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Abstract 
 

Polyketide natural products are a chemically diverse class of small molecules possessing a 

variety of therapeutic applications. Modular type I polyketide synthases (PKS) use a series of 

multienzyme modules in the assembly-line synthesis of polyketides from coenzyme A (CoA) 

building blocks. Biosynthetic intermediates are covalently linked to modules through an acyl 

carrier protein (ACP). The chemical diversity of polyketides is achieved through the variety of the 

catalytic domains within each module. In order to harness the biocatalytic power of PKS for the 

production of novel molecules, it is essential to understand the structural and mechanistic details 

of each biosynthetic tool. Through the use of x-ray crystallography and biochemical assays, this 

thesis investigates the role of methyltransferases (MTs), the least studied modification domain, in 

polyketide biosynthesis.  

Four distinct methyltransferases are found in PKS pathways: carbon (C-) and oxygen (O-) 

MTs occur in polyketide extension modules; two other MT types (MTL and MT2L) are exclusive 

to “loading” modules, which initiate PKS biosynthesis. Biochemical studies divulged the substrate 

for the C-MT, the first C-MT crystal structure revealed its common ancestry with the vestigial 

pseudo-MT of metazoan fatty acid synthase (mFAS). The PKS C-MTs and O-MTs were found to 

arise from different branches of the MT superfamily. Identification of essential catalytic residues 

for C-MTs and O-MTs provides insight into the methylation mechanism. 

A new biosynthetic route to a t-butyl group was a major discovery of this thesis. MTL and 

MT2L are associated with initiation modules that also contain GNAT-like 

acyltransferase/decarboxylase domains. Branched chain propionyl and isobutyryl starter units are 

generated by modules containing MTL, whereas MTL and MT2L together synthesize a t-butyl 

group. The AprA MTL from the apratoxin A biosynthetic pathway was discovered to be a rare 

iron-dependent MT, which converts malonyl-ACP to dimethylmalonyl-ACP through a 

methylmalonyl-ACP intermediate. In contrast, the AprA MT2L, a homolog of PKS C-MT 

domains, is a bifunctional enzyme that catalyzes coupled decarboxylation and methylation 

reactions to directly convert dimethylmalonyl-ACP to the t-butyl-containing pivaloyl-ACP. The 



 xix

AprA module was further visualized by negative-stain electron microscopy, revealing a dynamic 

module that may exist in different states for the MTL and MT2L catalytic steps. 

Analysis of MTL prompted further investigation of the GNAT-like domains in propionyl- 

and isobutyryl-ACP producing modules. Characterization of the GphF GNAT from the gephyronic 

acid biosynthetic pathway, which produces isobutyryl-ACP, demonstrated that the GNAT domain 

acts as a gatekeeper, selectively decarboxylating the MTL methylation product (dimethylmalonyl-

ACP) for further processing by the enzymatic assembly line. Surprisingly, the expected acyl 

transfer activity was not detected, prompting the reclassification of PKS GNAT-like domains as 

acyl-ACP decarboxylases. The bacterial FAS malonyl-acyltransferase was investigated as a 

candidate for the acyltransfer reaction. The FAS malonyl-acyltransferase supports the initial acyl 

transfer step to prime the loading module ACP, potentially linking primary and secondary 

metabolism in the producing organism. Characterization of PKS MTs and the acyl-ACP 

decarboxylases advances our understanding of the biosynthesis of many valuable natural products 

and provides initial tools for the development of biocatalysts capable of synthetically challenging 

stereo- and regiospecific methylation reactions. 

 



 1

 Introduction 

Natural Products 

Secondary metabolites are molecules produced by living organisms that are not essential 

for survival, but often confer a selective advantage towards survival. For example, secondary 

metabolites provide protection by inhibiting the growth of competing organisms6, acting as feeding 

deterrents7, or scavenging precious resources from the environment required for cell growth8.  

Overall, the secondary metabolome acts as a chemical defense mechanism for organisms lacking 

a sophisticated immune system (e.g. bacteria, fungi, plants)9. For centuries, secondary metabolites 

have been repurposed as “natural products”, as they often possess medicinally valuable 

bioactivities10. Currently, a large proportion of clinical pharmaceuticals are derived from or 

inspired by natural products11. However, the chemical complexity of natural products renders them 

challenging for structural elucidation and chemical synthesis, making the lack of access to 

compounds at sufficient quantities from both synthetic and biological sources an impediment for 

the development of pharmaceuticals. Over the past two decades natural products have fallen out 

of style in drug discovery efforts in favor of high throughput screening of synthetic small molecule 

libraries12. As this strategy has not yielded new drugs to combat the bacterial antibiotic resistance 

crisis, interest is once again shifting toward natural products as a source of new pharmaceuticals13.  

Biosynthetic Gene Clusters 

Advances in genomics and the discovery that many secondary metabolites are produced by 

genes located in continuous stretches in bacterial genomes14 has rapidly linked natural products 

with the enzymes responsible for their production. Identification of the biosynthetic gene cluster 

for a target molecule can facilitate the production of a natural product in a genetically tractable 

and readily culturable heterologous host. Genome sequencing has led to the bioinformatic 

discovery of new “cryptic” biosynthetic pathways for previously undetected molecules, yielding 

new natural products for drug discovery15. Additionally, gene cluster mining has provided critical 
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insight into the evolution of natural product biosynthetic pathways, which often occurs through 

horizontal gene transfer, mutation of individual genes, and gene duplication16. Finally, 

identification of the biosynthetic tools responsible for synthesizing some of the most chemically 

complex molecules in nature provides valuable biocatalysts for synthetically difficult 

transformations17. 

The products of polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), and 

hybrid PKS/NRPS are among the most prevalent secondary metabolites. The two megasynthase 

types synthesize natural product with exquisite stereo and regioselectivity via a series of enzymes. 

Polyketides are produced through the successive condensation of acyl-CoA building blocks to 

produce chemically diverse molecules, such as the antibiotic erythromycin18, electron transport 

inhibitor stigmatellin19, protein kinase C modulator bryostatin20, and cytostatic agent gephyronic 

acid (Figure 1.1)21. NRPS use different enzymatic machinery to condense amino acids, often 

forming cyclic peptides, with a prominent example being the clinically essential 

immunosuppressant cyclosporin (Figure 1.1)22. Secondary metabolites produced by hybrid 

PKS/NRPS pathways include the antimitotic curacin A23, neurotoxin jamaicamide24 and apratoxin 

A25, an inhibitor of the protein secretory pathway (Figure 1.1)26, 27.  

Type I Polyketide Synthases 

All PKSs use acyl-CoA building blocks, but are classified by their pathway organization, 

sequences, and catalytic mechanisms. In type I PKS28, polyketides are synthesized by a 

multifunctional enzyme, with the substrates attached to a phosphopantetheine (Ppant) prosthetic 

group of an acyl carrier protein (ACP) domain via a thioester linkage. The ACP shuttles the 

substrates between the various enzymatic domains. Iterative type I PKS use a single polypeptide 

to synthetize the polyketide through multiple additions of an acyl building block, whereas modular 

type I PKS are composed of a multimodule assembly line with each module responsible for the 

successive addition of an acyl-CoA building block (Figure 1.2). Modular type I PKS can be further 

divided into cis-AT and trans-AT PKS, in which the acyltransferase domain (AT) responsible for 

selecting and transferring the acyl building block from CoA to the ACP is found either within each 

module (cis-AT) or as a single stand-alone enzyme (trans-AT) for all modules in the pathway. 

Catalytic steps of type II PKS are carried out by multiple discrete enzymes, with the substrates and 

products tethered to an ACP29. A single enzyme carries out multiple catalytic steps in type III PKS, 

which are mainly carrier protein independent30.
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Figure 1.1 PKS, NRPS, and hybrid PKS/NRPS natural products 
Chemical structures of bioactive natural products. Biosynthetic system, producing organism, and 
bioactivity are listed below each molecule. Colored bonds represent functionalities installed by 
enzymes studied in this thesis: blue, PKS C-methyltransferases (C-MTs); red, PKS O-MTs; green, 
products of initiation modules containing GNAT-like enzymes.
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Figure 1.2 Biosynthesis of curacin A 
Curacin A is synthesized by a hybrid multimodular PKS/NRPS assembly line. Canonical PKS domains are shown in circles, NRPS 
modules are shown in hexagons. Non-canonical enzymes found in some PKS pathways are shown in squares. The CurA initiation 
module contains a GNAT-like domain which decarboxylates malonyl-CoA to acetyl-CoA and performs an S-acetyltransfer reaction 
yielding acetyl-ACP31. Acetyl-ACP is converted to a methyl cyclopropyl moiety32 through a KS-AT extension reaction (CurA), the 
action of β-branching enzymes (ACP, CurB; KSDC, CurC; HCS, CurD)33, a halogenase (Hal, CurA)34, two enoyl-CoA hydratases (ECH1, 
CurE; ECH2, CurF)35, and an enoyl reductase (ER, CurF) that carries out the cyclopropanation reaction36. An NRPS module (Cy-A-
PCP, CurF) then appends a thiazole, derived from cysteine, to the cyclopropyl37. The product of CurF is shuttled to a canonical modular 
type I PKS module CurG, where the first of seven PKS extension reactions occurs (CurG-CurM). At the end of the assembly line, a 
terminal alkene is formed through the action of a sulfotransferase (ST) and thioesterase (TE)38-40.
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PKS pathway initiation 

Synthesis by type I PKS is initiated by the transfer of an acyl group from CoA to the first 

ACP in the pathway, which is located in the “loading” or “initiation” module. The initial 

acyltransfer step can occur through several mechanisms. Most frequently, the loading module 

contains a loading acyltransferase (ATL), which selects a specific acyl-CoA substrate, and transfers 

the acyl group to the loading ACP (ACPL) (Figure 1.3). Carboxylated substrates, such as malonyl 

and methylmalonyl can be processed by a specialized decarboxylating ketosynthase domain (KSL) 

encoded in the initiation module (Figure 1.3)41.  

 

 

Figure 1.3 PKS initiation mechanisms 
Most PKS initiation modules contain a loading acyltransferase (ATL) which a. selects non-
carboxylated CoAs (acetyl, propionyl, isobutyryl) and directly loads the acyl group onto the ACP 
or b. selects a carboxylated CoA (malonyl, methylmalonyl), which is decarboxylated by a 
specialized ketosynthase (KSL) that carries out decarboxylation only41. c. The GNAT-like family 
of initiation modules contains a GNAT domain that carries out the functions of both ATL and KSL 
in a single domain31. 
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A second mechanism of pathway initiation uses a loading module containing a GCN5-

related acyltransferase-like (GNAT-like) domain (Figure 1.3). Members of the GNAT superfamily 

typically carry out an N-acetyltransfer reaction between acetyl-CoA and a variety of small 

molecule and protein amine substrates42, 43. The PKS GNAT-like domain from the pederin 

biosynthetic pathway was the first identified member of the GNAT superfamily in PKS based on 

sequence analysis44. The existence of a phosphate-binding P-loop sequence, also observed in the 

acetyl-CoA binding GNATs, suggested that the pederin GNAT-like domain shares the canonical 

acetyl-CoA binding property of the GNAT superfamily and provides an acetyl-ACP starter unit to 

the pederin pathway through an S-acetyltransfer reaction. The S-acetyltransfer activity was 

experimentally validated in the CurA GNAT-like enzyme from the curacin A pathway. However, 

a surprising malonyl-CoA decarboxylation activity was also discovered for CurA GNAT31. 

Therefore, PKS GNAT-like domains are proposed to decarboxylate malonyl-CoA and then 

transfer the resulting acetyl group from CoA to ACP. Acetyl-ACP is hypothesized to be further 

processed by methyltransferases (MTs) encoded in the initiation module45.  

Polyketide chain extension and modification 

The acyl-ACPL product of the initiation module (3, Figure 1.4) is passed to the 

ketosynthase (KS) of the first extension module of the pathway, where it is transferred from the 

ACPL Ppant to the KS active site cysteine via a transthioesterification forming an acyl enzyme 

intermediate. Malonyl- or methylmalonyl-ACP (2, Figure 1.4) is provided by the extension module 

AT domain, and the KS then catalyzes a decarboxylative Claisen condensation between the 

carboxylated building block and KS acyl enzyme intermediate extending the polyketide by two 

carbons. The resulting polyketide intermediate (5, Figure 1.4) contains a keto group at the β-carbon 

position. The formation of a new carbon-carbon bond by the KS is the minimal reaction carried 

out by a PKS module containing KS-AT and ACP domains. Additional processing of the β-keto 

intermediate can be catalyzed by a variety of optional modification domains within the PKS 

module. The β-keto intermediate (5, Figure 1.4) can be stereo-selectively reduced by the NADPH-

dependent ketoreductase domain producing a β-hydroxyl intermediate (7, Figure 1.4), which can 

be further reduced by a dehydratase (DH) to produce a cis-or trans-α,β-double bond (10, Figure 

1.4). Action of an NADPH-dependent enoylredutase (ER) domain produces a fully reduced 

polyketide intermediate (11, Figure 1.4). Non-reductive modification domains include MTs. Once 

the nascent polyketide has been processed by each domain in the module, the ACP travels to the 
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Figure 1.4 PKS catalytic cycle  
The AT domain (green) selects the building block malonyl-CoA (1) and delivers it to the ACP 
(orange) Ppant arm (2). The upstream initiation module ACP (ACPL) (black) delivers the starter 
unit (3) to the KS (blue), where it is combined with 2 to extend the polyketide by two carbons (5). 
5 is reduced by the KR (purple) domain to form the β-hydroxy intermediate (7). In modules 
containing a C-MT (cyan), it is unclear whether α-methylation takes place on 2, 5, or 7. 7 can be 
dehydrated by the DH (red, 10) and reduced by the ER (yellow, 11) domains. Modules containing 
O-MTs (gray) methylate the β-keto of 5 or the β-hydroxyl of 7. Depending on the series of 
modification domains encoded in the module, 5, 6, 7, 8, 9, 10, and 11 can be passed onto the next 
extension module in the pathway.  
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next extension module for additional rounds of polyketide chain extension and modification. 

Modules act in a prescribed order, interacting through small docking domains found at the N- and 

C-termini of the multienzyme polypeptides46-48. The domain content of each module stipulates the 

chemistry carried out after each chain extension reaction (Figure 1.2). Variation in module’s 

domain content yields chemically diverse polyketides from common enzymatic machinery. At the 

end of the assembly line, the polyketide is removed from the ACP by a thioesterase (TE) domain 

that catalyzes hydrolysis or cyclization (Figure 1.2). The polyketide core scaffold is often 

glycosylated, methylated, or modified by cytochrome P450 enzymes to produce the final bioactive 

natural product49.  

PKS Module Architecture and Relationship to Mammalian Fatty Acid Synthase 

PKS modules are obligate dimers. Dimerization of each module is mediated by a dimeric 

KS domain (Figure 1.5)48, 50, 51 along with small dimerization elements, composed of helices found 

after the AT domain52 or ACP46, 53 domain. The oligomeric state of modules can be additionally 

stabilized by optional dimeric DH54, 55 and TE56, 57 domains. Excised KR2, 4, 58 and ER36 domains 

are monomeric. The monomeric KR domain is composed of two subdomains, a N-terminal 

structural domains (KRs) and C-terminal catalytic domain (KRc), that appear to be a result of a 

gene duplication event. When present, the ER domain is inserted in between the KRs and KRc
5. 

Polyketide biosynthesis is analogous to the biosynthesis of fatty acids in primary 

metabolism. Type I PKS are most similar to metazoan fatty acid synthase (mFAS), which is also 

an iterative multienzyme megasynthase59. mFAS and PKS contain the same enzymatic domains 

that perform identical chemical transformations to produce their respective polyketide and fatty 

acid products. Additionally, the shared enzymatic domains are found in the same order on mFAS 

and PKS polypeptides. Like PKS, the mFAS KR is composed of a KRs and KRc. The crystal 

structure of an mFAS (Figure 1.5) revealed an additional domain embedded in KRs that has 

structural homology to a MT but lacks the characteristic sequence motifs for binding of the methyl 

donor S-adenosylmethionine (SAM). Thus, this domain was classified as an inactive vestigial 

“pseudo” MT (ΨMT) 1. Interestingly, some PKS modules contain active MT domains adjacent to 

the KRs.  
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Figure 1.5 Comparison of mFAS and PKS architecture  
Structures of a. mammalian fatty acid synthase (mFAS) (PDB ID 2VZ8)1, b. PikAIII53, c. CurL 
KS-AT fragment (PDB ID 4MZ0)48. Domains are colored as follows: ketosynthase (KS), blue; 
acyltransferase (AT), green; dehydratase (DH), red; pseudo-methyltransferase (ΨMT) or oxygen-
methyltransferase (O-MT), gray; ketoreductase (KR), purple; enoylreductase (ER), yellow; acyl 
carrier protein (ACP), orange. Domains within the full-length module are depicted below the 
structures. 
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While representative crystal structures have been solved for nearly all PKS domains28, 

information regarding domain-domain interactions, which may hint to the overall architecture of 

PKS modules, is limited to several KS-AT crystal structures3, 48, 50, 51, a KR-ER di-domain 

structure5, and a recent structure of the DH-KR-ER tri-domain from the mycocerosic acid synthase 

(MAS)-like iterative PKS3. For years, the crystal structure of mFAS was the model for PKS 

architecture, primarily based on similarities between the mFAS and PKS KS-AT didomain crystal 

structures (Figure 1.5). However, differences in interdomain linker lengths, the oligomeric state of 

excised domains, and the inherent ability of PKS modules to gain or lose modification domains, 

hints that PKS and mFAS could have architectural differences. Structural characterization of the 

first intact KS-AT-KR-ACP PKS module PikAIII in defined chemical states revealed a drastically 

different architecture compared to mFAS (Figure 1.5)53, 60. Instead of the splayed shape of mFAS, 

PikAIII adopts an arched architecture, creating a central reaction chamber that sequesters the ACP-

bound intermediates during the PKS catalytic cycle. However, the moderate resolution (7-8 Å) of 

the EM reconstructions limits interpretation of interdomain interactions at an atomic level. It 

remains unclear if PKS modules containing the same domains as mFAS or other combinations of 

modification domains will more closely resemble mFAS or PikAIII. 

Methyltransferases in Natural Product Biosynthesis 

The 2000-plus MT structures deposited in the structural database represent 15 different 

superfamilies, 11 of which require the methyl donor SAM. SAM-dependent MTs are found 

throughout all kingdoms of life and catalyze over 90% of the 300-plus methylation reactions in 

biology61. Class I MTs are the most predominant MT superfamily, characterized by a seven-β-

stranded core containing six conserved motifs (Figure 1.6)62. They typically methylate O-, N-, C, 

and S-nucleophiles through an acid-base or metal-dependent mechanism. Although class I MTs 

share a common core, the SAM cofactor or demethylated product S-adenosylhomocysteine (SAH) 

is observed in a variety of conformations, which may correlate to different branches of the class I 

MT family63. Branches of the class I MT family are distinguished by additional structural elements 

appended to the common core, often facilitating substrate binding or protein oligomerization. 

However, branch members share low sequence identity (<20%) to each other as well as members 

of other branches.  The wide variety of methylation reactions and substrates accommodated by the 
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common SAM binding core makes class I MTs prime candidates for the development of 

biocatalysts64.  

 

Figure 1.6 Class I MT core and conserved motifs 
All class I MTs share a seven-β-stranded core. Six conserved motifs (labeled above in roman 
numerals) occur throughout the core62. SAM generally binds close to Motifs I, II and III. Motif I 
is essential for SAM binding. Motifs II and III contain acidic residues at the C-termini of their 
respective β-strands. Motif IV contains a D/E/N residue. Motif V often contains a hydrophobic 
residue that interacts with the SAM adenine ring. Motif VI contains an invariant glycine in atight 
turn preceding β5. Branches of the class I MT family are distinguished by insertions at the N- and 
C-termini or within core loops. 

 

Natural product biosynthetic pathways contain a plethora of small molecule MTs, most of 

which belong to the class I fold65. Oxygen methyltransferases (O-MTs) are often encoded in 

natural product pathways and frequently methylate sugars66-68 or phenols69, 70. Some O-MTs 

require metal cofactors, typically Mg2+ or Ca2+, for positioning and activation of the hydroxyl 

group substrate66, 67. Surprisingly, higher organisms, such as yeast and humans, contain only two 

O-MTs that methylate small molecule substrates65. Similarly, small molecule carbon 

methyltransferases (C-MTs) are much more common to bacteria and plants than animals65. 

Examples include C-MTs that methylate coumarin scaffolds71, terpenoids72, tetrapyrroles73, and 

amino acid derivatives74. Like O-MTs, some C-MTs require metals to position the substrate72 or 

facilitate deprotonation of the target carbon74. Finally, natural product N-methyltransferases (N-

MTs) frequently methylates N-terminal75, 76 or backbone amides77-79 of amino acids in NRPS and 
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ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. N-MTs 

are also commonly found encoded as stand-alone enzymes in PKS gene clusters, where they 

methylate amines on sugars that decorate the polyketide macrolide core 80, 81. 

PKS C-MT domains  

PKS modules can encode a ~390 amino acid C-MT domain (Figure 1.2), which is a 

member of the class I MT superfamily and catalyzes the addition of a methyl or gem-dimethyl 

moiety at the α-position of the growing polyketide (Figure 1.1, Figure 1.4). Modification by the 

C-MT and incorporation of a methylmalonyl building block, result in the identical α-methyl 

functionality. Initially identified and studied in the fungal lovastatin PKS pathway82 and 

yersiniabactin hybrid PKS-NRPS pathway83, C-MTs have been annotated in PKS modules from 

fungal iterative PKS84-88 as well as bacterial modular cis-AT21, 23-25, 89-92 and numerous trans-AT 

PKS20, 93-98. In iterative and cis-AT PKS the C-MT domain is embedded in the KR domains, 

following a conserved β-strand linker, which marks the start of the KRs domain, but before the 

KRs core, whereas in trans-AT PKS the C-MT is found after additional modification domains, 

preceding the ACP. Although C-MTs are well annotated in pathway databases, their structural and 

biochemical characterization has lagged behind the reductive modification domains. Domain 

boundaries for the C-MTs are unclear, especially at the C-terminus where sequence conservation 

is low, forcing most biochemical interrogations of PKS C-MT activity to be carried out in intact 

modules84, 99-101.  

The timing of α-methyl installation by the C-MT within the PKS catalytic cycle is 

ambiguous (Figure 1.4), as methylation could occur on the malonyl-ACP building block (2, Figure 

1.4) prior to KS condensation reaction, on the β-keto product of the condensation reaction (5, 

Figure 1.4), or even on a product of a reductive modification domain. Studies on fungal PKS 

suggest that the β-keto intermediate (5, Figure 1.4) is the substrate for α-methylation82, 84, 99, 

whereas studies on bacterial C-MTs from cis-AT modules indicate that α-methylation can occur 

on malonyl-ACP100, 101. Recent work successfully excised bacterial C-MT domains and 

demonstrated activity of C-MTs from cis and trans-AT pathways on the β-keto substrates102, 103. 

Still, an even larger mystery surrounding PKS C-MTs is their relationship to the ΨMT in mFAS. 

Understanding how PKS C-MTs are accommodated within a module compared to the vestigial 

mFAS ΨMT could provide hints towards the structure of an ancestral PKS/mFAS, which likely 

had an active C-MT.  
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PKS O-MT domains 

O-MTs encoded in PKS gene clusters can be found as stand-alone proteins, which act as 

post-PKS tailoring enzymes and selectively methylate hydroxyls on the polyketide after it has been 

offloaded from the assembly line19, 104-106.  Alternatively, on-assembly-line O-methylation can be 

catalyzed by O-MTs embedded within PKS modules (Figure 1.2). O-MTs are typically found in 

pathways of myxobacterial or cyanobacterial origin from both cis-AT19, 23, 24, 107-113 and trans-

AT114, 115 PKS, but are less abundant than C-MTs. O-MTs are predicted to produce an enol 

methylether (6, Figure 1.4) by methylation of the β-keto intermediate produced by the KS 

condensation reaction or a β-methoxy (8, Figure 1.4) by methylation of the β-hydroxyl product of 

stereoselective KR reduction. O-MTs are members of the class I superfamily but are highly 

diverged from MTs of known structure and the PKS C-MTs. Additionally, O-MTs are fully 

encoded prior to the start of KR domains, suggesting that they are positioned differently than C-

MTs in the PKS module. Like the C-MTs, limited information is available regarding PKS O-MT 

structure and function and little can be predicted regarding their mechanism of catalysis or 

substrate specificity through bioinformatic approaches41. 

Initiation module MTs 

Some PKS loading/initiation modules containing GNAT-like domains include a third type 

of class I MT (MTL), which has low sequence identity (<20%) to C-MTs or O-MTs found in PKS 

extension modules. The MTL domain is typically found in between a conserved ~150 amino acid 

N-terminal region of the loading module, termed the “adaptor region” (AR) and the GNAT-like 

domain (Figure 1.7). The AR reportedly enhances the S-acetyltransfer from CoA to ACP by the 

GNAT-like domain31, but has no obvious sequence relationship to entries in the structure database. 

Some initiation modules lack the AR and contain only an MTL and GNAT-like domain (Figure 

1.7), along with the ACP. The presence of both an AR and MTL domain in a module can be 

correlated with the production of a starter unit larger than acetyl (e.g. propionyl, isobutyryl) (Figure 

1.7)21, 45, 97, whereas the inclusion of only an AR or MTL leads to the production of an acetyl starter 

unit (Figure 1.7)31, 93, 116. As the GNAT-like domain produces acetyl-ACP from malonyl-CoA 

decarboxylation and S-acetyltransfer reactions (Figure 1.3), the MTL has been proposed to directly 

methylate acetyl-ACP to the branched chain starter units propionyl45 and isobutyryl (Figure 1.1, 

Figure 1.7)21. 
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Figure 1.7 The GNAT-like family of initiation modules 
PKS initiation modules produce acetyl with modules containing a. GNAT-ACPL

94-96, b. adaptor 
region (AR)-GNAT-ACPL

31, and c. MTL-GNAT-ACPL
93, 116. Branched chain starter units d. 

propionyl45, 97 and e. isobutyryl21 are produced with the inclusion of AR-MTL--GNAT-ACPL 

domains. e. Production of a t-butyl group in the form of pivaloyl-ACP correlates with the addition 
of a second MT (MT2L) to the initiation module25. 
 

A fascinating initiation module containing the AR-MTL-GNAT trio of domains followed 

by a second MT (MT2L) with 30% sequence identity to PKS C-MTs and an ACP domain occurs 

in the apratoxin A25 (Figure 1.1) biosynthetic pathway. Modules of this type appear to be 

associated with the formation of t-butyl groups (Figure 1.7). The modest sequence identity between 

PKS C-MTs and MT2L suggests that MT2L may differ in function from PKS C-MTs and represent 

a fourth type of PKS MT. MT2L is likely involved in the formation of the t-butyl and may 

methylate an isobutyryl-ACP substrate produced by the AprA MTL domain. Additionally, it is 

worth noting that the GNAT-like enzymes found in the pivaloyl producing modules differ from 

GNATs in all other initiation modules and lack the conserved His and Thr amino acids required 

for decarboxylation31. 

Thesis Overview 

The following chapters present the full characterization of all four types of MTs found in 

PKS modules: C-MTs, O-MTs, MTL, and MT2L, along with an updated analysis of the function 

of the PKS GNAT-like domains, sparked by discoveries during the characterization of MTL and 

MT2L. Experimental determination of the domain boundaries for the C-MT encoded in module 

CurJ from the curacin A biosynthetic pathway (Figure 1.2)23, enabled direct biochemical 
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characterization of an isolated C-MT from a cis-AT PKS and the determination of a crystal 

structure117. Mass spectrometry-based assays clearly demonstrated that α-methylation by the C-

MT occurs on the β-keto intermediate (5, Figure 1.4), after the KS condensation reaction and prior 

to the action of the reductive modification domains. Catalytic residues, which could not be 

identified based on sequence information alone, were validated by site-directed mutagenesis 

leading to a proposed mechanism for the α-methylation reaction. The structure of the CurJ C-MT 

shares many features with the vestigial ΨMT in mFAS, further highlighting the ancestral 

relationship between PKS and mFAS. Analysis of the sequences bordering PKS C-MTs in light of 

structure permitted modeling of the position of C-MTs within the overall PKS module, which 

resembles the orientation of the ΨMT in mFAS. These insights into PKS C-MT structure and 

function facilitate their use as a biocatalyst in the production of biofuels and commodity 

chemicals118. 

 Similarly, experimental determination of the domain boundaries of PKS O-MTs allowed 

for their excision from the module for biochemical and structural studies. Mass spectrometry-based 

assays demonstrated that O-MTs stereospecifically methylate β-hydroxyl groups. Structures of 

two O-MTs that methylate β-hydroxyl substrates (7, Figure 1.4) with opposite stereochemistries 

from the stigmatellin (Figure 1.1) biosynthetic pathway19, along with mutagenesis studies, 

revealed key catalytic residues. Furthermore, the structures of PKS O-MTs are distinctly different 

than PKS C-MTs and the mFAS ΨMT, suggesting that the O-MTs are a more recent addition to 

PKS modules. Biochemical and structural characterization of PKS O-MTs permits their future 

development as regioselective biocatalysts and facilitates the future production of O-desmethyl 

polyketides through mutagenesis.  

 MTL and MT2L were examined from the AprA t-butyl producing initiation module (Figure 

1.7) found in the apratoxin A (Figure 1.1) biosynthetic pathway25. Domain boundaries provided 

from the PKS C-MT work117 and prior work on GNAT-like domains31 was essential to the design 

of constructs to probe MTL and MT2L activity. A crystal structure of the AprA MTL-GNAT 

didomain revealed that the conserved AR is a super-sized lid domain of MTL and that MTL is an 

unusual mononuclear-iron-dependent MT capable of methylating malonyl-ACP to 

dimethylmalonyl-ACP119. Thus, the true MTL substrate differs from the initially proposed acetyl 

substrate45. The AprA GNAT domain is catalytically inactive, and not capable of acyltransfer or 

decarboxylation. Thus, the AprA GNAT has been reclassified as a vestigial “pseudo” GNAT 
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(ΨGNAT). A crystal structure of the AprA ΨGNAT-MT2L didomain revealed that MT2L has a 

nearly identical overall architecture to PKS C-MTs, but biochemical assays uncovered unexpected 

coupled decarboxylation and methylation activities that permit MT2L to directly transform 

dimethylmalonyl-ACP to pivaloyl-ACP120. As no domain of AprA supported transfer of malonyl 

from CoA to ACP, the malonyl acyltransferase from fatty acid biosynthesis (FabD), which can 

malonate AprA ACPL, may be critical for initiating the apratoxin A pathway. Overall, the action 

of MTL and MT2L represents a new mode of generating the unusual t-butyl functionality. 

Furthermore, negative stain EM analysis of the intact AprA module provides insight into loading 

module architecture and dynamics120.  

 The discovery of the identity of AR domains and function of MTL domains prompted 

further analysis of the GNAT family of PKS initiation modules with a focus on GphF, the initiation 

module from the gephyronic acid (Figure 1.1) biosynthetic pathway, that produces an isobutyryl 

starter unit (Figure 1.7)21. The GphF MTL methylated malonyl-ACP to dimethylmalonyl-ACP via 

a methylmalonyl-ACP intermediate119 prior to decarboxylation by the GphF GNAT-like domain. 

The GphF GNAT-like domain selectively decarboxylated the dimethylmalonyl-product of MTL to 

produce the isobutyryl starter unit. A crystal structure of GphF GNAT with bound isobutyryl-CoA 

facilitates comparison to the GNAT-like enzyme from CurA, which decarboxylates malonyl31. 

Comparative mutagenesis of GphF and CurA GNATs provided additional insight into 

decarboxylation by GNAT-like domains. Strikingly, GphF GNAT did not display acyltransfer 

activity, and additional purification of the CurA GNAT markedly reduced the slow acyltransfer 

activity. We conclude that the primary role of the GNAT-like domain in PKS biosynthesis is 

decarboxylation, leading to a proposed reclassification of PKS GNAT-like domains as acyl-ACP 

decarboxylases. 
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 Domain Organization and Active Site Architecture of a Polyketide Synthase C-
Methyltransferase 

 
Reproduced with permission from Skiba, M.A., Sikkema, A.P., Fiers, W.D., Gerwick, W.H., 
Sherman, D.H., Aldrich, C.C., Smith, J.L. Domain Organization and Active Site Architecture of 
a Polyketide Synthase C-methyltransferase. ACS Chem Biol 11, 3319-3327 (2016).  
Copyright 2016 American Chemical Society. 
 

Summary 

Polyketide metabolites produced by modular type I polyketide synthases (PKS) acquire 

their chemical diversity through the variety of catalytic domains within modules of the pathway. 

Methyltransferases are among the least characterized of the catalytic domains common to PKS 

systems. We determined the domain boundaries and characterized the activity of a PKS C-

methyltransferase (C-MT) from the curacin A biosynthetic pathway.  The C-MT catalyzes S-

adenosylmethionine-dependent methyl transfer to the -position of -ketoacyl substrates linked to 

acyl carrier protein (ACP) or a small-molecule analog but does not act on -hydroxyacyl substrates 

or malonyl-ACP. Key catalytic residues conserved in both bacterial and fungal PKS C-MTs were 

identified in a 2-Å crystal structure and validated biochemically. Analysis of the structure and the 

sequences bordering the C-MT provides insight into the positioning of this domain within 

complete PKS modules.  

Introduction 

Polyketides and their derivatives are among the most chemically and biologically diverse 

natural products, and their biosynthetic pathways contain a wealth of synthetic potential. Type I 

polyketide synthases (PKSs) are large multifunctional enzymes that generate complex polyketides 

with exquisite stereo and regioselectivity 28, 59, 121. Typical type I PKSs contain acyltransferase 

(AT) and ketosynthase (KS) domains for the selection of acyl-CoA building blocks and extension 

of polyketide intermediates as well as an acyl carrier protein (ACP) domain to shuttle intermediates 

between domains. Additionally, PKSs may have one or more modification domains, such as a 
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ketoreductase (KR), dehydratase (DH), enoylreductase (ER) and methyltransferase (MT), for 

further processing of the -ketoacyl-ACP product of KS extension (Figure 2.1a). In bacteria, type 

I PKSs are commonly found as modular assembly lines, where each module catalyzes a single 

two-carbon extension and modification of the polyketide and then passes the intermediate to the 

next module for further elongation. In some cases, PKS modules lack embedded AT domains and 

rely on in trans ATs encoded in the biosynthetic gene cluster for the delivery of acyl-CoAs. Fungal 

type I PKSs typically occur as single modules that catalyze multiple rounds of chain elongation 

and modification 121, 122. 

Methyl groups can be introduced at the α-position of a polyketide intermediate through the 

incorporation of methylmalonyl-CoA extender units selected by the AT or through the action of 

embedded C-methyltransferase (C-MT) domains. S-adenosylmethionine (SAM)-dependent PKS 

C-MT domains were initially characterized in the lovastatin biosynthetic pathway of the fungus 

Aspergillus terreus and the mixed PKS / non-ribosomal peptide synthetase (NRPS) yersiniabactin 

pathway 82, 83, 123 and subsequently annotated in multiple fungal PKSs as well as in bacterial cis-

AT and trans-AT pathways 20, 21, 23, 24, 84, 89-92.  

PKS C-MTs are members of the class I MT superfamily 65, 124, identified by six sequence 

motifs in the SAM-binding core 125. Despite structural conservation of the MT core, class I MTs 

lack conserved active site residues due to the intrinsic reactivity of SAM and the great variety of 

methyl acceptor substrates. Moreover, numerous loop and domain insertions to the MT core 

facilitate substrate binding or oligomer formation, resulting in an extremely divergent superfamily 

with very low overall sequence identity (generally below 20%). C-MTs are the only domains 

commonly found within PKS modules that have remained structurally uncharacterized.  Beyond 

the easily recognized sequence motifs for SAM binding, the PKS C-MT domain boundaries are 

uncertain. However, a pseudo-methyltransferase (MT) domain is present in the PKS homolog, 

the metazoan fatty acid synthase (mFAS) 1, but the MT lacks the SAM binding motifs and 

appears to be significantly shorter than the PKS C-MTs. 

C-MTs could potentially act on the unmodified α-carbon at any point during the PKS 

catalytic cycle, unlike KS, KR, DH and ER domains, which act in a specific sequence (Figure 

2.1b). In an earlier study, it was proposed that PKS C-MT domains act after KS condensation and 

prior to subsequent reductive modifications based on the accumulation of a 2-methyl-1,3-diketo-

containing shunt product in a mutagenized lovastatin producing fungus (Figure 2.1b, Route 1) 82. 



 

19 
 

 

Methylation of the -ketoacyl intermediate via Route 1 was observed directly in two fungal PKSs 

84, 99. However, two bacterial PKS C-MTs that dimethylate the -position of polyketide 

intermediates were shown to act exclusively via Route 2 in epothilone biosynthesis (Figure 2.1b, 

Route 2) and either on the -ketoacyl intermediate of Route 1 or on malonyl-ACP preceding KS 

condensation in yersiniabactin biosynthesis 100, 101. Thus it was unclear when monomethylation 

occurs in modular C-MTs. Recent work demonstrated C-MT activity via Route 1 in bacterial trans-

AT and cis-AT pathways 102, 103.  

The biosynthetic pathway for the antimitotic polyketide curacin A (Figure 2.1a) produced 

by the marine cyanobacterium Moorea producens has provided a wealth of structural insight into 

Figure 2.1 Introduction of -methyl by CurJ C-MT. 
a. CurJ composition. Curacin A contains a single methyl branch derived from the C-MT in module 
CurJ, which contains ketosynthase (KS), acyltransferase (AT), dehydratase (DH), C-
methyltransferase (CMT), and ketoreductase (KR) domains. b. Potential routes for C-methylation 
in PKSs. Route 1- Methylation occurs on the - ketoacyl intermediate after the KS condensation 
reaction. Route 2- Methylation occurs on malonyl-ACP prior to KS condensation. 
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conventional and unusual PKS biosynthetic capabilities 23, 31, 32, 34, 36, 39, 40, 48, 55, 126, 127. Modules 

CurG-CurM catalyze typical PKS extension reactions. Like many PKS pathways from Moorea 

species, a C-MT domain in CurJ installs a single α-methyl (Figure 2.1a). Here we report the 

crystal structure of CurJ C-MT at 2.1 Å resolution and demonstrate that CurJ C-MT follows 

Route 1 by methylating the -position of the -keto acyl substrate. The structure reveals key 

conserved features of PKS C-MT active sites and provides important clues about how C-MTs are 

positioned within PKS modules.  

Experimental Procedures 

Construct design 

 All PCR primers are listed in Table 2.1. CurJ C-MT (CurJ residues 1269–1658) was 

amplified from cosmid pLM9 (GenBank accession code AY652953) 23.  JamJ C-MT (residues 

1948–2337) and ACP (residues 3166–3302) were amplified from a mixture of jamaicamide A 

cosmids 24. C-MT and ACP constructs were inserted into pMCSG7 by ligation independent 

cloning (LIC) to create pMAS179 (CurJ C-MT), pMAS195 (JamJ C-MT), and pMAS197 (JamJ 

ACP). The QuikChange protocol (Stratagene) was used for site-directed mutagenesis. DNA 

sequencing at the UM DNA Sequencing Core verified all constructs and mutations.  

Protein expression and purification 

Escherichia coli strain BL21(DE3) was transformed with a C-MT or ACP plasmid, grown 

in 0.5 L of TB media with 100 g/mL ampicillin to an OD600 = 1 at 37°C, cooled to 20°C for 1 hr, 

induced with 200 μM IPTG, and expressed for ~16 hr. Selenomethionine (SeMet) labeled protein 

was produced in 2 L SelenoMet medium (AthenaES) containing 150 g/mL of seleno-DL-

methionine. Cells were grown to an OD600 = 0.6 at 37°C, cooled to 20°C for 1 hr, induced with 

200 μM IPTG, and expressed for ~18 hours.  

Cell pellets were resuspended in buffer A (50 mM Tris pH 7.4, 300 mM NaCl, 10% (v/v) 

glycerol, 20 mM imidazole) with 0.1 mg/mL lysozyme, 0.05 mg/mL DNase, and 2 mM MgCl2, 

incubated on ice for 30 min, lysed by sonication, and cleared by centrifugation (38,760 xg, 30 

min). The supernatant was filtered and loaded onto a 5 mL His trap column (GE Healthcare). 

Proteins were eluted with a 20-400 mM linear gradient of imidazole (buffer B) over 10 column 

volumes. Gel filtration (HiLoad 16/60 Superdex S200) with buffer C (50 mM Tris pH 7.4, 150 

mM NaCl, 10% (v/v) glycerol) was used to further purify proteins. 90 mg/L of C-MT was obtained.  
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Table 2.1 Primers for cloning C-MT constructs 

 Bold font indicates handles for ligation-independent insertion into expression vectors 

Differential scanning calorimetry (DSC) 

Differential Scanning Calorimetry (DSC) was carried out in a Johnson & Johnson 

ThermoFluor Plate reader in Thermo Scientific black 384 well PCR plates. 0.5 mg/mL of protein 

in 50 mM Hepes pH 7.4, 150 mM NaCl, 10% (v/v) glycerol, 1 mM CHAPS was mixed with 200 

uM 1-anilinonaphthalene-8-sulfonic acid (ANS). Experiments were conducted in triplicate.  

Protein crystallization 

His-tagged CurJ C-MT (native and SeMet) was crystallized by vapor diffusion from 2:2 

L ratio of protein stock (10 mg/mL of CurJ C-MT in buffer C with 1 mM SAM or SAH) and well 

solution (1.30-1.38 M sodium citrate, 4-9 mM glutathione (GSH)/ glutathione disulfide (GSSG), 

5% (v/v) acetone) at 20°C. Microseeding was used to obtain single crystals. Thin rod-like crystals 

CurJ_FM_F pMAS 
35 

5’-ATGGAACCGACTACCAAC-3’ 

CurJ_FM_R 5’-TTATAGAAGTTGATCAAGCTG-3’ 

CurJ_1269_F pMAS 
179 

5’-TACTTCCAATCCAATGCCCTACCTCCAGATTTTCTAGATC-3’ 

CurJ_1658_R 5’-TTATCCACTTCCAATGCTATGTCTCCTTCGTTGGTTCT-3’ 

JamJ_3166_F 
pMAS 

196 

5’-TACTTCCAATCCAATGCCCTGGAGGCAACAGCAC-3’ 

JamJ_3302_R 
5’-TTATCCACTTCCAATGCTATTCATTAATAATTAAATTTAATTCTTG
-3’ 

JamJ_1948_F pMAS 
195 

5’-TACTTCCAATCCAATGCCCTACCTCCTGATTTCTTGCTG-3’ 

JamJ_2337_R 5’-TTATCCACTTCCAATGCTATGTCTCCTTCGTTTGTTCTAAG-3’ 

CurJ_H1548N_F pMAS 
210 

5’-GCGGCCAATGTCCTCAATGCAACCACAAGTC-3’ 

CurJ_H1548N_R 5’-GACTTGTGGTTGCATTGAGGACATTGGCCGC-3’ 

CurJ_H1548Q_F pMAS 
211 

5’-CGGCCAATGTCCTCCAGGCAACCACAAGTC-3’ 

CurJ_H1548Q_R 5’-GACTTGTGGTTGCCTGGAGGACATTGGCCG-3’ 

CurJ_H1548A_F pMAS 
209 

5’-TATTGCGGCCAATGTCCTCGCTGCAACCACAAGTCTTAAG-3’ 

CurJ_H1548A_R 5’-CTTAAGACTTGTGGTTGCAGCGAGGACATTGGCCGCAATA-3’ 

CurJ_E1574A_F pMAS 
212 

5’-GGATATTGGTCTTGTATGCAGCAACAACTCGATCTCG-3’ 

CurJ_E1574A_R 5’-CGAGATCGAGTTGTTGCTGCATACAAGACCAATATCC-3’ 

CurJ_N1545A_F pMAS 
208 

5’-TGATGTAATTATTGCGGCCGCTGTCCTCCATGCAACCACA-3’ 

CurJ_N1545A_R 5’-TGTGGTTGCATGGAGGACAGCGGCCGCAATAATTACATCA-3’ 

CurJ_Y1437F_F pMAS 
207 

5’-CACAGCAACCCAACTGTTTAAAGACTCAGCTGTAG-3’ 

CurJ_Y1437F_R 5’-CTACAGCTGAGTCTTTAAACAGTTGGGTTGCTGTG-3’ 
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appeared in a few hours and grew overnight. Crystals were harvested directly from the drop in 

loops and flash cooled in liquid nitrogen.    

Data collection and structure determination 

Data were collected at GM/CA beamline 23ID-D at the Advanced Photon Source (APS) at 

Argonne National Laboratory. For the SeMet data set a 10 x 10 m minibeam was used to collect 

three wedges of data 0-180°, 60-120°, and 120-180° using inverse beam geometry from three areas 

on a single crystal due to radiation decay. All data were processed using XDS (Table 2.2, Table 

2.3, Table 2.4) 128. Crystals of wild type C-MT grew in stacks and data quality was degraded by 

streakiness in the diffraction images from even the best single crystals. Single-wavelength 

anomalous diffraction was used to determine the CurJ C-MT structure using ShelXD to locate 

selenium atoms 129. SOLVE and RESOLVE were used to determine initial phases, perform density 

modification (figure of merit = 0.216) and build a partial initial model through AUTOSOL in the 

Phenix software suite 130, 131. Phenix AUTOBUILD was used to build 68% of the model. The native 

crystal form was solved by molecular replacement using a complete model from the SeMet crystal 

form using Phaser through the Phenix software suite.  

Iterative rounds of model building and refinement were carried out to complete the models 

using Coot and Phenix Refine with eight translation/liberation/screw groups 132. Electron density 

is complete for all but the C-terminal nine amino acids of the recombinant protein and includes 

residues of the TEV sequence. The final structures were validated with MolProbity (Figure 2.2, 

Figure 2.3, Table 2.2) 133. Docking of the natural CurJ C-MT substrate was performed using 

Autodock Vina 134 and manually edited. Tunnels were computed using default parameters in 

CAVER 135. Figures were prepared in PyMOL 136 and sequence alignments were carried out using 

Clustal 137 in Jalview 138. The dendogram was created in Jalview calculated with the average 

distance using BLOSUM62. The I-TASSER server was used to generate the homology model of 

the CurJ KR 139-141. Atomic coordinates and structure factors have been deposited in the Protein 

Data Bank: 5THY (SeMet CurJ C-MT), 5 THZ (wild type CurJ C-MT). 
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Table 2.2  C-MT crystallographic information 

Data Collection SeMet Wild type 
Space group P21 P21 
Cell Dimensions   
a,b,c (Å) 48.4, 130.4, 62.8 46.1, 129.13, 63.1 
α, β, γ (°) 90, 112.0, 90 90, 111.5, 90 
X-ray Source APS 23ID-D APS 23ID-D 
Wavelength (Å) 0.979 1.033 
dmin (Å) 2.09 (2.16-2.09)a 2.10 (2.18-2.10) 
R-merge 0.1630 (1.500) 0.1508 (1.048)
Inner-shell R-merge 0.053 (9.3 Å)b 0.049 (6.2 Å) b 
Avg I/σ (I) 8.25 (1.66) 9.3 (1.37) 
Completeness (%) 99.6 (99.6) 100 (100) 
Multiplicity 10.8 (10.4) 6.6 (6.6) 
Total observations 463,157 (44,285) 263,797 (26,230) 
CC1/2 0.995 (0.409) 0.997 (0.703)
CC* 1 (0.901) 0.999 (0.909)
Refinement   
Data range (Å) 44.48-2.09 43.43-2.10 
Reflections used in refinement 42,794 39,893 
Rwork/Rfree (%) 16.9/21.6 18.5/25.2 
Number of non-hydrogen atoms 6355 6220 
  macromolecules 6049 6040 
  ligands 40 19 
  water 328 214 
Amino acid residues 765 765 
Deviation from ideality   

bond lengths (Å) 0.003 0.007 
bond angles (°) 0.60 0.92 

Average B-factor 46.3 51.9 
  protein 46.0 52.0 
  ligands 86.3 70.3 
  solvent 46.8 44.5 
Ramachandran plot   

favored (%) 98 96 
allowed (%) 2.5 3.4 
outliers (%) 0 0.4 

PDB 5THY 5THZ 
aValues in parentheses pertain to the outermost shell of data. 
bdmin inner shell 
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 Table 2.3 Scaling statistics for SeMet substituted CurJ C-MT (PDB ID 5THY) 

 
Table 2.4 Scaling statistics for native CurJ C-MT (PDB ID 5THZ) 

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

9.33 4751 917 952 96.30% 5.30% 25.74 99.5
6.6 9652 1736 1758 98.70% 6.10% 22.78 99.7

5.39 12627 2212 2214 99.90% 8.20% 19.42 99.5
4.67 13783 2649 2673 99.10% 7.60% 19.69 99.4
4.17 17013 3009 3023 99.50% 8.20% 20.26 99.4
3.81 19730 3351 3360 99.70% 10.30% 18.79 99.4
3.53 19672 3579 3591 99.70% 14.00% 15.83 99.1
3.3 20644 3887 3900 99.70% 16.10% 13.51 98.5

3.11 23017 4159 4160 100.00% 19.90% 11.7 98.3
2.95 24519 4368 4377 99.80% 28.00% 9.22 96.7
2.81 25149 4591 4618 99.40% 34.80% 7.6 95.6
2.69 25745 4818 4815 100.10% 43.70% 6.4 91.8
2.59 26860 5004 5021 99.70% 53.10% 5.31 89.3
2.49 28835 5194 5230 99.30% 65.40% 4.63 85.4
2.41 30358 5356 5357 100.00% 73.20% 4.24 83.1
2.33 31799 5588 5607 99.70% 85.70% 3.61 76.1
2.26 31385 5769 5808 99.30% 98.10% 3.04 65.9
2.2 31616 5905 5900 100.10% 109.40% 2.67 60.5

2.14 34176 6144 6178 99.40% 126.80% 2.3 52.9
2.09 31826 6233 6255 99.60% 150.00% 1.66 40.9

Total 463157 84469 84797 99.60% 16.30% 8.25 99.5

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

6.19 9996 1588 1610 98.60% 4.90% 32.67 99.8 
4.4 18669 2820 2828 99.70% 6.70% 26.92 99.7
3.6 23050 3598 3613 99.60% 8.90% 22.41 99.6

3.12 29873 4259 4265 99.90% 14.50% 14.74 99.3
2.79 32062 4856 4864 99.80% 25.70% 7.93 98.1
2.55 34617 5289 5303 99.70% 42.20% 4.55 95.2
2.36 39413 5820 5826 99.90% 57.40% 3.04 92.2
2.21 40026 6166 6177 99.80% 84.90% 1.97 94.0
2.08 37616 6194 6615 93.60% 105.10% 1.27 68.4

Total 265322 40590 41101 98.80% 15.10% 9.15 99.7
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Figure 2.2 Ramachandran plots for CurJ C-MT SeMet 
Ramachandran plots of final refined model of SeMet labeled CurJ C-MT (PDB ID 5THY). Plots 
were generated using MolProbity133. 
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Figure 2.3 Ramachandran plots for native CurJ C-MT  
Ramachandran plots of final refined model of Native CurJ C-MT (PDB ID 5THZ). Plots were 
generated using MolProbity133 
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Enzyme assays 

25 M enzyme (CurJ C-MT,  JamJ C-MT, or variants) was incubated with 100 M JamJ 

ACP, 10 M Streptomcyes verticillus phosphopantethinyl transferase (SVP) 142, 1 mM MgCl2, 1 

mM SAM, and 500 M malonyl-CoA, acetoacetyl-CoA, or DL--hydroxybutyryl-CoA in 50 mM 

HEPES pH 7 (phosphopantetheine ejection) or 7.4 (intact protein), 150 mM NaCl (total volume 

50 L). Reactions were incubated at 30°C for 6 hr (phosphopantetheine ejection) or overnight 

(intact protein) and quenched with 1% (v/v) formic acid. JamJ ACP from the jamaicamide pathway 

of another Moorea producens strain 24 (82% identical to CurJ ACP) was used as a surrogate due 

to the toxicity of CurJ ACP to E. coli 48. Nearly identical levels of activity were observed for CurJ 

and JamJ C-MT (Figure 2.6f), indicating that the JamJ ACP is a suitable surrogate for CurJ ACP. 

NAC-linked substrates (5, 7, Figure 2.6) were synthesized as previously described 143. For NAC-

linked substrate reactions 25 M C-MT was incubated overnight at 25 °C with 1 mM SAM and 

500 M 5 or 7 in 50 mM HEPES 7.4, 150 mM NaCl (50 L). Reaction mixtures were quenched 

with 150 L methanol. Portions of the reaction mixes for ACP-linked substrates (10 L) and NAC-

linked substrates (20 L) were used for LC-MS analysis (Agilent 6520 Accurate Mass Q-TOF in 

the positive mode equipped with an Agilent 1290 HPLC system). Separation of samples for intact 

protein analysis and phosphopantetheine (Ppant) ejection was performed using reverse phase 

chromatography (Aeris widepore C4 column 3.6 m, 50 x 2.10 mm) at a flow rate of 0.5 mL/min. 

Protein was eluted using a gradient of 5-100% B over 4 min (A- H2O with 0.2% (v/v) formic acid, 

B- acetonitrile with 0.2% (v/v) formic acid). Intact protein data were analyzed using the Agilent 

Mass Hunter Qualitative Analysis software with the maximum entropy deconvolution algorithm. 

Abundance of holo, acetoacetyl, and methylated acetoacetyl phosphopantetheine ejection masses 

were used to determine percent conversion of CurJ C-MT variants 34. Data were normalized to 

exclude the spontaneous hydrolysis product (holo-ACP) of acetoacetyl or -methyl-acetoacetyl-

ACP. Three independent reactions were conducted and analyzed for each C-MT variant in the 

phosphopantetheine ejection assay. NAC-linked reaction mixes were separated using a 

Phenomenex Kinetix reverse-phase C18 column (40 mm x 2.1 mm, 2.6 m) at a flow rate of 0.5 

mL/min. Substrates were eluted using a gradient of 5-100% B over 4 min (A- H2O with 0.2% (v/v) 

formic acid, B- acetonitrile with 0.2% (v/v) formic acid).  
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Results and Discussion 

Identification of C-MT domain boundaries 

C-MT domains within PKS modules have been annotated through identification of MT 

motifs (Figure 2.4). However, all have a large unannotated region between the preceding catalytic 

domain and MT motif I, for example 228 amino acids following the DH domain of CurJ.  Moreover 

C-MTs from cis-AT and trans-AT PKS pathways cluster separately in a phylogenetic tree (Figure 

2.5) 21, and have distinct positions within PKS modules, typically preceding KR domains in cis-

AT pathways and following KR domains in trans-AT pathways.  

The C-MT N-terminal extension is less conserved than the MT core (for example, 30% 

identity for the CurJ N-terminal extension and 50% for the MT core compared to the homologous 

regions of the GphI C-MT from the myxobacterial gephyronic acid pathway 21). However, the N-

terminal extension is likely to have a defined structure, as it is highly conserved among 

cyanobacterial C-MTs, (for example, 78% identity to CrpA from Nostoc sp. ATCC 53780 89). We 

identified approximate domain boundaries based on a multiple sequence alignment of C-MTs from 

cyanobacterial PKS pathways, created fifteen constructs encoding the CurJ C-MT with various N- 

and C-termini (Table 2.5), and tested twelve for production of soluble protein. Ultimately, CurJ 

residues 1269–1658, herein referred to as 1–390, yielded a pure, stable, recombinant C-MT domain  

Table 2.5 Solubility of CurJ protein fragments 

CurJ Fragment Protein Solubility 

1246-1644 Insoluble 

1274-1644 Insoluble 

1244-1648 Soluble 

1251-1648 No Expression 

1257-1648 Soluble 

1264-1648 Soluble 

1269-1648 Soluble 

1244-1658 Soluble 

1251-1658 Soluble 

1257-1658 Soluble 

1264-1658 Soluble 

1269-1658 Soluble 
 



 

29 
 

 

 

Figure 2.4 Sequence alignment of PKS C-MTs with CurJ C-MT secondary structure 
annotation 
Key amino acids in or near the active site are indicated by asterisks, including the His280-Glu306 
dyad, Tyr169, Thr208, Asn277, Asp329 and Arg333 (His1548-Glu1574, Tyr1437, Thr1476, 
Asn1545, Asp1597, Arg1601 in CurJ).  Amino acid numbers in the figure correspond to the C-MT 
domain within each multi-domain protein.  The CurJ C-MT sequence numbering the text (1-390) 
corresponds to CurJ residues 1269-1658. Accession codes for each protein are given in the Figure 
2.5 caption. 
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Figure 2.5 Dendogram of PKS C-MT domains.  
mFAS ΨMT, green; cis-AT pathway C-MTs, cyan; trans-AT pathway C-MTs, purple; fungal 
pathway C-MTs, red. Pathway abbreviations (GenBank accession codes) are as follows. FAS 
ΨMT - Sus scrofa (NM_001099930.1), Cur- curacin A (HQ696500.1), Jam- jamaicamide 
(AY522504.1), Crp- cryptophycin (EF159954.1), Hct- hectochlorin (AY974560.1), Mcy- 
microcystin (KC699835.1), Gph- gephyronic acid (KF479198.1), Leu- leupyrrin (HM639990.1), 
Epo- epothilone (AF217189.1), HMWP1- yersiniabactin (AE009952.1), Dsz- disorazole 
(DQ013294.1), Bat- batumin (GU479979.1), Sor- sorangicin (HM584908.1), Rhi- rhizoxin 
(AM411073.1), Mmp- mupirocin (AF318063.3), Bon- bongkrekic acid (AFN27480.1), Cal- 
calyculin (AB933566.1), Bry- bryostatin (EF032014.1), Cor- corallopyronin (HM071004.1), Lov- 
lovastatin (AF151722.1, AH007774.2), FUSS- fusarin C (AY604568.1), CNKS- compactin 
(AB072893.1), SQTKS- squalestatin synthase (AY217789.1), FUMS- fumonisin (AY495601.1). 
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that was monomeric in solution as determined by size exclusion chromatography (data not 

shown). 

Methyltransferase activity 

Based on precedent for C-methylation in PKSs, we expected that CurJ C-MT would act on 

either malonyl-ACP via Route 2 or the -ketoacyl intermediate formed after KS-condensation via 

Route 1 (Figure 2.1b) 84, 99, 101-103. As native CurJ substrates were unavailable, acetoacetyl-ACP 

(1) was tested using an assay based on intact protein mass spectrometry (MS). Complete 

conversion of acetoacetyl-ACP (1) to -methyl-acetoacetyl-ACP (2, Figure 2.6a) was observed by 

LC-MS. However, no methylation occurred with malonyl-ACP (3, Figure 2.6c), establishing that 

CurJ follows Route 1 and not Route 2.  

We also tested a potential methylation Route 3 where the C-MT acts after KR reduction of 

the β-ketoacyl intermediate, i.e. on the β-hydroxyacyl intermediate. Reactions performed with DL-

β-hydroxybutyryl-ACP (4) to mimic the β-hydroxy intermediate failed to generate a methylated 

product (Figure 2.6e), indicating that the C-MT is specific for the -ketoacyl intermediate. CurJ 

C-MT also methylated an N-acetyl cysteamine (NAC-) linked -ketopentanoyl substrate (5, Figure 

2.6b) to (6), but not -hydroxypentanoyl-NAC (7) (Figure 2.6d). 

 

Table 2.6. Expected and observed mases of ACP species and Ppant ejection fragments  

Species 

Intact 
protein 

calculated 
mass (Da) 

Observed 
mass (Da) 

Ppant 
ejection 

calculated 
mass (Da) 

Ppant 
ejection 
observed 
mass (Da) 

Apo ACP 18108.3    
Holo ACP 18448.4 18448.9 261.13 261.13 

Malonyl ACP 18534.4 18535.4 347.13 347.14 
Methylmalonyl ACP 18548.4 None 361.14 None 

Acetoacetyl ACP 18532.4 18532.8 345.15 345.16 
Methyl-acetoacetyl ACP 18546.4 18547.1 359.16 359.17 

D,L- -hydroxybutyryl ACP 18534.3 18535.5 347.16 347.18 
Methyl D,L- -hydroxybutyryl 

ACP 
18548.5 None 361.18 None 
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Figure 2.6 LC-MS analysis of C-MT activity. 
Extracted ion counts are shown in red for reactions via Route 1 in a. acetoacetyl-ACP (1) and b. 
-ketopentanoyl-NAC (5), via Route 2 in c. malonyl-ACP (3), and via Route 3 in d. -
hydroxypentanoyl-NAC (7) and e. D,L--hydroxybutyryl-ACP (4). Blue traces are no-enzyme 
control reactions; green traces are no-substrate control reactions. See Table 2.6 for expected 
masses and Figure 2.7 for mass spectra of total ion chromatographs of acyl-NACs. f. Relative 
methylation activities of wild type CurJ C-MT, JamJ C-MT, and CurJ C-MT site-directed mutants 
with acetoacetyl-ACP (1) in an MS assay based on phosphopantetheine ejection (Figure 2.8). NEC 
= no enzyme control. 
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Figure 2.7 Mass spectra of CurJ C-MT reactions on NAC substrates 
Electrospray-injection (ESI) MS of CurJ C-MT reaction mixes for LC peaks in Figs. 2.6b, d. a. -
ketopentanoyl-NAC substrate (5) peak with LC elution at 3.1 min. b. -ketopentanoyl-NAC 
product (6) peak at 3.5 min. c. -ketopentanoyl-NAC standard (5) peak at 3.1 min. d. -
hydroxypentanoyl-NAC substrate (7) peak at 3.1 min. e. -hydroxypentanoyl-NAC substrate (7) 
standard at 3.1 min.  Calculated masses are given beneath each molecular drawing. 
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Figure 2.8 Representative data from acetoacetyl-ACP Ppant ejection assay  
A phosphopantetheine ejection method was used to detect the acetoacetyl substrate (345.17 Da) 
and -methyl-acetoacetyl product (359.17 Da), which were detected and quantified by HR-MS. 
See Table S1 for observed and expected masses. a. Total ion chromatograph for LC trace of 
reaction mix, red; no-enzyme control, blue. b. Deconvoluted ESI-MS for peak eluted between 3.5-
4.5 min of ACP-linked substrate and products. A substantial amount of holo-ACP was detected 
due to the instability of acetoacetyl-ACP. c. ESI-MS of phosphopantetheine ejection fragments 
from the no-enzyme control reaction (blue trace in A and B). d. ESI-MS of phosphopantetheine 
ejection fragments from the C-MT reaction (red trace in A and B). 

 

Methylation of the -ketoacyl intermediate via Route 1 is the most thermodynamically 

favorable for the formation of the carbanion nucleophile. Among the potential substrates via 

Routes 1, 2 and 3, the -ketoacyl intermediate has the lowest pKa ~10 due to the flanking 

carbonyls. By contrast, the pKa of the -proton in malonyl-ACP is several units higher as a result 

of the carboxylate anion. Additionally, the -hydroxy intermediate produced by the KR has the 

least acidic -proton with a pKa estimated ~21, making it the least favorable substrate for methyl 

transfer.  



 

35 
 

 

Structure of CurJ C-MT 

The crystal structure of selenomethionine-labeled CurJ C-MT was solved to 2.1 Å by 

single-wavelength anomalous diffraction (SAD) phasing (Figure 2.9 and Table 2.2). The CurJ C-

MT has a class I MT core domain for SAM binding (residues 1–27, 172–306, 342–381), comprised 

of a seven-stranded -sheet flanked by -helices. A 32-residue insertion (307-341, including helix 

13) between -strand 8 and helix 14 of the MT core distinguishes the PKS C-MT from a minimal 

class I MT (Figure 2.9). The “core insertion” extends over the active site, and is conserved in PKS 

C-MTs from cis-AT (49% identity to GphI C-MT), trans-AT (44% to RhiB) and fungal PKS 

pathways (44% to SQTKS) (Figure 2.4). The mFAS -MT has a homologous 26-residue insertion 

in the equivalent position (Figure 2.10).   

Much of the unannotated N-terminal extension of CurJ C-MT forms a helical “lid” over 

the MT core. The large lid (residues 28–171) includes eight helices and a three-stranded β-sheet 

and is connected to the core by a “lid-to-core junction” containing helices 7 and 8 (Figure 2.9). 

Helices 1 and 2 (Figure 2.9) form a long amphipathic N-terminal helical “seatbelt” (residues 9–

54) that wraps around the MT core and extends into the lid. Nearly all other C-MTs from bacterial 

cis-AT pathways contain a lid of similar length with an amphipathic sequence at the N-terminus 

(Figure 2.4), suggesting that the seatbelt is present in nearly all of them.  The seatbelt serves an 

architectural function of bringing together the N- and C-termini at the bottom of the core domain 

(15 Å separation). This is analogous to the mFAS -MT, which lacks helix 1 of the seatbelt and 

instead contributes a -strand to the core -sheet, bringing the domain termini within ~20 Å of one 

another (Figure 2.10). The mFAS -MT lid is a truncated variant of the PKS C-MT lid. 

Knowledge of the C-MT domain boundaries within CurJ allowed us to locate a key 

structure element of the CurJ KR domain (Figure 2.11).  An extended -ribbon is an integral part 

of PKS KR domains, which are comprised of structural (KRS) and catalytic (KRC) sub-domains 2.  

The extended -ribbon contributes to the -sheets of both KRS and KRC, but its two -strands lie 

within inter-domain linker sequences, generally flanking the KRS sub-domain2-5, 52, 58, 144-147.  

However, in CurJ the highly conserved first -strand of the KR -ribbon does not flank KRS, but 

is located between the DH and C-MT domains (amino acids 1254–1261, nine residues following 

the DH and eight residues preceding the C-MT, Figure 2.11).  Interestingly, the first -strand of 

the mFAS KR -ribbon is located in the analogous location between DH and -MT domains.
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Figure 2.9 CurJ C-MT structure. 
a. CurJ C-MT colored as a rainbow from blue (N-terminus) to red (C-terminus), shown in stereo. 
SAH is shown in sticks with atomic colors (C, gray; O, red; N, blue; S, yellow). b. CurJ C-MT 
colored by structure region. Helical seatbelt, blue; lid, dark blue; lid-to-core junction green; core, 
cyan; core insertion, orange; SAH, sticks with gray C. The transparent gray surface represents the 
substrate tunnel, which is lined with hydrophobic residues (Ile35, Phe157, Leu168, Val174, 
Ala307, Trp313, Val314, Phe318, Leu338).  The CurJ C-MT substrate and phosphopantetheine 
(sticks with magenta C) were modeled into the active site. The views in A and B are from opposite
sides of the C-MT. 
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Figure 2.10 Comparison of CurJ C-MT and mFAS ΨMT 
Comparison of CurJ C-MT and mFAS ΨMT. a. Overlay of CurJ C-MT and mFAS ΨMT 
superimposed in their MT core domains, in stereo. CurJ C-MT is colored in cyan with junction 
and core insertion colored as in Figure 2.9b. The ΨMT is shown in yellow. SAH is shown in sticks. 
The CurJ C-MT and mFAS superimpose well (RMSD of 1.3 Å for 80 C atoms); an insertion to 
the MT core exists at the same location in both proteins and is shown in orange for the C-MT.  b. 
CurJ C-MT. Lid and junction helices homologous to the mFAS ΨMT lid helices are denoted with 
stars. c. mFAS ΨMT. The structure of mFAS Ψ lacks many features of the CurJ C-MT lid. The 
remaining lid helices, denoted with stars, are homologous in structure to helices in the CurJ C-MT 
lid and lid-to-core junction. 
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Figure 2.11 Architecture of PKS and mFAS modifying regions. 
The -ribbon that is both an essential part of the KR domain and also an inter-domain linker is 
orange (1st strand) and green (2nd strand). a. Model of CurJ C-MT and KR domains, arranged as 
in mFAS.  The model is based on superpositions of the CurJ C-MT core with the mFAS ΨMT 
core and of a PKS KR with the mFAS KR 1, 2. b. mFAS with DH, ΨMT, ER and KR domains 1. 
c. MAS-like PKS with DH, ER and KR domains 3. d. DEBS1 module 1 modifying region with 
KR domain only 2. DH (red), ER (yellow), KRC (purple) and KRS (light blue) domains are 
represented as surfaces, the CurJ C-MT as a ribbon colored as in Fig. 3b, the mFAS ΨMT as a 
gray ribbon, and other domains as circles.  Below each structure is a schematic of domain and -
ribbon strand arrangement colored as in the structure image. e. Sequence alignment and domain 
context of -ribbon strand 1 in CurJ, DEBS module 1 2, phoslactomycin module 1 4, spinosyn 
module 2 5, MAS-like PKS 3 and mFAS 1.
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Together with the similarity of the C-MT and -MT structures and the similar positions of their 

N- and C-termini, this remarkable evolutionary conservation is a strong indication that the 

modifying region of CurJ (DH–C-MT–KR–ACP) and other PKS modules is organized similarly 

to the modifying region of mFAS (DH––MT–KRS–ER–KRC–ACP), and that the structure of 

mFAS 1 can guide modeling of the PKS module modifying region (Figure 2.11a). 

Active site architecture 

A hydrophobic tunnel between the MT core and the lid is long enough to accommodate the 

full CurJ C-MT substrate (Figure 2.9b), consistent with the observed activity on the hydrophobic 

-ketoacyl substrate via Route 1, and the lack of activity with the negatively charged malonyl-

ACP. S-adenosyl-L-homocysteine (SAH) was bound in the MT core below the tunnel, supported 

by clear electron density (Figure 2.12). The conserved side chains of His280 and Glu306 form a 

hydrogen-bonded dyad 8 Å from the SAH (Figure 2.13). The His-Glu dyad is invariant in all 

bacterial and fungal PKS C-MTs, thus the imidazole may act as a catalytic base to deprotonate the 

substrate -carbon and form a carbanion nucleophile to facilitate the MT reaction. The reactivity 

of the His-Glu dyad may be enhanced by the surrounding hydrophobic environment (conserved 

Ala281, Phe318, Trp324, Pro337, Leu338, Trp344). Additionally, conserved Tyr169 is ~4 Å from 

the presumed SAM sulfonium position, and may facilitate methyl transfer through a CH-O 

hydrogen bond with the SAM methyl 148. The invariant Asn277 side chain points into the active 

site between SAH and the His-Glu dyad. Given its conservation and proximity to the SAM 

sulfonium, Asn277 could play a role in substrate positioning.   

Remarkably, the SAH homocysteine and nearby amino acids are the least well ordered 

regions of the active site.  The two slightly different crystal forms (Table 2.2) provided four 

independent views of the C-MT and revealed small differences in position for the SAH 

homocysteine, helix 8 in the lid-to-core junction, and MT motif I, which coordinates the 

SAM/SAH carboxylate (Figure 2.14, Figure 2.12).  For two of the four C-MT views, density 

indicated partial disorder for Tyr169 in helix 8 and for the SAH homocysteine, and multiple 

positions for Thr208 in motif I.  In contrast, the SAH adenosine and His-Glu dyad are identically 

positioned and supported by strong density in all four views.  The His280 position is stabilized by 

two hydrogen bonds within the 277-282 loop and by backbone hydrogen bonds with the conserved 

Arg333 side chain in the core insertion (Figure 2.13). These observations indicate that the 

substrate-binding region of the active site is flexible in absence of -ketoacyl-ACP.  
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The CurJ C-MT core loops, the core insertion, and the lid-to-core junction surround the 

entrance to the active site, and amino acids in these regions are likely to interact with the ACP 

(Figure 2.9b, Figure 2.13). An analogous core insertion exists in the only other structurally 

characterized SAM-dependent enzyme with an ACP-linked substrate, cyclopropane synthase of 

mycolic acid biosynthesis 149. As with cyclopropane synthase, the position and the highly 

conserved sequence of the PKS C-MT core insertion are consistent with a role in ACP 

recognition. 

 

 

 
Figure 2.12 Omit density for SAH 
Omit density (Fo-Fc, contoured at 3) for SAH for the two copies of CurJ C-MT in the SeMet 
crystal form.a. chain A, b. chain B. The C-MT is colored by structure region: dark blue lid, green 
lid-to-core junction, cyan core, orange core insertion. Hydrogen bonds between SAH and 
conserved active site residues are shown as dashed lines. Density is excellent for the adenosine 
moiety of SAH, but the weaker density for the homocysteine portion indicates motion, as do the 
differences in protein structure shown in Figure 2.14. 
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Figure 2.13 CurJ C-MT active site. 
Key amino acids, modeled substrate (magenta C), and SAH (white C) are shown in sticks. The 
MT core is represented as a transparent surface with ribbon. The junction and core insertion are 
shown as ribbons. C-MT structural regions are colored as in Figure 2.9b. 
 

 

Figure 2.14 Movement surrounding the CurJ C-MT active site. 
Structural regions are colored as in Figure 2.9b. a. Closely related SeMet and wild type CurJ C-
MT crystal forms (light and dark colors) are different in the lid-to-core junction and SAH 
homocysteine position. b. The position of Thr208 in MT motif I differs in the two C-MT chains 
in the SeMet crystal form. 
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Activity of CurJ C-MT with active site substitutions 

To probe the role of conserved amino acids in the active site, CurJ C-MT variants were 

produced and activity was evaluated using a phosphopantetheine (Ppant) ejection mass 

spectrometry assay (Figure 2.6f, Figure 2.8) 150. Substitutions in the active site His-Glu dyad 

abolished activity, consistent with their proposed role as a catalytic dyad. The melting temperatures 

of the wild type and the His variants were comparable (Table 2.7), indicating that the reduced 

activity was not due to a decrease in the structural integrity of the protein. A Y169F variant had 

three-fold reduced activity, in agreement with a role in facilitating the methyltransfer reaction. The 

N277A variant reduced activity two-fold suggesting that it plays a role in substrate recognition or 

positioning in the active site. 

Table 2.7 Thermal stability of CurJ C-MT variants 

 

 

 

 

 

 

 

Substrate modeling  

His208, the strongest candidate for a catalytic base, is 8 Å from the SAM sulfonium on the 

opposite side of the active site. We modeled the full-length CurJ C-MT substrate into the active 

site tunnel, as attempts to soak small molecule NAC substrates (5, 7, Figure 2.6) yielded additional 

but uninterpretable density at the presumed substrate binding site between SAH and His280. The 

full length CurJ C-MT substrate was docked between the MT core and lid domain and manually 

edited to orient the α-carbon in line with the sulfonium (Figure 2.9b, Figure 2.13). While the tunnel 

can accommodate the full substrate, the sulfonium and His280 were too far apart for both to 

interact with the -carbon of the -ketoacyl intermediate (Figure 2.13). Additionally, hydrogen-

bonding partners that could stabilize an enolate intermediate were not apparent. Thus, we propose 

that -ketoacyl-ACP binding leads to small movements of the flexible active site elements (lid-to-

core junction, core insertion and adjacent loops) and positions the substrate -carbon, SAM 

methionine, Tyr169 and enolate-stabilizing hydrogen bonding partners closer to the His-Glu dyad 

 Variant Tm (°C) 
CurJ C-MT 
WT

57.17 +/- 0.15 

H1548N 58.57 +/- 0.93 

N1545A 52.50 +/- 0.00 

E1574A 54.53 +/- 0.15 

Y1437F 57.33 +/- 0.06 
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and in optimal positions for methyl transfer. Due to the open active site in the crystal structures, 

we are unable to predict the stereochemical outcome of the reaction.  Additionally, the acidity of 

the newly formed stereogenic proton precludes chemoenzymatic assignment. The chiral center in 

the CurJ C-MT product is eliminated by action of the CurJ DH, which catalyzes formation of a 

vinyl-methyl functionality in the curacin polyketide chain.  

Similarities of CurJ C-MT to other PKS C-MTs 

The CurJ C-MT structure is an excellent model for a pre-catalytic state of C-MTs 

embedded in PKS modules. These PKS MTs share several distinguishing features including the 

active site His-Glu dyad, the lid-to-core junction helices, and the MT core insertion (Figure 2.4). 

Overall, C-MTs from trans-AT pathways and fungal iterative PKSs have lid domains 

approximately 30 residues shorter than the CurJ C-MT and others from cis-AT pathways (Figure 

2.4, Figure 2.9). Some PKS C-MTs produce gem-dimethyl products 20, 101, 103, which the spacious 

C-MT active site could facilitate by substrate re-orientation between methyl-transfer reactions. 

Although the natural CurJ C-MT substrate is quite long, the domain was capable of methylating 

shorter -keto acyl substrates, such as acetoacetyl-ACP. This is in contrast to the fungal LovB C-

MT, which was selective for substrates of similar length to the native substrate and had no activity 

on an acetoacetyl analog 99. Increased substrate specificity in iterative fungal C-MTs relative to 

bacterial type I PKS C-MTs can be rationalized, as fungal C-MTs have evolved to be active in 

specific rounds of the iterative catalytic cycle, whereas PKS C-MTs will encounter only one -

ketoacyl-ACP during the single round of catalysis within the module.  

The biochemical and structural characterization of the CurJ C-MT is consistent with 

previous findings that monomethylating PKS C-MTs act on -ketoacyl intermediates following 

KS mediated chain elongation, and further shows no activity with -hydroxyacyl intermediates. 

Additionally, the structure provides new insights regarding the mechanism of -methylation in 

both bacterial and fungal PKS C-MTs, including identification of a conserved His-Glu dyad and 

other active site elements that are flexible in absence of the methyl acceptor substrate. Similarities 

of the CurJ C-MT and mFAS -MT structures suggest that PKS C-MTs may share a similar 

position within a module as the -MT within the mFAS. 
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Summary 

Modular type I polyketide synthases (PKSs) produce some of the most chemically complex 

metabolites in nature through a series of multi-enzyme modules. Each module contains a variety 

of catalytic domains to selectively tailor the growing molecule. PKS O-methyltransferases (O-

MTs) are predicted to methylate β-hydroxyl or β-keto groups but their activity and structure have 

not been reported. We determined the domain boundaries and characterized the catalytic activity 

and structure of the StiD and StiE O-MTs, which methylate opposite β-hydroxyl stereocenters in 

the myxobacterial stigmatellin biosynthetic pathway. Like other PKS modification domains, the 

O-MTs displayed substrate stereospecificity. Key catalytic residues were identified in the crystal 

structures and investigated in StiE O-MT via site-directed mutagenesis and further validated with 

the cyanobacterial CurL O-MT from the curacin biosynthetic pathway. Initial structural and 

biochemical analysis of PKS O-MTs supplies a new chemoenzymatic tool, with the unique ability 

to selectively modify hydroxyl groups during polyketide biosynthesis.  

Introduction 

Polyketides comprise a wide variety of bioactive natural products, including clinically 

effective antibiotic18, antiparasitic151, immunosuppressant106, and chemotherapeutic agents152. 

Modular type I polyketide synthases (PKSs) use a series of multienzyme modules to biosynthesize 

chemically complex polyketides with exquisite stereospecificity and regioselectivity from acyl-

coenzyme A (CoA) building blocks.153 First, the acyltransferase (AT) selects an acyl group (e.g. 

malonyl, methylmalonyl) from CoA and delivers it to the acyl carrier protein (ACP), which tethers 

polyketide intermediates via a phosphopantetheine (Ppant) cofactor throughout the enzymatic 
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assembly line. The acyl group is condensed with the growing polyketide chain by the ketosynthase 

(KS), elongating the core scaffold of the polyketide by two carbons to produce a β-keto 

intermediate. The β-keto polyketide can undergo a series of chemical transformations based upon 

the nature of the modification domains within the module.  

Modification domains give rise to the stereochemical complexity and rich chemical 

diversity of polyketides.154 C-methyltransferases (C-MTs) introduce an (R)-α-methyl to the β-keto 

intermediate.155 Ketoreductases (KRs) stereoselectively reduce the β-keto to a β-hydroxyl 

group.156 KR stereoselectivity can be correlated to sequence motifs that identify the KR as A-type 

or B-type, which produce β-hydroxyl groups in S- and R-configurations, respectively.157 The 

resulting β-hydroxyl can be dehydrated to a cis- or trans-α,β-double bond by a dehydratase 

(DH).158-161 Finally, an enoyl reductase (ER) can catalyze reduction of the α-enoyl polyketide and 

reintroduce a stereocenter in intermediates with an α-methyl substitutient.162, 163 The stereospecific 

and regioselective control provided by the modular nature of PKSs has sparked significant interest 

in the rational design of PKS pathways for the production of new pharmaceuticals and other high 

value commodity chemicals.164 

O-methyltransferases (O-MTs) are not canonical PKS domains, but are embedded in PKS 

modules of several pathways generally of myxobacterial or cyanobacterial origin.19, 23, 24, 107-115 O-

MTs are predicted to methylate β-hydroxyl or β-keto groups yielding the respective β-methoxy or 

enol methylether products (Figure 3.1).113 Based upon the well established sequence motifs for 

binding the (S)-adenosylmethionine (SAM) methyl donor,125 the PKS O-MTs are members of the 

large and diverse class I MT superfamily. However, the sequences diverge significantly from MTs 

of known structure, including the PKS C-MTs.117, 165 The biosynthetic pathway for stigmatellin, 

an electron transport inhibitor and antifungal agent from the myxobacterium Stigmatella 

aurantiaca, contains two O-MTs, which share 40% sequence identity.19 The structure of the 

terminal polyketide product and sequence analysis of the KR domains indicate that StiD O-MT 

methylates an (S)-β-hydroxyl (Figure 3.1a) produced by the A-type KR encoded in stiD, whereas 

StiE O-MT methylates an (R)-β-hydroxyl (Figure 3.1b) produced by the StiE B-type KR. As the 

two O-MTs act on opposite stereocenters, we chose the stigmatellin pathway as a model system to 

investigate PKS O-MT structure and function. Biochemical results were further validated with the 
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CurL O-MT from the cyanobacterial curacin biosynthetic pathway23. Like StiE O-MT, CurL O-

MT is predicted to methylate an (R)-β-hydroxyl group (Figure 3.1b).  

Experimental Procedures 

Construct design 

All primers are listed in Table 3.1 StiD and StiE constructs were amplified from codon 

optimized DNA (IDT) encoding regions of stiD (CAD19088.1) and stiE (CAD19089.1) from 

Stigmatella aurantiaca Sg a15.19 CurL constructs were amplified from a cosmid library.23 

Constructs encoding StiD O-MT (residues 956-1266, pMAS162; residues 976-1266, pMAS165), 

StiD ACP (residues 1794-1929, pMAS201), StiE O-MT (residues 942-1257, pMAS198), StiE 

ACP (residues 1789-1927, pMAS283), and CurL O-MT (residues 981-1315, pMAS411) were 

inserted into pMCSG7166 and a construct encoding CurL O-MT (residues 951-1315, 

pMAS/SMB134) was inserted into pMOCR167 by ligation independent cloning. stiE mutations  

  

Figure 3.1 Reactions carried out by PKS O-MTs  
O-MTs methylate a. the (S)-β-hydroxyl produced by an A-type KR or b. the (R)-β-hydroxyl 
produced by a B-type KR, resulting in a β-methoxy group. Some PKS O-MTs methylate c. a β-
keto group, resulting in an enol methylether product. O-MTs in this study are indicated below 
their predicted reactions. 
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Table 3.1 Primers for cloning O-MT constructs 

StiD  
976 F 

pMAS 
163 
164 
165 

TACTTCCAATCCAATGCCTCAGCCGTGGATGAAAGC 

StiD  
956 F 

pMAS 
160 
161 
162 

TACTTCCAATCCAATGCCGAACATCCTGTTGACGGC 

StiD  
950 F 

pMAS 
157 
158 
159 

TACTTCCAATCCAATGCCGCGAACGGGCAGGGTAAT 

StiD  
1245 R 

pMAS 
157 
160 
163 

TTATCCACTTCCAATGCTAGGTACTACGAACGTGAGAATC 

StiD  
1257 R 

pMAS 
158 
161 
164 

TTATCCACTTCCAATGCTAGGCCTCAACCCATTTCTG 

StiD  
1266 R 

pMAS 
159 
162 
165 

TTATCCACTTCCAATGCTACATCAGTTCCCGTGCCGC 

StiE 
961 F 

pMAS 
200 

TACTTCCAATCCAATGCCGCGGCGGGGGAAGACG 

StiE  
951 F 

pMAS 
199 

TACTTCCAATCCAATGCCGCTTCGTTCTACGATAGCCTG 

StiE  
942 F 

pMAS 
198 

TACTTCCAATCCAATGCCGCTTCCGAAGGTACATCAGGC 

StiE  
1257 R 

pMAS 
198 
199 
200 

TTATCCACTTCCAATGCTACGCAAATTCAGCATACGGTGTC 

StiD  
1794 F pMAS 

201 

TACTTCCAATCCAATGCCGCACTGGCCGCCTTAGG 

StiD  
1929 R 

TTATCCACTTCCAATGCTATTTACGACCTTTATTCAGCGCC 

StiE  
1789 F pMAS

283 

TACTTCCAATCCAATGCCGCTCTGCAGTCC 

StiE  
1927 R 

TTATCCACTTCCAATGCTAGGCGGTACCTGAG 

CurL 
951 F 

pMAS/ 
SMB 
134 

TACTTCCAATCCAATGCCTCAAGTTTA 

CurL 
981 F 

pMAS
411 

TACTTCCAATCCAATGCCCAAAAAATGTTGCCTAAGTTGC 

CurL 
1315 R 

pMAS/
SMB 
134 
411 

TTATCCACTTCCAATGCTAAGCTACTTCAGAGTAAGAAGA 

StiE 
Y954F F 

pMAS 
433 

AGGCATCATTGCTTCGTTCTTCGATAGCCTGGTG 



 

48 
 

 

StiE 
Y954F R 

pMAS 
433 

CACCAGGCTATCGAAGAACGAAGCAATGATGCCT 

StiE 
E1102A F pMAS 

432 

GATTTAGTGCTCGGATTTGCGGTGGCCGGACTTAT 

StiE 
E1102A R 

ATAAGTCCGGCCACCGCAAATCCGAGCACTAAATC 

StiE 
E1102Q F pMAS 

434 

TGTATGATTTAGTGCTCGGATTTCAGGTGGCCGGAC 

StiE 
E1102Q R 

GTCCGGCCACCTGAAATCCGAGCACTAAATCATACA 

StiE 
L1106H F pMAS 

435 

TGAGGTGGCCGGACATATCCCTGACAAGG 

StiE 
L1106H R 

CCTTGTCAGGGATATGTCCGGCCACCTCA 

StiE 
Y1209F F pMAS 

437 

CAACGTTCCTTTGGCAGCTTTGAGAATGTGTACAAAG 

StiE 
Y1209F R 

CTTTGTACACATTCTCAAAGCTGCCAAAGGAACGTTG 

StiE 
Y1223F F pMAS 

439 

CGGGGGCCTGATCTCCTTTGTACTGTTTCATG 

StiE 
Y1223F R 

CATGAAACAGTACAAAGGAGATCAGGCCCCCG 

CurL 
E1161A F pMAS 

428 

CAACCTGGCATTTGGATTTGCAGTAGCTCATCATATTAAGG 

CurL 
E1161A R 

CCTTAATATGATGAGCTACTGCAAATCCAAATGCCAGGTTG 

CurL 
E1161Q F pMAS 

430 

GATAATTACAACCTGGCATTTGGATTTCAGGTAGCTCATCATATTAAGGAT 

CurL 
E1161Q R 

ATCCTTAATATGATGAGCTACCTGAAATCCAAATGCCAGGTTGTAATTATC 

CurL 
Y1281F F pMAS 

429 

TGCTGTTAGTAATACAAAGCTAGCCAATCCTTTGCTCAG 

CurL 
Y1281 R 

CTGAGCAAAGGATTGGCTAGCTTTGTATTACTAACAGCA 

CurL 
Y1010F F pMAS 

416 

ATTTAAAGGTAATGTAGTTTATGACTATTTCAATTCTTTTGCAGAAATTAGTCAAG
AAA 

CurL 
Y1010F R 

TTTCTTGACTAATTTCTGCAAAAGAATTGAAATAGTCATAAACTACATTACCTTTA
AAT 

CurL 
H1165A F pMAS 

413 

GGCATTTGGATTTGAAGTAGCTCATGCTATTAAGGATAAATCGCTGTTATTT 

CurL 
H1165A R 

AAATAACAGCGATTTATCCTTAATAGCATGAGCTACTTCAAATCCAAATGCC 

CurL 
H1165N F pMAS 

412 

GCATTTGGATTTGAAGTAGCTCATAATATTAAGGATAAATCGCTGTTAT 

CurL 
H1165N R 

ATAACAGCGATTTATCCTTAATATTATGAGCTACTTCAAATCCAAATGC 

CurL 
Y1267F F pMAS 

408 

ATGTTAAGTCAGCTTTTCAATCCTTTAATCAGTTAGGTAAATTACTGAG 

CurL 
Y1267F R 

CTCAGTAATTTACCTAACTGATTAAAGGATTGAAAAGCTGACTTAACAT 

Primers are listed 5’-3’ 
Bold text indicates handles for ligation-independent cloning into expression vectors.  
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were introduced into pMAS198 (E1102A, pMAS432; Y954F, pMAS433; E1102Q, pMAS434; 

L1106H, pMAS435; Y1209F, pMAS437; Y1223F, pMAS439), curL mutations were introduced 

into pMAS/SMB134 (Y1010F, pMAS416; E1161A, pMAS428; E1161Q, pMAS430; H1165A, 

pMAS413; H1165N, pMAS412; Y1267F, pMAS408; Y1281F, pMAS429) using the 

QuickChange protocol (Stratagene). All constructs and mutations were verified by Sanger 

sequencing at the University of Michigan DNA Sequencing Core.  

Protein expression and purification 

Plasmids containing O-MTs and ACPs were transformed into Escherichia coli strain 

BL21(DE3). Transformed cells were grown in 0.5 L of TB media at 37°C supplemented with 100 

μg mL-1 ampicillin to an OD600=1-2, cooled to 20°C for 1 hr, and induced with 200 μM isopropyl 

β-D-1-thiogalactopyranoside (IPTG) for 18 hrs. Media to produce StiD, StiE, and CurL ACP was 

supplemented with a trace metal mix to insure production of apo-ACP, lacking the 

phosphopantetheine post translational modification.168 Selenomethionine (SeMet) labeled StiD O-

MT (residues 976-1266) was produced in 2L of SelenoMet medium (AthenaES) containing 150 

μg/mL seleno-DL-methionine. Cultures were grown to an OD600=0.6 at 37°C, cooled to 20°C for 

1 hr, and induced with 200 μM IPTG for 18 hrs.48 

Cell pellets were resuspended in 35 mL Tris buffer A (50 mM Tris pH 7.4, 300 mM NaCl, 

10% glycerol, 20 mM imidazole) with 0.1 mg mL-1 lysozyme, 0.05 mg mL-1 DNase, and 2 mM 

MgCl2, incubated on ice for 30 min, lysed by sonication, and cleared by centrifugation (38,760 x 

g, 30 min, 4°C). The supernatant was filtered and loaded onto a 5 mL His trap column (GE 

Healthcare). Proteins were eluted with a 5-100% linear gradient of Tris buffer B (50 mM Tris 7.4, 

300 mM NaCl, 10% glycerol, 400 mM imidazole) over 10 column volumes. The His-Tag and/or 

Mocr fusion was removed from StiD O-MT (residues 956-1266), StiE O-MT (residues 942-1257), 

CurL O-MT (residues 981-1315 and 951-1315), StiE ACP, and CurL ACP via incubation with 

tobacco etch virus (TEV) protease. The cleavage reaction mixture was dialyzed overnight into Tris 

buffer A to remove imidazole. Protein lacking the His-tag was isolated by passing over a second 

His trap column. Proteins were further purified by gel filtration (O-MTs, HiLoad 16/60 Superdex 

S200; ACPs, HiLoad 16/60 Superdex S75) in Tris buffer C (50 mM Tris pH 7.4, 150 mM NaCl, 

10% glycerol). Apparent molecular weights were determined by analytical size exclusion 

chromatography (10/300 Superdex S200 Increase equilibrated with Tris Buffer C).  
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In order to produce holo StiD ACP, 113 μM StiD ACP was incubated with 0.5 mM 

coenzyme A (CoA) and 20 μM Streptomyces verticillus phosphopantetheinyl transferase (SVP)142 

in Tris buffer C with 20 mM MgCl2 and 2 mM DTT at 20 °C overnight to produce holo-ACP. The 

His-tag was simultaneously removed by the addition of 12 μM TEV protease. Holo-ACP lacking 

the His-tag was purified from the reaction mixture by passing over a 1 mL His trap column. 

Purified holo-ACP was dialyzed into Tris buffer C. StiD ACP concentration was determined using 

the DC protein assay (BioRad). 

Production of acyl-ACPs 

N-acetylcysteamine (NAC)-linked diastereomeric triketide substrates (1, 2, 3, 4) were 

synthesized as previously reported160. Holo StiD-ACP (50 μM) was incubated with 5 mM 1, 2, 3, 

or 4 in 300 mM sodium bicarbonate pH 8.1 at 25°C for 4 hrs. ACP was buffer exchanged into 

reaction buffer (50 mM HEPES 7.4, 150 mM NaCl) and flash frozen. (3R)-3-Hydroxy-5-methoxy-

myristoyl-CoA was synthesized as previously reported38. Apo StiE-ACP (180 μM) was incubated 

with 36 μM SVP, 0.72 mM (3R)-3-hydroxy-5-methoxy-myristoyl-CoA, 20 mM MgCl2 for 1 hr at 

25°C in Tris C. The reaction mixture was passed over a 1 mL His Trap column (GE Healthcare) 

to isolate the ACP. StiE (3R)-3-hydroxy-5-methoxy-myristoyl-ACP was further purified via size 

exclusion chromatography (HiLoad 16/60 Superdex S75) equilibrated with Tris buffer C. (R)-3-

Hydroxydodecanoyl-CoA was synthesized as previously reported40. Apo CurL ACP (180 μM) was 

incubated with 20 μM SVP, 0.5 mM (R)-3-hydroxydodecanoyl-CoA, and 20 mM MgCl2 for 4 hrs 

at 25°C in Tris buffer C. The reaction mixture was passed over a 1 mL His Trap column (GE 

Healthcare) to isolate the ACP. CurL (R)-3-hydroxydodecanoyl-ACP was further purified via size 

exclusion chromatography (HiLoad 16/60 Superdex S75) equilibrated with Tris buffer C. 

Enzyme assays 

StiD triketide-ACP (1, 2, 3, 4) (50 μM) was incubated with 25 μM StiD O-MT (956-1266) 

and 0.5 mM SAM in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2. Reaction mixtures 

(10 μL) were incubated for 24 hrs at 25°C and quenched with 1% formic acid. 0.5 uL of reaction 

mixtures were subjected to LC/MS analysis. StiE (3R)-3-hydroxy-5-methoxy-myristoyl-ACP (6) 

(50 μM) was incubated with 12.5 μM StiE O-MT (942-1257) variants or StiE O-MT (961-1257) 

and 0.5 mM SAM in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2. Reaction mixtures 

(10 μL) were incubated for 15 minutes at 25°C and quenched with 1% formic acid. 1 uL of reaction 

mixtures were subjected to LC/MS analysis. CurL (R)-3-hydroxydodecanoyl-ACP (7) (50 μM) 
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was incubated with 12.5 μM CurL O-MT (951-1315) variants and 0.5 mM SAM in 50 mM HEPES 

pH 7.4, 150 mM NaCl, 0.5 mM MgCl2. Reaction mixtures (10 μL) were incubated for 10 hrs at 

25°C and quenched with 1% formic acid. 1 uL of reaction mixtures were subjected to LC/MS 

analysis. Apo StiD, StiE, or CurL ACP (50 μM) were incubated with 10 uM SVP, 200 μM 

acetoacetyl-CoA, 0.5 mM SAM and StiD O-MT (951-1315), StiE O-MT (942-1257), or CurL O-

MT (951-1315) variants in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2. Reaction 

mixtures were incubated for 24 hrs at 25°C and quenched with 1% formic acid. 1 uL of reaction 

mixtures were subjected to LC/MS analysis. 

Reaction mixtures were analyzed using the phosphopantetheine (Ppant) ejection method150, 

169 on an Agilent Q-TOF 6545. Samples were separated by reverse phase HPLC (Phenomenex 

Aeris widepore C4 column 3.6 μM, 50 x 2.10 mm) at a flow rate of 0.5 mL min-1 in H2O with 

0.2% (v/v) formic acid. Protein was eluted with a gradient of 5-100% acetonitrile with 0.2% (v/v) 

formic acid over 4 min. Data were processed using MassHunter Qualitative Analysis software 

(Agilent). Substrates and products in the StiD O-MT reactions experienced in-source decay 

yielding a conjugated dehydrated species.   

Protein crystallization and structure determination 

SeMet labeled StiD O-MT (residues 976-1266 with His-tag) was crystallized at 4°C by 

sitting drop vapor diffusion from 2:2 μL mixture of protein stock (10 mg mL-1 StiD O-MT 976-

1266 in Tris buffer C with 1 mM SAM) and well solution (27% PEG 4000, 0.77 M LiCl, 0.1 M 

Tris pH 7.0). Microseeding was used to obtain single diamond shaped crystals, which grew after 

8 days. Crystals were harvested directly from the drop and flash cooled in liquid N2. Native StiD 

O-MT (residues 976-1266 with His-tag) was crystallized at 20°C by sitting drop vapor diffusion 

from 1:1 μL mixture of protein stock (11 mg mL-1 StiD O-MT 976-1266 in Tris buffer C with 1 

mM SAM) and well solution (20% PEG 3350, 0.2 M NaF). Diamond shaped crystals grew after 

one week and were harvested directly from the drop and flash cooled in liquid N2. StiD O-MT 

(residues 956-1266, His-tag removed) was crystallized at 20°C by sitting drop vapor diffusion 

from a 2:1 μL mixture of protein stock (13 mg mL-1 StiD O-MT 956-1266 in Tris buffer C with 1 

mM SAM) and well solution (1.5 M ammonium citrate tribasic pH 7.2). Microseeding was used 

to obtain single rod-shaped crystals, which grew overnight. Crystals were cryoprotected with well 

solution supplemented with 20% glycerol and flash cooled in liquid N2. StiE O-MT (961-1257 

with His-tag), was crystallized at 4°C by sitting drop vapor diffusion from 2:1 μL protein stock 
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(11 mg/mL His-tagged StiE O-MT in Buffer C with 1 mM SAM or SAH) to well solution (10% 

PEG 3350, 0.1 M sodium formate). Microseeding was used to obtain single crystals. Square 

bipyramidal crystals grew in 3 days. Crystals were harvested directly from the drop and flash 

cooled in liquid nitrogen. StiE O-MT (residues 942-1257, His-tag removed) was crystallized at 

4°C by sitting drop vapor diffusion from a 2:1 μL protein stock (9 mg mL-1 StiE O-MT 961-1257 

in Tris buffer C with 1 mM SAM) and well solution (25% PEG 8000, 0.1 M HEPES pH 7.4) at 

4°C. Square bipyramidal crystals grew after 5 days. Crystals were cryoprotected in well solution 

supplemented with 20% glycerol and flash cooled in liquid N2. 

Diffraction data for all structures were collected at APS beamline 23ID-D or ID-B and 

processed using XDS (Tables 3.2-3.7).128 The SeMet StiD O-MT 976-1266 was solved by single-

wavelength anomalous diffraction (SAD) phasing using Phenix AutoSol170 in the Phenix Software 

suite.130 A nearly complete model was build using Phenix AutoBuild.171 Native StiD O-MT 976-

1266 was isomorphous with the SeMet crystal form. StiD O-MT 956-1266 and StiE O-MT 942-

1257 were solved by molecular replacement using Phaser172. Iterative rounds of model building 

and refinement were carried out using Coot132 and Phenix.refine173 with automated 

translation/liberation/screw group selection. Structures were validated using MolProbity (Figures 

3.2-3.6).133 Homologs in the structure database were identified using the DALI server.174 Sequence 

alignments were prepared using Clustal137 through Jalview138 and figures were prepared with 

PyMol.136 
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Table 3.2 O-MT crystallographic information 

Protein  
SeMet StiD 
976-1266 

StiD 976-1266  StiD 956-1266  StiE 961-1257  StiE 942-1257  

Ligand SAH SAH SAH SAM SAM 

Data Collection      

Space group P1 P1 P41 P43212 P43212 

Unit cell, a,b,c (Å) 38.3, 52.4, 68.7 40.2, 56.2, 72.3 71.1, 71.1, 123.0 90.9, 90.9, 84.9 88.6, 88.5, 86.1 

α,β,γ (°) 89.6, 88.3, 81.1 86.3, 84.9, 75.8 90, 90, 90 90, 90, 90 90, 90, 90 

X-ray source APS 23ID-D APS 23ID-D APS 23ID-B APS 23ID-D APS 23ID-D 

Wavelength (Å) 0.979 1.033 1.033 1.033 1.033 

dmin (Å) 
1.96  

(2.03-1.96) 
1.80  

(1.86-1.80) 
1.70 

 (1.76-1.70) 
1.42  

(1.47-1.42) 
1.90  

(1.99-1.90) 

R-merge 0.066 (0.82) 0.073 (0.74) 0.084 (2.34) 0.064 (1.03) 0.068 (2.28) 

Avg I/σ(I) 8.7 (1.1) 9.9 (1.6) 19.8 (1.1) 29.7 (2.7) 21.2 (1.1) 

Completeness (%) 96.7 (87.0) 96.7 (94.0) 99.7 (99.9) 99.2 (93.7) 100 (99.7) 

Multiplicity 3.5 (2.7) 3.5 (3.5) 13.8 (13.8) 24.3 (19.9) 13.0 (13.1) 

Total observations 
127,763 
(8,823) 

193,662  
(18,628) 

931,727 
(92,530) 

1,638,916 
(124,591) 

358,381 
(35,303) 

Wilson B factor (Å2) 38.2 27.9 31.3 18.2 41.9 

CC1/2 0.998 (0.559) 0.997 (0.597) 1.00 (0.442) 1.00 (0.803) 1.00 (0.482) 

CC* 1.00 (0.847) 0.999 (0.865) 1.00 (0.783) 1.00 (0.944) 1.00 (0.806) 

Refinement   

Data range (Å) 41.3-1.96 38.8-1.80 46.5-1.70 40.6-1.42 44.3-1.90 

Reflections  36,668 54,837 67,382 67,269 27,550 

Rwork/Rfree (%) 17.9/22.7 16.8/19.4 16.8/21.2 16.7/18.5 18.3/22.6 

Non-hydrogen atoms (#) 4,629 4,995 4,870 2,768 2,480 

  protein 4,461 4,628 4,506 2,462 2,311 

  ligands 52 52 52 27 27 

  water 116 314 312 315 118 

Amino acid residues 554 564 561 279 282 

Deviation from ideality      

   bond lengths (Å) 0.004 0.007 0.014 0.005 0.007 

bond angles (°) 0.99 1.15 1.24 0.88 0.84 

Average B-factor (Å2) 54.6 42.4 48.0 30.5 69.9 

   protein 54.7 42.1 47.6 29.5 70.3 

   ligands 54.3 53.9 74.2 18.7 58.1 

   solvent 51.0 45.7 50.1 39.2 60.9 

Ramachandran plot      

favored (%) 97.6 97.7 97.8 97.8 97.1 

allowed (%) 2.4 2.3 2 2.2 2.9 

outliers (%) 0 0 0.2 0 0 

PDB ID 6ECU 6ECV 6ECW 6ECT 6ECX 
1values in parentheses designate outer shell  
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Table 3.3 Scaling statistics for SeMet StiD 976-1266 (PDB ID 6ECU) 

 

Table 3.4 Scaling statistics for StiD 976-1266 (PDB ID 6ECV) 

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

8.77 1599 417 421 99.00% 3.80% 24 99.8
6.2 2736 765 773 99.00% 4.60% 21.63 99.6

5.06 3304 990 1005 98.50% 4.70% 20.18 99.5
4.38 4262 1174 1192 98.50% 3.50% 21.41 99.7
3.92 4959 1330 1351 98.40% 3.80% 21.02 99.7
3.58 5294 1457 1481 98.40% 4.30% 19.21 99.7
3.31 5463 1576 1604 98.30% 5.30% 16.42 99.6
3.1 5728 1736 1762 98.50% 7.00% 13.76 99.2

2.92 6426 1804 1834 98.40% 8.30% 12.15 99.1
2.77 7001 1922 1952 98.50% 9.60% 10.88 98.8
2.64 7604 2052 2090 98.20% 11.00% 9.36 98.8
2.53 7813 2090 2132 98.00% 15.10% 7.38 97.8
2.43 7964 2218 2264 98.00% 18.20% 6.24 96.5
2.34 7930 2283 2338 97.60% 23.00% 5.03 94.9
2.26 7893 2328 2390 97.40% 26.80% 4.32 93.0
2.19 8526 2464 2542 96.90% 34.50% 3.55 90.3
2.13 8901 2467 2546 96.90% 42.50% 2.86 88.2
2.07 9314 2588 2673 96.80% 55.10% 2.28 81.4
2.01 9600 2619 2709 96.70% 71.20% 1.82 70.8
1.96 5448 2396 2850 84.10% 87.20% 0.94 48.7

Total 127765 36676 37909 96.70% 6.60% 8.7 99.8

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

5.36 7196 2102 2160 97.30% 5.00% 24.56 99.6 
3.8 13335 3756 3834 98.00% 4.90% 24.11 99.5

3.11 16354 4834 4980 97.10% 5.40% 19.92 99.4
2.69 21081 5752 5875 97.90% 6.80% 15.6 99.2
2.41 23090 6520 6681 97.60% 9.40% 10.93 98.7
2.2 25453 7166 7378 97.10% 13.30% 8 98.0

2.04 28579 7767 8038 96.60% 21.50% 5.67 96.0
1.91 28426 8246 8598 95.90% 38.70% 3.3 85.7
1.8 30157 8699 9206 94.50% 66.70% 1.82 66.2

Total 193671 54842 56750 96.60% 7.30% 9.92 99.6



 

55 
 

 

Table 3.5 Scaling statistics for StiD 956-1266 (PDB ID 6ECW) 

 
 
 
 
Table 3.6 Scaling statistics for StiE 961-1257 (PDB ID 6ECT) 

 
  

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

5.06 35018 2605 2614 99.70% 3.10% 74.59 100.0 
3.59 61842 4612 4612 100.00% 3.70% 69.72 100.0
2.93 86526 5962 5962 100.00% 5.50% 49.69 99.9
2.54 97644 6992 6993 100.00% 9.90% 28.98 99.8
2.27 108050 7944 7944 100.00% 18.80% 17.1 99.5
2.08 124651 8791 8792 100.00% 32.10% 10.72 98.6
1.92 132926 9502 9502 100.00% 58.10% 5.46 94.8
1.8 137302 10242 10242 100.00% 114.20% 2.38 77.9
1.7 148074 10835 10869 99.70% 209.80% 1.22 47.8

Total 932033 67485 67530 99.90% 8.40% 19.77 100.0

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

4.23 49027 2773 2795 99.20% 3.60% 74.08 99.9 
3 83208 4733 4746 99.70% 3.90% 69.92 99.9

2.45 114543 6023 6027 99.90% 4.70% 58.57 99.9
2.12 130611 7021 7080 99.20% 6.50% 45.2 99.9
1.9 149591 7823 7951 98.40% 8.90% 32.29 99.8

1.74 178094 8751 8757 99.90% 15.10% 18.85 99.6
1.61 189305 9489 9490 100.00% 25.50% 11.02 98.9
1.5 207264 10200 10200 100.00% 45.50% 6.51 96.8

1.42 175493 10303 10791 95.50% 82.20% 3.13 85.5
Total 1277136 67116 67837 98.90% 5.80% 27.23 100.0
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Table 3.7 Scaling Statistics for StiE 942-1257 (PDB ID 6ECX) 

 

 

  

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

5.66 13816 1171 1175 99.70% 2.70% 78.8 100.0 
4.02 24162 1951 1951 100.00% 3.00% 74.28 100.0
3.28 32049 2461 2461 100.00% 4.00% 56.49 99.9
2.85 37682 2880 2880 100.00% 7.50% 31 99.9
2.55 42484 3239 3239 100.00% 15.50% 16.05 99.5
2.33 46287 3546 3546 100.00% 29.40% 8.72 98.4
2.15 50993 3850 3850 100.00% 51.20% 5.1 95.1
2.01 53514 4122 4123 100.00% 105.30% 2.46 82.7
1.9 57371 4340 4357 99.60% 193.70% 1.28 59.0

Total 358358 27560 27582 99.90% 6.80% 21.18 100.0
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Figure 3.2 Ramachandran plots for SeMet labeled StiD O-MT 976-1266 
Ramachandran plots of final refined model of SeMet labeled StiD O-MT 976-1266 (PDB ID 
6ECU). Plots were generated using MolProbity133. 
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Figure 3.3 Ramachandran plots for native StiD O-MT 976-1266 
Ramachandran plots of final refined model of native StiD O-MT 976-1266 (PDB ID 6ECV). 
Plots were generated using MolProbity133. 
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Figure 3.4 Ramachandran plots for StiD O-MT 956-1266  
Ramachandran plots of final refined model of StiD O-MT 956-1266 (PDB ID 6ECW). Plots 
were generated using MolProbity133.   



 

60 
 

 

 
Figure 3.5 Ramachandran plots for StiE O-MT 961-1257  
Ramachandran plots of final refined model of StiE O-MT 961-1257 (PDB ID 6ECT). Plots were 
generated using MolProbity133. 
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Figure 3.6 Ramachandran plots for StiE O-MT 942-1257  
Ramachandran plots of final refined model of StiE O-MT 961-1257 PDB ID 6ECX). Plots were 
generated using MolProbity133. 
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Results and Discussion 

Determining O-MT domain boundaries 

We first examined the O-MT domain boundaries to excise the domain from the module. 

O-MTs that methylate at a β-hydroxyl are flanked by AT and KR domains. Sequence motifs 

delineating the C-terminus of the AT (so-called post-AT linker) and N-terminal β-strand of the KR 

(Figure 3.7), guided the production of nine StiD O-MT constructs (Figure 3.8). Three StiD 

fragments were soluble and two (956-1266, 976-1266) were purified to homogeneity. Soluble 

fragments of StiE (942-1257, 961-1257) and CurL (981-1315) were designed based on the 

experimentally determined domain boundaries for StiD. StiD was predominantly dimeric in 

solution as determined by size exclusion chromatography, whereas StiE O-MT was predominantly 

monomeric and CurL O-MT was monomeric (Figure 3.8). Inclusion of an additional 30 amino 

acids between the CurL post-AT linker and O-MT (951-1315) (Figure 3.7) resulted in dimeric 

CurL O-MT (Figure 3.8), demonstrating that this is a post-AT dimerization element similar to 

those between the AT and KR in Spn module 352 and CurI.48 

Table 3.8 Protein stability of StiD fragments containing the O-MT 

 N-950 N-956 N-976 

C-1245 insoluble insoluble insoluble 

C-1257 insoluble insoluble insoluble 

C-1266 soluble soluble soluble 

O-MT activity and substrate specificity 

We next tested the ability of excised StiD, StiE, and CurL O-MT to methylate mimics of 

their predicted substrates. When StiD O-MT was presented with a truncated triketide version of 

the presumed (S)-β-hydroxy substrate linked to N-acetylcysteamine (NAC), a common mimic for 

phosphopantetheine (Ppant), in the presence of S-adenosylmethionine (SAM) no methylation 

occurred. However, when presented with an excised StiD ACP-linked (S)-configured β-hydroxy 

triketide substrate (1), StiD O-MT produced the expected β-methoxy product (2) as detected by  
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Figure 3.7 Sequence alignment of PKS O-MTs 
Names are colored based on predicted substrate ((S)-OH, blue; (R)-OH, green; keto; black). 
Substrate predictions are based upon structures of the final metabolites, the inclusion of a KR in 
O-MT containing modules, and KR sequence motifs that correlate with the stereochemical 
configuration of the resulting methoxy. Stars indicate sites of mutagenesis; arrows represent 
experimental N- and C-termini tested for StiD (blue) and fragment N- and C-termini for StiE 
(green) and CurL (orange). Gray ovals represent residues in the StiD or StiE O-MT dimer interface. 
Pathway abbreviations (GenBank Accision codes) are as follows: Cal- calyculin A (BAP05594.1); 
Cta- cystothiazole A (AAW03329.1, AAW03329.1); Cro- crocacin (AIR74910, AIR74911.1); 
Mel- melithiazol (CAD89776.1, CAD89777.1); Sti- stigmatellin (CAD19088.1, CAD19089.1); 
Cur- curacin A (WP_008191786); Hap- haprolid (AOG74798.1); Nyc- nannocystin A 
(ALD82523.1); Ptz- patellazole (AFX99666.1); Aju- ajudazol (CAQ18838.1); Bar- barbamide 
(AAN32980.1); Jam- jamaicamide (AAS98785.1); Mta- myxothiazol (AAF19814.1). 
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Figure 3.8 Oligomeric state of O-MTs  
Size exclusion chromatography of O-MT fragments. StiD O-MT (amino acids 956-1266, 35 kDa 
monomer) elutes with an apparent molcular weight of 55 kDa and StiE O-MT (amino acids 942-
1257, 37 kDa monomer) elutes predominantly as a monomer (apparent molecular weight 35.7 
kDa). CurL O-MT (amino acids 981-1315, 39 kDa monomer) is exlusively monomeric (apparent 
molecular weight 26.9 kDa). Inclusion of a 30 residue post-AT dimerization element at the CurL 
N-terminus (amino acids 951-1315, 42 kDa monomer) results in dimeric protein (apparent 
molecular weight 82.8 kDa). 
 
the mass spectrometry-based Ppant ejection assay (Figure 3.9c).150, 169 Additionally StiE O-MT 

and CurL O-MT, which are predicted to act on (R)-β-hydroxy substrates (Figures 3.10a, c), 

methylated the respective (3R)-3-hydroxy-5-methoxy-myristoyl-ACP (6, Figure 3.10) and (R)-3-

hydroxydodecanoyl-ACP (8, Figure 3.10) substrates (Figures 3.10b, d). Given the encoded 

stereospecificity of KR domains, we tested whether O-MTs select for stereocenters at the α- and 

β-positions. A series of ACP linked diastereomeric triketide substrates (2, 3, 4, Figure 3.9) with 

varying stereocenters at the α-methyl and β-hydroxyl groups were tested with StiD O-MT. StiD 

did not methylate any substrate with non-native stereocenters at the α- or β-positions (Figures 3.9d, 

2e, 2f), indicating that PKS O-MTs display substrate stereospecificity.  
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Figure 3.9 Activity of StiD O-MT on ACP linked substrates  
a. The metabolite stigmatellin contains two methoxy groups with opposite stereochemical 
configurations. The methoxy moieties introduced by O-MTs encoded in PKS modules are colored 
(StiD, blue; StiE, green). b. Natural substrate of StiD O-MT. c.-f. Mass spectra of reaction mixtures 
of StiD O-MT with various triketide substrate mimics (1, 2, 3, 4) linked to StiD ACP monitored 
by the phosphopantetheine ejection assay. 150, 169 Reactions are shown in red, no enzyme controls 
are shown in black. Experimentally determined m/z values are in red, calculated m/z values are in 
black. A contaminant of m/z ~411 Da was present in all samples. 
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Figure 3.10 Activity of StiE and CurL O-MTs on ACP linked substrates 
a. Natural substrate of StiE O-MT. b. Mass spectra of reaction mixtures with StiE O-MT and StiE 
(3R)-3-hydroxy-5-methoxy-myristoyl-ACP substrate mimic (6). c. Natural substrate of CurL O-
MT. d. Mass spectra of reaction mixtures of reactions with CurL O-MT and CurL (R)-3-
hydroxydodecanoyl-ACP substrate mimic (8). Reactions are shown in red, no enzyme controls are 
shown in black. Experimentally determined m/z values are in red, calculated m/z values are in 
black. A contaminant of m/z ~411 Da was present in all samples. 
 

Structural characterization of StiD and StiE O-MT 

To understand the structural basis of O-MT reactivity, we determined crystal structures of StiD 

and StiE O-MT with varying domain boundaries (Figure 3.11, Table 3.2). An initial structure of 

selenomethionine-labeled StiD O-MT (971-1266) was solved by single-wavelength anomalous 

diffraction (SAD) phasing, and this structure was used to solve subsequent StiD and StiE O-MT 

structures by molecular replacement. StiD and StiE O-MTs (Figure 3), which methylate opposing 

stereocenters, are highly similar in structure (RMSD 0.88 Å for 193 Cα atoms). PKS O-MTs are 

members of the class I methyltransferase superfamily, which share a seven β-stranded SAM 

binding core.125 The StiD dimer interface is mediated by hydrophobic and hydrogen bonding 

contacts (StiD Phe1134, Arg1173, Val1175, Glu1176, Gln1237, Asp1239, 
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Figure 3.11 StiD and StiE O-MT structures.  
a. StiD O-MT dimer. One protomer is colored as a rainbow from blue (N-terminus) to red (C-
terminus). SAH is shown in sticks with atomic coloring (C, gray; O, red; N, blue; S, yellow). 
Termini are shown in spheres. b. StiD O-MT active site colored by structural region (core, light 
blue; lid, dark blue). Key amino acids and SAH are shown in sticks with atomic coloring. The first 
ordered residue in the crystal structure (Glu980) is indicated with a sphere. c. StiE O-MT dimer 
colored as in a. SAM is shown in sticks. d. StiE O-MT active site colored by structural region 
(core, light blue; lid, green). Key amino acids and SAM are shown in sticks with atomic coloring. 
The last amino acid (Val958) of the N-terminal helix containing conserved aromatic amino acid  
Tyr954 is 17 Å away from the next ordered residue (His974). 
 

Val1242, Tyr1246, His1249, Ile1250, Trp1254). Although predominantly monomeric in solution, 

StiE forms a dimer in the crystal with the analogous interaction interface as StiD (StiE Ala1021, 

Asp1023, Ala1026, Gly1124, Leu1126, Arg1165, Val1167, Gln1229, Asp1231, Phe1233, 

Arg1235) (Figure 3.12), suggesting that StiE is dimeric in the context of a module. The angle 

between monomers within the StiD and StiE dimers differs by ~20°. CurL O-MT, which did not 

crystallize, has several amino acid differences at surface analogous to the StiD and StiE dimer  
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Figure 3.12 StiD and StiE O-MT dimer interfaces 
a. The StiD O-MT dimer interface is mediated by amino acids Phe1134, Arg1173, Val1175, 
Glu1176, Gln1237, Asp1239, Val1242, Tyr1246, His1249, Ile1250, Trp1254 from each monomer. 
b. StiE O-MT dimer interface is mediated by amino acids Ala1021, Asp1023, Ala1026, Gly1124, 
Leu1126, Arg1165, Val1167, Gln1229, Asp1231, Phe1233, Arg1235. 
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interface indicating that CurL O-MT may rely on the dimerization element for dimerization within 

the module (Figure 3.7).  

Different branches of the class I MT superfamily can be distinguished by a lid domain, 

which lies over the common SAM binding site and is associated with substrate binding.65 StiD and 

StiE O-MT have a helical lid composed of two N-terminal helices and three helices inserted 

between β-strands six and seven of the MT core (Figure 3.7). The lid has substantially different 

positions (up to 8 Å displacement) in the six independent views of the StiD protomer within three 

crystal structures (Figure 3.13), indicating that it is dynamic in the substrate-free state.  

Despite a low sequence identity (<20%), the PKS O-MTs have greatest structural similarity 

to the phosphoethanolamine N-methyltransferase (PDB 3UJ8, RMSD 1.9 Å for 153 Cα atoms),175 

mycolic acid cyclopropane synthase (PDB 1KPG, RMSD 1.6 Å for 152 Cα atoms),149 RebM sugar 

O-methyltransferase (PDB 3BUS, RMSD 1.6 Å for 145 Cα atoms),68 and the geranyl diphosphate 

C-methyltransferase (GPPMT) (PDB 3VC2, RMSD 1.4 Å for 155 Cα atoms).72 Class I MTs on  

this branch of the superfamily have helical lids of similar structure, including helices at the N-

terminus and inserted between β-strands 6 and 7 of the core (Figure 3.14). Interestingly, this MT 

superfamily branch includes the SpnF Diels-Alderase (PDB 4PNE, RMSD 3.5 Å for 193 Cα 

atoms), which was adapted to a new function and does not catalyze methyl transfer176.  

 

Figure 3.13 StiD lid dynamics  
StiD structures aligned at core (123 Cα atoms, gray tube). Regions of the lid differ in position by 
up to 8 Å. 
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Figure 3.14 PKS O-MT homologs  
Structures are colored as a rainbow from N- (dark blue) to C-terminus (red). The reaction catalyzed 
by each enzyme is shown below the structure. All structures have a lid composed of N-terminal 
helices (darkest blue) and helices between β-strands 6 and 7 (yellow and orange). SAH or SAM is 
rendered in stick form with gray C atoms. 
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Probing O-MT active site architecture 

The StiD 976-1266 and StiE 961-1257 O-MT structures have solvent-exposed active sites 

and also lack an N-terminal lid helix that lays over the SAM binding site in the structures of several 

homologs (Figure 3.14). The analogous site above SAM in the StiE 961-1257 structure is occupied 

by a cloning-artifact peptide from the TEV protease recognition site (Tyr-Phe-Gln-Ser-Asn-Ala, 

Figure 3.15a). The peptide sequence is similar to a sequence in StiE (953Phe-Tyr-Asp-Ser-Leu-

Ala958) that precedes the crystallized fragment (961-1257). Moreover, the PKS O-MT sequences 

contain adjacent conserved hydrophobic (preferred aromatic) amino acids in the N-terminal region 

(Figure 3.7). Thus, we incorporated additional N-terminal amino acids in the StiD and StiE 

fragments and removed the TEV protease recognition sequence for additional crystallographic 

studies, resulting in a 1.7-Å structure of StiD 956-1266 and a 1.9-Å structure of StiE 942-1257. 

No density was observed for the additional N-terminal residues of StiD. However, the map for 

StiE 942-1257 had density for a partially ordered helix above the SAM binding site (Figure 3.15b). 

We modeled residues 948-958, including conserved Phe953-Tyr954, into the helical density. The 

helix is 17 Å away from the next ordered amino acid, His974 (Figure 3.11d). 

We used site directed mutagenesis to test whether the conserved N-terminal aromatic 

amino acids play a role in catalytic activity of the robustly active StiE and CurL O-MTs, which  

 

Figure 3.15 StiE active site density  
a. StiE Fo-Fc omit density for the SAM cofactor and TEV protease recognition sequence (StiE 
961-1257, 1.42 Å, 2.5σ contour). Phe and Tyr in the TEV protease recognition sequence are 
labeled. b. SAM and the partially ordered N-terminal helix (StiE 942-1257, 1.90 Å, Fo-Fc omit 
density contoured at 2.5σ). Conserved Phe953 and Tyr954 in the N-terminal helix are labeled. 
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methylate (R)-β-hydroxy substrates (Figures 3.16b, Figure 4c). Relative activity was quantified 

based upon the abundance of Ppant ejection fragments of the substrates and products150, 169. A 

CurL Y1010F variant had barely detectable activity (50-fold less than wild-type) (Figure 3.16c). 

In contrast, a StiE Y954F variant (Figure 3.16a) had increased activity relative to the wild type, 

but deletion of the StiE N-terminal helix (StiE Δ942-960) abolished detectable activity (Figure 

3.16b). Although the Tyr to Phe substitutions had differing effects on the catalytic activity of StiE 

and CurL O-MTs, we conclude that the presence of the N-terminal helix is critical for activity and 

the conserved aromatic residues are likely near or in the active site when substrate is bound. 

Additional evidence comes from the PKS O-MT homolog phosphoethanolamine N-MT, which 

contains an essential Tyr in the analogous N-ter minal helix.175 We hypothesize that the N-terminal 

helix containing the conserved aromatic region may order upon delivery of the ACP-bound 

substrate and serve as a “latch” to close the active site and facilitate catalysis.  

SAM or the product (S)-adenosylhomocysteine (SAH) bound to both StiD and StiE in a 

similar orientation as in the structures of homologs (Figures 3.11, Figure 3.17, Table 3.2). In some 

of these structures, a His side chain adjacent to the SAM methyl is associated with activity (Figure 

3.11b, Figure 3.7, Figure 3.17).68, 175 The His is not conserved in PKS O-MTs, as the corresponding 

position in StiE is Leu1106 (Figure 3.11, Figure 3.16). The CurL variants H1165A and H1165N 

had 10- to 20-fold decreased activity relative to wild type (Figure 3.16c), and StiE L1105H 

displayed a two-fold loss in activity (Figure 3.16b), indicating that the active site His may assist 

in substrate binding, but is not essential for catalysis. 

Two amino acids in the active site are conserved among PKS O-MTs. In StiE, conserved 

Glu1102 (StiD Glu1110, CurL Glu1161) is positioned with one carboxylate oxygen 4 Å from the 

SAM methyl group and the other carboxylate oxygen hydrogen bonded with the hydroxyl of 

invariant Tyr1223 (StiD Tyr1231; CurL Tyr 1281) (Figure 3.7, Figures 3.11b, d, Figure 3.16a). 

Several PKS O-MT homologs have a Glu or Asp within hydrogen bonding distance of a Tyr or 

Trp at the analogous positions (Figure 3.17). Substitutions of the Glu or Tyr were highly 

deleterious to catalysis in both StiE and CurL O-MTs (StiE E1102A, E1102Q, 
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Figure 3.16 Relative methylation activities of CurL and StiE O-MT variants  
a. StiE O-MT active site colored as in Fig. 3d. Substituted amino acids are shown in sticks. b. StiE 
O-MT activity on (3R)-3-hydroxy-5-methoxy-myristoyl-ACP substrate (6, Figure 3.10). c. CurL 
O-MT activity on (R)-3-hydroxydodecanoyl-ACP substrate (8, Figure 3.10). Activity relative to 
wild-type was quantified using the LC-MS based Ppant ejection assay.150, 169 The mutagenesis sites 
in StiE and CurL O-MTs are analogous (StiE/CurL: Tyr954/Tyr1010, Glu1102/Glu1161, 
Leu1106/His1165, Tyr1209/Tyr1267, Tyr1223/Tyr1281) based on alignment of the 35% identical 
sequences. Error bars represent triplicate experiments 
. 
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Figure 3.17 Conservation of key active site residues in O-MT homologs 
Many O-MT homologs have similar active site features. Several homologs contain a Glu or Asp 
in an analogous location to PKS O-MTs catalytic Glu. Like PKS O-MTs, the Glu is hydrogen 
bonded to a Tyr. 
 

Y1223F; CurL E1161A, E1161Q, Y1281F) (Figures 3.16b, c), suggesting that the conserved Glu-

Tyr pair is essential for catalysis in all PKS O-MTs that methylate β-hydroxyl groups. The 

proximity to the SAM methyl makes Glu the primary candidate for deprotonation of the substrate 

β-hydroxyl during the methyl transfer reaction.  

Finally, a Tyr just outside the active site of StiE O-MT (Tyr1209, Figure 3.16a) occurs in 

many O-MTs that are predicted to methylate R-hydroxyl substituents, but not those acting on S-

hydroxyl or β-keto groups (Figure 3.7). Substitution of the Tyr (CurL Y1267F; StiE Y1209F) 

resulted in a six-fold decrease in CurL activity, but only had a modest effect on StiE activity. 

Although conserved in most R-hydroxyl methylating O-MTs, this residue is not essential for StiE 

activity.  

Catalytic strategy of PKS O-MT domains 

Based on the mutagenesis results and sequence comparison, we propose that binding of an 

ACP-linked substrate triggers ordering of the N-terminal helix to form the Michaelis complex by 

positioning the appropriate substrate oxygen atom adjacent to the SAM methyl group and active 

site Glu. The conserved Glu-Tyr pair (Figures 3.11b, d, Figure 3.16) is essential for activity and 

likely deprotonates the β-hydroxyl. Interestingly, O-MTs predicted to act on β-keto substrates 

(Figure 3.1c), and thus not requiring β-hydroxy deprotonation, have a Gln in the position analogous 
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to the essential Glu (Figure 3.7). We tested whether a Gln substitution for the active site Glu would 

convert the β-hydroxyl methylating StiE O-MT or CurL O-MT to a β-keto methylase. However, 

neither StiE E1102Q nor CurL E1161Q methylated the simple β-keto substrate acetoacetyl-ACP. 

Additional active site amino acids that we found to have non-essential roles in StiE or CurL O-MT 

activity may play a role in substrate recognition and stereospecificity.  

O-MTs in the context of a PKS module 

The structural differences between PKS O-MTs and C-MTs are quite striking. Although 

both contain the seven β-stranded SAM binding core, their lid domains are topologically different 

and are inserted into different regions of the seven β-stranded MT core. Additionally, insertion of 

O-MTs and C-MTs into PKS modules differs. Like the “pseudo” methyltransferase in the PKS 

homolog metazoan fatty acid synthase (mFAS),1 PKS C-MTs are embedded after the first N-

terminal β-strand of the KR domain117, whereas the O-MT precedes all elements of the KR. The 

O-MT seems to be a later addition in the evolution of PKS modules, whereas the last PKS-mFAS 

common ancestor likely contained a functional C-MT. As PKS modules are obligate dimers, the 

O-MT may assist dimer formation in PKS modules lacking DH domains. This is evident in the 

existence of small dimerization element that precedes the monomeric CurL O-MT (981-1315) 

(Figure 3.8). The presence of a dimerization element prior to the O-MT in cyanobacterial CurL O-

MT, but not the myxobacterial O-MTs from the stigmatellin pathway and suggest that the overall 

architecture of PKS modules with KS-AT-OMT-KR-ACP could differ between pathways. 

O-MTs are essential biosynthetic tools for the production of O-methoxy groups in 

polyketides. Identification of domain boundaries and amino acids necessary for catalysis provides 

fundamental information for the inclusion of O-MTs in PKS engineering efforts. O-MTs could be 

particularly valuable biocatalysts, as they are capable of selectively modifying hydroxyl groups 

prior to downstream synthetic transformations. Additionally, this information allows for the 

ablation of pathway O-MT activity by mutagenesis, providing a potential route to O-desmethyl 

polyketide products while maintaining the structural integrity of the PKS module. 
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 A Mononuclear Iron-Dependent Methyltransferase Catalyzes Initial Steps in 
Assembly of the Apratoxin A Polyketide Starter Unit 
 
Reproduced with permission from Skiba, M.A., Sikkema, A.P., Moss, N.A., Tran, C.L., Sturgis, 
R.M., Gerwick, L., Gerwick, W.H., Sherman, D.H., Smith, J.L. A Mononuclear Iron-Dependent 
Methyltransferase Catalyzes Initial Steps in Assembly of the Apratoxin A Polyketide Starter Unit. 
ACS Chem Biol 12, 3039-3048 (2017).  
Copyright 2017 American Chemical Society. 
 

Summary 

Natural product biosynthetic pathways contain a plethora of enzymatic tools to carry out 

difficult biosynthetic transformations. Here we discover an unusual mononuclear iron-dependent 

methyltransferase that acts in the initiation steps of apratoxin A biosynthesis (AprA MTL). Fe3+-

replete AprA MTL catalyzes one or two methyl transfer reactions on the substrate malonyl-ACP 

(acyl carrier protein), whereas Co2+, Fe2+, Mn2+ and Ni2+ support only a single methyl transfer. 

MTL homologs exist within the “GNAT” (GCN5-related N-acetyltransferase) initiation modules 

of several modular biosynthetic pathways with propionyl, isobutyryl or pivaloyl starter units. 

GNAT domains are thought to catalyze decarboxylation of Mal-CoA and acetyl transfer to a carrier 

protein. In AprA the GNAT domain lacks both decarboxylation and acyl transfer activity. A crystal 

structure of the AprA MTL -GNAT didomain with bound Mn2+, malonate and the methyl donor S-

adenosylmethionine (SAM) reveals that the malonyl substrate is a bidentate metal ligand, 

indicating that the metal acts as a Lewis acid to promote methylation of the malonyl -carbon. The 

GNAT domain is truncated relative to functional homologs. These results afford an expanded 

understanding of MTL -GNAT structure and activity, and permit the functional annotation of 

homologous GNAT initiation modules both with and without methyltransferases, additionally 

revealing their rapid evolutionary adaptation in different biosynthetic contexts. 

Introduction 

Prokaryotic secondary metabolite biosynthetic pathways use an assortment of enzymatic 

tools to synthesize some of the most elegant and chemically complex molecules found in nature. 
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Polyketide metabolites are mostly synthesized through the successive condensation of malonyl 

(Mal-) or methylmalonyl (MeMal-) coenzyme A (CoA) extender units in a manner similar to fatty 

acid biosynthesis. In type I modular polyketide synthase (PKS) systems, each extension step starts 

with acyltransferase (AT) selection of a specific carboxyacyl-CoA for transfer to the 

phosphopantetheine (Ppant) cofactor of the acyl carrier protein (ACP) domain within the module. 

This is followed by decarboxylative condensation with the upstream intermediate in the 

ketosynthase (KS) domain, and then by optional modifications by ketoreductase, dehydratase, 

enoylreductase or methyltransferase (MT) domains in the module, or external enzymes encoded 

in the gene cluster 28. In this manner PKS systems synthesize a variety of essential pharmaceuticals, 

such as the anthelmintic avermectin, immunosuppressant rapamycin, and antibiotic erythromycin, 

using a common set of enzymes 106, 151, 177.  In some cases, PKS modules are interspersed with non-

ribosomal peptide synthetase (NRPS) modules, which incorporate amino acid building blocks into 

the linear product.   

Modular PKS systems initiate biosynthesis in a “initiation” or “loading” module by transfer 

of a specific acyl group to the loading ACP. Several mechanisms of pathway initiation have been 

described; frequently, a loading acyltransferase (ATL) primes the ACP with an acyl group such as 

acetyl-, Mal-, or MeMal-CoA. An -carboxylated acyl group can be decarboxylated by a non-

extending ketosynthase domain 41. In other cases, the initiation modules select chemically diverse 

starter units derived from amino acids, cyclohexanecarboxylic acids, fatty acids, or branched chain 

CoAs 41, 178. For example, isobutyryl-CoA, methylbutyryl-CoA, and isovaleryl-CoA, derived from 

the catabolism of valine, leucine, and isoleucine through a branched chain -keto acid 

dehydrogenase (BCDH) complex, are the starter units in the biosynthesis of virginiamycin, 

avermectin and myxothiazol, respectively 113, 179-181. An ATL directly primes the ACP with the 

branched-chain acyl group in these pathways 107, 151, 182.  

We previously reported the discovery and characterization of the GNAT initiation module 

family (Figure 4.1). The CurA initiation module 31 initiates biosynthesis of the anti-cancer 

cyanobacterial compound curacin A 23. Although the GNAT superfamily generally includes CoA-

dependent N-acetyltransferases 42, 43, the CurA GNAT is a remarkable bifunctional enzyme that 

decarboxylates Mal-CoA to acetyl-CoA and catalyzes S-acetyltransfer to an associated ACP 31. 

Clues to the evolutionary origin of the CurA GNAT decarboxylase activity came from the 

subsequent discovery that Mal-CoA decarboxylase (MCD) is a GNAT superfamily member 183. 
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MCD, which is conserved from bacteria to humans, catalyzes only decarboxylation. Thus, the 

GNAT superfamily may be better described as a “CoA binding” family, as members have a 

common mode of CoA binding and may catalyze acyltransfer, decarboxylation or both.  

Figure 4.1 Domain architecture of GNAT containing initiation modules  
Adaptor region (AR), methyltransferase (MT), GCN5-related N-acetyltransferase (GNAT), acyl 
carrier protein (ACP). Starter units produced by GNAT initiation modules in select metabolites 
are colored in red. Pathway abbreviations are as follows: a. Apr- apratoxin A, Bry- bryostatin. b. 
Gph- gephyronic acid. c. Sxt- saxitoxin, Ta- myxovirescin A. d. Rhi- rhizoxin. e. Bat- batumin, 
Nsp- nosperin. f. Cur- curacin A. g. Bon- bongkrekic acid, Onn- onnamide, Ped- pederin. 

 

GNAT initiation modules in biosynthetic pathways for natural products that contain 

branched-chain starter units also include a putative methyltransferase domain (MTL), which 

precedes the GNAT domain in the module (Figure 4.1a, b, c) 21, 45. This path to incorporation of 

branched-chain starter units was identified recently in the annotation of gene clusters for 

biosynthesis of gephyronic acid (Gph) 21 and apratoxin A (Apr) 25, 184, a Sec61 inhibitor 26, 27. Based 

on the natural product structures, the AprA initiation module installs a pivaloyl group, whereas 
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GphF introduces an isobutyryl group into gephyronic acid (Figure 4.1a, b). Isotopic labeling of the 

gephyronic acid producer Cystobacter violaceus with 13C-methyl-L-methionine demonstrated that 

the isobutyryl starter group is derived from S-adenosylmethionine (SAM) and not from valine, 

likely via GphF MTL 21. The MTL-containing initiation modules also include a mysterious ~150-

residue N-terminal “adaptor region” (AR), which has no detectable homology to proteins of known 

structure or function. The AR domain of CurA (Figure 4.1f) enhanced, but was not essential to, 

the GNAT S-acyltransfer activity 31.  Pivaloyl-producing modules, such as AprA, include an 

additional methyltransferase (MT2L) following the GNAT (Figure 4.1a) 25. The MTL sequences 

are highly conserved, but are distantly related to methyltransferases of known structure and to 

MT2L. 

Here we describe initial steps in the production of branched-chain polyketide starter units 

by GNAT initiation modules. Through structural and biochemical characterization of AprA MTL 

we discovered an unusual mononuclear iron-dependent methyltransferase, which catalyzes two 

methyl transfer reactions to produce dimethylmalonyl (Me2Mal-) ACP. MeMal- or Me2Mal-ACP 

produced by MTL homologs can be further decarboxylated by GNAT to yield propionyl or 

isobutyryl starter units. In pivalate-producing modules, such as AprA, the GNAT is truncated and 

not catalytically active. Characterization of AprA MTL resolves the functional annotation of 

GNAT initiation modules from several biosynthetic pathways, including gephyronic acid 21, 

myxovirescin 97, saxitoxin 45 and bryostatin 20. 

Experimental Procedures 

Construct design  

All primers are listed in Table 4.1. Full-length aprA was amplified from an apratoxin 

fosmid library 25 and cloned into pMCSG7 166 via ligation independent cloning (LIC) to create 

pAPS1. The region encoding MTL -GNAT (AprA residues 2–629) was subcloned from pAPS1 

to create pMAS286. This plasmid contains two PCR-induced missense mutations (S274I and 

Q528P), which were corrected using the QuickChange protocol (Stratagene) to create pMAS354. 

All aprA site-directed mutants were created from pMAS286. The region encoding AprA GNAT 

(AprA residues 503–629) was subcloned from pAPS1 to create pMAS246. The region encoding 

AprA ACP (AprA residues 1058–1138) was subcloned from pAPS1 to create pAPS2. Plasmid 

pAPS3 was created by subcloning the sequence encoding GphF MTL -GNAT (GphF residues 2–
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696) from a partial gphF clone kindly provided by Richard Taylor (Notre Dame University) 21.  A 

GphF/H660A mutation was introduced (pMAS335) to block GphF GNAT decarboxylase activity. 

DNA sequencing was performed at the University of Michigan DNA Sequencing Core to verify 

all constructs and mutations. 

Table 4.1 Primers for subcloning MTL-ΨGNAT 

AprA MTL-
ΨGNAT FWD pMAS 

286 
 

5’-TACTTCCAATCCAATGCCCTAGATAAAATAAATCGTTATGCTCAT
-3’ 

AprA MTL-
ΨGNAT REV 

5’-TTATCCACTTCCAATGCTACTTTCAAAAATCAAAGTGGTATCAAT
CT-3’ 

AprA ΨGNAT 
FWD pMAS 

246 

5’-TACTTCCAATCCAATGCGCAATCTTCAGTTTTAAACAAAAAGCTT
ATAG-3’ 

AprA ΨGNAT 
REV 

5’- TTATCCACTTCCAATGCTACTTTCAAAAATCAAAGTGGTATCAA
TCT -3’ 

GphF MTL-
GNAT FWD pAPS 

3 

5’-TACTTCCAATCCAATGCCCTTGAGCTACTCAACCAACACGC-3’ 

GphF MTL-
GNAT REV 

5’-TTATCCACTTCCAATGCTAGGCCGCCCCACGGAGCG-3’ 

AprA ACP FWD pAPS 
2 

5’-TACTTCCAATCCAATGCTGAAATTTTTGAACAGGAATGTC-3’ 

AprA ACP REV 5’-TTATCCACTTCCAATGTTAACTAAAATTAATATCTTCCCGTTCTG-3’ 
AprA MTL-
ΨGNAT I274S 
FWD 

pMAS 
354 

5’-GCCAATAGAAGAGCAACCAAGCTATATAGTAGACATGGGTT-3’ 

AprA MTL-
ΨGNAT I274S 
REV 

5’-AACCCATGTCTACTATATAGCTTGGTTGCTCTTCTATTGGC-3’ 

AprA MTL-
ΨGNAT P528Q 
FWD 

5’-GAAGGGTTCGTTTACAGGTTGATTAAATGTCGCACACTTT-3’ 

AprA MTL -
ΨGNAT P528Q 
REV 

5’-AAAGTGTGCGACATTTAATCAACCTGTAAACGAACCCTTC-3’ 

GphF H660A 
FWD pMAS 

335 

5’-GGTGCTCGGGTTCGCCCTCGGTCACGGC-3’ 

GphF H660A 
REV 

5’-GCCGTGACCGAGGGCGAACCCGAGCACC-3’ 

AprA MTL-
ΨGNAT R196E 
FWD pMAS

362 

5’-GACGCTGTTGTTCCTAAGTTTAAGGACTCGTCACGCATAAATCTAC
CTATATCTG-3’ 

AprA MTL-
ΨGNAT R196E 
REV 

5’-CAGATATAGGTAGATTTATGCGTGACGAGTCCTTAAACTTAGGAA
CAACAGCGTC-3’ 

AprA MTL-
ΨGNAT Y206F 
FWD pMAS

360 

5’-CTTAGGAACAACAGCGTCTTTTGCTCCTATGTTGTTAC-3’ 

AprA MTL-
ΨGNAT Y206F 
REV 

5’-GTAACAACATAGGAGCAAAAGACGCTGTTGTTCCTAAG-3’ 

AprA MTL-
ΨGNAT E233A 
FWD 

pMAS
336 

5’-AGTATTTCAAAGAAATAAGACTGAAAAAGCAAGACACGTAAATA
GAACATTAAATGTAG-3’ 
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AprA MTL-
ΨGNAT E233A 
REV 

pMAS
336 

5’-CTACATTTAATGTTCTATTTACGTGTCTTGCTTTTTCAGTCTTATTTC
TTTGAAATACT-3’ 

AprA MTL-
ΨGNAT H235N 
FWD pMAS

346 

5’-CAGAGAGTATTTCAAAGAAATAAGACTGAAAAAGAAAGAAACGT
AAATAGAACATTAAAT-3’ 

AprA MTL-
ΨGNAT H235N 
REV 

5’-ATTTAATGTTCTATTTACGTTTCTTTCTTTTTCAGTCTTATTTCTTTG
AAATACTCTCTG-3’ 

AprA MTL-
ΨGNAT R238A 
FWD pMAS

357 

5’-GAAATAAGACTGAAAAAGAAAGACACGTAAATGCAACATTAAAT
GTAGTAGCAAGTG-3’ 

AprA MTL-
ΨGNAT R238A 
REV 

5’-CACTTGCTACTACATTTAATGTTGCATTTACGTGTCTTTCTTTTTCA
GTCTTATTTC-3’ 

AprA MTL-
ΨGNAT N241A 
FWD pMAS

359 

5’-ACTGAAAAAGAAAGACACGTAAATAGAACATTAGCTGTAGTAGCA
AGTGGCT-3’ 

AprA MTL-
ΨGNAT N241A 
REV 

5’-AGCCACTTGCTACTACAGCTAATGTTCTATTTACGTGTCTTTCTTTT
TCAGT-3’ 

AprA MTL -
ΨGNAT S245A 
FWD pMAS

358 

5’-AGACACGTAAATAGAACATTAAATGTAGTAGCAGCTGGCTTTCAA
CACGAAA-3’ 

AprA MTL-
ΨGNAT S245A 
REV 

5’-TTTCGTGTTGAAAGCCAGCTGCTACTACATTTAATGTTCTATTTAC
GTGTCT-3’ 

AprA MTL-
ΨGNAT H249A 
FWD pMAS

347 

5’-TAAATGTAGTAGCAAGTGGCTTTCAAGCCGAAAAGTTTTTTGCCGA
TAC-3’ 

AprA MTL-
ΨGNAT H249A 
REV 

5’-GTATCGGCAAAAAACTTTTCGGCTTGAAAGCCACTTGCTACTACAT
TTA-3’ 

AprA MTL-
ΨGNAT K251E 
FWD pMAS

363 

5’-GTATCGGCAAAAAACTCTTCGTGTTGAAAGCCACTTGCTA-3’ 

AprA MTL-
ΨGNAT K251E 
REV 

5’-TAGCAAGTGGCTTTCAACACGAAGAGTTTTTTGCCGATAC-3’ 

AprA MTL-
ΨGNAT D370N 
FWD pMAS

364 

5’-GCTATAAATGGTCGGTTATGATCTAGGAATGAACGAATATGTAAT
ACT-3’ 

AprA MTL-
ΨGNAT D370N 
REV 

5’-AGTATTACATATTCGTTCATTCCTAGATCATAACCGACCATTTATA
GC-3’ 

AprA MTL-
ΨGNAT Y455F 
FWD pMAS

361 

5’-GTGAATCTCTGCATTTTGATGCCTTTCATGCCTTCTCAAT-3’ 

AprA MTL-
ΨGNAT Y455F 
REV 

5’-ATTGAGAAGGCATGAAAGGCATCAAAATGCAGAGATTCAC-3’ 

AprA MTL-
ΨGNAT H462A 
FWD 

pMAS
350 

5’-CTATCATGCCTTCTCAATGCAAGCTTTAGTAGAAGCAGATGTGTTC
-3’ 
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Bold font indicates handles for ligation-independent insertion into expression vectors 

 

Protein expression and purification 

All plasmids were transformed into Escherichia coli strain BL21(DE3), grown in 0.5 L of 

TB media with 100 μg mL-1 ampicillin to an OD600 = 1–2 at 37°C, cooled to 20°C for 1 hr, induced 

with 200 μM IPTG and expressed overnight. 2L SelenoMet medium (AthenaES) containing 150 

μg mL-1 of seleno-DL-methionine was used to produce selenomethionine (SeMet) labeled protein. 

Cells were grown to an OD600 = 0.6 at 37°C, cooled for 1 hr at 20°C, induced with 200 μM IPTG, 

and expressed overnight. To produce holo-ACP pAPS2 was transformed into Escherichia coli 

strain BAP1185 and grown, induced and expressed as above.  

AprA MTL-GNAT, AprA GNAT, and GphF MTL-GNAT cell pellets were resuspended 

in Tris buffer A (50 mM Tris pH 7.4, 300 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole) with 

0.1 mg mL-1 lysozyme, 0.05 mg mL-1 DNase, and 2 mM MgCl2. Resuspended cell pellets were 

incubated on ice for 30 min, lysed by sonication, and cleared by centrifugation (38,650 x g, 30 

min). Filtered supernatant was loaded onto a 5 mL His trap column (GE Healthcare), washed with 

10 column volumes of Tris buffer A, and eluted with a 20–400 mM linear gradient of imidazole 

(Tris buffer B) over 10 column volumes. Proteins were further purified by gel filtration 

chromatography (HiLoad 16/60 Superdex S200) with Tris buffer C (50 mM Tris pH 7.4, 150 mM 

NaCl, 10% (v/v) glycerol). ~80 mg L-1 of MTL -GNAT was obtained.  

AprA ACP cell pellets were resuspended in ACP buffer A (100 mM Tris pH 7.4, 500 mM 

NaCl, 10% (v/v) glycerol, 5 mM TCEP, 20 mM imidazole) with 0.1 mg mL-1 lysozyme, 0.05 mg 

mL-1 DNase, and 2 mM MgCl2, and treated identically to MTL-GNAT cell pellets. ACP buffer B 

AprA MTL-
ΨGNAT H462A 
REV 

pMAS
350 

5’-GAACACATCTGCTTCTACTAAAGCTTGCATTGAGAAGGCATGATA
G-3’ 

AprA MTL-
ΨGNAT K490E 
FWD pMAS

365 

5’-GATTCGAGTCAATGGCAACGTCTCCGGATACTTACGAAAAGCTTC-
3’ 

AprA MTL-
ΨGNAT K490E 
REV 

5’-GAAGCTTTTCGTAAGTATCCGGAGACGTTGCCATTGACTCGAATC-
3’ 

AprA MTL-
ΨGNAT R496A 
FWD pMAS 

351 

5’-GTATCCGAAAACGTTGCCATTGACTGCAATCACAGTTAATCATTTT
GAAAAG-3’ 

AprA MTL-
ΨGNAT R496A 
REV 

5’-CTTTTCAAAATGATTAACTGTGATTGCAGTCAATGGCAACGTTTTC
GGATAC-3’ 
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(100 mM Tris pH 7.4, 500 mM NaCl, 10% (v/v) glycerol, 5 mM TCEP, 300 mM imidazole) was 

used to elute AprA ACP from a 5 mL His trap column over 10 column volumes. AprA ACP was 

further purified using gel filtration chromatography (HiLoad 16/60 Superdex S75) with ACP 

buffer C (100 mM Tris pH 7.4, 250 mM NaCl, 5% (v/v) glycerol, 5 mM TCEP). ~50 mg L-1 of 

AprA ACP was obtained. CurJ C-MT and JamJ ACP were expressed and purified as described 

previously 117. 

Production of acyl-ACPs 

180 M AprA ACP was incubated with 20 M Streptomyces verticillus 

phosphopantetheinyl transferase (SVP) 142, 20 mM MgCl2, and 3–4 fold molar excess of acetyl-, 

isobutyryl-, Mal-, MeMal-, or propionyl-CoA for 4 hr at 30°C in Tris Buffer C. Acyl-ACPs were 

purified from reaction mixtures using gel filtration chromatography (HiLoad 16/60 Superdex S75) 

with ACP buffer C (100 mM Tris pH 7.4, 250 mM NaCl, 5% (v/v) glycerol, 5 mM TCEP).  

Enzyme assays  

All assays were conducted in triplicate. 10 μL AprA methylation reaction mixtures 

containing 100 M AprA acetyl-, isobutyryl-, Mal-, MeMal-, or propionyl-ACP were incubated 

with 25 M wild type or mutagenized AprA MTL-GNAT or AprA GNAT, 1.35 mM SAM, 

and 0.5 mM CaCl2, CoCl2, CuSO4, (NH4)2Fe(SO4)2, NiSO4, MgCl2, MnCl2, Na2MoO4, or ZnCl2, 

in 50 mM Hepes 7.4, 150 mM NaCl. For anaerobic reactions, all buffers were degassed through 

several freeze-pump-thaw cycles and brought into an anaerobic glove box. Solid (NH4)2Fe(SO4)2 

and SAM, and aliquots of AprA MTL-GNAT and ACP were preincubated for 1 hr in the 

anaerobic environment in a 0–4°C CoolBox prior to preparing Fe2+ and SAM solutions and 

reaction mixtures.  Reactions were incubated 5 hr at 30°C (or 4 hr for the time course). AprA 

acyltransfer reaction mixtures (10 μL) containing 100 M AprA holo-ACP were incubated with 

25 M AprA GNAT and 0.5 mM Mal- or MeMal-CoA in 50 mM Hepes 7.4, 150 mM NaCl. 

Reactions were incubated at 30°C for 10 hr. CurJ C-MT reaction mixtures (10 μL) containing 100 

μM JamJ apo ACP, 25 μM CurJ C-MT, 10 μM SVP, 1 mM MgCl2, 1.35 mM SAM, 0.5 mM 

(NH4)2Fe(SO4)2, and 0.5 mM Mal-CoA in 50 mM Hepes 7.4, 150 mM NaCl. Reactions were 

incubated at 30°C for 5 hr. GphF reaction mixtures (10 μL) contained 100 M AprA Mal-ACP, 

50 M GphF MTL-GNAT H660A, 1.35 mM SAM, and 0.5 mM (NH4)2Fe(SO4)2 or MnCl2, in 50 

mM Hepes pH 7.4, 150 mM NaCl. Reactions were incubated at 20°C for 24 hr and quenched with 
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10% (v/v) formic acid prior to LC/MS analysis. Enzyme assays were slightly modified to assess 

AprA MTL -GNAT activity on CoA substrates by monitoring absorbance at 254 nm of reaction 

mixtures separated by HPLC. 

LC/MS analysis 

Assay reaction mixtures (0.1 L) were separated by reverse phase HPLC (Phenomenex 

Aeris widepore C4 column 3.6 μM, 50 x 2.10 mm) at a flow rate of 0.5 mL min-1 in H2O with 

0.2% (v/v) formic acid. Protein was eluted using a gradient of 5-100% acetonitrile with 0.2% (v/v) 

formic acid over 4 minutes. LC-MS analysis (Agilent Q-TOF 6545) using a simultaneous intact 

protein and phosphopantetheine (Ppant) ejection method 150, 169 was carried out under the following 

conditions: fragmentor voltage, 300 V; skimmer voltage, 75 V; nozzle voltage, 1000 V; sheath gas 

temperature, 350 °C; drying gas temperature, 325 °C.  

MassHunter Qualitative Analysis Software (Agilent) was used for LC-MS data analysis. 

Intact protein masses were obtained using the maximum entropy deconvolution algorithm. 

Significant proportions of the Mal-, MeMal-, and Me2Mal-Ppant ejection fragments underwent in-

source decay resulting in acetyl-, propionyl-, and isobuturyl-Ppant fragments. As lower instrument 

voltages decreased in-source decay and also sensitivity, the abundances of related Ppant fragments 

were summed (acetyl + Mal, propionyl + MeMal, isobutyryl + Me2Mal-) to calculate the relative 

abundance of Mal-, MeMal-, and Me2Mal-ACP. Data were excluded for holo ACP, which resulted 

from the spontaneous hydrolysis of Mal-, MeMal-, or Me2Mal-ACP.  

HPLC assays 

25 L reaction mixtures containing 125 M AprA MTL-GNAT, 500 M Mal-CoA or 

Mal-ACP, 6.75 mM SAM, 2.5 mM (NH4)2Fe(SO4)2, 50 mM Hepes 7.4, 150 mM NaCl were 

incubated for 5 hr at 30°C and quenched with the addition of 50 L methanol. Precipitated protein 

was removed by centrifugation. To detect CoA products, end-point reaction mixtures (10 L) 

containing 75 M AprA MTL-GNAT, 2 mM SAM, 0.5 mM (NH4)2Fe(SO4)2, 1.5 mM Mal-CoA 

or MeMal-CoA, 50 mM Hepes 7.4, 150 mM NaCl were incubated 12 hr at 30°C and quenched 

with the addition of 20 L methanol.  

Small molecule components of reaction mixtures (10 L) were separated by reverse phase 

HPLC (Phenomenex Luna C18 column 5 M, 250 x 4.6 mm) following a previously reported 

method186; absorbance was monitored at 254 nm. SAH production was quantified based on 
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integrated peak areas of SAH compared to a SAH standard curve. For reactions on Mal-ACP, the 

LC-MS and HPLC assays resulted in nearly identical levels of activity after correction for assay 

differences in enzyme and substrate concentrations (108 +/- 6 uM SAH produced via LC-MS, 106 

+/- 15 uM SAH produced via HPLC).  

Protein crystallization and structure determination  

Crystal structures of AprA MTL-GNAT were solved for a serendipitous double-

substitution (S274I/Q528P) that was introduced during amplification of the gene and was essential 

to crystallization. The double substitution had no effect on catalytic activity. Native and SeMet 

AprA MTL -GNAT/S274I/Q528P was crystallized by vapor diffusion in a 1:2 μL mixture of 

protein stock (10–11 mg mL-1 AprA MTL-GNAT in Tris buffer C with 1 mM SAM) and well 

solution (2.4–2.5 M (NH4)2SO4, 0.1 M Tris pH 8.5) at 4°C. Crystals appeared overnight and 

continued to grow over several days. Crystals were cryoprotected in 2.4 M (NH4)2SO4 

supplemented with 25% (v/v) glycerol and flash cooled in liquid nitrogen. Diffraction data for all 

structures were processed using XDS (Tables 4.2-4.6) 128. The SeMet AprA MTL-GNAT 

structure was solved by single-wavelength anomalous diffraction (Se SAD) using Phenix AutoSol 

in the Phenix Software suite 130, 170. A nearly complete model was built using Phenix AutoBuild 

171. Crystals of the native and SeMet MTL -GNAT/S274I/Q528P were isomorphous. All refined 

structures were completed by iterative rounds of model building and refinement using Coot 132 and 

Phenix.refine with three translation/liberation/screw groups corresponding to the MTL lid, MTL 

core and GNAT. Electron density is complete for all but the 14 N-terminal amino acids of the 

His tag, a 13-residue region between the MT core and lid (residues 227–241), and the three C-

terminal residues.  

Mn-bound AprA MTL-GNAT/S274I/Q528P was crystallized by vapor diffusion in a 2:1 

μL mixture of protein stock (10-11 mg mL-1 of AprA MTL-GNAT in Tris buffer C with 1 mM 

SAM and 5 mM MnCl2) and well solution (0.15 M DL-malic acid pH 7.0, 20% (v/v) PEG 3350) 

at 20°C. Plate-like crystals appeared overnight. Crystals were cryoprotected with well solution 

supplemented with 15% (v/v) glycerol and flash cooled in liquid nitrogen. A fully refined apo 

AprA MTL-GNAT structure was used to solve the structure of Mn bound AprA MTL-GNAT by 

molecular replacement using Phaser in the Phenix Software Suite 172. Electron density is complete 
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for all residues but the 16 N-terminal residues of the His-tag and 5 residues of the lid (residues 

148–156).  

Malonate- and Mn-bound AprA MTL-GNAT/S274I/Q528P was crystallized by vapor 

diffusion in a 1:1 μL mixture of protein stock (10–11 mg mL-1 AprA MTL -GNAT in Tris buffer 

C with 1 mM SAM and 5 mM MnCl2) and well solution (0.05 M sodium malonate, 16% (v/v) 

PEG 3350) at 4°C. Microseeding was used to obtain single crystals. Crystals were cryoprotected 

with well solution supplemented with 15% (v/v) glycerol and flash cooled in liquid nitrogen. 

Crystals were isomorphous with those of Mn-bound MTL-GNAT/S274I/Q528P. Electron 

density is missing for 23 N-terminal residues of the His-tag and five amino acids of the MTL lid 

(residues 150–154).  

All structures were validated using MolProbity (Figures 4.2-4.4, Table 4.2) 133.Figures 

were prepared in PyMol 136. The AprA ACP homology model was produced using I-TASSER 139-

141. Electrostatic potential surfaces were calculated in APBS with default settings 187. Sequence 

alignments were created using Clustal in Jalview 137, 138 
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Table 4.2 AprA MTL-ΨGNAT crystallographic information 

Data Collection 
SeMet 
Metal Free

Metal Free Mn Mn + Malonate

Space group P4222 P4222 P212121 P212121 

Unit cell, a,b,c (Å) 
152.9, 152.9, 

95.0
152.8, 152.8, 

95.0
60.5, 87.1, 

136.0
60.7, 88.4, 

136.8
X-ray source APS 23ID-B APS 23ID-B APS 23-IDB APS 23ID-D 
Wavelength (Å) 0.979 1.033 1.033 1.033 

dmin (Å) 
2.48 (2.57-

2.48)a 
2.39 (2.48-

2.39)
1.78 (1.85-

1.78)
1.85 (1.91-

1.85)

R-merge 0.1864 (1.98) 0.1052 (1.96) 0.0715 (0.910) 
0.0987 

(0.8719)
Avg I/σ(I) 8.96 (0.89) 11.78 (0.71) 10.72 (1.17) 7.72 (1.05) 
Completeness (%) 99.7 (97.8) 93.1 (91.0) 95.3 (93.2) 95.9 (95.6) 
Multiplicity 11.8 (12.0) 7.2 (7.3) 3.5 (3.2) 3.4 (3.3) 

Total observations 
474,533 
(46,720)

305,285 
(30,710)

227,183 
(20,386) 

211,330 
(19,660)

Wilson B factor (Å2) 60.61 64.26 27.54 26.21 
CC1/2 0.996 (0.549) 0.998 (0.289) 0.998 (0.671) 0.995 (0.494) 
CC* 0.999 (0.842) 1.00 (0.670) 0.999 (0.896) 0.999 (0.813) 
Refinement     
Data range (Å)  47.0–2.39 45.53-1.78 45.4-1.85 
Reflections used in 
refinement 

 41,996 65,829 61,416 

Rwork/Rfree (%)  18.5/22.4 18.1/22.5 18.5/21.5 
Number of non-
hydrogen atoms 

 5,309 5,623 5,516 

protein  5,074 5,094 5,056 
ligands  72 7 14 
water  163 522 446 
Amino acid residues  622 631 624 
Deviation from ideality     
bond lengths (Å)  0.008 0.007 0.006 

bond angles (°)  0.99 0.94 0.84 
Average B-factor (Å2)  74.8 38.5 37.5 
protein  74.1 37.5 37.3 
ligands  131.7 60.9 43.8 
solvent  74.5 48.3 40.2 
Ramachandran plot     

favored (%)  95.2 97.1 97.7 
allowed (%)  4.2 2.6 2.3 
outliers (%)  0.6 0.3 0 
PDB ID  6B39 6B3A 6B3B 

avalues in parentheses designate outer shell 



 

88 
 

 

Table 4.3 Scaling statistics for AprA MTL-ΨGNAT SeMet metal free  

 

Table 4.4 Scaling statistics for AprA MTL-ΨGNAT metal free (PDB ID 6B39) 

 

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

11.11 10422 847 860 98.50% 8.50% 26.38 99.6
7.86 20608 1555 1555 100.00% 8.70% 26.5 99.5
6.41 25355 2006 2006 100.00% 10.20% 21.51 99.6
5.56 29923 2398 2398 100.00% 11.40% 19.22 99.5
4.97 30996 2682 2684 99.90% 11.00% 18.45 99.5
4.54 37258 2994 2994 100.00% 11.20% 20.04 99.5
4.2 41531 3242 3242 100.00% 11.40% 19.3 99.5

3.93 45147 3468 3468 100.00% 13.30% 17.15 99.4
3.7 49005 3726 3726 100.00% 14.80% 15.29 99.4

3.51 51644 3901 3901 100.00% 17.50% 13.17 99.2
3.35 54991 4135 4135 100.00% 21.10% 11.11 99.0
3.21 54532 4298 4298 100.00% 27.00% 8.47 98.6
3.08 54158 4502 4502 100.00% 36.20% 6.45 97.0
2.97 59008 4668 4668 100.00% 50.00% 4.77 95.4
2.87 56340 4848 4848 100.00% 64.50% 3.53 93.0
2.78 59807 4979 4980 100.00% 81.60% 2.85 87.6
2.69 64445 5189 5189 100.00% 99.60% 2.3 84.4
2.62 67070 5327 5327 100.00% 121.10% 1.84 78.9
2.55 69317 5456 5457 100.00% 168.90% 1.27 64.0
2.48 66781 5466 5590 97.80% 194.50% 1 55.2

Total 948338 75687 75828 99.80% 17.40% 9.14 99.6

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

7.11 12161 1690 1916 88.20% 3.10% 49.68 99.9 
5.05 19799 2866 3173 90.30% 5.40% 30.63 99.8
4.13 26980 3689 4001 92.20% 5.70% 30.95 99.8
3.58 33210 4371 4713 92.70% 8.20% 21.5 99.6
3.21 35469 4939 5288 93.40% 13.80% 11.69 99.1
2.93 37846 5467 5821 93.90% 31.00% 5.26 95.2
2.71 42800 5928 6275 94.50% 60.50% 2.7 85.1
2.54 47067 6424 6747 95.20% 104.10% 1.49 62.9
2.39 49976 6846 7139 95.90% 176.80% 0.8 34.9

Total 305308 42220 45073 93.70% 10.50% 11.78 99.8
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Table 4.5 Scaling statistics for AprA MTL-ΨGNAT Mn bound (PDB ID 6B3A) 

 

Table 4.6 Scaling statistics for AprA MTL-ΨGNAT Mn and malonate bound (PDB ID 
6B3B) 

 

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

5.32 9053 2461 2827 87.10% 3.20% 32.02 99.9 
3.78 15276 4343 4814 90.20% 3.90% 29.88 99.7
3.09 20937 5705 6156 92.70% 5.00% 24.13 99.6
2.67 24150 6803 7189 94.60% 7.10% 16.12 99.4
2.39 25929 7761 8124 95.50% 10.20% 11.05 98.8
2.18 29736  8605 8923 96.40% 14.70% 8.15 97.9
2.02 33185 9454 9680 97.70% 22.50% 5.34 96.2
1.89 34392 10175 10333 98.50% 39.10% 2.88 90.3
1.78 34529 10533 11047 95.30% 79.10% 1.36 72.3

Total 227187 65840 69093 95.30% 7.10% 10.72 99.8

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2

5.5 7911 2328 2619 88.90% 4.70% 22.93 99.6 
3.9 15229 4168 4486 92.90% 4.90% 22.44 99.5

3.19 17981 5313 5672 93.70% 6.00% 17.19 99.4
2.77 22808 6344 6653 95.40% 8.90% 11.64 98.9
2.47 25531 7325 7553 97.00% 13.30% 7.69 97.6
2.26 27133 7966 8259 96.50% 19.70% 5.25 94.8
2.09 30720 8763 8961 97.80% 28.60% 3.62 90.5
1.96 32109 9443 9611 98.30% 47.00% 2.15 77.4
1.85 31914 9777 10209 95.80% 75.50% 1.23 56.8

Total 211336 61427 64023 95.90% 9.90% 7.72 99.5
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Figure 4.2 Ramachandran plots for AprA MTL-ΨGNAT metal free  
Ramachandran plots of final refined model of metal free AprA MTL-ΨGNAT (PDB ID 6B39). 
Plots were generated using MolProbity133. 
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Figure 4.3 Ramachandran plots for Mn bound AprA MTL-ΨGNAT 
Ramachandran plots of final refined model of Mn bound MTL-ΨGNAT (PDB ID 6B3A). Plots 
were generated using MolProbity133 
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Figure 4.4 Ramachandran plots for Mn and malonate bound AprA MTL-ΨGNAT 
Ramachandran plots of final refined model of Mn bound MTL-ΨGNAT in complex with 
malonate (PDB ID 6B3B). Plots were generated using MolProbity133 
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Results and Discussion 

Bioinformatic analysis of MTL-GNAT initiation modules 

The AprA amino acid sequence was used to identify several homologs of AR-MTL-GNAT in 

annotated and unannotated secondary metabolite biosynthetic pathways in proteobacteria, 

cyanobacteria, dinoflagellates, firmicutes, and planctomycetes. The homologous sequences from 

pathways with characterized natural products represent initiation modules that incorporate starter 

units larger than acetate (propionate, isobutyrate), which could be derived from the 

decarboxylation of MeMal- or Me2Mal-CoA/ACP or from methylation of acetyl- or propionyl-

CoA/ACP (Figure 4.1a-c). Our search identified an unannotated MT domain in the myxovirescin 

biosynthetic pathway where TaI module 1 contains an AR-MTL-GNAT tridomain (Figure 4.1c) 

that could generate a propionyl starter unit for synthesis of the myxovirescin C3-hydroxyvaleryl 

moiety, consistent with 13C labeling studies 97. Another variant occurs in the rhizoxin pathway, 

which incorporates an unbranched acetyl starter unit despite the AR-MTL-GNAT initiation module 

architecture (Figure 4.1d) 98. However, the RhiA MTL sequence lacks the characteristic SAM-

binding motifs, indicating that it is nonfunctional (Figure 4.5). We also identified several AR-

MTL-GNAT initiation module variants that lack AR, MTL or both [MTL-GNAT-ACP (Figure 

4.1e), AR-GNAT-ACP (Figure 4.1f), GNAT-ACP (Figure 4.1g)] and have predicted acetyl starter 

units. We conclude from the sequence analysis that AR-MTL-GNAT initiation modules produce 

starter units larger than acetyl by SAM-dependent methyl transfer via the MTL, and that both AR 

and a functional MTL are required for the biosynthesis of C-methylated acetyl starter units.  

AprA, the pivaloyl-producing initiation module in apratoxin biosynthesis, contains a 

second MT (MT2L) following the GNAT (Figure 4.1a) 25. Among several homologous sequences 

having both MTL and MT2L domains, only AprA and BryX are from pathways with natural 

products of known structure. The bryX gene is a poorly characterized element of the gene cluster 

for bryostatin 20, a protein kinase C modulator 188. The AR-MTL-GNAT-MT2L-ACP domain 

architecture of BryX is consistent with several isolated bryostatins that contain pivaloyl groups 20, 

leading to the prediction that MT2L is needed for a third methyl transfer in both apratoxin and 

bryostatin biosynthesis.  
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Figure 4.5 AR-MT1 sequence alignment with AprA MTL secondary structure annotation 
Metal ligands are indicated with gray spheres, and AprA amino acids subjected to mutagenesis are
starred. Pathway abbreviations (GenBank accession codes) are as follows: Cur- curacin A 
(AEE88289.1), Apr- apratoxin A (WP_075900460), BryX- bryostatin (ABK51302.1), SxtA-
saxitoxin (WP_009343302.1), TaI- myxovirescin A (WP_011553948.1), GphF- gephyronic acid 
(KF479198.1), RhiA- rhizoxin (WP_013435483.1), NspA- nosperin (ADA69237.1), Bat1-
batumin (WP 052451043.1). 



 

95 
 

 

AprA AR-MTL-GNAT structure  

In order to understand the function of the common AR-MTL-GNAT initiation module, we 

sought a stable AprA fragment for biochemical and structural studies. By screening several 

fragments for solubility, we identified a stable tridomain (residues 2–629) and solved a 2.4-Å 

crystal structure by single-wavelength anomalous diffraction (SAD) from the selenomethionyl 

protein (Figure 4.6a, Table 4.2). Crystal growth required two serendipitous amino acid 

substitutions (S274I, Q528P) that were introduced during cloning and are located in crystal 

contacts. AprA AR-MTL-GNAT is monomeric in crystals and in solution as determined by gel 

filtration chromatography. The MTL domain (residues 241–505) has a typical class I MT fold and 

forms the SAM-binding core. The crystallization solution included SAM, but crystals contained 

the hydrolysis product S-adenosylhomocysteine (SAH) with clear density for the adenosine portion 

and poorly ordered homocysteine (Figure 4.7a, Figure 4.8a). The mysterious AR 

 

Figure 4.6 Structures of AprA AR-MTL-GNAT colored by structural region  
(AR, purple; MTL, blue; GNAT, green). SAH or SAM is shown in sticks with atomic colors (C, 
gray; O, red; N, blue; S, yellow). Disordered residues in the lid-core connector (228–240) are 
indicated with a dashed line. a. AprA AR-MTL-GNAT. b. AprA AR-MTL-GNAT with bound 
Mn2+. Mn is shown as a gray sphere and water ligands as red spheres. 
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Figure 4.7 AprA MTL active sites  
a. Metal-free AprA MTL-GNAT with SAH. Arg227 before and Asn241 after the disordered lid-
core linker are designated with spheres. b. AprA MTL-GNAT with Mn2+ and SAM. c. AprA 
MTL-GNAT substrate complex with Mn2+, malonate and SAM. MTL structural regions are 
colored as in Figure 4.6. Mn2+ (gray) and water ligands (red) are shown as spheres. Mn2+ ligands 
(blue C), SAH/SAM (gray C), and malonate (orange C) are shown in sticks with atomic colors. 
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Figure 4.8 Omit density AprA MTL active sites  
AprA MTL-GNAT 2Fo-Fc composite omit density contoured at 1σ. Maps were calculated with 
simulated annealing (starting temperature 5000 K). a. Metal-free MTL-GNAT, 2.4 Å. b. Mn2+ 
complex, 1.78 Å. c. Mn2+ and malonate complex, 1.85 Å. 
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domain (residues 1–227) is a large helical lid capping the MTL core. As MTs typically include a 

lid domain, hereafter we refer to the AR-MTL didomain as MTL. The substantial sequence 

conservation within the lid consists of hydrophobic side chains that pack in the domain interior. A 

highly conserved 13-residue linker (residues 228–240) connects the MTL lid and core, and is 

adjacent to the SAM binding site, but was disordered and lacked electron density. 

The AprA GNAT (residues 505–621) is closely associated with MTL, with only four amino 

acids between the last β-strand of the MTL core and the first β-strand of the GNAT. The GNAT 

packs against a hydrophobic surface of MTL helix 22, perhaps explaining why attempts to produce 

MTL without GNAT resulted in insoluble protein. Interestingly, the AprA and CurA GNAT 

domains are highly similar for the first ~90 amino acids, after which the structures and sequences 

diverge abruptly (Figure 4.10). AprA GNAT is ~70 amino acids shorter than the CurA GNAT, 

specifically lacking the substrate binding tunnel and the His and Thr residues critical for 

decarboxylation (Figure 4.11a) 31. Attempts to produce a longer MTL-GNAT resulted in insoluble 

protein. Based on the structure superposition and sequence alignment, we conclude that the AprA 

GNAT is not a decarboxylase, and moreover, appears to be a remnant protein lacking a catalytic 

role and can be reclassified as a pseudo-GNAT (GNAT). 

Figure 4.9 Superposition of AprA ΨGNAT and CurA GNAT  
Stereo view of AprA GNAT (green) superimposed with the CurA GNAT (pink) acetyl-CoA (sticks with 
white C) complex. The upper regions of CurA GNAT that are missing in AprA GNAT include the lid of 
the CoA binding tunnel. 
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Figure 4.10 GNAT sequence alignment with CurA GNAT secondary structure annotation 
 Amino acids required for decarboxylation are starred. Pathway abbreviations (GenBank accession 
codes) are as follows: Apr- apratoxin A (WP_075900460), Bry- bryostatin (ABK51302.1), Cur- 
curacin A (AEE88289.1), Sxt- saxitoxin (WP_009343302.1), Ta- myxovirescin A 
(WP_011553948.1), Gph- gephyronic acid (KF479198.1), Rhi- rhizoxin (WP_013435483.1), 
Nsp- nosperin (ADA69237.1), Bat- batumin (WP_052451043.1), Onn- onnamide (AAV97870.1), 
Ped- pederin (AAR19304.1), Bon- bongkrekic acid(AFN27480.1)  
 

Structural homology of MTL  

Among all entries in the structure database, the AprA MTL core domain structure is most 

similar to the two PKS C-methyltransferases, the CurJ MT domain (PDB 5THY, 13% sequence 

identity, RMSD 3.0 Å for 98 core C atoms) (Figure 4.11)  and the fungal-derived citrinin MT 

domain (5MPT, 13% identity, RMSD 2.0 Å for 112 C atoms), which methylate the -keto 

intermediate produced by a KS condensation reaction 117, 165. Another homolog is MppJ (4KIG, 

15% identity, RMSD 2.9 Å for 121 C atoms), a methyltransferase from the mannopeptimycin 
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biosynthetic pathway in Streptomyces hygroscopicus. MppJ uses a mononuclear iron, coordinated 

by two histidines and two waters bridged to an aspartic acid, to facilitate C-methylation at the 

benzylic position of phenylpyruvate 74. In the AprA MTL-GNAT structure, His369 and His456 

near the SAM binding site appeared to be positioned perfectly to serve as metal ligands similar to 

those in MppJ. 

 

 

Figure 4.11 MTL and C-MT homology 
a.  CurJ C-MT. Features in common with AprA MT1 are colored by region (lid orange; core 
blue; insertion green) and additional regions in gray. b. AprA MT1, colored as in b. c. CurJ C-
MT active site. Protein colors as in b with SAH and the His-Glu catalytic dyad in sticks with 
gray C. d. AprA MT1 active site, colored as in d with Mn2+ (gray) and water (red) as spheres. 
His and Glu residues are in the same topological location as the CurJ C-MT His-Glu catalytic 
dyad. 
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AprA MTL catalyzes iron-dependent methyltransfer  

AprA MTL-GNAT was tested for SAM-dependent methyl transfer activity on a variety 

of acyl-ACPs (Mal, MeMal, acetyl, propionyl, isobutyryl) using excised AprA ACP. Reaction 

mixtures were monitored for product formation by mass spectrometry (MS) detection of ACP 

species. The phosphopantetheine (Ppant) ejection assay, which dissociates the Ppant fragment 

from the ACP phosphoserine linkage during ionization, was used for quantification based upon 

the relative abundance of Ppant species 150, 169. No activity was observed for any acyl-ACP 

substrate tested. Inspired by the metal dependence of MppJ, we screened a panel of biologically 

relevant metals for their effect on activity (Figure 4.12, Figure 4.13, Figure 4.14). AprA MTL -

GNAT catalyzed methylation of Mal-ACP to MeMal-ACP in the presence of Fe2+, Mn2+, Co2+, 

and Ni2+. With added Fe2+ under aerobic conditions, MTL-GNAT had a nearly three-fold higher 

activity than with the other active metals. Additionally aerobic reconstitution with Fe2+ yielded 

significant quantities of Me2Mal-ACP (Figure 4.12b). As Fe2+ readily oxidizes to Fe3+ in aerobic 

environments and as activity is greatly reduced under anaerobic conditions, we infer that Fe3+ is 

the active metal.  

AprA MTL-GNAT also methylated Mal- and MeMal-CoA, but had twofold lower 

activity with CoA-linked than with ACP-linked substrates under similar reaction conditions 

(Figure 4.15). Like AprA MTL, GphF MTL also catalyzed Mn- and SAM-dependent methylation 

of Mal-ACP, and produced both MeMal- and Me2Mal-ACP with Fe3+ (Figure 4.16). This GphF 

MTL activity is consistent with the predicted isobutyryl starter unit of gephyronic acid 

biosynthesis21.  

In contrast to the methylation of Mal-ACP, we detected no AprA MTL methylation of 

acetyl, propionyl, or isobutyryl-ACP in the presence of Fe3+ (Figure 4.17a- c). There was also no 

detectable decarboxylation of Mal-, MeMal- or Me2Mal-ACP in mass spectra of intact ACP 

species (Figure 4.13b), nor any enzyme-catalyzed acyl transfer from Mal-CoA or MeMal-CoA to 

the AprA ACP (Figure 4.17d, e), confirming that AprA GNAT has no catalytic activity.  
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Figure 4.12 AprA MTL-GNAT activity. 
 a. Metal profile of reactions with Mal-ACP. The percent of Ppant ejection fragments from MeMal- 
and Me2Mal-ACP are represented as equivalents of SAM consumed. b. Ratios of MeMal-ACP 
and Me2Mal-ACP products of the reactions in a. Error bars represent triplicate experiments and, 
in some cases, are too small to be visible. 
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Figure 4.13 Representative electrospray-injection (ESI) mass spectra of AprA ACP from 
MTL reaction mixes  
Ppant ejection mass spectra and intact protein mass spectra are shown with experimental masses 
in red and calculated masses in black. a. AprA MTL-GNAT reaction with Mal-ACP and no added 
metal; Ppant ejection data. Malonyl fragments undergo in-source decay, producing the 
decarboxylation product acetyl. b. AprA MTL-GNAT reaction with Mal-ACP and Fe; intact 
ACP spectra. The no-metal control is in black; reaction with Fe in red. No masses were observed 
for acetyl-, propionyl-, or isobutyryl-ACP indicating 1) that AprA MTL-GNAT does not catalyze 
decarboxylation, and 2) that the decarboxylated products in the Ppant ejection spectra formed in 
the spectrometer not on the enzyme. c. AprA MTL-GNAT reaction with Mal-ACP and Fe; Ppant 
ejection data. The carboxylated fragments undergo in-source decay, producing acetyl, propionyl, 
and isobutyryl fragments. 
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Figure 4.14 Time course data for AprA MTL-ΨGNAT methylation reactions 
 a. AprA MTL-GNAT with Mal-ACP, b. AprA MTL-GNAT with MeMal-ACP, c. AprA 
GNAT with Mal-ACP. Error bars represent triplicate experiments and, in some cases, are too 
small to be visible. 
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Figure 4.15 AprA MTL-GNAT reactions with Mal-ACP, Mal-CoA or MeMal-CoA 
analyzed by HPLC  
a. AprA MTL-GNAT with Mal-ACP substrate. Reaction, solid red; No enzyme control, solid 
black; SAM standard, dotted gray; SAH standard, dotted red. b. AprA MTL-GNAT with Mal-
CoA substrate. Reaction, solid red; No enzyme control, solid black; SAM standard, dotted gray; 
SAH standard, dotted red.  c. Calculated SAH produced in a and b based on absorbance at 254 nm. 
d. End-point HPLC analysis of Mal-CoA and MeMal-CoA reactions with AprA MTL -GNAT. 
No enzyme controls and reactions, solid lines; standards, dotted lines. 
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Figure 4.16 GphF MTL-GNAT reaction with Mal-ACP 
 For the Ppant ejection data, experimental masses are in red and calculated masses in black. The 
GphF decarboxylase activity was blocked by using GphF MTL-GNAT/H660A for these 
experiments. a. GphF MTL-GNAT/H660A with Mal-ACP and no added metal. b. GphF MTL-
GNAT H660A with Mal-ACP and Mn. c. GphF MTL-GNAT/H660A with Mal-ACP and Fe. The 
mass at 367 Da is a contaminant present in all samples. 
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Figure 4.17 Mass spectra of methylation and acetyl transfer reactions with AprA MTL-
ΨGNAT, AprA ΨGNAT, and CurJ C-MT 
Representative electrospray-injection (ESI) mass spectra of AprA ACP from MTL-GNAT and 
GNAT reaction mixes and JamJ ACP from CurJ C-MT reaction mixes. Ppant ejection mass 
spectra are shown with experimental masses in red and calculated masses in black. a. AprA MTL-
GNAT reaction with acetyl-ACP and Fe; Ppant ejection data. No-metal control, black; reaction, 
red. b. AprA MTL-GNAT reaction with propionyl-ACP and Fe; Ppant ejection data. No-metal 
control, black; reaction, red. c. AprA MTL-GNAT reaction with isobutyryl-ACP and Fe; Ppant 
ejection data. No-metal control, black; reaction, red. d. Intact protein spectra of AprA GNAT 
acyltransfer reaction with holo-ACP and Mal-CoA. No-enzyme control, black; reaction, red.  e. 
Intact protein spectra of AprA GNAT acyltransfer reaction with holo-ACP and MeMal-CoA. 
No-enzyme control, black; reaction, red. f. CurJ C-MT reaction with Mal-ACP and Fe; Ppant 
ejection data. No-enzyme control, black; reaction, red. 
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Metal binding triggers tunnel formation 

The metal in MTL is labile; AprA MTL purified without bound metal, and after 

reconstitution, did not retain iron during size exclusion chromatography. This property contrasts 

with MppJ, which co-purified with Fe3+ 74. Metal addition blocked AprA MTL-GNAT 

crystallization in the previously identified conditions, but new conditions with 5 mM MnCl2 

resulted in a new crystal form and a 1.8-Å structure of AprA MTL-GNAT S274I/Q528P (Figure 

4.6b and Table 4.2). Mn2+ is bound ~6 Å from the SAM methyl donor. The octahedral coordination 

sphere consists of three water ligands and three protein ligands (Figure 4.7b, Figure 4.18), 

including Gln461 and the predicted His369 and His456. These three ligands are conserved in MTL 

homologs (Figure 4.5), the only exceptions being a few cases of Gln in place of His456. No 

charged ligand resides in the first coordination shell, but one water ligand is bridged to Asp370. A 

D370N substitution resulted in a slight decrease in activity (Figure 4.19). 

 

 

Figure 4.18 Key amino acids for substrate binding  
a.  Malonate interactions at the metal center. b. Hydrogen bond network in lid-core connector 
(amino acids 228–251). Amino acid side chains (purple C, blue C), SAM (gray C), and malonate 
(orange C) are shown in sticks with atomic coloring, hydrogen bonds as dashed lines, and metal 
coordination bonds as solid lines. 
 

Metal binding induced a substantial reorganization of the active site, especially in the 

conserved linker between the MTL lid and core (residues 228–240), which was disordered in the 

metal-free structure. Amino acids 228–251 form a helix (helix 14) and loop that extend over the 

metal center and SAM binding site, and create a tunnel between the lid and core (Figure 4.6b, 

Figure 4.7b). Surprisingly, intact SAM was bound in the Mn2+ complex, suggesting that the fully 
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formed active site protects SAM from hydrolysis. In contrast to the metal-free structure, the 

methionine portion of SAM was well ordered (Figure 4.7b, Figure 4.8b). The SAM carboxylate is 

hydrogen bonded with the His249 imidazole, which points into the active site between SAM and 

Mn2+ (Figure 4.18). A H249A substitution abolished activity with Mal-ACP substrates (Figure 

4.19). Second-shell interactions at the metal center are also important to catalysis. The Gln461 and 

His369 metal ligands are positioned by conserved residues Tyr206 in the lid domain, and Glu431 

in the core. A Y206F substitution eliminated activity (Figure 4.19). His462 lies on a loop following 

His456 and Gln461 and appears to stabilize these ligands through hydrogen bonds with adjacent 

loops. Substitution at His462 resulted in a twofold decrease in activity (Figure 4.19). 

 

Figure 4.19 Relative methylation activities of wild type AprA MTL-GNAT, serendipitous 
crystallization substitution (S274I/Q528P), and active site variants  
a. SAM consumption in reactions with Mal-ACP. b. Ratios of MeMal-ACP and Me2Mal-ACP 
products from a.  Error bars represent triplicate experiments and, in some cases, are too small to 
be visible. 
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Substrate binding and catalysis 

In order to understand how the metal center promotes catalysis, we obtained a 1.85-Å 

structure for an MTL-GNAT complex with Mn2+, SAM and malonate (Figure 4.7c, Figure 4.18, 

Table 4.2). Malonate binds directly to Mn2+ as a bidentate ligand in which one coordination bond 

from each carboxylate displaces a water ligand. One malonate carboxylate is clearly in the position 

of the terminal group of Mal-ACP as it forms three hydrogen bonds with conserved amino acids: 

Tyr206, Asn241 and Gln461, which are in turn positioned by an extensive hydrogen bond network 

with other conserved residues [Ser205 in the lid, and Glu233 and Arg238 in the re-ordered lid-

core connector, (Figure 4.18)]. Methyl transfer activity was abolished by substitution of Asn241 

or any connector amino acids in the hydrogen bond network, including His235 (Figure 4.19). The 

second malonate carboxylate is well positioned to form the thioester with the ACP Ppant as it lacks 

hydrogen bonds to the protein and the non-coordinated oxygen points into the tunnel between the 

lid and core. Like the metal center, the malonate has no direct contact with charged amino acids. 

This should enhance the ionic interaction of malonate and metal, and the ability of the metal to 

promote methyl transfer. 

Metal-dependent MTs typically require Ca2+ or Mg2+, which functions to position the 

substrate for methyl addition and proton abstraction from a relatively acidic oxygen 65, 67, 189. 

Compared to a hydroxy oxygen, the weak acidity of the -carbon renders Mal-ACP a far more 

challenging methylation target. The mannopeptimycin methyltransferase MppJ, which methylates 

phenylpyruvate at a benzylic carbon of similarly weak acidity 74, provides a direct precedent for 

the Fe3+-dependence of the AprA MTL. 

We propose that the metal facilitates catalysis by acting as a Lewis acid to lower the pKa 

of the malonyl or methylmalonyl -carbon, leading to deprotonation, enolate formation and attack 

of the SAM methyl (Figure 4.20), similar to the mechanism proposed for Co2+-dependent 

epimerization of MeMal-CoA 190. The positions of malonate and SAM indicate that the product of 

the first methyl transfer is (S)-MeMal-ACP (Figure 4.7c, Figure 4.18). The malonyl -carbon is 

6.8 Å from the SAM methyl, suggesting that further closure of the MTL active site occurs prior to 

methyl transfer. Tyr455 and Ser245 are the only amino acids in the active site positioned (5.0 Å 

and 4.1 Å, respectively) to accept an -proton. Interestingly, a Y455F substitution and an S245A 

substitution abrogated the second methyl transfer but not the first (Figure 4.19b). This raises the 

possibility that one of these side chains accepts the (R)-proton in the second methyl transfer 
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reaction and that another base accepts the (S)-proton prior to the first methyl transfer. The only 

candidate for an (S)-proton acceptor is the water molecule that bridges Asp370 and the metal (3.5 

Å from the malonyl -carbon). 

Figure 4.20 AprA MTL mechanism 
Fe3+ acts as a Lewis acid to promote methylation at the -carbon of Mal-ACP to produce (S)-
MeMal-CoA. MeMal-ACP is subsequently methylated to Me2Mal-ACP. 
 

The few examples of mononuclear iron as a Lewis acid include nitrile hydratase and the 

MppJ MT, which both employ Fe3+ 74, 191, 192. Ferric iron supports AprA MTL catalysis, as our 

assays were performed in an aerobic environment over several hours and activity was diminished 

under anaerobic conditions (Figure 4.12). Although AprA can perform monomethylation with 

Co2+, Fe2+, Mn2+, and Ni2+, dimethylation is dependent on Fe3+ as a co-factor (Figure 4.12b). We 

infer that the second AprA MTL methylation is more energetically demanding than the first due to 

the difference in pKa values reported for methyl ester forms of malonate (15.9) and 

methylmalonate (18.0) 193. Ferric iron may be uniquely capable of facilitating the removal of the 

second proton for the formation of Me2Mal-ACP, as it is a stronger Lewis acid than Co2+, Fe2+, 

Mn2+ and Ni2+. Despite the biosynthetic challenge, nature has evolved other approaches to generate 

the dimethylmalonyl biosynthetic subunit, as two non-metal dependent PKS extension module C-

MTs have also been reported to produce Me2Mal-ACP 100, 101, 194. 



 

112 
 

 

Ppant modeling  

We modeled Mal-Ppant into the AprA MTL structure based on the outermost carboxylate 

of bound malonate (Figure 4.21a). The tunnel width and length are well matched for threading 

Ppant to deliver malonyl to the active site. The Ppant could interact with conserved tunnel residues 

Gln248 and Arg496, which coordinates a glycerol molecule from the crystallization solution. 

Although Arg496 is 10 Å from the metal center, an Ala substitution abolished activity (Figure 

4.19a), suggesting that Ppant interactions within the tunnel are essential for activity.  

 

Figure 4.21 Malonyl-Ppant substrate modeling  
a. MTL-GNAT surface showing Ppant, SAM and the tunnel created by active site assembly. 
Ppant (orange C) and SAM (gray C) are shown in sticks. Modeled Mal-Ppant spans tunnel between 
the MTL lid (purple) and core (blue). SAH can exchange with SAM while the substrate is still 
bound in the active site. b. Electrostatic surface of AprA c. Electrostatic surface of homology 
model of AprA GNAT. Ser1093 is the Ppant attachment site. Electrostatic surfaces shown at 5 
kT/e, blue electropositive, red electronegative. 
 

The proposed Ppant tunnel entrance is surrounded by positively charged amino acids 

(Arg196, Lys251, Lys290). R196E, K251E and K490E variants yielded no activity (Figure 4.19a). 

A complementary negatively charged surface is adjacent to the Ppant attachment site (Ser1093) in 

a homology model for AprA ACP. This charge complementarity may facilitate the interaction 

between AprA MTL and ACP (Figure 4.21b, c). Ppant binding in the tunnel is compatible with 

exchange of SAH for SAM through the opposite end of the tunnel, facilitating the second 

methylation reaction prior to disengagement of MeMal-ACP (Figure 4.21a).  Evidence that two 
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methylations occur prior to dissociation of ACP from the enzyme comes from the nearly identical 

accumulation rates of MeMal-ACP and Me2Mal-ACP in a reaction starting with Mal-ACP, 

indicating no initial accumulation of the singly methylated product, MeMal-ACP (Figure 4.14a).  

Relation of AprA MTL to other PKS MTs 

Of the several hundred MT structures in the structure database, AprA MTL most closely 

resembles the MTs from PKS extension steps 117, 165. All class I SAM-dependent MTs are thought 

to have a common ancestor, but the superfamily has several highly diverged branches. AprA shares 

several features with the PKS extension module MTs (Figure 4.11a, b) 117, including a lid-

interacting insertion between -strands five and six of the core. The lid domains are topologically 

similar at the N-termini, but the AprA MTL lid (formerly known as AR) is much larger due to a C-

terminal extension. We previously showed that conserved His and Glu amino acids are essential 

to methyl transfer by the CurJ extension-module MT, and proposed that the His imidazole is the 

catalytic base that accepts a proton from the -carbon of the -ketoacyl-ACP substrate 117. By 

structure superposition, the critical His and Glu of extension-module MTs correspond to AprA 

MTL His369 and Glu431, which are also conserved in GNAT initiation modules (Figure 4.11c, d). 

His369 is a metal ligand, and Glu431 is hydrogen bonded to the second imidazole nitrogen of 

His369, exactly as in the CurJ MT. Interestingly, CurJ MT acts on acetoacetyl-ACP, but has no 

activity with Mal-ACP, even with the addition of iron (Figure 4.17f) and lacks the other metal 

ligands (His456 and Gln461). Thus, it appears that an ancestral extension-step MT acquired a 

metal center as it adapted from -methylation of -ketoacyl-ACP to the more energetically 

demanding -methylation of -carboxyacyl-ACP.  

The dual entrances to the active site are a major difference between AprA MTL and both 

the PKS extension C-MTs, which have a single active-site entrance. In extension module C-MTs, 

the Ppant tunnel entrance is blocked by an N-terminal helix 117. Thus, it appears that AprA MTL 

has specifically evolved two active site entrances, which may be essential to performing the 

dimethylation reaction.  

Functional annotation of GNAT initiation modules 

The discovery of iron-dependent methylation of Mal-ACP by AprA MTL and homologs 

permits the functional annotation of branched-chain acyl group production by GNAT initiation 

modules for several PKS pathways, including bryostatin (pivalate), gephyronic acid (isobutyryl), 
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myxovirescin (propionyl) and saxitoxin (propionyl). The initiation modules that generate pivaloyl-

ACP, AprA and BryX, have an MTL-GNAT-MT2L-ACP architecture, as the GNAT lacks the 

His and Thr/Ser residues required for decarboxylation and also the substrate tunnel for Mal-CoA 

binding 31. Consistent with the structure and sequence we observed no decarboxylation of Mal-, 

MeMal- or Me2Mal-ACP in assays of AprA MTL-GNAT. Additionally, no Mal- or MeMal-CoA 

transfer to the ACP was observed by the GNAT (Figure 4.17d, e). Thus, for the MTL-GNAT-

MT2L-ACP initiation modules AprA and BryX, the identity of the enzyme responsible for 

activating and catalyzing transfer of the malonyl group onto the ACP is unknown, as is the identity 

of the corresponding decarboxylase.  

In modules containing MTL-GNAT-ACP, such as GphF, TaI and SxtA (Figure 4.1b, c), 

MTL catalyzes one or two methyl transfer reactions on Mal-ACP. No evident sequence motifs or 

structural features distinguish monomethylating and dimethylating MTL enzymes. The MeMal- or 

Me2Mal-ACP product should be decarboxylated by GNAT to yield propionyl- or isobutyryl-ACP 

starter units, as all GNAT domains in MTL-GNAT-ACP modules contain the His and Thr/Ser side 

chains required for decarboxylation 31. Unlike the CurA GNAT, the GNAT of pathways with 

branched-chain starter units should not catalyze decarboxylation of Mal-CoA. These GNATs may 

transfer malonyl from CoA to ACP to initiate starter unit biosynthesis, however this would require 

the ACP-bound substrate to occupy the GNAT active site both before and after MTL methylation. 

This process could additionally lead to aberrant product formation through premature 

decarboxylation of Mal-ACP. Therefore for propionyl- or isobutyryl-ACP production, we reason 

that an enzyme outside the module transfers malonyl to the ACP. For pathways with in trans 

acyltransferases (AT), one or more loading enzymes are encoded in the gene cluster. For pathways 

with in cis ATs, the loading enzyme is unknown, but may be a malonyl acyltransferase from fatty 

acid biosynthesis, as observed in other polyketide pathways 195-197.  

Evolution of GNAT initiation modules 

The extant GNAT initiation modules are remarkable examples of PKS evolution in action. 

AR- MTL-GNAT-ACP modules are capable of synthesizing propionyl or isobutyryl starter units. 

In order to form a pivaloyl starter unit, a second methyltransferase (MT2L), which is most similar 

to PKS extension-step C-MTs, is inserted into the module. However, it appears that the 

decarboxylation and acyltransfer functions of GNAT were lost in pivaloyl-producing modules, 

yielding a GNAT. GNAT initiation modules that introduce an acetyl starter unit are presumed 
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to function like the CurA GNAT by decarboxylation of Mal-CoA and acetyl transfer to the ACP. 

Several of these initiation modules retain vestiges of an MT ancestor. For example, the MTL core 

domain was lost from the curacin A initiation module (Figure 4.1f) but the AR, which we now 

know is a remarkably large MTL lid, was retained and enhances, but is not required for, GNAT 

loading activity31. In contrast, GNAT initiation modules from the batumin (Bat) and nosperin 

(Nsp) pathways have lost the AR and contain only MTL core-GNAT-ACP (Figure 4.1e) 93, 116. The 

rhizoxin GNAT initiation module has homologs of all domains, but the MTL appears to be non-

functional (Figure 4.1d). Finally, minimal GNAT initiation modules in the bongkrekic acid (Bon), 

onnamide A (Onn), and pederin (Ped) pathways contain only GNAT and ACP (Figure 4.1g) 94-96.  

In conclusion, we have characterized an unusual Fe3+- and SAM-dependent 

methyltransferase involved in the production of branched polyketide starter units. Although related 

to other PKS MTs, the MTs of GNAT initiation modules have evolved to have two active site 

entrances to facilitate dimethylation. A crystal structure in complex with malonate, a substrate 

mimic, reveals an elegant conserved hydrogen bond network responsible for positioning the 

substrate. Functional and structural characterization of the AprA MTL provides key insights to 

enable a more robust annotation of GNAT initiation modules found in diverse microorganisms. 
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 Biosynthesis of t-Butyl in Apratoxin A: Functional Analysis and Architecture of 
a PKS Loading Module 

 
Reproduced with permission from Skiba, M.A., Sikkema, A.P., Moss, N.A., Lowell, A.N., Su, 
M., Sturgis, R.M., Gerwick, L., Gerwick, W.H., Sherman, D.H., Smith, J.L. Biosynthesis of t-
Butyl in Apratoxin A: Functional Analysis and Architecture of a PKS Loading Module. ACS 
Chem Biol 13, 1640-1650 (2018).  
Copyright 2018 American Chemical Society. 
 

Summary 

The unusual feature of a t-butyl group is found in several marine-derived natural products 

including apratoxin A, a Sec61 inhibitor produced by the cyanobacterium Moorea bouillonii PNG 

5-198. Here we determine that the apratoxin A t-butyl group is formed as pivaloyl acyl carrier 

protein (ACP) by AprA, the polyketide synthase (PKS) initiation module of the apratoxin A 

biosynthetic pathway. AprA contains an inactive “pseudo” GCN5-related N-acetyltransferase 

domain (GNAT) flanked by two methyltransferase domains (MTL and MT2L) that differ 

distinctly in sequence. Structural, biochemical, and precursor incorporation studies reveal that 

MT2L catalyzes unusually coupled decarboxylation and methylation reactions to transform 

dimethylmalonyl-ACP, the product of MTL, to pivaloyl-ACP. Further, pivaloyl-ACP synthesis is 

primed by the fatty acid synthase malonyl acyltransferase (FabD), which compensates for the 

GNAT and provides the initial acyl-transfer step to form AprA malonyl-ACP. Additionally, 

images of AprA from negative stain electron microscopy reveal multiple conformations that may 

facilitate the individual catalytic steps of the multienzyme module 

Introduction 

Marine organisms are rich sources of bioactive natural products198, 199, providing potential 

leads for new pharmaceuticals. Cyanobacteria produce a myriad of polyketide and non-ribosomal 

peptide secondary metabolites, which are synthesized by polyketide synthase (PKS) and non-

ribosomal peptide synthetase (NRPS) assembly lines using acyl-coenzyme A (CoA) or amino acid 

building blocks, respectively. Interestingly, a number of marine natural products contain t-butyl 
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groups200-216, a chemical moiety that is relatively rare in nature217.  Typically, t-butyl groups in 

natural products are encountered either as modified amino acids201-204, terpene-derived pendant 

chains on the D-ring of steroids205, or in PKS/NRPS-derived molecules200, 206-212 primarily found 

in the metabolomes of sponges or cyanobacteria.  

Although t-butyl-containing natural products were first identified over 50 years ago218, 

only one route for t-butyl biosynthesis has been characterized202, 203, which involves a cobalamin-

dependent radical S-adenosylmethionine (SAM) enzyme. Apratoxin A25 is a t-butyl containing 

cytotoxic Sec61 inhibitor (Figure 5.1a) produced by the marine cyanobacterium Moorea bouillonii 

PNG5-19825-27. However, the gene cluster for apratoxin A biosynthesis encodes no homolog of 

the cobalamin-dependent radical SAM enzymes previously implicated in t-butyl synthesis, which 

should occur in the initial steps of the pathway. Instead, synthesis of the t-butyl group in the form 

of pivalate is proposed to be carried out by AprA, an unusual polyketide initiation module 

containing a GCN5-related N-acetyltransferase (GNAT)-like domain flanked by two 

methyltransferase domains (MTL and MT2L; Figure 5.1b)25. GNAT-like domains typically 

decarboxylate CoA- or ACP-linked substrates31, 183, 219, and the founding member was also 

associated with the subsequent acyl transfer from CoA to an ACP domain during the initiation of 

curacin A biosynthesis31. However, we previously showed that the AprA GNAT is truncated and 

lacks catalytic residues essential for decarboxylation, and thus re-annotated it as a “pseudo” GNAT 

(GNAT) 119. AprA MTL and MT2L share very low amino acid sequence identity, but MT2L is 

more than 30% identical to C-methyltransferases (C-MT) found in some PKS extension modules.  

PKS C-MTs of this type, for example the CurJ C-MT, methylate the -position of -keto 

intermediates during cycles of polyketide chain extension and modification117. Several variants of 

the marine natural product bryostatin also have a t-butyl substituent208, and a homolog of AprA 

(MTL -GNAT- MT2L -ACP) exists within BryX in the bryostatin pathway20. 

Previously, we characterized two initial steps in the biosynthesis of the apratoxin A 

starter unit, demonstrating that AprA MTL is a mononuclear iron-dependent methyltransferase 

that forms dimethylmalonyl-ACP (Me2Mal-ACP) from malonyl-ACP (Mal-ACP) and two 

equivalents of SAM (Figure 5.1c)119. Thus, conversion of Me2Mal-ACP to the pivaloyl starter 

unit requires a decarboxylase and a methyltransferase. The acyltransferase that initiates apratoxin 

A biosynthesis by forming Mal-ACP (Figure 5.1c) also remains to be identified.  
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Figure 5.1 Production of a t-butyl group by AprA 
a. Apratoxin A structure and distribution of SAM-derived methyl groups. Feeding studies 
demonstrate that the t-butyl group in apratoxin A is derived from SAM. Percent enrichment over 
natural abundance and fold-change of SAM-derived carbons (green circles) from [methyl-
13C]methionine-fed cultures of M. bouillonii PNG5-198 relative to native abundance apratoxin A 
are displayed. b. Cartoon representing AprA domains, which are proposed to produce pivaloyl-
ACP: methyltransferase 1 (MTL), pseudo GCN5-related N-acetyltransferase (GNAT), 
methyltransferase 2 (MT2L), ACP. c. Reactions needed to produce pivaloyl-ACP. The conversion 
of malonyl-ACP to Me2Mal-ACP has been characterized119. The identities of the enzymes that 
catalyze acyltransfer from Mal-CoA to ACP, decarboxylation of Me2Mal-ACP, and the third 
methylation reaction are addressed in this study. 

 

To determine whether AprA can form pivaloyl-ACP, we characterized the catalytic activity 

of the MT2L, solved a crystal structure of the GNAT- MT2L didomain, and conducted stable-

isotope labeled feeding experiments with live cultures of M. bouillonii PNG5-198. MT2L is a 

remarkable bifunctional enzyme that catalyzes the coordinated decarboxylation and methylation 

of Me2Mal-ACP to produce pivaloyl-ACP. As no AprA catalytic domain can perform the missing 

malonyl-acyltransfer step to initiate the pathway, we determined that the M. bouillonii fatty acid 

synthase malonyl-acyltransferase, FabD, is an efficient catalyst for the formation of Mal-ACP 

from Mal-CoA, indicating crosstalk between primary and secondary metabolic pathways in M. 

bouillonii. Furthermore, a model of the AprA full module based on the crystal structures of the 
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AprA MTL-GNAT119 and GNAT- MT2L didomains was validated by negative-stain electron 

microscopy (EM) of AprA ΔACP in solution, revealing a flexible overall architecture that may 

facilitate the individual catalytic steps.  

Experimental Procedures 

Culturing, extraction, and purification of apratoxin A 

All cyanobacterial culturing and extraction and purification of apratoxin A was performed 

by Nathan Moss. Culture conditions of Moorea bouillonii PNG 5-198 were identical for [methyl-
13C]methionine and labeled [1-13C]propionate feeding experiments. Apratoxin A producer M. 

bouillonii PNG 5-198 was cultured in SW-BG11 media between 27-28°C, under light of 5.4-10.8 

μmol photons m-2 S-1. Two batches of 0.5 g wet filaments 1 cm in length were inoculated into 250 

mL Erlenmeyer flasks and grown for 14 days, followed by sub-culturing of each biomass flask 

into two 2.8 L Fernbach flasks containing 1 L of media. After growth for ten days, the biomass 

from each flask was combined into one 2.8 L Fernbach flask containing 750 mL media, and the 

culture was equilibrated for an additional 7 days. [Methyl-13C]methionine (Cambridge Isotopes) 

was added to the culture in three batches of 20 mg each over 13 days, to a final concentration of 

0.53 mM, and harvested after an additional 6 days of growth. [1-13C]propionate (Cambridge 

Isotopes) was added to a separate culture flask with a similar quantity of biomass in three batches 

of 28.8 mg over period of 15 days, to a final concentration of 1.2 mM, and harvested after an 

additional 15 days of growth. Cultures were harvested and lightly washed with DI water over a 

Büchner funnel with filter paper, followed by extraction with 2:1 CH2Cl2:MeOH. Crude extracts 

were fractionated by C18 SPE (Agilent) and eluted with 40%, 80%, and 100% acetonitrile, then 

100% CH2Cl2. The 80% and 100% acetonitrile fractions were combined and further purified by 

HPLC using a gradient of 65% to 99% acetonitrile in H2O + 0.1% formic acid at 3 mL min-1 

through a 150 x 10 mm, 5 μM Kinetex C18 semi-preparative column. Subsequent semipure 

apratoxin A plus demethylated analogs were re-submitted for HPLC using a gradient of 70% to 

81% acetonitrile in H2O + 0.1% formic acid at 4 mL min-1, rendering 1.2 mg of apratoxin A from 

the [1-13C]propionate experiment and 1.8 mg of apratoxin A from the [methyl-13C]methionine 

experiment. Approximately 2 mg of apratoxin A harvested from previous non-labeled batches was 

similarly obtained and used for NMR enrichment comparisons (Figure 5.2).  
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Figure 5.2: Comparison of 13C-NMR enrichment of apratoxin A with methionine and 
propionate  
a. Unlabeled apratoxin A on top compared with apratoxin A labeled with [methyl-13C]methionine 
on bottom (in CDCl3).  Stars indicate enriched carbon resonances. b. Unlabeled apratoxin A on 
top compared with apratoxin A labeled with [1-13C]propionate on bottom (in D4-MeOH). There is 
no significant enrichment in any of the 13C resonances. 
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NMR analysis and calculation of 13C incorporation levels 

All 13C NMR analyses were performed on a Varian VX500 spectrometer at 500 MHz for 
1H NMR and 125 MHz for 13C NMR by Nathan Moss (Tables 5.1- 5.3).  A JEOL ECZ500 

spectrometer was used to obtain HSQC and HMBC spectra (data not shown) in order to confirm 
13C/1H shifts of apratoxin A in D4-methanol solvent used in the analysis of the [1-13C]propionate 

feeding experiment (Table 5.2). Residual solvent shifts in each sample were used as the chemical 

shift references. Sample processing was performed using MestReNova and Delta. Table 5.1 

indicates 13C-enrichment by carbon number in the [methyl-13C]methionine feeding experiment, 

using a normalization method adapted from previous studies23.  Briefly, integrated values of 

natural-abundance apratoxin A 13C NMR signals are indicated in column 4. Five carbon atoms 

with different biosynthetic origins and chemical shifts were used for normalization between 

unenriched and enriched spectra: C7, C13, C20, C30, and C37. Normalization factors (columns 5-

9) were obtained by dividing the integral values of all 13C NMR signals in column 4 by those of 

C7, C13, C20, C30, and C37 (underlined in column 4). Then, the integral for the enriched signals 

of each of the five carbon atoms used in the normalization procedure (underlined in column 10) 

were multiplied by their normalization factors (columns 5-9) to obtain an expected signal integral 

for all carbon signals if no enrichment had occurred (columns 11-15). Percent enrichment was 

calculated by subtracting columns 11-15 from column 10, dividing the result by the column 11-15 

values ((enriched – expected unenriched)/expected unenriched), and multiplying by 100 to yield 

the values in columns 16-20.  The five results in columns 16-20 were averaged to yield the values 

in column 21. Column 22 is another expression of enrichment, namely the fold change of the 

enriched vs. unenriched sample.  

Construct design 

All constructs for apratoxin biosynthetic proteins were amplified from a plasmid encoding 

full length aprA (pAPS1)119 and inserted into pMCSG7166 by ligation independent cloning (LIC) 

to create expression plasmids for AprA GNAT-MT2L (residues 502-1022, pAPS4), AprA ACP 

(residues 2-1034, pAPS5), and AprA MT2L (residues 628-1022, pMAS247). Primers are listed in 

Table 5.4. All aprA site-directed mutations were introduced into pMAS247 using the 

QuickChange protocol (Stratagene). Plasmid pMAS308 encoding BryX MT2L   
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Table 5.1 Enrichment of apratoxin A by culture of M. bouillonii PNG 5-198 supplemented 
with [methyl-13C]methionine 

Column #      
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 Biosynthetic  
Integral of 
unlabeled Normalization factor using:

Integral of 
enriched

Normalized integral of  
enriched sample using: Enrichment compared to: Average %

 
Fold

C# source ppm resonance C7 C13 C20 C30 C37 resonance C7 C13 C20 C30 C37 C7 C13 C20 C30 C37 Enrichment1 change

1 Pro 172.8 42.7 0.4 0.7 0.4 0.4 0.6 45.9 37.2 40.2 30.6 36.2 40.1 23.3 14.1 50.0 26.7 14.5 25.7 1.26

2 Pro 59.9 112.6 1.1 1.8 1.1 1.0 1.6 79.2 98.1 106.1 80.7 95.5 105.7 -19.3 -25.3 -1.9 -17.1 -25.1 -17.7 0.82

3 Pro 29.5 119.5 1.1 2.0 1.2 1.1 1.6 126.5 104.1 112.6 85.6 101.3 112.2 21.5 12.4 47.7 24.8 12.8 23.8 1.24

4 Pro 25.8 91.9 0.9 1.5 0.9 0.8 1.3 81.7 80.1 86.6 65.9 78.0 86.3 1.9 -5.7 24.0 4.8 -5.4 3.9 1.04

5 Pro 47.8 133.9 1.3 2.2 1.3 1.2 1.8 88.1 116.7 126.2 96.0 113.6 125.7 -24.5 -30.2 -8.2 -22.5 -30.0 -23.1 0.77

6 Ile 170.8 37.4 0.4 0.6 0.4 0.3 0.5 51.4 32.6 35.2 26.8 31.7 35.1 57.9 46.1 92.1 62.3 46.6 61.0 1.61

7 Ile 56.8 104.0 1.0 1.7 1.0 0.9 1.4 90.7 90.7 98.0 74.6 88.2 97.7 0.0 -7.5 21.6 2.8 -7.2 1.9 1.02

8 Ile 31.9 82.9 0.8 1.4 0.8 0.7 1.1 68.2 72.3 78.1 59.4 70.3 77.9 -5.7 -12.7 14.7 -3.1 -12.4 -3.8 0.96

9 Ile 24.8 93.7 0.9 1.5 0.9 0.8 1.3 66.0 81.7 88.3 67.2 79.5 88.0 -19.2 -25.3 -1.7 -17.0 -25.0 -17.6 0.82

10 Ile 9.2 124.2 1.2 2.0 1.2 1.1 1.7 83.4 108.3 117.0 89.0 105.4 116.6 -23.0 -28.8 -6.4 -20.9 -28.5 -21.5 0.79

11 Ile 14.2 145.1 1.4 2.4 1.4 1.3 2.0 86.1 126.5 136.7 104.0 123.1 136.3 -31.9 -37.0 -17.2 -30.1 -36.8 -30.6 0.69

12 SAM 30.7 89.0 0.9 1.5 0.9 0.8 1.2 175.7 77.6 83.8 63.8 75.5 83.6 126.5 109.6 175.5 132.8 110.3 130.9 2.31

13 Ala 170.2 61.1 0.6 1.0 0.6 0.5 0.8 57.6 53.3 57.6 43.8 51.8 57.4 8.1 0.0 31.5 11.1 0.3 10.2 1.10

14 Ala 60.9 76.9 0.7 1.3 0.8 0.7 1.1 90.6 67.0 72.5 55.1 65.2 72.2 35.1 25.0 64.3 38.9 25.5 37.8 1.38

15 Ala 14.1 62.4 0.6 1.0 0.6 0.6 0.9 70.6 54.4 58.8 44.7 52.9 58.6 29.9 20.1 57.9 33.5 20.6 32.4 1.32

16 SAM 36.9 38.8 0.4 0.6 0.4 0.3 0.5 109.7 33.8 36.6 27.8 32.9 36.4 224.3 200.0 294.4 233.2 201.0 230.6 3.31

17 Tyr 170.6 58.8 0.6 1.0 0.6 0.5 0.8 58.5 51.3 55.4 42.2 49.9 55.2 14.1 5.6 38.8 17.3 5.9 16.3 1.16

18 Tyr 50.6 97.8 0.9 1.6 1.0 0.9 1.3 13.8 85.2 92.1 70.1 82.9 91.8 -83.8 -85.0 -80.3 -83.4 -85.0 -83.5 0.17

19 Tyr 37.3 116.5 1.1 1.9 1.2 1.0 1.6 95.5 101.6 109.8 83.5 98.8 109.4 -6.0 -13.0 14.4 -3.4 -12.7 -4.1 0.96

20 Tyr 128.4 100.6 1.0 1.6 1.0 0.9 1.4 s72.1 87.7 94.8 72.1 85.3 94.5 -17.8 -23.9 0.0 -15.5 -23.7 -16.2 0.84

21/25 Tyr 130.8 293.1 2.8 4.8 2.9 2.6 4.0 237.2 255.4 276.1 210.0 248.6 275.2 -7.2 -14.1 12.9 -4.6 -13.8 -5.4 0.95

22/24 Tyr 114.0 254.6 2.4 4.2 2.5 2.3 3.5 225.7 221.9 239.9 182.5 215.9 239.0 1.7 -5.9 23.7 4.5 -5.6 3.7 1.04

23 Tyr 158.8 43.0 0.4 0.7 0.4 0.4 0.6 46.0 37.5 40.5 30.8 36.5 40.4 22.6 13.5 49.1 26.0 13.8 25.0 1.25

26 SAM 55.4 124.2 1.2 2.0 1.2 1.1 1.7 270.1 108.2 117.0 89.0 105.3 116.6 149.6 130.9 203.5 156.5 131.7 154.5 2.55

27 Acetate 169.7 44.5 0.4 0.7 0.4 0.4 0.6 50.1 38.8 41.9 31.9 37.7 41.7 29.2 19.6 57.2 32.8 20.0 31.8 1.32

28 Acetate 130.6 42.1 0.4 0.7 0.4 0.4 0.6 56.6 36.7 39.6 30.1 35.7 39.5 54.4 42.8 87.7 58.7 43.3 57.4 1.57

29 Cys 136.4 90.2 0.9 1.5 0.9 0.8 1.2 98.7 78.6 85.0 64.6 76.5 84.7 25.6 16.2 52.7 29.1 16.6 28.0 1.28

30 Cys 72.6 111.7 1.1 1.8 1.1 1.0 1.5 94.8 97.4 105.3 80.1 94.8 104.9 -2.7 -10.0 18.3 0.0 -9.7 -0.8 0.99

31 Cys 37.7 71.5 0.7 1.2 0.7 0.6 1.0 37.6 62.3 67.4 51.3 60.7 67.2 -39.7 -44.2 -26.7 -38.0 -44.0 -38.5 0.62

32 SAM 13.5 81.2 0.8 1.3 0.8 0.7 1.1 167.6 70.8 76.5 58.2 68.9 76.2 136.8 119.1 188.0 143.4 119.8 141.4 2.41

33 Acetate 177.6 57.3 0.6 0.9 0.6 0.5 0.8 65.3 50.0 54.0 41.1 48.6 53.8 30.8 21.0 59.0 34.4 21.4 33.3 1.33

34 Acetate 49.3 76.3 0.7 1.2 0.8 0.7 1.1 84.9 66.5 71.9 54.7 64.7 71.7 27.6 18.0 55.2 31.1 18.5 30.1 1.30

35 Acetate 71.8 116.2 1.1 1.9 1.2 1.0 1.6 122.4 101.3 109.5 83.3 98.6 109.1 20.8 11.8 46.9 24.1 12.1 23.2 1.23

36 Acetate 38.3 94.7 0.9 1.6 0.9 0.8 1.3 104.0 82.6 89.3 67.9 80.3 89.0 25.9 16.5 53.1 29.4 16.9 28.4 1.28

37 Acetate 24.4 72.6 0.7 1.2 0.7 0.6 1.0 68.4 63.3 68.4 52.0 61.6 68.2 8.0 -0.1 31.4 11.0 0.3 10.1 1.10

38 Acetate 37.8 111.1 1.1 1.8 1.1 1.0 1.5 129.8 96.8 104.7 79.6 94.2 104.3 34.0 24.0 63.0 37.7 24.4 36.6 1.37

39 Acetate 77.4 N.P.* - - - - - - - - - - - - - - - - - -

40 Acetate 35.0 93.4 0.9 1.5 0.9 0.8 1.3 94.2 81.4 88.0 66.9 79.2 87.7 15.8 7.1 40.8 19.0 7.5 18.0 1.18

41-43 SAM 26.2 387.6 3.7 6.3 3.9 3.5 5.3 659.6 337.8 365.2 277.8 328.7 363.9 95.2 80.6 137.4 100.6 81.2 99.0 1.99

44 SAM 16.8 94.1 0.9 1.5 0.9 0.8 1.3 203.0 82.0 88.6 67.4 79.8 88.3 147.5 129.0 201.0 154.4 129.8 152.3 2.52

45 Acetate 20.0 109.2 1.0 1.8 1.1 1.0 1.5 70.7 95.2 102.9 78.3 92.6 102.5 -25.7 -31.2 -9.6 -23.6 -31.0 -24.2 0.76

*N.P. = No quantitation due to CDCl3 peak overlap 
1Final enrichment values are derived by normalization of enriched 13C-NMR resonances to five 
carbon atoms.  Calculation steps are detailed in Methods section. SAM-derived enrichment 
values are in bold and italicized in column 21 and 22. 
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Table 5.2 Enrichment of 13C in apratoxin A by culture of M. bouillonii PNG 5-198 in media 
supplemented with [1-13C]propionate 

Column #      
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 Biosynthetic  
Integral of 
unlabeled Normalization factor using: 

Integral of 
enriched

Normalized integral of 
enriched sample using: Enrichment compared to: 

Average % 
Enrichment3

 
Fold 

changeC# source ppm resonance C7 C13 C20 C30 C37 resonance C7 C13 C20 C30 C37 C7 C13 C20 C30 C37 

1 Pro 174.1 45.5 0.5 0.9 0.9 0.2 0.3 56.0 44.5 63.0 50.2 50.6 52.1 25.8 -11.2 11.6 10.7 7.4 8.8 1.1 

2 Pro 61.2 91.4 0.9 1.8 1.7 0.4 0.5 97.9 89.6 126.8 100.9 101.8 104.9 9.3 -22.8 -3.0 -3.8 -6.6 -5.4 0.9 

3 Pro 29.8 2.2 0.0 0.0 0.0 0.0 0.0 2.9 2.1 3.0 2.4 2.4 2.5 37.2 -3.1 21.8 20.8 17.2 18.8 1.2 

4 Pro 25.9 1.6 0.0 0.0 0.0 0.0 0.0 7.5 1.5 2.2 1.7 1.7 1.8 389.0 245.4 334.0 330.4 317.7  1.0 

51 Pro N.P. - - - - - - - - - - - - - - - - - - - 

6 Ile 172.7 32.0 0.3 0.6 0.6 0.2 0.2 38.7 31.4 44.4 35.3 35.6 36.7 23.5 -12.8 9.6 8.7 5.5 6.9 1.1 

7 Ile 57.9 97.8 1.0 1.9 1.8 0.5 0.6 95.8 95.8 135.6 107.9 108.8 112.1 0.0 -29.4 -11.3 -12.0 -14.6 -13.4 0.9 

8 Ile 31.0 65.8 0.7 1.3 1.2 0.3 0.4 79.9 64.4 91.2 72.6 73.2 75.4 24.0 -12.4 10.1 9.2 5.9 7.4 1.1 

9 Ile 25.3* 173.2 1.8 3.4 3.2 0.8 1.0 198.6 169.6 240.2 191.1 192.7 198.6 17.1 -17.3 3.9 3.0 0.0 1.3 1.0 

10 Ile 9.1 79.2 0.8 1.6 1.5 0.4 0.5 91.9 77.6 109.9 87.4 88.2 90.8 18.5 -16.3 5.1 4.3 1.2 2.5 1.0 

11 Ile 14.7 73.3 0.7 1.4 1.4 0.4 0.4 85.5 71.8 101.6 80.9 81.6 84.0 19.1 -15.9 5.7 4.8 1.7 3.1 1.0 

12 SAM 30.4 93.6 1.0 1.8 1.8 0.5 0.5 91.5 91.7 129.8 103.3 104.2 107.4 -0.2 -29.6 -11.5 -12.2 -14.8 -13.7 0.9 

13 Ala 171.6 51.0 0.5 1.0 1.0 0.2 0.3 70.7 50.0 70.7 56.3 56.8 58.5 41.6 0.0 25.7 24.6 20.9 22.6 1.2 

14 Ala 61.6 58.7 0.6 1.2 1.1 0.3 0.3 71.3 57.5 81.4 64.8 65.3 67.3 24.0 -12.4 10.1 9.1 5.9 7.4 1.1 

15 Ala 14.4 64.4 0.7 1.3 1.2 0.3 0.4 70.6 63.1 89.3 71.1 71.7 73.9 11.8 -21.0 -0.7 -1.6 -4.5 -3.2 1.0 

16 SAM 35.8 82.8 0.8 1.6 1.6 0.4 0.5 86.3 81.1 114.8 91.4 92.2 95.0 6.5 -24.8 -5.5 -6.3 -9.1 -7.9 0.9 

17 Tyr 172.4 43.3 0.4 0.8 0.8 0.2 0.3 51.2 42.4 60.1 47.8 48.2 49.7 20.6 -14.8 7.0 6.2 3.0 4.4 1.0 

18 Tyr 52.3 61.2 0.6 1.2 1.1 0.3 0.4 84.0 60.0 84.9 67.6 68.1 70.2 40.1 -1.0 24.3 23.3 19.7 21.3 1.2 

19 Tyr 37.1 130.5 1.3 2.6 2.4 0.6 0.8 155.9 127.8 181.0 144.0 145.2 149.6 22.0 -13.9 8.2 7.3 4.2 5.6 1.1 

20 Tyr 129.7 53.3 0.5 1.0 1.0 0.3 0.3 58.9 52.2 74.0 58.9 59.4 61.2 12.7 -20.4 0.0 -0.8 -3.8 -2.5 1.0 

21/25 Tyr 131.7 214.8 2.2 4.2 4.0 1.0 1.2 243.0 210.4 297.9 237.1 239.1 246.3 15.5 -18.4 2.5 1.6 -1.4 0.0 1.0 

22/24 Tyr 115.0 206.4 2.1 4.0 3.9 1.0 1.2 215.3 202.1 286.2 227.8 229.7 236.7 6.5 -24.8 -5.5 -6.3 -9.0 -7.8 0.9 

23 Tyr 160.3 50.0 0.5 1.0 0.9 0.2 0.3 48.6 48.9 69.3 55.2 55.6 57.3 -0.7 -29.9 -11.9 -12.7 -15.2 -14.1 0.9 

26 SAM 55.7 100.0 1.0 2.0 1.9 0.5 0.6 100.0 97.9 138.7 110.4 111.3 114.7 2.1 -27.9 -9.4 -10.2 -12.8 -11.6 0.9 

27 Acetate 171.3 4.8 0.0 0.1 0.1 0.0 0.0 4.6 4.7 6.6 5.3 5.3 5.5 -1.5 -30.5 -12.6 -13.4 -15.9 -14.8 0.9 

282 Acetate N.P. 8.3 - - - - - - - - - - - - - - - - - - 

29 Cys 137.0 58.0 0.6 1.1 1.1 0.3 0.3 80.2 56.8 80.5 64.0 64.6 66.5 41.2 -0.3 25.3 24.2 20.6 22.2 1.2 

30 Cys 73.1* 207.4 2.1 4.1 3.9 1.0 1.2 230.8 203.1 287.6 228.9 230.8 237.8 13.6 -19.7 0.8 0.0 -2.9 -1.6 1.0 

31 Cys 38.4 76.2 0.8 1.5 1.4 0.4 0.4 94.2 74.7 105.7 84.1 84.9 87.4 26.2 -10.9 12.0 11.0 7.8 9.2 1.1 

32 SAM 13.0 72.5 0.7 1.4 1.4 0.3 0.4 87.3 71.0 100.5 80.0 80.7 83.1 23.0 -13.1 9.2 8.3 5.1 6.5 1.1 

33 Acetate 179.8 43.7 0.4 0.9 0.8 0.2 0.3 43.7 42.8 60.6 48.2 48.6 50.1 2.1 -27.9 -9.4 -10.2 -12.8 -11.6 0.9 

34 Acetate 50.2 76.2 0.8 1.5 1.4 0.4 0.4 92.0 74.6 105.6 84.1 84.8 87.4 23.3 -12.9 9.4 8.5 5.3 6.7 1.1 

35 Acetate 73.1* 207.4 2.1 4.1 3.9 1.0 1.2 230.8 203.1 287.6 228.9 230.8 237.8 13.6 -19.7 0.8 0.0 -2.9 -1.6 1.0 

36 Acetate 39.1 79.8 0.8 1.6 1.5 0.4 0.5 94.7 78.2 110.7 88.1 88.8 91.5 21.1 -14.5 7.5 6.6 3.4 4.8 1.0 

37 Acetate 25.3* 173.2 1.8 3.4 3.2 0.8 1.0 198.6 169.6 240.2 191.1 192.7 198.6 17.1 -17.3 3.9 3.0 0.0 1.3 1.0 

38 Acetate 38.7 77.6 0.8 1.5 1.5 0.4 0.4 82.8 76.0 107.6 85.6 86.4 89.0 9.0 -23.0 -3.3 -4.1 -6.9 -5.7 0.9 

39 Acetate 78.7 87.4 0.9 1.7 1.6 0.4 0.5 102.0 85.6 121.2 96.5 97.3 100.2 19.2 -15.9 5.7 4.9 1.8 3.1 1.0 

40 Acetate 32.7 93.5 1.0 1.8 1.8 0.5 0.5 93.8 91.6 129.7 103.2 104.1 107.3 2.3 -27.7 -9.2 -9.9 -12.6 -11.4 0.9 

41-43 SAM 26.5 404.2 4.1 7.9 7.6 1.9 2.3 487.6 395.8 560.5 446.1 449.8 463.5 23.2 -13.0 9.3 8.4 5.2 6.6 1.1 

44 SAM 17.1 88.5 0.9 1.7 1.7 0.4 0.5 95.7 86.7 122.7 97.7 98.5 101.5 10.4 -22.0 -2.0 -2.8 -5.7 -4.4 1.0 

45 Acetate 20.0 89.7 0.9 1.8 1.7 0.4 0.5 103.2 87.8 124.4 99.0 99.8 102.8 17.5 -17.0 4.2 3.4 0.3 1.7 1.0 

*Overlapping 13C-NMR shifts. The enrichment values cannot be distinguished, so both are 
reported. 
1C5 – N.P. = No quantitation. C5 obscured by D4-MeOH solvent peak. 
2C28 – N.P. = Weak signal observed in native abundance, but not enriched sample. 
3Final enrichment values are derived by normalization of enriched 13C-NMR resonances to five 
different carbon atoms.  Calculation steps are detailed in methods. C39 enrichment value is 
italicized and bolded in columns 21 and 22. 
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Table 5.3 13C-NMR shifts of native-abundance apratoxin A 

 

[methyl-13C] 
methionine 

labeled 
CDCl3 

Native abundance 
CDCl3 

[1-13C]propionate-
labeled  

D4-MeOH 
Native abundance 

D4-MeOH 
C# ppm ppm ppm ppm 

1 172.8 172.8 174.1 174.1 

2 59.9 59.9 61.2 61.2 

3 29.5 29.4 29.8 29.8 

4 25.8 25.8 25.9 25.9 

5 47.8 47.8 47.5 47.5 

6 170.8 170.8 172.7 172.7 

7 56.8 56.7 57.9 57.9 

8 31.9 31.9 31.0 31.0 

9 24.8 24.8 25.3 25.3 

10 9.2 9.2 9.1 9.1 

11 14.2 14.2 14.7 14.7 

12 30.7 30.7 30.4 30.4 

13 170.2 170.2 171.6 171.6 

14 60.9 60.8 61.6 61.6 

15 14.1 14.1 14.4 14.4 

16 36.9 36.9 35.8 35.8 

17 170.6 170.5 172.4 172.4 

18 50.6 50.6 52.3 52.3 

19 37.3 37.4 37.1 37.1 

20 128.4 128.4 129.7 129.7 

21/25 130.8 130.8 131.7 131.7 

22/24 114.0 114.0 115.0 115.0 

23 158.8 158.8 160.3 160.3 

26 55.4 55.4 55.7 55.7 

27 169.7 169.7 171.3 171.3 

28 130.6 130.6 N.P. 130.8 

29 136.4 136.4 137.0 137.0 

30 72.6 72.6 73.1 73.1 

31 37.7 37.7 38.4 38.4 

32 13.5 13.5 13.0 13.0 

33 177.6 177.6 179.8 179.8 

34 49.3 49.3 50.2 50.2 

35 71.8 71.8 73.1 73.1 

36 38.3 38.3 39.1 39.1 

37 24.4 24.4 25.3 25.3 

38 37.8 37.8 38.7 38.7 

39 N.P.* N.P. 78.7 78.7 

40 35.0 35.0 32.7 32.7 

41/42/43 26.2 26.2 26.5 26.5 

44 16.8 16.8 17.1 17.1 

45 20.0 20.0 20.0 20.0 
13C-NMR shifts of native-abundance apratoxin A in CDCl3 and D4-MeOH, [methyl-
13C]methionine labeled apratoxin A in CDCl3, and [1-13C]propionate-labeled apratoxin A in D4-
MeOH. 
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Table 5.4 Primers for cloning MT2L and FabD constructs 

AprA 
ΨGNAT-
MT2L 
(502-1022) 

pAPS4_F 
TACTTCCCATCCAATGCAGAAAAGCGCAAATATCAGATACGGTAT
GCAACT

pAPS4_R TTATCCACTTCCAATGTTATGTTTTCTCCTGTACTTGATGC 

AprA ΔACP 
(2-1034) 

pAPS5_F 
TACTTCCAATCCAATGCACTAGATAAAATAAATCGTTATGCTCATG
GGTTTGTAGC

pAPS5_R 
TTATCCACTTCCAATGTTAATTTTCTGTCAAATTTTGTTTAATTTTT
TC 

AprA  MT2L 
(628-1022) 

pMAS247_F 
TACTTCCAATCCAATGCGCAATCTTCAGTTTTAAACAAAAAGCTTA
TAG 

pMAS247_R TTATCCACTTCCAATGTTATGTTTTCTCCTGTACTTGATGC 

FabD 
pMAS337_F TACTTCCAATCCAATGCCATGATAAAGACTGCATGGGTGTTTCCCG 

pMAS337_R 
TTATCCACTTCCAATGCTACCTTACTACTAAGCATTGCTGCAGATC
AG 

AprI ACP 
(2085-2201) 

pMAS373_F 
TACTTCCAATCCAATGCCTCAATAGCTACAAAGGATAATCTCCTTT
TAGAAC

pMAS373_R 
TTATCCACTTCCAATGCTATAGCTCTACCTCTATCCAGTTATTTTCT
TTAATG

BryX MT2L 
(656-1052) 

pMAS308_F TACTTCCAATCCAATGCCATGGAAAGTGAGTCAGTTGATGTT 

pMAS308_R TTATCCACTTCCAATGCTAATTACTAGACAGGTCTTCATTAATCC 

AprA MT2L 
F797Y 

pMAS310_ F GATATGGAGCTATTTGCTGGACTATATCTAGGACATCGT 

pMAS310_R ACGATGTCCTAGATATAGTCCAGCAAATAGCTCCATATC 
AprA MT2L 
H914N 

pMAS260 
ATGTGGTAATTGCTAATAACGTACTCAATAACACAAAATTAATTCA
TCAAACC

AprA MT2L 
N915A 

pMAS252 
GATGTGGTAATTGCTAATAACGTACTCCATGCCACAAAATTAATTC
ATCAAACCTTAAATAA

AprA MT2L  
E940A 

pMAS312_ F GGGGGTTATTGGCATTACTAGCGTTTACTCAACCAATTGATAT 

pMAS312_R ATATCAATTGGTTGAGTAAACGCTAGTAATGCCAATAACCCCC 

AprA MT2L 
G952F 

pMAS311_ F 
CTAGAGTTTACTCAACCAATTGATATTCTTTTATACTTTTTCGGGTTG
CTTCAAGGATTTTG

pMAS311_R 
CAAAATCCTTGAAGCAACCCGAAAAAGTATAAAAGAATATCAATTG
GTTGAGTAAACTCTAG

AprA MT2L 
F958W 

pMAS381_ F TACTTTGGAGGGTTGCTTCAAGGATGGTGGTTGTTTGAAGATCC 

pMAS381_R GGATCTTCAAACAACCACCATCCTTGAAGCAACCCTCCAAAGTA 

AprA MT2L 
C972P 

pMAS315_ F GAATACCGACTAGAAGTTGGTCCTTTACTGAGTATACCACTGTG 

pMAS315_R CACAGTGGTATACTCAGTAAAGGACCAACTTCTAGTCGGTATTC 

AprA MT2L 
C972S 

pMAS319_ F AATACCGACTAGAAGTTGGTAGTTTACTGAGTATACCACTG 

pMAS319_R CAGTGGTATACTCAGTAAACTACCAACTTCTAGTCGGTATT 

All sequences are 5'- 3'. Bold font indicates handles for ligation-independent insertion into 
expression vector. 
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 (residues 656-1052) was amplified from a Candidatus Endobugula sertula cosmid library20 and 

inserted into pMCSG7 via LIC. DNAs encoding FabD and AprI ACP (residues 2085-2201) were 

amplified from Moorea bouillonii PNG 5-198 genomic DNA184 and inserted into pMCSG7 via 

LIC to produce pMAS337 and pMAS373, respectively. All constructs and mutations were verified 

by Sanger sequencing at the University of Michigan DNA Sequencing Core. 

Protein expression and purification 

AprA apo-ACP and AprA MTL-GNAT were expressed and purified as described 

previously119. In order to produce AprA holo-ACP and AprI holo-ACP, plasmids were transformed 

into Escherichia coli strain BAP1220 and expressed and purified identically to AprA ACP. pAPS4 

(AprA GNAT- MT2L), pMAS247 (AprA MT2L), and pMAS337 (FabD) were transformed into 

Escherichia coli strain BL21(DE3), grown in 0.5 L of TB media with 100 g mL-1 ampicillin to 

an OD600 = 1-2 at 37°C. Cultures were cooled to 20°C, induced with 200 M IPTG, and expressed 

overnight. To produce AprA ACP, pAPS5 was transformed into BL21(DE3) containing the 

pRare-CDF plasmid48 and the pG-KJE8 plasmid (Takara) encoding the DnaK, DnaJ, GrpE, GroEL 

and GroES chaperones. Cells were grown in 0.5 L of TB media with 100 g mL-1 ampicillin, 50 

g mL-1 spectinomycin, and 35 g mL-1 chloramphenicol at 37°C. dnaK, dnaJ, and grpE were 

induced with 0.2 % (w/v) arabinose at OD600 = ~1. Cultures were grown for an additional 30 

minutes at 37°C, cooled to 20°C for 1 hour, induced with 120 M IPTG, and expressed overnight.  

AprA MT2L and BryX MT2L cell pellets were resuspended in 35 mL Tris buffer A (50 mM Tris 

pH 7.4, 300 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole) with 0.1 mg mL-1 lysozyme, 0.05 

mg mL-1 DNase, and 2 mM MgCl2, incubated on ice for 30 min, lysed by sonication, and cleared 

by centrifugation (38,650 x g, 30 min). Supernatant was filtered with a 0.45 m syringe filter, 

loaded onto a 5 mL HisTrap column (GE Healthcare), washed with 10 column volumes of Tris 

buffer A, and eluted with a 5-100% linear gradient of Tris buffer B (50 mM Tris pH 7.4, 300 mM 

NaCl, 10% (v/v) glycerol, 400 mM imidazole). Proteins were further purified by size exclusion 

chromatography (HiLoad 16/60 Superdex S200) in Tris buffer C (50 mM Tris pH 7.4, 150 mM 

NaCl, 10% (v/v) glycerol). 

FabD was purified identically to AprA MT2L and BryX MT2L with the addition of 100 

mM urea to the lysis buffer. Following size-exclusion chromatography, FabD was diluted into Tris 

buffer D (50 mM Tris pH 7.4, 20 mM NaCl, 10% glycerol) and further purified by anion exchange. 
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The protein was loaded onto a 5 mL HiTrap Q column (GE Healthcare), washed with 10 column 

volumes of Tris Buffer E (50 mM Tris pH 7.4, 10% glycerol), and eluted with a 0-100 % gradient 

of Tris buffer F (50 mM Tris pH 7.4, 1M NaCl, 10% glycerol) over 40 column volumes, and 

dialyzed overnight into Tris buffer C.  

AprA GNAT- MT2L cell pellets were resuspended in 5 mL Tris buffer G (100 mM Tris 

pH 7.9, 500 mM NaCl, 5% glycerol, 15 mM imidazole) / g of cell paste. Resuspended cell pellets 

were incubated on ice with 4 mg DNase, 10 mg lysozyme, and 4 mM MgCl2 for 30 min. Cells 

were lysed by three passes through an Avestin EmulsiFlex-C3 homogenizer and clarified by 

centrifugation at 30,000 x g.  The supernatant was loaded onto a 5mL HisTrap column and eluted 

with a 10-100% gradient of Tris buffer H (100 mM Tris pH 7.9, 500 mM NaCl, 5% glycerol, 300 

mM imidazole). The His-tag was removed by overnight incubation with tobacco etch virus 

protease in Tris buffer I (50 mM Tris pH 7.9, 100 mM NaCl, 10% glycerol) followed by a second 

5-mL HisTrap column. AprA GNAT-MT2L was further purified via size exclusion 

chromatography (HiLoad 16/600 Superdex 200) in Tris buffer J (50 mM Tris pH 7.9, 100 mM 

NaCl).  

AprA ACP cell pellets were resuspended in 5 mL HEPES buffer A (50 mM HEPES pH 

7, 50 mM (NH4)2SO4, 10 % glycerol, 15 mM imidazole) / g of cell paste. Resuspended cell pellets 

were incubated on ice with 4 mg DNase, 10 mg lysozyme, and 4 mM MgCl2 for 30 min. Cells 

were lysed by three passes through an Avestin EmulsiFlex-C3 homogenizer and clarified by 

centrifugation at 30,000 x g.  The supernatant was loaded onto a 5 mL HisTrap column and eluted 

with a 10-100% gradient of HEPES buffer B (50 mM HEPES pH 7, 50 mM (NH4)2SO4, 10 % 

glycerol, 300 mM imidazole). AprA ACP was further purified via size exclusion chromatography 

(HiLoad 16/600 Superdex 200) in HEPES Buffer C (50 mM HEPES pH 7, 50 mM (NH4)2SO4, 10 

% glycerol). The sample was buffer exchanged into 50 mM HEPES pH 7, 100 mM NaCl via size 

exclusion chromatography (HiLoad 16/600 Superdex 200) prior to EM analysis. 

Dimethylmalonyl-thiophenol synthesis  
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All synthesis was performed by Andrew Lowell. 2,2-Dimethyl-3-oxo-3-

(phenylthiol)propanoic acid.  The following reaction was adapted from a published procedure101. 

Dimethyl malonic acid (1.36 g, 10.3 mmol) and thiophenol (1.06 mL, 10.3 mmol) were dissolved 

in acetonitrile (120 mL) and stirred in an ice bath.  Diisopropylcarbodiimide (1.01 mL, 6.52 mmol) 

was slowly added and the mixture was warmed to room temperature overnight with stirring.  The 

reaction was quenched by the addition of saturated sodium bicarbonate (500 mL), filtered, and 

extracted with Et2O (2 x 250 mL).  The aqueous layer was carefully acidified by the addition of 4 

M HCl (pH = 2) and extracted with Et2O (3 x 250 mL).  The organic layers used to extract the 

acidic aqueous layer were combined, washed with brine (500 mL), dried with Na2SO4, and 

concentrated to a colorless oil.  The oil was recrystallized from Et2O/hexanes to give a mixture 

(0.329 g) of 2,2-dimethyl-3-oxo-3-(phenylthio)propanoic acid and diisopropyl urea as a white 

crystalline solid.  The mother liquor was concentrated to a colorless oil and purified using a flash 

chromatography system (16-100% EtOAc/hexanes, SiliaSep HP 12 g, 36 mL min-1) to give an 

amorphous white solid.  This residue was purified using a flash chromatography system (16-25% 

EtOAc/hexanes, SiliaSep HP 12 g, 36 mL min-1) to give 2,2-dimethyl-3-oxo-3-

(phenylthio)propanoic acid (0.204 g, 13.9%) as an amorphous white powder: 1H NMR (400 MHz, 

CDCl3)  7.42 (s, 5H), 1.62 (s, 6H); 13C NMR (100 MHz, CDCl3)  198.5, 177.4, 135.0, 129.9, 

129.5, 126.8, 57.3, 23.3; HRMS (ES) calcd for C11H12O3SNa (MNa+) 247.0399, found 247.0397.     

Production of acyl-ACPs 

In order to produce malonyl- (Mal-), methylmalonyl- (MeMal-), and acetoacetyl- (AcAc-) 

ACP, 180 M AprA apo-ACP was incubated with 20 M Streptomyces verticillus 

phosphopantetheinyl transferase (SVP)142, 20 mM MgCl2, and 3-4 fold molar excess of the 

corresponding CoA for 4 hr at 30°C in Tris buffer C. Acyl-ACPs were purified from reaction 

mixtures using size exclusion chromatography (HiLoad 16/60 Superdex S75) equilibrated with 

100 mM Tris pH 7.4, 250 mM NaCl, 5% glycerol, 5 mM Tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP).  

Dimethylmalonyl- (Me2Mal-)ACP for intact protein spectra was prepared by incubating 

300 M AprA MeMal-ACP with 150 μM AprA MTL, 3 mM (NH4)2Fe(SO4)2, and 6 mM SAM in 

50 mM HEPES pH 7.4, 150 mM NaCl. Reaction mixtures (500 μL) were incubated at 30°C for 

5.5 hours. Me2Mal-ACP was isolated from the reaction mixture via size exclusion chromatography 
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(HiLoad 16/600 Superdex 75) with 100 mM Tris pH 7.4, 250 mM NaCl, 5% glycerol, 5 mM 

TCEP.  Me2Mal-ACP for Ppant ejection experiments was prepared by incubating 100 M AprA 

holo-ACP with 25 mM Me2Mal-thiophenol in 300 mM sodium bicarbonate pH 8.1 at 25°C 

overnight. Excess thiophenol was removed via size exclusion chromatography (HiLoad 16/600 

Superdex 75) with 100 mM Tris pH 7.4, 250 mM NaCl, 5% glycerol, 5 mM TCEP. 

AprA MT2L enzyme assays 

Reaction mixtures (10 L) containing 100 M Me2Mal-ACP, 25 M AprA MT2L, and 0.5 

mM SAM, SAH, or sinefungin in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2 were 

incubated at 30°C for 1 min. Reactions were quenched with 10% (v/v) formic acid, and 0.25 L 

of reaction mixtures were subjected to LC-MS analysis. 

Reaction mixtures (10 L) containing 100 M MeMal-ACP, 25 M AprA MT2L, and 0.5 

mM SAM, SAH, or sinefungin in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2 were 

incubated at 30°C for 10 min. Reactions were quenched with 10% (v/v) formic acid, and 0.25 L 

of reaction mixtures were subjected to LC-MS analysis. 

Reaction mixtures (10 L) containing 100 M Mal-ACP, 25 M AprA MT2L, and 0.5 mM 

SAM, SAH, or sinefungin in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2 were 

incubated at 30°C for 2 hr. Reactions were quenched with 10% (v/v) formic acid, and 0.2 L of 

reaction mixtures were subjected to LC-MS analysis. 

Reaction mixtures for intact protein analysis (10 μL) containing 100 M AcAc-ACP, 25 

M AprA MT2L, and 0.5 mM SAM in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2 

were incubated at 30°C for 15 min. Reaction mixtures for Ppant ejection analysis of amino acid 

variants (15 L) containing 50 M AcAc-ACP, 12.5 M AprA MT2L, and 0.5 mM SAM in 50 

mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2 were incubated at 30°C for 15 min. Reactions 

were quenched with 10% (v/v) formic acid, and 0.1 L of reaction mixtures were subjected to LC-

MS analysis. 

Reactions (10 L) to test AprA MT2L for acyltransfer activity contained 100 M holo-

ACP, 15 M AprA MT2L, 1 mM SAM, and 1 mM Mal-CoA in 50 mM HEPES pH 7.4, 150 mM 

NaCl were incubated at 30° C for 1 hr. Reactions were quenched with 10% (v/v) formic acid, and 

0.1 L of reaction mixtures were subjected to LC-MS analysis. 
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FabD enzyme assays 

Reaction mixtures (120 L) containing 100 M AprA holo-ACP or AprI holo-ACP were 

incubated with 25 nM FabD and 0.85 mM Mal-CoA in 50 mM HEPES 7.4, 150 mM NaCl. 

Reactions were quenched (10 μL) with 10% (v/v) formic acid during a 10 min time course, and 1 

L of reaction mixtures were subjected to LC-MS analysis. 

LC-MS analysis  

Assay reaction mixtures were analyzed using a simultaneous intact protein and 

phosphopantetheine (Ppant) ejection method150, 169 on an Agilent Q-TOF 6545. Samples were 

subjected to reverse phase HPLC (Phenomenex Aeris widepore C4 column 3.6 M, 50 x 2.10 mm) 

at a flow rate of 0.5 mL min-1 in H2O with 0.2% (v/v) formic acid. Protein was eluted over 4 

minutes with a gradient of 5-100% acetonitrile with 0.2% (v/v) formic acid. Reactions containing 

MT2L and AcAc-ACP and the FabD enzyme assays were subjected to the following conditions: 

fragmentor voltage, 300 V; skimmer voltage, 75 V; nozzle voltage, 1000 V; sheath gas 

temperature, 350 °C; drying gas temperature, 325 °C. In order to limit in-source decay of Mal-

ACP, MeMal-ACP, and Me2Mal-ACP, samples from corresponding reactions with AprA MT2L 

were analyzed using: fragmentor voltage, 225 V; skimmer voltage, 25 V; nozzle voltage, 1000 V; 

sheath gas temperature, 350 °C; drying gas temperature, 325 °C. 

Data were processed using MassHunter Qualitative Analysis Software (Agilent). The 

maximum entropy deconvolution algorithm was used to obtain intact protein masses. The relative 

abundances of Ppant ejection fragments were used to calculate fractions of the ACP species. For 

FabD malonyl loading assays, the abundances of Mal-ACP and its in-source decay product acetyl-

ACP were combined to calculate the amount of Mal-ACP produced.  

HPLC analysis 

In order to analyze SAM consumption, 25 L reaction mixtures containing 500 M Mal-

ACP, MeMal-ACP, or AcAc-ACP were incubated with 125 M AprA MT2L and 0.5 mM SAM 

in 50 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM MgCl2. Reactions were incubated for 10 min 

(MeMal-ACP), 15 min (AcAc-ACP), or 2 hr (Mal-ACP) at 30°C and quenched with 50 L 

methanol. Precipitated protein was removed by centrifugation.  
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Reverse phase HPLC (Phenomenex Luna C18 column 5 M, 250 x 4.6 mm) was used to 

separate small molecule components of the reaction (10 L reaction mixtures, 2 L of 1 mM SAM 

or 1 mM SAH standards) using HPLC buffer A (100 mM NaH2PO4, 75 mM NaOAc, pH 4.6) and 

HPLC buffer B (70% buffer A, 30% methanol) at a flow rate of 1 mL min-1. Samples were injected 

onto the column equilibrated in 10% buffer B. Reaction components were eluted with a linear 

gradient to 30% buffer B (9% methanol)  over 23 minutes.  Absorbance was monitored at 254 nm.  

Protein crystallization and structure determination 

All crystallization and structure determination was performed by Andrew Sikkema and 

Rebecca Sturgis. AprA GNAT-MT2L (503-1022) was crystallized by vapor diffusion in a 

0.75:0.75 μL mixture of protein stock (5 mg mL-1 AprA in Tris buffer I with 1 mM SAM) and 

reservoir solution (0.01-0.05M trimethylamine N-oxide, 12-17% PEG 8000, 0.12 M Tris pH 7.5) 

in sitting drops at 20°C. Diffraction quality crystals obtained through micro seeding grew in 2-4 

days. Crystals were cryoprotected with reservoir solution supplemented with 10% glycerol, and 

flash cooled in liquid N2. 

Diffraction data were collected at 100 K on GM/CA beamline 23ID-B at the Advanced 

Photon Source (APS) at Argonne National Laboratory (Argonne, IL). Data were processed using 

XDS (Table 5.5)128. The structure of AprA GNAT-MT2L with bound SAH was solved by 

molecular replacement with Phaser172 in the PHENIX software suite130 using search models 

created with Sculptor221 from the CurJ CMT (33% identity, PDB code: 5THY)117 and CurA GNAT 

(24% identity, PDB code: 2REE)31. The initial model was modified with AutoBuild171 to generate 

a 77% complete model of the AprA GNAT-MT2L. The remaining portion of the model was 

completed manually using Coot132. Refinement was performed using phenix.refine (Table 5.5)173. 

The structure was validated with MolProbity133. Figures were prepared using PyMOL136. Sequence 

alignments were prepared using Clustal137 through Jalview138. The dendrogram was created using 

the average distance BLOSUM62 algorithm in Jalview.  
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Table 5.5 AprA MT2L crystallographic information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Values in parentheses pertain to outermost shell of data. 

Data Collection  
Space group C2 
Cell dimensions a,b,c (Å) 152.4, 54.2, 109.3  
α,β,γ (°)  90, 131.8, 90  
X-ray source APS 23ID-B 
Wavelength (Å) 1.0332 
dmin (Å) 2.25 (2.38-2.25)1 
Rmerge 0.090 (0.998)  
Wilson B factor 53.0 
Avg I/σ(I) 10.87 (1.53) 
Completeness (%) 98.4 (97.8) 
Multiplicity 6.1 (6.4) 
Total observations 191,196 (31,888) 
CC1/2 0.998 (0.720) 
CC* 0.999 (0.915) 
Refinement  
Data range (Å) 48.86-2.25 
Reflections in refinement 
(#) 

31,507 

Rwork/Rfree 17.4/23.0 
Non-hydrogen atoms (#) 4,317 
  protein 4,161 
  ligand 31 
  water 125 
Amino acid residues 511 
Deviation from ideality  
  bond lengths (Å) 0.008 
  bond angles (°) 0.983 
Average B-factor 68.1 
  macromolecule 68.3 
  ligand 96.2 
  solvent 62.2 
Ramachandran plot  
  favored (%) 95.9 
  allowed (%) 3.9 
  outliers (%) 0.2 
PDB 6D6Y 
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Negative-stain electron microscopy 

AprA ACP was prepared following a negative staining protocol222 and imaged at 120 kV 

using a Tecnai T12 electron microscope (FEI). A total of 200 micrographs were taken at 52,000x 

nominal magnification using a 4k by 4k CCD camera (Gatan). EM data processing was performed 

by Min Su. Images were binned by 2 resulting in a sampling of 4.32 Å per pixel for particle picking 

and processing.  ~50,000 particles were selected automatically, then subject to reference-free 2D 

classifications using RELION223, resulting in ~15,000 particles corresponding to the “linear” state 

and ~15,000 particles corresponding to the “bent” state. The remaining particles were found in 

classes that corresponded to intermediate states or were in ambiguous orientations. Well-defined 

class average images in the bent state were selected to generate an initial model using 

e2initialmodel.py224, and ~4,000 particles were extracted from the selected classes for 3D 

reconstruction. The initial model was filtered to 60-Å resolution, and then subjected to 3D auto-

refinement with C2 symmetry enforced. The resulting model showed a resolution of ~26 Å (gold 

standard FSC criterial of 0.143). Crystal structures of the MTL-ΨGNAT monomer and MT2L dimer 

were docked as rigid bodies into the EM density in Chimera225, as an extensive interface exists 

between MTL and ΨGNAT, whereas few contacts are observed between ΨGNAT and MT2L. 

Additionally, MTL is not soluble without ΨGNAT, while MT2L can be independently excised from 

AprA. Figures of the EM model were prepared using Chimera225. 

Results and Discussion 

Origin of the t-butyl group: SAM-derived methyl groups incorporated into apratoxin A  

In order to examine the incorporation of methyl groups from SAM into the t-butyl group 

of apratoxin A in vivo, [methyl-13C]methionine, the immediate metabolic precursor and methyl 

donor to SAM, was provided to M. bouillonii PNG5-198 cultures. Apratoxin A was subsequently 

purified from these cultures, and incorporation of 13C into specific carbon atoms in the molecule 

was monitored by 13C NMR and compared with purified apratoxin A grown without label. Carbons 

41-43, comprising the t-butyl group in apratoxin A, were enriched by 99.0%, or 1.99-fold in the 

sample supplemented with [methyl-13C]methionine relative to an unlabeled sample; 13C NMR 

signals not deriving from the SAM methyl group were essentially unchanged (Figure 5.1a, Table 

5.1.)  Additionally, in order to support the idea that methylmalonyl-CoA does not provide one of 
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the methyl groups in the t-butyl moiety, we provided the producing culture with [1-13C]propionate, 

a precursor to methylmalonyl-CoA (MeMal-CoA) in bacterial PKS biosynthesis.  We observed 

only natural-abundance incorporation at C39, the predicted position of possible incorporation into 

apratoxin A (Figure 5.2, Table 5.2, Table 5.3), indicating that Mal-ACP is the preferred AprA 

substrate. This is consistent with our previous determination that Mal-ACP is the substrate for 

AprA MTL, which performs two methylations to produce Me2Mal-ACP (Figure 5.1c)119.  

AprA MT2L is a dual function decarboxylase and methyltransferase 

 To test the activity of AprA MT2L, we incubated it with the Me2Mal-ACP product of AprA 

MTL in the presence of methyl donor SAM, and analyzed the reaction mixture by intact protein 

mass spectrometry. Unexpectedly, we observed the production of pivaloyl-ACP, indicating that 

MT2L is a bifunctional enzyme, carrying out both decarboxylation and methylation (Figure 5.3a, 

Figure 5.4a). To verify the generality of this bifunctional activity, we produced the BryX MT2L 

domain (40% sequence identity to AprA MT2L) from a homologous module119 in the bryostatin 

biosynthetic pathway20. BryX MT2L also produced pivaloyl-ACP (Figure 5.3a, Figure 5.4b), 

suggesting that BryX is the t-butyl-producing module in bryostatin biosynthesis.  

 Precedent for dual decarboxylation/methyl transfer activity exists in enzymes that function 

in epigenetic regulation (DNA cytosine-C5 (C5)-methyltransferase)226, 227 and corrin biosynthesis 

(CbiT and CobL)228, 229. Like AprA MT2L, CbiT and CobL catalyze coordinated decarboxylation 

and methylation reactions, in which decarboxylation activates a distal carbon for methyl 

transfer229, whereas DNA C5-methyltransferase performs decarboxylation independent of 

methyltransfer226. AprA MT2L, DNA C5-methyltransferase, CobL and CbiT are members of the 

highly divergent class I methyltransferase superfamily, whose members are identified by six 

conserved motifs in the nucleotide binding core125. AprA MT2L is a distant relative without 

significant sequence identity to DNA C5-methyltransferase, CbiT or CobL beyond the conserved 

motifs.  
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Figure 5.3 Catalytic activity of MT2L  
Intact protein mass spectra are shown for AprA ACP species. a. AprA MT2L and BryX MT2L 
reactions on Me2Mal-ACP. AprA MT2L reactions on b. AcAc-ACP, c. MeMal-ACP, d. Mal-ACP. 
Calculated masses are indicated by the chemical structures, and observed masses on the mass 
spectra. Negative controls (no enzyme) are indicated in dotted lines. 
  



 

136 
 

 

 

Figure 5.4 Representative mass spectra for the production of Me2Mal-ACP 
Ppant ejection data for Me2Mal-ACP (generated with AprA MTL) production by a. AprA MT2L 
and b. BryX MT2L in Figure 5.3a. Mass spectra from reactions are in red, no-enzyme negative 
controls in black. Experimentally observed masses are in red, calculated masses in black. 

Crystal structure of AprA GNAT-MT2L  

To understand how AprA MT2L mediates its remarkable dual activities, we solved a 2.25-

Å crystal structure of the GNAT-MT2L didomain in complex with S-adenosylhomocysteine 

(SAH) (Figure 5.5, Figure 5.6a, Table 5.5).  The AprA GNAT-MT2L didomain is dimeric in 

crystals and in solution, as determined by size exclusion chromatography. In the crystals, the head-

to-tail dimer interface includes a disulfide bond between the Cys651 residues of the MT2L 

domains. A C651S amino acid substitution also yielded dimeric protein, indicating that the 

GNAT- MT2L dimer is not a disulfide-dependent artifact of the aerobic lab environment.  

The GNAT is truncated relative to functional GNAT homologs31, 219 and is connected to 

MT2L by a 12 residue linker, validating our previous report that the GNAT (truncated GNAT) 

within the AprA MTL-GNAT structure is the full domain119. AprA MT2L is similar to the 

cyanobacterial C-MT117 from the CurJ extension module of curacin A biosynthesis (33% sequence 

identity, RMSD of 1.3 Å for 273 total C atoms, Figure 5.7) and to the fungal citrinin PKS C-

MT165 (22% sequence identity, RMSD of 2.1 Å for 261 total C atoms), including an extremely 

long N-terminal helix, a helical lid, and a SAM-binding core with a helical insertion between -

strands 5 and 6. The SAM-binding core of AprA MT2L and CurJ C-MT are virtually identical 

(RMSD 0.48 Å for 103 core C atoms), but their respective lid domains are positioned slightly 

differently (Figure 5.6b).  
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Figure 5.5 AprA GNAT- MT2L structure and active site 
a. AprA GNAT-MT2L head-to-tail dimer colored by structural region (GNAT, green; MT2L 
lid, pink; MT2L core, orange). SAH is shown in stick form with atomic coloring (C, black; O, red; 
N, blue; S, yellow). N- and C-termini are labeled for each monomer. b. AprA GNAT-MT2L 
monomer colored by structural region as in a. c. AprA MT2L active site colored as in a. Amino 
acids subjected to mutagenesis are shown in sticks. 
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Figure 5.6 AprA MT2L active site omit density and comparison between AprA MT2L and 
CurJ C-MT 
a. 2Fo-Fc composite omit density around MT2L active site contoured at 1σ in stereo. Maps were 
calculated with simulated annealing (starting temperature 5000 K). b. AprA MT2L (pink lid, 
orange core) and CurJ C-MT (green lid, blue core) superimposed by their core domains (RMSD 
of 0.48 Å for 103 C atoms). SAH is shown in sticks with atomic coloring (C, gray). Key active 
site residues are shown in sticks.  c. Zoom view of the AprA MT2L and CurJ C-MT active sites 
from the superposition in b. Labels correspond to mutagenized amino acids in AprA MT2L. 
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Figure 5.7 AprA MT2L sequence alignment and secondary structure with BryX MT2L and 
PKS C-MTs.  
AprA amino acids subjected to mutagenesis are starred and class I MT motifs are labeled. 
Abbreviations (GenBank accession codes): Apr, apratoxin A (WP_075900460); Bry, bryostatin 
(ABK51302.1); Cit, citrinin (A0A161CEU9.1); Crp, cryptophycin (ABM21569.1); Cur, curacin 
A (WP_008191795.1); Gph, gephyronic acid (AHA38199.1); Lov, lovastatin (Q9Y7D5.1). 
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Active site architecture 

PKS C-MTs, such as CurJ C-MT117 and those in modules AprG and AprI in the apratoxin 

A pathway25, catalyze -methylation of the respective -keto intermediates, the product of the 

ketosynthase (KS) extension reaction, but do not act on the carboxylate substrate Mal-ACP 102, 103, 

117. To gain insight into the bifunctional activity of AprA MT2L, we compared the active sites of 

AprA MT2L and CurJ C-MT117 (Figure 5.5c, Figure 5.6c), both of which are produced by Moorea 

species. In both structures, SAH sits in a cleft between the lid and core domains with strong 

electron density for the adenosine moiety and rather weak density for the homocysteine portion 

(Figure 5.6a), indicating that the bound SAH may not be captured in a catalytic conformation. The 

cleft between the lid and the core in AprA MT2L is much shallower than in CurJ C-MT, due to the 

bulky Phe941 and Trp759 side chains, correlating with the shorter Me2Mal-ACP substrate of AprA 

MT2L vs. the extended -keto intermediate methylated by CurJ C-MT117. The His-Glu dyad that 

is critical for methylation by PKS C-MTs117, 165 is conserved in MT2L (His914, Glu940) (Figure 

5.7). However, several nearby amino acids differ in AprA MT2L and CurJ C-MT. Near the SAH, 

Phe797 replaces a conserved Tyr that was hypothesized to facilitate methylation by the CurJ C-

MT through interactions with the SAM sulfonium (Figure 5.6c). Most interestingly, the catalytic 

His resides in a nearly invariant His-Ala-Thr (HAT) motif in PKS extension-module C-MTs 

(Figures 5.6c, Figure 5.7), while in AprA MT2L, the analogous sequence at the catalytic His914 is 

His-Asn-Thr. 

Other differences exist in a small pocket behind the MT2L His-Glu dyad. In AprA MT2L, 

Gly952, Phe958 and Cys972 replace, respectively, Phe, Trp and Pro side chains, which are 

conserved in extension module C-MTs (Figure 5.7). Based on their sequences (Figure 5.7), 

identical pockets exist in AprA MT2L and BryX MT2L, which also carries out dual decarboxylation 

and methylation. 

AprA MT2L is active on multiple substrates 

 Given the similarity of the AprA MT2L and CurJ C-MT active sites (Figure 5.6c), we tested 

MT2L activity on acetoacetyl-ACP (AcAc-ACP), a substrate mimic for CurJ C-MT117. Similar to 

the PKS C-MT, AprA MT2L methylated AcAc-ACP to yield dimethyl-acetoacetyl-ACP (Figure 

5.3b). Dimethylation by PKS C-MTs has been reported previously100, 101, 103, although no sequence 

motifs are apparent that delineate the ability to catalyze one or two methylation reactions.  
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 Given the promiscuity of AprA MT2L for both carboxylated and non-carboxylated acyl 

groups, we tested MT2L activity on other potential substrates. Coordinated decarboxylation and 

methylation activity also occurred with a MeMal-ACP substrate to produce isobutyryl-ACP 

(Figure 5.3c). Interestingly, this corresponds with the natural occurrence of an isobutyryl group in 

apratoxin C230. However, product formation was approximately 4-fold slower with MeMal-ACP 

than with Me2Mal-ACP, and the reaction with MeMal-ACP also produced significant quantities 

of the propionyl-ACP product of decarboxylation only. The slower turnover and shunt product 

indicate that MT2L is selective for Me2Mal-ACP (Figure 5.3c). We also tested Mal-ACP as an 

AprA MT2L substrate, but, unlike the MT2L activity with Me2Mal-ACP or MeMal-ACP, we 

detected only the decarboxylation product acetyl-ACP (Figure 5.3d). Mal-ACP decarboxylation 

occurred approximately 50-fold slower than the consumption of Me2Mal-ACP, further 

demonstrating MT2L selectivity for the dimethylated acyl group. Interestingly, Me2Mal-, MeMal-

, and Mal-ACP decarboxylation required SAM; neither SAH nor sinefungin, a stable SAM analog, 

supported decarboxylation activity. However, SAM was not consumed during the decarboxylation 

reaction (see below; and Figure 5.8a, b).   

 

Figure 5.8 AprA MT2L cofactor dependence 
a. Relative activities for reactions of AprA MT2L with Me2Mal-ACP, MeMal-ACP, Mal-ACP, in 
the presence of SAM, SAH, and sinefungin. Data represent total product formed. All reaction 
species were quantified using the Ppant ejection assay150, 169. Error bars, in some cases too small 
to be visible, represent triplicate experiments. b. HPLC analysis of SAM consumption in reactions 
of AprA MT2L with Mal-ACP, MeMal-ACP and AcAc-ACP. SAM and SAH standards are shown 
in dashed lines. 
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Reaction mechanism for AprA MT2L 

MT2L-catalyzed methyl transfer was tightly coupled to decarboxylation, as the enzyme had 

no activity with the decarboxylated intermediates isobutyryl- and propionyl-ACP. The preferred 

and presumed native substrate was Me2Mal-ACP, which was rapidly and exclusively converted to 

pivaloyl-ACP (Figure 5.3a). In contrast, reactions on non-native substrates uncoupled 

decarboxylation and methylation. Substrate MeMal-ACP yielded significant quantities of the 

propionyl-ACP shunt product of decarboxylation only (Figure 5.3c), and substrate Mal-ACP 

yielded only the decarboxylated product acetyl-ACP at a significantly slower rate (Figure 5.3d).  

Coupling of decarboxylation and methylation requires that the reactions occur in one active site. 

We used site directed mutagenesis to disrupt the conserved His-Glu dyad that is responsible for 

methylation in PKS C-MTs117, 165, which are AprA MT2L homologs. Product formation was 

monitored using the MS-based phosphopantetheine (Ppant) ejection assay, where the Ppant 

fragment is dissociated from the ACP phosphoserine linkage during ionization and used for 

quantification based on relative abundance of Ppant species150, 169. Activity was evaluated with 

substrates for coupled decarboxylation and methylation (Me2Mal-ACP and MeMal-ACP), 

decarboxylation only (Mal-ACP), and methylation only (AcAc-ACP) (Figure 5.9a, 4b, 4c, Figure 

5.10).  

The His-Glu dyad is essential for both decarboxylation and methylation by MT2L. The 

H914N and E940A variants had no activity on any substrate, including Mal-ACP, which undergoes 

decarboxylation only, demonstrating that both the decarboxylation and methylation reactions 

occur in one active site (Figure 5.5c, Figure 5.9a). We hypothesize that during decarboxylation, 

His914 accepts a proton and promotes decarboxylation by stabilizing the developing negative 

charge at the thioester and the resulting enolate (Figure 5.9d). Methyl donation from SAM is likely 

simultaneous with collapse of the enolate to form pivaloyl-ACP (Figure 5.9d).  

As noted above, product formation was abrogated in the absence of SAM, which is 

consistent with the absolute requirement for this cofactor to initiate decarboxylation, although it is 

not consumed in the reaction (Figure 5.8a, b). Affinity measurements for substrates in the presence 

of SAM, SAH, and sinefungin in other methyltransferases148, 231 indicated that interactions 

between the active site and the sulfonium, which do not exist in our SAH-bound GNAT- MT2L 

crystal structure, may allow this class of enzyme to organize the active site for productive catalysis 
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Figure 5.9 Probing AprA MT2L activity via site-directed mutagenesis  
a. Relative activities for reactions of AprA MT2L with Me2Mal-ACP, MeMal-ACP, Mal-ACP, 
and AcAc-ACP. Data represent total product formed. Product ratios for data in a. from coupled 
(decarboxylation + methylation) and uncoupled (decarboxylation only) reactions with b. Me2Mal-
ACP (pivaloyl-ACP and isobutyryl-ACP), c. MeMal-ACP (isobutyryl-ACP and propionyl-ACP). 
All reaction species were quantified using the Ppant ejection assay150, 169. Error bars, in some cases 
too small to be visible, represent triplicate experiments. d. Proposed mechanism for the coupled 
methylation and decarboxylation sequence to convert Mal-CoA into the pivaloyl-ACP starting unit 
of apratoxin A biosynthesis 
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Figure 5.10 Representative mass spectra for coupled decarboxylation and methylation 
reactions 
Representative Ppant ejection data for (a) Me2Mal-ACP (generated with Me2Mal-thiophenol) (b) 
AcAc-ACP, (c) MeMal-ACP and (d) Mal-ACP. Reactions with AprA MT2L are in red, no 
enzyme control in black. Experimentally observed masses are in red, calculated masses in black.   
 

only when SAM is present by “sensing” small differences that occur upon methyl donor binding. 

Alternatively, electronic effects of the SAM sulfonium ion, which are not present in SAH or 

sinefungin, may facilitate the decarboxylation reaction.  

In order to understand AprA MT2L decarboxylation compared to its non-decarboxylating 

PKS C-MT homologs, such as CurJ C-MT, we introduced additional “CurJ like” amino acid 

substitutions into the AprA MT2L active site. When Asn915, the amino acid following the catalytic 

His914, is substituted with Ala, which is conserved in the extension-module C-MT HAT motif, 

we observed near wild type or enhanced turnover (Figure 5.5c, Figure 5.9a, Figure 5.7). However, 

the N915A substitution decouples decarboxylation and methylation on Me2Mal-ACP (Figure 5.9b) 
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and MeMal-ACP (Figure 5.9c), as indicated by the increase in production of the respective 

isobutyryl-ACP and propionyl-ACP shunt products resulting from decarboxylation only. 

Decoupling of decarboxylation and methylation of Me2Mal-ACP and MeMal-ACP also 

occurred when MT2L Phe797 was substituted with Tyr (Figure 5.9b, c), which is conserved in 

nearly all extension-module C-MTs (Figure 5.6c, Figure 5.7). Notably, the F797Y variant nearly 

eliminated decarboxylation activity on Mal-ACP, but had little effect on methylation of AcAc-

ACP (Figure 5.9a). We next examined the small pocket behind the His-Glu dyad, which is unique 

to the bifunctional AprA MT2L and BryX MT2L. An F958W substitution also decoupled 

decarboxylation and methylation of Me2Mal-ACP (Figure 5.9b) and MeMal-ACP (Figure 5.9c) 

and, like the F797Y substitution, had little effect on methylation of AcAc-ACP (Figure 5.9a). 

Occluding the small pocket with a G952F substitution eliminated all activities, whereas 

substitutions at Cys972 within the pocket (C972P, C972S) had modest effects.  

As small amino acid substitutions to the AprA MT2L active site (N915A, F979Y, F958W) 

and minor substrate alterations (e.g. MeMal-ACP vs. Me2Mal-ACP) decoupled decarboxylation 

and methylation, we conclude that AprA MT2L evolved from a methylation-only enzyme to 

promote formation of pivaloyl-ACP. Given the weak electron density for SAH in the AprA MT2L 

crystal structure (Figure 5.6a), several amino acids are likely not in their final catalytic positions. 

Therefore, we hypothesize that once in catalytically competent positions, amino acids that couple 

methylation and decarboxylation (Asn915, Phe797, Phe958 and perhaps others) either position the 

carboxylated substrates for catalysis or stabilize the proposed enolate intermediate (Figure 5.9d). 

Stabilization of the enolate and substrate positioning adjacent to the SAM methyl donor are 

essential as the decarboxylated intermediate could readily collapse to the shunt product by 

accepting a proton without methyl transfer.  

FabD provides the initial acyl transfer step 

As neither AprA MTL-GNAT nor GNAT performed the malonyl transfer reaction 

(Mal-CoA to Mal-ACP) to initiate apratoxin A biosynthesis119, we tested AprA MT2L for malonyl 

acyltransferase activity, but detected no transfer of malonyl from CoA to AprA ACP (Figure 

5.11a). Additionally, the apr gene cluster encodes no other candidate acyltransferase for the 

initiation reaction.  
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Figure 5.11 Acyltransfer activity and GNAT initiation-module-associated ACPs  
a. Intact protein mass spectra of AprA ACP loading reactions of MT2L with Mal-CoA and holo-
ACP. Calculated masses are indicated next to chemical structures, observed masses are indicated 
on spectra. No acyltransfer was observed in a 1 hr reaction. b. Representative Ppant ejection data 
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for reactions of FabD with Mal-CoA and AprA holo-ACP. Reaction with FabD is in red, no 
enzyme control in black. The presence of acetyl-ACP is due to in source decay during ionization.  
c. Dendrogram of ACPs from GNAT initiation modules (red), fatty acid synthase AcpP (blue), 
PKS -branching (green), PKS extension modules (black). d. Sequence alignment of GNAT 
associated ACPs. Ppant attachment site (Ser1093) is labeled. Phenylalanine-containing motif 
specific to ACPs in GNAT initiation modules is marked with asterisks. Pathway 
abbreviations(GenBank accession codes) are as follows: Apr, apratoxin A (WP_075900460); Bry, 
bryostatin (ABK51302.1); Cur, curacin A (AEE88289.1); Sxt, saxitoxin (WP_009343302.1); Ta, 
myxovirescin A (WP_011553948.1); Gph, gephyronic acid (KF479198.1); Rhi, rhizoxin 
(WP_013435483.1); Nsp, nosperin (ADA69237.1); Bat, batumin (WP_052451043.1); Onn, 
onnamide (AAV97870.1); Ped, pederin (AAR19304.1); Bon, bongkrekic acid (AFN27480.1).   

 
Previous studies showed that the malonyl-acyltransferase (FabD) of fatty acid biosynthesis 

in the producing organism can compensate for the lack of an acyltransferase in the initiation 

module of some PKS systems196, 232. Therefore, we identified fabD in the M. bouillonii PNG5-198 

genome184, cloned the gene, and produced recombinant FabD in E. coli. Incubation of FabD with 

AprA holo-ACP led to rapid formation of Mal-ACP (Figure 5.12, Figure 5.11b). Surprisingly, 

AprA ACP shares only 20% sequence identity with the M. bouillonii fatty acid synthase (FAS) 

ACP (AcpP). Additionally, ACPs associated with GNAT-containing initiation modules, such as 

AprA, clade separately from both PKS extension-module ACPs and FAS ACPs (Figure 5.11c) and 

can be distinguished by a phenylalanine motif (Figure 5.11d). Therefore, we tested the specificity 

of FabD for the AprA initiation-module ACP relative to extension-module ACPs in the apratoxin 

A pathway using the AprI ACP (23% identity to AprA ACP). AprI is a typical PKS extension 

module with an embedded acyltransferase. FabD catalyzed malonyl transfer to AprI ACP, but was 

twofold faster for malonyl transfer to AprA ACP (Figure 5.12). This is consistent with a previous 

report that FabD can compensate for catalytically inactive acyltransferase domains in a modular 

PKS233. We propose that M. bouillonii exploits primary metabolism by using FabD from fatty acid 

biosynthesis to initiate apratoxin A biosynthesis by providing the malonyl starter unit to the AprA 

ACP. 
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Figure 5.12 FabD malonyl acyltransfer activity 
 Malonyl is transferred from CoA to ACP by M. bouillonii PNG5-198 FabD. Reaction was 
monitored using the Ppant ejection assay150, 169. Error bars represent triplicate experiments and, in 
some cases, are too small to be visible. 

Modeling and EM visualization of the AprA module 

The crystal structures of the AprA MTL-GNAT119 and GNAT- MT2L fragments 

provided a unique opportunity to model the overall architecture of AprA (MTL-ΨGNAT- MT2L) 

by superimposing the GNAT domains of the two structures (RMSD of 1.0 Å for 107 C). The 

composite model (Figure 5.13a) lacks steric clashes as MTL and MT2L contact opposite faces of 

the ΨGNAT. The MT2L dimer sits at the center of the curved AprA model with the MTL domains 

on opposite sides. The ACP is missing in our model, but is connected to the C-terminus of the 

MT2L dimer via a 44 amino acid linker.   

We tested the AprA model using electron microscopy to visualize intact AprA ΔACP 

(Figure 5.13b, Figure 5.14a, b). Consistent with the crystal structures and the model, the negative-

stain 2D class averages revealed a structure with overall twofold-symmetry. A large central lobe, 

consistent with the MT2L dimer (96 kDa), is flanked by two smaller lobes, each consistent with 

monomeric MTL-GNAT (75 kDa, Figure 5.13b). MTL is insoluble without GNAT119 whereas 

MT2L is a stable dimer,  and accordingly the flanking MTL-ΨGNAT has few contacts with MT2L, 

suggesting that the GNAT is associated with MTL. The overall architecture of the AprA model 

is similar to classes corresponding to ~30% of total particles, where the two MTL-ΨGNAT lobes 
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Figure 5.13 Architecture of the AprA module  
a. AprA model based on crystal structures of MTL-GNAT and GNAT-MT2L fragments, 
colored by structural region (MTL lid, purple; MTL core, blue; GNAT, green; MT2L dimer, 
orange). SAM and SAH are shown in spheres with atomic coloring (gray C). In the MTL active 
site, Mn2+ is shown in light gray spheres and malonate in sticks (pink C). The model was created 
by superposition of the GNAT domains of the two crystal structures (RMSD 1.0 for 107 
Ctoms). The 44 amino acids linking MT2L and ACP are depicted in a dashed line. b. Selected 
negative stain class averages of AprA (ACP) showing the central MT2L dimer and GNAT- 
MT2L wings. Linear and bent states of AprA are observed in these images. c. 3D reconstruction of 
AprA in the bent conformation (gray), representing ~30% of the particles (top down view). Docked 
crystal structures of AprA MTL-GNAT and AprA MT2L are colored as in a. d. side view of 3D 
reconstruction with docked AprA domains.   
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Figure 5.14 EM class averages, micrographs and AprA model 
 a. Negative stain class averages of AprA ACP. b. Raw negative stain micrograph of AprA 
ACP. c. Model of AprA based on a 3D reconstruction of bent-state particles, colored as in Figure 
5.13. Compared to the linear-state model from superposition of the MTL-GNAT and GNAT- 
MT2L crystal structures, the MTL-GNAT is rotated ~45° relative to the MT2L dimer. 
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are linear relative to MT2L. However, a similar number of particles belong to classes with a bent 

arch shape where the MTL-ΨGNAT lobes appear repositioned relative to the MT2L dimer (Figure 

5.13b).   

The bent-state class averages were more uniform and of higher quality than the linear-state 

classes. Thus, we extracted particles of the bent state and obtained a 3D reconstruction to test 

whether the size and shape of the EM density was consistent with the crystal structures (Figure 

5.13c, d). The MT2L dimer crystal structure docks nearly perfectly into the EM density, and the 

size and shape of the MTL -GNAT correspond well to the flanking density. In the bent 

conformation, MTL is severely rotated relative to its position in the model based on the crystal 

structures (Figure 5.13a, d and Figure 5.14c). In this position, the MTL active site entrance is inside 

the chamber of the AprA arch, ~50 Å from the ACP attachment site.  

We hypothesize that AprA adopts different conformations during its catalytic cycle, and 

that this may protect the substrate from aberrant reactions. In one conformation, the ACP must be 

accessible to FabD to receive the malonyl starter unit. Given the promiscuity of AprA MT2L, Mal-

ACP must be protected from the MT2L active site to prevent premature decarboxylation prior to 

MTL methylation. The MTL reaction may occur in the bent state where the MTL active site entrance 

is closer to the ACP attachment site. Once MTL has formed Me2Mal-ACP, the MTL-GNAT may 

swing to an open conformation to allow access to the MT2L active site, where the decarboxylative 

methylation forms pivaloyl-ACP.  

In conclusion, our complete characterization of the apratoxin A initiation module AprA 

describes a unique biochemical process to form t-butyl groups in natural product biosynthesis 

(Figure 5.9d) and clarifies a previously nebulous route to an unusual chemical functionality. First, 

the FAS malonyl-acyltransferase FabD loads the AprA ACP with malonyl from CoA. Malonyl-

ACP is then dimethylated by the mononuclear iron-dependent methyltransferase AprA MTL
119. 

Dimethylmalonyl-ACP undergoes a coordinated decarboxylation and methylation reaction by 

AprA MT2L to form pivaloyl-ACP. The functional annotation of AprA serves as an identifier for 

gene clusters producing t-butyl-containing natural products, especially from marine sources, as 

exemplified by our identification and characterization of BryX MT2L from the bryostatin 

biosynthetic pathway. Our structural characterization of the full AprA module provides insight 

into the overall architecture and mobility of this remarkable multifunctional module. 
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 GNAT-like Domains for Initiation of Polyketide Biosynthesis are Primarily 
Acyl-ACP Decarboxylases 

Summary 

(GCN5)-related N-acetyltransferase (GNAT) proteins are typically associated with 

acetylation of a variety of amine substrates from an acetyl-CoA donor. A decarboxylation activity 

exists in some GNAT superfamily members, including malonyl-CoA decarboxylase (MCD) and 

enzymes for initiation of the biosynthesis of some polyketide secondary metabolites. Here, we 

probe the role of GNAT-like domains that are proposed to possess the dual functions of S-acyl 

transfer to an acyl carrier protein (ACP) and decarboxylation in polyketide biosynthesis. The 

GNAT-like domain within GphF in the gephyronic acid biosynthetic pathway selectively catalyzes 

decarboxylation of dimethylmalonyl (Me2Mal-) ACP, but lacks acyl transfer activity. Biochemical 

characterization and the crystal structure of a GphF GNAT complex with an isobutyryl-CoA 

product analog provide insight into the mechanism of decarboxylation by GNAT superfamily 

members. Analysis of CurA GNAT, another polyketide synthase (PKS) GNAT-like domain with 

proposed dual function, suggests that, like the GphF GNAT, the CurA GNAT catalyzes 

decarboxylation only. Thus, it is possible that an enzyme outside the biosynthetic pathway 

catalyzes malonyl acyl transfer. As the primary role of PKS GNAT-like domains is 

decarboxylation, we propose to reclassify GNATs in PKS initiation modules as acyl-ACP 

decarboxylases. 

Introduction 

Named for the founding member, general control non-repressible 5 (GCN5)-related N-

acetyltransferase (GNAT)234, the GNAT superfamily of enzymes spans all kingdoms of life and is 

best known for using an acetyl-coenzyme A (CoA) donor to acetylate amine substrates, such as 

histones, aminoglycoside antibiotics, arylalkylamines, and a variety of other proteins and 

metabolic intermediates42, 43, 235. Other GNAT superfamily members use alternative acyl donors, 

such as myristol-CoA236, aminoacyl-tRNAs237, or fatty acyl-ACPs238-240. Although studied for 

decades241, malonyl-CoA (Mal-CoA) decarboxylase (MCD) was identified as a member of the 
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GNAT superfamily only when a crystal structure was solved183, 242. MCD, which has very low 

sequence identity (~10%) to N-acyltransferase members of the GNAT superfamily, is conserved 

from bacteria to mammals243, 244 and catalyzes decarboxylation and not acyl transfer. In mammals, 

MCD modulates levels of malonyl-CoA and in some cases can promote the use of methylmalonyl-

CoA as a substrate for fatty acid biosynthesis, leading to tissue-specific production of multimethyl-

branched fatty acids244. Disruption of the gene encoding MCD results in malonic aciduria245. 

Bacterial genes for MCD are linked to those for a Mal-CoA synthetase and malonate transporter243. 

Given that proteins with the GNAT fold can catalyze both acyl transfer and decarboxylation, the 

common function of the superfamily may be to bind the phosphopantetheine (Ppant) moiety of 

CoA or ACP.  

Natural product biosynthetic pathways frequently repurpose enzymes found elsewhere in 

biology for the production of molecules that confer a selective advantage on the producing 

organism. One such example is the acquisition of a GNAT-like enzyme in the polyketide 

biosynthetic pathways of a variety of bacteria (Figure 6.1, Figure 6.2) 21, 23, 25, 31, 45, 93-98, 116. 

Polyketides are synthesized in a stepwise manner from acyl-CoA building blocks. Substrates and 

products in the modular multienzyme type I polyketide synthase (PKS) enzyme assembly lines are 

tethered to the phosphopantetheine (Ppant) cofactor of an ACP. PKS GNAT-like domains were 

first identified as members of the GNAT superfamily in sequence analysis of the pederin 

biosynthetic pathway44. The GNAT-like domain is part of the “loading” or initiation module, 

where it is expected to transfer an acetyl-group from acetyl-CoA to the Ppant of the initiation 

module ACP (ACPL). Identification of the diphosphate binding P-loop for acetyl-CoA binding in 

other GNAT family members suggested that the pederin GNAT-like domain shares the canonical 

acetyl-CoA binding property of the GNAT fold. Additional GNAT-like domains exist in PKS 

initiation modules that produce acetyl23, 93, 94, 96, 98, 116, propionyl45, 97, isobutyryl21, and t-butyl20, 25, 

120 starter units. 

The initial characterization of a PKS GNAT-like domain was for the CurA GNAT in the 

pathway for the antimitotic curacin A. We reported a slow S-acetyl transfer activity from acetyl-

CoA to the ACPL for the CurA GNAT (Figure 6.1a)31. Unexpectedly, CurA GNAT rapidly 

decarboxylated Mal-ACP or Mal-CoA prior to acetyl transfer to generate an acetyl starter unit for 

curacin A biosynthesis31. Decarboxylation by CurA GNAT, which required conserved His and Thr 

amino acids, represented a new catalytic function for the GNAT superfamily. MCD had not yet  
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Figure 6.1 GNAT-like enzymes in gephyronic acid and curacin A biosynthesis  
a. The CurA initiation module produces an acetyl starter unit (green). The CurA N-terminus is 
homologous to an MTL lid, but the SAM binding core domain has been lost. b. The CurA GNAT-
like enzyme decarboxylates Mal-ACP to acetyl-ACP. c. The GphF initiation module produces an 
isobuturyl starter unit (green). d. GphF MTL dimethylates Mal-ACP, and the GNAT-like domain 
decarboxylates Me2Mal-ACP to isobutyryl-ACP. 
 
been identified as a GNAT superfamily member, as it shares only 13% sequence identity with 

CurA GNAT. Later, and by reference to the CurA GNAT result, the analogous His and Ser residues 

were implicated in MCD decarboxylation183. Like the CurA GNAT, the GNAT-like domain in the 

saxitoxin PKS initiation module displayed dual activities to CurA GNAT, including a weak acyl  

transfer activity and a preference for decarboxylation of methylmalonyl (MeMal)-ACP to 

propionyl-ACP, the expected saxitoxin starter unit219. In apratoxin A and bryostatin biosynthesis, 

the GNAT-like domain is truncated and possesses no detectable decarboxylation or acyl transfer 

activity119, 120. The initial acyl transfer step to commence apratoxin A biosynthesis may require the 

bacterial fatty acid synthesis enzyme malonyl-acyltransferase (MAT) FabD120. 

The gephyronic acid biosynthetic pathway begins with the GphF initiation module and 

produces a cytostatic polyketide21. The GphF initiation module contains a methyltransferase, a 
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GNAT-like domain, and an ACP (MTL-GNATL-ACPL, Figure 6.1c) and is predicted to generate 

an isobutyryl starter unit in contrast to other characterized GNAT-containing initiation modules, 

which produce acetyl (curacin A)31, propionyl (saxitoxin)219, and pivaloyl (apratoxin, bryostatin) 

starter units120. Isotope labeling studies indicated that the gephyronic acid isobuturyl unit is derived 

from S-adenosylmethionine (SAM)21. Previously, we showed that MTs associated with PKS 

initiation modules, including GphF MTL, are unusual mononuclear-iron-dependent 

methyltransferases with a large lid domain (formally known as adaptor region) that catalyze 

methylation of Mal-ACP to MeMal-ACP or dimethylmalonyl (Me2Mal)-ACP (Figure 6.1d)119. 

 

Figure 6.2 Sequence alignment of GNAT-like domains from PKS pathways for natural 
products of known structure  
All GNAT-like domains occur in presumed initiation modules. Only GphF is predicted to produce 
an isobutyryl starter unit; initiation modules with propionyl starter units are in blue and those with 
acetyl starter units in red. The GphF GNAT secondary structure annotation is displayed above the 
alignment. Amino acids subjected to mutagenesis are starred. Protein abbreviations (GenBank 
accession codes) are as follows: Gph- gephyronic acid (KF479198.1), Cur- curacin A 
(AEE88289.1), Bat- batumin (WP_052451043.1), Bon- bongkrekic acid (AFN27480.1), Nsp- 
nosperin (ADA69237.1), Onn- onnamide (AAV97870.1), Ped- pederin (AAR19304.1), Rhi- 
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rhizoxin (WP_013435483.1), Sxt- saxitoxin (WP_009343302.1), Ta- myxovirescin A 
(WP_011553948.1). 
The carboxylate of Mal-ACP is essential for methyl transfer activity, as no methylation was 

observed on acetyl-, propionyl-, or isobutyryl-ACP. Decarboxylation of Me2Mal-ACP by the 

GphF GNAT-like enzyme would result in the predicted isobutyryl starter unit (Figure 6.1d).  

Here, we investigate the catalytic role of the GNAT-like domain in polyketide biosynthesis. 

Biochemical comparison of the GphF and CurA GNAT-like enzymes reveals a strong acyl-group 

selectivity for decarboxylation substrates. Additional insight into the decarboxylation reaction is 

provided by a 2.8-Å crystal structure of the GphF GNAT-like enzyme with the product analog 

isobutyryl-CoA. Surprisingly, no acyl transfer activity was detected for the GphF GNAT-like 

domain. Given the low rate of detectable acyl transfer compared to decarboxylation for other PKS 

GNAT-like enzymes31, 219, their function appears to be primarily decarboxylation. Thus, we 

propose to reclassify GNAT-like proteins in PKS pathways as acyl-ACP decarboxylases.  

Experimental Procedures 

Construct design 

All primers are listed in Table 6.1. A cDNA encoding the GphF GNAT was amplified from 

a partial gphF clone provided by Richard Taylor (Notre Dame University) and inserted into 

pMCSG7 by ligation independent cloning (LIC) to create the expression plasmid for GphF GNAT 

(residues 498-705, pMAS/APS340). A cDNA encoding the CurA ACP (residues 444-521) was 

amplified from a cosmid library23 and inserted into pMCSG7 via LIC to create pMAS/APS442. 

All gphF site-directed mutants (Table 6.1) were introduced into pMAS340 using the QuickChange 

protocol (Stratagene). All constructs and mutations were verified by Sanger sequencing at the 

University of Michigan DNA Sequencing Core.  

Protein expression and purification 

Escherichia coli strain BL21(DE3) was transformed with plasmids encoding GphF GNAT 

and CurA GNAT (in pMCSG7)31. Transformed cells were grown in 0.5 L of TB media at 37°C 

supplemented with 100 μg mL-1 ampicillin to an OD600=1-2, cooled to 20°C for 1 hr, and induced 

with 200 μM IPTG for 18 hr. Cell pellets were resuspended in 35 mL Tris buffer A (50 mM Tris 

pH 7.4, 300 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole), 0.1 mg mL-1 lysozyme, 0.05 mg 
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mL-1 DNase, and 2 mM MgCl2, incubated on ice for 30 min, lysed by sonication, and cleared by 

centrifugation (38,760 x g, 15-30 min, 4°C). The supernatant was filtered and loaded onto a 5 mL  

Table 6.1 Primers for cloning Gph and Cur GNAT constructs 
GphF 498 F pMAS/ 

APS 
340 

TACTTCCAATCCAATGCAGCGCATCGGATCCGTC 

GphF 705 
R 

TTATCCACTTCCAATGTTAGCTCGCGGGGACC 

CurA 444 F pMAS/ 
APS 
442 

TACTTCCAATCCAATGCAGAAGATATAGATGAAGTTGTGGCTAG 

CurA 521 
R 

TTATCCACTTCCAATGTTAGCTTCTCTCTGTTGTCTCCC 

GphF 
H571C F 

pMAS 
343 

CGGCGCCTCTGCAGGCTTCGCGGGCC 

GphF 
H571C R 

GGCCCGCGAAGCCTGCAGAGGCGCCG 

GphF 
R597Q F 

pMAS 
387 

GACCCCGCGGTCCAGAACCACGACTTCG 

GphF 
R597Q R 

CGAAGTCGTGGTTCTGGACCGCGGGGTC 

GphF 
S626A F 

pMAS 
426 

TCGTCGGCGTCGCGCGTTGCGGC 

GphF 
S626A  R 

GCCGCAACGCGCGACGCCGACGA 

GphF 
S626T F 

pMAS 
388 

TCGTCGGCGTCACGCGTTGCGGC 

GphF 
S626T R 

GCCGCAACGCGTGACGCCGACGA 

GphF 
H660A F 

pMAS 
427 

GGTGCTCGGGTTCGCCCTCGGTCACGGC 

GphF 
H660A R 

GCCGTGACCGAGGGCGAACCCGAGCACC 

GphF 
H660N F 

pMAS 
438 

GGTGCTCGGGTTCAACCTCGGTCACGG 

GphF 
H660N R 

CCGTGACCGAGGTTGAACCCGAGCACC 

GphF 
R675K F 

pMAS 
419 

GATCATCAGCGGCTACAAGCCCGAGGATGTCGAC 

GphF 
R675K R 

GTCGACATCCTCGGGCTTGTAGCCGCTGATGATC 

GphF 
R675E F 

pMAS 
425 

TCATCAGCGGCTACGAGCCCGAGGATGTCG 

GphF 
R675E R 

CGACATCCTCGGGCTCGTAGCCGCTGATGA 

GphF 
H690Y F 

pMAS 
390 

GTGTGATCGTGATCTATGCGCTCCGTGGGGC 

GphF 
H690Y R 

GCCCCACGGAGCGCATAGATCACGATCACAC 

CurA 
Q326R F 

pMAS 
423 

GTAAATATCTTGCCAGAGTTGAGAAATCAGGGATTGGGAGATCG 
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CurA 
Q326R R 

CGATCTCCCAATCCCTGATTTCTCAACTCTGGCAAGATATTTAC 

CurA 
T355S F 

pMAS 
384 

GGTGTCGAAAAAGTTGTGGCAGTATCTCTTTGTCGCAA 

CurA 
T355S R 

TTGCGACAAAGAGATACTGCCACAACTTTTTCGACACC 

CurA 
L356R F 

pMAS 
385 

AAAGTTGTGGCAGTAACTCGTTGTCGCAATTATCCAGAC 

CurA 
L356R R 

GTCTGGATAATTGCGACAACGAGTTACTGCCACAACTTT 

CurA 
R404K F 

pMAS 
422 

TGAGAAACTGCTTCCTGGTTACAAGCCTAAAGATTGGGAAAACCAG

CurA 
R404K R 

CTGGTTTTCCCAATCTTTAGGCTTGTAACCAGGAAGCAGTTTCTCA 

CurA 
R404E F 

pMAS 
421 

TGAGAAACTGCTTCCTGGTTACGAGCCTAAAGATTGGGAAAACCAG

CurA 
R404E R 

CTGGTTTTCCCAATCTTTAGGCTCGTAACCAGGAAGCAGTTTCTCA 

CurA 
Y419H F 

pMAS 
405 

AGACTTGTGGAGTTCTCGTATCTCACGATATTCAACATCG 

CurA 
Y419H R 

CGATGTTGAATATCGTGAGATACGAGAACTCCACAAGTCT 

Bold text indicates handles for ligation-independent cloning into expression vectors  
All primers are listed 5’ to 3’ 

 
HisTrap column (GE Healthcare) or 5 mL of Ni-NTA resin (Qiagen) equilibrated with Tris buffer 

A. After washing with 10 column volumes of Tris buffer A, proteins were eluted with a 5-100% 

gradient of Tris buffer B (50 mM Tris 7.4, 300 mM NaCl, 10% glycerol, 400 mM imidazole) over 

10 column volumes. Single-step purified CurA GNAT was dialyzed into Tris Buffer A for acyl 

transfer assays. Proteins used for decarboxylation assays and crystallization were further purified 

by size exclusion chromatography (HiLoad 16/60 Superdex S75) in Tris buffer C (50 mM Tris pH 

7.4, 150 mM NaCl, 10% glycerol). 

GphF GNAT used for acyl transfer assays was dialyzed into 50 mM BisTris pH 6.5, 20 

mM NaCl, 10% glycerol (BisTris buffer A) and loaded on a HiTrap Q anion exchange column 

(GE Healthcare) equilibrated with BisTris buffer A. GphF GNAT was collected from the Q column 

flow through and buffer exchanged into Tris buffer C via size exclusion chromatography (HiLoad 

16/60 Superdex S75).  

A multistep purification was used for CurA GNAT intended for acyl transfer assays. Cell 

pellets were resuspended in 5 mL Tris buffer D (100 mM Tris pH 7.9, 300 mM NaCl, 10% 

glycerol, 15 mM imidazole) per 1 g cell pellet with 4 mg DNase, 10 mg lysozyme, and 4 mM 
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MgCl2 and incubated on ice for 30 min. Cells were lysed by three passes through an Avestin 

EmulsiFlex-C3 homogenizer and cleared by centrifugation (30,000 x g, 30 min, 4°C). The 

supernatant was filtered and loaded onto a 5 mL HisTrap column equilibrated with Tris buffer D. 

Protein was eluted with a gradient of 30-300 mM imidazole. The His-tag was cleaved by overnight 

incubation with tobacco etch virus (TEV) protease (1:30 ratio of TEV protease: CurA GNAT with 

2 mM DTT) and dialyzed into Tris buffer D. The digested protein was passed over a second 5 mL 

HisTrap column. Tag-free CurA GNAT was collected from the flow through and further purified 

by size exclusion chromatography (HiLoad 16/60 Superdex S200) in Tris buffer D.  

GphF MT1-GNAT used for acyl transfer assays was purified as described previously119 

and then diluted into Hepes buffer A (50 mM Hepes pH 7.4, 15 mM NaCl, 10% glycerol). GphF 

MT1-GNAT was then loaded onto a HiTrap Q Column equilibrated with Hepes buffer A, washed 

with 10 column volumes of Hepes buffer A and eluted with a 15-1 M linear gradient of NaCl over 

20 column volumes. GphF MT-GNAT was buffer exchanged into Hepes buffer B (50 mM Hepes 

pH 7.4, 150 mM NaCl, 10% glycerol) via size exclusion chromatography (HiLoad 16/60 Superdex 

S200).  

AprA apo-ACP was produced and purified as described previously119. A trace metals mix 

was included in the growth medium to inhibit addition of the phosphopantetheinyl post 

translational modification by endogenous E. coli enzymes168. CurA ACP was produced and 

purified identically to AprA ACP.  M. bouillonii FabD120 and AprA MT1-ΨGNAT119 were 

produced and purified as described previously. 

Production of acyl-ACPs 

AprA and CurA holo-, malonyl- (Mal-), and methylmalonyl- (MeMal-)ACPs were 

produced by incubating 180 μM apo-ACP with 20 μM Streptomyces verticillus 

phosphopantetheinyl transferase (SVP)142, and ~0.65 mM CoA, Mal-CoA, or MeMal-CoA in 50 

mM Tris pH 7.4, 150 mM NaCl, 10% glycerol, 20 mM MgCl2 for 4 hr at 30°C. The ACP was 

purified from the reaction mixture by size exclusion chromatography (HiLoad 16/60 Superdex 

S75) equilibrated with Tris buffer E (100 mM Tris pH 7.4, 250 mM NaCl, 5% glycerol, 5 mM 

tris(2-carboxyethyl)phosphine (TCEP). 

  As dimethylmalonyl (Me2Mal)-CoA is not commercially available, AprA MT1119 was used 

to convert the AprA and CurA MeMal-ACPs to the Me2Mal-ACPs. Reaction mixtures for AprA 

ACP (~3 mL total in 130 μL aliqots) containing 300 μM AprA MeMal-ACP, 150 μM AprA MT1-
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ΨGNAT and 6 mM S-adenosylmethionine (SAM) in 50 mM Hepes pH 7.4, 150 mM NaCl, 3 mM 

Fe(NH4)2(SO4)2 were incubated 5.5 hr at 30°C. Reaction mixtures for CurA ACP (~4 mL total in 

50 μL aliqots) containing 150 μM CurA MeMal-ACP, 150 μM AprA MT1-ΨGNAT and 6 mM 

SAM in 50 mM Hepes pH 7.4, 150 mM NaCl, 3 mM Fe(NH4)2(SO4)2 were incubated 6 hr at 30°C. 

Me2Mal-ACPs were purified from the reaction mixtures by size exclusion chromatography 

(HiLoad 16/60 Superdex S75) equilibrated with Tris buffer E. Intact protein mass spectra coupled 

with the Ppant ejection assay150, 169 was used to validate the conversion of MeMal-ACP to Me2Mal-

ACP.  

Decarboxylation enzyme assays 

As GphF ACPL could not be produced in soluble form, AprA ACPL from the apratoxin A 

biosynthetic pathway25 was used as a surrogate ACP. Reaction mixtures (80-100 μL) containing 

100 μM AprA Mal-, MeMal-, or Me2Mal-ACP and 10 μM GphF GNAT in 50 mM HEPES pH 

7.4, 150 mM NaCl were incubated at 30°C. 10 μL of the reaction mixture was collected at various 

time points and quenched with 1% (v/v) formic acid. 0.25 μL of reaction mixtures were subjected 

to LC/MS analysis. 

Reaction mixtures (10 μL) containing 100 μM AprA acyl-ACP and 10 μM GphF GNAT 

variants in 50 mM HEPES pH 7.4, 150 mM NaCl were incubated at 30°C for 5 min (Me2Mal-

ACP), 8 hr (MeMal-ACP), or 24 hr (Mal-ACP). Reactions were quenched with 1% (v/v) formic 

acid. 0.25 μL of reaction mixtures were subjected to LC/MS analysis. 

Reaction mixtures (80-100 μL) containing 100 μM CurA Mal-, MeMal-, or Me2Mal-ACP 

and 10 μM CurA GNAT in 50 mM HEPES pH 7.4, 150 mM NaCl were incubated at 30°C. 10 μL 

of the reaction mixture was collected at various time points and quenched with 1% (v/v) formic 

acid. 0.1 μL of reaction mixtures were subjected to LC/MS analysis. 

Reaction mixtures (10 μL) containing 100 μM CurA acyl-ACP and 10 μM CurA GNAT 

variants in 50 mM HEPES pH 7.4, 150 mM NaCl were incubated 6 hr (Me2Mal-ACP), 7.5 min 

(MeMal-ACP), or 3 min (Mal-ACP). Reactions were quenched with 1% (v/v) formic acid. 0.1 μL 

of reaction mixtures were subjected to LC/MS analysis. 

Acyl transfer enzyme assays 

Acyl transfer reactions (70 μL) containing 100 μM AprA or CurA holo-ACP, 10 μM CurA 

GNAT or GphF GNAT, 0.85 mM of Mal-, MeMal-, acetyl-, propionyl-, or isobutyryl-CoA in 50 
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mM Hepes pH 7.4, 150 mM NaCl were incubated at 30°C. At various time points 10 μL aliquots 

were removed and quenched with 1% (v/v) formic acid. 0.25 μL of GphF GNAT reactions and 0.1 

μL of CurA GNAT reactions were used for LC/MS analysis.  

GphF MTL-GNAT acyl transfer reactions (70 μL) containing 100 μM AprA holo-ACP, 10 

μM GphF MTL-GNAT, 0.85 mM of Mal-CoA, 0.54 mM SAM, 50 mM Hepes pH 7.4, 150 mM 

NaCl, 0.5 mM FeH8N2O8S2 were incubated at 30°C. At various time points 10 μL aliquots were 

removed and quenched with 1% (v/v) formic acid. 0.25 μL of the reaction mixtures were subjected 

to LC/MS analysis.  

M. bouillonii FabD reaction mixtures (120 μL) containing 100 μM CurA holo-ACP, 25 nM 

FabD, and 0.85 mM Mal-CoA in 50 mM Hepes 7.4, 150 mM NaCl were incubated at 30°C. At 

various time points 10 μL aliquots were removed and quenched with 1% (v/v) formic acid. 0.1 μL 

of the reaction mixtures were subjected to LC/MS analysis.  

LC-MS analysis 

 An Agilent Q-TOF 6545 was used to analyze reaction mixtures using the 

phosphopantetheine (Ppant) ejection method150, 169. Samples underwent reverse phase HPLC 

(Phenomenex Aeris widepore C4 column 3.6 μM, 50 x 2.10 mm) in H2O with 0.2% (v/v) formic 

acid at a flow rate of 0.5 mL min-1. Protein was eluted over a 4 min linear gradient of 5-100% 

acetonitrile with 0.2% (v/v) formic acid. Samples were subjected to the following conditions: 

fragmentor voltage, 225 V; skimmer voltage, 25 V; nozzle voltage, 1000 V; sheath gas 

temperature, 350 °C; drying gas temperature, 325 °C. Data was processed using MassHunter 

Qualitative Analysis Software (Agilent). The relative abundances of Ppant ejection fragments for 

substrates and products were used to calculate the percent of total ACP species. In acyl transfer 

reactions with active GNAT domains, abundances of intact and decarboxylated acyl-ACP species 

were combined to calculate percent acyl group transfer.  

Protein crystallization and structure determination 

GphF GNAT (residues 498-705, with additional N-terminal His-tag) was crystallized at 

20°C by sitting drop vapor diffusion from a 2:1 μL mixture of protein stock (20.7 mg mL-1 GphF 

GNAT in Tris buffer C) and reservoir solution (30 - 35% PEG 3350, 0.23 - 0.30 M ammonium 

acetate, 0.10 M Bis-tris HCl pH 5.5). Crystals of thin-blade morphology grew overnight, often in 

clusters, and could be divided into apparently single crystals for data collection. Crystals were 
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cryoprotected with well solution supplemented with 15% glycerol and flash cooled in liquid N2. 

For the isobutyryl-CoA complex, crystals were soaked with 2.5 mM isobutyryl-CoA for 24 hr 

prior to harvesting. 

Diffraction data were collected at 100 K on GM/CA beamline 23ID-B at the Advanced 

Photon Source (APS) at Argonne National Laboratory (Argonne, IL). Data were processed using 

XDS128. The thin-blade morphology of the crystals limited the data quality. Diffraction patterns 

were streaky and moderately anisotropic (diffraction limit for GphF GNAT: dmin = 3.3 Å along 

a*, and 2.6 Å along b* and c*; isobutyryl-CoA complex: dmin = 5.0 Å along a* and 2.8 Å along 

b* and c*). Probing the crystal with a 10-m beam in raster cells did not identify local regions 

with better spot shapes or lower anisotropy. The structure of GphF GNAT was solved by 

molecular replacement using Phaser172 through the Phenix Software Suite130 with CurA GNAT 

(2REE)31 as the starting model. Crystals of the isobutyryl complex were isomorphous with 

crystals of the free enzyme. Iterative rounds of model building and refinement were carried out 

using Coot132 and Phenix.refine173 with automated translation/liberation/screw group selection. 

Active site cavities were computed using CAVER135. Structures were validated with 

MolProbity133, and structure figures were prepared with PyMol136. Sequence alignments were 

prepared using Clustal137 through Jalview138.  
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Table 6.2 GphF GNAT crystallographic information 
Protein GphF GNAT GphF GNAT 
Ligand  Isobutyryl-CoA 
Data Collection   
Space group C2 2 21 C2 2 21 

Unit cell, a,b,c (Å) 
138.3, 145.7, 

78.0
134.4, 145.5, 

77.2
X-ray source APS 23ID-B APS 23ID-B 
Wavelength (Å) 1.033 1.033 

dmin (Å) 
2.59 (2.68-2.59) 

a 2.79 (2.89-2.79) 

R-merge 0.1847 (3.16) 0.1762 (1.97) 
Inner-shell R-merge 0.047 (7.67 Å) b 0.035 (8.28 Å) 
Avg I/σ(I) 11.7 (0.9) 9.87 (1.10) 
Completeness (%) 99.6 (97.3) 99.3 (95.7) 
Multiplicity 13.1 (13.4) 6.8 (6.9) 
Total observations 327,190 (31,990) 128,891 (12,396) 
Wilson B factor (Å2) 76.9 69.2 
CC1/2 0.998 (0.463) 0.997 (0.644) 
CC* 1.00 (0.795) 0.999 (0.885) 
Refinement   
Data range (Å) 42.19-2.59 42.8-2.79 
Reflections  24,860 19,043 
Rwork/Rfree (%) 23.0/26.8 23.2/27.5 
Non-hydrogen atoms (#) 3,011 3,070 
  protein 2,934 2,934 
  ligands 35 122 
  water 42 14 
Amino acid residues 390 392 
   
Deviation from ideality   
   bond lengths (Å) 0.004 0.002 

bond angles (°) 0.98 0.42 
Average B-factor (Å2) 91.6 103.5 
   protein 91.5 103.4 
   ligands 112.8 111.6 
   solvent 76.4 66.7 
Ramachandran plot   

favored (%) 98.2 96.9 
allowed (%) 1.8 3.1 
outliers (%) 0 0 

avalues in parentheses designate outer shell 
bdmin inner shell  
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Table 6.3 Scaling statistics for GphF GNAT 

 

Table 6.4 Scaling statistics for GphF GNAT in complex with isobutyryl-CoA  

 

  

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2 

7.67 12623 1046 1054 99.20% 4.70% 46.62 99.9 
5.46 21662 1754 1755 99.90% 8.90% 29.62 99.8 
4.47 28720 2220 2221 100.00% 10.10% 27.42 99.8 
3.88 35965 2593 2594 100.00% 15.20% 20.59 99.7 
3.47 40469 2925 2925 100.00% 24.30% 13.18 99.5 
3.17 40828 3233 3233 100.00% 48.50% 6.34 98.5 
2.93 43609 3485 3485 100.00% 121.70% 2.44 91.7 
2.75 50444 3743 3743 100.00% 195.50% 1.5 74.6 
2.59 52918 3893 3962 98.30% 299.80% 0.96 49.8 

Total 327238 24892 24972 99.70% 18.40% 11.73 99.8 

Resolution 
Limit 
( Å) 

Number of Reflections   
  

Observed Unique Possible Completeness R-Factor I/σ CC 1/2 

8.28 4965 804 815 98.70% 3.50% 40.61 99.9 
5.89 8479 1346 1347 99.90% 7.90% 21.14 99.8
4.82 11521 1697 1697 100.00% 11.20% 17.05 99.7
4.18 14166 2007 2008 100.00% 11.30% 17.14 99.7
3.74 14845 2251 2251 100.00% 18.40% 11.35 99.3
3.42 15978 2474 2474 100.00% 28.90% 7.39 98.7
3.17 18243 2675 2675 100.00% 56.90% 3.88 95.4
2.96 20097 2864 2866 99.90% 109.10% 2.11 88.1
2.79 20612 2962 3038 97.50% 169.50% 1.3 73.7

Total 128906 19080 19171 99.50% 17.60% 9.88 99.8
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Figure 6.3 Ramachandran plots for GphF GNAT 
Ramachandran plots of final refined model of GphF GNAT. Plots were generated using 
MolProbity133.
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Figure 6.4 Ramachandran plots for GphF GNAT in complex with isobutyryl-CoA 
Ramachandran plots of final refined model of GphF GNAT with bound isobutyryl-CoA. Plots 
were generated using MolProbity133. 
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Results and Discussion 

GNAT-like enzymes encode strict substrate specificity 

The metal-dependent MTL in PKS initiation modules can produce both monomethylated 

(MeMal-ACP)219 and dimethylated (Me2Mal-ACP)119 products. We hypothesized that the GNAT-

like domain may act as a gatekeeper, acting selectively after MTL has installed the pathway-

specific number of methyl groups. The structure and pathway annotation of gephyronic acid21 as 

well as initial biochemical characterization119 indicate that the GphF MTL produces Me2Mal-ACP 

via a MeMal-ACP intermediate (Figure 6.1d). Thus, the GphF GNAT displays selectivity for 

Me2Mal-ACP over MeMal-ACP to ensure production of the isobutyryl starter unit.  

As GphF ACPL was insoluble, AprA ACPL, the ACP from the initiation module of the 

apratoxin A pathway25, was used as a surrogate ACP to assay GphF GNAT function. AprA ACP 

was loaded with Mal- and MeMal-CoA substrates via the promiscuous phosphopantetheinyl 

transferase SVP142 to produce Mal-ACP, the substrate of the GphF MTL, and its MeMal-ACP 

intermediate (Figure 6.1d). MeMal-ACP was converted to Me2Mal-ACP via AprA MTL, the 

apratoxin A initiation module methyltransferase119, as Me2Mal-CoA is commercially unavailable 

and challenging to access in sufficient quantities synthetically. Relative rates of decarboxylation 

of the ACP-linked substrates were measured using the mass-spectrometry-based Ppant ejection 

assay150, 169. GphF GNAT displayed a strong selectivity for decarboxylation of Me2Mal-ACP 

relative to MeMal-ACP (100-fold) or Mal-ACP (barely detectable within a 48-hours) (Figure 6.5a, 

Figure 6.6). Thus, GphF GNAT requires the action of MTL prior to decarboxylation and is selective 

for the Me2Mal-ACP product over the MeMal-ACP intermediate to prime the gephyronic acid 

assembly line with the isobutyryl-ACP starter group. 

We were curious to examine whether other PKS GNAT-like domains exhibit a similar 

degree of substrate selectivity. The CurA GNAT31 is of particular interest as the CurA initiation 

module includes the N-terminal lid region (formerly known as an adaptor region) of a MTL, but 

has no SAM binding core (Figure 6.1a), suggesting that CurA evolved from a module containing 

an MTL
119. CurA GNAT displayed modest selectivity with a ~5-fold preference for its natural 

substrate Mal-ACP over MeMal-ACP (Figure 6.5b), in agreement with previously reported 

values31. Interestingly, CurA GNAT also accommodated the Me2Mal-ACP substrate, but produced 

isobutyryl-ACP at a ~500-fold slower rate than acetyl-ACP (Figure 6.5b). CurA GNAT  
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Figure 6.5 GphF and CurA GNAT decarboxylation activity 
Decarboxylation of various acyl-ACP substrates by a. GphF GNAT and b. CurA GNAT. Activity 
was monitored via the Ppant ejection assay150, 169. Error bars represent triplicate experiments and, 
in some cases, are too small to be visible. GphF GNAT did not decarboxylate Mal-ACP in a 48 
hour reaction time. 
 
decarboxylation of MeMal-ACP is not likely to result in mispriming of curacin biosynthesis with 

a propionyl-ACP starter unit as many bacteria, including cyanobacteria, lack propionyl-CoA 

carboxylase and do not produce MeMal-CoA at levels sufficient for secondary metabolite 

biosynthesis246.  

GphF GNAT structure 

In order to understand the substrate selectivity of PKS GNAT-like domains for 

decarboxylation, we solved a 2.6 Å crystal structure of the GphF GNAT and a 2.8 Å structure in 

complex with an isobutyryl-CoA product mimic (Figure 6.7, Table 6.2). Like the CurA GNAT, 

GphF GNAT displays the conserved GNAT fold comprised of a β-sheet core flanked by α-helices. 

The GNAT fold is marked by a “β-bulge” (GphF residues Leu588, Gly589) in β4, creating the V- 
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Figure 6.6 Representative mass spectra of decarboxylation reactions 
Decarboxylation of Mal-ACP:a. GphF GNAT, 48 hr reaction time, b. CurA GNAT, 3 min reaction 
time; MeMal-ACP: c. GphF GNAT, 8 hr reaction time, d. CurA GNAT, 7.5 min reaction time; 
Me2Mal-ACP: e. GphF GNAT, 5 min reaction time, f. CurA GNAT, 8 hr reaction time. Spectra 
of no enzyme controls are shown in black; reactions are shown in red. Calculated m/z values are 
listed in black above structures of Ppant ejection fragments. Observed m/z values are indicated in 
red. AprA ACP, used as a surrogate ACP for GphF GNAT reactions, had a contaminating species 
at 367 Da. The same ratio of malonyl- and acetyl-Ppant ejection fragments to holo-Ppant ejection 
fragments are observed in the no enzyme control and reaction in a. 
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Figure 6.7 GphF GNAT structure  
The protein is colored as a rainbow from blue (N-terminus) to red (C-terminus), shown in stereo. 
Isobutyryl-CoA is (ball-and-stick form with atomic colors: C, gray; O, red; N, blue; S, yellow) 
binds to a V-shaped cleft between 4 (green) and 5 (yellow). 
 
shaped Ppant binding cleft between the parallel β4 and β5 strands (Figure 6.7)247. PKS GNAT-like 

domains are characterized by an insertion after β5 and by an extended C-terminus that inserts a 

strand between β5 and β6 (Figure 6.7). The isobutyryl-CoA diphosphate is stabilized by backbone 

amides of the phosphate binding loop between β4 and α5 (GphF residues 597-602), as in other 

GNAT family members (Figure 6.7, Figure 6.2). 

GNAT active site and catalysis 

 At the substrate entrance site, the isobutyryl-CoA Ppant threads along β4, mimicking an 

additional β-strand (Figure 6.7). The thioester is positioned at the base of the V-shaped cleft 

between β4 and β5 near conserved Thr/Ser and His residues (GphF Ser626, His660; CurA Thr355, 

His 389), which are essential for decarboxylation by CurA GNAT (Figure 6.8)31. The binding 

pocket for acceptor substrates of GNAT acyltransferases lies beyond the isobutyryl-Ppant. In PKS 

GNAT-like domains, conserved Trp and Arg side chains (GphF Trp520, Arg 675; CurA Trp 249, 

Arg404) are at the proximal end of the acyl pocket.  

The role of GphF active site residues in decarboxylation of Me2Mal-ACP and MeMal-ACP 

was probed via site-directed mutagenesis (Figure 6.8). In addition, we tested all GphF GNAT 

variants for the ability to decarboxylate Mal-ACP. Like the CurA GNAT, the GphF GNAT 

conserved active site His (GphF H660) and Ser/Thr (GphF Ser626) are essential for  
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Figure 6.8 Probing decarboxylation via site directed mutagenesis.  
a. GphF GNAT decarboxylation reactions. b. GphF GNAT active site with bound isobutyryl-CoA. 
Fo-Fc omit density for isobutyryl-CoA is shown in gray mesh at 3σ contour. Ser626 and His660 
are the catalytic amino acids. c. CurA GNAT decarboxylation reactions. d. CurA GNAT active 
site with bound acetyl-CoA31. Thr355 and His389 are the catalytic amino acids. Error bars 
represent triplicate experiments and, in some cases, are too small to be visible. Bound CoAs are 
shown in ball-and-stick form. Amino acids subjected to mutagenesis are shown in sticks with 
atomic coloring. 
 
decarboxylation of both Me2Mal-ACP and MeMal-ACP (Figure 6.2, Figure 6.8a, b). Like the wild 

type GNAT, no decarboxylation of Mal-ACP was detected in a 24 hour incubation. Next, the 

conserved active site Arg (GphF R675) was substituted with Lys and Glu, which reduced product 

formation by fourfold (R675K) and tenfold (R675E) (Figure 6.8 a, b). Analogous substitutions in 

CurA Arg 404 were similarly deleterious, validating the role of the conserved Arg in 

decarboxylation (Figures 4c and 4d). Given the near elimination of product formation for the 

charge-reversal substitutions (GphF R675E and CurA R404E) and the substantial decrease for the 

more conservative substitutions (GphF R675K and CurA R404K), we hypothesize that the 

positively charged Arg interacts with the Me2Mal- or Mal-ACP carboxylate. The Arg675 
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guanidinium is well positioned to interact with the carboxylate of a dimethylmalonyl substrate in 

a model based on the structure of the GphF GNAT complex with isobutyryl-CoA (Figure 6.9). 

The essential active site His and Thr/Ser are the best candidates to stabilize an enolate intermediate 

formed during decarboxylation and to re-protonate the carbanion upon collapse of the enolate. In 

some GNAT superfamily members that catalyze acyl transfer, two backbone amides at the bulge 

in β4 point into the active site and form an oxyanion hole to stabilize the enolate intermediate. At 

the bulge of the GphF and CurA GNATs, backbone carbonyl groups and not amides point into the 

active site. 

We next examined amino acids in the Ppant binding cleft and acyl group pocket that differ 

in GphF and CurA GNAT and evaluated their effects on catalysis and substrate selectivity. The 

essential side chains Thr and His in the decarboxylation site of PKS GNAT-like enzymes (CurA 

Thr355, His389) are more common than the Ser/His pair (GphF Ser626, His660) (Figure 6.2, 

Figure 6.8a, b). For GNAT sequences where the pathway product is known, only the GphF 

initiation module produces an isobuturyl starter group. We hypothesized that the smaller active 

site Ser may provide more space for a dimethylmalonyl than would the bulkier Thr. However, the 

GphF S626T and CurA T355S substitutions did not appear to influence selectivity for Me2Mal-

ACP and had only modest effects on decarboxylation of all substrates (Figure 6.8 a, b).  

In CurA GNAT, the essential His (CurA His389) is positioned by a hydrogen bond to the 

hydroxyl of a Tyr (CurA Tyr419), which is conserved in all PKS GNAT-like domains except the 

GphF GNAT where His690 is just beyond hydrogen bonding distance to the catalytic His660 

(Figure 6.2, Figure 6.8b, d). A CurA Y418H substitution eliminated decarboxylation activity, 

whereas the reciprocal GphF GNAT substitution (GphF H690Y) enhanced decarboxylation of 

Me2Mal-ACP and MeMal-ACP (Figure 6.8a, c) but did not alter substrate selectivity. Tyr is more 

effective than His at polarizing the catalytic His660 imidazole, which may account for the 

enhanced reactivity. Additional features of the GphF GNAT active site environment must 

modulate the reactivity of the catalytic His (His660) to compensate for the lack of a Tyr. 

GphF Arg597 is found at the entrance of the Ppant binding cleft (Figure 6.8b) whereas the 

analogous position is glutamine in CurA (CurA Q326) and other PKS GNAT-like domains (Figure 

6.2, Figure 6.8d). The GphF Arg597 guanidinium and CurA Gln326 amide both stack with a Ppant 

amide group. The GphF R597Q variant had variable effects on decarboxylation, decreasing the 

production of propionyl-ACP by 30% and isobuturyl-ACP by 60% (Figure 6.8a). The analogous 
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Figure 6.9 Active site pockets of GNAT-like enzymes and modeled Me2Mal-CoA complex 
a. GphF, b. CurA. Gray mesh depicts tunnel calculated using CAVER135. Images on the left and 
right differ by 90°. The GphF active site pocket is wider near the Ppant thiol to accommodate the 
Me2Mal-ACP substrate. Access to solvent through the distal end of the acyl binding pocket (right 
images) is partially occluded in the GphF domain but open to solvent in CurA. c. Me2Mal modeled 
into GphF GNAT based on the position of isobutyryl-CoA. The terminal carboxylate can be placed 
near conserved Arg675 



 

174 
 

 

CurA Q326R variant decreased decarboxylation of Mal-ACP, MeMal-ACP, and Me2Mal-ACP 

less than twofold (Figure 6.8c). Thus, neither Arg nor Gln appear to play a role in substrate 

selectivity or catalysis.  

A major difference between the GphF and CurA GNAT active sites is the presence of an 

Arg in GphF (Arg627) at the position of a Leu in CurA (Leu356) (Figure 6.8b, d). Leu356 is near 

the conserved active site Trp (CurA W249) and contributes to narrowing the acyl binding pocket 

relative to the GphF GNAT. Substitution of Arg for Leu356 in CurA enhanced decarboxylation of 

Mal-ACP and MeMal-ACP substrates, but did not affect the slow decarboxylation of Me2Mal-

ACP, and thus does not contribute to substrate selectivity (Figure 6.8c). The corresponding GphF 

R627L variant (Figure 6.8b) was unstable.  

The acyl binding pocket of GNAT acyltransferases extends to the surface of the protein, 

opening to solvent between α2 and the β3-β4 loop. A PEG molecule from the crystallization 

solution occupies the pocket in the GphF GNAT free enzyme structure. The corresponding pocket 

was proposed to accommodate the acyl-accepting ACP Ppant in CurA GNAT31, however access 

through the distal end of the pocket is limited in GphF due to the bulkier His571 compared to 

Cys300 in CurA GNAT (Figure 6.8b, d, Figure 6.9). Amino acids in this region are among the 

least conserved in PKS GNAT-like domains. The variability does not suggest a common Ppant 

pocket for ACP acceptors, as would be expected in acyl transfer enzymes. In some PKS GNAT-

like enzymes, access to solvent may be further occluded by a larger aromatic side chains at this 

position (Figure 6.2). A GphF H571C variant had little effect on decarboxylation (Figure 6.8a), 

indicating that access to the active site through the acyl binding pocket is not crucial for 

decarboxylation of the ACP-linked substrates.  

GphF GNAT does not catalyze acyl transfer 

 The proposed reaction scheme for the GphF initiation module requires the transfer of 

malonate from CoA to ACP prior to the methylation reactions by MTL. This ensures that the 

resulting Me2Mal product is non-diffusable and available for further processing by subsequent 

enzymes in the gephyronic acid pathway. GphF GNAT is a candidate to provide the malonyl 

transfer step as it was unable to decarboxylate malonyl-ACP prior to methylation by GphF MTL 

(Figure 6.1d). However, we detected malonyl transfer activity by GphF GNAT at very low levels, 

which varied among preparations of the enzyme, unlike the consistently high levels of 

decarboxylation activity.  
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The low levels and prep-to-prep variation suggested that the observed acyl transfer activity 

may be due to a contaminating enzyme from the highly active fatty acid biosynthetic machinery 

of the E. coli heterologous expression host, which has been reported to support transfer of malonyl 

from CoA to PKS ACPs196. To separate GphF GNAT (pI 7.3) from the potential contaminants 

FabD (pI 5.0) and FabH (pI 5.1), the E. coli fatty acid synthase enzymes that could support acyl 

transfer, we added an additional ion exchange chromatography step to the purification protocol. 

The stringently purified GphF GNAT did not support acyl transfer to ACP from a panel of acyl-

CoA donors, including Mal-CoA and isobutyryl-CoA (Figure 6.10a, Figure 6.11), but it retained 

a high rate of Me2Mal-ACP decarboxylation (Figure 6.12a). Thus, we conclude that the GphF 

GNAT-like enzyme is not an acyltransferase. Acyl transfer reactions with GphF MTL-GNAT and 

Mal-CoA showed very slow loading of malonyl onto holo-ACP (Figure 6.10a). The suspiciously 

slow acyl transfer rate for GphF MTL could also be a result of lingering contaminants from 

heterologous expression, as the GphF MTL-GNAT has a pI of 6.3 and is less amenable to stringent 

purification by ion exchange chromatography. 

 The lack of acyl transfer activity for GphF GNAT prompted us to reinvestigate CurA 

GNAT acyl transfer, which was ~780 fold slower than decarboxylation31. CurA GNAT underwent 

additional affinity chromatography and size exclusion purification steps, as CurA GNAT is not 

amenable to ion exchange (pI 5.5). The multistep-purified CurA GNAT diminished acyl transfer 

activity compared to the single-step purified enzyme used previously (2% vs. 10% for acetyl-CoA, 

Figure 6.10b, Figure 6.13), but it retained rapid decarboxylation activity (Figure 6.12). The native 

malonyl acyl transferase (FabD) of fatty acid biosynthesis in the producing organism is an 

attractive candidate to provide the initial malonyl acyl transfer step for PKS initiation modules 

containing a GNAT-like decarboxylation domain, as shown in the apratoxin A biosynthetic 

pathway120. We tested this with the Moorea bouillonii (M. bouillonii) FabD, which is 97% identical 

to FabD from the curacin A producer M. producens. M. bouillonii FabD rapidly transferred 

malonyl from CoA to CurA ACP (65% transfer in 20 min with 25 nM FabD compared to 8% in 4 

hr with 10 μM GNAT, Figure 6.10c, Figure 6.13).   
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Figure 6.10 GphF and CurA GNAT acyl transfer assays  
a. GphF GNAT and GphF MTL-GNAT reactions with acyl-CoAs and AprA holo-ACP. Virtually 
no acyl group transfer to the ACP was detected with GphF GNAT. GphF MTL-GNAT supported 
low levels of malonyl transfer. b. CurA GNAT reactions with Mal-CoA or acetyl-CoA and CurA 
holo-ACP.  The apparent acyl transfer activity of CurA GNAT preparations diminished with 
additional purification stops whereas decarboxylation activity was unaffected. C. M. bouillonii 
FabD reactions with Mal-CoA and CurA holo-ACP. M. bouillonii FabD rapidly transferred 
malonyl from CoA to CurA ACP at a 1:4000 molar ratio of FabD to ACP. Activity was monitored 
via the Ppant ejection assay150, 169. Error bars represent triplicate experiments and, in some cases, 
are too small to be visible. 
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Figure 6.11 Representative mass spectra of GphF GNAT and MT-GNAT acyl transfer 
reactions  
The 4-hr reaction mixtures included a. GphF GNAT, AprA holo-ACP, acetyl-CoA; b. GphF 
GNAT, AprA holo-ACP, propionyl-CoA; c. GphF GNAT, AprA holo-ACP, isobutyryl-CoA; d. 
GphF GNAT, AprA holo-ACP, Mal-CoA; e. GphF GNAT, AprA holo-ACP, MeMal-CoA; f. 
GphF MTL-GNAT; AprA holo-ACP, Mal-CoA. AprA holo-ACP was used as a surrogate for 
insoluble GphF ACPL. Spectra of no enzyme controls are shown in black; reactions are shown in 
red. Calculated m/z values are listed in black above structures of Ppant ejection fragments. 
Observed m/z values are indicated in red.   
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Figure 6.12 Decarboxylation by extensively purified GphF and CurA GNAT used for acyl 
transfer assays 
Additional purification steps, which affect rates of acyl transfer do not alter rapid decarboxylation 
activity (compare with Figure. 6.5). a. Time course for Me2Mal-ACP decarboxylation by GphF 
GNAT purified with Ni-affinity, size-exclusion, ion-exchange, and size-exclusion steps. b. Time 
course for Mal-ACP decarboxylation by CurA GNAT purified with Ni-affinity, TEV protease 
cleavage, Ni-affinity, and size-exclusion steps. Error bars represent triplicate experiments and, in 
some cases, are too small to be visible. 
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Figure 6.13 Representative mass spectra of CurA GNAT and M. bouillonii FabD acyl 
transfer reactions 
The 4-hr reaction mixtures included a. CurA GNAT, CurA holo-ACP, acetyl-CoA; b. CurA 
GNAT, CurA holo-ACP, Mal-CoA. Spectra of no enzyme controls are shown in black; reactions 
with CurA GNAT purified with a single purification step are shown in blue; reactions with CurA 
GNAT purified with multiple purification steps are shown in red. All Mal-ACP in (b) was 
decarboxylated to acetyl-ACP by CurA GNAT. c. Malonyl transfer reaction catalyzed by M. 
bouillonii FabD, the malonyl acyltransferase of fatty acid biosynthesis. The 5-min reaction 
mixtures included CurA holo-ACP and Mal-CoA. Spectra of no enzyme controls are shown in 
black; reactions are shown in red. Calculated m/z values are listed in black above structures of 
Ppant ejection fragments. Observed m/z values are indicated in red.  
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PKS GNAT-like domains are acyl-ACP decarboxylases 

Based on the results for the myxobacterial GphF GNATL and the cyanobacterial CurA 

GNATL, decarboxylation is the primary role of GNAT-like enzymes in PKS initiation modules. 

As the rate of acyl transfer is non-existent or suspiciously low for these GNAT-like domains 

compared to their decarboxylation rates31 and in some cases can be reduced further by additional 

purification steps, the PKS GNAT-like domain is more appropriately designated as an acyl-ACP 

decarboxylase. This places the GNAT-like domains of PKS initiation modules on the branch of 

the GNAT superfamily with the MCD decarboxylase183, 242, 243. These PKS acyl-ACP 

decarboxylases and MCD share the active site His and Ser/Thr residues essential for 

decarboxylation183, 242.  

A distant branch of the GNAT superfamily includes another enzyme of natural product 

biosynthesis, the malonyl- and methylmalonyl-CoA decarboxylase EryM (also known as 

SACE_1304 or Mcd248-250), which is encoded by mcd in Saccharopolyspora erythrea and is 

essential for the production of both the polyketide precursor of erythromycin251 and the 

siderophore erythrochelin249. EryM/SACE_1034/Mcd is encoded in an otherwise defunct NRPS 

gene cluster separated from the erythromycin cluster by 0.65 Mbp and the erythrochelin cluster by 

~2 Mbp. Disruption of the gene eliminates both erythromycin and erythrochelin production249, 251. 

The multifunctional EryM decarboxylates methylmalonyl-CoA to generate a propionyl-CoA 

starter unit for erythromycin biosynthesis251. The same protein catalyzes dual decarboxylation of 

malonyl-CoA and acetyl transfer to δ-N-hydroxy-L-ornithine in erythrochelin biosynthesis249, 250. 

Although the sequence identity is less than 20%, the C-terminal domain of EryM was recognized 

as a member of the GNAT superfamily249, 250. The GNAT superfamily membership is clear from 

the significant sequence identity (36%) to superfamily member Mycobacterium tuberculosis 

Rv1347c, which was itself recognized as a superfamily member from the crystal structure was 

solved252. The GNAT-like domain of EryM does not contain His and Ser/Thr residues in analogous 

locations in the GNAT fold to acyl-ACP decarboxylases and MCD. Instead EryM contains a His 

Glu/Asp dyad, which is conserved in sequences of unannotated homologs in bacterial genome 

sequences (Figure 6.14). Interestingly, the His Glu/Asp dyad is critical for transferring long chain 

fatty acids from an ACP to the primary amine of a siderophore in M. tuberculosis Rv1347c 253, 254 

and likely plays a role in activating the acyl accepting amine of δ-N-hydroxy-L-ornithine in 

erythrochelin biosynthesis.   
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Figure 6.14 Sequence alignment of the GNAT domain of EryM / SACE_1304 / Mcd homologs 
and Rv1347c.  
The Rv1347c secondary structure annotation is displayed below the alignment. Rv1347c catalytic 
residues, which are conserved in EryM homologs are starred. GenBank accession codes are as 
follows: EryM / SACE_1304 / Mcd (Saccharopolyspora erythrea), CAM00627.1; 
Saccharopolyspora antimicrobica, WP_093149902.1; Saccharopolyspora, WP_093351295.1; 
Saccharopolyspora spinosa, PKW14738.1; Saccharopolyspora rectivirgula, WP_051387681.1; 
Saccharopolyspora flava, SFT09105.1; Nonomuraea jiangxiensis, WP_090929840.1; 
Actinoalloteichus, WP_075740024.1; Actinoalloteichus hoggarensis, WP_093941036.1; 
Myxococcus hansupus, WP_002639252.1; Lentzea waywayandensis, WP_093605558.1; 
Streptomyces albulus, WP_064068670.1; Streptoalloteichus hindustanus, SHE93970.1; 
Saccharothrix sp. CB00851, WP_083668623.1; Umezawaea tangerine, PRY28657.1; Lentzea 
albidocapillata, WP_030481780.1; Rv1347c (Mycobacterium tuberculosis), WP_003406956.1. 
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Overall, we propose that the ACPL of PKS initiation modules containing acyl-ACP 

decarboxylases is primed with malonyl by a stand-alone malonyl-acyltransferase not encoded in 

the PKS gene cluster. FabD, the malonyl-acyltransferase from fatty acid biosynthesis, supports 

rapid malonyl acyl transfer to AprA ACPL
120 and CurA ACPL, as well as other PKS ACPs196, 233 

We suspect that the extremely slow and variable malonyl acyltransferase activity of the MTL or 

acyl-ACP decarboxylase (formerly known as a GNAT-like domain) is due to a contaminating E. 

coli enzyme, as additional purification steps of the acyl-ACP decarboxylases decreased acyl 

transfer activity but did not alter the rate of decarboxylation. Previously, the identification of 

contaminating activity from E. coli enzymes refuted a “self-loading” ability of PKS ACPs196. 

After malonyl acyl transfer, initiation modules containing no MTL, such as CurA (Figure 6.1a) 

proceed directly to decarboxylation by the acyl-ACP decarboxylase (Figure 6.1b). 

Decarboxylation requires conserved His and Thr/Ser residues. We further demonstrated the 

importance of a conserved active site Arg in decarboxylation for both cyanobacterial and 

myxobacterial acyl-ACP decarboxylases. 

Initiation modules with an MTL, such as GphF (Figure 6.1c), undergo metal-dependent 

methylation to produce MeMal-ACP or Me2Mal-ACP (Figure 6.1d) 119. Methylation of an ACP-

tethered malonyl rather than Mal-CoA is essential as MeMal and Me2Mal are precious resources, 

not normally produced at sufficient quantities in proteobacteria and cyanobacteria246 and must be 

sequestered by the PKS enzyme assembly line. Once the pathway-specific degree of methylation 

has occurred, the acyl-ACP decarboxylase will perform decarboxylation, and the resulting starter 

unit can be passed to the next module or catalytic domain for further processing (Figure 6.1d). 

The high degree of substrate selectivity of the acyl-ACP decarboxylase limits the production of 

the wrong starter unit, which may be incompatible with downstream pathway processing and 

may stall productive catalysis by the PKS assembly line. The crystal structures and mutagenesis 

studies of GphF and CurA acyl-ACP decarboxylases did not reveal the basis for the observed 

acyl group selectivity. 

PKS acyl-ACP decarboxylases join MCD as GNAT superfamily members that catalyze 

decarboxylation only. At least one other decarboxylase branch of the GNAT superfamily exists 

and includes the acyltransferase Rv1347c252 and the bifunctional decarboxylase / acyltransferase 

EryM/SACE_1034/Mcd essential for erythromycin and erythrochelin biosynthesis251. Additional 

decarboxylating members of the GNAT superfamily may be misannotated as acyltransferases. 
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The common function of the GNAT fold in the decarboxylating and acylating superfamily 

members is to bind the Ppant of CoA- or ACP-linked substrates and to employ an enolate 

intermediate in catalysis. The common ancestor of the GNAT superfamily, including the histone 

acetyltransferase (HAT) branch of GNATs involved in epigenetic regulation and the 

aminoglycoside N-acetyltransferases and PKS acyl-ACP decarboxylases of secondary 

metabolism, may have been MCD, an essential enzyme of primary metabolism.  
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 Conclusions and Future Directions 

Overview 

Presented here is the full biochemical and structural characterization of the four types of 

MTs currently annotated in modular PKS: extension module C-MTs and O-MTs and initiation 

module MTL and MT2L domains. Characterization of MTL activity facilitated the full functional 

annotation of a family of PKS initiation modules containing acyl-ACP decarboxylase (formally 

known as GNAT-like) domains. The study of MTL and MT2L from the apratoxin A biosynthetic 

pathway revealed a new route toward an unusual t-butyl functional group in natural product 

biosynthesis. 

Structure and Activity of PKS MT Domains 

All four types of PKS MTs are members of the class I MT superfamily. The PKS C-MT 

and O-MT domains evolved from different branches of class I MTs, whereas MTL and MT2L share 

a common ancestor with C-MTs. The four PKS MTs perform distinctly different reactions; C-

MTs, O-MTs and MTLs use different catalytic machinery for methylation of three distinct 

substrates, whereas MT2L has adapted the C-MT catalytic machinery for coupled decarboxylation 

and methylation reactions.  

α-methylation by C-MT domains 

Characterization of the C-MT from the curacin A biosynthetic pathway23 clearly 

demonstrated that PKS C-MTs methylate the α-carbon of the β-keto intermediate produced by the 

KS extension reaction and not Mal-ACP or the β-hydroxy intermediate produced by the KR117. 

Methylation of the β-keto intermediate is consistent with studies of bacterial C-MTs from the 

gephyronic acid biosynthetic pathway103 and trans-AT pathways102. The crystal structure of CurJ 

C-MT contains a long hydrophobic substrate binding tunnel that can fully accommodate the β-

keto polyketide substrate117. An analogous tunnel exists in a structure of a fungal type I PKS C-

MT165. Methylation by CurJ C-MT requires a conserved His and Glu catalytic dyad, which likely 

deprotonates the substrate carbon to form the carbanion nucleophile. The stereochemical outcome 
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of the C-MT reaction could not be predicted from the CurJ structure, as the substrate-free active 

site is not fully set up for catalysis and the acidity of the stereogenic proton of the methylated 

product impedes chemoenzymatic assignment. Recently, the stereochemistry of the C-MT reaction 

was elucidated through a coupled MT-KR assay evaluated by chiral gas chromatography-mass 

spectrometry (GC-MS)155.  

A striking structural similarity between the CurJ C-MT and vestiges of an MT in the mFAS 

ΨMT domain, further solidifies the evolutionary relationship between mFAS and PKS. Analysis 

of the linker regions surrounding the CurJ C-MT facilitated modeling of interactions between the 

PKS C-MT and KR domains. In the model, the core of the C-MT extends from the KRS domain 

placing it in a similar position to the mFAS ΨMT. Such positioning supports the monomeric state 

of the excised C-MT and would readily permit the evolutionary gain or loss of a module’s C-MT 

domain without disrupting the central PKS module architecture. 

β-hydroxy methylation by O-MT domains 

PKS O-MTs evolved from a different branch of class I MTs than C-MTs, with the O-MT 

structures closely resembling MTs from other secondary metabolite pathways. Crystal structures 

of the StiD and StiE O-MT from the stigmatellin biosynthetic pathway19 defined the O-MT domain 

boundaries and revealed a Glu that is essential for methylation of the β-hydroxy intermediate by 

the myxobacterial StiE O-MT and cyanobacterial CurL O-MT from the curacin biosynthetic 

pathway23. The Glu is stabilized by a conserved Tyr and may facilitate deprotonation of the β-

hydroxyl. Analysis of a diastereomeric substrate mimic library demonstrated that the O-MT 

reaction is stereospecific. Although the StiD and StiE structures represent O-MTs that methylate 

(S)- and (R)-β-hydroxyl groups, no structural determinant of stereospecificity was identified due 

to solvent exposed active sites. Visualization of a partially ordered N-terminal helix in the StiE O-

MT structure suggests that the crystal structures do not capture the O-MT active site in a full 

catalytically competent state. Upon binding of the ACP linked substrate, an N-terminal helix, 

which is present in structures of homologs from other secondary metabolite pathways and is 

partially ordered in a structure of StiE O-MT, may order above the active site. The N-terminal 

helix is critical for activity, as truncation of the helix results in an inactive O-MT. The oligomeric 

state of excised PKS O-MTs is variable. The StiD and StiE structures indicate that O-MTs from 

myxobacteria are dimeric, whereas the cyanobacterial CurL O-MT is monomeric. The CurL 

module contains an additional dimerization domain N-terminal to the O-MT. As O-methylation 
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precludes the inclusion of reductive DH and ER domains in a module, the presence of an O-MT 

may stabilize the dimeric PKS module in lieu of a dimeric DH. 

Malonyl methylation by MTL domains 

Found in GNAT containing PKS initiation modules, such as AprA, the structure of the 

MTL domain most closely resembles PKS extension module C-MT domains despite sharing only 

13% sequence identity119. The large AprA MTL lid domain, which is also found independently in 

initiation modules lacking the MTL core and was previously referred to as an “adaptor region” 

(AR) of unknown function, contains the full lid seen in PKS C-MTs with five additional helices 

appended. Thus, MTL and C-MTs likely evolved from a common ancestor. However, MTL adopted 

a completely different catalytic strategy to methylate the α-position of Mal-ACP, whereas C-MTs 

cannot methylate carboxylated substrates. Surprisingly, MTL is a mononuclear-iron-dependent 

MT, joining only one other reported in the literature74.  

A malonate-bound AprA MTL structure showed that the metal center coordinates two Mal-

ACP carboxyl groups and acts as a Lewis acid to lower the pKa of the α-carbon and promote 

proton abstraction, enolate formation, and attack of the SAM methyl by the carbanion. In the 

presence of Fe3+, AprA MTL is capable of dimethylating Mal-ACP to Me2Mal-ACP, whereas Ni2+, 

Mn2+, Fe2+, and Co2+ exclusively support one methylation yielding MeMal-ACP. Additionally, a 

AprA active site Tyr to Phe variant supports only a single methylation. We hypothesize that 

removal of the remaining α-proton of MeMal-ACP, which has a higher pKa than a Mal-ACP α-

proton, requires the stronger Lewis acid Fe3+. The active site Tyr is positioned perfectly for the 

removal the α(R)-proton from the α(S)-methylmalonyl product of the first methylation reaction. 

The identity of the catalytic base to remove the α(S)-proton is unknown. Several amino acid 

substitutions in an elegant malonate-stabilizing hydrogen bond network eliminated methylation 

activity, but these substrate-stabilizing residues are not positioned correctly for proton abstraction. 

AprA MTL has specifically evolved to promote dimethylation. The substrate can be threaded in 

through an active site entrance, which contains conserved amino acids that may stabilize the Mal-

ACP Ppant. A cleft on the opposite side of the active site near the SAM binding site facilitates 

exchange of SAH for fresh SAM without disengaging the substrate from the metal center. The 

action of MTL provides a new mechanism to generate MeMal-ACP and Me2Mal-ACP for 

secondary metabolite biosynthesis in organisms that do not produce MeMal-CoA246. Finally, 
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characterization of MTL facilitates the full functional annotation of many members of the GNAT-

containing PKS initiation module family.  

t-Butyl production by MT2L 

The MT2L domain from the AprA initiation module shares ~30% sequence identity with 

extension module C-MTs including the His-Glu catalytic dyad. In MT2L the C-MT fold has been 

adapted to catalyze decarboxylation and methylation reactions, directly transforming Me2Mal-

ACP to pivaloyl-ACP120. The two reactions are closely coupled, as variation of the degree of 

substrate methylation (e.g. Mal-ACP, MeMal-ACP, Me2Mal-ACP) and many amino acid 

substitutions decoupled methylation from decarboxylation, yielding shunt products of 

decarboxylation only. However, only substitutions to the His-Glu dyad, as well as a drastic Gly to 

Phe variant, severely limited both methylation and decarboxylation reactions. Synthesis of t-butyl 

in the form of pivaloyl-ACP by MT2L drastically differs from the only other reported biosynthetic 

route to t-butyl in which a cobalamin-dependent radical SAM enzyme methylates valine 

derivatives202, 203. Functional annotation of AprA provides a “barcode” for genome mining of t-

butylated natural products. For years, the function of BryX in the biosynthesis of the protein kinase 

C modulator bryostatin was unknown20. Reannotation of the bryostatin pathway identified BryX 

as an AprA homolog. Biochemical analysis confirmed that BryX MT2L is also capable of 

producing pivaloyl-ACP, classifying BryX as the module responsible for t-butyl production in 

bryostatin biosynthesis.  

Functional Annotation of GNAT Containing Initiation Modules 

Discovery of the ΨGNAT domain 

Structures of AprA MTL-GNAT and GNAT-MT2L revealed that the AprA GNAT domain 

is truncated and lacks residues essential for catalysis in active GNAT domains31, 219. 

Decarboxylation and acyl transfer activities, which were expected for PKS GNAT-like domains, 

were not supported by AprA GNAT. Therefore, the AprA and homologous BryX GNAT were 

reclassified as vestigial “pseudo”-GNATs (ΨGNATs). The ΨGNAT plays a structural role in the 

architecture of the initiation module, as MTL domains cannot be solubly produced without the 

neighboring GNAT domain. The remaining AprA domains, MTL and MT2L, did not support acyl 

transfer and no acyltransferases or domains without assigned function are encoded in the apratoxin 
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A gene cluster25. Thus, an enzyme encoded outside the gene cluster must provide the missing acyl 

transfer step, most likely priming the AprA ACPL with malonyl. FabD, the malonyl acyltransferase 

from the apratoxin A producer Moorea bouillonii, is an essential enzyme that provides the malonyl 

acyl transfer step from Mal-CoA to the ACP (AcpP) in bacterial fatty acid biosynthesis. M. 

bouillonii FabD supports rapid malonyl acyltransfer to AprA ACP and may be the acyltransferase 

responsible for initiating apratoxin A biosynthesis, linking primary and secondary metabolism in 

M. bouillonii. 

Decarboxylation activity 

The discovery of the production of MeMal-ACP and Me2Mal-ACP by MTL prompted 

further investigation of the GNAT family of initiation modules. The GNAT-like domain was 

hypothesized to perform malonyl acyl transfer from CoA to ACPL prior to MTL methylation. Once 

methylation occurs, ACPL was thought to return to the GNAT-like domain for decarboxylation 

yielding the starter unit for the biosynthetic pathway. To better understand the reaction sequence 

of the GNAT family of loading modules, we investigated the GphF GNAT, which produces an 

isobutyryl starter unit in the gephyronic acid biosynthetic pathway21. GphF displayed strong 

substrate selectivity for Me2Mal-ACP over MeMal-ACP and no activity on Mal-ACP. Similarly, 

CurA GNAT, the GNAT-like domain from the curacin A biosynthetic pathway23, preferred to 

decarboxylate Mal-ACP over MeMal-ACP and Me2Mal-ACP, correlating with the production of 

an acetyl starter unit. Therefore, the GNAT-like domain acts as a gatekeeper, selecting 

decarboxylation substrates with the proper degree of methyaltion.  

A crystal structure of the GphF GNAT in complex with the product mimic isobuturyl-CoA 

provided additional insight into GNAT reactivity. Mutagenesis studies of GphF and CurA GNAT 

did not identify specific residues that influence the substrate selectivity of PKS GNAT-like 

domains. However, a conserved active site Arg key for decarboxylation was identified. The 

location of the active site Arg and modeling of the carboxylated substrate based on the isobutyryl 

bound GphF structure indicate that the Arg may coordinate the terminal carboxylate of the ACP 

bound substrate. The conserved active site His and Ser/Thr residues required for decarboxylation 

likely stabilize the enolate intermediate and re-protonate the carbanion upon collapse of the 

enolate.  
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Acyl transfer activity 

 The rate of GphF GNAT acyltransfer varied between enzyme preparations, whereas the 

rate of decarboxylation was relatively constant. The fluctuating rates of activity suggested that 

different batches of GphF GNAT could contain varying levels of a contaminating acyltransferase 

and prompted further purification of GphF GNAT. Stringently purified GphF GNAT did not 

catalyze acyl transfer between a panel of acyl-CoA substrates and an ACP. Additionally, further 

purification of CurA GNAT diminished the slow rate of acetyl transfer, but not decarboxylation. 

The fluctuating rates of acyl transfer activity for PKS GNAT-like domains was attributed to a 

contaminating acyltransferase from heterologous expression in E. coli. Precedent for such activity 

comes from a reported “self-loading” activity by PKS ACP domains, which was later credited to 

a contaminating E. coli malonyl acyltransferase196. Caution must be taken when evaluating 

enzymatic reactions using simple acyl-CoA substrates, which are substrates for highly active 

primary metabolic enzymes. In fact, the “self-loading” ACP is not the only example of reported 

activity in PKS systems that was later attributed to a contaminant; in erythromycin biosynthesis a 

KS was implicated in the decarboxylation of methylmalonyl-CoA to propionyl-CoA, such activity 

was not detected with rigorously purified protein and was concluded to be a  result of a 

contaminating decarboxylase255.  

 The lack of acyl transfer activity for PKS GNAT-like enzymes prompted reannotation of 

the domains as acyl-ACP decarboxylases, which reflects their function. Such nomenclature is 

consistent with the primary metabolism enzyme malonyl-CoA decarboxylase183, 242 and 

EryM/SACE_1304/Mcd249-251, a bifunctional decarboxylase / acetyltransferase, both of which are 

also decarboxylating members of the GNAT superfamily. Still, the malonyl acyl transfer step was 

unaccounted for in the acyl-ACP decarboxylase family of initiation modules. As in apratoxin A 

biosynthesis, the bacterial FAS malonyl acyltransferase, FabD, supported transfer of malonyl from 

CoA to CurA ACPL. Thus, FabD is an attractive candidate for initiating biosynthesis in pathways 

with acyl-ACP decarboxylase-containing initiation modules. The malonyl acyl transfer step is 

critical for pathway throughput, as CoA bound substrates, which are not compatible with 

downstream pathway extension modules, could readily diffuse away from the biosynthetic 

assembly line, reducing its efficiency.  
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Architecture of a PKS Initiation Module 

Structures of AprA MTL-ΨGNAT and ΨGNAT-MT2L were combined to create a 

composite model of the full length AprA initiation module, which was tested using negative stain 

electron microscopy (EM). The EM micrographs displayed particles in a linear state resembling 

the model, but also particles in a bent state and a variety of intermediate conformations. The linear 

and bent states may be associated with MTL and MT2L catalytic steps. A low-resolution EM 

envelope enabled docking of MTL-ΨGNAT and ΨGNAT-MT2L crystal structures into the bent 

state. The ΨGNAT domain acts as a hinge, allowing MTL to swing relative to the central MT2L 

dimer and access both the linear and bent states. The EM data indicates that PKS modules can be 

more dynamic than PikAIII53, 60, the only structurally characterized full length PKS module, which 

displayed a relatively stable arched architecture.  

Future Directions 

Identification of novel natural products gene clusters 

Implication of the mysterious BryX module as the machinery responsible for producing 

the t-butyl moiety in bryostatin bioynthesis clearly demonstrates the utility of the AprA sequence 

as a barcode for the identification of t-butylated natural products in bacterial genomes. In recent 

months, several genomes from a variety of bacterial sources containing an AprA/BryX like module 

have been deposited256-259, indicating that the MT2L strategy for the production of t-butyl groups 

may occur in many branches of the bacterial world. As the t-butyl group is a relatively uncommon 

feature in natural products, these organisms likely produce novel secondary metabolites.  

Engineering new polyketides and the development of biocatalysts 

Insight into the activity of PKS C-MT, O-MT, MTL and MT2L domains has implications 

for the engineering of new polyketides, as well as the development of biocatalysts for synthetically 

challenging regio- and stereospecific methylation. Simple mutagenesis of the newly identified 

active site residues in C-MTs and O-MTs can produce novel demethylated polyketides, which may 

have altered bioactivities. This strategy has already been implemented for a C-MT involved in the 

biosynthesis of neoantimycin, a commonly used piscicide, to create a demethylated neoantimycin 

derivative through CRISPR/Cas9 genome editing of the neoantimycin gene cluster in a 

heterologous expression strain260.  
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Information on substrate selectively is limited for all PKS domains due to a lack of 

substrate-bound crystal structures. Thus, efforts to engineer C-MTs and O-MTs to methylate 

additional substrates is restricted to directed evolution strategies, as the features of the MT domains 

that determine substrate selectivity are unknown. The low affinity between ACP bound substrates 

and PKS enzymatic domains and the limited stability of the thioester linkage between the Ppant 

and acyl substrate precludes the attainment of substrate-bound structures by x-ray crystallography. 

Several synthetic approaches could yield a substrate mimic to facilitate the determination of 

substrate-bound C-MT or O-MT structures. Polyketide substrates or close substrate analogs could 

be appended to a nonhydrolyzable phosphopantetheine moiety. The stable substrate and inclusion 

of the full Ppant, compared to traditionally used N-acetylcysteamine Ppant mimic, may provide 

enhanced affinity for the MT domain in co-crystallization experiments. Such an approach was 

successfully used to obtain a substrate-bound type II PKS KS crystal structure261. Alternatively, 

co-crystallization of a C-MT or O-MT with a substrate-linked SAM analog could also provide 

valuable information on substrate positioning in the active site. Such probes are similar to those 

developed as MT inhibitors262. Capturing a C-MT with a truncated mimic of the β-keto substrate 

linked to SAM could provide insight into why some C-MTs methylate once, whereas others 

produce gem-dimethyl groups. Similarly, the development of a SAM linked β-hydroxy substrate 

mimic could hint at the structural determinants PKS O-MT stereospecificity. 

 Variants of MTL found in different biosynthetic pathways can either mono- or dimethylate 

the malonyl group. A single amino acid substitution or provision of a metal other than Fe3+ 

transformed the dimethylating AprA MTL into an MT capable of only one methylation. Further 

investigation of metal ligands and active site amino acids in other MTLs could provide additional 

understanding of features that influence the degree of MTL methylation, leading to the production 

of new natural products with varying methyl groups through mutagenesis. Additionally, the MTL 

metal center provides a scaffold for methylation of a wide degree of carboxylated substrates. While 

optimizing AprA MTL crystals we observed clear density for carboxylated buffer components (e.g. 

citrate, tartrate) coordinated to the metal center, indicating that the MTL active site can 

accommodate a variety of substrates other than malonyl or methylmalonyl. The buffer components 

did not appear to be methylated by SAM, which was included in the crystallization condition. 

Structural information could guide the placement of new catalytic machinery into the MTL active 
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site to generate a biocatalytic route for stereo and regioselective methylation of substrates that are 

challenging to methylate synthetically. 

Understanding interdomain interactions and PKS module architecture 

High resolution structural information for PKS multi-domains and intact modules is 

essential for fully understanding PKS biosynthesis. Structures of the PKS C-MTs and O-MTs 

provided clues regarding the placement of MT domain within PKS modules. Crystal structures of 

a MT-KR didomain or a DH-MT-KR tridomain would provide valuable information regarding 

interdomain interactions and the role of linker regions in the positioning of the MT domains 

relative to other domains. Additional structures of intact PKS modules would be even more 

informative, as they would provide views of each domain in their truly native environment. 

Negative stain analysis of the AprA initiation module showed a high degree of flexibility of a 

module containing only three domains. PKS extension modules may possess similarly high 

degrees of flexibility, which could intensify with the inclusion of additional catalytic domains. The 

flexibility of modification domains is further supported by a recent crystal structure of a DH-KR-

ER tri-domain, where domains rotate up to 40° between copies of the tri-domain in the crystal’s 

asymmetric unit3.  

The success in characterizing the intact PKS module PikAIII by moderate resolution cryo-

EM may be attributed to its relatively simple tridomain architecture and access to native substrates, 

which localized the ACP in defined chemical states53, 60. The inherent flexibility of PKS modules 

suggests that EM is a more suitable technique than crystallography for the determination of 

structures of modules with additional domains, such as MTs. Although analysis of interdomain 

interactions in PikAIII was restricted due to the resolution limitations of the structure, new EM 

methodology may provide higher resolution data for PKS modules263. However, strategies must 

be taken to trap the module in a homogenous population for EM, which will simplify the structure 

determination process and enhance resolution. As seen in PikAIII, the provision of native 

substrates can stabilize interactions with the ACP and possibly limit a module’s flexibility. 

Therefore, the availability of synthetic substrates is essential for future PKS EM targets. If ACP 

localization is not sufficient, the development of conformationally specific nanobodies to specific 

chemical states of the PKS module could be explored264. Such an approach would likely require 

nonhydrolyzable ACP linked substrates and additional screening with nanobodies and excised 

domains to filter out nanobodies that bind only to single domains and may not stabilize the overall 
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architecture. Characterization of an intact PKS module containing all modification domains (KS-

AT-DH-MT-KR-ER-ACP) is most imperative, as it would provide an answer to one of the most 

fundamental question regarding polyketide biosynthesis: do PKS modules resemble mFAS? 

Evolutionary implications 

 The structural resemblance between the PKS C-MT and mFAS ΨMT further supports a 

common ancestor for PKS and mFAS and raises the possibility of an ancestral methylating FAS, 

as the existence of the metabolically essential mFAS likely preceded the rise of PKS secondary 

metabolite biosynthetic pathways. Genome sequences show that the FAS ΨMT is common to a 

diverse set of metazoans, including arthropods (insets), chordates (fish, amphibians, reptiles, 

birds), cnidaria (sea anemones, coral, jelly fish), echinoderms (starfish, sea urchins), mollusks 

(scallops, oysters), and even incredibly simple animals such as the placozoa Trichoplax adhaerens. 

Therefore, a FAS with the capability of producing methylated fatty acids likely predates 

metazoans. 

A similar evolutionary conundrum exists for the enormous GNAT superfamily, which 

encompasses a wide range of enzymes including the acyl-ACP decarboxylases found in PKS 

initiation modules, the primary metabolic enzyme malonyl-CoA decarboxylase (MCD), histone 

N-acetyltransferases (HATs), and aminoglycoside N-acetyltransferases. GNATs are almost 

exclusively known for their acetyltransferase function. However, the superfamily may have 

evolved from an enzyme capable of binding the Ppant arm of CoA or ACP linked substrates, which 

is a common feature of both the GNAT acyltransferases and decarboxylases. Perhaps the primary 

metabolism enzyme MCD is actually the ancestral GNAT, from which all CoA binding members 

of the GNAT superfamily evolved. The discovery of decarboxylases currently misannotated as 

GNAT acyltransferases in the sequence databases and structural characterization of additional 

decarboxylating members of the GNAT family, such as EryM/SACE_1304/Mcd251 the 

decarboxylating GNAT from the erythromycin producer Saccharopolyspora erythraea, which has 

no sequence identity to PKS acyl-ACP decarboxylases or malonyl-CoA decarboxylase, could 

provide further insight into the evolutionary origin of the GNAT fold.  

High expression levels of the GNAT family member MCD occur in the uropygial gland of 

birds, where multimethyl-branched fatty acids that form a feather protecting oil are synthesized244. 

MCD reduces Mal-CoA levels in the uropygial gland, forcing mFAS to use available MeMal-CoA 

extender units for fatty acid biosynthesis, effectively producing the same product as mFAS with 
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an active C-MT domain. Perhaps the need for a C-MT in an ancestral mFAS diminished with the 

rise of MCD and the MeMal-CoA producing enzyme propionyl-CoA carboxylase, leaving the 

vestigial ΨMT observed in modern mFAS. Therefore, hints towards the evolutionary origin of 

mFAS and tangentially PKS may lie within the evolution of metabolic enzymes peripheral to fatty 

acid biosynthesis.  
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