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ABSTRACT

Wavefront shaping provides an increasingly appealing avenue for imaging and

other applications that require controlling electromagnetic waves passing through

complex and disordered media. Indeed, these techniques allow researchers and

engineers to exploit the properties of high-frequency waves, particularly optical

ones, as they interact with these media to obtain nearly perfect transmission and

a high degree of focusing. Here, we simulate the process of wave propagation in

3D random media using full-wave, integral equation-based computational electro-

magnetics schemes. We replicate many experimental observations relating to the

existence of so-called open channels in non-absorbing random media and the dis-

tribution of their transmission coefficients. In addition, we develop new schemes

for manipulating these waves, e.g. by focusing them onto one or multiple spots in

the output plane. Furthermore, we leverage the computational methods to develop

new schemes for characterizing random media, e.g. by computing their scatter-

ing and transmission matrices under a variety of conditions. Finally, we study the

transmission properties of absorbing media and find a universal fluctuant pattern

of their maximal transmission coefficients.
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CHAPTER 1

Introduction

The analysis of wave propagation and scattering in random media is important in many

scientific and engineering applications. The stochastic spatial fluctuations of mass densities

or dielectric permittivities in such media causes random changes in the propagation direc-

tion of an elastic or electromagnetic wave. From a macroscopic viewpoint, these changes

result in a diffusive scattering phenomena. Scholars from disciplines ranging from theoret-

ical physics and microphysics to applied electromagnetics, applied mathematics, statistics,

telecommunication, optics, acoustics, and bioengineering, all have attempted to discover

and characterize the mechanisms that govern diffusive scattering phenomena. These ef-

forts have targeted various engineering applications, including remote sensing, ultrasound,

microwave imaging, non-invasive inspection, electromagnetic hyperthermia treatment, and

ultrasonic lithotripsy. From a theoretical perspective, these studies have sought to describe

the scattering problem using multiple scattering, radiative transfer, and mesoscopic trans-

port theories, using methods and algorithms such as wavefront shaping, time-reversal, and

phase-conjugation.

In this chapter, we first present a brief overview of studies addressing the problem

of wave propagation and scattering in random media before reviewing the relevant work

serving as the research foundation for this dissertation. We then state the research questions

underlying this dissertation, intending to address and elucidate the novelty of this work.
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1.1 Background

The propagation of waves is described by the wave equation, a hyperbolic partial dif-

ferential equation given by

∇2Ψ(r, t)− n2(r)

c2

∂2Ψ(r, t)

∂t2
= 0, (1.1)

In this equation, t is the time variable, r is the spatial variable, and Ψ(r, t) denotes a

wave varying in space and time. The wave can represent, for instance, a component of the

electric field or light in electromagnetics or optics or, the longitudinal pressure of a sound

wave in acoustics. c is a constant, representing the speed of the wave propagating. n(r)

is the refraction index which may vary as a function of space. Scattering is caused by the

local variation of n(r), which results from the presence of localized non-uniformities or

scatterers that have a different mass density or permittivity than the background medium.

In the current research, we focus on light propagation and scattering.

1.1.1 Single and Multiple Scattering Theory

The formal and systematic study of scattering in random media began at least fifty years

ago. Initial studies tackled the problem based on the well-studied characteristics of scat-

tering from a single object. This early research was based on two assumptions: scatterers

are very dispersed in space, and scattering processes can be decomposed into many single

scattering events, with each resulting from one of the scatterers [3–6]. This model was

used for weather radar and ocean acoustic applications, but lacked precision. If the distri-

bution of the scatterers favors a greater probability of multiple scattering events, it becomes

necessary to include additional first- or second-order multiple scattering mechanics in the

model [7]. A more rigorous model called multiple scattering theory (MST) therefore was

proposed further developed as the underpinning of many engineering applications. This
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model is rooted in the fundamental differential equations that govern the scattering phe-

nomena, such as scalar wave equations or vector Maxwell’s equations. It governs wave-

field quantities, introduces the interaction of many scatterers, and then extracts statistical

descriptor of the scattering phenomenon under [7, 8]. Prior to the 1950s, MST originated

in the work of Ryde [9, 10], Foldy [11], Lax [12, 13], and Snyder [14]. Later, researchers

including Twersky [15–17], Waterman [18], Ishimaru [7, 8, 19] and Beard [20] extended

thid work. In this line of work, the diagram method has emerged as particularly helpful

for representing multiple scattering processes [21–23]. The mathematical representation

of scattering phenomena in MST is precise and complete; nonetheless, to obtain useful

results, it is often necessary to use approximations, such as that proposed by Born [24].

1.1.2 Radiative Transport Theory

Radiative transport (RT) theory [25–27] provides a competing approach to describ scat-

tering in random media. Unlike MST, RT does not focus on the underlying physical pro-

cesses governed by the wave equation or Maxwell’s equation, but directly describes the

transport of energy passing through a medium with randomly distributed scatterers. Al-

though RT is a heuristic theory and lacks the mathematical rigor of MST, it is more ef-

ficient for practical usage. The fundamental differential equation of RT is the radiative

transfer equation, which is equivalent to the Boltzmann equation. Schuster [28] initially

proposed RT to describe light propagation in a foggy atmosphere; later, RT was used ex-

tensively in astrophysics [25] as well as in microwave and millimeter-wave remote sensing

applications [29–32].

1.1.3 Mesoscopic Transport Theory

To describe random scattering phenomena, the optics community received inspiration

from the field of mesoscopic physics [33]. Mesoscopic physics study the interaction of

many microscopic particles with a background medium characterized by an intermedi-

3



ate scale. This scale is much larger than the microscopic scale involving a few atoms or

molecules, but smaller than the macroscopic scale where the principles of statistical me-

chanics apply. Within this context, a system (medium) has a countable and finite number of

degrees of freedom for incoming and outgoing light modes, which are plane waves or linear

combinations thereof. The number of degrees of freedom is limited by the maximum nu-

merical aperture and the diffraction limit [34]. For example, an optics system with surface

area A allows Ns = 2A/λ2 independent incident modes for light of wavelength λ [35].

In terms of light transmission, an important concept developed by the mesoscopic trans-

port theory [33] is the notion of open and closed transport channels, or transport modes.

These channels (modes) represent a linear combination of the independent incident modes,

as specified by a particular medium’s configuration. For a non-absorbing system, the open

channels allow for transmitted diffusive waves with almost no back reflection; closed chan-

nels, in contrast, do not allow for transmission. In fact, there are finite independent transport

modes, and any transport mode is a linear combination of the independent ones. The trans-

mission characteristics of a medium can be described by the transmission matrix T with

entries Tij representing the transmission from incoming channel j to an outgoing channel

i. Random matrix theory [33, 36, 37] provides a fundamental observation regarding the

singular values of transmission matrices representing random meida: the singular values

of eigen-channels of the transmission matrix are not uniformly distributed, but consist of

many closed channels with almost zero transmission as well as a few open channels with

full transmission. Dorokhov [38], Pendry [39, 40], Mello [41] and Beenakker [33] have

pointed out that the transmission wave through a random medium results from a few open

transmission channels [35].

Using a wavefront shaping technique, Vellekoop [42,43] directly validated the existence

of these open channels in several physical experiments. This pioneering work sparked stud-

ies to overcome the limitation of light transmission through opaque media by taking advan-

tage of the open channels via the wavefront shaping technique. Popoff [44], Kohlgraf [45],
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Shi [46] and Kim [47] compared the theoretical prediction with the transmission coefficient

distribution of the transmission matrix. Then, van Putten [48], Aulbach [49], Cui [50, 51],

and Stockbridge [52] developed rapid experimental methods for wavefront-shaping-based

focusing. More recently, Choi [53] and Jin [54,55] investigated the properties of the eigen-

wavefronts through numerical simulations. These investigations paved the way for optical

imaging and related applications through highly diffusive random media.

1.2 Recent Advances in Wavefront Shaping Technology

In principle, most optical engineering applications (e.g., imaging and focusing) exploit

the inference of EM waves propagating in different directions with particular amplitudes

and phases. Therefore, one must control the amplitudes and phases of these waves as

the primary method for making optical devices function as desired. Wavefront modula-

tors specifically are used to modulate EM waves by manupulating the wave’s amplitude

and phase. One representative type of wavefront modulator is the spatial light modulators

(SLMs). Astronomers early on used SLMs developed to compensate for the optical aber-

ration caused by light passing through the atmosphere. These SLMs were cumbersome,

expensive, and low-resolution, which limited their application in other domains. Today’s

state-of-the-art SLMs use liquid crystals on silicon to modulate the amplitude and phase of

EM waves through controlling the alignment of the liquid crystal molecules, thus achieving

high-pixel resolution on a small scale while remaining relatively cheap [56]. Other modern

wavefront modulators include digital micro-mirror devices (DMDs) and deformable mir-

rors (DMs). Using such SLMs, Vellekoop and Mosks [42, 43] pioneering experiments in

2007 opened the door for new approaches to control the light passing through thick opaque

scattering materials beyond the depth reachable by ballistic light. Later, Conkey et al.

used a DMD to precisely control the optical phase for focusing in a temporally dynamic

scattering medium [57]. For their part, Van Putten et al. [58] and Park et al. [59] utilized
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commercial twisted nematic liquid-crystal displays (LCDs) to modulate both the amplitude

and phase of the optical field. The rapid development of fast and accurate lights / EM waves

modulating technology is the major driving force for many wavefront-shaping-related ap-

plications.

1.3 Advances Proposed by This Work

Many researchers have sought to reveal the characteristics of eigen-wavefronts and to

develop efficient methods for controlling waves in random media. That said, mumerous

phenomena remain poorly understood, including the following:

• The possibility of multi-foci focusing propagation through random media. A variety

of studies have demonstrated the ability to focus on a single spot after propagating

through random media, indicating that highly-transmitted wavefronts carried by open

channels can constructively interference upon exiting the media. To what extent can

constructive interference lead to multiple well-separated foci?

• Measuring the transmission matrix via backscatter analysis. Most applications, such

as focusing, require knowledge of the transmission matrix. Current techniques for

characherizing the transmission matrix often necessitate the use of a probe in the

medium, the use of a second external detector (e.g., ultrasound transducer), or the

embedding of active sources (e.g., fluorescent microspheres) to provide the necessary

feedback. These approaches are invasive and/or inconvenient for many applications,

such as in vivo biological experiments or medical diagnostics tests. Is it possible

to measure the transmission matrix by examining only the backscattered wavefront

from any particular incident wavefront? If so, this would be a tremendous advantage

over existing techniques, allowing greater versatility in use of the wavefront shaping

technique.
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• Eigen-wavefronts in absorbing media. Most previous studies have investigated the

open channels and eigen-wavefronts of non-absorbing media, particularly because in

such media these channels always exist irrespective their depth. However, in absorb-

ing media, light will inevitably decay due to dissipation by lossy scatterers and/or

the background medium. Consequently, in such media there exist completely open

channel leading to full transmission. The transmission coefficients therefore have

an upper limit, which is less than 1.0, and the maximum possible transmission co-

efficient negatively correlates with the absorptivity and depth of the medium. It is

of great importance to understand the distribution of transmission coefficients of the

absorbing medium, and to investigate the effectiveness of the wavefront optimization

methods, originally designed for non-absorbing media, in absorbing ones.

This work makes the following primary contributions:

• A 3D method of moments technique is deployed to model EM wave propagation in

random media composed of multi-layered periodic slabs containing metallic parti-

cles ranging from dipoles to crosses and beyond. Rigorous numerical simulations

demonstrate that the distribution of the transmission coefficients of this model align

with the theoretical prediction and physical experiments (Chapter 2 and Chapter 3).

• A new family of highly-efficient focusing schemes is proposed. These schemes can

create multiple foci under a variety of conditions of practical interest. Our schemes

apply to scenarios that allow for phase-only as well as full phase-amplitude mod-

ulation of the incident wavefront. In addition, they can be used to address prob-

lems requiring contrast and non-contrast as well as maximal-total-intensity and even-

intensity (fair) focusing (Chapter 4).

• Novel approaches are proposed to retrieve the measurement matrix or the transmis-

sion matrix for a given random medium. These approaches rely on intensity-only

measurements, or the assistance of passive “guide stars” (Chapter 5).
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• A Fourier-transform and inverse-Fourier-transform-based scheme is proposed to fo-

cus temporal pulses passing through random media. (Chapter 6).

• An investigation was conducted into the characteristics of eigen-modes and the ef-

ficacy of backscattering-minimizing optimization methods for absorbing media. We

found that the statistics for the maximum transmission coefficient for the absorbing

medium follow a Tracy-Widom distribution (Chapter 7).
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CHAPTER 2

Numerical Modeling of 3D Random Media

2.1 Introduction

The computational study of light interaction with 3D random media requires so-called

forward-modeling, viz., computational methods for simulating light propagation and dif-

fusion or EM scattering within or through a known/deterministic realization of a ran-

dom medium. Here, we extend the matrix methods developed for 2D random media

in [54,55,60–62] to 3D. Our ultimate goal is to model the scattering properties of a medium

by slicing it up into many layers and cascading scattering matrix of each layer. Unlike in

2D, each scattering matrix here is generated by using a full-wave numerical Maxwell’s

equation to analyze a periodic medium. Note that the use of the periodic boundary con-

dition, somewhat unrealistic in the real world, is sufficient as far as our research is con-

cerned: the numerical results of our modeling qualitatvely match the theoretical predictions

of Dorokhov [38], Pendry [39, 40], Mello [41] and Beenakker [63], as well as the exper-

imental validation from Vellekoop [42, 43] of eigen-wavefronts distributions in aperiodic

random media.

The rest of this chapter is organized as follows. Section 2.2 introduces the representa-

tion of modes in 3D periodic media. Section 2.3 defines the scattering matrix, elucidates its

important properties, and describes a scheme for cascading them. Section 2.4 summarizes

our integral equation method for generating the scattering matrix. With this knowledge in
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hand, Section 2.5 presents our approach to constructing a random medium and its associ-

ated scattering matrix. Section 2.6 summarizes the contributions of the chapter.

2.2 Modes

2.2.1 Modes in 3D Periodic Media

Electromagnetic waves in 3D periodic media can be described in terms of a countable

and finite set of wave solutions to Maxwells equations, called modes. We start with a plane

wave solution to Maxwells equations

E±l (r, t) = p̂lE
±p
l ej(ωt−k

±
l ·r), (2.1)

Here r is the spatial coordinate in 3D, t is the time, and ω is the angular frequency. k±l is

the l-th wavevector, the superscript± denotes the relative propagating direction of the wave

w.r.t. the normal to the random medium being considered, + stands for forward traveling

direction, and − indicates backward traveling ones. p̂ denotes a unit vector indicating the

polarization direction of the plane wave, and Ep
l represents the l-th modal coefficient of

the p̂ polarized field component; it is a phasor specifying the plane wave’s amplitude and

phase. Using the above definition, the total electric field on r0 at t0 in our system can be

expressed as the superposition of plane waves as

E(r0, t0) =
N∑
l=1

(
E+
l (r0, t0) + (E−l (r0, t0)

)
. (2.2)

Here N is the dimension of the countable basis of plane waves in our system. Since we are

dealing with time-harmonics excitations, i.e. monochromatic light, we drop the ejwt factor
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and recast Eq. (2.2) as

E(r0) =
N∑
l=1

(
E+
l (r0) + (E−l (r0)

)
, (2.3)

where

E±l (r) = p̂lE
±p
l e−jk

±
l ·r, (2.4)

and ‖k±l ‖2 = k = 2π/λ is the wavenumber of the single harmonic with wavelength λ.

z

x y

region 1

region 2

incident wave (E p-
2,l) scattered wave (E p+

2,l)

scattered wave (E p-
1,l)incident wave (E p+

1,l)

slab consists of 
random media

Figure 2.1: Typical scattering system involving 3D random media.

Figure 2.1 illustrates a typical scattering system of interest to us. In the Cartesian

coordinate system, a slab of a random medium extends in the xy plane and divides the

space into a lower region (Region 1) with z coordinate tending toward −∞ and an upper

region (Region 2) with the z coordinate tending toward +∞. The incident waves can be

presented in Region 1 as

Einc
1 (r) =

N∑
l=1

E+
1,l(r), (2.5)
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and in Region 2 as

Einc
2 (r) =

N∑
l=1

E−2,l(r). (2.6)

As before, the superscript± denotes the specific wave propagating direction, towards to +z

or−z. The interation of the incident field with the slab generates scattered waves expressed

as

Escat
1 (r) =

N∑
l=1

E−1,l(r), (2.7)

and

Escat
2 (r) =

N∑
l=1

E+
2,l(r). (2.8)

Each field component E±i,l(r), i = 1 or 2, l = 1, . . . , N is characterized by its wavevector

k±l = (k
(l)
x , k

(l)
y ,±k(l)

z ), its complex amplitude E±i,l, and its polarization p̂l. A plane wave’s

polarization direction is perpendicular to its propagating direction and the direction of its

wavevector; generally speaking, it can be decomposed into two orthogonal components v̂l

and ĥl:

ĥl = ẑ × k̂+
l , (2.9)

as

v̂l = ĥl × k̂+
l . (2.10)

Thus, the l-th plane wave with arbitrary polarization can be expressed as

E±l (r) =
(
E±vl v̂l + E±hl ĥl

)
e−jk

±
l ·r. (2.11)

The ĥ polarization (h-pol) is usually called the horizontal polarization because ĥ does not

contain a z-directional component, and the v̂-polarization (v-pol) is usually called the ver-

tical polarization because it does not contain a φ-directional component in the cylindrical

coordinate system.
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2.2.2 Modes Under Periodic Boundary Conditions

The countable and finite planewave solutions {E±
l | l = 1, . . . , N} imply that the prop-

agating directions of the planewaves are finitely discretized in 3D space. This trait is also

the consequence of introducing the periodic boundary condition in our system. Specifi-

cally, we assume that random media have are periodic along both the x and y directions

with periodicities Dx and Dy, respectively. Hence, the discretized propagating direction of

the l-th planewave can be specified by its wavevector as

k±l ↔ k±mn = (km,x, kn,y, ±kmn,z), (2.12)

where

km,x = k(1)
x + 2πm/Dx, kn,y = k(1)

y + 2πn/Dy, (2.13)

in which m and n are integers and

kmn,z =
√
k2 − k2

m,x − k2
n,y. (2.14)

k = 2π/λ is a constant if we stick to the single harmonic with wavelength λ. Convention-

ally , (k
(1)
x , k

(1)
y , k00,z) defines the (0, 0)-th mode of the wavevector in mn notation or the

1-st mode of that occurring in the l notation.

A propagating wave requires the kmn,z to be a real value. Therefore, the number of

propagating modes is finite, and all the propagating modes can be represented by the unique

(m,n) pairs in the set

U =
{

(m,n) | k2
m,x + k2

n,y < k2
}
. (2.15)

Apparently N = |U |. Algorithm 2.1 describes one possible mapping between kl and kmn.

Now, we can express each propagating mode as follows:
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Algorithm 2.1 Mapping the pairwise indices (m,n) of propagating modes to the single
indices l

1: mmin = b−Dx(k + kincx )/(2π)c,mmax = dDx(k − kincx )/(2π)e
2: nmin = b−Dy(k + kincy )/(2π)c, nmax = dDy(k − kincy )/(2π)e
3: l = 0
4: for n = nmin : nmax do
5: for m = mmin : mmax do
6: if k2

m,x + k2
n,y < k2 then

7: l = l + 1
8: mapping l to (m,n)
9: end if

10: end for
11: end for

E±mn(r) = (E±vmnv̂mn + E±hmnĥmn)e−jk
±
mn·r. (2.16)

The modal coefficients E±vmn and E±hmn can further be decomposed as

E±pmn = a±pmn

√
‖k±mn‖2

kmn,z
= a±pmnbmn, (2.17)

where p stands for v or h, a±pmn is the normalized modal coefficient and bmn is the normal-

izing coefficient. This decomposition allows us to arrive at the parameter |a±pmn|2, which is

proportional to the energy density of the p-pol propagating wave flowing in or out of the

slab (in±z direction). Converting the (m,n) paired indices back to the single l index using

Algorithm 2.1, we can express the propagating modes concisely as follows:

Ep±
i,l (r) = a±pi,l bl p̂l e

−jk±l ·r

(p = v or h, i = 1 or 2, l = 1, . . . , K0),

(2.18)

in which p stands for the polarization, i = 1, 2 indicates the wave in either Region 1 or

Region 2, and K0 = N . In the following discussion, we use the specific notation K0 to

denote the number of unique (m,n) pairs for propagating modes rather than the general

notation N .
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It follows from the above discussion that the complete wavefield in either Region 1 or

Region 2 can be uniquely represented by a vector of the normalized modal coefficients,

ai =
[

(a+
i )T (a−i )T

]T
=
[

(a+v
i )T (a+h

i )T (a−vi )T (a−hi )T
]T
, (2.19)

in which

ap±i =
[
ap±i,1 . . . ap±i,Kp

]T
(p = v or h, i = 1 or 2, l = 1, . . . , K0).

(2.20)

Alternatively, we can express the wavefield as incident waves vs. scattered waves with

respect to the slab. By doing so, we arrive at the following:

ainc =
[

(a+
1 )T (a−2 )T

]T
=
[

(a+v
1 )T (a+h

1 )T (a−v2 )T (a−h2 )T
]T
, (2.21)

and

ascat =
[

(a−1 )T (a+
2 )T

]T
=
[

(a−v1 )T (a−h1 )T (a+v
2 )T (a+h

2 )T
]T
. (2.22)

2.3 Scattering Matrix

With the above prerequisite notation and knowledge, we now introduce the scattering

matrix. The scattering matrix linearly relates incident waves and scattered waves. More

specifically, using the vectorized wavefield representation ainc and ascat, respectively, the

scattering matrix S satisfies

ascat = S · ainc. (2.23)

Closely linked to the notion of a scattering matrix is the transfer matrix T , which satisfies:

a2 = T · a1. (2.24)
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There exist equations for transforming S to T and vice versa. However, because the transfer

matrix is not numerically stable when used in the cascading process introduced shortly,

we only use and analyze the scattering matrix going forward. Indeed, Eq. (2.23) can be

expanded as follows:  a−1

a+
2

 =

 S11 S12

S21 S22


︸ ︷︷ ︸

=S

 a+
1

a−2

 , (2.25)

which explicitly represents the incidence-scattering relationship between Region 1 and Re-

gion 2. More completely, we can expand Eq. (2.25) as follows:



a−v1

a−h1

a+v
2

a+h
2


=



 Svv11 Svh11

Shv11 Shh11


︸ ︷︷ ︸

=S11

 Svv12 Svh12

Shv12 Shh12


︸ ︷︷ ︸

=S12 Svv21 Svh21

Shv21 Shh21


︸ ︷︷ ︸

=S21

 Svv22 Svh22

Shv22 Shh22


︸ ︷︷ ︸

=S22





a+v
1

a+h
1

a−v2

a−h2


, (2.26)

which explicitly separates the horizontal and vertical polarized field components. Ap-

parently, Spqij ∈ CK0×K0 , (i, j = 1, 2, p, q = v or h), Sij ∈ C2K0×2K0(i, j = 1, 2) and

S ∈ C4K0×4K0 . In the following, we use K1 = 2K0 and K2 = 2K1.

2.3.1 Unitarity of the Scattering Matrix

Because the entries of ainc and ainc are normalized modal coefficients of plane waves,

the total energy density flow into the system is
∑K2

l=1 |aincl |2 = ‖ainc‖2
2, and the total energy

density flow out of the system is
∑K2

l=1 |ascatl |2 = ‖ascat‖2
2. If the system is non-dissipative
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(i.e. it does not absorb energy), the physical law of power conservation holds:

(ainc)H · ainc = ‖ainc‖2
2 = ‖ascat‖2

2

= ‖S · ainc‖2
2

= (ainc)H · SH · S · ainc

(2.27)

Thus,

(ainc)H · (I − SH · S) · ainc = 0. (2.28)

Because ainc 6≡ 0, we have

SH · S = I. (2.29)

Namely, the scattering matrix S is always unitary if the system is lossless.

In the 2D scenario, the scattering matrix has other universal properties, such as time-

reversal symmetry and reciprocity [54, 55]. In the 3D scenario, the modes’ arrangement is

not 1D sortable as that in the 2D scenario; therefore, their indices in a matrix coordinate

somehow lose their uniqueness. In other words, there is no universally agreeable way to

map the single l index to the paired (m,n) indices as put forth in Algorithm 2.1. In addition,

in the 3D for each propagating direction of the modes, there are two different polarization

branches (v-pol and h-pol). As a consequence, the properties of time-reversal symmetry

and reciprocity for the 3D scattering matrix manifest themselves differently from the 2D

scattering matrix.

2.3.2 Cascade Scattering Matrices

A large scatterer may be subdivided into many smaller ones and the scattering matrix

of the composite scatterer can be computed from those of its constituent components. The

output field of one system becomes the input field of its neighboring systems, and vice

versa. This process is illustrated in Figure 2.2. The figure shows two scattering systems

characterized by scattering matrices S(1) and S(2) are cascaded. Scas represents the scat-
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S (1) S (2)
a+

1 a+
2 a+

3

a-
1 a-

2 a-
3

S cas

Figure 2.2: Cascaded scattering systems.

tering matrix of the whole system. The fields on the left and right sides are represented by

vectors of normalized modal coefficient vectors a±1 and a±3 , respectively. The intermediate

field is represented by the vectors a±2 . Obviously, we have the relationship

 a−1

a+
2

 = S(1)

 a+
1

a−2

 ,
 a−2

a+
3

 = S(2)

 a+
2

a−3

 , (2.30)

and  a−1

a+
3

 = Scas

 a+
1

a−3

 . (2.31)

Let

S(1) =

S(1)
11 S

(1)
12

S
(1)
21 S

(1)
22

 , S(2) =

S(2)
11 S

(2)
12

S
(2)
21 S

(2)
22

 , (2.32)

and

Scas =

Scas11 Scas12

Scas21 Scas22

 . (2.33)
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Then, Scas can be obtained from S(1) and S(2) [54] as

Scas11 =S
(1)
11 + S

(1)
12 · (I − S

(2)
11 · S

(1)
22 )−1 · S(2)

11 · S
(1)
21 ,

Scas12 =S
(1)
12 · (I − S

(2)
11 · S

(1)
22 )−1 · S(2)

12 ,

Scas21 =S
(2)
21 · (I − S

(1)
22 · S

(2)
11 )−1 · S(1)

21 ,

Scas22 =S
(2)
22 + S

(2)
21 · (I − S

(1)
22 · S

(2)
11 )−1 · S(1)

22 · S
(2)
12 .

(2.34)

The above cascading scheme is very useful in our study of random media, as will become

clear in the following sections.

2.3.3 Assembling the Scattering Matrix

As discussed above, the scattering matrix provides a useful characterization of a scat-

terer. It serves as a black box characterization of the input-output relationship between

fields, and greatly, facilitates our investigation of scattering in random media. We have not

yet mentioned how to generate the scattering matrix (beyond how it can be assembled from

scattering matrices of subscatterers). There exist many approaches for calculating values

of entries of the scattering matrix, the majority of which adhere to the action and reaction

principle that underlies the definition of the matrix in the first place. Algebraically, if we

want to extract the l-th column of the scattering matrix S, we simply multiply S with a unit

vector el with all zero entries except the l-th entry at 1.0. This can be expressed as follows:

Sk=1:K2,l = S · el. (2.35)

Physically, this corresponds to the scatterer being illuminated by a plane wave, as

Einc
l (r) = al bl p̂l e

−jkl·r

(p̂ = either v̂ or ĥ depends on l, 1 ≤ l ≤ K2),

(2.36)
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with al = 1.0. The scattered waves are generated on both sizes of the system (slab), and

can be represented as the collection of propagating modes

Escat
m (r) = am bm p̂m e−jkm·r

(p̂ = either v̂ or ĥ depends on m, m = 1, . . . , K2),

(2.37)

where

am =

 Sm,l if km 6= kl,

Sm,l − ale−jk
(l)
z d otherwise.

(2.38)

The relationship between am and Sm,l in Eq. (2.38) is due to the fact that the scattering

system’s output contains not only the induced scattering waves but also the incident wave,

which passes through the system and exits on the other side. Thus, if the propagating

direction of the scattered mode is the same as the incident mode, the modal coefficient of

the output mode is the superposition of both the scattered mode and the incident mode. As

a result, we have Sm,l = am + ale
−jk(l)z d for km = kl, where d is the distance along the z

direction between the observation points of the incident and scattered modes, respectively.

The index m and l (1 ≤ m, l ≤ K2) in Eq. (2.36) and (2.37) can be mapped to the

indices l, i (1 ≤ l ≤ K0, i = 1, 2) in Eq. (2.18) with the additional “±” indicator for

specifying the origin of the incident/scattered waves (from Region 1 or Region 2) and their

incident/scattered directions with respect to ±z.

The underlying physical process mentioned above involves a classical scattering prob-

lem (with the periodic boundary condition) in electromagnetics, and there exists a va-

riety of ways to solve it. Specifically, by giving the obstacle and specifying the inci-

dent wave, through solving the Maxwell’s equations we can find the complex amplitude

Em (m = 1, . . . , K2) of the scattered propagating modes. After the normalization, we then

can obtain each entry Sm,l (m = 1, . . . , K2) for the l-th column of S. The procedure for

assembling the scattering matrix is illustrated briefly in Algorithm 2.2.
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Algorithm 2.2 Procedure for assembling the scattering matrix
1: for l = 1 : K2 do
2: Excite the system with planewave Einc

l (r) = bl p̂l e
−jkl·r

3: Solve the Maxwell’s equations of the underlying scattering problem
4: Find the complex amplitudes Em of Escat

m (r) = Em p̂m e
−jkm·r for m = 1, . . . , K2

5: for m = 1 : K2 do
6: if km = kl then
7: Sm,l = Em/bm + ale

−jk(l)z d

8: else
9: Sm,l = Em/bm

10: end if
11: end for
12: end for

2.4 Integral Equation Method for Solving the Scattering

Problem

Key to generating the scattering matrix is solving the electromagnetic scattering prob-

lem for each incident mode. In practice, both the accuracy of the solution and the efficiency

of the solution method are important parameters to consider when selecting a specific solver

technique. Previous research into the 2D scenario [54,55] modeled the unit scatterer in the

random media as a small cylinder, solving Maxwell’s equation via an analysis-based, T -

matrix (not transfer matrix) inspired method. Specifically, in 2D, the waves scattered by a

cylindrical scatterer are cylindrical waves, and their scattering coefficients can be obtained

analytically. Use of the interaction matrix approach (T -matrix) allow one to capture the

electromagnetic interaction of multiple cylindrical scatterers. By applying periodic bound-

ary condition and converting outgoing cylindical waves into plane waves, one obtains the

final solution. The advantage of this method is that it is rooted into the analytical Mie se-

ries, thereby exhibiting spectral accuracy. Although a similar technique for dealing with

3D spherical scatterers that uses spherical wave expansion and corresponding T -matrix

techniques exists [64], we decided to solve Maxwell’s equation using the integral equation

(IE) method, viz. the Method of Moments (MoM). This choice reflects our desire to popu-
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late the scattering medium with a diversity of dipole-like or cross-dipole-like objects rather

than spherical objects. We expect this approach can generate more randomness in our 3D

random media model. Based on this consideration, IE methods constitute a natural choice

as they easily allow dealing with scatterers of arbitrary shapes. Although the IE method

is not spectrally accurate, our numerical simulations demonstrate that the IE’s solution is

sufficiently accurate for our purposes.

2.4.1 Electric Field Integral Equation with Periodic Boundary Condi-

tion

Non-absorbing (lossless) scatterers may either be perfect electrically conducting (PEC)

or dielectric in nature. PEC objects usually exhibit stronger scattering than dielectric ones

of the same size and shape; they also tend to be simpler model using IE techniques. For

the above reasons, we assume all scatterers are PEC in nature. Let Γ denote an arbitrarily-

shaped, PEC surface residing in free space and repeating itself in a periodic lattice. The

time harmonic electric field Einc(r) impinges on Γ and induces a surface current, in turn

generating a scattered electromagnetic field. Enforcing electromagnetic boundary condi-

tions on Γ yields the following electric field integral equation (EFIE):

n̂× n̂× ikη
∫

Γ

dr′J(r′) ·
(
I − ∇∇

′

k2

)
gp(r, r

′) = −n̂× n̂×Einc. (2.39)

Here, r ∈ Γ, k and η denote the wavenumber and wave impedance in free space, n̂ denotes

the outward unit normal to S, I is the identity dyad, and gp(r, r′) is the 3D periodic free

space Green’s function. To numerically solve the EFIE, the current J(r) is discretized with

N local basis functions as

J(r) =
N∑
j=1

Ijfj(r). (2.40)
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Here, Ij is the current expansion coefficient associated with the j-th basis function fj(r
′).

If S is discretized using a triangular mesh, the Rao-Wilton-Glisson (RWG) basis [65] func-

tion are most often used. Using Galerkin testing, a N × N linear system of equations is

obtained

Z · I = V . (2.41)

Here, the entries of the impedance matrix Z are

Zij = −ikη
∫

Γ

dr

∫
Γ

dr′gp(r, r
′)[fi(r) · fj(r′)]

+
iη

k

∫
Γ

dr

∫
Γ

dr′gp(r, r
′)[∇ · fj(r)∇′ · fj(r′)].

(2.42)

The j-th entry of the solution vector I is Ij, j = 1, . . . , N , and the i-th entry of the excita-

tion vector Vi, i = 1, . . . , N is

Vi =

∫
Γ

drfi(r) ·Einc
l (r). (2.43)

Here, Einc
l (r), l = 1, . . . , K2 is the l-th incident electric field expressed in Eq. (2.36).

Because the scatterers analyzed herein are usualy small, so is N , the linear system in Eq.

(2.41) can be easily inverted via LU decomposition. The MoM solution provides the sur-

face current Jl(r′), r′ ∈ Γ, l = 1, . . . , K2 due to the incident field of each mode. Due to

the l-th incident mode, the corresponding scattered field of the m-th mode (including both

v-pol and h-pol components, thus m = 1, . . . , K1) at r can be obtained as

Escat
m,l (r) = Ev

m,l(r) + Eh
m,l(r) = − jηk

2DxDy|km,z|

∫
Γ

dr′Jl(r
′)e−jkm·(r−r

′), (2.44)

Here, km (m = 1, . . . , K1) is a wavevector of a certain propagating mode with a specified

± sign for km,z. By further separating the v-pol and h-pol components from Escat
m,l (r), we

can obtain the complete K2 modal coefficients Em (m = 1, . . . , K2) of the K2 scattered

modes. Finally, after proper normalization of am = Em/bm and including the incident
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mode, we obtain the l-th column of the scattering matrix.

2.4.2 Periodic Green’s Function in 3D

The accurate computation of the periodic Green’s function gp(r, r′) is critical ensuring

the accuracy of the IE solutions. In the spatial domain, the 3D periodic Green’s function

can be expressed as

gp(r, r
′) =

+∞∑
m=−∞

+∞∑
n=−∞

g(r, r′mn), (2.45)

where

r′mn = r′ + (mDx, nDy, 0), (2.46)

and

g(r, r′) =
e−jk|r−r

′|

4π|r − r′|
, (2.47)

represents the non-periodic Green’s function in free space. In practice we often truncate

the series by only summing up the terms of {(m,n) |M spat
min ≤ m ≤ M spat

max , N
spat
min ≤ n ≤

N spat
max} for certain

(
M spat

min(max), N
spat
min(max)

)
that satisfy our accuracy requirement. However,

the convergence of Eq. (2.45) is often slow; therefore, we usually expand gp(r, r′) in the

spectral domain as well as

gp(r, r
′) =

+∞∑
m=−∞

+∞∑
n=−∞

e−j[km,x(x−x′)+kn,y(y−y′)+kmn,z |z−z′|]

2jDxDykmn,z
, (2.48)

where

km,x = k(1)
x +

2mπ

Dx

, kn,y = k(1)
y +

2nπ

Dy

, (2.49)

and

kmn,z =


√
k2 − k2

m,x − k2
n,y, k2 > k2

m,x + k2
n,y,

−j
√
k2
m,x + k2

n,y − k2, k2 < k2
m,x + k2

n,y.
(2.50)
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In the above expressions, r = (x, y, z), r′ = (x′, y′, z′). k(1) = (k
(1)
x , k

(1)
y , k00,z) defines

the first modes, and in our application we initialize it with k(1)
x = k

(1)
y = 0. Similar to

the spatial series, the infinite summation of Eq. (2.48) converges and can be approximated

by a finite summation for some M spec
min(max) and N spec

min(max) that M spec
min ≤ m ≤ M spec

max and

N spec
min ≤ n ≤ N spec

max . The convergence of the spectral summation can be accelerated further

with the Shanks transformation [66–68].

2.4.3 Shanks Transformation

The Shanks transformation operates on a convergent series

C =
∞∑
i=1

ci. (2.51)

To determine C, we define the partial sum Cl as

Cl =
l∑

i=1

ci. (2.52)

Of course, liml→∞Cl = C. The Shanks transformation defines a new sequence S(Cl)

based on the non-linear transformation of Cl as

S(Cl) = Cl+1 −
(Cl+1 − Cl)2

Cl+1 − 2Cl + Cl−1

. (2.53)

It is easy to show that that S(Cl) also converge to C, and usually, it converges more rapidly

than Cl. Further speedup may be obtained by repeating the use of the Shanks transforma-

tion, as S2(Cl) = S(S(Cl)), S
3(Cl) = S(S(S(Cl))) and so on.

To use the Shanks transformation to calculate gp(r, r′), we rearrange the spectral sum

25



of gp(r, r′) as

gp(r, r
′) = c0,0 +

∞∑
i=1

(
i∑

m=−i

(cm,i + cm,−i) +
i−1∑

n=−i+1

(ci,n + c−i,n)

)

= c0,0 +
∞∑
i=1

Bi,

(2.54)

where

cm,n =
e−j[km,x(x−x′)+kn,y(y−y′)+kmn,z |z−z′|]

2jDxDykmn,z
. (2.55)

Next, we can extract the partial summation glp(r, r
′) as follows:

glp = c0,0 +
l∑

i=1

Bi, (2.56)

and accordingly apply the Shanks transformation S(glp). Essentially, the partial summation

glp consists of elements cm,n with their indices (m,n) forming a rectangular region [m =

−l : l, n = −l : l], and Bi is the collection of cm,n on the boundary of the rectangular

region [m = −i : i, n = −i : i], i = 1, . . . , l. Although the number of elements cm,n

increases in Bi along with the increase of the index i, their summation, viz. Bi decreases

accordingly.

2.5 Generating Random Media

2.5.1 Single-Layer Slab

Consider a single-layer slab with lattice vectors Dxx̂ and Dyŷ that contains a single

particle, e.g. a small PEC dipole, cross dipole, and so on. The dimension of the particle

are smaller than min(Dx, Dy) typically not an order of magnitude smaller. Figure (2.3)

illustrates a sample single layer slab consisting of cross dipole scatterers. The particle is

discretized with surface mesh its scattering matrix is computed using the above outlined
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Figure 2.3: Illustration of a single-layer slab consisting of PEC cross dipole scatterers.

procedures.

2.5.2 Multi-layer Slab

A multi-layer slab is obtained by cascading many single layer slabs. Each slab has the

same lattice vectors Dxx̂ and Dyŷbut contains a different scatterers. Scatterers in different

layers vary in shape, size and position in the plane of periodicity. Assuming the slab con-

tains many layers and scatterers in all layers are randomly chosen, the slab can be regarded

as a random medium. It is worth mentioning that even if we only have a small number

of distinct scatterers in terms of shapes and sizes, repeatedly arranging them only in terms

of variation in horizontal location (position shifting) can provide adequate randomness. In

addition, there is a computationally efficient way to generate a new scattering system based

on an existing scattering system if the scatterers in the new system only differs from those

of an existing system with a position shifting. A sample multi-layer slab is shown in Figure

2.4. Rather than creating this multi-layer slab all at once, we assemble it by cascading many

single-layer slabs; more precisely, by cascading their scattering matrices S(i). The cascad-

ing procedure is illustrated in Algorithm 2.3, and it is easy to parallelize. In Algorithm 2.3,
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Figure 2.4: Illustration of a multi-layer slab consisting of a variety of PEC scatterers.

Algorithm 2.3 Procedure of cascading many scattering matrices

1: S := S(0)

2: for i = 1 : Lc do
3: Cascade S and S(i) using the formulas in Eq. (2.34), resulted in S ′

4: S := S ′

5: end for

the initial scattering matrix S(0) is set as

S(0) =

 0 IK1×K1

IK1×K1 0

 , (2.57)

which represents a scattering system of free space, with the property of complete light

transmission (no reflection). Ultimately, the final cascaded S can represent a scattering

matrix for a random medium.
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2.6 Conclusion

This chapter presented a systematic strategy for constructing a random medium model.

The EM scattering properties of this model are characterized by a set of countable and

finite solutions and that satisfy periodic boundary conditions. Using an IE method and a

cascading scheme allows us to generate an instance of this model accurately and efficiently.
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CHAPTER 3

Validation of 3D Random Media Model

3.1 Introduction

Random media composed of particles embedded in a uniform background hinder the

passage of EM waves. For thick slabs of such media, the backscattered wave usually dom-

inates the transmitted one, even if the medium and scatterers are lossless. The discovery

of so-called “perfectly transmitting wavefronts”, viz. carefully crafted wavefronts that pass

through such slabs unobstructed, may pave the way for new EM imaging and radar detec-

tion techniques that require deep wave penetration into media [42–46, 63]. Several studies

have provided numerical evidence for the existence of such wavefronts, even in strongly

backscattering random media. For example, work by Jin [54, 55] demonstrates the exis-

tence of such wavefronts in a 2D random media consisting of PEC or dielectric cylinders

embedded in a lossless host.

Here, we extend the research of Jin into perfectly transmitting wavefronts to 3D. As

briefly mentioned in Section 2.5.2, our 3D random media consists of a multi-layer slab

consisting of PEC particles randomly distributed in a homogeneous background. The ge-

ometries of the particles range from dipoles to crosses and so forth. These dipole-like

particles provide strong EM scattering. Rather than using an analysis-based simulation

model as Jin did for 2D random media [54, 55], the 3D MoM method is used here to cap-

ture the EM scattering mechanism. Numerical simulation demonstrated that even when the
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number of layers and particle density is high, there remain a few perfectly/highly transmit-

ting wavefronts with transmission coefficients near unity. The transmission coefficients of

the eigen-wavefronts manifest themselves as the singular values of the forward scattering

matrix S21 and their distribution matches theoretical predictions accurately. Moreover, the

phase and magnitude of the highly transmitted (or highly backscattered) eigen-wavefronts

are readily presented as the right singular vectors of S21. Similar to the case in the 2D

random media study [55], we show that the modes can be constructed efficiently using a

simple steepest descent or conjugate gradient algorithm that only requires knowledge of

the reflection matrix S11. we show that the modes can be constructed efficiently using a

simple steepest descent or conjugate gradient algorithm that only requires knowledge of

the reflection matrix S11. Furthermore, we show that with the additional measurements

of field intensity at desired points, a simple and efficient Lanczos-like algorithm can be

applied to focus energy with approximately 90% efficiency relative to the optimal intensity

using only a few measurements. Each step in the above algorithms has a clear physical

interpretation, opening up avenues for the algorithms’ physical implementation in future

radar and imaging systems.

3.2 Problem Definition

The scattering problem considered here involves the 3D random media model described

in the previous chapter. We consider a 3D slab of thickness L along the z direction (L ≤

z < 0) and periodicities Dx and Dy in the x and y directions, respectively. Nc perfect

electrically conducting (PEC) particles are placed inside each periodic cell; the particles

are separated along the z direction by a distance distance l and occupy random positions

in the xy plane. The particles can take on many shapes, from dipoles to crossed dipoles,

and vary in size, shape, and orientation. The particles sizes are usually smaller than the

wavelength λ but may be resonant in nature and hence scatter strongly. Upon illumination
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by EM wavefronts from Region 1, scattered wavefronts are produced in both Regions 1

and Region 2 (Figure 3.1). Let S denote the scattering matrix of this system. Vectors

…
…

Dy
cross dipole

Dx

z

x y

cross dipole 
(rotated)

 dipole 
(rotated & 
off center)

large cross 
dipole

 (off center)

S (Nc-2)

S (Nc-1)

S (Nc)

Nc layers

L=Nc∙l 

l
S (1)

S (Nc-3)

incident wavefronts (E +p
1,l) scattered wavefronts (E -p

1,l)

scattered wavefronts (E +p
2,l)

region 2

region 1

Figure 3.1: The scattering problem involving the 3D random media model.

of normalized modal coefficients are denoted by a±i , where i = 1, 2 indicates the space

occupied by the mode (Region 1 or Region 2), and ± indicates the direction the mode

propagates in (+z or −z). Because the incident wavefronts only come from z = −∞, we

have a−2 = 0. The transmission and reflection coefficients are defined as

τ(a+
1 ) :=

‖S21 · a+
1 ‖2

2

‖a+
1 ‖2

2

, (3.1)
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and

Γ(a+
1 ) :=

‖S11 · a+
1 ‖2

2

‖a+
1 ‖2

2

, (3.2)

respectively. anorm is used to denote the normally incident wavefront, which has K2 − 1

zero entries except a+v
1,l = 1.0, for which kl = (0, 0, k). The transmission coefficient of the

normally incident wavefront is denoted by

τnorm = τ(anorm). (3.3)

3.3 Wave Transmission in Random Media

3.3.1 Transmission Coefficients

In the lossless setting, the scattering matrix S in Eq. (2.23) is unitary, as proved in

Section 2.3.1. As a result, we have

SH11 · S11 + SH21 · S21 = (SH · S)1:K1,1:K1 = IK1×K1 , (3.4)

and therefore

SH21 · S21 = I − SH11 · S11. (3.5)

Because SH21 · S21 is a Hermitian matrix, there exists an eigen-decomposition

SH21 · S21 = V · Λ · V H = I − SH11 · S11, (3.6)

where V is a unitary matrix, and Λ is a diagonal matrix with all its diagonal elements

{λ1, . . . , λK1} being real and positive. λi, i = 1, . . . , K1 is called the i-th eigenvalue of

SH21 ·S21; we assume these eigenvalues are sorted in descending order, i.e. λ1 ≥ λ2 ≥ · · · ≥
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λK1 ≥ 0. Column vi, i = 1, . . . , K1 of V is called the i-th eigenvector. It is easily shown

that

λi vi = (SH21 · S21) · vi. (3.7)

From Eq. (3.6) we can also obtain the eigen-decomposition of SH11 · S11 as

SH11 · S11 = V · (I − Λ) · V H , (3.8)

which implies that SH11 ·S11 and SH21 ·S21 have the same eigenvectors. In addition, we arrive

at

λ̃K1−i = 1− λi, i = 1, . . . , K1, (3.9)

in which λ̃i, i = 1, . . . , K1 are the eigenvalues of SH11 · S11, with the arrangement λ̃1 ≥

λ̃2 ≥ · · · ≥ λ̃K1 ≥ 0. Let ṽi denotes the eigenvector of SH11 · S11 corresponding to λ̃i. It

follows that, 
0 ≤ λi ≤ 1, 0 ≤ λ̃i ≤ 1

λi + λ̃K1−i+1 = 1

vi = ṽK1−i+1

, i = 1, . . . , K1. (3.10)

In addition, let S21 =
∑K1

i=1 σi ui · vHi and S11 =
∑K1

i=1 σ̃iũi · ṽ
H
i denote the singular value

decompositions (SVD) of S21 and S11, respectively. Here σi (resp. σ̃i) is the singular value

corresponding to the left and right singular vectors ui and vi (resp. ũi and ṽi), respectively.

By convention, the singular values are arranged in the order of σ1 ≥ . . . ≥ σK1 and

σ̃1 ≥ . . . ≥ σ̃K1 . It follows from basic linear algebra theory [69] that the eigenvalue λi of

matrix AH · A is the squared singular value σi of matrix A, and the eigenvector of AH · A

is the right singular vector of A. Therefore, from Eq. (3.10) we have

 σ2
i + σ̃2

K1−i+1 = 1

vi = ṽK1−i+1

, i = 1, . . . , K1. (3.11)
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The σi(i = 1, . . . , K1) are called the characteristic transmission coefficients of the scatter-

ing system. Correspondingly, the complementary σ̃K1−i+1(i = 1, . . . , K1) are called the

characteristic reflection coefficients of the scattering system.

An arbitrary incident wavefront coming from Region 1 can be represented by a normal-

ized modal coefficient vector a+
1 ; a+

1 can be uniquely expressed as the linear combination

of the right singular vectors of S21 (or S11 equivalently) because the singular vectors are

orthonormal, as

a+
1 =

K1∑
i=1

ci vi, (3.12)

where ci is the complex amplitude of the base vi. Physically, each vi also represents the

normalized modal coefficients a vector representing an incident wavefront coming from

Region 1, called the i-th eigen-wavefront. Thus, |ci| is the amplitude of the i-th eigen-

wavefront and ∥∥a+
1

∥∥2

2
=

K1∑
i=1

|ci|2. (3.13)

The energy density passing through the random medium due to an incident wavefront a+
1

can be calculated as

∥∥S21 · a+
1

∥∥2

2
= (a+

1 )H · SH21 · S21 · a+
1

= (a+
1 )H · V · Λ · V H · a+

1 .

(3.14)

From Eq. (3.12), we have

V H · a+
1 = [c1 c2 . . . cK1 ]

T , (3.15)

and ∥∥S21 · a+
1

∥∥2

2
=

K1∑
i=1

|ci|2σ2
i . (3.16)
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Similarly, we have ∥∥S11 · a+
1

∥∥2

2
=

K1∑
i=1

|ci|2σ̃2
K1−i+1. (3.17)

Consequently, the relationship between the transmitted and the reflected power arises from

∥∥S21 · a+
1

∥∥2

2
+
∥∥S11 · a+

1

∥∥2

2
=
∥∥a+

1

∥∥2

2
. (3.18)

If both sides of Eq. (3.18) are divided by the energy density of the incident wavefront

‖a+
1 ‖2

2, then we arrive at

τ(a+
1 ) + Γ(a+

1 ) = 1, (3.19)

which essentially states the law of conservation of energy.

3.3.2 Transmission Coefficient Distribution

Several studies [38–41, 63] have revealed that the theoretical distribution of the trans-

mission coefficients for non-absorbing random media has the bimodal shape given by

f(τ) = lim
M→∞

1

M

M∑
i=1

δ (τ − τ(vi)) =
`

2L

1

τ
√

1− τ
,

for 4e−L/2` / τ ≤ 1,

(3.20)

In which ` is the mean-free path through the media. Figure (3.2) shows the theoretical den-

sity when L/` = 3. Eq. (3.20) is known as the Dorokhov-Mello-Pereyra-Kumar (DMPK)

equation, named after the researchers who first proposed it. Numerically, the transmission

coefficients manifest themselves as the squared singular values σi(i = 1, . . . , K1) of S21 as

mentioned above. To investigate the empirical distribution of the transmission coefficient

of 3D non-absorbing random media, we undertake a simulation of 10,000 random trials.

The accumulated distribution of the transmission coefficients of eigen-wavefronts is shown

in Figure 3.3. All the stochastic slabs have Dx = Dy = 9.85λ, l = 4.0λ, K1 = 690 and the
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Figure 3.2: Theoretical distribution of the transmission coefficients in Eq. (3.20) for L/l =
3.

number of layers is Nc = 4150. The results conform to and confirm the bimodal shape of

the theoretical distribution in Figure 3.2. Taking a closer look at the “perfect transmission”

end, we find that the experiment histogram fits the trend of Eq. (3.20) for σ → 1.0 very

well.
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Figure 3.3: The accumulated distribution of the transmission coefficient over 10,000 ran-
dom trials for Dx = Dy = 9.85λ, l = 4.0λ, K1 = 690 and Nc = 4150.
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3.3.3 Transmission Maximization

Transmission maximization refers to an optimization problem that seeks the incident

wavefront a+
1 that maximizes the objective function

aopt = arg max
a+1

τ(a+
1 ) = arg max

a+1

‖S21 · a+
1 ‖2

2

‖a+
1 ‖2

2

= arg max
‖a+1 ‖2=1

‖S21 · a+
1 ‖2

2,

(3.21)

Here, ‖ a+
1 ‖2= 1 is a power constraint for the incident wavefront. In the lossless setting,

this problem has a closed form solution

aopt = v1, (3.22)

where v1 is the first right singular vector of S21 and consequently τmax = τ(v1) = σ2
1 . In

other words, we can directly obtain aopt when S21 is available. If S21 is not available, Jin

et al. provided two iterative methods steepest descent and conjugate gradient to find an

approximation of aopt assuming a 2D setup [55]. These methods are backscatter-analysis-

based and physically realizable; we will briefly review them in Section 3.4.2.

3.3.4 Focusing

By expressing the scattered wavefront a+
2 in Region 2 due to an incident wavefront a+

1

from Region 1 as

a+
2 = S21 · a+

1 =
[
a+

2,1 a+
2,2 . . . a+

2,K1

]T
, (3.23)
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the electric field at an arbitrary location r0 in Region 2 is a vector field E+
2 (r0)

E+
2 (r0) =

[
E+

2,x(r0) E+
2,y(r0) E+

2,z(r0)

]T
= p̂1a

+
2,1b1 e

−jk+
1 ·r0 + p̂2a

+
2,2b2 e

−jk+
2 ·r0 + . . .

· · ·+ p̂K1a
+
2,K1

bK1 e
−jk+

K1
·r0 ,

(3.24)

where p̂i = [(p̂i)x (p̂i)y (p̂i)z]
T is the unit polarization vector of the i-th outgoing mode.

Let

B(r0) =
[
p̂1b1 e

−jk+
1 ·r0 p̂2b2 e

−jk+
2 ·r0 . . .

. . . p̂K1bK1 e
−jk+

K1
·r0], (3.25)

whereB(r0) ∈ C3×K1 is only a function of r0. Thus, Eq. (3.24) can be concisely expressed

as

E+
2 (r0) = B(r0) · a+

2 = B(r0) · S21︸ ︷︷ ︸
:=C(r0)

·a+
1 , (3.26)

in which C(r0) ∈ C3×K1 is still a function of r0. Therefore, the problem of constructing

an incident wavefront a+
1 that maximizes the intensity of the field at r0 in Region 2 can be

expressed as

afoc = arg max
a+1

‖ E+
2 (r0) ‖2

2

‖ a+
1 ‖2

2

= arg max
‖a+1 ‖2=1

‖ C(r0) · a+
1 ‖2

2 .

(3.27)

This problem has a closed form solution

afoc = vC1 , (3.28)
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in which vC1 is the primary right singular vector of the matrix C(r0), and the focusing

intensity is the squared spectral norm of C(r0). If we are only interested in maximizing the

intensity of the focusing field in a specific polarization, e.g., in the x, y, or z direction, the

corresponding solution can be simplified as

aifoc =
CH

(i,:)(r0)∥∥C(i,:)(r0)
∥∥

2

, i = 1, 2, 3. (3.29)

Here, C(i,:)(r0) denotes to the i-th row of C(r0), and i = 1, 2, 3 corresponds to the specific

x, y or z polarization.

If S21 is not available, for extracting afoc we revert to the backscatter-analysis-based

and physically realizable method [55] in Section 3.4.3.

3.4 Physically Realizable Algorithms for Transmission Max-

imization and Focusing

3.4.1 Physically Realizable Matrix and Vector Operations

A practical procedure to find the input wavefront that maximizes the transmission power

or generates foci through a random medium should be implementable on existing experi-

mental hardware. Moreover, the procedure should work without a priori knowledge of the

random medium, though it may require an iterative refinement process. Using the algebraic

model of our scattering system, the procedure can be cast an algorithm involving matrix-

vector operations, with each matrix-vector operation having a counterpart in the experi-

mental setup. Additionally, in many real-world applications one is incapable of physically

accessing Region 2 for observation purposes. Such situations usually occur in bio-imaging

and non-intrusive detection. Therefore, ideally, a practical procedure should only rely on

backscattered wave information for iterative refinement.

The iterative algorithms we have proposed here for transmission maximization and fo-
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cusing are built upon three basic matrix-vector operations:

S11 · a+
1 , TR(a−1 ), and SH11 · a−1 . (3.30)

The first operation, S11 · a+
1 , corresponds to sending an incident wavefront with a normal-

ized modal coefficient vector a+
1 and measuring the normalized modal coefficient vector

of the backscattered wavefront. In an experimental setup, there exist methods [58] for

modulating the amplitude and phase of an input wavefront, in essence creating an arbitrary

incident wavefront with a certain accuracy. On the other hand, some digital holography

techniques [70] enable us to extract the modal coefficient vector of the backscattered wave

by measuring its intensity. Here, we assume that the modal coefficients of a wavefront can

be modulated by any desirable amplitude and phase. In addition, we assume that the ampli-

tude and phase of any wavefront can be measured accurately, so that there is no technical

restriction impeding the performance of our algorithms.

The second operation TR(a−1 ) represents time-reversing the backscattered wavefront

a−1 . This operation is the mathematically equivalent to taking the complex conjugate of

a−1 as (a−1 )∗, then rearranging the order of the entries in (a−1 )∗. However, the specific

rearrangement depends on how we order the incoming modes as opposed to how we order

the outgoing modes in the scattering matrix. In our 3D scattering system, the indices of the

incoming mode and the outgoing mode with the exact opposite propagating directions are

identical. Thus, rearrangement is not needed here, and therefore,

TR(a−1 ) = (a−1 )∗. (3.31)

By contrast, in our previous work for 2D [54, 55], the indexing of the outgoing modes

followed the reverse order of that for the incoming modes. Therefore, in that context, the

rearrangement involved flipping (a−1 )∗ upside down, viz. TR(a−1 ) = F · (a−1 )∗, in which

F was the flipping operator. Physically, this time-reversing operation can be realized via
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phase-conjugate mirroring (PCM) [71].

The third operation, SH11 · a−1 , can be realized by leveraging reciprocity. In a scattering

medium that exhibits reciprocity,

ST11 = S11. (3.32)

Consequently, the matrix-vector operation SH11 · a−1 can be calculated as

SH11 · a−1 =
(
S11 · (a−1 )∗

)∗
= TR

(
S11 · TR(a−1 )

)
. (3.33)

It can be realized in two steps by utilizing the physical procedures of the first and second

operations:

1. Capture the backscattered wavefront and obtain its modal coefficient vector a−1 ; then,

time-reverse it and send it back to the scattering system;

2. Capture the resulting backscattered wavefront and obtain its modal coefficient vector

S11 · (a−1 )∗; then, time-reverse it.

In the 2D scenario, Jin et al. developed several iterative, physically realizable algo-

rithms for transmission maximization and focusing [55]. These algorithms generally re-

main valid in the 3D scenario with minor modifications. In the following sections, we

briefly outline these procedures.
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Algorithm 3.1 Steepest descent algorithm for finding aopt

1: Input: a+
1,(0) = Initial random vector with unit norm

2: Input: µ > 0 = step size
3: Input: ε = Termination condition
4: k = 0
5: while ‖S11 · a+

1,(k)‖2 > ε do
6: b = S11 · a+

1,(k)

7: c = SH11 · b
8: ã+

1,(k) = a+
1,(k) − 2µc

9: a+
1,(k+1) = ã+

1,(k)/‖ã
+
1,(k)‖2

10: k = k + 1
11: end while

3.4.2 Iterative Methods for Transmission Maximization

3.4.2.1 Steepest Descent Method

To minimize the objective function ‖S11 · a+
1 ‖2

2, where ‖a+
1 ‖2 = 1, we use the negative

gradient of the object function as the search direction to update the candidate solution as

a+
1,(k+1) = a+

1,(k) − µ
∂‖S11 · a+

1 ‖2
2

∂a+
1

∣∣∣∣
a+1 =a+

1,(k)

= a+
1,(k) − 2µSH11 · S11 · a+

1,(k),

(3.34)

in which a+
1,(k) stands for the wavefront produced at the k-th iteration, and µ is a positive

step size. The procedure proceeds iteratively until the backscattered intensity ‖S11 ·a+
1,(k)‖2

2

drops below a preset threshold ε, as illustrated in Algorithm 3.1. Step 6 and 7 in Algorithm

3.1 can be physically realized, as discussed in Section 3.4.1. Typically, the steepest descent

method leads to a monotonic decrease in the backscattered intensity. The convergence rate

of this method depends on the choice of µ, (0 < µ < 1
σ̃2
1+σ̃2

M
≈ 1). Line search is usually

employed for finding the best step size µ to obtain the fastest possible convergence.
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3.4.2.2 Conjugate Gradient Method

In contrast to the steepest descent method, the conjugate gradient method differs in the

choice of µ as

µ(k+1) = ‖r(k)‖2
2/‖S11 · d(k)‖2

2, (3.35a)

and the search direction as

d(k+1) = r(k+1) + β(k+1)d(k), (3.35b)

where

β(k+1) = ‖r(k+1)‖2
2/‖r(k)‖2

2. (3.35c)

Here, the residual vector is

r(k+1) = r(k) − µ(k+1)S
H
11 · S11 · d(k)

= −SH11 · S11 · a+
1,(k+1).

(3.35d)

The iteration terminates when ‖r(k+1)‖2 is less than a preset threshold ε. The above pro-

cedure yields Algorithm 3.2. Again, steps 3-4 and steps 8-9 are physically realizable. The

advantage of the conjugate gradient algorithm is that only vector d(k) is transmitted, and

its backscattered b = S11 · d(k) is measured. Because the intensity of the backscattered

wavefront b is expected to remain relatively high throughout the iteration, this algorithm

permits easier estimation of the backscattered modal coefficient vectors and thereby ex-

hibits lower susceptibility to measurement noise than the steepest descent algorithm. a+
1,(k)

is never actually transmitted until the termination condition ‖r(k)‖2 < ε is met.
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Algorithm 3.2 Conjugate gradient algorithm for finding aopt

1: Input: a+
1,(0) = Initial random vector with unit norm

2: Input: ε = Termination condition
3: b = S11 · a+

1,(0)

4: r(0) = −SH11 · b
5: d(0) = r(0)

6: k = 0
7: while ‖r(k)‖2 > ε do
8: b = S11 · d(k)

9: d = SH11 · b
10: µ(k+1) = ‖r(k)‖2

2/(d
H
(k) · d)

11: a+
1,(k+1) = a+

1,(k) + µ(k+1)d(k)

12: a+
1,(k+1) = a+

1,(k+1)/||a
+
1,(k+1)||2

13: r(k+1) = r(k) − µ(k+1)d
14: β(k+1) = ‖r(k+1)‖2

2/‖r(k)‖2
2

15: d(k+1) = r(k+1) + β(k+1)d(k)

16: k = k + 1
17: end while

3.4.3 Lanczos-like Method for Focusing

The Lanczos-like method iteratively constructs a small tridiagonal matrixH with eigen-

vectors and eigenvalues that approximate the eigenvectors and eigenvalues of SH11 ·S11, and

is detailed in Algorithm 3.3. The eigenvectors of H will rapidly converge to the eigenvec-

Algorithm 3.3 Lanczos-like algorithm for constructing a tridiagonal matrix H , whose
eigenvectors and eigenvalues are the approximation of those of SH11 · S11.

1: Input: K = Number of eigen-wavefronts needed
2: Input: q

(1)
= Initial random vector with unit norm

3: Input: s(0) = 0
4: for k = 1 : K − 1 do
5: p−

1
= S11 · q(k)

6: p+
1

= (p−
1

)∗

7: p−
1

= S11 · p+
1

8: v = (q−
1

)∗

9: Hk,k = qH
(k)
· v

10: v = v −Hk,kq(k)
− s(k−1)q(k−1)

11: Hk+1,k = Hk,k+1 = s(k) = ‖v‖2

12: q
(k+1)

= v/s(k)

13: end for
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tors of SH11·S11 associated with the smallest eigenvalues, modeling the few eigen-wavefronts

with transmission coefficients near unity. Thus, a small number of iterations K(K � K1)

is adequate to extract all the highly transmitted eigen-wavefronts. By obtaining the Ritz

eigenvectors

bi = Q · ui, (i = 1, . . . , K), (3.36)

where Q = [q
(1)
, . . . , q

(K)
] is formed in Algorithm 3.3 and ui(i = 1, . . . , K) are the eigen-

vectors of H , the focused wavefront is approximated by

afoc ≈
K∑
i=1

pie
jφibi, (3.37)

where pi ≥ 0 and φi ∈ [−π, π] are the modulating amplitudes and phases that need to be

determined. Line search and other methods can be used to find the optimal pi and φi for

each bi. This Lanczos-like method for focusing only requires O(K) measurements, and

it is also physically realizable. Specifically, in Algorithm 3.3, Step 7 can be physically

realized through backscatter sensing; the complex conjugate operation of Step 6 and 8 can

be physically realized through PCM.

3.5 Numerical Simulations

We seek to investigate the scattering behavior of our random media model and test the

validity of the transmission maximization and focusing algorithms in 3D. Therefore, we

simulate the scattering matrix in Eq. (2.26) via the previously described 3D IE solver.

By leveraging the 3D periodic Greens functions and a cascading technique, the method

accurately captures interactions between thousands of scatterers. Care is taken to ensure

6-th digit accuracy in the calculation of the entries of the scattering matrix.
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3.5.1 Transmission Maximization

We consider a scattering slab with Dx = Dy = 7.58λ, ` = 4.0λ, K1 = 354 and

Nc = 6400 and compare the intensity of the transmitted field due to a normal and an op-

timized incident wavefronts. Figs. 3.4a and 3.4b show the electric field intensity on the

xy plane behind the slab (in Region 2) produced by the normal and the optimized incident

wavefronts, respectively. For the normal incident wavefront, τnorm = 0.0312 and the maxi-

mum of |E|2 is about 0.2 V 2/m2. For the optimized incident wavefront, τopt = 0.996 and

the maximum of |E|2 is about 10.0 V 2/m2, an more than 30-fold increase compared to

the normal incident case. Figure 3.5 shows the magnitude and phase of the transmission-

optimized wavefront.

Figure 3.6 displays the convergence history of the steepest descent (µ = 0.5) and

the conjugate gradient algorithms for transmission maximization, working on the previ-

ous scattering system that has Dx = Dy = 7.58λ, l = 4.0λ, M = 354 and Nc = 6400.

Both algorithms yield τopt = 0.994 after 10 iterations. To investigate the impact of dif-

ferent values of µ on the convergence of the steepest descent algorithm, the transmitted

power after the 10-th iteration for different choices of µ is computed and plot in Figure 3.7.

This study clearly shows that there is a broad range of µ that yield fast convergence of the

steepest descent algorithm; 0.45 ≤ µ ≤ 0.8 yields the fastest convergence rate. Practically,

the conjugate gradient algorithm is preferred over the steepest descent algorithm since it

requires simpler measurements and no auxiliary parameters need to be set. Next, we con-

sider a setting in which a subset of the propagating modes are controlled. The controlled

modes are those with the smallest plane angles to the normal direction (the smallest θ in the

spherical coordinate). The setting for the scattering system is the same as previous tests.

We consider three different approaches for the measurement: 1) measuring the transmit-

ted field with modes having the same propagating directions as the controlled modes, 2)

measuring the backscattered field with modes having the opposite propagating directions
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(a) Electric filed produced by the normal incident wavefront.

(b) Electric filed produced by the transmission-optimized incident wavefront.

Figure 3.4: E field intensity of the transmitted wave behind the slab (in Region 2) by 2λ
due to (a) the normal incident and (b) the transmission-optimized incident wavefront for a
slab with Dx = Dy = 7.58λ, l = 4.0λ, K1 = 354 and Nc = 6400.
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Figure 3.5: The magnitude and phase combinations of the optimal wavefront corresponding
to Fig 3.4b.
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Figure 3.6: The convergence history of the steepest descent (µ = 0.5) and the conjugate
gradient algorithms for transmission maximization.

as the controlled modes, and 3) measuring the backscattered field with all modes. Figure

3.8 shows the realized gain (= τopt/τnorm) (relative to a normal incident wavefront) for the

49



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µ

T
ra

ns
m

itt
ed

 p
ow

er
 (

 1
0t

h 
It

er
at

io
n)

Periodic cell = 7.5804λ×7.5804λ, 
354 modes, 6400 layers

Figure 3.7: The transmitted power after the 10-th iteration versus different choice of µ for
the same setting as in Figure 3.4.

three different approaches. The results indicate that if all modes in the backscattered field

can be measured, we can significantly increase the transmission rate by controlling only a

portion of the modes. By contrast, only attempting to minimize the field intensity due to

partial modes in the backscattered directions could actually increase backscattering through

modes in the unmeasured backscattered directions, but the forward transmission.

3.5.2 Focusing

For the focusing problem, we consider a focus target at (0, 0, 2.0λ) behind the slab (in

Region 2). We excite the slab with the naive focusing wavefront, which would focus the

field if there were no slab present as well as the optimized focusing wavefront, to maximize

the field intensity at the target point described in Eq. (3.29). Figure 3.9a and Figure 3.9b il-

lustrate the intensity due the two incident wavefronts in the (x, y, 2.0λ) plane, respectively.

The optimized wavefront successfully creates a focus spot at the target, whereas the naive

focusing wavefront does not. We decompose the optimized focusing wavefront in terms of
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plane waves (propagating modes), and Figure 3.10a shows that the magnitudes of the coef-

ficients exhibits no obvious pattern. However, the magnitudes of their coefficients exhibit

a clear sparse pattern following the decomposition of the optimized focusing wavefront in

terms of eigen-wavefronts, namely the right singular vectors of the S11 matrix, as shown in

Figure 3.10b. Accordingly, we use the Lanczos-like algorithm described in Section 3.4.3,

which utilizes this sparse property of the eigen-wavefronts to construct the optimal focusing

wavefront. Figure 3.11 shows the focusing intensity achieved as a function of the number

of measurements. These results clearly demonstrate that with only a few measurements

(K � K1), the Lanczos algorithm can rapidly find a near-optimum focusing wavefront

reaching approximately 90% of the optimal intensity.

3.6 Conclusion

We test our 3D random media model by investigating its transmission coefficient dis-

tribution over 10,000 random realizations. The transmission coefficient distribution fits the
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(a) Electric field intensity due to a naive focusing wavefront.

(b) Electric field intensity due to an optimized focusing wavefront.

Figure 3.9: Electric field intensity at (x, y, 2λ) plane behind the slab (in region 2) due to (a)
a naive focusing wavefront and (b) an optimized focusing wavefront for a target at (0, 0, 2λ)
behind the slab (in region 2). The scattering system is the same as that in Figure 3.4. The
optimized focusing wavefront forms a sharp spot at the target point.
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Figure 3.10: Two ways to decompose the optimized focusing wavefront, (a) in terms of
plane waves (propagating modes) and (b) in terms of eigen-wavefronts. The magnitude of
the coefficients in (b) exhibit a clear sparse pattern.
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Figure 3.11: The focusing intensity versus the number of measurements in the Lanczos-like
algorithm for constructing a near-optimum focusing wavefront.

theoretical DMPK distribution perfectly. In addition, numerical simulations demonstrate

that several iterative, physically realizable algorithms for transmission maximization and

focusing also work well for 3D random media models.
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CHAPTER 4

Advanced Multi-Foci Focusing in 3D Random

Media

4.1 Introduction

The need to focus electromagnetic fields passing through random media arises in appli-

cations ranging from bio-imaging to non-destructive inspection and electromagnetic hyper-

thermia treatment, to name but a few. Unfortunately, conventional focusing techniques are

very inefficient when used for highly diffusive media containing scatterers that significantly

alter the paths traveled by the fields, either causing speckle patterns in the exit aperture or

preventing penetration altogether. In Section 3.3.2, we argued that the wavefronts of fields

impinging on lossless (non-absorbing) dilute random media model can be shaped to op-

timally couple into perfectly transmitting wavefronts, the so-called “open channels”, and

create focused fields upon exit. In Sections 3.4.3 and 3.5.2, we demonstrated the ability

to focus fields passing through our 3D media model by using a Lanczos-like algorithm.

Unfortunately, the scheme calls for full amplitude and phase control of the incident wave.

In many practical situations, only the phase of the field can be efficiently controlled; this is

particular true in the optical regime where control often is achieved using phase-only spa-

tial light modulators (SLMs). Furthermore, the scheme is limited in the type and number

of foci it is capable of producing.

In this chapter, we present a new family of highly efficient focusing schemes capable of
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creating multiple foci under a variety of conditions of practical interest. Our schemes apply

to scenarios that allow for phase-only as well as full phase-amplitude modulation of the in-

cident wavefront. They also address problems requiring contrast and non-contrast as well as

maximal-total-intensity and even-intensity (fair) focusing. The proposed schemes compre-

hensively tackle the wavefront shaping problem by leveraging eigen-decompositions, con-

vex optimization, and bisection search algorithms. Specifically, eigen-decompositions are

used to handle simple focusing problems when full phase-amplitude modulation is achiev-

able, while convex optimization and bisection search are invoked for focusing problems

lacking closed form solutions. We demonstrate the new focusing schemes capabilities’ and

efficiency by applying them to our 3D random media model.

4.2 Multi-Foci Focusing without Contrast

Focusing without contrast (non-contrast focusing) suggests that we only intend to max-

imize the field intensity on the candidate foci. The fields at other locations beyond the foci

are not considered. This type of focusing may produce extra foci in addition to the specified

ones; usually, these additional foci are undesired. On the other hand, focusing with contrast

(contrast focusing) implies that in addition to maximizing the field intensity on the candi-

date foci, we seek to also minimize the field intensity on certain non-foci locations. These

non-foci locations requiring minimal disturbance from the (electric) field are needed for

particular engineering applications. Focusing with contrast therefore implies that a high ra-

tio of the field intensity at desired foci over the field intensity on specific non-foci locations

is desired. We elaborate on the problem of focusing with contrast in Section 4.3.

4.2.1 Maximal-Total-Intensity Focusing

The maximal-total-intensity focusing implies that the sum of the field intensities at all

desired foci is maximized. Even-intensity (fair) focusing on the other hand seeks fields

56



roughly equal intensity at all foci, while attempting to maximize the total intensity. We

discuss maximal-total-intensity and even-intensity (fair) focusing for non-contrast and con-

trast focusing separately.

4.2.1.1 Solution for Phase-Amplitude Modulation

Here, we start from the single-focus problem of Section 3.3.4. The electric field at r0

behind the slab (in region 2) due to an incident wave from Region 1 is

E+
2 (r0) = C(r0) · a+

1 , (4.1)

where C(r0) ∈ C3×K1 is defined in Eq. (3.26). Suppose we have q candidate foci at

{r1, r2, . . . , rq} in Region 2; then, their electric fields can be expressed as



E+
2 (r1)

E+
2 (r2)

...

E+
2 (rq)


=



C(r1)

C(r2)

...

C(rq)


︸ ︷︷ ︸

:=Q

·a+
1 , (4.2)

in which Q ∈ C3q×K1 and the left hand side vector contains the complex amplitudes of the

electric fields along the x, y and z directions at q locations. If the electric fields along a

particular direction (x, y or z) are needed, we can extract them as



E+
2,i(r1)

E+
2,i(r2)

...

E+
2,i(rq)


=



Ci,:(r1)

Ci,:(r2)

...

Ci,:(rq)


︸ ︷︷ ︸

:=Q{i=1,2,3−→ x,y,z}

· a+
1 , i = 1, 2, 3, (4.3)

57



in which Q{x,y, or z} ∈ Cq×K1 . The corresponding optimization problem to maximize the

total electric field intensity among these q locations can be expressed as follows:

amf = arg max
‖a+1 ‖2=1

q∑
i=1

‖ C(ri) · a+
1 ‖2

2

= arg max
‖a+1 ‖2=1

‖ Q · a+
1 ‖2

2

(4.4)

Clearly, the solution to Eq. (4.4) is the first right singular vector of matrix Q corre-

sponding to its largest singular value. Specifically, for the singular value decomposition

Q =
∑

i=1 σi ui · vHi , we have

amf = v1. (4.5)

If the transmission matrix is measured using the technique described in [44–47], we can

easily obtain v1. In addition, we can physically synthesize the wavefront represented by v1

when we have a light modulator capable of controlling both amplitude and phase. Using

a twisted nematic LCD combined with a spatial filter, the innovative method developed

by van Putten et al. in [58] for full spatial phase and amplitude control provides such an

option.

If we ignore the effect of the random medium, viz., treat the slab as a homogeneous

medium with a dielectric constant equal to that of the background, then the corresponding

focusing problem is

anmf = arg max
‖a+1 ‖2=1

q∑
i=1

‖ B(ri) · a+
1 ‖2

2

= arg max
‖a+1 ‖2=1

‖ O · a+
1 ‖2

2,

(4.6)
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in which B(r) ∈ C3×K1 is defined in Eq. (3.25) and

O =



B(r1)

B(r2)

...

B(rq)


. (4.7)

The solution of Eq. (4.6) is the first right singular vector of matrix O. Since anmf corre-

sponds to the solution for a transparent slab that does not scatter, we refer to it as the naive

focusing wavefront.

4.2.1.2 Solution for Phase-Only Modulation

Although the full spatial phase and amplitude control is possible, the most widely avail-

able light modulators only allow for phase control. Not surprisingly, there is a great inter-

est in methods for focusing wavefronts via phase-only modulation. While focusing using

phase-only modulators produces results that are suboptimal compared to those produced by

full phase-amplitude modulation schemes, our phase-only modulating methods construct-

ing the desired wavefronts with more than 70% of the focusing intensity of the optimum

ones.

First, we define

a+
1 =

[
a1 a2 . . . aK1

]T
, (4.8)

in which ai is the phase angle of ai, and

ai = |ai| ej ai , i = 1, . . . , K1. (4.9)

Let PK1
1 denote the set of vectors such that ∀ a+

1 = [a1 a2 . . . aK1 ]
T ∈ PK1

1 , we have
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‖a+
1 ‖2 = 1, and |ai| ≡ 1/

√
K1, (i = 1, . . . , K1). Apparently, for arbitrary a+

1

a+
1√
K1

∈ PK1
1 . (4.10)

Alternatively, for arbitrary θ = [θ1 θ2 . . . θK1 ]
T ∈ RK1 , define

p(θ) =
1√
K1

[
ejθ1 ejθ2 . . . ejθK1

]T
, (4.11)

then, p(θ) ∈ PK1
1 . Thus, the corresponding optimization problem leading to maximization

of the total electric field intensity at these q locations via phase-only modulation is

amf,phs = arg max
a+1 ∈P

K1
1

‖ Q · a+
1 ‖2

2 . (4.12)

Unfortunately, Eq. (4.12) does not have a close form solution. In addition, its feasible set is

non-convex, because for θ1 6= θ2 and α ∈ [0, 1], α p(θ1)+(1−α)p(θ2) /∈ PK1
1 . As a result,

we can neither solve it precisely nor solve it via the direct use of sophisticated convex

optimization scheme [72]. A naively approximate solution to Eq. (4.12) is the feasible set

is

amf,phs = p( amf). (4.13)

It is usually called the spherical relaxation [73]. However, this approximation is “loose”.

Here, we consider a “tighter” approximation provided by semidefinite programming (SDP)

[74].

We begin by examining the objective function on the right hand side of Eq. (4.12). Note

that

∥∥Q · a+
1

∥∥2

2
=
(
(a+

1 )H ·QH ·Q · a+
1

)
= Tr

(
QH ·Q · a+

1 · (a+
1 )H

)
,

(4.14)
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where Tr(∗) denotes the trace of its matrix argument. Let us define a new matrix variable

A = a+
1 · (a+

1 )H . Since a+
1 ∈ PK1

1 , A is a rank-one, Hermitian, positive semidefinite

matrix with Aii ≡ 1/K1, (i = 1, . . . , K1). Consequently, starting from Eq. (4.14), we can

formulate an alternative optimization problem:

Aopt = arg max
A∈CK1×K1

Tr
(
Q ·QH · A

)
subject to A = AH , A � 0,

rank(A) = 1,

and Aii = 1/K1 for i = 1, . . . K1,

(4.15)

where the constraints A = AH and A � 0 indicate that A is a Hermitian, positive semidef-

inite matrix. If we can solve Eq. (4.15) exactly, then by construction, we must have

Aopt = amf,phs · aHmf,phs with amf,phs ∈ PK1
1 . As a result, we would have solved Eq. (4.12)

exactly. However, the set of rank one matrices is a non-convex set, since the sum of two

rank one matrices is not necessarily rank one. Thus, the rank constraint in Eq. (4.15) makes

the problem difficult to solve [73], even though the objective function and other constraints

are convex for A.

By eliminating the cumbersome rank-one constraint in Eq. (4.15), we obtain a relaxed

optimization problem, which is the so-called SDP problem [74]

Asdp = arg max
A∈CK1×K1

Tr
(
QH ·Q · A

)
subject to A = AH , A � 0,

and Aii = 1/K1 for i = 1, . . . K1.

(4.16)

This problem can be solved efficiently in polynomial-time [73] using off-the-shelf algo-

rithms, such as CVX [75] or SDPT3 [76]. See Appendix A.1 for details.

If the solution Asdp turns out to be a rank-one matrix, the we have Asdp = Aopt, and
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we have solved the original problem in Eq. (4.12). However, Asdp is typically not of rank

one. Therefore, we propose the following procedure to obtain approximate solutions to the

unrelaxed problem in Eq. (4.15).

Since Asdp is Hermitian and positive semidefinite, it has an eigen-decomposition

Asdp =

K1∑
i=1

λi ui,sdp · uHi,sdp, (4.17)

with λ1 ≥ . . . λK1 ≥ 0. Practically, only the first few eigenvalues λ1, λ2, . . . are significant.

We particularly choose the first eigenvector u1,sdp to construct an approximate solution:

amf,phs,sdp = p ( u1,sdp) . (4.18)

Because the SDP relaxation is a tighter relaxation than the spherical one [73], we expect

amf,phs,sdp to result in higher focus intensity than amf,phs. Note that amf,phs,sdp, given by

Eq. (4.18) is an approximation to the solution of Eq. (4.15); thus, it is not guaranteed to

be the phase-only modulated wavefront that yields the highest focus intensity. However,

it does provide a lower bound on the focus intensity that can be achieved. On the other

hand, the deterministic approximation amf,phs,sdp to the solution of Eq. (4.15) is by no

means the closest approximation. Therefore, we can alternatively consider a randomized

approximation arandmf,phs,sdp produced from Asdp as

arandmf,phs,sdp = p
( (∑K1

i=1

√
λi ui,sdp · uHi,sdp

)
· z
)
, (4.19)

where z = zR +
√
−1 zI . zR, zI ∈ RK1 are i.i.d. random vectors that are normally dis-

tributed with a zero mean and covariance matrix IK1×K1/2.
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4.2.2 Even-Intensity (Fair) Focusing

4.2.2.1 Solution for Phase-Amplitude Modulation

For the multi-foci focusing problem in Eq. (4.4), we aim to maximize the sum of

the field intensity over all foci. Sometimes, this process is not desirable because certain

foci may turn out weak even when the total brightness of all foci achieves a maximum.

Therefore, a more realistic objective function, which imposes a fair focusing constraint on

each individual focus spot, can be stated as

afmf = arg max
‖a+1 ‖2=1

min
i=1,...,q

(
‖C(ri)︸ ︷︷ ︸

:=Qi

·a+
1 ‖2

2

)
. (4.20)

Unfortunately, Eq. (4.20) does not have a close form solution. A simple and practical

approach to finding an approximate solution to Eq. (4.20) is via multiple updates (MLU).

The essence of the proposed MLU scheme lies in updating a wavefront vector iteratively as

(a+
1 )(k+1) = normalize

( q∑
i=1

QH
i ·Qi · (a+

1 )(k)∥∥Qi · (a+
1 )(k)

∥∥
2

)
. (4.21)

The initial (a+
1 )(0) could be a random wavefront, or a candidate solution produced by other

methods. Although the MLU cannot guarantee an optimum solution, the outcome is often

highly satisfactory in practice. A more sophisticated optimization technique is needed if

the MLU fails to provide satisfactory solutions. To handle such situations, we propose a

bisection search scheme in tandem with the SDP solver, as described below.

Following the same rationale for reforming the norm maximization problem in Eq.

(4.12) to the trace maximization problem in Eq. (4.14), we can reform the fair focusing
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problem in Eq. (4.20) as

Aopt = arg max
A∈CK1×K1

min
i=1,...,q

(
Tr
(
QH
i ·Qi · A

))
subject to A = AH , A � 0,

rank(A) = 1,

and Tr(A) = 1,

(4.22)

in which Tr(A) = 1 indicates the power constraint ‖a+
1 ‖2

2 = 1. By introducing an auxiliary

variable η, Eq. (4.22) can be further reformulated as

Aopt = arg max
A∈CK1×K1

η

subject to min
i=1,...,q

(
Tr
(
QH
i ·Qi · A

)) ≥ η

A = AH , A � 0,

rank(A) = 1,

and Tr(A) = 1.

(4.23)

The variables we seek to optimize here are η and A. However, we are only interested in

A when the value of η is maximized. By eliminating the rank-one constraint on A, we

convert the optimization problem into a set of convex feasibility problems, that can be

solved efficiently using SDP algorithms. A bisection search algorithm is adopted to find

the η. This technique is widely used in fractional programming [72, 77].

Let ηopt denote the unknown optimal value of the objective function. Given η∗ ∈ R, if
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the convex problem

find A ∈ CK1×K1

subject to min
i,...,q

(
Tr
(
QH
i ·Qi · A

)) ≥ η∗

A = AH , A � 0,

and Tr(A) = 1,

(4.24)

is feasible, then we conclude that ηopt ≥ η∗. Otherwise, we conclude that ηopt < η∗. Using

this method we establish whether or not the optimal value ηopt is smaller (or larger) than

a given value η∗. This observation motivates us to use a bisection search to find the ηopt

iteratively, and to refine the solution Aopt. In each iteration of the bisection search, we

solve a convex feasibility problem. Algorithm 4.1 demonstrates how this process works.

Here, to obtain the phase-amplitude solution, Eq. (4.24) is the feasibility problem needed

Algorithm 4.1 Bisection search for finding ηopt and the corresponding Aopt

1: Input: ηL = the lower bound of η
2: Input: ηU = the upper bound of η
3: Input: σ = the tolerance for accuracy
4: k = 0
5: while ηU − ηL > σ do
6: k = k + 1
7: η∗ = (ηU + ηL)/2
8: solving the feasibility problem in Eq. (4. XX)
9: if feasible then

10: ηU = η∗

11: else
12: ηL = η∗

13: end if
14: end while
15: Output: Aopt, η

∗

in line 8 of Algorithm 4.1. The initial input ηL and ηU for the fair focusing problem can be

estimated by

ηU = min
i=1,...,q

(
σmax(Qi)

)
, (4.25)
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ηL = max
i=1,...,q

(
σmin(Qi)

)
, (4.26)

in which σmax(Qi) and σmin(Qi) represent the largest and smallest singular values of Qi,

respectively.

After Asdp is found, we proceed with the eigen-decomposition Asdp =
∑K1

i=1 λi ui,sdp ·

uHi,sdp with the eigenvalues arranged as λ1 ≥ . . . λK1 ≥ 0. We can approximate the optimal

solution for this fair focusing problem as

afmf,sdp = u1,sdp. (4.27)

4.2.2.2 Solution for Phase-Only Modulation

Replacing the feasible set
∥∥a+

1

∥∥
2

= 1 in Eq. (4.20) with a+
1 ∈ PK1

1 , we obtain the

optimization problem for phase-only modulation:

afmf,phs = arg max
a+1 ∈P

K1
1

min
i=1,...,q

(
‖Qi · a+

1 ‖2
2

)
. (4.28)

There are two methods for obtaining an approximate solution to the above problem. The

first method involves adding the spherical relaxation in the MLU iteration, as

(a+
1 )(k+1) = p

( (∑q
i=1

Qi·QHi ·(a
+
1 )(k)

‖QHi ·(a+1 )(k)‖
2

))
, (4.29)

If the iteration terminates at step K, the final solution is denoted by afmf,phs,MLU = (a+
1 )(K).

Alternatively, we could generate a solution by formally solving an optimization prob-

lem very similar to that for the phase-amplitude solution in Section 4.2.2.1, viz. the bi-

section search in conjunction with the SDP solver. More specifically, the bisection search

framework elaborated upon in Algorithm 4.1 remains valid here for obtaining a phase-only
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solution. The feasibility problem needed in line 8 of Algorithm 4.1 is

find A ∈ CK1×K1

subject to min
i,...,q

(
Tr
(
QH
i ·Qi · A

)) ≥ η∗

A = AH , A � 0,

and Aii = 1/K1 for i = 1, . . . K1.

(4.30)

We see that this feasibility problem is very similar to that in Eq. (4.24), the only differ-

ence being that the constraint Tr(A) = 1 in Eq. (4.24) changes to Aii = 1/
√
K1 for i =

1, . . . K1. After we obtain anAopt after the bisection search, through its eigen-decomposition

Aopt =
∑K1

i=1 λi ui · uHi , we can arrive at a deterministic approximation for the modal coef-

ficient vector as

afmf,phs,sdp = p ( u1) . (4.31)

or a randomized approximation as

arandfmf,phs,sdp = p
( (∑K1

i=1

√
λi ui · uHi

)
· z
)
. (4.32)

Here, z = zR+
√
−1 zI . zR, zI ∈ RK1 are i.i.d. random vectors that are normally distributed

with a zero mean and covariance matrix IK1×K1/2.

4.3 Multi-Foci Focusing with Contrast

4.3.1 Maximal-Total-Intensity Focusing

4.3.1.1 Solution for Phase-Amplitude Modulation

In addition to creating multiple foci at {r1, r2, . . . , rq}, some applications require that

the focused wavefront avoid creating significant fields at particular spots {s1, s2, . . . , sp}.
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Under such circumstances, the optimization problem for finding the incident wavefront

amfc for phase-amplitude modulation can be expressed as

amfc = arg max
‖a+1 ‖2 6=0

∑q
i=1

∥∥E+
2 (ri)

∥∥2

2∑p
j=1

∥∥E+
2 (sj)

∥∥2

2

= arg max
‖a+1 ‖2 6=0

∑q
i=1

∥∥C(ri) · a+
1

∥∥2

2∑p
j=1

∥∥C(sj) · a+
1

∥∥2

2

= arg max
‖a+1 ‖2 6=0

∥∥Q · a+
1

∥∥2

2∥∥∥∥∥∥[CT (s1) CT (s2) . . . CT (sp)
]T︸ ︷︷ ︸

:=P

· a+
1

∥∥∥∥∥∥
2

2

,

(4.33)

in which P ∈ C3p×K1 . The objective function of Eq. (4.33) has a meaningful solution

only if its denominator is not zero. If matrix P is left-invertible, viz. the columns of P

are linearly independent, we can compute its Moore-Penrose pseudoinverse [69] as P † =

P · (PH · P )−1. Let b = P · a+
1 . Let b = P · a+

1 , and thereby a+
1 = P † · b. Then, Eq. (4.33)

can be written as

amfc = arg max
‖a+1 ‖2 6=0

∥∥Q · a+
1

∥∥2

2∥∥P · a+
1

∥∥2

2

= arg max
‖a+1 ‖2 6=0

(a+
1 )H ·QH ·Q · a+

1

(a+
1 )H · PH · P · a+

1

= arg max
‖b‖2 6=0

bH · (P †)H ·QH ·Q · P † · b
bH · b

= arg max
‖b‖2=1

∥∥Q · P † · b∥∥2

2
.

(4.34)

With the singular value decomposition Q · P † =
∑

i σi ui · vHi , solution of Eq. (4.34) as

amfc = P † · v1. (4.35)

However, in practice, we usually have a small number (p) of spots where field intensities

68



needed to be suppressed. This situation leads to 3p < K1, and consequently matrix P is not

left-invertible. Under such circumstances, we change the objective function in Eq. (4.34)

to

amfc = arg max
a+1 ∈R(Q)

∥∥Q · a+
1

∥∥2

2∥∥P · a+
1

∥∥2

2
+ ε2

∥∥Q · a+
1

∥∥2

2

= arg max
a+1 ∈R(Q)

∥∥Q · a+
1

∥∥2

2∥∥∥[P T , ε ·QT
]T · a+

1

∥∥∥2

2

,

(4.36)

whereR(Q) denotes the range of matrixQ [78], and ε is a small positive number. A simple

and practical approximate solution to Eq. (4.36) can be obtained through the singular value

decomposition of the composite matrix:

D =

NH(P )

ε ·Q

 (4.37)

in which N (P ) is the null space of matrix P . Specifically, for D =
∑

i σi ui · vHi , we have

amfc = v1. (4.38)

In practice, the null space of P and Q rarely overlap and thus amfc = v1 is very unlikely to

cause the denominator of Eq. (4.36) to vanish.

4.3.1.2 Solution for Phase-Only Modulation

Similar to the non-contrast focusing problem, an approximation solution to

amfc,phs = arg max
a+1 ∈P

K1
1

∥∥Q · a+
1

∥∥2

2∥∥P · a+
1

∥∥2

2

, (4.39)
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involves applying the spherical relaxation to amfc:

amfc,phs = p( amfc), (4.40)

However, if we want a “tighter” approximation, the SDP technique should be used. Here,

we proposed a method using the bisection search and SDP solver, which is very similar to

the method we used to tackle the non-contrast fair focusing problem in Sections 4.2.2.1 and

4.2.2.2.

The right hand side of Eq. (4.39) can be rewritten as follows:

arg max
a+1 ∈P

K1
1

∥∥Q · a+
1

∥∥2

2∥∥P · a+
1

∥∥2

2

= arg max
a+1 ∈P

K1
1

(a+
1 )H ·QH ·Q · a+

1

(a+
1 )H · PH · P · a+

1

= arg max
a+1 ∈P

K1
1

Tr
(
QH ·Q · a+

1 · (a+
1 )H

)
Tr
(
PH · P · a+

1 · (a+
1 )H

) . (4.41)

Let A = a+
1 · (a+

1 )H ; clearly, A is a rank-one Hermitian, positive semidefinite matrix. For

phase-only modulation, the feasible set a+
1 ∈ PK1

1 manifests itself inA asAii = 1/K1, (i =

1, . . . , K1). Hence, the equivalent optimization problem for A is

Aopt = arg max
A∈CK1×K1

Tr
(
QH ·Q · A

)
Tr (PH · P · A)

subject to A = AH , A � 0,

rank(A) = 1,

and Aii = 1/K1 for i = 1, . . . K1.

(4.42)

Eq. (4.42) is very similar to the trace quotient problem but with more restraints on A, and

it does not have a closed form solution.

The following reformulation is similar to that for the non-contrast fair focusing prob-
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lem. By introducing an auxiliary variable η, the problem in Eq. (4.42) is equivalent to

Aopt = arg max
A∈CK1×K1

(η)

subject to Tr
(
QH ·Q · A

)
≥ η · Tr

(
PH · P · A

)
A = AH , A � 0,

rank(A) = 1,

and Aii = 1/K1 for i = 1, . . . K1.

(4.43)

Furthermore, by dropping the rank-one constraint, we convert the above optimization prob-

lem into a set of convex feasibility problems with a given η∗ ∈ R:

find A ∈ CK1×K1

subject to Tr
(
QH ·Q · A

)
≥ η∗ · Tr

(
PH · P · A

)
A = AH , A � 0,

and Aii = 1/K1 for i = 1, . . . K1.

(4.44)

If Eq. (4.44) is feasible, we have ηopt ≥ η∗; otherwise ηopt < η∗. The subsequent bisec-

tion search procedure is the same as that of Algorithm 4.1; we only change the feasibility

problem in line 8 in Eq. (4.44).

The initial input ηL and ηU can be estimated by the theorem given in [79]. Specifically,

let λ1(S) ≥ λ2(S) ≥ . . . ≥ λK1(S) denote the sorted (largest to smallest) eigenvalues of

Hermitian, positive semidefinite matrix SK1×K1 . In addition, if rank(A) = d, then we have

max Tr (S · A) ≤ 1

d

d∑
i=1

λi(S), (4.45)

min Tr (S · A) ≥ 1

d

d∑
i=1

λM−i+1(S), (4.46)

in which the equal sign can be achieved if A can be decomposed as A = W ·WH , where
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W is a K1 × d matrix and d · (WH ·W ) = Id ×d. Actually, this constraint on A is looser

than that in Eq. (4.44); thus, we confidently make the following initialization

ηU =

∑d
i=1 λi(Q

H ·Q)∑d
i=1 λK1−i+1(PH · P )

, (4.47)

ηL =

∑d
i=1 λK1−i+1(QH ·Q)∑d

i=1 λi(P
H · P )

. (4.48)

The above approach and conclusion are only valid for Tr
(
PH · P · A

)
6= 0. Otherwise,

ηU does not exist (tends to infinity). Hence, if Tr
(
PH · P · A

)
= 0 occurs, we make the

replacement:

P →

 P

ε · N (P )

 = R (4.49)

whereN (P ) is the null space of P , and ε is a small real number. Consequently, the convex

feasibility problem of Eq. (4.44) becomes

find A ∈ CK1×K1

subject to Tr
(
QH ·Q · A

)
> η∗ · Tr

(
RH ·R · A

)
A = AH , A � 0,

and Aii = 1/K1 for i = 1, . . . K1,

(4.50)

in which RH ·R is not singular, thereby rendering a meaningful solution to ηopt.

After Aopt is found, we proceed with the eigen-decomposition Aopt =
∑K1

i=1 λi ui · uHi

with the eigenvalues arranged as λ1 ≥ . . . λK1 ≥ 0. 0. We then obtain a deterministic

approximation for the modal coefficient vector as

amfc,phs,sdp = p ( u1) . (4.51)
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or a randomized approximation as

arandmfc,phs,sdp = p
( (∑K1

i=1

√
λi ui · uHi

)
· z
)
. (4.52)

Here, z = zR+
√
−1 zI . zR, zI ∈ RK1 are i.i.d. random vectors that are normally distributed

with zero mean and covariance matrix IK1×K1/2. Eq. (4.52) provides a stable and near-

optimum solution on average.

4.3.2 Even-Intensity (Fair) Focusing

4.3.2.1 Solution for Phase-Amplitude Modulation

For phase-amplitude modulation, the fair focusing problem with contrast can be stated

as

afmfc = arg max
‖a+1 ‖2=1

min
i=1,...,q

(∥∥Qi · a+
1

∥∥2

2∥∥P · a+
1

∥∥2

2

)
. (4.53)

It is essentially a fractional programming problem that can be solved via bisection search

as well. Specifically, let A = a+
1 ·(a+

1 )H be a rank-one, Hermitian and positive semidefinite

matrix. Then, the equivalent optimization problem for Eq. (4.53) is

Aopt = arg max
A∈CK1×K1

min
i=1,...,q

(
Tr
(
QH
i ·Qi · A

)
Tr (PH · P · A)

)

subject to A = AH , A � 0,

rank(A) = 1,

and Tr(A) = 1.

(4.54)

Again, to avoid the situation of Tr
(
PH · P · A

)
= 0, we replace the matrix P with the

matrix R defined in Eq. (4.49). By dropping the rank-one constraint, the corresponding
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convex feasibility problem for a given contrast ratio η∗ is

find A ∈ CK1×K1

subject to min
i=1,...,q

(
Tr
(
Qi ·QH

i · A− η∗R ·RH · A
)) ≥ 0

A = AH , A � 0,

and Tr(A) = 1

(4.55)

Replacing the feasibility problem in line 8 of Algorithm 4.1 with Eq. (4.55), the maximal

feasible η∗ can be approached by implementing the bisection search in the same way as

above. The corresponding approximate solution to afmfc is denoted by afmfc,sdp.

4.3.2.2 Solution for Phase-Only Modulation

By changing the feasible set
∥∥a+

1

∥∥
2

= 1 in Eq. (4.53) to a+
1 ∈ PK1

1 , we reach the

corresponding optimization problem for phase-only modulation as

afmfc,phs = arg max
a+1 ∈P

K1
1

min
i=1,...,q

(∥∥Qi · a+
1

∥∥2

2∥∥P · a+
1

∥∥2

2

)
. (4.56)

Similar to the case of fair-contrast focusing for phase-amplitude modulation, letting A ≈

a+
1 · (a+

1 )H with the relaxation on the rank constraint, and replacing matrix P with matrix

R, we obtain the corresponding matrix optimization problem:

Aopt = arg max
A∈CK1×K1

min
i=1,...,q

(
Tr
(
QH
i ·Qi · A

)
Tr (RH ·R · A)

)

subject to A = AH , A � 0,

and Aii = 1/K1 for i = 1, . . . K1.

(4.57)

This problem can also be solved via the bisection search approach. After Aopt obtained,

with the eigen-decomposition Aopt =
∑K1

i=1 λi ui · uHi where the eigenvalues arranged as

λ1 ≥ . . . λK1 ≥ 0, we can reach a deterministic approximation for the modal coefficient

74



vector as

afmfc,phs,sdp = p ( u1) . (4.58)

or a randomized approximation as

arandfmfc,phs,sdp = p
( (∑K1

i=1

√
λi ui · uHi

)
· z
)
, (4.59)

where z = zR +
√
−1 zI . zR, zI ∈ RK1 are i.i.d. random vectors that are normally dis-

tributed with zero mean and covariance matrix IK1×K1/2.

4.4 Summary of Focusing Methods

Tables 4.1 and 4.2 summarize the objective functions and available solutions for differ-

ent focusing conditions and interests.

Table 4.1: Objective functions and solutions for multi-foci focusing without contrast

contrast
option without contrast

focusing
preference

maximal
total-intensity

even-intensity
(fair)

modulation
option phase-amplitude phase-only phase-amplitude phase-only

objective
function

Eq. (4.4) Eq. (4.12) Eq. (4.20) Eq. (4.28)

solution

amf in Eq. (4.5)
close form

amf,phs in Eq. (4.13)
spherical relaxation

afmf,MLU in Eq. (4.21)
MLU solution

afmf,phs,MLU in Eq. (4.29)
MLU solution

amf,phs,sdp in Eq. (4.18)
SDP solution
deterministic

afmf,sdp in Eq. (4.27)
SDP solution
deterministic

afmf,phs,sdp in Eq. (4.31)
SDP solution
deterministic

arandmf,phs,sdp in Eq. (4.19)
SDP solution
randomized

arandfmf,phs,sdp in Eq. (4.32)
SDP solution
randomized

4.5 Numerical Simulations

To investigate the performance of the proposed multi-foci focusing algorithms, we test

them on a random media model in Figure 3.1. This random media model is a periodic
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Table 4.2: Objective functions and solutions for multi-foci focusing with contrast

contrast
option with contrast

focusing
preference

maximal
total-intensity

even-intensity
(fair)

modulation
option phase-amplitude phase-only phase-amplitude phase-only

objective
function

Eq. (4.34)
or Eq. (4.36)

Eq. (4.39) Eq. (4.53) Eq. (4.56)

solution

amfc in Eq. (4.35)
close form

amfc,phs in Eq. (4.40)
spherical relaxation

or amfc in Eq. (4.38)
close form

amfc,phs,sdp in Eq. (4.51)
SDP solution
deterministic

afmfc,sdp in Eq. (4.55)
SDP solution
deterministic

afmfc,phs,sdp in Eq. (4.51)
SDP solution
deterministic

arandmfc,phs,sdp in Eq. (4.52)
SDP solution
randomized

arandfmfc,phs,sdp in Eq. (4.59)
SDP solution
randomized

multi-layer slab. The specific parameters are Dx = Dy = 7.58λ, l = 4.0λ, K1 = 354. The

number of layers is Nc = 600, where λ denotes the wavelength of the EM wave. We com-

pute its scattering matrix via a highly-accurate, IE-based 3D solver that characterizes the

field scattered from each scatterer. The periodic 3D Green’s function is evaluated rapidly

by using a recursive Shanks transformation. Care is taken to ensure 6 digit accuracy in the

calculation of each entry of the scattering matrix.

For the multi-foci focusing problem without contrast, we aim for 12 foci that form a

“C” shape on the xy plane located 2.0λ behind the slab (Region 2). By applying different

focusing algorithms proposed for different conditions and preferences, we obtain the corre-

sponding focused wavefronts and reconstruct the electric field intensity on the plane where

the foci reside. Field intensities demonstrate the efficacy of each algorithm. For each result,

we also provide the value of the ‖Q · a+
1 ‖2 and the minimal focusing intensity among the

12 foci mini=1,...,q

(
‖Qi · a+

1 ‖2

)
.

First of all, we excite the slab from Region 1 with the naive focusing wavefront anmf as if

no slab is present. The electric field intensity on the focal plane is shown in Figure 4.1a. The

expected foci are marked by squares. As can be seen, all foci are hard to distinguish from

the background noise, because the focused wavefront is completely distorted by the slab.
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However, if we excite the slab with the optimized amf from Eq. (4.5), a clear “C” shape

appears on the focal plane, as shown in Figure 4.1b. Nevertheless, the focus intensities

(a) anmf (b) amf

Figure 4.1: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2) due
to (a) anmf , obtaining ‖Q ·anmf‖2 = 3.9722 and mini=1,...,q ‖Qi ·anmf‖2 = 0.70575; (b) amf ,
obtaining ‖Q · amf‖2 = 17.5863 and mini=1,...,q ‖Qi · amf‖2 = 1.9229.

among the 12 foci are highly uneven. Some foci on the left side are remarkably weaker

than others. We apply the even-intensity (fair) focusing optimizer via bisection search and

SDP from Eq. (4.27). All foci become even as shown in Figure 4.2. Comparing to the

previous one, the minimal focusing intensity of individual spot among the 12 foci has been

enhanced more than 2-fold (from 1.9229 to 5.0153), while the overall focusing intensity

has barely changed (17.5864 vs. 17.3735). For reference, Figure (4.3a) and Figure (4.3b)

illustrate the results of the MLU optimized fair focusing wavefronts initialized with anmf

and amf , respectively. The number of MLU iterations is set to 100. We see that different

initializations do not affect the final results much. The MLU algorithm performs well with

results only slightly inferior to that of the bisection search + SDP method in this particular

example.

Next, we check the efficacy of focused wavefronts for phase-only modulation. Figure
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Figure 4.2: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2) due
to afmf,sdp, obtaining ‖Q · afmf,sdp‖2 = 17.3735 and mini=1,...,q ‖Qi · afmf,sdp‖2 = 5.0153.

(a) afmf,MLU initialized with anmf (b) afmf,MLU initialized with amf

Figure 4.3: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2) due
to (a) afmf,MLU initialized with anmf , obtaining ‖Q · afmf,MLU‖2 = 17.4469 and mini=1,...,q

‖Qi · afmf,MLU‖2 = 4.6693; (b) afmf,MLU initialized with amf , obtaining ‖Q · afmf,MLU‖2 =
17.4474 and mini=1,...,q ‖Qi · afmf,MLU‖2 = 4.6724.

(4.4) shows the result of amf,phs from simple spherical relaxation based on amf . By contrast,

the results from the SDP solver, amf,phs,sdp and arandmf,phs,sdp, are presented in Figure 4.5a and
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Figure 4.4: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2) due
to amf,phs, with ‖Q · amf,phs‖2 = 13.8183 and mini=1,...,q ‖Qi · amf,phs‖2 = 2.4301.

4.5b, respectively.

(a) amf,phs,sdp (b) arandmf,phs,sdp

Figure 4.5: Electric field intensity on the (x, y, 2λ) plane behind the slab (in region
2) due to (a) amf,phs,sdp, obtaining ‖Q · amf,phs,sdp‖2 = 15.1189 and mini=1,...,q ‖Qi ·
amf,phs,sdp‖2 = 1.8218; (b) arandmf,phs,sdp, obtaining ‖Q · arandmf,phs,sdp‖2 = 14.8613 and mini=1,...,q

‖Qi · arandmf,phs,sdp‖2 = 2.1285.

We see that the overall focus intensities from the SDP solutions are modestly superi-
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ority to the spherical relaxation solution (15.1189 and 14.8613 over 13.8183). The results

for even-intensity (fair) focusing wavefronts for phase-only modulation are shown in Figs.

4.6a and 4.6b. Compared to the results of amf,phs,sdp and arandmf,phs,sdp in Figs. 4.5a and 4.5b,

the additional even-intensity enforcement does not induce “fairness” on the focusing inten-

sity. However, if we apply the MLU algorithm to generate the corresponding fair focusing

(a) afmf,phs,sdp (b) arandfmf,phs,sdp

Figure 4.6: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region
2) due to (a) amf,phs,sdp, obtaining ‖Q · amf,phs,sdp‖2 = 15.1189 and mini=1,...,q ‖Qi ·
amf,phs,sdp‖2 = 1.8218; (b) arandmf,phs,sdp, obtaining ‖Q · arandmf,phs,sdp‖2 = 14.8613 and mini=1,...,q

‖Qi · arandmf,phs,sdp‖2 = 2.1285.

wavefronts for the phase-only modulation, the result is much better, as shown in Figs. 4.7a

and 4.7b. Each of the figures is the result of the MLU algorithm working on the initial-

ization amf,phs and amf,phs,sdp, respectively. Apparently, this case differs from the case of

fair focusing for phase-amplitude modulation. In fair focusing for phase-only modulation,

the MLU algorithm does a better job than the bisection + SDP method. Again, different

initializations do not seem to affect the MLU results much.

For the multi-foci focusing problem with contrast, we seek a set of desired foci forming

a circle with another set of spots —- where field intensities need to be suppressed —- dis-
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(a) afmf,phs,MLU initialized with amf,phs (b) afmf,phs,MLU initialized with amf,phs,sdp

Figure 4.7: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2)
due to (a) afmf,phs,MLU initialized with amf,phs, obtaining ‖Q · afmf,phs,MLU‖2 = 14.3852
and mini=1,...,q ‖Qi · afmf,phs,MLU‖2 = 3.6328; (b) afmf,phs,MLU initialized with amf,phs,sdp,
obtaining ‖Q · afmf,phs,MLU‖2 = 14.3724 and mini=1,...,q ‖Qi · afmf,phs,MLU‖2 = 3.6507.

tributed in the gaps of the foci and forming a concentric ring. First, we use a non-contrast

focusing method; in essence, the solution amf of the maximal-total-intensity focusing prob-

lem for phase-amplitude modulation is used to focus on the desired foci. The result is

shown in Figure 4.8. In this figure, the desired foci are marked by squares, while the spots

where fields need to be suppressed are marked by circles. We see that many unwanted foci

appear near the circles, mainly due to the complicated interference of EM waves arriving at

the focal plane from all directions. On the other hand, the result from the contrast focusing

wavefront amfc generated via Eq. (4.36) completely suppresses the fields on the circular

spots, as shown in Figure 4.9a. For wavefront amfc, the total field intensity among the sup-

pressed spots ‖P · amfc‖2 = 5.203 × 10−15 is practically zero. Moreover, by adding the

even-intensity constraint to this phase-amplitude contrast focusing problem, the obtained

wavefront afmf,sdp from the bisection search + SDP method in Eq. 4.55 results in even

better overall focusing intensity. It also achieves better fairness of the focusing intensities
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Figure 4.8: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2)
due to amf , obtaining ‖Q · amf‖2 = 16.9994, ‖P · amf‖2 = 12.4216 and mini=1,...,q ‖Qi ·
amf,phs‖2 = 4.0698.

among the foci, as demonstrated in Figure 4.9b. In the case of contrast focusing for phase-

only modulation, Figure 4.10 presents the result of amfc,phs, the spherical relaxation from

amfc. Obviously, the spherical relaxation is not performing well w.r.t. maintaining field in-

tensities at the foci. Instead, the amfc,phs,sdp and arandmfc,phs,sdp obtained from bisection search +

SDP method result in better focusing intensity, as shown in Figs. 4.11a and 4.11b, respec-

tively. Furthermore, by enforcing the even-intensity request, the afmfc,phs,sdp and arandfmfc,phs,sdp

obtained from Eq. (4.31) and Eq. (4.32) result in slightly better outcomes with regard to the

fairness of the focusing intensities among the foci, as shown in Figure (4.12a) and Figure

(4.12b), respectively.

Lastly, we investigate how the thickness L of the random medium (multi-layer slab)

affects the performance of the proposed multi-foci focusing algorithms. To do so, we

inspect the focusing intensity, contrast ratio, and focusing fairness for the corresponding

focusing methods as a function of L. In the following study, we continue to employ the

C-shape arranged foci case for non-contrast focusing, and the circularly arranged foci (and
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(a) amfc (b) afmfc,sdp

Figure 4.9: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2) due
to (a) amfc, obtaining ‖Q · amfc‖2 = 11.6216, ‖P · amfc‖2 = 5.203 × 10−15 and mini=1,...,q

‖Qi · amfc‖2 = 2.5026; (b) afmfc,sdp, obtaining ‖Q · afmfc,sdp‖2 = 14.3724, ‖P · afmfc,sdp‖2 =
7.3774× 10−6 and mini=1,...,q ‖Qi · afmfc,sdp‖2 = 4.2923.

suppressed spots) case for contrast focusing. The thickness of the slab L ranges from 320λ

to 3.52× 104λ, as the corresponding number of periodic layers ranges from 80 to 8, 800.

For non-contrast focusing, Figure 4.13a shows the average relative focusing intensity

with respect to that achieved by amf for anmf , amf,phs, amf,phs,sdp and arandmf,phs,sdp, as a function

of L. We see that all three optimized focusing wavefronts overwhelmingly perform bet-

ter than the naive focusing wavefront. For phase-only modulation, the solution amf,phs,sdp

form the SDP solver is slightly superior to amf,phs resulting from spherical relaxation. In-

spection of the fairness of different focusing methods is shown in Figure 4.13b. Here, the

fairness is defined as the minimal field intensity among all foci divided by the maximal

field intensity observed at one of them. We see that enforcing the even-intensity condition

substantially improves the fairness of the focusing for all fair focusing methods — even

though increasing the thickness of the media slowly deteriorates the results. For phase-

amplitude modulation, the bisection search + SDP method obtains better results than the
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Figure 4.10: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2)
due to amfc,phs, obtaining ‖Q · amfc,phs‖2 = 8.9757, ‖P · amfc,phs‖2 = 3.2421 and mini=1,...,q

‖Qi · amf,phs‖2 = 1.6826.

MLU method. However, for phase-only modulation, the pattern is the other way around:

the MLU method does a better job than the bisection search + SDP method.

For contrast focusing, we check the achieved contrast ratio for the optimized wave-

fronts amfc,phs, amfc,phs,sdp and arandmfc,phs,sdp for phase-only modulation. Figure 4.14a shows

the results. Among these methods, amfc,phs,sdp achieves the maximal contrast ratio on aver-

age, but with large uncertainty (variance). For phase-amplitude modulation, the optimized

wavefronts, amfc and afmfc,sdp always generate nearly zero field intensity at the spots where

fields are suppressed, viz., ‖P · a+
1 ‖2 ≈ 0. They do so despite the thickness for all real-

izations of the random media. Hence, their contrast ratios tend to infinity and therefore are

not presented in the figure. The fairness of several contrast focusing methods is demon-

strated in Figure 4.14b. As shown in the figure, by enforcing the even-intensity condition,

fairness reaches a three-fold improvement for phase-amplitude modulated wavefronts and

a two-fold improvement in phase-only modulated wavefronts.
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(a) amfc,phs,sdp (b) arandmfc,phs,sdp

Figure 4.11: Electric field intensity on (x, y, 2λ) plane behind the slab (in Region 2) due
to (a) amfc,phs,sdp, obtaining ‖Q · amfc,phs,sdp‖2 = 13.1945, ‖P · amfc,phs,sdp‖2 = 1.3182 and
mini=1,...,q ‖Qi · amfc,phs,sdp‖2 = 1.9909; (b) arandmfc,phs,sdp, obtaining ‖Q · arandmfc,phs,sdp‖2 =

12.8231, with mini=1,...,q ‖Qi · arandmfc,phs,sdp‖2 = 2.786 and ‖P · arandmfc,phs,sdp‖2 = 1.8199.

4.6 Conclusion

This chapter presented a comprehensive set of focusing schemes for creating multi-

ple foci for non-contrast and contrast optimization problems, with a preference for max-

total-intensity vs. even-intensity, and for phase-amplitude and phase-only modulators. Nu-

merical results for two focusing arrangements —- “C”-shape foci and circularly arranged

foci/suppressing-spots —- demonstrate the efficacies of the proposed schemes. Numerical

experiments on focusing/suppressing fields on the circularly arranged spots also demon-

strate the necessity of the contrast focusing schemes. When inspecting how the thickness

of the random media affects the efficacies of the proposed schemes, we see that they remain

performant for very thick media; in our thickness-related study, the thickness of the media

was as large as 3.52× 104λ, or 8800 periodic layers.
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(a) afmfc,phs,sdp (b) arandfmfc,phs,sdp

Figure 4.12: Electric field intensity on the (x, y, 2λ) plane behind the slab (in Region 2)
due to (a) afmfc,phs,sdp, obtaining ‖Q · afmfc,phs,sdp‖2 = 12.9198, ‖P · afmfc,phs,sdp‖2 = 1.2077
and mini=1,...,q ‖Qi · afmfc,phs,sdp‖2 = 1.5666; (b) arandfmfc,phs,sdp, obtaining ‖Q · arandfmfc,phs,sdp‖2 =

12.1399, ‖P · arandfmfc,phs,sdp‖2 = 1.9119 and mini=1,...,q ‖Qi · arandfmfc,phs,sdp‖2 = 2.396.
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Figure 4.13: Intensity and fairness inspection for non-contrast focusing methods.
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Figure 4.14: Contrast ratio and fairness inspection for contrast focusing methods.
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CHAPTER 5

Methods for Retrieving the Transmission

Characteristics of Random Media

5.1 Introduction

Wavefront shaping requires knowledge of the transmission characteristics of the target

medium; hence, measuring or computing these characteristics is a prerequisite for further

optical applications. Figure 5.1 illustrates a setup for measuring the transmission character-

istics of a random media by using an ultrasound transducer. An SLM is used to modulate

and send wavefronts to the target medium. In addition, the ultrasonic transducer also sends

a wave into the medium to detect the transmitted EM field inside or behind the medium due

to the incident wavefront. This transmitted field is linearly related to the incident wavefront;

thus, when collecting the information of the transmitted field and the incident wavefront,

we are able to estimate the transmission characteristics of that medium along with its lin-

ear/algebraic representation, such as the measurement matrix Q defined in Eq. (4.2), or the

transmission matrix defined in Eq. (2.25). By manipulating these matrices, we then can

find a wavefront that can pass through the medium’s open channels, and use the SLM to

synthesize such optimized wavefront.

Accurate, efficient, and convenient approaches for measuring the transmitted field and

retrieving the transmission characteristics of random media therefore are of great impor-

tance to all optical techniques involving wavefront sensing. In this chapter, we introduce
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Measuring information of 
transmitted field

Calculating the algebraic 
representation of transmission 
characteristics (e.g. transmission 
matrix or measurement matrix )  

Finding open channels of the 
target medium  

Synthesizing the optimized 
wavefront

Figure 5.1: Illustration of measuring the transmitted field and retrieving the transmission
characteristics of the target media by using an ultrasound transducer. This figure is adopted
from [1].

several methods for retrieving the transmission characteristics of the target medium in two

scenarios: 1) retrieving the measurement matrix Q through intensity-only field measure-

ment; and 2) retrieving the transmission matrix S21 through backscattering analysis. There

is an important motivation for retrieving Q via intensity-only measurements: compared to

full phase-amplitude measurements of the transmitted field, intensity-only measurements

are simpler and can be performed in practice by many off-the-shelf optical devices. Here,

we proposed three algorithms: alternating minimization, Phase-Lift, and Phase-Cut. The

motivation for retrieving S21 via backscattering analysis is that the common ways of mea-

suring the transmitted field are usually inconvenient or invasive; they are particular unsuit-

able for biomedical applications. These measurement methods require deploying an extra

field detector such as the ultrasound transducer illustrated in Figure 5.1, or injecting radia-

tion sources inside the media, such as fluorescent microspheres; by reciprocity, we measure

the transmitted field outside the medium due to the sources inside the medium. Therefore,

retrieving S21 via backscattering analysis has many benefits. Section 5.3 will elaborate on
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the mechanics of backscattering analysis. In this category, we propose two algorithms: the

alternating minimization and proximal gradient.

5.2 Retrieving the Measurement MatrixQ through Intensity-

Only Measurement

The measurement matrix Q defined in Eq. (4.2) is essentially a stack of the coordinate

matrices of q measurement spots multiplying the transmission matrix S21. For a given

incident wavefront a+
1 with matrix Q we obtain the complex amplitudes of transmitted

fields as

e(r1:q) = Q · a+
1 . (5.1)

Meanwhile, if there are n different incident wavefronts, we have n different transmitted

fields as

[e1, . . . , en]︸ ︷︷ ︸
:=E

= Q ·
[
(a+

1 )1, . . . , (a
+
1 )n
]︸ ︷︷ ︸

:=A

. (5.2)

When n ≥ K1 and E can be measured accurately, i.e. when the amplitude and phase of the

transmitted field at the q spots can be measured accurately, then retrieving Q is as simple

as solving the linear equation

Q = E · A†, (5.3)

where A† is the Moore-Penrose pseudoinverse of A. However, retrieving Q is not straight-

forward if we can only measure the amplitude (intensity) of the transmitted field; in essence,

we can only obtain |E| instead of E. Consider the matrix Q̂ which has row-wise phase am-

biguity relative to the “true” Q as

|E| = |Q̂ · A|, (5.4)
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where

Q̂ =


ejθ1

. . .

ejθ3q

 ·Q. (5.5)

θi, i = 1, . . . , 3q are arbitrary in general. We naturally end up with a phase retrieval problem

commonly encountered in many scientific and engineering applications. Here, we propose

three algorithms to tackle this problem: alternating minimization, Phase-Lift, Phase-Cut.

5.2.1 Alternating Minimization (Retrieving Q)

Alternating minimization (Alt-Min) originates from the pioneering work of Gerchberg

[80] and Fienup [81]. Many researchers recently used this algorithm in applications related

to signal processing, imaging, and matrix completion [82–85]. This method employs an

alternating projection iteratively between the unknown phases of the measurements (phase

of the E field) and the unknown underlying vector(s) (measurement matrix Q̂). Although

there are few theoretical guarantees for the convergence of Alt-Min, this method performs

very well empirically. Specifically, by chopping up Q̂ row-wisely as

Q̂ =



q̂T
1

q̂T
2

...

q̂T
3q


∈ C3q×K1 , (5.6)

and chopping up ET column-wisely as

|ET | =
[
|e1|, |e2|, . . . , |e3q|

]
∈ Rn×3q, (5.7)
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we obtain the linear equation

diag(|ei|) · di = AT · q̂
i
, (i = 1, . . . , 3q). (5.8)

Here, the di are the phase unknowns, i.e. they form a Cn vector with a unit absolute value

for each entry. In the following, we omit the subscript i and use
{
q̂, |e|, d

}
to denote the

data/solution set applied to any i-th column/row of the original matrix. Finding d and q̂

means solving the minimization problem

arg min
|d|=1, q̂

∥∥AT · q̂ − diag(|e|) · d
∥∥

2
. (5.9)

We note that once d is given, solving q̂ is a standard least square minimization problem. On

the other hand, if q̂ is given, the optimal d is determined by d = exp(j AT · q̂). Algorithm

5.1 iteratively refines the solution q̂ and d. In practice, initializing q̂0 to be the leading

Algorithm 5.1 Alternating minimization for finding q̂

Input: A, |e| and kmax

Initialize: q̂0

for k = 1 : kmax do
dk := exp

(
j AT · q̂k−1

)
q̂k = (AT )† · diag(|e|) · dk

end for
Output: q̂ = qkmax

eigen-vector of matrix S = A · diag(|e|2) · AT helps with convergence.

5.2.2 Phase-Lift

To use the Phase-Lift method, we first reformulate the phase retrieval problem as an

optimization problem for finding a rank-one matrix. Specifically, since

|e|2 = |AT · q̂|2 = diag
(
A∗ · AT · q̂ · q̂H

)
, (5.10)
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we can replace q̂ · q̂H with a Hermitian matrixX of rank one. Therefore, the previous phase

retrieval problem is equivalent to the following problem:

find X ∈ CK1×K1

subject to diag
(
A∗ · AT ·X

)
= |e|2,

X � 0.

rank(X) = 1.

(5.11)

However, the rank-one constraint is non-convex, turning the above problem in general NP-

hard. Therefore, we relax it to a trace minimization problem as

arg min
X∈CK1×K1

Tr(X)

subject to diag
(
A∗ · AT ·X

)
= |e|2,

X � 0.

(5.12)

This is a canonical convex optimization problem and can be solved efficiently by any SDP

solver. After X is found, we proceed with the eigen-decomposition X =
∑K1

i=1 λi ui · uHi ,

and q̂ =
√
λ1u1 is the approximated solution (or exact solution if rank(X) = 1). The

number of required measurements n for obtaining a unique solution is n = c0K1 logK1,

where c0 is a sufficiently large constant.

5.2.3 Phase-Cut

Similar to the Phase-Lift method, the Phase-Cut method also transforms the phase re-

trieval problem to a convex optimization problem. In the Phase-Cut method, however, the

optimizing variable is the phase of |e| instead of the vector q̂. Starting with Eq. (5.9), if d is

given, the optimal q is given by q = (AT )† · diag(|e|) · d. Thus, the phase retrieval problem
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is equivalent to

arg min
|d|=1

∥∥(A† · A)T · diag(|e|) · d− diag(|e|) · d
∥∥2

2
, (5.13)

Here, the objective function can be rewritten as

∥∥(A† · A)T · diag(|e|) · d− diag(|e|) · d
∥∥2

2

=
∥∥((A† · A)T − I

)
· diag(|e|) · d

∥∥2

2

=dH · diag(|e|) · M̃ · diag(|e|) · d,

(5.14)

where M̃ =
(
(A† ·A)T − I

)H · ((A† ·A)T − I
)
. By denoting M = diag(|e|) · M̃ ·diag(|e|),

the optimization problem becomes

arg min
d∈Cn

dH ·M · d

subject to |d| = 1.

(5.15)

Because dH ·M · d = Tr(M · d · dH), we replace d · dH by a rank-one Hermitian matrix D.

Thus, Eq. (5.15) can be restated as

arg min
D∈Cn×n

Tr(M ·D)

subject to diag(D) = 1,

D � 0,

rank(D) = 1.

(5.16)
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By dropping the cumbersome rank-one constraint, we obtain a convex optimization prob-

lem:

arg min
D∈Cn×n

Tr(M ·D)

subject to diag(D) = 1,

D � 0.

(5.17)

This problem can be solved by any standard SDP solver. Through the eigen-decomposition

D =
∑n

i=1 λi ui ·uHi , we assign e = diag(|e|) ·exp(j u1) yielding the approximate solution

q̂ = (AT )† · e. (5.18)

Similar to the Phase-Lift method, the number of minimal required measurements to obtain

a unique solution is c0K1 logK1, where c0 is a sufficiently large constant.

5.2.4 Numerical Experiments of Retrieving Matrix Q

The following numerical experiments investigate the accuracy and efficiency of the

three proposed methods for retrieving the measurement matrix Q, which is based on a

random media model with the parameters Dx = Dy = 4.16λ, ` = 4.0λ and Nc = 1, 280.

The number of propagating modes in our mode is K1 = 114.

Figure 5.2 shows the average retrieval error as a function of the relative number of mea-

surements n/K1. The retrieval results are averaged over 250 trials, and each trial represents

a sample of the scattering system of the random medium. As expected, when the number

of measurements n exceeds the number of modes K1 by about a factor of five, all three

algorithms guarantee accurate retrieval. The errors of the Phase-Lift and the Phase-Cut

settle at magnitude of 10−6 ∼ 10−5 and 10−11 ∼ 10−10, respectively. Meanwhile, the

error of the Alt-Min procedure oftentimes reaches machine precision ∼ 10−16. However,

if we proceed with the Alt-Min after the Phase-Lift and the Phase-Cut following their re-
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trieval results, their residual error can be quickly eliminated with only a few iterations, as

demonstrated in 5.2b.
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Figure 5.2: The retrieving accuracy of the three methods versus the relative number of
measurements n/K1 for the measurement matrixQ. (a) With the primitive results of Phase-
Lift and Phase-Cut; (b) With the refined results of Phase-Lift and Phase-Cut by Alt-Min.

Fig. 5.3 shows a heatmap of a trial indicating the retrieving accuracy of Alt-Min as

a function of the relative number of measurements n/K1 and the number of Alt-Min it-

erations. There is a threshold for the number of measurements n required for successful

retrieval. Below that threshold, the Alt-Min cannot converge and obtain a reasonable result,

no matter how many iterations occur. Beyond that threshold, Alt-Min rapidly converges and

guarantees accurate retrieval.

Next, we consider a situation in which the measured |e| is contaminated by noise enoise.

Hence, the actual measured field intensity is |e+enoise|, and the relative noise level is defined

as ‖enoise‖2/‖e‖2. Figure 5.4a and 5.4b present the heatmap of the retrieval accuracy as

functions of the relative number of measurements n/K1 and relative noise level. As shown

in the two figures, when the minimal required number of the measurements is satisfied, the

relative retrieval error is approximately at the same level as the noise. Both the Alt-Min

and the Phase-Cut are workable in the presence of a wide range of relative noise level from
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Figure 5.3: Heatmap of the retrieving accuracy of Alt-Min as a function of the relative
number of measurement n/K1 and the number of Alt-Min iterations

10−15 to about 10−1; thus, these retrieval methods are noise tolerant. However, Phase-Lift

is relatively less noise tolerant. Figure 5.5 shows the maximum noise tolerated by Phase-

Lift for successful retrieval. Within the range of tolerated noise, the retrieval accuracy is

approximately the same level as the noise.

5.3 Retrieving the Transmission Matrix S21 through Backscat-

tering Analysis

In the following sections, we introduce methods for retrieving the transmission ma-

trix S21 through backscattering analysis. In principle, S21 retrieval requires measuring the

transmitted field passing through the random medium. As shown in Figure 5.6, to measure

the transmitted field, one needs to deploy an EM field detector, e.g. an ultrasound trans-

ducer. Alternatively, we might inject a radiating source inside the medium, which in effect

means we measure the transmitted field outside the medium due to a source embedded
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Figure 5.4: The heatmap of the retrieval accuracy as functions of the relative number of
measurements n/K1 and noise level.
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within the medium. These measurement methods are either inconvenient or invasive, and

are particular unsuitable for biomedical applications. Retrieving S21 via backscattering

a second external detector 
(e.g. ultrasound transducer)

injected active source/guide star 
(e.g. fluorescent microspheres) 

Figure 5.6: Illustration of two traditional methods for measuring the transmitted field
passed through a random medium. This figure is adopted from [2].

passive 
guide star

( A )

S21

S12

region 2region 1

a+
1

S11∙ a+
1

S12 ∙ A ∙ S12 ∙ a+
1

Figure 5.7: Sketch of the scattering system involving a passive guide star, which is utilized
to retrieve S21 via backscattering analysis.

analysis avoids these inconveniences. Figure 5.7 illustrates the principle of backscattering

analysis. The incident wavefront illuminates the medium from Region 1: part of the wave

reflects, and part of it passes through the medium and impinges on one or more scatterer(s)

with known scattering characteristics. We call these scatterers passive guide stars or sim-

ply guide stars, as opposed to so-called active guide stars, such as fluorescent microspheres.
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Because these guide stars are not actively radiating, they can be existing tissue (like blood

cells),thereby avoiding invasive implantation. The backscattered wave from these guide

stars travels back into the medium and finally propagates to Region 1. We intend to retrieve

S21 by examining the final backscattered wave that makes the roundtrip. Mathematically,

we can formulate the path traveled by the incident wavefront as follows. We start from

the mediums forward transmission matrix S21 (from Region 1 to Region 2) and backward

transmission matrix S21 (from Region 2 to Region 1) as well as its reflection matrix S11. A

guide star is located behind the random medium in Region 2, and has reflection matrix A.

By shining an incident wavefront a+
1 from Region 1, the total output wavefront observed in

Region 2 is

a−1 = S12 · A · S21 · a+
1 + S11 · a+

1 . (5.19)

In practice, obtaining S11 is straightforward; we measure the backscattering field if no

scatterers are presented in Region 2. Thus, assuming that S11 is known, we can extract the

backscattered wavefront due to the guide star:

a−∗ = a−1 − S11 · a+
1 = S12 · A · S21 · a+

1 . (5.20)

By using the reciprocity S12 = ST21, and replacing a−∗ and a+
1 by y and x, respectively, we

obtain

y = ST21 · A · S21 · x. (5.21)

An extension of Eq. (5.21) involves having multiple independent incident wavefronts

[x1, x2, . . . , xk], and their corresponding backscattering wavefronts
[
y

1
, y

2
, . . . , y

k

]
ob-

tained from measurement, leading to the following matrix equation in t the unknown S21:

[
y

1
, y

2
, . . . , y

k

]
︸ ︷︷ ︸

:=Y

= ST21 · A · S21 · [x1, x2, . . . , xk]︸ ︷︷ ︸
:=X

. (5.22)
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Furthermore, by using multiple guide stars associated with known reflection matrices {A1, A2, . . . , An},

we can form a system of matrix equations as



Y1 = ST21 · A1 · S21 ·X1

Y2 = ST21 · A2 · S21 ·X2

. . . . . .

Yn = ST21 · An · S21 ·Xn

. (5.23)

Here, the {X1, X2, . . . , Xn} can either be identical or different. For each (Ai, Xi, Yi) in

Eq. (5.23) and using a sufficient number of independent incident wavefronts which means

k ≥ K1 we can obtain the matrix ST21 · Ai · S21 = Zi via least squares as

ST21 · Ai · S21 = Yi ·X†i . (5.24)

where X† is the Moore-Penrose pseudo inverse of X . Thus, Eq. (5.23) can be rewritten as

follows: 

Z1 = ST21 · A1 · S21

Z2 = ST21 · A2 · S21

. . . . . .

Zn = ST21 · An · S21

, (5.25)

in which Zi and Ai, (i = 1, . . . , n) are known, and S21 is to be determined. Because Eq.

(5.25) is nonlinear in S21, we do not have a direct solution. In the following sections, we

propose two methods for solving it.

5.3.1 Alternating Minimization (Retrieving S21)

Since Eq. (5.25) is nonlinear, we turn it into an optimization problem with the object

function

arg min
S21

n∑
i=1

∥∥Zi − ST21 · Ai · S21

∥∥
2
. (5.26)
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By replacing S21 and ST21 with P and Q, respectively, we can rewrite the object function as

arg min
P,Q

(∥∥P T −Q
∥∥

2
+

n∑
i=1

‖Zi −Q · Ai · P‖2

)
. (5.27)

In Eq. (5.27), we note that once P is given, we only need to consider the second part of the

minimization problem, i.e.

arg min
P,Q

n∑
i=1

‖Yi −Q · Ai · P‖2, (5.28)

and finding the best Q can be cast as a least square problem. Specifically, since

n∑
i=1

‖Yi −Q · Ai · P‖2

≥
∥∥∥ [Y1 . . . Yn

]︸ ︷︷ ︸
:=Ŷ

−Q ·
[
(A1 · P ) . . . (An · P )

]︸ ︷︷ ︸
:=X̂

∥∥∥
2
,

(5.29)

the best Q for minimizing the right hand side of Eq. (5.29) is

Q = Ŷ · X̂†. (5.30)

Assuming that we have enough independent Ai and Xi to guarantee rank(X̂) = K1. In

order to ensure the first part of Eq. (5.27), once Q is solved via least squares minimization,

we reduce the discrepancy between P and Q by forming a new P :

P := αP + (1− α)QT , (5.31)

in which α is a scalar in (0, 1). Then algorithm to solve Eq. (5.27) iteratively is presented

in Algorithm 5.2.

In Algorithm 5.2, we only solve the least square minimization problem for Q in each

iteration; we therefore call it the unilateral alternating minimization method (UniAlterMin).
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Algorithm 5.2 Unilateral alternating minimization (UniAlterMin)

1: Input: backscattering matrices of guide stars {A1 . . . An}
2: Input: measurements [Y1 . . . Yn] = Ŷ
3: Input: ε = termination condition
4: Input: 0 < α < 1
5: Initialize: P 0

6: k = 0
7: while Eq. (5.27)> ε do
8: X̂ =

[
(A1 · P k) . . . (An · P k)

]
9: Qk = Ŷ · X̂†

10: P k+1 = αP k + (1− α)(Qk)T

11: k = k + 1
12: end while
13: Output: P = P k, Q = Qk

However, we can also find the least square solution for P in each iteration. Specifically, if

Q is given, we have

n∑
i=1

‖Yi −Q · Ai · P‖2 ≥
∥∥∥∥

Y1

...

Yn


︸ ︷︷ ︸
Ŷ

−


Q · A1

...

Q · An


︸ ︷︷ ︸

X̂

·P
∥∥∥∥

2

. (5.32)

Then, the best P for minimizing the right hand size of Eq. (5.32) is

P = X̂† · Ŷ . (5.33)

Combining Eqs. (5.30) and (5.33), we can proceed with the least squares minimization

for both Q and P in each iteration to achieve a better convergence speed. Doing so, the

bilateral alternating minimization (BiAlterMin) in Algorithm 5.3 emerges.
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Algorithm 5.3 Bilateral alternating minimization (BiAlterMin)

1: Input: backscattering matrices of guide stars {A1 . . . An}
2: Input: measurements [Y1 . . . Yn] = Ŷ1, [Y1; . . . ; Yn] = Ŷ2

3: Input: ε = termination condition
4: Input: 0 < α1 < 1, 0 < α2 < 1
5: Initialize: P 0

6: k = 0
7: while Eq. (5.27)> ε do
8: X̂1 =

[
(A1 · P k) . . . (An · P k)

]
9: Q′ = Ŷ1 · X̂†1

10: Qk = (1− α2)(P k)T + α2Q
′

11: X̂2 =
[
(Qk · A1); . . . ; (Qk · An)

]
12: P ′ = X̂†2 · Ŷ2

13: P k+1 = α1P
′ + (1− α1)(Qk)T

14: k = k + 1
15: end while
16: Output: P = P k, Q = Qk

5.3.2 Proximal Gradient

Using basic results from linear algebra, the product of three matrices B · X · C = Y

can be reformulated using Kronecker products as

B ·X · C = Y ⇒ (CT ⊗B) · vec(X) = vec(Y ), (5.34)

where vec(∗) denotes the vectorization of a matrix formed by stacking its columns into a

single column vector, and operator ⊗ denotes the Kronecker product defined as

CT ⊗B =



c1,1B c2,1B . . . cm,1B

c1,2B c2,2B . . . cm,2B

...
... . . . ...

c1,nB c2,nB . . . cm,nB


, (5.35)

in which CT is an n×mmatrix andB is a p×q matrix. Thus, the Kronecker product forms

a np ×mq matrix. Based on Eq. (5.34), the linear systems in Eq. (5.25) can be reformed
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as follows:

(
ST21 ⊗ ST21

)
·
[
vec(A1) vec(A2) . . . vec(An)

]︸ ︷︷ ︸
X̂

=
[
vec(Z1) vec(Z2) . . . vec(Zn)

]︸ ︷︷ ︸
Ŷ

.

(5.36)

Although Eq. (5.36) is a linear system for ST21 ⊗ ST21, we do not intend to solve it directly

since its dimension is K2
1 × K2

1 , which is usually too large for conventional matrix fac-

torization solvers of cubic complexity using limited computational resources. Instead, we

translate Eq. (5.36) into an optimization problem and exploit the property of ST21 ⊗ ST21 to

construct an efficient optimization algorithm.

Although Eq. (5.36) is a linear system regarding ST21⊗ ST21, we do not intend to solve it

directly since its dimension is K2
1 ×K2

1 , which is usually too large for conventional matrix

factorization solvers of cubic complexity on a limited computational resource. Instead, we

are going to translate Eq. (5.36) into an optimization problem and exploit the property of

ST21 ⊗ ST21 to construct an efficient optimization algorithm.

First, considering two matrices B ∈ Cm×n and C ∈ Cp×q, we note that the entries

of B ⊗ C are the distribution of the complete set of elementary product {bi,jck,l|1 ≤ i ≤

m, 1 ≤ j ≤ n, 1 ≤ k ≤ p, 1 ≤ l ≤ q}, and each product is only presented once in B ⊗ C.

Therefore, B ⊗ C has exactly the same elements of that in vec(B) · vecT (C), which is

apparently a rank-one matrix. LetR(∗) denote the element rearrangement operator defined

by

R(B ⊗ C︸ ︷︷ ︸
X

) = vec(B) · vec(C)T . (5.37)

According to the definition of the Kronecker product, X consists of m × n blocks Xi,j ∈
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Cp×q(1 ≤ i ≤ m, 1 ≤ j ≤ n). The precise rearrangement of operatorR is

R(X) =


X1

...

Xn

 , Xj =


vec(X1,j)

T

...

vec(Xm,j)
T

 , (1 ≤ j ≤ n). (5.38)

If X = ST21⊗ST21, then we haveR(X) = vec(ST21) · vec(ST21)T , and consequently,R(X) =

R(X)T . As a result, let S be a K2
1 ×K2

1 matrix; then, S = ST21 ⊗ ST21 is the solution of the

following optimization problem:

arg min
S

∥∥∥S · X̂ − Ŷ ∥∥∥
F

subject to R(S) = R(S)T

rank
(
R(S)

)
= 1.

(5.39)

If for a certain number of guide stars n and associate measurements (viz. the number of

columns of X̂ and Ŷ ) with 1 < n� K2
1 , we find a S̃ satisfying

∥∥∥S̃ · X̂ − Ŷ ∥∥∥
F
< ε, (5.40)

and the S̃ additionally satisfies the two constraints in Eq. (5.39), we can expect that

∥∥∥S̃− ST21 ⊗ ST21

∥∥∥
F
< cε, (5.41)

where c is a non-negative constant. Hence, the approximate solution S̃T21 can be recovered

fromR(S̃) as

S̃T21 = mat(eiθ
√
σ1u1)K1×K1 (5.42)

Here, σ1 and u1 are the largest singular value and the associate left singular vector ofR(S̃).

mat(∗)m×n is the reverse operator of vec(∗) which reshapes the vector into anm×nmatrix

106



in a column-major order. eiθ is a phase shift, and θ is estimated by

θ =
1

2K1

K1∑
i=1

(
v∗i,1 − ui,1

)
, (5.43)

where v∗1 is the conjugate of the largest right singular vector of R(S̃) and ∗ extracts the

phase angle of a complex number. It should be noted that S̃T21 has global ± sign ambiguity

w.r.t. to the “true” ST21,

Still, solving the optimization problem Eq. (5.39) is not an easy task. One particular

difficulty is that the rank-one constraint rank rank
(
R(S)

)
= 1 is not easy to enforce.

Therefore, we relax the rank-one constraint of R(S) to rank minimization, and then relax

it further to its nuclear norm minimization as

rank
(
R(S)

)
= 1

relax−−→ arg min
S

rank
(
R(S)

)
relax−−→ arg min

S
‖R(S)‖∗

(5.44)

Here, ‖X‖∗ is the nuclear norm of matrix X , defined as the sum of Xs singular values.

The minimization of the nuclear norm is considered to be tightest convex relaxation of the

matrix-rank penalty according to recent studies [86]. As a result, the optimization problem

in Eq. (5.39) becomes

arg min
S

1

2

∥∥∥S · X̂ − Ŷ ∥∥∥2

F
+ λ‖R(S)‖∗

subject to R(S) = R(S)T
(5.45)

in which λ is a non-negative weight scalar. We also add a 1/2 coefficient to the first squared

Frobenius norm part as it aids in deriving the proximal gradient algorithm. Despite the

slight relaxation, a significant advantage of the optimization problem in Eq. (5.45) com-

pared to Eq. (5.39) is that the former optimization problem is convex, and hence guaranteed

to be solvable [72].
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The problem in Eq. (5.45) belongs to a larger class of the generic convex optimization

problem that can be solved using off-the-shelf SDP solvers, such as CVX [75]. However,

we do not intend to solve it in such a generic way due to its high computational cost.

The computational complexity of solving S via CVX is O(N4.5), where N here is the

dimension of ST21 ⊗ ST21, which is K2
1 . Such a high complexity would prevent us from

applying the proposed schemes to practical applications even when K1 is as small, say

100. Therefore, we employ the proximal gradient method [87] for solving Eq. (5.45). Let

f(S) = 1
2

∥∥S · X̂ − Ŷ
∥∥2

F
and g(S) = λ‖R(S)‖∗. The iterates of the proximal gradient

scheme, denoted by superscript k, take the following form

Sk = proxtkg
(
Sk−1 − tk∇f(Sk−1)

)
. (5.46)

Here, the proximity function is defined as

proxtkg(S
′) = arg min

S

1

2
‖S− S′‖2

F + tkg(S), (5.47)

and the gradient of f is given by

∇f(S) = S · X̂ · X̂H − Ŷ · X̂H . (5.48)

The evaluation in Eq. (5.47) corresponds to the singular value thresholding (SVT) operation

[88]. Specifically, let S̃k−1 = Sk−1 − tk∇f(Sk−1); then,

R(Sk) = SVTtkλ
(
R(S̃k−1)

)
. (5.49)

The SVT operator is defined for a given threshold τ > 0:

SVTτ (Z) =
∑
i

(σi − τ)+uiv
H
i , (5.50)

108



Here, UΣV H is the singular value decomposition of Z with σi denoting the ith largest

singular value and ui and vi denoting the ith columns of U and V . In addition, (∗)+ =

max(∗, 0), which sets negative values to zero. The proximal gradient method converges for

a constant step-size tk = t < 2/`, where ` is the Lipschitz constant of ∇f . In the case of

Eq. (5.48), ` = 2‖X̂‖2
2.

Our target solution, T = R(S) = R(ST21 ⊗ ST21) is exactly rank one if no noise is

presented. Thus, the weight coefficient λ needs to be properly set in order to let the SVT

approximation converge to the correct optimum, since the minimal nuclear norm of the fea-

sible T is not necessarily rank-one. Nonetheless, it is very likely to be low-rank. Therefore,

an alternative approximation to Eq. (5.47) involves employing the truncated SVD (TSVD)

as

R(Sk) = TSVDr=1

(
R(S̃k−1)

)
. (5.51)

Here, TSVDr(∗) stands for the rank-r TSVD operator defined as

TSVDr(Z) =
r∑
i=1

σiuiv
H
i , (5.52)

where σi, ui and vi are the same as those for the SVT operator. Notably, the TSVD oper-

ator is non-convex; thus, by using it, the theoretical convergence of the proximal gradient

method is not guaranteed. However, in practice, the proximal gradient almost always con-

verges with the TSVD operator when the target matrix is rank-one.

5.3.3 Numerical Experiments of Retrieving Matrix S21

5.3.3.1 Guide Star Modeling

Usually, the sizes of guide stars are small compared to the wavelength of the operating

EM wave; thus, they can be regarded as particle/point scatterers. A spherical symmetric

particle scatterer generates isotropic scattering waves in all direction (related to a specific
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polarization), irrespective the direction of the incident wave. However, we prefer particle

scatterers with substantial variation in scattering amplitudes with direction. Such guide

stars are able to provide a set of diverse reflection matrices {A1, A2, . . . , An} (their S11)

upon simple rotation. This diversity of {A1, A2, . . . , An} is essential for successful S21

retrieval. Therefore, we modeled three non-spherical-symmetrical PEC geometries —- a

cube, an ellipsoid, and a paraboloid —- to be used as guide stars, as shown in Figure

5.8. Each geometry has 247 possible incarnations obtained through 3D rotation and seven

scales defined by their major dimension a. They range between λ/3 ≤ a ≤ 4λ/3, where

λ is the wavelength of the operating EM wave. Thus, we create a set of 5, 187 variants of

the guide star. The reflection matrices A of these variants are obtained through the use of

MoM as well as the action and reaction procedure. This procedure is similar to obtaining

the scattering matrix of a system we introduced in Section 2.3.3. When these guide stars

are used in a scattering system to retrieve S21, they are put behind the random medium

at an arbitrary location. This location arbitrariness adds extra variance to their scattering

behaviors. Consequently, we are able to generate an arbitrary number of distinct reflection

matrices {A1, A2, . . . , An} the use in S21 retrieval.

G1

aa
a

a/2
G2

a

a/3

G3

λ / 3 < a < 4λ / 3 
Figure 5.8: Three geometries used as guide stars

5.3.3.2 Using Guide Stars with Unlimited Variants

We first test the proposed retrieval methods by using guide stars modeled from the

variants of the three geometries mentioned above. Figure 5.9a and 5.9b demonstrate the
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retrieval accuracy as a function of the number of guide stars n in the UniAlterMin and

BiAlterMin methods, respectively. In each trial, n guide stars are randomly selected from

the guide stars’ pool with 5, 187 variants. Because the number of guide star n used for

the maximal case (n = 5K1) has not exceed the total number of variants for the three

geometries created, these tests involve no repeated use of a guide stars variant in each

of the trials. In other words, we have made the reflection matrices {A1, A2, . . . , An} as

diverse as possible; as a consequence, the convergence of the retrieval results for both

the UniAlterMin and BiAlterMin method is extraordinarily fast. As shown in the two

figures, successful retrieval only requires the number of guide stars n to be more than

approximately 1.5K1 for UniAlterMin and 1.0K1 for BiAlterMin. The retrieval accuracy

is reaches machine precision with little uncertainty (very small variance, indicated by the

vertical bars), when n satisfies the minimum sample request. We also use the same set of

guide stars to test the performance of the proximal gradient method, with similar results

shown in Figure 5.10. To guarantee successful successful retrieval, the proximal gradient

with TSVD requires fewer guide stars than the SVT.

G1

aa
a

a/2
G2

a
a/3

G3
λ / 3 < a < 4λ / 3 

(a) UniAlterMin

G1

aa
a

a/2
G2

a
a/3

G3
λ / 3 < a < 4λ / 3 

(b) BiAlterMin

Figure 5.9: Retrieval accuracy as a function of the number of guide stars n in use for
alternating minimization methods with unlimited guide star variants.
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λ / 3 < a < 4λ / 3 

(a) Proximal gradient with SVT.

G1

aa
a

a/2
G2

a
a/3

G3

λ / 3 < a < 4λ / 3 

(b) Proximal gradient with TSVD.

Figure 5.10: Retrieval accuracy as a function of the number of guide stars n in use for
proximal gradient methods with unlimited guide star variants.

5.3.3.3 Using Guide Stars with Limited Variants

Because S21 retrieval proves to be very successful when using unlimited variants of

the guide stars, we wonder about the retrieval performance when guide star variants are

limited. Here, we create another geometry –- a corner reflector — to be used as a guide

star. Unlike the guide stars in the previous examples, this corner reflector only produces

variants through rotation about its central axis, and its concave side always faces (or faces

away from) Region 1 ( Figure 5.7). If the concave side faces Region 1, the corner reflector

reflects waves back directly towards their incoming directions (reflective guide star). On

the other hand, if the concave side faces away from Region 1, the corner reflector reflects

waves diffusively (diffusive guide star). The length of its edge is fixed at 0.7λ. The rotation

along its central axis creates only 68 variants. Hence, when the number of guide stars

n used in a trial exceeds the number of variants, some variants are used again though

they differ in terms of their location. Figure 5.11 illustrates the use of reflective guide

stars, including retrieval performance for all proposed methods. Figure 5.12 show the

corresponding results for the case of diffusive guide stars. As can be seen, the use of a
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limited set of variants results in a decline of the retrieval accuracy. The average retrieval

accuracy can still reach machine precision though the variance is much larger, albeit within

an acceptable range. Analysis reveals that diffusive guide stars provide more stable retrieval

accuracy with smaller variance compared to reflective guide stars.

incident wave

with rotation

(a) UniAlterMin

incident wave

with rotation

(b) BiAlterMin

incident wave

with rotation

(c) Proximal gradient with SVT

incident wave

with rotation

(d) Proximal gradient with TSVD

Figure 5.11: Retrieval accuracy as a function of the number of guide stars n in use with
limited variants of reflective scattering guide stars.
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incident wave

with rotation

(a) UniAlterMin

incident wave

with rotation

(b) BiAlterMin

incident wave

with rotation

(c) Proximal gradient with SVT

incident wave

with rotation

(d) Proximal gradient with TSVD

Figure 5.12: Retrieval accuracy as a function of the number of guide stars n in use with
limited variants of diffusive scattering guide stars.

5.4 Conclusion

In this Chapter, we proposed three algorithms fl Alt-Min, Phase-Lift and Phase-Cut —

for retrieving the measurement matrix Q from intensity-only samples of the transmitted

field. Numerical experiments indicate that all algorithms can successfully retrieve the mea-

surement matrix with a minimum number of measurements; in addition, Alter-Min and
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Phase-Cut are noise tolerant. We also proposed two algorithms fl alternating minimiza-

tion and proximal gradient — for retrieving the transmission matrix S21 via backscattering

analysis. The proposed techniques have potential applications in biomedical applications.

For S21 retrieval, the number of guide stars must exceed a certain minimum, and the diver-

sity of the guide stars also positively relates to successful retrieval. Numerical experiments

demonstrate that simple guide stars which perform reflective or diffusive backscattering are

capable of providing successful retrieval.
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CHAPTER 6

Time Domain Focusing in 3D Random Media

6.1 Introduction

In Chapter 4, we discussed a family of methods that comprehensively tackle the wave-

front shaping problem by leveraging eigendecompositions, convex optimization, and bi-

section search algorithms. However, these wavefront-shaping techniques only exploit the

fields spatial degrees of freedom and therefore only yield satisfactory results over a narrow

frequency range. In reality, the target may require a pulsating illumination for a specified

duration. Here, to accommodate such applications, we develop efficient focusing schemes

for transient fields. Specifically, we present a set of schemes for creating a single or multi-

ple pulsating space-time focus/foci. By optimally exploiting the system’s temporal degrees

of freedom, the proposed schemes achieve even tighter spatial foci than achievable using

narrowband signals. The proposed schemes first decompose wideband signals into uncor-

related spectral components, each of which is modulated to construct an optimal single fre-

quency wavefront. Next, leveraging Fourier transform methods, optimal single frequency

wavefronts are superimposed to construct foci at desired locations and pre-specified times.

Not unlike our previous frequency-domain methods, the new time-domain techniques apply

to scenarios that allow for phase/delay-only as well as full phase/delay-amplitude modu-

lation of the incident wavefront. We demonstrate the schemes’ abilities to create multiple

pulsating asynchronous or simultaneous foci after passing through 3D random media com-
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posed of multi-layer periodic slabs.

6.2 Spatial Modulation and Temporal Synthesization

Due to the Nyquist-Shannon sampling theorem, a wideband signal can be perfectly syn-

thesized by superimposing many monochromatic signals. Previously, we have developed

a variety of methods that use monochromatic wave to generate focus/foci at specific loca-

tions beyond a random medium. Time domain focusing, which requires that the foci occur

at pre-specified times in addition to their location specification, is realized via proper su-

perposition of monochromatic waves of different frequencies. Namely, the spatiotemporal

(pulsating) focus/foci is generated as a combination of many spatial monochromatic foci.

This process is illustrated in Figure 6.1.

'� .. . 
vvr . •
/\All� • • 
lVVV ••• �
WW .____. _•___, 

Using Fourier transform methods to 

sum up the fields at the focal point 

constructively 

'� 
.. . . . . 

vvr. . . • • • • • 
• • • I\ I\ I\?" • • •

WW • • \\J
: ww�•�· � 

�::· • •
• • • I\ I\ I\?" WW •• \\J\r

Figure 6.1: The illustration of generating a spatiotemporal focus by combining many spatial
monochromatic foci constructively.
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6.2.1 Spatial Modulation

We already introduced methods for constructing spatial foci in Chapter 4; here we

briefly review the procedure of generating a single focus through phase-amplitude and

phase-only modulation. For a given random medium and for operating frequency f1, we

can determine a set of propagating modes and compute the transmitting matrix Sf121 . Each

propagating mode has a propagation vector ki, and a polarization direction p̂i. Hence, the

complex amplitude of the electric field at r behind the random media is the superposition

of these propagating modes. Thus, the E field in the x-direction at r is

Ex(r) =
∑
i

bi(p̂i)xe
−jki·r = bT · [(p̂1)xe

−jk1·r (p̂2)xe
−jk2·r . . . ] = bT · c(r), (6.1)

where b = [b1, b2, . . . , bi, . . . ]
T are the modal coefficients on the output side due to an

incident wavefront with modal coefficients a, i.e.

b = Sf121 · a. (6.2)

If full phase-amplitude modulation is possible, the amplitude of Ex(r) with a normalized

incident wavefront can be maximized by constructing a as

af1foc(r) =

(
cT (r) · Sf121

)∗
‖
(
cT (r) · Sf121

)∗‖2

. (6.3)

If we are restricted to phase-only modulation, then we solve the optimization problem

Asdp = arg max
A∈CM×M

Tr
(
b · bH · A

)
subject to A = AH , A � 0,

and Aii = 1/K1 for i = 1, . . . K1,

(6.4)
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where K1 is the number of propagating modes. After solving Eq. (6.4) by SDP, the ap-

proximate solution for phase-only modulation is

af1pfoc(r) = p
(

eig(Asdp, 1)
)
, (6.5)

where eig(Asdp, 1) is the eigenvector of Asdp associated with the eigenvalue of the largest

magnitude. v = θ is the operator to take the angle of each complex entry of vector v, and

p(θ) is the normalized phase vector of θ, defined as

p(θ) =
1√
|θ|
ejθ, (6.6)

where |θ| is the size of vector θ. Now, the focused field at r is

Ef1
foc(r) = cT · Sf121 · a

f1
foc(r), (6.7)

or

Ef1
pfoc(r) = cT · Sf121 · a

f1
pfoc(r). (6.8)

We can further normalize the magnitude of the focus to 1.0 by rescaling the incident wave-

front as

âf1(p)foc(r) =
af1(p)foc(r)

Ef1
(p)foc(r)

. (6.9)

One aspect of the above procedure to note is that it is only meaningful at higher frequencies.

When the frequency is very low, the number of propagating modes is small and their wave-

length is large, and the system possesses too few degrees of freedom to produce uneven

field intensity in space.
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6.2.2 Temporal Synthesization

By repeating spatial modulation, we can construct focused fields {Ef1
(p)foc(r), Ef2

(p)foc(r), . . . ,

Efi
(p)foc(r), . . . } for a given location r at pre-specified operating frequencies fi, and the

corresponding incident wavefronts {âf1(p)foc(r), âf1(p)foc(r), . . . , âf1(p)foc(r), . . . }. Essentially,

each focused field Efi
(p)foc(r) is a sinusoidal function in the time domain, i.e.

Efi
(p)foc(r, t) = Efi

(p)foc(r)ej2πfit, (6.10)

and therefore we can use them collectively to synthesize a temporal pulse at r. Again, two

things should be noted: 1) For different frequencies fi, the number of propagating modes

and their propagating directions are different; 2) There should be enough high frequency

components to make “focusing” possible.

The procedure for constructing a pulse is as follow:

1. Choose a desired pulse function x(t), produce temporal samples x(t1:n) and compute

its discrete Fourier transform X(f1:n);

2. Compute the modal coefficients of the focused incident wavefronts at r for frequen-

cies {f1, f2, . . . fi, . . . }, i.e. {âf1(p)foc(r), âf2(p)foc(r), . . . , âfi(p)foc(r), . . . };

3. Send the synthetic incident wavefrontsX(f1)·âf1(p)foc(r), X(f2)·âf2(p)foc(r), . . . , X(fi)·

âfi(p)foc(r), . . . into the medium, and evaluate the complex amplitudes of the electric

field behind the medium at different locations E(r′, f) for f = f1, f2, . . . , fi, . . . ;

4. For validation, compute the electrical field in the time domain ETD(r′, t1:n) via in-

verse discrete Fourier transform E(r′, f1:n) → ETD(r′, t1:n). A pulsating focus is

expected at r′ = r.

If multiple pulses x1(t), x2(t), . . . , xj(t), . . . at different locations r1, r2, . . . , rj, . . . ,

need to be generated, we construct the incident wavefront as the sum of the synthetic wave-
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front for each pulse as

afi(p)mfoc =
∑
j

Xj(fi) · âfi(p)foc(rj), (6.11)

for each operating frequency fi in Step 3. For phase-only modulation, the aggregate wave-

front need to be constructed as

afipmfoc := ‖afipmfoc‖2 · p
(

afipmfoc

)
. (6.12)

6.3 Numerical Simulation

We consider a random medium with periodic latticeDx = Dy = 9.54361m and 12, 800

periodic layers. The vertical distance between each layer is 4.0m. The sampling frequency

in the time domain is 600 MHz. The total number of samples is 1, 001. Thus, there are 500

even frequency components from 0 to 300 MHz. The number of propagating modes ranges

from 2 to 586 for different frequencies. A Sinc function x(t) = |a|sinc(ωt) (ω = 5 ×
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Figure 6.2: The Sinc pulse x(t) = |a|sinc(ωt).

108, |a| = 100.0) and a Gaussian function x(t) = |a|e−t2/(2σ2) (σ = 2× 10−9, |a| = 100.0)

are chosen for the temporal waveforms.
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Figure 6.3: The Gaussian pulse x(t) = |a|e−t2/(2σ2).

Figure 6.4 illustrates a of single pulsating focus that peaks at t = 0.0 and location

(0, 0, 2λ) behind the medium. Phase-amplitude modulated Sinc and Gaussian pulses, as

well as a phase-only modulated Gaussian pulse are used, respectively. We can see that the

Sinc pulse is more spatially concentrated. This is because the Since pulse contains more

high-frequency wave fields than the Gaussian one, which enables constructive interference

at finer spatial scales.

Figure 6.5 illustrates the occurrences of first 5 of 5 × 5 asynchronous foci evenly dis-

tributed on the (x, y, 2λ) plane behind the medium. The foci are generated by either Sinc

or Gaussian pulses, and created by either phase-amplitude or phase-only modulation.

Figure 6.6 illustrates the occurrences of a 2×2 grid synchronous foci evenly distributed

on the (x, y, 2λ) plane behind the medium. The foci are either generated by Sinc or Gaus-

sian pulses, created by phase-amplitude modulation. The wave field produced by Sinc

pulses has better resolution than that due to Gaussian ones.

Since phase-only modulation techniques are less effective for focusing than phase-

amplitude modulation methods, when synthesizing using the same pulse, the phase-only

modulated incident wavefront needs to be more intense than its phase-amplitude counter-
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(a) Sinc pulse from phase-amplitude modulation.

(b) Gaussian pulse from phase-amplitude modulation.

(c) Gaussian pulse from phase-only modulation.

Figure 6.4: The occurrence of one pulsating focus at the center of the target plane.

part. Figure 6.7 shows the difference of power required by phase-amplitude and phase-only

modulation for synthesizing using the same single Sinc pulse and single Gaussian pulse.

When generating multiple pulses as the previous example of 5 × 5 asynchronous Sinc

pulses, the result of phase-amplitude modulation are more likely to preserve the amplitudes

of the prescribed pulses, as illustrated in Figure 6.8.

6.4 Conclusions

In this chapter, we presented a method for generating pulsating foci for a the wave

field passing through random media by leveraging Fourier transform methods, which can
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(a) Sinc pulse from phase-amplitude modulation.

(b) Sinc pulse from phase-only modulation.

(c) Gaussian pulse from phase-amplitude modulation.

(d) Gaussian pulse from phase-only modulation.

Figure 6.5: The occurrences of first 5 of 5× 5 asynchronous foci evenly distributed on the
target plane.

be used in applications requiring transient illumination with an additional advantage of

forming tighter spatial foci than achievable using narrowband signals. This technique is

versatile in that multiple foci can be created at desired locations and pre-specified times, by

using either phase-only or full phase-amplitude SLMs.
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(a) Sinc pulse from phase-amplitude modulation.

(b) Gaussian pulse from phase-amplitude modulation.

Figure 6.6: The occurrence of synchronous 2× 2 foci on the target plane.
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CHAPTER 7

Transmission Properties of Absorbing Random

Media

7.1 Introduction

As we know, random media typically hinder the passage of EM waves by two distinct

mechanisms: backscattering and absorption. For ideal non-absorbing random media with

strong backscattering, previous theoretical and experimental developments suggest that

their EM transmission coefficients conform to the DMPK distribution [38–41, 63], thereby

predicting the existence of a few highly transmitting eigen-wavefronts. We have confirmed

this phenomenon by rigorous numerical evidence through the analysis of the eigenvalue

distribution of S21 of our 3D random media model presented in Figure 3.3; similar ob-

servations for 2D were made in [55]. The existence of open channels in non-absorbing

random media forms the basis for the development of schemes for constructing wavefronts

that produce highly focused fields when exiting such media. Our in-depth understanding

of the non-absorbing case notwithstanding, the characteristics of EM transmission through

absorbing random media have not been well-studied. However, because scattering matrices

of non-absorbing random media are a special type of random matrix, we believe that those

of absorbing media also belong to a generic set that is well studied in random matrix theory

(RMT) [36, 37]. Based on this reasoning, we conjecture that a homogeneous absorbing

random medium can be characterized by a maximum transmission coefficient max with
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Tracy-Widom fluctuations [89, 90]. If this characterization holds true, it will shed light

on the study of advanced techniques for increasing wave penetration through absorbing

random media.

In this chapter, we characterize the backscattering and transmission characteristics of

3D periodic absorbing random media composed of lossy conducting elements residing in

a lossless host. The media considered are structurally similar to the non-absorbing random

media studied earlier. Through extensive numerical simulation of wave scattering by such

absorbing media and inspection of their scattering matrices, we construct the probability

distribution of their transmission coefficients. We find this distribution to be distinct from

that of non-absorbing media and characterized by a τmax < 1.0. Furthermore, we investi-

gate the fluctuations of τmax caused by the randomness, and observe that it conforms to a

universal Tracy-Widom probability distribution, as opposed to the exponential distribution

of τmax for non-absorbing media. The efficacy of a backscattering-minimizing method for

transmission maximization for absorbing media is also verified.

7.2 Distribution of Transmission Coefficients of Absorb-

ing Random Media

7.2.1 Model of Absorbing Random Media

A model for an absorbing random medium can be obtained straightforwardly by ex-

tending the non-absorbing random medium model elaborated in Chapter 2. The former

model is constructed by embedding many perfect electrically conducting (PEC) scatterers

in a homogeneous dielectric host, which is non-absorbing, i.e. both the scatterers and the

host are lossless. By adding a non-zero sheet resistance ρs to the scatterers, the incident

waves induce weaker surface currents than PEC scatterers, and consequently scatter less

and absorb more energy, causing attenuation.
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The computational recipe to obtain the scattering matrix of absorbing media is almost

identical to that for non-absorbing media; the only difference occurs at the calculation of

the impedance matrix for solving Maxwell’s equations by MoM, which now should take

the sheet resistance ρs into account.

7.2.2 Numerical Result

Similar to the non-absorbing case, to investigate the empirical distribution of the trans-

mission coefficients of 3D absorbing random media, we undertake a simulation of 10, 000

random trials. The accumulated distribution of the transmission coefficients of the eigen-

wavefronts is shown in Figure 7.1. Here, the sheet resistance of the scatterers is ρs =

0.4Ω/sq. All slabs have periodicity Dx = Dy = 11.22λ, l = 4.0λ, K1 = 802 and the

number of layers is Nc = 3660. The distribution exhibits a unimodal shape instead of the

bimodal shape for the non-absorbing case. The number of eigen-wavefronts decreases with

the transmission coefficient, and finally vanish around τmax = 0.776. The specific value

of τmax is inversely related to the value of ρs. Taking a closer look at the τmax limit, we

find that the histogram fits a square root limit when τ → τmax; this trend will be further

examined in the following section when we investigate fluctuations of τmax.

7.3 Fluctuation of the Maximal Transmission Coefficient

For an absorbing random medium, the most important characteristic we care about is

τmax. Since a portion of the energy from the incident EM wave is inevitably absorbed by

the medium, τmax cannot be unity. Clearly, τmax is principally determined by the dissipation

rate per unit area and the thickness of the medium, i.e. the parameters ρs, l, Dx, Dy and Nc

in our model. Here, we are interested in the statistics of τmax.

Since the overall scattering system is represented by a scattering matrix S, τmax is the

largest eigenvalue of R = SH21 ·S21, which is a Hermitian matrix. We conjecture that fluctu-
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Figure 7.1: The accumulated distribution of the transmission coefficient over 10,000 ran-
dom trials for absorbing random media model with ρs = 0.4Ω/sq, Dx = Dy = 11.22λ,
l = 4.0λ, K1 = 802 and Nc = 3660.

ations in τmax adhere to the Tracy-Widom distribution, which is the probability distribution

of the normalized largest eigenvalue of a random Hermitian matrix [89]. Specifically, if a

Hermitian matrix Z is a Gaussian unitary ensemble (GUE), namely, Z = (X+XH)/2 and

X is a complex square matrix with independent identically distributed real and imaginary

matrix elements that follow the normal distribution N (0, 1), then the probability function

FTW2(s) = lim
n→∞

Prob
(

(λmax −
√

2n)(
√

2)n1/6 ≤ s
)
, (7.1)

is the cumulative distribution function (CDF) of the Tracy-Widom-2 probability distribu-

tion function (PDF) fTW2(s). Here n is the dimension of the square matrix X and λmax is

the largest eigenvalue of Z. However, our Hermitian matrix R = SH21 · S21 is not GUE, and

its dimension is not very large. We therefore do not expect that the fluctuation of τmax is

directly comparable to fTW2(s); instead, we expect a shifted and scaled version of τmax to
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satisfy the distribution. Particularly, we investigate the probability distribution of

s(τmax) =
σTW2

σ̂τmax

(τmax − µ̂τmax + µTW2), (7.2)

in which µTW2 and σTW2 are the mean and standard deviation of the Tracy-Widom-2 dis-

tribution, respectively; their numerical values are µTW2 = −1.771086807411 and σTW2 =

0.901773138229843; µ̂τmax and σ̂τmax are the estimated mean and standard deviation of

τmax, respectively. We examine the behavior of τmax by obtaining S21 from 10, 000 random

trails with parameters ρs = 0.4Ω/sq, Dx = Dy = ranging from 3.86λ to 11.22λ (K1 rang-

ing from 98 to 802 correspondingly), l = 4.0λ and Nc ranging from 480 to 3, 660 to keep

the value of τmax steady around 0.8. The empirical distribution of s(τmax) for K1 = 802

shown in Figure 7.2a conforms to the Tracy-Widom-2 distribution very well. To further

justify our conjecture, we investigate the distribution of τmax from S21 for different K1

by properly changing the parameters Dx, Dy and Nc. For each K1, 10, 000 trials are per-

formed, and the corresponding distributions s(τmax) are compared to the Tracy-Widom-2

distribution on a logarithmic scale shown in Figure 7.2b. All case exhibit good agreement.

Furthermore, the skewness of each case for different K1 is shown in Figure 7.2c; we see

that as K1 increases, the asymmetry of the empirical distribution is more outspoken, and

the value of the skewness becomes closer to that of the Tracy-Widom-2 distribution.

In addition, we observe that the standard deviation of τmax, denoted by σmax scales as

O(K
−2/3
1 ), which is shown in Figure 7.2d. The following relationship holds between στmax ,

S21’s dimension K1 and the CDF F (τ) (PDF f(τ)) of the transmission coefficients (the

eigenvalues of SH21 · S21):

F (τmax)− F (τmax − στmax) = O

(
1

K1

)
. (7.3)
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Figure 7.2: Statistical investigation on the fluctuation of τmax in absorbing random media.
For each case of different S21 dimension K1, the sheet resistance is fixed at 0.4Ω/sq, and
all statistical estimations for each case are draw from 10, 000 trials.

This relationship can also be stated as

στmax · f(τmax − στmax) = O

(
1

K1

)
. (7.4)

We therefore have

f
(
τmax −O

(
K
−2/3
1

))
= O

(
K
−1/3
1

)
, (7.5)
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which implies

lim
τ→τmax−

f(τ) = O(
√
τmax − τ). (7.6)

Eq. (7.6) suggests that the PDF of transmission coefficients of absorbing systems that

describes the shape observed in Figure 7.1 may be of the form

f(τ) =
c
√
τmax − τ
τ

, (7.7)

where c is an appropriate constant.

It is interesting to note that the empirical τmax of non-absorbing random media also

exhibits fluctuations, despite the fact that the DMPK distribution guarantees τmax ≡ 1.0.

The reason is that the DMPK distribution assumes the number of eigen-modes (or propa-

gating modes) K1 approaches infinity; in reality K1 is finite (though very large), resulting

in δ = 1.0− τmax being not strictly zero. In our random media model, the finiteness of the

number of eigen-modes is due to the enforced periodic condition.

We now investigate the fluctuation of τmax for non-absorbing random media. Specifi-

cally, we demonstrate that the random variable

s(τmax) =
1.0− τmax

σ̂τmax
, (7.8)

obeys the exponential distribution fExp(λ)(s) = λe−λs with λ ≡ 1.0. In Eq. (7.8), σ̂τmax

is the estimated standard deviation of τmax. This exponential distribution of τmax for non-

absorbing media meets our expectation. Related numerical results are shown in Figure

7.3 in a manner similar to Figure 7.2. The corresponding parameters here are Dx = Dy

ranging from 3.78λ to 9.85λ (K1 ranging from 96 to 690 correspondingly), l = 4.0λ and

Nc ranging from 480 to 4, 150. Figures 7.3(a-c) illustrate that the empirical distribution

of τmax conforms to the exponential distribution Exp(1.0). Furthermore, if the medium is
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Figure 7.3: Statistical investigation on the fluctuation of τmax in non-absorbing random
media. All statistical estimations for each case are draw from 10,000 trials.

known to be non-absorbing, viz., the DMPK law is valid, we have

O

(
1

K1

)
∝ Prob(1− τ ≤ στmax) =

∫ 1

1−στmax

fDMPK(τ)dτ ≈ `

L

√
στmax , (7.9)

which in essence means

στmax ∝ O

(
1

K2
1

)
. (7.10)

Eq. (7.10) is perfectly justified by the numerical results shown in Figure 7.3d.
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7.4 Transmission Maximization in Absorbing Random Me-

dia

Next, we study the efficacy of the transmission maximization methods of Section 3.4.2

applied to absorbing media. Those methods work by minimizing backscattering to max-

imize transmission, and are highly effective for non-absorbing media. However, for ab-

sorbing media, the amount of transmitted energy will not necessarily be enhanced by min-

imizing backscattered waves due to absorption. Here, we verify whether backscattering-

minimizing transmission maximization methods continue to deliver for absorbing media.

Particularly, we investigate the gain of the CG method as a function of the thickness of the
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Figure 7.4: Comparing of the gain (=:τopt/τnorm) between the one optimized by the
backscatter-minimizing CG method and the optimum from the eigen-decomposition, as a
function of the thickness L/λ for both absorbing and non-absorbing slabs. The sheet resis-
tance ρ(Ω/sq) on the surface of the scatterers provide strong or weak absorption (0.1Ω/sq
vs. 0.01Ω/sq).
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slab under two scenarios —- weak absorption with ρs = 0.01Ω/sq and strong absorption

with ρs = 0.1Ω/sq; all other parameters of the media are the same for both cases. The

gain is defined as the ratio of the transmission coefficient τopt optimized by the CG method

(or the optimum/best one obtained from the eigen-decomposition of SH21 · S21) over the

transmission coefficient τnorm for a normally incident plane wave. The results are shown in

Figure 7.4. The efficacy of the CG method for absorbing media can be evaluated by ex-

amining the difference between the CG-optimized gain and the optimum eigen gain. From

the figure we see that as the thickness of the slab increases, the overall absorption increases

and therefore the difference of the gains obtained by the two methods increases; in contrast,

such difference is negligible for non-absorbing media. However, for media with weak ab-

sorption (ρ = 0.01Ω/sq), we note that the backscattering-minimizing CG method can still

produce high gains close to the optimum.

7.5 Conclusion

By simulating absorbing random media modeled as multi-layered periodic structures

loaded with metallic lossy particles, we find that the distribution of the transmission co-

efficients, namely the square of the singular values of the forward scattering matrix S21,

coincides with our predictions of a square-root decay and that the distribution vanishes

around τmax < 1.0. Moreover, we confirm that S21 of absorbing media exhibits similarity

to a random Hermitian matrix, and that the statistics of τmax conform to a Tracy-Widom

distribution as opposed to the exponential fluctuations observed in non-absorbing media.

This distribution is universal regardless of the thickness, particle density, or absorbing char-

acteristics of the medium. We also show that the backscattering-minimizing CG method is

still effective for enhancing wave transmission through weakly absorbing random media.
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CHAPTER 8

Conclusions

8.1 Summary

This thesis presents a model for characterizing light or EM wave propagation in 3D

random media and develops several techniques to efficiently control the behavior of wave-

fronts passing through such media. First, a 3D MoM technique is used to model EM wave

propagation in random media composed of multi-layer periodic slabs containing metallic

particles ranging from dipoles to crosses and beyond. Even when the number of layers

and particle density is high, our simulation shows the existence of so-called open channels,

i.e. perfectly/highly transmitting wavefronts with transmission coefficients near unity, and

demonstrates the validity of backscatter-analysis-based methods that use steepest descent,

conjugate gradient and Lanczos-like algorithms for transmission maximization and focus-

ing of the incident field.

Next, we present a family of methods that comprehensively tackle the wavefront shap-

ing problem by leveraging eigen-decompositions, convex optimization, and bisection search

algorithms. Specifically, eigen-decompositions are used to handle simple focusing prob-

lems when full phase-amplitude modulation is achievable while convex optimization and

bisection search are invoked for focusing problems lacking closed form solutions. We fur-

thermore apply these methods to 3D random media composed of multi-layer periodic slabs

containing randomly positioned metallic particles that are thousands of wavelengths thick.
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Since knowledge of the transmission matrix S21 of a random medium is a prerequisite

for applying most of the proposed wavefront shaping schemes, we introduce three methods,

namely alternating minimization, Phase-Lift and Phase-Cut, to retrieve the measurement

matrix Q (which is closely related to S21) through intensity-only field measurement. We

also develop two more schemes, namely alternating minimization and proximal gradient,

to retrieve S21 via backscattering analysis. The backscatter-analysis-based schemes extract

information of S21 from the backscattered wavefront field using the notion of passive guide

stars, viz., the presence of well-known scatterers behind the random medium.

While most of our algorithms target monochromatic applications, we also develop effi-

cient focusing schemes for transient fields to accommodate applications requiring a pul-

sating illumination. By leveraging Fourier transform methods, the optimal wavefronts

from a wide frequency range are added constructively at desired locations and pre-specified

times, resulting in even tighter spatial foci than achievable using narrowband signals. Just

like their frequency-domain counterparts, these time-domain wavefront shaping schemes

schemes are capable of creating multiple foci under a variety of conditions of practical

interest, and are compatible with both phase-amplitude and phase-only modulators. They

also provide the option to create asynchronous or simultaneous foci.

Finally, the back scattering and transmitting properties of absorbing random media

are investigated by examining the distribution of their transmission coefficients, viz., the

squared singular values of their S21. We find that fluctuations of the maximal transmission

coefficients adhere to a universal Tracy-Widom probability distribution, regardless of the

thickness, particle density, or absorbing characteristics of the media. We also find that for

weakly absorbing media, the backscattering-minimizing CG method is still effective for

enhancing wave transmission.
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8.2 Further Work

First, although we have shown that our 3D random media model can fully capture the

characteristics of EM and light interaction with random media despite the introduction

of artificial periodic conditions, the impact of these periodic assumptions on statistics of

the field not considered here definitely is worthy of further study. Moreover, for a given

medium, the number of open channels, which could be affected by the thickness of the

medium, determines the level of controllability of the transmitted wavefronts for focusing

and other applications; therefore, a study aimed at quantifying the controllability of the

transmitted wavefronts as a function of the thickness of the medium under consideration

is called for. Last but not least, the development of efficient wavefront shaping techniques

suitable for moderately or even strongly absorbing random media is called for.

8.3 Contributions

The following journal papers and conference papers/abstracts related to the work pre-

sented in this thesis are either published, submitted or currently being prepared.

8.3.1 Journal Papers

1. H. Guo, R. R. Nadakuditi and E. Michielssen, “Numerical Analysis and Efficient

Reconstruction of Perfectly Transmitting Wavefronts in 3D Random Media with Pe-

riodic Condition”, ready for submission.

2. H. Guo, R. R. Nadakuditi and E. Michielssen, “Tracy-Widom Distribution of Trans-

mission Coefficients of 3D Absorbing Random Media”, ready for submission.

3. H. Guo, E. Michielssen and R. R. Nadakuditi, “Advanced Multi-Foci Focusing Schemes

in 3D Random Media”, in preparation.
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2. H. Guo, R. R. Nadakuditi and E. Michielssen, “Tracy-Widom Distribution of Trans-
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dio Science Meeting 2016, Fajardo, Puerto Rico.

3. H. Guo, E. Michielssen and R. R. Nadakuditi, “Efficient Guide-star Enabled Recon-
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Methods”, USNC-URSI National Radio Science Meeting 2017, San Diego, Califor-

nia, USA.
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Methods”, USNC-URSI National Radio Science Meeting 2017, San Diego, Califor-
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URSI National Radio Science Meeting 2018, Boston, Massachusetts, USA.
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Meeting 2018, Boston, Massachusetts, USA.

140



APPENDIX A

Methods

A.1 Solving Eq. (4.16) in MATLAB

Specifically, the solution to Eq. (4.16) can be computed in MATLAB using the CVX

package [75] by invoking the following sequence of commands:

cvx_begin sdp

variable A(K1,K1) hermitian semidefinite

maximize trace(Q'*Q*A)

subject to

diag(A) == ones(K1,1)/K1;

cvx_end

Asdp = A; % return optimum in variable Asdp

For settings where K1 > 100, we recommend using the SDPT3 solver [76]. The solution

to Eq. (4.16) can be computed in MATLAB using the SDPT3 package by invoking the

following sequence of commands:

cost_function = Q'*Q;

e = ones(K1,1);

b = e/K1;

num_params = K1*(K1-1)/2;
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C{1} = cost_function;

A = cell(1,K1);

for j = 1:K1

A{j} = sparse(j,j,1,K1,K1);

end

blk{1,1} = 's';

blk{1,2} = K1;

Avec = svec(blk(1,:),A,1);

[obj,X,y,Z] = sqlp(blk,Avec,C,b);

Asdp = cell2mat(X); % return optimum in variable Asdp
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