absorber consisting of an array of Al wire grid metallic bow-tie resonators on a 

PDMS dielectric layer backed by a metallic wire grid mesh ground plane. Figure 2.3(a) 

shows the proposed absorber arranged in a periodic array, and figure 2.4(b) shows the unit 

cell with the design parameters. A flexible and transparent PET and PDMS layer separate 

the two metallic layers. Such flexible polymer layers with patterned bow-tie structures are 

optically transparent, and can be applied to any metallic surface to provide the broadband 

absorption property.  

  

      (a) 
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(b) 

Figure 2.10. (a) Simulated absorption at the different width of bow-tie (w1) (the 90% 

absorption bandwidth at w1=1mm : 50.4%, at w1=2mm : 61.6%, at w1=3mm : 68.2%, at 

w1=4mm : 72%) (b) Simulated absorption at the different width of bow-tie (t) The inset 

shows the equivalent circuit model of the proposed absorber according to the frequency. 

In designing the broadband absorber, the geometric parameters, including the 

thickness of metallic patterns, are chosen to obtain the desired wave absorptions at two 

resonance frequencies; and these parameters are further optimized so that the two 

resonances are spectrally merged together to provide broadband characteristics. As an 

example, Figure 2.10(a) shows that as base (w1) of the bow-tie increases, the absorption 

band extends to lower frequency range. Here, the length of bow-tie and the spacing are 

fixed to l =10mm and t = 5mm, respectively. In Figure 2.10(b), the thickness of the 

substrate is changed from 3mm to 5mm. As the thickness decreases, the higher operating 

spectrum is shifted into the higher band and the absorption became lower at the lower 
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frequencies. To reduce the reflection from the absorber structure, good impedance 

matching to air is required.  

 

(a) 

 

(b) 

Figure 2.11. (a) Fabricated metallic bow-tie array on top of a flexible and transparent PET 

layer (Scale bar = 100um) (b) Optical transmittance. 
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This can be achieved by varying the spacing between bow-tie structure and dielectric 

spacer layer thickness as well as using the optimized metal thickness. In order to obtain 

greater than 90% absorption over the desired bands, the absorption magnitudes and 

frequencies at the two resonances are optimized by adjusting the thicknesses of the 

dielectric layer (PDMS) and the surface impedance of metallic wire grid bow-tie resonator 

(Aluminum). For the bow-tie shaped resonator made of Al mesh with surface resistance of 

30 sq , the optimized Al thickness is 62nm, while the PDMS layer with dielectric 

constant 2.25 and thickness of 4.9mm is utilized for a spacer. The surface resistivity of the 

deposited metal film was measured using a standard four-point probe configuration. 

Furthermore, a transparent metal mesh ground plane that provides optical transparency 

greater than 90% [29] is employed. 

To fabricate the absorber structure having an area of 300mm 200mm, a 62nm-thick 

aluminum was first deposited on a 50um-thick PET film by sputtering. The aluminum wire 

grid mesh was then patterned in the shape of the bow-tie by optical lithography and etching. 

Then the PET film with patterned Al structure is attached to a thicker and more flexible 

PDMS layer. A picture of the fabricated bow-tie array on top of PET is shown in Figure 

2.11(a). The inset in Figure 2.11(a) shows the zoomed view of bow-tie of Al wire grid 

mesh. The fabricated structure is optically transparent, and when attached to a wire grid 

metallic ground plane, forms a complete absorber structure.  


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(a)                                                               (b) 

Figure 2.12. (a) Measurement set-up (b) Time gating in vector network analyzer. 

The absorber was measured by using a HP 8720B network analyzer that covers the 

range of 0.13–20 GHz, and two broadband horn antennas in a microwave anechoic 

chamber, as shown in Figure 2.12. As shown in Figure 2.12(b), the peak reflection is 

obtained, and then the maximum peak is remained by using bandpass time gating in vector 

network analyzer. The wire grid mesh ground plane can act as the metal plane at the 

microwaves. The fabricated structure shows absorption greater than 90% is in the 

frequency range of 5.8-12.2GHz and the bandwidth is 71.1% of center frequency. Figure 

2.13 shows the measured absorptions for different polarizations of the incident wave. The 

optical transmittance of total structure is more than 62% as shown in Figure 2.11(b). Due 

to the symmetric pattern of bow-tie structure, the absorption is almost polarization-
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independent. The polarization angle ( ) is defined as the angle between the electric field 

and x-axis.  

 

Figure 2.13. Measured absorptions at different polarization angle Φ.(0, 30, and 45 deg). 

Figure 2.13 shows the measured absorption according to the polarization. As the  

increases, the absorption magnitudes and resonance frequencies of the absorber are nearly 

unchanged for different polarizations (0, 30, 45 deg) of the normal incident wave, 

demonstrating polarization-independence of the absorber structure. Figure 2.14(a) shows 

the HFSS model of two unit cells based on bow-tie structures. Due to the Master/Slave 

boundary pairs, the model represents infinitely periodic structure. Figure 2.14(b) shows the 

simulated absorption according to the different incident angles (0˚, 20˚, 50˚, 60˚, and 70˚). 

As the incident angle increases, the absorption peak at high frequency is shifted. The 

absorption above 90% is achieved up to 54˚ of the incident angle as shown in Figure 2.14(b).  




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                    (a)                                                                      (b) 

Figure 2.14. (a) Ansys HFSS simulation model of two unit cells. (b) Absorption according 

to the different incident angles (0˚, 20˚, 50˚, 60˚, and 70˚). 

2.7 Multi-layered Ultra Broadband Absorber 

Finally we discuss methods to further increase the absorption bandwidth. Based on 

the principle discussed above, even greater bandwidth can be obtained by merging multiple 

resonances with overlap spectra. In order to achieve new resonances, bow-tie resonators 

having different geometric parameters can be inserted in the dielectric spacer as 

intermediate layers. In such a structure, each layer generates two resonant frequencies by 

the similar principle. By adding patterned structures having the different lengths at 

thickness of t1, t1+t2, and t1+t2+t3 respectively, different resonances can be obtained to 

increase the bandwidth. For example, a 3 layer absorber is designed as shown in Figure 

2.15(a). This structure avoids the alignment of the patterned bow-tie structures in each 

layer as shown in Figure 2.15(b). As shown in Figure 2.15, the resonant fields are less 

affected by the presence of the neighboring layers. In the simulation, the bow-tie resonators 
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in the 1st, 2nd, and 3rd layers from the ground plane are modeled with the sheet resistances 

of 20 sq , 20 sq , and 25 sq  respectively.  

    

                                    (a)                                                                     (b) 

Figure 2.15. Configuration of the multi-layer absorber structure (a) Perspective view (b) 

Top view. 

Since the absorption peaks are located close to each other, the frequency range 

needed to achieve absorption above 90% is 3.8-19.2GHz and, therefore the bandwidth of 

the 3 layer absorber is enhanced to 133.9% of the center frequency, as shown in Figure 

2.16. The metal mesh structure used in our structure not only provides optical transparency 

but also increased resistance that is needed for the broadband application. To reduce 

fabrication costs and time of our structure, large area of such flexible absorbers can be 

fabricated in roll-to-roll platform using the recently developed photo roll lithography [29, 

30], facilitating practical applications. With further development, we anticipate numerous 

applications of such transparent and broadband absorbers in the future, e.g. zero-reflected 

power over a wide bandwidth for better aircraft stealth performance. 
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Figure 2.16. Simulated absorption. (Wm1=1.6m, Wm2=2.2mm, Wm3=2.8mm, lm1=5.1mm, 

lm2=10.8mm, lm3=19.4mm, t1=2.4mm, t2=2.2mm, and t3=4mm). 

2.8 Conclusion 

In conclusion, the two absorption peaks are the result of energy flow and loss in 

different positions of the absorber. Importantly, these peaks can be adjusted by changing 

the width and length of the bow-tie structure respectively. Figure 2.6 shows that as the 

width of bow-tie increases from 1mm to 4mm, the absorption peak at low frequency is 

shifted to the lower frequency range in response to the increased coupling between the 

neighboring bow-tie structures. Thus, the bandwidth needed to achieve more than 90% 

absorption can be extended by increasing the w1. The spectral overlap of the two selected 

absorption bands broadens the absorption bandwidth. In addition, owing to simple 

periodically symmetric patterned structures, the absorber is independent to the 

polarizations of the incident wave. 
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Chapter 3 

 

Semi-Transparent and Flexible Mechanically Reconfigurable 

Electrically Small Antennas Based on Tortuous Metallic 

Micromesh 

 

3.1 Introduction 

Recently, wearable technologies that aim to monitor person’s wellness or assist 

people with diseases have attracted considerable interest. For wearable applications, a 

variety of sensors, antennas, electronic circuits, and storage systems have been developed. 

Not only should the wearable devices be small and light, but they should also be able to 

communicate with other electronic devices. However, the antennas and battery are heavy 

and take up a large amount of space in the system. In order to produce more compact and 

lighter system, antenna integrated with a rectifying circuit can be employed to harvest RF 

energy eliminating the need for the battery. Thus, a radio frequency antenna plays a 

significant role in the wearable system.  

The antennas for wearable applications should be able to be stretched, folded, and twisted. 

A lot of flexible antennas, which are fabricated on a flexible copper-clad laminate, have 

been researched [31, 32]. One challenge with using a flexible substrate is that the 
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mechanical stability of the metal pattern and rigidity of the substrate are not sufficient for 

wearable gadgets. To address this issue, stretchable antennas have been developed that use 

a liquid metal such as mercury and eutectic gallium indium alloy (EGaIn) [33-37]. 

Although liquid metal antennas are mechanically tunable and have high degrees of 

stretchability, the use of the liquid metal presents a challenge with regard to integration 

with other system components (e.g. rectifying circuit and RF amplifier). A further 

challenge is that the antenna may fail to operate properly due to the leakage of the liquid 

metal if the sealing layer for the liquid metal is even slightly torn or has small holes. 

Alternative to using liquid metal antennas is the textile-based antenna using metal-coated 

polymer fibers (e-fibers) [38, 39]. To create such antenna, the conductive textile surface 

was embroidered to form the antenna. However, because the e-fiber used in these antennas 

is not stretchable, they are difficult to use for frequency-tunable applications. A further 

drawback is that the efficiency of this antenna tends to be lower because of electrical 

contact loss between the e-fibers and the high roughness of the textile. 

In order to realize reconfigurable antenna, various mechanisms such as a switch and 

varactor diode have been employed. Many reconfigurable antennas with electrical switches 

(e.g. RF MEMs switch, pin diode, MEMs capacitor, and varactor diode) have been 

developed by interconnecting the adjacent segments of the antenna elements [40]. For RF-

MEMs switch and pin diode, the reconfigurability is limited due to the discrete nature of 

the switch [41-43]. In addition, since varactor diodes and MEMs capacitor provide variable 

capacitance according to the voltage bias, continuous ranges of frequency reconfigurability 

of the antenna are obtained [44, 45]. However, in order to operate the switches, a large RF 

bias network is needed and the switches suffer from nonlinear effect and parasitic 



  

32 
  

parameters. On the other hand, mechanical tunability could be exploited because it is 

linearly tunable over a wide range of frequency band and does not require a bias network 

[46-48]. Furthermore, optical transparency is desirable to meet the space requirement of 

the wearable devices for practical applications (e.g. transparent smartphone and contact 

lens display) [49]. Thus, the transparent antenna is intended for the wearable electronics or 

implantable medical devices where it can be easily camouflaged. In order to provide the 

optical transparency and electrical conductivity, graphene, nano-particle based electrodes 

and ITO films have been studied for decades. However, studies have shown that due to the 

low conductivity, relatively thick layers are needed in order to operate efficiently in the 

desired radio frequency range. In addition, ITO film is rigid and brittle and therefore not 

suitable for wearable applications.  

This chapter describes a new method for fabricating transparent and stretchable 

radiofrequency small antennas by using stretchable micromesh structures. These antennas 

are smaller and lighter than the conventional antennas. Size reduction is achieved by using 

the zeroth-order resonant (ZOR) property [50]. The antennas consist of a series of tortuous 

micromesh structures, which provides a high degree of freedom for stretching when 

encapsulated in elastomeric polymers and is optically transparent. Accordingly, the 

structure can undergo mechanical deformation such as stretching, folding, or twisting 

without breakage. These antennas can be stretched up to 40% in size without breaking and 

easily return to their original shape after the force is removed. According to the increase in 

the tensile strain, the resonant frequency of the antennas is almost linearly reconfigurable 

from 2.94 GHz to 2.46 GHz. In addition, they are optically transparent due to the large 

openings in the mesh and the optical transmittance have increased under high strains. 



  

33 
  

Therefore, the proposed antennas could be used for the applications such as reconfigurable 

antennas, antennas for transparent and curved spaces, and wearable sensors. 

3.2 Mechanically Reconfigurable Antenna Design 

 

Figure 3.1. The configuration of transparent and mechanically reconfigurable antenna. 

Figure 3.1 shows a transparent and stretchable compact zeroth-order resonant (ZOR) 

coplanar waveguide (CPW)-fed antenna. The antenna consists of the metallic patch, 

shorted meander line, interdigital slot, and CPW ground. In order to be stretchable and 

optically transparent, we replace the uniform metallic patches in the traditional antenna 

configuration with a tortuous wire micromesh design. It can be replaced without loss of 
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performance since the period of the mesh are roughly smaller than 
0 /1100  [51], where 

0  

is free space wavelength.  

3.2.1 Zeroth-order Resonant Antenna Theory Based on Composite Right-

handed/Left-handed(CRLH) Transmission Line(TL) 

    
                                     (a)                                                               (b) 

Figure 3.2. (a) Equivalent circuit model of the CRLH unit cell (b) Dispersion curve of the 

CRLH unit cell 

A general CRLH TL is composed of series capacitance (CL) and inductance (LR) as 

well as a shunt capacitance (CR) and inductance (LL), as shown in Figure 3.2. It is designed 

in a periodic configuration by cascading N unit cells. The immittances of a lossy CRLH 

TL are given by 
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where R and G are the series resistance and shunt conductance of the lossy CRLH TL, 

respectively. The series and shunt resonant frequencies are given by 
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Thus, the complex propagation constant (γ) and characteristic impedance (ZC) are 
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Because the CRLH TLs have periodic boundary conditions, the Bloch-Floquet 

theorem can be applied and its dispersion relation is determined by 

 
2

2

( ) 1
( ) R L L R

R R

L LL L

L C L Cs
L C

Z L CL C


  




  


                  (3.7) 

where s(ω) and ΔZ are a sign function and the differential length, respectively.  

ωse and ωsh can be unequal in the dispersion diagram of the unbalanced LC-based 

CRLH TL, as shown in Fig. 3.2(b). At these resonant frequencies, where β = 0, an infinite 

wavelength can be supported. According to the theory of the open-ended resonator with 

the CRLH TL, its resonance occurs when 
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where l, n and N are the physical length of the resonator, mode number, and number of unit 

cells, respectively. When n is zero, the wavelength becomes infinite and the resonant 

frequency of the zeroth-order mode becomes independent of the size of the antenna, while 

the shortest length of the open-ended resonator is one half of the wavelength. Thus, an 

antenna with a more compact size can be realized. 

As shown in Fig. 3.2(b), two resonant frequencies, ωse and ωsh, with β = 0 for the 

unbalanced CRLH TL are observed with a matched load. Considering the open-ended TL, 

where ZL = ∞, the input impedance (Zin) seen from one end of the resonator toward the 

other end is given by 
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where Y'shunt is the admittance of the CRLH unit cell.  

Since, from Eq. (3.9), the input impedance of the open-ended resonator is equal to 

1/N times 1/Y'shunt of the unit cell, the equivalent L, C, G values are equal to LL/N, NCR, and 

1/NG, respectively. Regardless of N, the resonant frequency of the N cascaded open-ended 

ZOR circuit is determined by the resonant frequency originating from the shunt LC tank 

(Y'shunt). Thus, the open ended ZOR antenna's resonant frequency is given by Eq. (3.4), 

resulting in depending only on the shunt parameters of the unit cell. 

Considering that the open ended resonator is only dependent on Y'shunt of the unit cell, 

the average electric energy stored in the shunt capacitor, CR, is given by 
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and the average magnetic energy stored in the shunt inductor, LL, is 
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where IL is the current through the inductor. 

Because resonance occurs when Wm is equal to We, the quality factor can be calculated 

as follows:
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3.2.2 CPW-fed Inductor-Loaded Zeroth-Order Resonant Antenna 

      

                                    (a)                                                                       (b) 
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Figure 3.3. (a) The unit cell of epsilon negative (ENG) meta-structured transmission line 

(MTL) (b) Equivalent circuit model of ZOR antenna 

 

     
 

Figure 3.4. Dispersion disagram of the unit cell 

Figure 3.3(b) depicts an infinitesimal circuit model for the lossless unit cell of ENG 

MTL model which is represented as the combination of a per-unit length series inductance 

(LR), and a shunt capacitance (CR), and a per-unit length shunt inductance (LL). The shunt 

components of the unit cell are obtained from the shunt capacitance between the top patch 

and CPW ground, and a shunt inductance of the shorted meander lines as shown in Figure 

3.3(a). In addition, the LL and CR include additional inductance and capacitance formed by 

the tortuous metal micromesh. The coupling capacitance (Cc) created by an interdigital 

capacitance in the equivalent circuit model of ZOR antenna is introduced and responsible 

for only impedance matching. Given that only shunt components (YENG) of the unit cell 

determine the resonant frequency of the open-ended resonator, the average electric energy 

and the average magnetic energy are stored in the shunt capacitor (CR) and the shunt 

inductor (LL), respectively. From an infinitesimal circuit model for the lossless unit cell of 
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epsilon negative (ENG) meta-structured transmission line (MTL) model, the effective 

permeability and permittivity of the MTL materials are obtained as 
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where Z and Y are the per-unit length impedance and admittance, respectively [50, 52, 53]. 

If the frequency band (ω) is smaller than 1/ L RL C , the ENG MTL has positive permeability 

and negative permittivity so that it has single negative stopband. The ENG has the unique 

characteristic of an infinite-wavelength wave at the boundary of passband and stopband. 

Therefore, zeroth-order resonance occurs when the MTL has zero permittivity. Based on 

the open-ended structure, the resonant frequency of the mechanically reconfigurable 

antenna based on ENG MTL is determined by  

1
[1 ] 

L R

s
L C

                                                (3.15) 

where LL is the inductance of shorted meander line and CR is the capacitance between the 

metallic patch and CPW ground respectively as shown in Figure 3.3(a). It indicates that the 

ZOR frequency is determined only by the shunt inductance and capacitance and therefore 

independent of the physical length of the resonator. Thus, a small antenna based on the 

zeroth-order condition is implemented and the resonant frequency of the antenna can be 

controlled with applied mechanical force. Figure 3.4 illustrates the dispersion diagram for 

the proposed unit cell. It is based on the S-parameters obtained from the driven mode 

simulation results. Since this antenna is realized by the inductor-loaded unit cells, the 
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dispersion diagram only shows the phase delay characteristic. Therefore, the negatice 

resonance is effectively eliminated while maintaining the zeroth-order resonance. 

  

                                      (a)                                                              (b) 

Figure 3.5. Electric field (a) Vector distribution on the antenna (b) The magnitude of 

electric field at zeroth-order mode 

The structure based on the CPW-fed zeroth order resonant property had been verified. 

As shown in Figure 3.5(a), the electric field distribution of the zeroth-order resonant 

antenna is in-phase. At the zeroth-order resonant frequency, the resonant condition is 

independent of the aperture dimension. Figure 3.6 shows the magnitude of electric field at 

zeroth-order mode. Since the magnitude of the electric field in the interdigital slot is more 

dominant than others, the interdigital slot makes the main contribution ot the antenna 

radiation pattern. In general, both microstrip and CPW resonant antennas radiate from slots. 

In Ref. [52], the microstrip ZOR antenna’s radiation mechanism is same as well. The 

constant magnetic loop current source is generated by the constant E-field distribution in 

four slots. Although the proposed CPW ZOR antenna is similarly radiating from slots, the 

dominant magnetic current source is one slot which is located at the feeding line. The other 

magnetic current sources from three slots are weaker because the signal and ground planes 

are far away. Accordingly, this antenna looks like an ideal magnetic dipole rather than a 
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magnetic loop. As a result, the E-plane and H-plane of the proposed antennas become yz-

plane and xz-plane by duality, respectively. Generally, the discontinuity in CPW structure 

makes less radiation than the microstrip. The asymmetric antenna has more discontinuity 

than symmetric antenna. Therefore, the efficiency of asymmetric antenna is lower because 

of the coupled slot mode as well as the small electrical size.  

Figure 3.6 clearly demonstrates that the resonant frequencies remain almost constant 

as the aperture dimension is increased. In conventional resonant antenna, it is obvious that 

the resonant frequency is decreased as its size is increased.  

 

Figure 3.6. The relationship between frequency and the number of unit cells 

3.2.3 Analysis of Symmetric and Asymmetric CPW-Fed ZOR Antennas 

Since our proposed antenna has electrically finite ground plane and an unbalanced 

structure, CPW-fed ZOR antennas that consist of asymmetric and symmetric structures as 

shown in Figure 3.7 are studied for the effects of finite ground plane and unbalanced 

structure in this Chapter. Figure 3.7(a) represents the one unit cell of symmetric antenna. 

Figure 3.7(b) and 3.7(c) show the CPW-fed ZOR antenna using two asymmetric and 
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symmetric unit cells, respectively. Since the resonant frequency are determined from the 

shunt inductance and capacitance, three antennas have the different operating frequencies. 

The measured return loss are plotted in Figure 3.8.  

      

                      (a)                                             (b)                                           (c) 

Figure 3.7. CPW-fed ZOR antennas using (a) one symmetric unit cell (b) two asymmetric 

unit cell (c) two symmetric unit cells 

 

Figure 3.8. Return losses for (a) one symmetric unit cell (b) two asymmetric unit cell (c) 

two symmetric unit cells 

The proposed design is validated using a large ground plane and balanced structures 

as shown in Figure 3.9(a) [54]. First of all, a large ground plane is added on the CPW 

ground of the proposed antenna and measured by a vector network analyzer. The resonant 



  

43 
  

frequency of the antenna with a large ground plane are slightly different from those of the 

same antenna on a finite ground plane. Figure 3.9(b) shows the measured reflection 

coefficient for the CPW-fed ZOR antenna with and without larger ground planes. As the 

ground size becomes larger, the effect from the cable is reduced. 

  

(a) 

 

(b) 

Figure 3.9. (a) CPW-fed ZOR antenna with larger ground planes (b) Measured return loss 

for the CPW-fed ZOR antenna with and without larger ground planes. 

 

3.3 The Orientation of Meander Line  
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In addition, to obtain the change the inductance (LL) by applying mechanical means, 

the vertically oriented meander line is used than the horizontally oriented meander line in 

our antenna as shown in Figure 3.3(a) 

           

(a)                                                          (b) 

Figure 3.10. Simulated and measured transmission spectra of individual colors (blue, green, 

and red) at normal incidence. 

Figure 3.10(a) and (b) show the meander-shape inductors positioned in a vertical and 

a horizontal orientations, respectively. The meander line is connected between the metallic 

patch and CPW ground as shown in Figure 3.3(a). It can be modeled as an equivalent 

inductor because it is considered as shorted transmission line. In order to realize the 

meander line, the tortuous meshed conductors are orthogonally placed. The vertically-

oriented meander line has longer conductors with length 
1vl  and width 

1vw  in the direction of 

force and shorter conductors with length 
2vl  and width 

2vw  in the perpendicular direction of 

force as shown in Figure 3.6(a). Appropriate self and mutual inductance values are 

determined by the optimal arrangement of the size parameters. According to the applied 

tensile strains, the parameters of the vertically-oriented meander line are changed. The 
1vl  
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and 
2vw  increases, and 

2vl  and 
1vw  decreases. The horizontally-oriented meander line 

consists of shorter conductors with length 
2hl  and width 

1hw  in the direction of force and 

longer conductors with length 
1hl  and width 

2hw  in the perpendicular direction of force as 

shown in Figure 3.10(b).  

When the tensile strain is applied in the vertical direction as shown in Figure 3.11, 

the 
2hl  and 

2hw  of the horizontally-oriented meander line increases, but 
1hl  and 

1hw  decreases. 

The inductances and capacitances are extracted from a circuit (Advanced Design System 

2015) and full wave (Ansoft HFSS 15) simulator regarding the meander line shapes and 

applied tensile strains.  

 

Figure 3.11. The change of vertical-oriented and horizontal-oriented meander lines with 

the different tensile strains. 
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Figure 3.12. Unit cell based on micromesh to extract equivalent circuit parameters 

To obtain the circuit parameters containing the parasitics, the micromesh is drawn 

directly in the simulation as shown in Figure 3.12, and the values of the circuit parameters 

(LL, CR) are extracted from the S-parameters [55]. Our procedure is as follows: First, a 

shorted meander line with CPW ground consists of a shunt capacitance and inductance 

(CR, LL) and it is simulated in Ansys HFSS. Its s-parameter is used in order to extract 

equivalent circuit parameters. The series inductance (LR) can be modeled by the Π network. 

The shunt inductance (LL) and capacitance (CR) can also be modeled by the Τ network. 

Those Π network and Τ network are analyzed to find the corresponding parameters for the 

equivalent circuit. For a 2-port network, the impedance parameters and admittance 

parameters are determined. Thus, the admittance and impedance matrices are obtained for 

the CR, LL, and LR. The extracted parameters are tabulated in Table 3.1. Thus, it shows the 

influence of the orientation of the meander lines according to the different strains. 

Apparently when a tensile strain is applied along the vertical direction, the inductance of 

the vertically oriented meander line varies much more than that of the horizontally oriented 
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meander line.  Thus, the vertically oriented meander line is preferred to obtain widely 

mechanically tunable resonances. 

TABLE 3.1 INDUCTANCE OF MEANDER LINE ACCORDING TO THE ORIENTATIONS AND 

TENSILE STRAINS 

 

 TENSILE STRAIN (%) 0% 20% 40% 

MTL with 

vertically oriented 

meander line 

Inductance (nH) 6.323 7.519 8.271 

Capacitance (pF) 0.451 0.434 0.493 

Resonant frequency (GHz) 2.98 2.78 2.49 

MTL with 

horizontally 

oriented meander 

line 

Inductance (nH) 6.198 6.287 6.497 

Capacitance (pF) 0.452 0.463 0.456 

Resonant frequency (GHz) 3.01 2.95 2.92 

 

3.4 The Design of Tortuous Micromesh 

 

Figure 3.13. Topology modification for transparent and stretchable micromesh. 

The metallic patch of the antenna in Figure 3.13 can be replaced with micromesh to 

be optically transparent as well as to have good electric conductivity. The electric current 

distribution on an ordinary metallic patch at the zeroth-order mode is not changed, but the 
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thin wires of micromesh introduce an additional inductance per unit length. In addition, the 

straight wires are wound to be stretchable so that it effectively lead to the miniaturization 

of the linear dimension of the micromesh. 

TABLE 3.2 COMPARISON BETWEEN METALLIC PATCH, STRAIGHT MESH, AND TORTUOUS 

MESH 

 Metallic Patch Straight Mesh Tortuous Mesh 

Effective conductivity (S/cm) 5.96×105 2.24×104 3.28×104 

10 dB bandwidth (%) 2.93 3.53 3.43 

Resonant frequency (GHz) 2.940 2.943 2.941 

Realized Gain (dB) -3.04 -3.72 -3.46 

Radiation efficiency (%) 85.4 79.1 81.4 

 

The antennas based on the metallic patch, straight mesh, and tortuous mesh are 

simulated in Ansoft HFSS and the 10 dB bandwidth, resonant frequency, and realized gain 

are tabulated in Table 3.2. Although tortuous mesh has slightly broader 10dB bandwidth 

and lower gain because of low conductivity, it still has same resonant frequency compared 

with the metallic patch. Typically the metallic patch and straight mesh are easily broken 

with a small tensile strain because of the high Young’s modulus (117GPa) of the copper. 

In order to withstand the applied tensile strains, the strength applied to the mesh should be 

lower than the yield strength. Prior to the yield point, the material can be deformed 

elastically and will return to its original shape when the applied stress is removed. To 

decrease the stress applied to the mesh as well as to increase the structural ability of mesh 
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to be elongated, the straight lines of straight mesh are wound [56]. Thus we used a tortuous 

metallic mesh rather than the straight wire mesh. Specifically, we designed two types of 

tortuous meshes which we then used to fabricate our structurally stretchable and optically 

transparent antenna.  

 

Figure 3.14. Mechanical simulation of micromesh 

Figure 3.14 shows the mechanical simulation of meshes with Comsol 4.4. The results 

are based on finite element method (FEM) and it presents the calculated stress localized in 

the stretched mesh. In our designed tortuous micromesh the maximum stress is 44.14 MPa 

with 50% of tensile strain. Because of this characteristic, our tortuous micromesh is more 

durable than straight line mesh in terms of the tensile strain. To make the tortuous wire 

micromesh structure, it is worth noting that the narrower wires tend to be more stretchable 

than the wider ones. Thus, to withstand the applied tensile strains, the geometrical 

parameters of the unit cells of the micromesh are optimized and determined. 
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                                     (a)                                                                    (b) 

Figure 3.15. (a) Unit cell of micromesh using both tortuous wires in horizontal and 

longitudinal direction (tortuous micromesh design 1) (b) Unit cell of micromesh using 

tortuous wire in horizontal direction and straight wire in longitudinal direction one tortuous 

(tortuous micromesh design 2). 

Figure 3.15(a) and (b) show the zoom-in view of the unit cells of our two tortuous 

wire micromesh designs. In order to avoid multiple contacts at the intersection of the wires, 

the first tortuous mesh is designed by mixing tortuous wires with tortuous lines with a 

period of 78.25μm in the horizontal direction and a period of 63.18μm in the longitudinal 

direction, respectively, as shown in Figure 3.15(a). Between the intersections in the 

horizontal direction, the wires with a high undulation amplitude and a short period are 

connected to increase the ability of wires to elongate. The second tortuous mesh is designed 

with a tortuous line with a period of 78.25μm in the horizontal direction and the straight 

line with a period of 60μm in the longitudinal direction, as shown in Figure 3.15(b). In 

addition to the elongation, another advantage of using the tortuous mesh is that the linear 

dimension along the current path of the antenna is reduced while at the same time 

maintaining good optical transparency and electrical conductivity.  
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TABLE 3.3 RELATIONSHIP BETWEEN OPTICAL TRANSPARENCY AND ELECTRICAL 

CONDUCTIVITY IN TERMS OF THE DESIGN OF MICROMESH  

# OF WAVY LINE 2 4 6 8 

Micromesh Design 

& 

Size  
   

Optical Transparency 58 % 74% 81% 88% 

Electrical Conductivity 3.28×104 1.56×104 1.13×104 8.29×103 

 

Table 3.3 shows the ratios of opening area to total area of micromesh unit cells. 

Generally optical transparency and electrical conductivity change in opposite directions. 

In addition, 400μm-thick PDMS has 8% of an additional reflection, and high aspect ratio 

of metal may make additional scattering. If we use larger period micromesh structure as 

shown in Table 3.3, the higher optical transmittance can be obtained. Thus, the size of the 

opening of micromesh can be selected to determine the optical transparency and electrical 

conductivity requiring to the practical applications. 

The figure of merit has been widely used to evaluate the overall performance of 

transparent conductive electrodes [57-59]. The figure of merit (FoM) is defined as the ratio 

of the electrical conductivity to optical conductivity (σdc/σop) where σdc is the electrical 

conductivity at DC and σop is the sheet conductivity in the optical frequency range. The 

larger FoM represents the better performance, and the optical transparency (T) is 

determined by 
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where Z0 is the free space impedance (377Ω) and RS is the sheet resistance of the metallic 

tortuous micromesh. T is typically measured at a wavelength λ=550nm which is the 

maximum of the human eye luminosity. The FoM of our tortuous micromesh is more than 

5k which is much higher than other transparent conductive electrodes [60-63].  

3.5 Antenna Fabrication and Measurements 

 

Figure 3.16. The schematic of the fabrication for micromesh. 

Figure 3.16 shows the schematic of the fabrication process used to produce the 

tortuous micromesh antenna. Copper is employed for the antenna because of its excellent 

conductivity (59.6×106 S/m), ductility, low cost, and light weight. A fused silica substrate 

is first coated with a 150 nm thick a-Si layer deposited by PECVD, which works as a 

sacrificial layer that is removed later in the fabrication process. A 40 nm Cu film is then 
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deposited on the substrate to serve as the seed layer for the subsequent Cu electro-plating. 

The antenna of tortuous micromesh is defined by photo-lithography process. A patterned 

resist is used as the mask for the Cu plating, which produces a 4.7 μm thick tortuous Cu 

mesh pattern. After the resist is removed, the Cu mesh is encapsulated by a polydimethyl-

siloxane (PDMS) layer, which is flexible and optically transparent. This step also maintains 

the shape of micromesh as well as protects the metal wire from mechanical damage when 

the micromesh is stretched. The PDMS and the Cu mesh embedded in it are then separated 

from the substrate by removing the a-Si layer by applying xenon di-fluoride (XeF2) gas 

[64]. Finally, another PDMS layer is laminated onto the Cu mesh side to conclude the 

flexible antenna fabrication, resulting in a total thickness of the PDMS of about 400 μm. 

 

Figure 3.17. The fabricated antenna. 

The proposed antenna is fabricated and embedded in a commonly used elastomer 

PDMS with a relative permittivity of εr=2.80 and loss tangent of tan δ= 0.02, as shown in 

Figure 3.17. The fabricated antenna is connected to a SMA connector. The impedance of 

the antenna is matched to 50 Ohm. The antenna is measured using a vector network 

analyzer (Agilent E5071B).  
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(a) 

 

(b) 

Figure 3.18. The resonant frequency according to the increase of strains (a) for antenna 

with both tortuous lines (b) for antenna with only horizontal tortuous line (Solid line : 

Simulated results, Dashed lines : Measured results). 
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The actual conductivities of the micromeshes are measured by 4 points probe, and 

the measured conductivities are used as the effective conductivities in a full wave 

simulation. Figure 3.18(a) and (b) show the simulated and measured return loss (S11) along 

with the increases in the tensile strains (0%, 20%, and 40%). As the tensile strains are 

increased, the resonant frequencies of antennas decrease from 2.94 GHz to 2.46 GHz, 

which shows good agreement between the simulated and measured results. To obtain the 

different stretchability in the measurement, the mechanical stretching device which 

consists of the plastic nuts, bolts, and acrylic is used. The bandwidths of the antennas are 

tabulated in Table 3.4. Although Eq. 3.12 does not consider the impedance matching at the 

input terminals, it provides an intuitive concept by means of which the bandwidth can be 

efficiently increased. Generally, ZOR antennas are known to have a narrow bandwidth 

problem compared to conventional resonant antennas. This is because the Q-factor of a 

ZOR antenna is only related to CR and LL. For example, in a microstrip structure, LL and 

CR are realized by the shorting pin (via) and parallel plate between the top patch and bottom 

ground. Since LL in a microstrip line (MSL) depends on the length of the via, the microstrip 

structure limits the value of LL. In addition, since the thickness and size of the substrate 

determine the capacitance of the parallel plate, the MSL has a large CR. According to Eq. 

3.12, the narrow bandwidth is originated from the small LL and large CR. Therefore, the 

ZOR antenna in microstrip technology has a narrow bandwidth due to the structural 

problem. In order to extend the bandwidth of the microstrip structure, a thick substrate with 

low permittivity is generally utilized. However, this causes fabrication difficulties and 

reduces the design freedom. Our antennas result in improved bandwidth with degrading 

the efficiency due to the shunt conductance (G). 
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TABLE 3.4 BANDWIDTH OF PROPOSED ANTENNA  

 Simulated Results Measured Results 

Applied Tensile 

Strain 
0% 20% 40% 0% 20% 40% 

10dB Bandwidth 

(Design 1) 
4.13% 4.44% 4.01% 4.43% 4.03% 0.03% 

10dB Bandwidth 

(Design 2) 
4.17% 4.07% 4.06% 3.78% 2.19% 1.61% 

 

The measured conductivity and thickness of the fabricated micromesh are used to 

simulate the antenna. The overall area of the radiating aperture is very small and 

approximately 0.08λ0 × 0.11λ0 × 0.004λ0  (8.32 mm × 11.6 mm × 0.4 mm) at 2.92 GHz. 

The optical transmittances of the tortuous micromesh structure increase with increased 

stretching because of the large opening ratio of the mesh, which measures 32-44% in the 

wavelength range of 400-800nm depending on the level of stretching (i.e. strain ratio) as 

shown in Figure 3.19. 
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Figure 3.19. The measured optical transmission of the stretchable antenna embedded in 

PDMS. 

   

                                      (a)                                                                    (b) 

Figure 3.20. The radiation patterns (a) E-plane (xz-plane) (b) H-plane (xy-plane). 

The radiation patterns of the fabricated antenna were measured with the mechanically 

stretchable device in the anechoic chamber. The stretchability of the antenna is controlled 

with a mechanically stretchable devices as shown in Figure 3. 21. One side of the 

mechanically stretchable device is fixed, and the other side is moving to stretch the antenna 

from 0% to 40%. In order to reduce the unwanted reflections, non-conductive plastic is 

used to design the mechanically stretchable device.  The antenna under test (AUT) is placed 

on a rotating styrofoam platform in the chamber. The AUT is then connected to a signal 

generator (Agilent N5183A). A standard horn antenna is connected to a spectrum analyzer 

(Hewlett Packard 8529L) to measure the received power by using a data acquisition 

program. By rotating the AUT, the received power is measured by the horn antenna which 
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allows the radiation patterns to be measured. Combined with the measured values, the 

antenna gain is calculated using the gain comparison method [65]. In this method, the Friis 

Transmission formula is utilized to calculate the unknown antenna gains. In this process, 

the AUT is replaced with a reference horn antenna with a known gain. By comparing the 

received power of the AUT and the reference antenna, the gain can be calculated.  

Figure 3.20(a) and (b) shows the measured radiation patterns on the xz-plane (E-

plane) and yz-plane (H-plane) at 2.92GHz. As the tensile strains are increased from 0% to 

40%, the measured gains slightly decrease because their effective conductivity are 

decreased. According to the increase of the tensile strians, the measured gains of the 

antenna for design 1 have the -0.21dBi, -0.39dBi, and -0.53dBi, respectively. In addition, 

the measured gains of the antenna for design 2 has the -0.02dBi, -0.14dBi, and -0.29dBi, 

respectively. As the tensile strain is increased from 0% to 40%, the antenna gain is slightly 

decreased because the effective conductivity slightly varies from 3.28×104 S/cm to 

3.12×104 S/cm.  

  
 

Figure 3.21. A mechanically stretchable device  



  

59 
  

Figure 3.22 shows the measured radiation patterns at their resonant frequencies 

(2.46GH, 2.73GHz, and 2.94GHz) in response to the increase of the tensile strain. The 

radiation patterns of the antenna are not significantly changed by the applied tensile strains. 

The measured gain of the antennas has the maximum values of -0.21dBi and -0.02dBi, 

respectively. The overall antenna performances of our antennas are compared with those 

of previously reported flexible antennas in Table 3.5. Although other antennas in Table 3.4 

are flexible, they are not transparent or stretchable. Unlike these other antennas, since our 

antennas are realized based on the tortuous micromesh, they provide optical transparency 

as well as structural stretchability. In addition, they can be a smaller size than other flexible 

antennas because of the use of the zeroth-order mode. 

 

Figure 3.22. The radiation patterns at the resonant frequencies (2.46GH, 2.73GHz, and 

2.94GHz) in response to different tensile strains (0%, 20%, and 40%). 

Table 3.5. Antenna summary and comparison results for proposed and reference antennas. 
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Symbol THIS WORK [36] [39] [44] 

Resonant Frequency 

[GHz] 
2.92 3.45 2.1 2.92 

Gain [dBi] -0.02 -2.4 12.8 0.37 

Size [mm3] 
8.32 ×11.6 

×0.4 
40 ×40 ×1 153.2 ×122 ×6.35 45 ×40 ×1 

Metal 

materials/Substrate 

materials 

Tortuous Cu 

micromesh / 

PDMS 

EGaIn / 

PDMS 
E-texile / fabric 

AgNWs / 

PDMS 

Flexible O O O O 

Transparent a) O X X X 

 

3.6 Conclusion 

In conclusion, we demonstrated a transparent, reversibly deformable, and frequency 

reconfigurable small antenna by utilizing the tortuous micromesh structures, which 

provides excellent electric conductivity, flexibility, stretchability, as well as optical 

transparency. The resonant frequency could be tuned by mechanically elongating the 

meandering line of the antenna. Such tunable antenna could be potentially used for the 

transparent, flexible, and stretchable radiofrequency wearable applications. 
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Chapter 4 

 

Ultra-Low Profile Flexible Triple-Polarized Antenna Using 

Flexible Silver Nanowires and Substrate with High Isolation 

 

4.1 Introduction 

Wireless communication systems have been developed rapidly in the past decades. 

Multiple-input–multiple-output (MIMO) technology has been intensively used in modern 

wireless communication systems to improve system performance. Polarization diversity 

plays an important role in the MIMO system for mitigating signal impairments caused by 

the multipath propagation or enhancing performance of wireless communication system 

[66, 67]. The scatterings or multiple reflections cause multipath interference, where radio 

signals travel in multiple complicated paths from the transmitter to the receiver, arriving at 

slightly different time. In addition, the polarization of the propagating radio wave may 

become diversified. Thus, in order to enhance performance, an antenna requires 

polarization diversity.  

To satisfy such a requirement, various dual-polarized antennas have been studied 

[68-70]. Dual polarizations is obtained by using two pairs of orthogonal slots which are 

placed under the radiating patch to excite two orthogonal modes [70]. Patch antenna using 

cross-shaped slots were used to obtain two orthogonal linear polarization [69]. Moreover, 
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the bowtie patch antenna with electric dipoles for dual polarizations were designed to 

produce equal +45 and -45 radiation pattern with low back-radiation [68]. However, those 

structure becomes thicker due to the use of the air gap and multi-layer structure. 

 

Figure 4.1. The configuration of Triple-polarized antenna system 

In order to fully use the polarization diversity characteristic, a single triple-polarized 

antenna system as shown in Figure 4.1 has been achieved for the triple-polarized MIMO. 

In [71], the dipole antennas and half-slot antennas are adopted for three port orthogonally 

polarized antennas. Three mutually perpendicular radiating elements were achieved good 

isolation and low signal correlation between ports. In order to reduce the profile of the tri-

polarized antenna, a disk-loaded monopole was used for the vertical polarization instead 

of a single monopole [72, 73]. The circular patch antenna for two orthogonal polarizations 

and a monopole for the third polarization are proposed in [73]. In addition, the slot-coupled 

microstrip antennas for two orthogonal polarization and the disk-loaded monopole for the 

third polarization are integrated into one structure so that it reduces the profile of the 

antenna [72]. In their designs, two orthogonal patch modes were used to realize the 

broadside pattern, and the monopole mode was used to radiate conical pattern. Although 

these designs effectively reduce the profile of the antennas, those are not sufficient to be 

used for the wearable devices. 
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This chapter proposes an ultra-low profile flexible antenna with tri-polarization 

characteristic for wearable or MIMO application. To achieve a good impedance matching 

while maintaining good isolations among the antenna ports, perpendicularly radiating 

cross-slot antennas and ZOR array antenna are used in the proposed design. Due to the use 

of ZOR antenna, the vertical polarization is obtained with an ultra-low profile. Since it is 

designed on the flexible substrate and the silver nanowire is used to realize the metallic 

vias, the proposed antenna is flexible. A prototype antenna was fabricated and measured. 

The antenna has an ultra-low profile, high isolation, and the measured results can validate 

the theoretical simulation. 

4.2 The Configuration of the Low-profile Tri-polarization Antenna 

  

                                            (a)                                                                   (b) 

Figure 4.2. (a) Perspective view of the antenna (shows port assignments and polarization 

orientation) (b) top view of tri-polarized antenna. (Dimension [mm] of the antenna are: w1 

= 1.88, w2= 0.8, ws = 1, l1 = 3, lS = 45.72)  

A low profile tri-polarization antenna is designed by integrating the cross polarized 

slot antennas and zeroth-order resonant (ZOR) antenna. The proposed antenna provides 
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three orthogonal polarizations with good ports isolation, and ZOR antenna is employed for 

a vertical polarization. The 2 ports orthogonal feed network is used to realize dual linear 

polarizations, and ports 1 and 2 are fed into the quasi-cross-shaped slot etched on the 

ground. The cross-shaped slots radiate according to the excitation ports. Since there is a 

crossing position between microstrip feed lines, the air bridge for feed line is used to 

provide the isolation between crossed microstrip lines.  

 

                                          (a)                                                                (b) 

Figure 4.3. Simulated surface current distribution with different ports being excited: (a) at 

port1, (b) at port 2 

The current distributions are shown in Figure 4.3 when ports 1 and 2 are excited, 

respectively. The surface currents with port 1 that has been excited is along +45 deg, while 

it is along -45 deg when port 2 is excited. Thus, two orthogonal polarizations are obtained 

at the crossed slots and the omni-directional radiation patterns are observed for the same 

direction at the slot.  



  

65 
  

  

(a) 

    

                                            (b)                                                         (c) 

Figure 4.4. (a) ZOR array antenna (Dimension [mm] of the antenna are: w1 = 1.88, w2= 8, 

wl = 1.2, g = 0.2, l2 = 1, ll = 3.6, lg = 1, lp = 10) (b) Unit cell of length p (c) Dispersion 

diagram. 

In order to realize the vertical polarization with low-profile characteristics, the ZOR 

array antenna is designed and integrated with cross polarized slot antennas. A unit-cell of 

an inductor-loaded TL consists of a series inductor (LL), shunt capacitors (CR) and shunt 

inductor (LL) as shown in Figure 4.4(b). R and G are the resistance accounting material 

losses and the conductance due to dielectric loss of the substrates, respectively. Figure 

4.4(a) shows the proposed two elements ZOR antenna array implemented with microstrip 
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technology. Each of the ZOR elements consists of sequential connected unit cells each of 

which has inductor-loaded structures to remove the negative modes.  For an inductor-

loaded unit cell, the propagation constant is given by 

 
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2 2

1 1
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2
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                                  (4.1) 

where p is the period of the unit cell. The dispersion diagram of the inductor-loaded TL is 

plotted in Figure 4.4(c). The only phase delay can occur for the inductor-loaded TL, while 

the CRLH TL supports both phase advance or phase delay. The input impedance of the 

antenna is dependent on the number of unit cells and is given by 
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where N is the number of unit cells in the resonator and N=l/p. As shown in Figure 4.4(a), 

a ZOR array antenna with two 4 unit cells is designed due to the enhancement of antenna 

gain. The resonant frequency of the ZOR antenna array is determined by  

1
[1 ] 

L R

s
L C

                                                (4.3) 

where LL is the inductance of shorted via and CR is the capacitance between the metallic 

patch and ground respectively. The electric field distribution of the zeroth-order resonant 

antenna is in-phase as shown in Figure 4.5. Since the slot antennas has the horizontal 

electric fields and ZOR antenna has the vertical electric field, they has a good isolation 

while integrating them closely. 
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(a)                                                                   (b) 

Figure 4.5. (a) Simulated electric field vector distribution on the ZOR array antenna (b) 

Simulated 3D radiation patterns 

4.2.1 The Comparison between Monopole Antenna and ZOR Array 

Antenna  

 

(a) 

 

(b) 
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(c) 

Figure 4.6. (a) Configuration of monopole array antenna (Dimension: W=60mm, 

L=240mm, H=41mm) (b) Return loss (c) Radiation patterns in terms of phase progression 

This chapter shows the comparison between quarter wave monopole array antenna and 

ZOR array antenna. In order to realize the monopole array antenna, the four quarter-wave 

monopole antennas are mounted on a dielectric substrate as shown in Figure 4.6(a). Figure 

4.6(b) shows the return loss at four each port. The distance between the antenna elements 

is 0.47 wavelength in free space compromising a relatively high gain and low side lobes as 

well as preventing unwanted grating lobes. The direction of maximum radiation is normal 

to the equi-phase plane. By changing the phase progression among the monopole antennas, 

the radiating beam can be scanned as shown in Figure 4.6(c).   

 

                                                 (a)                                                                  (b) 

Figure 4.7. (a) Configuration of ZOR array antenna (b) Radiation pattern  
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Figure 4.7(a) and (b) shows the configuration of ZOR array antenna with four elements 

and the radiation pattern, respectively. The radiation pattern is similar to that of monopole 

array antenna. Thus, the vertical polarization can be obtained with a ultra-low profile 

characteristic. The radiation pattern is slightly distorted because of coupling and 

asymmetric ground plane configuration. 

4.3 Flexible Metallic Via Based on AgNWs  

 

 

 

 

Figure 4.8. The SEM images of uniform, ultralong and thin AgNWs prepared by 

hydrothermal method at 160ᵒC-22hours reaction.  

In order to design the flexible antenna, the flexible substrate and vias based on 

AgNWs are used. In our laboratory, long silver nanowires of an average diameter 45-65 

nm and length greater than 200 µm are synthesized by a simple hydrothermal route [74]. 

In a typical synthesis procedure, silver nitrate (0.02M, 15ml)(Sigma-Aldrich, 10220), 

D+glucose (0.12g, 5ml) (Sigma-Aldrich, G8270), Poly (vinylpyrrolidone) (PVP, 

Mw≈40000) (1g, 5ml)(Fisher Sci, BP431) and  sodium chloride (0.04M, 15ml)(Fisher Sci, 

S93361) are prepared in deionized water (DI) as four separate solutions, in a well dissolved 

form. PVP solution is prepared using magnetic stirring at 65 °C while rests of the solutions 
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are prepared at normal room temperature. Glucose solution is added to Silver nitrate 

solution with continuous stirring.  After 5 to 10 minutes, PVP solution is added and stirred 

for 20 minutes until mixed well. Afterwards, sodium chloride solution is injected drop-

wise to the above solution with continues stirring until fully dissolved. This turbid hydrosol 

is added to 50 ml Teflon-lined stainless steel autoclave and heated in oven at 160 ⁰C for 

22 hours. After that the autoclave is air cooled to room temperature unaided and final 

product in the form of fluffy gray white precipitate is collected by centrifugation at a speed 

of 2500 rpm for 60 minutes and washed thrice with distilled water and 3 to 4 times with 

isopropanol. Final product is dispersed in isopropanol for further use. Every time before 

centrifugation to remove PVP layer, wires are shaken gently to prevent them from breaking 

down. SEM images obtained from the as prepared product are shown in Figure 4.8. These 

images indicate that the sample is composed of almost uniform wires of average diameter 

45-65 nm and lengths greater than 200 μm. 

          

                                     (a)                                                             (b) 

Figure 4.9. (a) Side view of AgNW via. (b) Fabricated AgNW via on the PCB substrate 

In order to build the flexible metallic vias, we drilled holes on the flexible substrate 

(RT/duroid RO3003) substrate and then inserted the silver nanowires inside the holes as 
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shown in Figure 4.9(a). Figure 4.9(b) shows the fabricated silver nanowire vias with PCB 

substrate. 

4.4 Simulation and Measurement Results 

   

   (a)                                                                       (b) 

Figure 4.10. Fabricated the low-profile, flexible tri-polarized antenna using AgNW vias 

(a) Top view (b) Bottom view 

Full wave EM simulation of the tri-polarization antenna with dimension provided in 

Figure 4.2(a) is carried out. In order to validate our concept a prototype of the antenna is 

fabricated using a high resolution LPKF milling machine (ProtoMat S103) which ensures 

the accuracy of the drillings and ultra-fine milling of the design. Moreover, the silver 

nanowires are used to realize the flexible metallic vias. It is realized on 0.762 mm thickness 

RT/duroid RO3003 substrate, and we drilled holes on the substrate to build the vias and 

then inserted the silver nanowires inside the holes. Figure 4.10(a) and (b) show the top 

view and bottom view for the fabricated the low-profile, flexible tri-polarized antenna 

using AgNW vias.  
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Figure 4.11. Measured and simulated return loss of each port the tri-polarized antenna. 

 

 

Figure 4.12. Measured and simulated isolation between each two ports of the tri-polarized 

antenna. 

The measurements are carried out and compared with the ones obtained from the 

simulation. Both S-parameter results are in good agreement although small discrepancy is 
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observed and can be due to fabrication errors as shown in Figure 4.11 and 4.12. Good 

impedance matching less than -10dB is achieved and high port-to-port isolations are 

observed at the resonant frequency. Excellent cross-polarization levels less than 20dB is 

obtained. The measured and simulated radiation patterns results in the two orthogonal 

cutting planes (+45deg and -45deg planes) are also illustrated in Figure 4.13. For ports 1 

and 2, the good omni-directional patterns are obtained for cross-slot antenna radiation.  

 

   
                                     (a)                                                                    (b) 

   
                                     (c)                                                                    (d) 
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                                     (e)                                                                    (f) 

Figure 4.13. Radiation patterns of the tri-polarized antenna (a) E-plane (+45 deg cut) at 

Port 1 (b) H-plane (-45 deg cut) at Port 1 (c) E-plane (-45 deg cut) at Port 2 (d)  

H-plane (+45 deg cut) at Port 2 (e) E-plane (XZ-plane) at Port 3 (f) H-plane (XY-plane) at 

Port 3 

4.5 Conclusion 

A flexible tri-polarized antenna with three feeding ports providing the three different 

polarizations has been demonstrated by using a cross-polarized antenna and ZOR array 

antenna. By using the ZOR array antenna for the vertical polarization, our proposed 

antenna can be ultra-low profile in the design. The proposed flexible tri-polarized antenna 

is very advantageous for example in wearable MIMO systems. Operating frequencies can 

also be easily scaled to desired spectrums. A good isolation performances (better than -

20dB) have been obtained.  
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Chapter 5 

 

Dual-Band/Tri-Polarized Metamaterial Antenna Based on 

Half-mode Hexagonal (HMH)) Substrate Integrated 

Waveguide (SIW) Using Flexible Substrate and Vias for 

WBAN communications 

 

5.1 Introduction 

Wireless body area networks (WBAN), which is a network of wearable computing 

devices, can be used for a range of applications such as health monitoring, emergency 

rescue service, physical training, and care for the elderly and children which can contribute 

to a better quality of life and improve people’s health by providing useful information. In 

order to collect and analyze a large amount of information on health conditions, WBAN is 

designed to connect the network sensors to the human body, many of which can be read by 

one reader at the same time. The sensors can be implanted inside the body or surface-

mounted on the body of a person to measure physiological changes, and WBAN connects 

independent nodes or sensors.  

These system requires comfort, flexible materials in order to use in the human body. 

Since there is the limited space on a human body, the diversity such as space diversity, 

pattern diversity, and polarization diversity play an important role in WBANs. For off-
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body communication, wearable systems usually require a low-profile dual-polarized 

antenna to improve the communication quality. It is used to communicate from on-body 

device to off-body devices or embedded devices. By adding the vertical polarization, the 

antenna can be employed for the on-body communication. The vertical polarized antenna 

over the body surface communicate efficiently with other co-located body worn devices. 

Antenna radiation pattern and polarization influence the on/off-body radio channels 

performance. Antenna with omnidirectional radiation pattern over the body surface 

improves the path for the on-body links while antenna with broadside polarization for off-

body radiation pattern improves the path gain for off-body channels.  

 

Figure 5.1. On-body communication and off-body communication in wireless body area 

network (WBANs) 

Waveguide components are widely used in various microwave communication 

system, satellites, and wireless baseband station due to the high power capacity and low 

loss. However, waveguides are difficult to integrate with other components and they are 
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bulky. Recently, substrate integrated waveguides (SIW) represent an emerging approach 

for the implementation of waveguide-like components. The advantage of SIW is that can 

provide low cost, size reduction, complete shielding, and easy integration of planar circuits 

[75, 76]. The conventional SIW structure is designed by properly arranging the metallic 

vias on the substrate. These vias act as electrical walls resulting in the realization of 

waveguide structure in many applications such as filters and antennas. In order to reduce 

the size and efficiently integrate with other SIW structures, the shape of SIW structure 

plays an important role in designing the devices.  

In this chapter, a dual band and diverse radiation pattern antenna is proposed for 

efficient and reliable on-body and off-body communications. A half mode hexagonal 

(HMH) SIW structure with the different internal angle is proposed to provide more design 

freedom which can design in a single structure and operate independently. In order to 

validate our concept, dual-band tri-polarized antenna is realized based on HMHSIW 

structure. The four HMHSIW can be closely placed so that four HMHSIW having different 

operations can efficiently be integrated. Thus, the antenna with dual band and diverse 

radiation patterns is designed and fabricated. In a single area, three different antennas are 

placed and operate at dual frequencies f1 ≈ 3.2 GHz and f2 ≈ 5.78 GHz. 

5.2 Half-Mode Hexagonal Substrate Integrated Waveguide 

Figure 5.2 shows an SIW structure which exhibits propagation characteristics similar 

to those of rectangular wave guide. It is designed by properly arranging on the substrate, 

the metallic vias that act as the electrical walls resulting in the realization of waveguide 

structure. In order to design the SIW structure, the effective width, weff, of SIW is obtained 

by 
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where d is the diameter of the metallic via. w and s represent spacing between the via arrays 

and spacing between the vias, respectively. In addition, d and s are selected to reduce the 

radiation loss due to EM field leakage in the SIW as well as enhance the return loss. The 

weff also is calculated by 
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f 
                                                  (5.2) 

where c is the speed of light in free space and fc is the lowest cutoff frequency of the TE10 

mode. Therefore, the distance between two via arrays determines the propagation constant 

of the fundamental mode. Since generally the dielectric losses are predominant at higher 

frequencies, it is important to use a dielectric substrate with the low loss to design SIW 

structures at mm-wave frequencies. 

           

Figure 5.2. Configuration of a conventional SIW structure 

SIW rectangular cavity is obtained by holding a part of a substrate using four sides 

of metallic vias which react as equivalent electrical walls (E=0). When the width (w) and 

length (l) of the SIW cavity are the same, the electric and magnetic fields for the dominant 

TE110 mode can be expressed by 
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where η is the intrinsic impedance of a dielectric material inside the cavity and k    

is the wavenumber. The phase constant is given by 
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where w=l=a. The lowest mode of the SIW cavity is TE110 mode, and the resonant 

frequency of TE110 mode is given by 
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The magnitude of the E-field distribution of a conventional SIW cavity is plotted in 

Figure 5.3(a). The electric field for the dominant mode of the SIW is perpendicular to the 

sidewalls, while the direction of the magnetic field is parallel to the waveguide surface. 

When the SIW cavity is cut on A-A' along the perfect magnetic wall, the Half mode SIW 

(HMSIW) cavity which keeps half of the field distribution of the dominant mode TE110 is 

obtained as shown in Figure 5.3(b). Thus, the HMSIW can reduce the size of the SIW by 

half.  
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                                      (a)                                                              (b) 

     
                         (c)                                        (d)                                         (e) 

Figure 5.3. Simulated magnitude of the total E-field distributions of (a) full-mode SIW, (b) 

HMSIW, (c) triangular  SIW, (d) hexagonal SIW (e) half-mode hexagonal SIW at their 

dominant resonant frequencies (w=l=38mm). 

The triangular mode SIW (TMSIW) is obtained from SIW cavity by diagonally 

bisecting it into two sections, so that its geometry is an isosceles triangle with one open 

side (perfect magnetic conductor) and three via arrays (perfect electric conductor). The 

difference between the two electric fields distributions in SIW and TMSIW is shown in 

Figure 5.3(c). The resonant frequency of TMSIW is determined by the length of leg of a 

right triangles as you can see in Table I. Hexagonal SIW can combine flexibility of 

rectangular cavity and performance of circular cavity. The configurations and the electric 

field distributions of fundamental mode of a hexagonal SIW cavity are shown in Figure 

5.3(d). 
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                                      (a)                                                              (b) 

   
                                       (c)                                                               (d)                                        

Figure 5.4. Simulated magnitude of the total E-field distributions of (a) full-mode SIW, (b) 

HMSIW, (c) triangular  SIW, (d) hexagonal SIW at their higher-order resonant frequencies 

(w=l=38mm). 

            

Figure 5.5. The configuration of the use of half-mode hexagonal SIW with the arbitrary 

internal angle  
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As shown in Figure 5.5, the half mode hexagonal SIW (HMHSIW) can have the 

different internal angles between equilateral triangle to , and the angle (θ) is determined by 

2

n


                                                                 (1) 

where n is the number of half mode hexagonal SIW. By selecting the inner angle, the 

number of elements are determined and they are integrated in the center. The half-mode 

hexagonal (HMH) SIW is obtained from SIW rectangular cavity by diagonally bisecting 

the square cavity into two sections and adding two via walls in open side. Thus, its 

geometry is a pentagon with one open side (perfect magnetic conductor) and four via arrays 

(perfect electric conductor) as shown in Figure 5.3(e). The resonant frequency of 

HMHSIW is determined by the length of the open side. The resonant frequencies and area 

of the SIW, HMSIW, and TMSIW are investigated and tabulated in Table 5.1. 

TABLE 5.1 COMPARISON BETWEEN FULL-MODE SIW, HMSIW, TMSIW, AND HMHSIW 

 
1st Resonant 

Frequency 

2nd Resonant 

Frequency 
Size (mm2) 

Full-mode SIW 3.17 GHz 7.185 GHz 1,444 

Half-mode SIW 3.12 GHz 6.78 GHz 722 

Triangular SIW 4.08 GHz 8.3 GHz 361 

Half-mode 

hexagonal SIW 
3.01 GHz 5.847 GHz 1,083 

 

5.3 The Configuration of the Dual-band/Tri-polarization SIW Antenna 

Based on Half-mode Hexagonal SIW 

For wireless communication, a dual frequency antenna is needed for simultaneously 
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transmitting and receiving these two bands [77, 78]. In order to verify our proposed 

HMHSIW, dual-band tri-polarized antenna is realized with the composite right/left-handed 

transmission lines (CRLH TLs) and half mode hexagonal SIW. The CRLH TLs behave as 

metamaterial, producing simultaneous negative permittivity (εr) and permeability (μr) 

properties [55]. A unit-cell of a CRLH-TL consists of a conventional right-handed (RH) 

TL and a left-handed (LH) TL as shown in Figure 5.6(a). RH TL has shunt inductor (LR) 

and series capacitors (CR), and LH TL has series capacitors (CL) and shunt inductor (LL). R 

is the resistance accounting both radiative and material losses, and G is the conductance 

due to dielectric loss of the substrates.  

  

                                  (a)                                                                   (b) 

Figure 5. 6. (a) Equivalent circuit model of a CRLH SIW unit cell. (b) General Dispersion 

comparison between conventional half wavelength antenna and metamaterial antenna.  

 

According to the theory of open-ended or short-ended resonators with a CRLH TL, 

the resonant frequencies of different order modes for an N-stage CRLH TL can be found 

on the dispersion curve when the electrical length, θ=βl satisfies. The phase constant (β) is 

determined by 
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where s(ω) and Δl are the sign function and the differential length, respectively. In order 

to realize CL and LL in HMHSIW, the interdigital capacitor slots etched on the top of the 

metallic surface serve as a series capacitance (CL), and the 0.8-mm diameter metallic vias 

connecting between the top layer and ground plane behave as shunt inductance (LL). 

The proposed dual-band tri-polarization antenna consists of two parts of cross-

polarized CRLH SIW antenna and ZOR antennas as shown in Figure 5.7(a). Since each 

HMHSIW has 90deg internal angle, four HMSIW can be efficiently integrated in the center. 

First of all, the design process for cross-polarized CRLH resonant antennas is similar to 

that of the conventional resonant antennas requiring proper coupling and terminations 

(either open or short). In general, the conventional resonant antennas have the resonant 

modes when length d is equal to (n·λg)/2 with the resonant mode index (n) = positive 

integer. However, n for CRLH resonant antennas can be both positive and negative integer, 

even zero. The comparison between the dispersion relations of the conventional antenna 

and the CRLH antenna can be seen from the simplified dispersion diagram as shown in 

Figure 5.6(b). The n = +1 resonant mode is similar to that of conventional λg /2 resonant 

antenna such as patch antenna (λg is the guided wavelength). However, CRLH structure 

has n = -1 mode which also resonates with half wavelength field distribution but at much 

lower frequency. The operating frequency at n = -1 mode is lowered without the change of 

the structural dimension, so that the antenna behaves as electrically-small radiator. The 

cross-polarized CRLH resonant antenna is realized on the HMSSIW as shown in Figure 

5.7(b). Since both -1 and +1 modes exhibit half-wavelength field distribution with the field 
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null at the center of the SIW antenna, a second port can be connected at this location to 

generate dual-polarization with high port-to-port isolation at both frequencies. Thus, dual 

polarization is realized by placing the two feed lines along the orthogonal directions with 

respect to each other. In addition, n = 0 mode can be suppressed by placing via wall at the 

center of the antenna. The direction of interdigital slots determines the polarization of 

CRLH resonant SIW antenna.  

 
   (a) 

   
                                          (b)                                                           (c) 

Figure 5.7. (a) Perspective view of the dual-band tri-polarized antenna (a) Dual-band cross-

polarized CRLH HMHSIW antenna (b) Dual-band ZOR HMHSIW antenna. (Dimension 
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[mm] of the antenna are: wm1 = wz1 =1.87, wz2 =1.19, wz3 =0.3, wz4 =1.5, wm2 = 1.5, lm2 = 6, 

ls = 6, ls1 = 3.5, gm1 = gm2 = gz1 = 0.2, rz1 = 0.7) 

Dispersion characteristics of the CRLH structure can be manipulated to adjust the 

spectral separation between the two operating frequencies. Two cross-polarized CRLH 

SIW unit cells with its dual counterpart rotated 90̊ from each other are cascaded together, 

and this arrangement are fed by a 50 Ω transmission line as shown in Figure 5.7. A gap 

feeding line is used to match a 50 Ω transmission line at the -1st and +1st modes in 

HMHSIW antennas, and via walls of the SIW cavity are used to provide high isolation 

between the two orthogonal port and low cross polarization radiation. The high isolation 

and low cross polarization are two very important factors for any dual-polarized antenna.  

Secondly, dual-band ZOR antenna based on HMHSIW configuration is also designed 

to integrate with cross-polarized CRLH HMHSIW antenna. Via wall shorts the end of the 

SIW to obtain a SIW cavity resonator so that it can be modeled as a short-ended CRLH 

resonator. Thus, zeroth-order resonance (ZOR) frequency is determined by 

1
se

R LL C
                                                   (5.1) 

This frequency is called the zeroth-order resonance (ZOR) frequency. In order to 

make the vertical polarization, the slots are added on the HMHSIW structure and a via is 

centered.  

5.4 Simulation and Measurement Results 
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Figure 5.8. The fabricated dual-band tri-polarized antenna based on half-mode hexagonal 

SIW structure 

The dual-band tri-polarized HMHSIW antenna in Figure 5.8 is fabricated using 0.762 

mm thickness RT/duroid RO3003 substrate. As shown in Figure 5.9 and 5.10, simulated 

and measured S-parameter results show the feasibility of designing planar single radiator 

that can provide both dual-frequency and tri-polarized operation by placing HMHSIW 

antennas closely. Our dual-band antenna operates at frequencies f1 ≈ 3.2 GHz and f2 ≈ 5.78 

GHz. The n = -1st mode resonance frequency is located around 3.2 GHz while n = +1st 

mode resonated around 5.78 GHz. The dual -band ZOR antenna is also designed to operate 

at both 3.2 GHz and 5.78 GHz. The size of fabricated antenna is 0.17 λ1 × 0.28 λ1 at f1 and 

0.34 λ2 ×0.48 λ2 at f2 where λ1 and λ2 are the free space wavelengths. Return loss higher 

than 10dB is achieved at both frequencies, and port-to-port isolations higher than 15dB are 

observed for both operating frequencies as shown in Figure 5.9 and 5.10. In order to 

validate our concept, a prototype of the antenna is fabricated using a high resolution LPKF 

milling machine (ProtoMat S103) which ensures the accuracy of the drillings and ultra-
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fine milling of the design. The antenna design pattern is printed on Roger RO3003 

laminated with 1 oz. copper which have relative permittivity value of εr =3.0 and loss 

tangent of tan δ = 0.001. Although small discrepancy is observed and can be due to 

fabrication errors, both S-parameter results are in good agreement. 

 

Figure 5.9. Measured and simulated return loss of each port of the of the tri-polarized SIW 

metamaterial antenna. 

 

Figure 5.10. Measured and simulated isolation between each two ports of the of the tri-
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polarized SIW metamaterial antenna. 

The simulated normalized-radiation patterns are also illustrated in Figure 5.11. A 

broadside radiation patterns at port 1 and 2 are achieved at both frequencies due to their 

half wavelength field distribution characteristics, and vertical electric field is obtained from 

dual-band ZOR design at both frequencies.  

 
                                        (a)                                                            (b) 

 
                                     (c)                                                                    (d) 
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                                     (e)                                                                     (f) 

Figure 5.11. Measured and simulated radiation patterns of the proposed HMHSIW at both 

frequencies (a) & (c) E-planes at n=-1st mode (b) & (d) E-planes at n=+1st mode (e) 0th 

mode at lower frequency (f) 0th mode at higher frequency  

5.5 Conclusion 

A planar, low-profile, and flexible tripolarized antenna is proposed with three feeding 

ports for polarization diversity applications. By placing HMHSIW structure in the center, 

CRLH SIW antenna and ZOR SIW antenna are used with three feeding ports providing the 

three different polarizations in a single electrically-small element. By using -1, 0, and +1 

modes, good isolation performances have been obtained. The half-mode hexagonal SIW 

can be designed with the different angles, so that the several structures can be integrated in 

a single element. Each HMHSIW can have different structures such as filters and antennas. 

The dual-band operating frequencies of the proposed antenna can also be easily scaled to 

desired spectrums. This novel antenna can provide much improved wireless 

communication efficiency for the WBAN system under various incident field angles and 

polarizations.  
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Chapter 6  

 

Conclusions and Future Work 

 

6.1 Summary of Achievements 

In this dissertation, we have proposed and experimentally demonstrated an optically 

transparent, flexible, and polarization-independent broadband microwave absorber. It is 

designed to possess two spectrally overlapped resonances of a bow-tie array, which 

originates from the fundamental resonance mode and the coupling between the neighboring 

units. Al Wire gird is used to construct the bow-tie array to induce high ohmic loss and 

broaden the bandwidth of the resonances. As a result, the combined resonances lead to 

more than 90% total absorption cover a wide frequency range from 5.8 to 12.2GHz. The 

transparent and flexible properties provide more flexibility for absorber applications. The 

optical transmittance of the whole structure is more than 62%. 

In Chapter 3, we have presented the optically semi-transparent, flexible and 

mechanically reconfigurable zeroth-order resonant (ZOR) antenna using stretchable 

micromesh structure. The size reduction of the antenna is achieved by using the ZOR 

property, and the uniform metallic patches of the antenna are replaced with the tortuous 

micromesh. The tortuous micromesh structures provide a high degree of freedom for 

stretching when encapsulated in elastomeric polymers, as well as optical transparency. 
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Accordingly, the structure can undergo mechanical deformation such as stretching (up to 

40%), folding, or twisting without breakage. The resonant frequency of the antennas is 

linearly reconfigurable from 2.94 GHz to 2.46 GHz upon stretching. Such tunable antenna 

could be potentially used for the transparent, flexible, and stretchable radiofrequency 

wearable applications.  

In Chapter 4, a flexible and low-profile triple-polarization antenna fabricated with 

flexible substrate and silver nanowire (AgNW) vias was presented. Highly conductive 

AgNWs that are ~200um long enables to realize the flexible metallic vias. Since the 

metamaterial-inspired array antenna is used to obtain the vertical polarization, the proposed 

flexible tri-polarized antenna could be realized with ultra-low profile characteristic 

compared with other tri-polarized antennas. Thus, it can be employed for WBAN or MIMO 

applications.  

In Chapter 5, a dual-band and diverse radiation pattern antenna was proposed for 

efficient and reliable on-body and off-body communications. A half mode hexagonal 

(HMH) SIW structure with the different internal angle was proposed to design and integrate 

the several independent structures in a single structure. In order to validate our concept, 

dual-band tri-polarized antenna was realized by using four HMHSIW structures. The four 

HMHSIWs which use the -1th mode, 0th mode, and +1th mode were closely placed so that 

the dual-band antenna with diverse radiation patterns was designed and fabricated. In a 

single area, three different antennas are placed and operate at dual frequencies f1 ≈ 3.2 GHz 

and f2 ≈ 5.78 GHz. 

 

6.2 Future works 
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While the main contribution of this thesis is on the design of RF devices using the 

novel materials and fabrication techniques, the direction of the future works will entail an 

increase of the transparency and improved their performance with low loss at mm-meter 

wave range.  

We have demonstrated a new method for fabricating transparent and stretchable 

radiofrequency small antennas by using stretchable micromesh structure in Chapter 3. 

Micromesh have designed and fabricated to be optically transparent and mechanically 

stretchable. The increase in the tensile strain results in the change of the resonant frequency 

of the antenna. However, the optical transparency is not enough to apply to the transparent 

applications. The optical transparency and electrical conductivity change in opposite 

directions. Human eye cannot see the line which the width is less than 1μm. Thus, instead 

of dense micromesh, the highly optically transparent antenna can be achieved by using 

thinner micromesh or large opening. 

As discussed in Chapter 4, a low-profile flexible triple-polarized antenna can be used 

for WBAN network or wearable applications. It can also be realized on the Cyclic Olefin 

Copolymer (COC) material and silver nanowires (AgNWs) ink to be optically transparent 

and structurally flexible because COC has high optical transparency and very low loss. 

Cyclic olefin copolymer (COC) possesses high optical transparency, excellent electrical 

properties, and high rigidity. The COC substrates with a relative permittivity of εr=2.35 

and a loss tangent of tan δ= 0.00007 at 100MHz is obtained from Dow Corning. COC has 

properties similar to PDMS, but has a higher endurance. Since COC has low loss, it is well-

suited for applications to microwave range devices. COC has glass-like transparency, low 
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density, high heat-deflection temperature, and excellent electrical properties, as shown in 

Table 6.1. 

 

   

(a)                                                                  (b) 

Figure 6.1. (a) Pure Cyclic Olefin Copolymer (COC) grains (b) Heat-Pressure Imprinting 

Process  

Table 6.1. Properties of cyclic olefin copolymer 

 Value 

Dielectric constant 2.35 

Dielectric loss tangent 0.00007 

Dielectric loss tangent (@0.1-10THz) [78] 0.00094 

Dielectric loss tangent (@2.5THz) [77] 0.0023 

Density (g/cc) 1.02 

Optical transmission (%) 92 

Dielectric breakdown 30kV/mm 

 

Another future work can be COC-based SIW antenna as shown in Figure 6.1. At high 

frequency, the dielectric loss of the substrate is increased. However, the COC substrate has 

very low loss tangent at 0.1-100THz. Although the SIW based on COC and silver nanowire 
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ink is flexible, it is not optically transparent. Thus, the SIW antenna based on COC 

substrate can be designed by using embedded metal mesh transparent electrode (EMTEs) 

in order to be optically transparent as well as to be flexible.  

 

   

(a)                                                                           (b) 

Figure 6.2. (a) COC-based SIW slot antenna (b) S-parameter 
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