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ABSTRACT

In medical research, predicting the probability of a time-to-event outcome is often of

interest. Along with failure time data, we may longitudinally observe disease markers that

can influence survival. These time-dependent covariates provide additional information

that can improve the predictive capability of survival models. It is desirable to use a

patient’s changing marker information to produce updated survival predictions at future

time points, which can in turn direct individualized care decisions. In this dissertation,

we develop methods that incorporate time-dependent marker information collected during

follow-up with the aim of dynamic prediction and inference.

In Chapter I, we compare two methods of dynamic prediction with a longitudinal bi-

nary marker, represented by an illness-death model. Joint modeling is a unified, principled

approach that produces consistent predictions over time; however, it requires restrictive

distributional assumptions and can involve computationally intensive estimation. Land-

marking fits a Cox model at a sequence of prediction, or “landmark”, times and is easily

implemented, but does not produce a valid prediction function. We explore the theoretical

justification and predictive capabilities of these methods, and propose extensions within

the landmark framework to provide a better approximation to the true joint model.

In Chapter II, we present an approximate approach for obtaining dynamic predictions

that combines the advantages of joint modeling and landmarking. We specify the marginal

marker and failure time distributions conditional on surviving up to a prediction time,

and use a Gaussian copula to link them over time with an association function. We use a

single model for the time-to-event outcome from which the conditional survival is derived,

achieving a greater level of consistency than landmarking. Estimation is conducted using a
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two-stage approach that reduces the computational burden associated with joint modeling.

In Chapter III, we introduce a model that incorporates the effects of a partially ob-

served marker on failure time. We consider the marker to represent an underlying stochas-

tic risk process that accumulates over time until a failure is experienced. We model this

increasing risk as a Lévy bridge process that has a multiplicative effect on the cumulative

hazard. Using the mathematically tractable properties of the gamma process, we derive

the marginal and conditional survival functions, and demonstrate estimation when the

process is observed at the survival time. This approach can be extended to multiple mea-

surement times, and applied to a variety of markers and disease settings where the correct

marker distribution is not known or difficult to specify.
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INTRODUCTION

The primary goal of survival analysis is to analyze a time-to-event outcome with the

aim of predicting or inferring about its probability of occurrence at a future time point.

Traditional survival methods use covariates collected at a baseline time to model the risk

of the survival event. However, there is also often interest in incorporating the effects

of stochastic covariates that can change over time. With continued follow-up beyond

baseline and increased interest in longitudinal studies, these covariates may be partially

observed, providing additional information that could improve inference and produce more

accurate survival predictions. In this dissertation, we consider dynamic survival models

and prediction methods that incorporate the effects of longitudinally collected covariates

on time-to-event outcomes.

In the first two chapters, we focus on the statistical task of dynamic prediction. Pre-

diction models for a time-to-event outcome, such as relapse or death, are commonly used

in clinical practice to quantify risk for a subject with a given set of characteristics. To

tailor a patient’s treatment strategy, clinicians can use these models to answer important

questions, such as “What is the risk of the patient relapsing in the next 3 years?” How-

ever, traditional prediction models only inform clinicians on patient outcomes at a baseline

time. Advancements in medical technology and treatments have led to improved patient

survival, and thus allow for continued patient follow-up during which updated patient

information (e.g., biomarker measurements, intermediate outcomes) is collected. Thus,

given the patient is alive one year into treatment, their risk profile may have changed

and the answer to the question above will be different. Dynamic prediction models in-

corporate time-varying patient information to produce an updated, more accurate risk
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prediction for patients at follow-up times beyond baseline. This prediction plays a vital

role in directing individualized clinical decisions for the patient.

Let T be the time to the survival event and Z(t) be the marker process that can be

continuously or longitudinally observed. The aim of dynamic prediction is to develop a

model from which, for a particular prediction time of interest, referred to as the “landmark

time” τ , and prediction window s, we can obtain the dynamic prediction P (T > τ+s|T >

τ, Z̄(τ)), where Z̄(t) is the history of Z up to time τ . This is the conditional survival

probability of surviving up to time τ + s given being alive at time τ and the up-to-date

marker information at that time.

In Chapter I, we compare two methods for obtaining this dynamic prediction, namely

landmarking (van Houwelingen, 2007; Zheng and Heagerty, 2005; Gong and Schaubel,

2013) and joint modeling (Taylor et al., 2005, 2013; Rizopoulos, 2011; Rizopoulos et al.,

2013). This work was motivated by a condition described in Jewell and Nielsen (1993)

that requires that the joint distribution of the marker process and survival time, [T, Z],

be specified to obtain a valid prediction function, from which the conditional survival

prediction above can be derived. Joint modeling achieves this by specifying a model for

the marker [Z], and a model for the relationship between the marker and the hazard [T |Z].

Landmarking, however, is an approximate approach that specifies only a component of the

joint distribution by modeling the residual time distribution conditional on the marker,

[T |T > τ, Z(τ)], directly at each τ . Thus, it fails to produce predictions that are consistent

with those at other time points. The benefit of landmarking is that it uses the Cox

model to define the conditional residual time distribution and thus is easily implementable

in standard software. Joint modeling requires the restrictive assumption of correctly

specifying the joint distribution and can involve computationally intensive estimation.

We explore the merits of the two approaches with the aim of identifying the effect that

violating this consistency condition has on predictive performance, and the extent to

which this justifies using an inconsistent model with easier estimation.
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We examine the two methods in the context of a binary marker representing the

occurrence of an intermediate event beyond baseline. The joint distribution of the marker

and failure time is modeled with an irreversible illness-death model. We begin with

this simple situation because it allows us to derive the form for the landmarking model

from the true joint model to identify relationships that should be incorporated into the

landmarking framework to provide a better approximation. We consider scenarios with

one or two baseline covariates that have differential effects on the different transitions in

both a Markov and a semi-Markov setting. We compare the predictive performance of the

methods with a simulation study and demonstrate their application using a dementia data

set where the marker is observed at regular measurement times, and a prostate cancer

study where the marker is continuously observed.

By contrasting the joint modeling and landmarking approaches, we aim to identify

whether by incorporating additional flexibility we can extend the landmark model to per-

form similarly to the joint model. Although landmarking does not constitute a unified

approach to dynamic prediction, in situations where joint modeling can be too restric-

tive or cumbersome for estimation (e.g., sparse data), an approximate approach can be

a sufficient, and perhaps necessary, alternative. However, beyond violating the consis-

tency condition, there are other limitations of landmarking. It requires prespecifying the

prediction times and prediction window, and its estimation relies on imputing marker

values for individuals at prediction times at which they are not observed. Thus, although

both methods exhibit good predictive performance, both have limitations that make them

unsuitable or undesirable for use in certain situations.

In Chapter II, we introduce an alternative approximate approach for obtaining dy-

namic predictions that aims to combine the advantages of landmarking and joint mod-

eling, overcome their limitations, and maintain good predictive performance. Describing

the dependence between the the marker process and failure time distributions by speci-

fying their joint distribution can be difficult and require restrictive assumptions. Thus,
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we consider modeling the marginals for the marker at each landmark time and the failure

time distribution, for which it can be easier to assess goodness-of-fit and identify the best-

fitting models. In the dynamic prediction framework, we specifically model the marginal

distributions conditional on being alive at a particular observation time, Zτ = [Z|T > τ ]

and Tτ = [T |T > τ ]. We can specify these from a known class of models, for which estab-

lished estimation and model selection techniques are available in standard software. To

achieve a greater level of consistency than landmarking, we specify a marginal model for

[T ] and then derive the conditional survival function from this single model. We then need

a method by which we can link these marginals while accounting for their dependence,

thus we consider a Gaussian copula (Song et al., 2009; Pitt et al., 2006).

Gaussian copulas, which stem from the field of quantitative finance, have been previ-

ously employed for modeling the joint distribution of marker and failure time processes

(Rizopoulos et al., 2008a,b; Ganjali and Baghfalaki, 2015), but have yet to be applied

in the area of dynamic prediction. With the copula, we can join the two marginals, Zτ

and Tτ , together to give us a model for the joint distribution conditional on being alive

at a particular time τ , [T, Z|T > τ ]. The copula contains an association parameter that

describes the dependence between the marginal distributions. The association will be

negative if higher values of a continuous marker or having experienced the intermediate

event represented by a binary marker are correlated with decreased time to the failure

event. In certain disease settings, the association between Zτ and Tτ might depend on

baseline information and can also increase or decrease as we make predictions further

away from baseline. Thus, we specify the association to be a flexible function of baseline

covariates and observation time τ . Estimation is performed using a two-stage approach

commonly applied with copulas (Joe and Xu, 1996), where in the first stage estimates

are obtained for the parameters from the marginal models and are then held fixed in the

second stage to estimate the association function parameters. Using the tractable nature

of Gaussian copulas, the desired distribution [T |T > τ, Z(τ)] can then be computed.
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This novel method for dynamic prediction aims to introduce a class of flexible models

that overcomes the computational burden of estimation posed by joint modeling. In ad-

dition, it does not necessitate prespecifying the prediction times or horizon, as is required

by landmarking. We describe our approach for both binary and continuous marker sit-

uations, and compare the predictive performance with joint modeling and landmarking

using simulation studies. We demonstrate computing dynamic predictions with our pro-

posed method in the binary setting using a prostate cancer data set, and in the continuous

setting using a heart valve data set.

In Chapter III, we propose an alternative survival model specification for incorporating

the effects of a partially observed covariate on survival. In cancer research, we are often

faced with marked data, where we consider the marker to be an underlying stochastic

process that is observed only at the survival time, giving us a current status observation

and a cross-sectional surrogate (or “mark”) of the latent stochastic process. With this

very sparse data, the previously considered methods for dynamic prediction in this dis-

sertation are inadequate. Both joint modeling and the copula approach require specifying

a function for the marker trajectory or distribution, for which there may not be enough

longitudinal observations to properly estimate. Landmarking will introduce bias into the

estimates and predictions because it imputes the value of the marker at missing inter-

mediate measurements. Thus, we consider modeling the marker as a stochastic process,

allowing for more flexible behavior during periods in which the marker is not observed.

We consider the marker to represent an underlying stochastic risk process for each

individual that accumulates over time until the person experiences the failure event. Thus,

we can consider the problem in the context of a time-dependent frailty. Gjessing et al.

(2003) present a generalization of proportional hazards frailty models where the frailty

is considered to be a stochastic process and multiplicatively affects the hazard function.

Continuous non-negative Lévy processes have been a popular choice for the frailty process

due to the tractable form of their Laplace functional and their preservation of the non-
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negative hazard function property. This poses a restriction of non-decreasing hazard rate.

In addition, this framework assumes that the frailty process is completely unobserved.

To alleviate these limitations, we propose using the non-decreasing Lévy bridge process

family more naturally as a multiplicative effect on the cumulative hazard function. We

specifically consider a gamma process with mean and variance specified as a function

of baseline covariates, and extend existing theory from a similar gamma bridge financial

model for aggregate claims data (Hoyle, 2010; Brody et al., 2008) to a survival framework.

Using the tractable nature of this process, we derive the marginal and conditional survival

functions and describe the extension to multiple measurement times. By specifying a joint

model, we also derive dynamic predictions of the marker value conditional on being alive

at a particular time. The proposed survival model can be utilized for dynamic prediction,

but also provides inference about covariate effects on both the survival probability and

the marker behavior. The flexibility of this model specification allows it to be applied to a

variety of marker and disease process settings where the correct marker distribution is not

known or is difficult to specify. With a simulation study, we evaluate the effectiveness of

our method for inference and its sensitivity to misspecification. We demonstrate its usage

for survival and marker prediction using a motivating prostate cancer data set, where

prostate-specific antigen (PSA) is modeled as a stochastic process that develops over time

and can affect survival.
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CHAPTER I

Comparison of Joint Modeling and Landmarking for

Dynamic Prediction under an Illness-Death Model

1.1 Introduction

As survival outcomes for patients improve, there is additional follow-up information

available and increased interest in predicting conditional survival for patients at a time

beyond diagnosis or treatment. To achieve the most accuracy, prediction models should

incorporate patient information that evolves over time and was collected during follow-

up. The statistical task is to develop a technique that can quantify survival probability

predictions at baseline, and produce updated risk predictions at future time points for

patients who are still alive by including their new marker information.

Recent literature has explored obtaining dynamic predictions with the use of joint

models for longitudinally measured markers and time-to-event outcomes (Taylor et al.,

2005; Rizopoulos, 2011; Taylor et al., 2013; Rizopoulos et al., 2013). Joint modeling

requires the specification of a model for the marker process, a model for the survival

outcome, and a method by which to link the two models (Henderson et al., 2000). This

is sufficient to obtain the joint distribution of the marker process and failure time, from

which the residual time distribution can be easily derived at any landmark time of in-

terest. Computing conditional survival probabilities from this distribution may involve
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numerical integration and require substantial computation. Joint models require correct

specification of the joint distribution of the marker process and the event time and can

require computationally intensive techniques for estimation. To avoid making distribu-

tional assumptions about the marker process and to reduce the computational burden,

approximate approaches for dynamic prediction have been developed that specify a model

for only a component of the joint distribution of the marker and failure time processes.

One such approach to dynamic prediction is called “landmarking”. This approach

was first introduced in the context of clinical oncology by Anderson et al. (1983) as an

alternative to a Cox model with a time-dependent covariate. In van Houwelingen (2007),

the landmarking approach applies a simple Cox proportional hazards model to the data of

individuals still alive at τ , and the resulting estimates are used to predict the probability

of surviving up to a fixed horizon, τ + s. To link the landmark models, the estimated

effects are allowed to change with landmark time in a smooth way. Since this method can

be implemented using the Cox model, and since time is always measured from the original

time origin, estimation can be conducted based on a partial log-likelihood method. Zheng

and Heagerty (2005) proposed a similar approach called “partly conditional survival mod-

eling”, which describes landmarking in the context of resetting the clock at the landmark

time. Gong and Schaubel (2013) combine landmarking and partly conditional methods

to address the situation of dependent censoring.

The appeal of landmarking is that it avoids specifying the distribution of the stochas-

tic marker process in time. However, as demonstrated by Jewell and Nielsen (1993), ap-

proximate approaches fail to produce predictions that are consistent (i.e., have a defined

relationship) with predictions at other landmark times. Valid prediction functions require

the definition of a model for the stochastic marker process and the functional relationship

between the marker and the hazard at any given time. The residual time distribution,

upon which predictions are based, is determined by the hazard at w = τ + s, s > 0 condi-

tional on event time T > τ and marker process Z(τ). The consistency condition proposed
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by Jewell and Nielsen (1993) states that if the hazard function is determined by Z(t) and

denoted h(t, Z(t)), the hazard at all times w > τ cannot be arbitrarily chosen but must

be computed from h(w|τ, Z(τ)) = E[h(w,Z(w))|T > τ, Z(τ)], where the expectation is

with respect to the distribution of Z between τ and w. Thus, specification of the marker

process distribution is necessary to link the hazards over time to produce consistent pre-

dictions. Under the landmarking approach, the model for h(w|τ, Z(τ)) is chosen to have

the form of a Cox regression, which can be easily fit using standard software. Thus, land-

marking produces a sequence of best-fitting Cox models at each landmark time and there

is no restriction on the predictions from each Cox model being consistent with those at

earlier time points. Based on this violation of the consistency rule, an approach for pre-

diction models that is based on modeling only the residual time may result in theoretically

incorrect models.

It is well known that the residual time distribution based on a time-varying marker will

depend on the stochastic process of the marker (Kalbfleisch and Prentice, 2011). Jewell

and Kalbfleisch (1996) provided some specific examples of residual time distributions for

additive models. Shi et al. (1996) showed that if the marker is following a Brownian

motion then a reasonable approximation to the residual time distribution is based on the

linear transformation model (T−τ)1/3 = g(Z(τ))+ǫ, where g is a monotonic function and

ǫ has a constant variance distribution. In discussing differences between a time-dependent

Cox model and a landmarking approach, Putter and van Houwelingen (2016) showed that

a proportional hazards assumption will not in general be valid for the landmarking model.

Whether the lack of theoretical justification for the landmarking approach is a practical

concern may depend on what landmarking models are used. Extensions in the landmark

framework that increase flexibility may provide a sufficiently good approximation to the

true residual time distribution.

The comparison of predictive performance between joint models and landmarking

approaches has been recently explored in the statistical literature. Cortese et al. (2013)
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compared predictions of cumulative incidence between a multi-state model and landmark

approaches under competing risks, and found that the two modeling strategies had nearly

identical predictive accuracy. Rizopoulos et al. (2013) demonstrated the superiority of the

survival prediction accuracy of a joint model over landmarking under various functional

forms of the association structure between a continuous longitudinal marker and failure

time processes. Maziarz et al. (2017) proposed two models in the partly conditional

modeling framework and compared them to a joint model by simulating data from a shared

random-effects model. They showed that predictions obtained from partly conditional

survival models are comparable to those from a joint model, but that partly conditional

models have better computational efficiency.

We aim to contribute to this literature by contrasting landmark and joint models

for dynamic prediction in the context of a binary longitudinal marker, represented by

an illness-death model. In Section 1.2, we introduce notation for landmark and joint

models and derive their predicted probabilities in the context of the illness-death model.

Section 1.3 demonstrates that the landmark approach with a standard Cox model does

not satisfy the consistency condition of Jewell and Nielsen (1993), and suggests extensions

to provide a better approximation. Section 1.4 compares the performance of landmark

and joint models using a simulation study. In Section 1.5, we apply these methods to

cognitive aging data from the PAQUID study and metastatic clinical failure data from a

prostate cancer study, and conclude with a discussion in Section 1.6.

1.2 Approaches for Dynamic Individualized Predictions

Let Dn = {T ∗
i , δi,Xi,Zi; i = 1, . . . , n} denote the observed data, where Ti is the

true event time, Ci is the censoring time, T ∗
i = min(Ti, Ci) is the observed event time,

δi = 1(Ti ≤ Ci) is the censoring indicator, Xi is the baseline covariate vector, and Zi

is the longitudinal marker vector, with zil = Zi(til) denoting the marker value at time

til, l = 1, . . . , ni, for subject i.
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The aim is to obtain a prediction probability for a new subject, j, from the same

population, who has current marker and baseline covariate data available. Specifically,

we are interested in obtaining a prediction probability of surviving up to time τ+s, s > 0,

given that subject j has survived up to time τ , i.e.,

pj(τ + s|τ) = Pr(Tj ≥ τ + s|Tj > τ,Dn,Xj, Zj(τ)) (1.1)

where Zj(τ) denotes the subject’s marker value at time τ . In this probability statement,

τ is called the landmark time and s is the prediction window. The dynamic nature of

this prediction probability lies in its ability to be updated as new information for patient

j becomes available at time τ ∗ > τ , to produce the new prediction pj(τ
∗ + s|τ ∗). Implicit

in Eq.(1.1) is that the value of Z is known for subject j at time τ . In practice this may

not be the case. An alternative target of interest is to change Eq.(1.1) to condition on

the known history of Z up to time τ for subject j.

1.2.1 Joint Modeling

Joint modeling requires the full specification of the joint distribution of the longitudinal

marker process and the survival data. The joint density is often factored into a product

of the densities of Z and T |Z, which requires specifying the model for the longitudinal

marker process and a model for the event times with dependence on the defined marker

process. As shown in Jewell and Kalbfleisch (1992) and Shi et al. (1996), once these

distributions are specified the residual time distribution can be derived.

If Z is a discrete random variable, joint modeling consists of formulating a process for

the transitions between the states of Z and defining the relationship between the covariate

process and survival using a hazard function for T . This is sufficient to derive the joint

distribution of Z and T , from which the residual time distribution is then determined.

The irreversible illness-death model is the simplest example of discrete Z. In this

model, Z is binary with only two states {0,1}, all subjects start in state 0, and transitions
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Figure 1.1: An irreversible illness-death model depicting three states, 0 (Healthy), 1 (Illness),
and 2 (Dead), and the transition intensities between state j and state k (λjk(t|X)), where X is
a vector of baseline covariates that can have transition-specific effects.

from state 1 to state 0 are not allowed. Let T be the time to death, which is a terminal

state. Then the joint distribution of Z and T can be described as a simple three-state

illness-death model (0: Healthy, 1: Illness, 2: Dead), as shown in Figure 1.1. We then

define the time-varying covariate process Z(t) ∈ {0, 1} as an indicator of whether an

individual has progressed from the “healthy” state to the “illness” state by time t. In

this model, λjk(t|X) describes the hazard of transitioning from state j to state k at time

t conditional on the baseline covariate vector X, which can have a different effect on each

transition. We assume that the clock does not reset once an individual has transitioned

into the illness state, and thus t is time since baseline. As well, we can model the rate of

transition to be dependent on the duration in the current state for those in the ill state.

Under the illness-death model, the residual time distribution conditional on Z(τ) is:

Pr(T ≥ τ + s|T > τ,X, Z(τ) = 0) = exp







−
τ+s
∫

τ

[λ02(u|X) + λ01(u|X)] du







+

τ+s
∫

τ

exp







−
v
∫

τ

[λ02(u|X) + λ01(u|X)] du







λ01(v|X) exp







−
τ+s
∫

v

λ12(u|X) du







dv

(1.2)

Pr(T ≥ τ + s|T > τ,X, Z(τ) = 1) = exp







−
τ+s
∫

τ

λ12(u|X) du







(1.3)

In Eq.(1.2) the first term represents the probability that the individual remained in state

0 from time τ to τ + s, and the second term is the probability the individual transitioned

from state 0 to 1 at time v ∈ (τ, τ + s) and then remained in state 1 from time v to τ + s.
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The observed data is given as Dn = {T ∗
i , δi,Xi,Zi, Vi; i = 1, . . . , n}, where in addition

to the previously described notation, Vi is the known, exact transition time from state

0 to state 1 for the ith individual if they have transitioned. Thus, using a joint model

approach, the full likelihood can be written as

L =
∏

i

exp [−{1− Zi(T
∗
i )} {Λ01(T

∗
i |Xi) + Λ02(T

∗
i |Xi)}]λ02(T ∗

i |Xi)
δi(1−Zi(T

∗

i ))

× exp [−Zi(T ∗
i ) {Λ01(Vi|Xi) + Λ02(Vi|Xi)}]λ01(Vi|Xi)

Zi(T
∗

i )

× exp [−Zi(T ∗
i ) {Λ12(T

∗
i |Xi)− Λ12(Vi|Xi)}]λ12(T ∗

i |Xi)
δiZi(T

∗

i )

where Λij(t|X) =
∫ t

0
λij(u|X) du is the cumulative hazard. Using the likelihood, param-

eter estimates of the joint model can be obtained, from which the desired residual time

distribution in Eqs.(1.2) and (1.3) are computed. Since it is unlikely that the exact tran-

sition times are observed in practice, this likelihood can be adjusted to accommodate

interval-censored observation times (Commenges, 2002). Alternatively, a semi-Markov

model, for which the transition to death from the illness state depends on the duration

in the illness state, can be fit (Foucher et al., 2010).

1.2.2 Landmarking

Landmarking describes the approach in which models are proposed and estimation

is conducted at a set of prediction times of interest, defined as landmark times. There

are several models and estimation methods that exist within the landmarking framework.

After a model is selected and fit, the required residual time distribution given by Eq.(1.1)

can be calculated.

The idea behind landmarking is to pre-select a landmark time, τ , at which there is

interest in making a prediction. Given access to a database of patient information, if we

were interested in predicting survival up to time τ + s for patients still alive at τ , we

could select all the patients in the database alive at τ and estimate the probability of
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survival at τ + s using a survival model (e.g., Cox proportional hazards model). We may

also be interested in considering many landmark times, τ1, τ2, . . . , τL, and developing a

prediction model for each. To do this we construct a prediction data set for each landmark

time, τl, which consists of individuals still alive at τ−l , with administrative censoring at

a pre-specified horizon, thor = τl + s. These landmark data sets are then stacked to

create a “super prediction data set” to which the landmark models are applied. We note

that with the selection of multiple landmark times, the same patient contributes to the

estimation of many of the predicted residual time distributions. It is also necessary that

every subject have a value of Z at every landmark time. In practice this may not be

the case, and Z must be imputed from a model for Z, or more commonly by using the

last-observation-carried-forward (LOCF) approximation, which will be the method used

in this chapter.

In the most basic application of landmarking, we fit a separate model to each landmark

data set and estimate a landmark-specific effect of the marker for predicting survival

between τ and a fixed horizon thor = τ + s. The basic landmark model is given as

h(t|τ, Z(τ),X) = h0(t|τ) exp{βτZ(τ) + ζ ′X} for τ ≤ t ≤ thor

where, the dependence of the baseline hazard on τ can be modeled by estimating a different

baseline hazard for each τ , i.e., h0(t|τ) = h0τ (t).

As an alternative, we can apply a “super prediction model” to the stacked super

data set and allow the regression coefficients to depend on landmark time in a smooth,

parametric way, such as with a linear or a quadratic function. This super model is

defined as

h(t|τ, Z(τ),X) = h0(t|τ) exp{β(τ)Z(τ) + ζ ′X} for τ ≤ t ≤ thor (1.4)

where β(τ) =
∑

j γjfj(τ), with basis functions fj(τ) and parameters γj. This model
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can be fit to the stacked super data set using a Cox model with stratification on τ and

interaction terms Z(τ)∗fj(τ). For estimation we maximize a pseudo-partial log-likelihood,

which is the sum over the partial log-likelihoods corresponding to the Cox models fit to

each of the landmark data sets.

Instead of assuming a different baseline hazard for each τ , we can further extend this

model to allow the baseline hazard to change smoothly with landmark time. Thus, the

extended super model is given by

h(t|τ, Z(τ),X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ζ ′X} for τ ≤ t ≤ thor (1.5)

where θ(τ) =
∑

j ηjgj(τ), with basis functions gj(τ) and parameters ηj. In this model,

gj(τ) are now covariates. The pseudo partial log-likelihood for this model differs slightly

from the one for the model in Eq.(1.4). Details are given in van Houwelingen (2007).

This landmark super model can be generalized further. In Eq.(1.5), the effect of Z

depends on τ but it does not depend on t; thus, it still has a proportional hazards structure.

For some applications it may be more appropriate to assume that the effect of Z depends

on the time t− τ and to include a term Z(τ)ω(t− τ), where ω(s) is a smooth function of

s. Thus, we can use the non-proportional hazards extended super model given by

h(t|τ, Z(τ),X) = h0(t) exp{θ(τ)+β(τ)Z(τ)+ω(t−τ)Z(τ)+ζ ′X} for τ ≤ t ≤ thor (1.6)

1.3 Landmark Cox model construction corresponding to the

Illness-Death model

We now consider landmarking when Z is a binary covariate process. Under the land-

mark approach, when making a prediction for a new subject at landmark time τ , we use all

available information at that landmark time. This method does not directly incorporate

possible future transitions to illness. Since landmarking uses the LOCF approximation,
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if the marker process covariate, Zi, is 0 at the time of the individual’s last observation

til before τ , then we set Z(τ) = 0. Thus, it is implicitly assumed the individual does

not transition to the illness state between til and τ . Under the joint modeling approach,

when predicting for a new individual we integrate over all possible paths of an individual

through the illness-death model, including the individual possibly progressing to illness

state after their last inspection but before τ . Thus, for individuals with Z(til) = 0, if

there is interest in predicting for landmark times far later than til, joint modeling can be

expected to provide a better prediction than landmarking.

We can also demonstrate that the standard landmark approach uses a model that is

not compatible with the illness-death model. To model the residual time distribution in a

landmarking framework with binary Z, we consider the super landmark model in Eq.(1.4).

If the proportional hazards assumption in the landmark Cox model is to hold then it is

necessary that β(·) in Eq.(1.4) does not depend on t. We will investigate whether it is

possible under the illness-death model to achieve a form for β(·) that is independent of

t. If not, then we will examine how β(τ) can be generalized to better approximate the

correct residual time distribution.

For the purposes of our derivation, we reparameterize the hazard in Eq.(1.4) as follows:

h(t|τ, Z(τ),X) = h0(t|τ) exp {β(τ)(1− Z(τ)) + ζ ′X} (1.7)

We can then define the residual time distribution for the Cox-type landmark model as

surviving to time τ + s, s > 0, given the individual was alive at landmark time τ with an

illness indicator Z(τ). From Eq.(1.7), this can be written as

Pr(T ≥ τ + s|T > τ,X, Z(τ)) = exp



−
τ+s
∫

τ

h0(u|τ) exp
{

β(τ)(1− Z(τ)) + ζ′X
}

du



 (1.8)
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1.3.1 Equating residual time distribution

To determine the form for β(τ) and h0(t|τ) in Eq.(1.7) that corresponds to the illness-

death model, we equate the appropriate residual time distributions for the two models.

Starting with the situation where the individual transitioned to the illness state by time

τ , it is required that Eq.(1.8) for Z(τ) = 1 and Eq.(1.3) are equal, hence

exp







−
τ+s
∫

τ

h0(u|τ) exp(ζ ′X) du







= exp







−
τ+s
∫

τ

λ12(u|X) du







=⇒ h0(u|τ) exp(ζ ′X) = λ12(u|X) ∀τ (1.9)

Thus, the hazard for the Cox-type model in the landmark approach conditional on being

in the illness state is equivalent to the transition intensity from illness to death. Notice

that it has the same form for all landmark times.

For the situation where the individual has not yet transitioned to illness, we require

that Eq.(1.8) for Z(τ) = 0 and Eq.(1.2) are equal, thus

exp







−
τ+s
∫

τ

h0(u|τ) exp(β(τ) + ζ ′X) du







= Eq.(1.2)

=⇒ β(τ) + ζ ′X = log

[

− log {Eq.(1.2)}
∫ τ+s

τ
h0(u|τ) du

]

Substituting in the value for h0(u|τ) from Eq.(1.9):

=⇒ β(τ) + ζ ′X = log [− log {Eq.(1.2)}]− log







τ+s
∫

τ

λ12(u|X) du







(1.10)

which is the form for the covariate effects from the landmark Cox regression model that

corresponds to an illness-death model. Notice that the required form for β(τ) given on

the right-hand side of Eq.(1.10) is quite complicated since it involves Eq.(1.2), which
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is composed of two additive terms. Also, notice that it is dependent on both s and τ ,

which violates the form of the simple Cox regression model desired for the landmark

setting, i.e., β(·) dependent only on τ . Thus, a landmark approach with a proportional

hazards assumption is not the correct method when the true data generative model is an

illness-death model.

If λ12(u|X) = λ12,0(u) exp{α′
12X}, then ζ = α12. The form of X on the right-hand

side of Eq.(1.10) is not linear in X and furthermore, it depends on three separate linear

combinations, α′
01X,α

′
02X, and α′

12X, rather than one. If there are several baseline

covariates, the covariate vector can be different for each transition, which will also not be

captured by the linear form of X in the Cox model. This suggests that the landmark Cox

models should include more flexible forms for X, such as ζ(τ )′X, or an interaction, such

as φ′XZ(τ).

We now consider special cases for the transition intensities to identify situations in

which the derived forms for the landmark Cox baseline hazard and covariate effects provide

good approximations of the residual time distribution under the illness-death model.

1.3.1.1 Constant and equal baseline transition intensities

Under the simplest situation of constant and equal baseline transition intensities,

λjk(t|X) = ψ exp{α′
jkX}, we obtain the following form for the baseline hazard and co-

variate effects under the Cox landmark model from Eqs.(1.9) and (1.10),

h0(t|τ,X) exp(ζ′X) = ψ exp(α′

12X)

β(τ) + ζ′X = log



− log



exp
{

−ψs(eα′

02X + eα
′

01X)
}

+
exp

(

α′

01X− ψseα
′

12X

){

1− exp
{

−ψs
(

eα
′

02X + eα
′

01X − eα
′

12X

)}}

eα
′

02X + eα
′

01X − eα
′

12X









− log[ψseα
′

12X]
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The form for the covariate effects does not resemble a structure that is implementable

within a standard Cox regression in the landmark approach. Also, β(τ) is dependent on

s and violates the form of a simple Cox regression model in the landmark setting, which

assumes that β depends only on τ .

1.3.1.2 Proportional hazards transition intensities

For the situation with proportional hazards transition intensities, we define the tran-

sition intensity for j → k as λjk(t|X) = λjk,0(t) exp{α′X}, where λjk,0(t) is the base-

line transition intensity for the j → k transition, such that λ02,0(t) = λ(t), λ01,0(t) =

γλ(t), λ12,0(t) = ηλ(t). We denote the cumulative hazard Λ(t) =
∫ t

0
λ(u) du. Then from

Eqs.(1.9) and (1.10), we derive

h0(t|τ,X) exp(ζ ′X) =ηλ(t) exp(α′X)

β(τ) + ζ ′X = log

[

− log

(

1− η

1 + γ − η
exp

{

−(1 + γ)eα
′X[Λ(τ + s)− Λ(τ)]

}

+
γ

1 + γ − η
exp

{

−ηeα′X[Λ(τ + s)− Λ(τ)]
}

)]

− log
[

ηeα
′X{Λ(τ + s)− Λ(τ)}

]

In this scenario, the form of the covariate effects also does not have a Cox proportional

hazards structure. Here, β(τ) is dependent on both τ and s, unless λ(t) is a constant.

As the flexibility of the transition hazards in the illness-death model is increased, we find

that the corresponding form of the covariate effects under the landmark approach is not

consistent with a Cox regression model and depend on both τ and s. Allowing the effect

of the baseline covariates to vary with transition, the forms of the baseline hazard and

covariate effects are even more complicated.

19



1.3.1.3 Short prediction horizon

Since we are typically most interested in short term predictions, we also consider

whether the Cox model in the landmark framework approximately satisfies a proportional

hazards assumption for small time horizons of interest. Thus, we explored obtaining a

simpler form of the derived residual time distribution using the Taylor approximation.

Taking the second-order Taylor expansion of log(Eq.(1.2)) and log(Eq.(1.3)) about s = 0,

we get the following approximation of the residual time distribution for small s

Pr(T ≥ τ + s|T > τ,X, Z(τ) = 0) ≈ exp

{

−λ02(τ |X)s

−1

2

[

λ′02(τ |X)− λ02(τ |X)λ01(τ |X) + λ01(τ |X)λ12(τ |X)
]

s2
}

Pr(T ≥ τ + s|T > τ,X, Z(τ) = 1) ≈ exp

{

−λ12(τ |X)s− 1

2
λ′12(τ |X)s2

}

Taking the derivative of the negative log of these equations, and denoting t = τ + s, gives

us the hazard functions

h(t|T ≥ τ,X, Z(τ) = 0) = λ02(τ |X)− [λ′01(τ)− λ02(τ |X)λ01(τ |X) + λ01(τ |X)λ12(τ |X)](t− τ)

h(t|T ≥ τ,X, Z(τ) = 1) = λ12(τ |X) + λ′12(τ |X)(t− τ)

These hazards do not have the form of proportional hazards. Thus, to achieve consistency

between the illness-death model and the landmark approach we need a broader class of

landmark models that accommodates the derived form of the hazards and contains the

Cox proportional hazards model as a special case.

Based on the derivations in this section, we conclude that Cox proportional hazards

within the landmark framework is not an appropriate model for the residual time distri-

bution arising from an illness-death model. We have shown that in plausible scenarios the

covariate effects are a function of both τ and s = t−τ and that the effect of baseline covari-

ates is unlikely to be well described by a simple, single linear combination. For the more

likely but complicated scenario of an illness-death model with transition-specific base-
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line intensities and covariate effects, the associated h0(t|τ,X) and β(τ) are non-standard

and the super landmark model does not provide a good theoretical approximation of the

residual time distribution. Thus, we use a simulation study to explore the performance of

extensions within the landmark framework that accommodate non-proportional hazards,

coefficient effects of Z as a function of τ and s, more complex forms for the baseline

covariate effects X, and interactions between Z and X.

1.4 Simulation Study

The aims of our simulation study were to compare the predictive performance of joint

and landmarking models in the context of illness-death data, and to evaluate whether

increased landmark model flexibility provides a better approximation to the true model.

1.4.1 Data Generation and Structuring

Five hundred simulations of n = 500 subjects were run for each scenario. Defining the

states as {0: Healthy, 1: Ill, 2: Dead}, the ages at illness onset and death without illness

were generated from

λjk(ti|Xi) =

(

ρjk
κjk

)(

ti
κjk

)ρjk−1

exp
{

α′
jkXi

}

for j = 0, k = 1, 2 (1.11)

For the transition intensity from illness to death (1 → 2), we generate data under two

different models: (1) Markov, where the transition intensity depends only on current time

and (2) semi-Markov (“clock-reset”), where the transition depends on duration in the

illness state. Under the Markov model, λ12(t|X) is given as in Eq.(1.11). Under the semi-

Markov model, given the known transition time V , the transition intensity from illness to

death is specified as λSM12 (t|X, V ) = λ12(t− V |X).

We choose the transition intensity shape and scale parameters such that λ12(t) >

λ02(t) > λ01(t) [ρjk = 1.15 for all j → k; κ01 = 20;κ02 = 12.5;κ12 = 10]. We simulate
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a binary baseline covariate, X, that has a stronger effect on death in ill subjects, with

α01 = 0.5, α02 = 0.5, α12 = 2. We explored simulating the exposure prevalence of X

from 5% to 50%, but present only the results for 40% due to the similarity of results

under other percentages. We simulate right-censoring from an exponential distribution

with mean 80 and apply administrative censoring at time 20 to achieve a 15% censoring

rate. We simulate marker measurement under two patterns of observation: (1) the marker

process is continuously observed (then the exact transition time from “healthy” to “ill” is

observed) and (2) the value of the marker is observed at random inspection times. Under

the scenarios where the marker, Z, is measured at inspection times, inter-inspection times

are exponentially distributed with rate 0.5.

We assume that there is interest in dynamic prediction for the first five years following

baseline. Thus, we use an equally spaced grid of landmark times from time 0 to time 5,

every 0.2 years. The endpoint of interest is death within a prediction window of s = 1, 3, 5

years from the prediction time. To structure the data as a super data set, we create a

landmark data set for each τ , with administrative censoring at τ + s, and stack the

landmark data sets. We also structure the data as a longitudinal data set for the setting

with simulated inspection times. In this data set, each patient contributes a row for each

of their inspection times (til, l = 1, . . . , ni), with administrative censoring of their event

times at til + s.

1.4.2 Joint Models

Under the joint modeling approach, we fit both Markov and semi-Markov models.

Defining λWjk,0(t) and λ
Cox
jk,0(t) as the baseline hazards of a Weibull model and Cox propor-

tional hazards model, respectively, we fit the parametric and semiparametric joint models

(MM), (MMCox), (MSM), (MSMCox), and (SMM) shown in Table 1.1.

For (MM) we fit a Markov illness-death model with Weibull hazard transition inten-

sities. (MMCox) fits the model with semiparametric transition intensities using a Cox

22



Table 1.1: Joint models fit in the simulation study.

Model Baseline hazard Transition intensity ∀j → k Label

Parametric λWjk,0(t) exp{αjkX} (MM)Markov
λjk(t|X) Semiparametric λCoxjk,0(t) exp{αjkX} (MMCox)

Parametric λWjk,0(t) exp{αjkX + γV ∗1(j = 1, k = 2)} (MSM)Markov, V ∗

λjk(t|X,V ∗) Semiparametric λCoxjk,0(t) exp{αjkX + γV ∗1(j = 1, k = 2)} (MSMCox)

Semi-Markov
λjk(t|X,V ∗)

Parametric λWjk,0(t− V ∗1(j = 1, k = 2)) exp{αjkX} (SMM)

proportional hazards model. These models are extended to (MSM) and (MSMCox) to

account for the effect of the observed transition time, V ∗, by including it as a covariate.

For (SMM) we fit a semi-Markov illness-death model.

Estimation is conducted using methods described in Section 1.2.1 with the R packages

SmoothHazard for (MM) (Touraine et al., 2013), mstate for (MMCox) and (MSMCox)

(de Wreede et al., 2011), and the function optim for the optimization of the likelihood for

(MSM) and (SMM) using the quasi-Newtonian algorithm, the code for which is available

in the Supporting Information materials. We plug in the resulting estimates (λ̂jk) into

1−Eq.(1.2) and 1−Eq.(1.3) to produce dynamic predictions of death within s years for

landmark time τl. Note that for the models that are conditional on V ∗, we replace

λ12(u|X) with λ12(u|X, v) in Eq.(1.2) and λ12(u|X) with λ12(u|X, V ) in Eq.(1.3).

1.4.3 Landmark models

Motivated by the derivations in Section 1.3 and based on the equations in Section

1.2.2, we fit the landmark models (LM1), (LM2), (LM3), and (LM4) given in Table 1.2 to

the simulated data, where β(τ) = β0 + β1τ + β2τ
2, θ(τ) = θ1τ + θ2τ

2, ω(s) = ω1s+ ω2s
2.

For estimation, under the super data set structuring, the τ ’s in (LM1-LM4) corre-

spond to the chosen grid of landmark (prediction) times. Under the longitudinal data

structuring, only (LM2), (LM3), and (LM4) apply, and the τ ’s represent the inspection

times. The landmark data sets are created using the dynpred package in R (Putter, 2015).
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Table 1.2: Landmark models fit in the simulation study.

Model Hazard Label2

h0τ (t) exp{β(τ)Z(τ) + ζX} (LM1)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ζX} (LM2)

h0(t) exp{θ(τ) + β0Z(τ) + ω(t− τ)Z(τ) + ζX} (LM3)

LM1

h(t|τ, Z(τ), X)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t− τ)Z(τ) + ζX} (LM4)

h0τ (t) exp{β(τ)Z(τ) + γV ∗Z(τ) + ζX} (LSM1)

h0(t) exp{θ(τ) + β(τ)Z(τ) + γV ∗Z(τ) + ζX} (LSM2)

h0(t) exp{θ(τ) + β0Z(τ) + ω(t− τ)Z(τ) + γV ∗Z(τ) + ζX} (LSM3)

LM, V ∗

h(t|τ, Z(τ), X, V ∗)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t− τ)Z(τ) + γV ∗Z(τ) + ζX} (LSM4)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ζ′X+ φ′XZ(τ)} (LMInt2)

h0(t) exp{θ(τ) + β0Z(τ) + ω(t− τ)Z(τ) + ζ′X+ φ′XZ(τ)} (LMInt3)
LM, Interaction
h(t|τ, Z(τ),X)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t− τ)Z(τ) + ζ′X+ φ′XZ(τ)} (LMInt4)

1 LM: landmark model; 2 (*1): Super model; (*2): Extended super model; (*3): Extended super
model, non-proportional hazards; (*4): Extended super model, non-proportional hazards, covariate ef-
fects are a function of landmark time

In (LM1) we fit a simple Cox model with a different baseline hazard for each τ . Thus, this

approach can only be applied when we pre-specify the landmark times and construct the

super data set based on these landmark times. In (LM2), we still fit a simple Cox model,

but parameterize the baseline hazard to depend smoothly on τ , resulting in decreased

model flexibility but allowing us to fit the model to our longitudinal data set. In (LM3),

we propose a model that allows for non-proportional hazards by including the covariates

ω(s)Z(τ) that are a function of s = t − τ , to accommodate time-varying effects of our

covariate process. In (LM4), we extend the Cox model to include both β(τ) and ω(t− τ),

since in Section 1.3 we showed that under the illness-death model the form for the co-

variate effects for the Cox regression model in the landmark framework was a function of

both s and τ .

Under the semi-Markov model for generating data, modeling complications arise due to

the change in time scale between the transitions. Thus, for simplicity, we can incorporate

the dependency of transition on the observed illness time, V ∗, by including it as a covariate

in the landmark models. Thus, we modify the models (LM1-LM4) to be conditional on
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V ∗ with parameter γ, and fit the models (LSM1), (LSM2), (LSM3), and (LSM4) given in

Table 1.2.

After obtaining the estimates from these parameterizations (β̂, θ̂, ζ̂, ω̂, γ̂), we compute

the dynamic predictions of death within a window of s years at the pre-specified landmark

times, τl, using the following equation

Pr(T ≤ τl + s|T > τl, Z(τl), X, V ) = 1− exp







−
τl+s
∫

τl

h(u|Z(τl), X, V β̂, θ̂, ω̂, ζ̂, γ̂) du







In addition, to the basic scenario of a single baseline covariate, we also evaluated the

performance of landmark models when the baseline covariate vector varies by transition.

We generate data with two binary baseline covariates, X1 that has a stronger effect on

death in ill subjects [α01,1 = α02,1 = 0.5, α12,1 = 2] and X2, which has no effect on death

[α01,2 = 1, α02,2 = α12,2 = 0]. We fit the joint models (MM) and (MMCox) with the

covariates X1 and X2. We modify ζX in models (LM1-LM4) to ζ ′X where ζ = (ζ1, ζ2)

and X = (X1, X2) are the parameter and baseline covariate vectors, respectively. We also

fit the additional models (LMInt2), (LMInt3), and (LMInt4), given in Table 1.2, that

include an interaction term with illness status and parameter vector φ = (φ1, φ2).

1.4.4 Performance Comparison Metrics

The dynamic predictions produced at the sequence of landmark times are compared

to the true death probabilities. These are obtained by using the true shape and scale

parameters to get the true transition intensities and then using numerical integration to

compute the true death probability within window s from Eqs.(1.2) and (1.3), replacing

λ12(u|X) with λ12(u|V ∗,X) when generating under the semi-Markov model. For each

landmark time, we compute the bias and variance of the dynamic predictions under the

landmark approaches and joint model.

To assess the discrimination and calibration of these dynamic predictions, we use
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the dynamic analogues of weighted area under the curve (AUC) and Brier score that

account for censored data, denoted AUC(τ, s) and BS(τ, s), respectively, for landmark

time τ and fixed prediction window s (Blanche et al., 2015). Since BS depends on the

cumulative incidence of death in (τ, τ + s], we used a standardized version that results

in an R2-type measure that compares how well the predictions perform compared to a

null model that assumes that all subjects have the same predicted risk of death regardless

of subject-specific information, BS0(τ, s). We denote this scaled measure R2(τ, s) = 1 −

BS(τ, s)/BS0(τ, s).

To make comparisons between the different models, we compute AUC and R2 using the

prediction probabilities from the true models, denoted AUCTrue and R2
True, respectively.

We then report the relative measures ∆AUC = AUC − AUCTrue and ∆R2 = R2 − R2
True

for each of the models, with a higher value indicating better performance.

For cross-validation, in each simulation all of the described models were fit to a training

data set, created by randomly selecting 4/5 of the simulated individuals. The remaining

1/5 individuals were treated as the validation data set, from which predicted conditional

death probabilities within the window (τ, τ + s] were obtained for those still alive at time

τ .

1.4.5 Simulation Results

Figure 1.2 compares the performance of the landmark model (LM1) and the joint

model (MM) under a Markov assumption with a single baseline covariate for the various

prediction windows, s = 1, 3, 5. The joint model performs better than the landmark model

across all of the prediction windows in terms of all of the considered metrics. For Z = 0,

as the prediction window increases, the bias and variance of the joint model increases,

with the reverse effect for Z = 1. There is no pattern of performance for the landmark

model (LM1) across s. However, within each prediction window, the relationship between

the performance of the different landmark models was consistent. Thus, we present the
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remaining simulation results for a single prediction window, s = 3. As well, we will focus

on Z = 1 for reporting the bias and variance since the absolute bias of the models is

higher than for Z = 0.

We compare the landmark and joint models in Figure 1.3, which depicts the perfor-

mance of the models for Z = 1, X = 1, s = 3 for a continuously observed marker. Across

all the landmark times, the joint models perform the best in terms of bias, variance,

∆AUC and ∆R2, and thus give more accurate predictions than the landmark models.

Within the joint models, the semiparametric model (MMCox) performs almost as well as

the parametric model under which the data was generated, (MM), and both outperform

the landmark models, which can have high absolute bias. In comparing the landmark

models, model (LM3), which includes time-varying effects, has the lowest variance, but

has the highest bias for early landmark times. The bias for model (LM3) decreases with

increasing landmark time, while it increases for the other landmark models. Model (LM4),

which incorporates both landmark and residual time, performed similarly to the simpler

landmark models (LM1) and (LM2). All the landmark models had similar ∆AUC and

∆R2. Thus, incorporating additional flexibility into the landmark models did not translate

into less deviation from the true predicted probabilities or substantially better predictive

performance. Due to their similar performance to (LM4), for the remaining figures we

omit the results of (LM1) and (LM2).

In Figure 1.4, we compare the different methods of data structuring. When the marker

is continuously observed there is more information available than when the process is ob-

served at inspection times, and thus performance is better across all the metrics. Within

the inspection times simulations, with the exception of the bias for the landmark model

with non-proportional hazards, the longitudinal data set outperformed the super data

set across all four performance metrics for all the landmark models. Since this rela-

tionship persisted in our simulation results, and it is unlikely that markers are observed

continuously in practice, we will only present the results from the “longitudinal data set,
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Figure 1.2: Simulation estimates for bias (upper-left), variance (upper-right), ∆AUC (bottom-
left), and ∆R2 (bottom-right) for predicted probability P (T ≤ τ + s|T > τ, Z(τ), X) for s =
1, 3, 5-year prediction windows from joint model (MM) and landmark model (LM1), under a
Markov illness-death model with a single baseline covariate and continuously observed marker
measurement.
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Figure 1.3: Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) =
1, X = 1, ∆AUC (bottom-left), and ∆R2 (bottom-right) for predicted probability P (T ≤ τ +
3|T > τ, Z(τ), X) from the joint models (MM), (MMCox) and landmark models (LM1-LM4),
under a Markov illness-death model with a single baseline covariate and continuously observed
marker measurement.
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inspection times marker measurement” scenarios in the rest of our comparisons.
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Figure 1.4: Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) =
1, X = 1, ∆AUC (bottom-left), and ∆R2 (bottom-right) for predicted probability P (T ≤ τ +
3|T > τ, Z(τ), X) from joint model (MM) and landmark models (LM3), (LM4) fit to data
structured as a super or longitudinal data set, under a Markov illness-death model with a single
baseline covariate and continuously observed (CO) or inspection time (IT) marker measurement.

Figure 1.5 shows the results from models that condition on observed illness time ap-

plied to data generated from a Markov illness-death model. Among the joint models,

parametric Markov model (MM) and semiparametric (MMCox) had similar performance.

The joint models that condition on V ∗, (MSM) and (MSMCox), had nearly identical

performance to their corresponding Markov models, and still have better performance

metrics than the landmark models. The semi-Markov model (SMM) had almost identi-

cal predictive performance to (MM), and had similar bias to the other joint models and

the lowest variance for early landmark times. The performance of the landmark models

(LSM3) and (LSM4) did not significantly change by conditioning on V ∗. Thus, when

simulating under a Markov assumption, conditioning on observed illness does not affect

model performance.
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Figure 1.5: Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) =
1, X = 1, ∆AUC (bottom-left), and ∆R2 (bottom-right) for predicted probability P (T ≤
τ + 3|T > τ, Z(τ), X) from joint models (MM), (MMCox), (MSM), (MSMCox), (SMM) and
landmark models (LSM3), (LSM4) fit to a longitudinal data set, under a Markov illness-death
model with a single baseline covariate and inspection time marker measurement.
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Figure 1.6: Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) =
1, X = 1, ∆AUC (bottom-left), and ∆R2 (bottom-right) for predicted probability P (T ≤
τ + 3|T > τ, Z(τ), X) from joint models (MM), (MMCox), (MSM), (MSMCox), (SMM) and
landmark models (LSM3), (LSM4) fit to a longitudinal data set, under a semi-Markov illness-
death model with a single baseline covariate and inspection time marker measurement.

In Figure 1.6, we fit these same models to data generated under a semi-Markov illness-

death model. The predicted probabilities for determining the bias and variance were

computed given V = 2τ/3, for landmark time τ . The results were very similar to those

in Figure 1.5. The (SMM) model performed the best, with the models that account for

transition time performing marginally better than their counterparts, but with a greater

distinction than in Figure 1.5. Since the gains are minimal, but existent, when condition-

ing on the observed illness time in our particular situation, there is an indication that

these models will outperform the Markov models in other simulation scenarios.

Finally, we consider the situation where we simulate two baseline covariates with dif-

ferent effects on each transition. From Figure 1.7, we see that by including the interaction

term XZ(τ), the performance of the landmark models is on par with the joint models in

terms of bias. The landmark models with the interaction term have lower variance, better
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∆R2, and similar ∆AUC than those without the interaction. Thus, including an inter-

action term in the landmark Cox model captures the effect of baseline covariate vectors

that differ by transition better than a linear function of X and provides a much better

approximation to a joint model.
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Figure 1.7: Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) =
1, X1 = 1, X2 = 1, ∆AUC (bottom-left), and ∆R2 (bottom-right) for predicted probability
P (T ≤ τ + 3|T > τ, Z(τ),X) from joint models (MM), (MMCox) and landmark models (LM3),
(LM4), (LMInt3), (LMInt4) fit to a longitudinal data set, under a Markov illness-death model
with two baseline covariates and inspection time marker measurement.

Overall, based on the set of scenarios considered, the simulation results show that

joint modeling gives better performance than landmarking. The difference is generally

quite small, with the exception of bias for which the landmarking approach can have high

absolute bias. The results suggest that more general landmark models than the simplest

(LM1) can improve performance and that given inspection time data, using a longitudinal

structure for the landmark data set produces better predictions than a super data set.

The results also indicate that misspecification of the joint model did not affect predictive

performance.
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1.5 Applications to Real Data

In this section, we apply landmarking and joint models to data from two different

studies that can be modeled with an illness-death model and have information collected

beyond baseline on a binary time-dependent covariate. The large PAQUID study on

cognitive aging provides interval-censored inspection time data for transition time to the

illness state and allows us to use cross-validation to compare the predictive performance

of the methods under longitudinal and super data structures. We also apply the models

to data from a prostate cancer study with continuously observed time to clinical failure

to compare the coefficient interpretations and dynamic predictions produced under the

two approaches.

1.5.1 PAQUID Study of Cognitive Aging

We evaluate the predictive abilities of landmark and joint models using data collected

by the PAQUID study. The Personnes Agées QUID (PAQUID) Study is a large, prospec-

tive cohort study of cognitive and physical aging (Dartigues et al., 1992). We use data

from the R package SmoothHazard (Touraine et al., 2013) on a random subset of 1000

subjects from the original study, which consisted of 3,777 individuals aged 65 years and

older living in southwestern France. Subjects had 10 visits over 20 years, at which they

were assessed for dementia. The longitudinal data set was created using interval-censored

observations and the approximate visit times 1, 3, 5, 8, 10, 13, 15, 17, 20 years from the

initial visit.

There were 186 subjects that were diagnosed with dementia. Of the 724 deaths, 597

died without a dementia diagnosis and 127 died after diagnosis. We model the data as

an illness-death model with the states, “alive without dementia”, “alive with dementia”,

and “dead”. The baseline covariates are age at study entry (median 74; IQR 69-79),

gender (female: 58%, male: 42%), and primary school diploma status (with diploma:

76%, without diploma: 24%).
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This data represents the typical data set for which there is interest in determining

the probability of death at a given landmark time beyond baseline of study enrollment.

It involves a high-risk group of individuals for which there is future information, i.e.,

dementia diagnosis, that can affect their risk of death and thus must be incorporated

into prediction models to produce accurate and updated prediction probabilities. This

study also involves diagnosis updates at inspection times, which allows us to evaluate the

landmark models by structuring the data as both a super data set and a longitudinal

data set. The large size of the data set allows us to perform cross-validation to prevent

overfitting when assessing model performance.

We fit both landmark and joint models as in the simulation study. The subject-

specific predictions were computed at the landmark times τ = 0, 1, 3, 5, 8, 10 years for a

prediction window of s = 3, 5, 7 years. The estimates for assessing predictive accuracy

were obtained by performing cross-validation based on repeated random sub-sampling.

The data was split into 2/3 training data, to which the models were fit, and AUC and R2

were computed for predictions from the remaining 1/3 validation data. This procedure

was repeated 500 times. We present the averaged dynamic AUC and R2 values under

the super and longitudinal data structure for s = 5, since the other prediction windows

showed similar patterns.

Fitting the model (MM) to the full data, we find that the baseline covariates of diploma

status and gender have different effects for each of the transitions. Having a diploma

has a significant effect on reducing risk of developing illness (0 → 1), and males have

increased risk of death (1 → 2, 0 → 2). Thus, we consider landmark models with

an interaction term. The landmark models performed similarly so we only present the

results for models (LM3) and (LMInt3). In Figure 1.8, we evaluate the inclusion of an

interaction and compare the different data structures. The model with the interaction

has better predictive performance under both structures, with the longitudinal data set

having higher AUC at earlier time points. We investigate the performance of joint Markov
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Figure 1.8: PAQUID data estimates for the cross-validated prediction accuracy measure AUC
(left) and R2 (right) for predicted probability P (T ≤ τ + 5|T > τ, Z(τ),X) from landmark
models (LM3), (LMInt3), fit to inspection time (IT) marker measurement data structured as a
longitudinal or super data set.
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Figure 1.9: PAQUID data estimates for the cross-validated prediction accuracy measure AUC
(left) and R2 (right) for predicted probability P (T ≤ τ + 5|T > τ, Z(τ),X) for joint models
(MM), (MMCox), (SMM) and landmark models (LM3), (LMInt3), fit to a longitudinal data set.

and semi-Markov models under the longitudinal data structuring in Figure 1.9 and notice

that the landmarking models have higher AUC at earlier landmark times, but that joint

models (MM) and (MMCox) perform consistently better in terms of R2. The joint semi-

Markov model, (SMM), performs similarly to the other joint models in terms of both

AUC and R2.

Based on this real data analysis, the predictions had similar accuracy under the dif-

ferent data structures. Extensions to the landmark models that incorporate s and τ as

covariates did not increase flexibility enough to produce significant improvement in model

performance. However, the inclusion of an interaction between baseline covariates and
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Z(τ) produces more accurate predictions. The joint models had marginally better or

equivalent performance at the landmark times than the landmark models. The models

that conditioned on transition time as a covariate did not provide a better fit; however,

the semi-Markov model (SMM) performed similarly to the Markov models, and may out-

perform these models in a situation where the Markov assumption does not hold.

1.5.2 Prostate Cancer Study

We present the analysis results and dynamic predictions obtained from fitting the

landmark and joint models to data from a prostate cancer study conducted at the Uni-

versity of Michigan. The data set is composed of 745 patients with clinically localized

prostate cancer who were treated with radiation therapy. We measure time from start of

treatment, considering metastatic clinical failure (CF) as a time-dependent binary covari-

ate. The states of our illness-death model are “alive without clinical failure”, “alive with

clinical failure”, and “dead”. The median follow-up time was 9 years, and 52 patients

experienced clinical failure. Out of 188 deaths, 154 died before and 34 died after experi-

encing clinical failure. The pretreatment prognostic factors measured at baseline are age

(median 69; IQR 63-74), log(PSA + 1) (PSA ng/ml; median 8; IQR 5-12), Gleason score

treated as a continuous covariate with a score of 7=“3+4” and 7.5=“4+3” (median 7;

IQR 6-7.5), prostate cancer stage (T1: 57%, T2-T3: 43%), and comorbidities (0: 55%,

1-2: 37%, ≥3: 8%).

We use landmark and joint models to obtain predicted probabilities of death within

5 years for landmark times τ = 0, 1, . . . , 8 years. We assume that the marker is contin-

uously observed, and structure the data as a super data set. The coefficient estimates

from fitting the joint models are given in Table 1.3. The parametric and semiparametric

Markov models (MM) and (MMCox), respectively, have similar estimates for the different

transitions. The (MSM) model incorporates clinical failure time as a covariate for the

1 → 2 transition, which is not significantly different than 0 and thus the Markov as-
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Table 1.3: Coefficient estimates for joint models applied to prostate cancer data.

MM MMCox MSM SMM

Transition Covariate Coef. SE Coef. SE Coef. SE Coef. SE

0 → 1 Age 0.013 0.019 0.014 0.019 0.012 0.018 0.012 0.018
log(PSA + 1) 0.424 0.173 0.431 0.172 0.422 0.173 0.422 0.173
Gleason score 0.740 0.156 0.753 0.159 0.740 0.156 0.741 0.156
Stage T2-T3 0.798 0.349 0.767 0.349 0.799 0.349 0.796 0.349
Comorbidities 1-2 0.053 0.302 0.061 0.302 0.054 0.302 0.054 0.301
Comorbidities >=3 0.263 0.497 0.271 0.497 0.264 0.496 0.263 0.496

0 → 2 Age 0.077 0.013 0.080 0.013 0.076 0.013 0.076 0.013
log(PSA + 1) 0.204 0.126 0.193 0.127 0.205 0.125 0.205 0.125
Gleason score 0.135 0.093 0.174 0.095 0.136 0.093 0.136 0.093
Stage T2-T3 0.051 0.169 -0.030 0.172 0.051 0.169 0.051 0.169
Comorbidities 1-2 0.678 0.181 0.700 0.182 0.679 0.181 0.678 0.181
Comorbidities >=3 1.426 0.236 1.491 0.238 1.425 0.236 1.425 0.236

1 → 2 Age 0.049 0.024 0.043 0.025 0.050 0.024 0.048 0.023
log(PSA + 1) -0.238 0.260 -0.183 0.319 -0.263 0.270 -0.293 0.271
Gleason score 0.574 0.206 0.612 0.229 0.584 0.209 0.580 0.202
Stage T2-T3 0.059 0.475 0.207 0.508 0.105 0.488 0.078 0.478
Comorbidities 1-2 -0.927 0.421 -1.005 0.451 -0.942 0.424 -0.873 0.400
Comorbidities >=3 -0.507 0.646 -0.555 0.708 -0.453 0.659 -0.330 0.596
Time of CF (V ) -0.036 0.089

Log-likelihood -966.4 -1182 -966.4 -966.1
AIC 1969 2399 1971 1968

sumption does not appear to be violated. This is further demonstrated by the estimates

for the 1 → 2 transition in (SMM), which are very similar to the estimates from the

(MM) model. The effects of the baseline covariates vary across the different transitions.

Increased age significantly increases risk of death (0 → 1, 0 → 2), higher PSA, Gleason

score, and Stage T2-T3 indicate increased risk of developing clinical failure (0 → 1), and

among those with clinical failure, higher Gleason score increases risk of death and those

with 1-2 comorbidities have decreased risk of death (1 → 2).

We present the results from fitting the landmark models in Table 1.4. In (LM3) we

accommodate non-proportional hazards by considering clinical failure as a time-varying

covariate. The effect of clinical failure decreases as the landmark time at which the pre-

diction is made increases. (LM4), which (LM2) and (LM3) are nested within, has the

highest log-likelihood of the models and the lowest AIC, indicating better fit. Since the

joint models show that the baseline covariates have differential effects on risk of death be-
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fore or after clinical failure, we present the results from (LMInt4), a model with interaction

terms between clinical failure and the baseline covariates. The log-likelihood for (LMInt4)

is higher than model (LM4) and it has a lower AIC even with the penalization for includ-

ing six more covariates. Increased age, PSA, Gleason score, and number of comorbidities

were all significantly associated with increased risk of death. The only significant interac-

tion was with comorbidities, where those with clinical failure had a significantly decreased

risk of death if they had 1-2 comborbidities compared to no comorbidities, as was seen

in the joint models. The coefficients for the baseline covariates for the landmark models

do not always properly capture the effect of the baseline covariates on risk. For example,

the coefficient for Gleason score in (LM4) is averaged over those with and without clinical

failure and thus, is much lower than the effect on the 1 → 2 transition but much higher

than the effect for the 0 → 2 transition in the joint models. As well, the effect of stage,

which is significant for the 0 → 1 transition in the joint models but has a small effect on

the transitions to death, is not properly reflected by (LMInt4), where the effect of stage

on risk of death is quite high for those who experience clinical failure.

In Figure 1.10 we present the predicted probabilities from the landmark and joint

models, some of which have been omitted due to similar results, for two individuals in the

data set. The pattern of the predictive probabilities for these specific patients is similar

to that of the other patients in the data set with the same final clinical failure status,

who experience death. Individual A has increased risk of death due to his high PSA and

number of comorbidities, thus his predicted probability of death becomes quite high as

landmark time increases and he dies before experiencing clinical failure. We see that for

this patient, the predicted probabilities from the landmark models and the semiparametric

Markov model (MMCox) track together and the predicted probabilities for all the models

are similar. Individual B is young, but has other baseline variables that characterize him

as high risk. Their effect is particularly seen after the patient experiences clinical failure,

after which his predicted probability of death greatly increases and he dies within 2 years.
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Table 1.4: Coefficient estimates for landmark models applied to prostate cancer data.

LM2 LM3 LM4 LMInt4
Covariate Coef. SE Coef. SE Coef. SE Coef. SE

β(τ) CF 3.317 1.204 2.065 0.279 3.921 1.210 3.406 2.972
CF∗τ -0.439 0.427 -0.460 0.409 -0.220 0.374
CF∗τ2 0.020 0.034 0.021 0.033 0.006 0.031

ω(τ) CF∗(t− τ) -0.513 0.190 -0.562 0.175 -0.341 0.188
CF∗(t− τ)2 0.082 0.051 0.093 0.045 0.062 0.049

θ(τ) τ -0.056 0.018 -0.043 0.019 -0.069 0.023 -0.073 0.022
τ2 0.004 0.001 0.001 0.002 0.004 0.002 0.004 0.002

ζ Age 0.080 0.012 0.080 0.012 0.080 0.012 0.082 0.013
log(PSA + 1) 0.227 0.111 0.234 0.110 0.227 0.111 0.246 0.112
Gleason score 0.292 0.091 0.288 0.091 0.289 0.091 0.269 0.094
Stage T2-T3 0.040 0.168 0.054 0.168 0.042 0.167 0.057 0.171
Comorbidities 1-2 0.414 0.171 0.395 0.171 0.420 0.170 0.474 0.174
Comorbidities ≥3 1.214 0.248 1.207 0.247 1.214 0.247 1.230 0.252

ζZ(τ) CF*Age -0.015 0.024
CF*log(PSA + 1) -0.577 0.366
CF*Gleason score 0.336 0.252
CF*Stage T2-T3 0.372 0.655
CF*Comorbidities 1-2 -1.116 0.457
CF*Comorbidities ≥3 -0.148 0.708

Log-likelihood -11135 -11143 -11132 -11118
AIC 22292 22308 22289 22273
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Figure 1.10: Predicted probability of death within 5 years, P (T ≤ τ + 5|T > τ, Z(τ),X) for
two individuals in the prostate cancer data set. Individual A (left) is 60 years old at baseline,
with PSA 19.7 ng/mL, Gleason score 7.5 (“4+3”), T1 Stage, 6 comorbidities, and does not
experience clinical failure but dies 10 years from baseline. Individual B (right) is 54 years old at
baseline, with PSA 16 ng/mL, Gleason score 9, T2 Stage, zero comorbidities, and experiences
clinical failure at time 3 before dying at time 4.6 years from baseline. Black dashed line indicates
time of death.

The predictions from the joint models (MM) and (SMM) are very similar both before

and after clinical failure. Prior to clinical failure, the prediction probabilities from the

landmark models are lower than those from the joint models by an amount that is not

insignificant. After clinical failure, the landmark model without interactions (LM4) does

not perform well for predicting death. Thus, the landmark models require interactions

between the time-dependent binary covariate and the baseline covariates to capture the

differential effects of the covariates on the different transitions.

1.6 Discussion

Models that can incorporate updated time-dependent marker information to revise

survival predictions are vital for identifying high-risk subjects and making timely clinical

decisions. In this chapter, we have compared the theoretical justification and predictive

capabilities of two such dynamic prediction approaches: joint modeling and landmarking.

We contribute to the existing literature that compares these two approaches by inves-

tigating them under an illness-death model. We focused on a survival model with a binary

time-dependent covariate, which is the simplest example of a joint model, to demonstrate
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that even in this basic situation a Cox model in the landmark framework is not theo-

retically valid. With more complicated forms of the marker process, we can expect that

the discrepancies between the performance of joint models and landmarking will be even

greater, and that the inclusion of flexible forms in landmark models, as were suggested in

this chapter, and better informed imputations of the marker value at landmark times, will

be even more important. In our simulation study, we demonstrate that joint modeling

produces more accurate predictions than landmarking. We simulate data under a joint

model since the landmark model provides an approach to describe the data, but is not a

data-generating model. Thus, to provide a fair comparison we also consider misspecified

models within the joint modeling framework, particularly a semi-Markov model and a

Markov model with a non-smooth baseline hazard. In addition, we compared the perfor-

mance of the approaches to real data from the PAQUID study and concluded that the

joint models performed marginally better than the simple landmark models.

Joint modeling and landmarking have different approaches to predicting the future for

a subject. Joint modeling achieves this by directly modeling the longitudinal variable and

integrating over the possible paths the variable might take, and thus uses the possibly

strong relationship between the longitudinal variable and the event of interest to make

the prediction. Landmarking is an approach which, in essence, obtains the empirical dis-

tribution of future event times among people similar to the person of interest. Estimation

of this empirical distribution is achieved through a descriptive model of the residual times

based on a finite number of parameters. Since the residual time distribution is deter-

mined by the stochastic process for the longitudinal variable, landmarking does depend

implicitly on the stochastic process. The data provides information about the stochastic

process of the longitudinal variable, which is exploited in the joint modeling approach

but ignored in the landmarking approach. Using data from the prostate cancer study, we

demonstrated that the simple landmark models do not properly capture the effects of the

baseline covariates, averaging their effect on predictive probability over both individuals
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who have experienced “illness” and those who have not. The joint models compute the

predicted probability by considering all possible paths through the illness-death model,

allowing the effect of the baseline covariate to vary depending on the state in the process.

The use of more flexible landmark models and interactions between the baseline covariates

and the time-dependent “illness” indicator helps to mitigate this issue.

While the landmarking approach is appealing because it does not require specification

of a longitudinal model, the derivations in this chapter suggest that simple forms for the

landmark models are unlikely to fit well, and the form of the landmark models may need

to include non-proportional hazards and interactions. Thus, just as with joint models,

considerable effort may be needed to obtain a good fitting model. One difference between

joint models and landmarking is in setting up the data. For joint models, the likelihood

is derived from the observed data and there are no choices to make. With landmarking

there are choices to make that will change the predictions, which include the number and

values of the landmark times, what time horizon to use when administratively censoring

the data in the super data set, and how to impute Z(τ).

To avoid using LOCF, we proposed a longitudinal data structure based on inspection

times and demonstrated that in our situation it performed better than or as well as the

super data set proposed by van Houwelingen and Putter (2011). Alternatively, we can

specify a longitudinal model for Z and impute a sensible value for Z(τ) for each subject,

as was done by Maziarz et al. (2017). This approach has some similarity to the two-

stage procedure of fitting a joint model in Bycott and Taylor (1998), which is known to

have small bias and be more computationally convenient than a full joint model likelihood

approach. They accomplish this by specifying the longitudinal marker process as a random

effects model plus stochastic process and using the fit of this model to obtain less variable

imputes of Z(τ) for each subject, which are then used as covariates in a time-varying Cox

model.

In our opinion, joint modeling provides a more unified and principled approach that
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also satisfies the consistency criteria. It could even be enhanced by the incorporation of

external information. If the stochastic process can be well characterized, then we might

expect the predictions to be more accurate, including for longer prediction windows. In

situations where the stochastic process can be well estimated from the available data, joint

modeling is likely to perform better. In situations where it is harder to estimate, e.g.,

sparse longitudinal data or many longitudinal variables, then the empirical performance

of landmarking might provide a good enough approximation.
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CHAPTER II

A Gaussian Copula Approach for Dynamic

Prediction of Survival with a Longitudinally

Measured Marker

2.1 Introduction

To obtain accurate, individualized survival predictions at a given point in time beyond

treatment or diagnosis, prediction models must be able to utilize patient information that

is collected during follow-up. The dynamic prediction at a prediction time of interest, τ ,

can be obtained as the survival probability Pr(T > τ +s|T > τ, Z(τ)) for a patient that is

still alive at time τ , based on their updated marker value, Z(τ) or marker history at that

time point, Z̄(τ) = {Z(u), u ≤ τ}, u ≤ τ . Thus, dynamic prediction methods require

incorporating time-dependent marker information, Z(t), into a model for the failure time,

T , to obtain the conditional distribution [T |T > τ, Z].

In joint modeling, we specify a model for the marker process, Z(t), and a model for

the failure time that links it to the marker process, T |Z, e.g., a survival model with

hazard h(t|Z(t)). From these two models, the joint distribution [T, Z] can be derived.

Thus, joint modeling produces a valid prediction function from which we can obtain con-

sistent predictions that have a defined, meaningful relationship with predictions obtained

from the model at other time points (Jewell and Nielsen, 1993). Another advantage of
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joint modeling is that it is able to handle irregular marker measurements, and can pro-

duce a dynamic prediction at any prediction time of interest. The dynamic predictions

obtained from joint modeling at time τ for surviving up to time w = τ + s involve in-

tegrating the conditional hazard h(t|τ, Z(τ)) from τ to w, which requires knowledge of

the distribution of future values of the marker process beyond the current measurement

{Z(t), τ ≤ t ≤ w}. Thus, utilizing joint modeling for predictions requires the full, correct

specification of the marker process, which can be difficult and involves making specific

distributional assumptions. In addition, the marker model may be difficult to estimate

when there are sparse longitudinal measurements, and misspecification of this model can

result in biased predictions. A practical disadvantage of this method is that it can require

computationally intensive methods for both estimation, particularly when using shared

parameter joint models, and the calculation of the dynamic predictions, which involves

numerical integration.

Landmarking requires directly specifying a survival model for [T |T > τ, Z(τ)] by look-

ing at the empirical failure time distribution at fixed time points, τ , conditional on being

alive at τ and having marker value Z(τ) (Anderson et al., 1983; van Houwelingen, 2007;

Zheng and Heagerty, 2005; Gong and Schaubel, 2013). Thus, at each τ , we obtain the

best-fitting model for T using information from individuals alive at τ and their marker

information Z(τ). Estimation of this empirical distribution is accomplished by using a

Cox regression to model the hazard h(t|τ, Z(τ)), where the covariate and baseline hazard

effects can be restricted to vary smoothly with τ . The dynamic survival predictions can

be directly computed as Pr(T > τ + s|T > τ, Z(τ)) = exp
{

−
∫ τ+s

τ
h(t|τ, Z(τ)) dt

}

. The

advantages of this method are that it avoids having to specify the distribution of the

marker process and can be easily implemented in standard software. A disadvantage of

landmarking is the numerous decisions required by the method. To conduct estimation,

landmarking requires prespecifying the prediction times of interest, referred to as land-

mark times. For simple landmarking models, computing dynamic predictions is restricted
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to these time points. Since a model for the marker process is not specified, landmark-

ing also requires selecting an imputation method for marker values at landmark times at

which individuals do not have observations. As well, the landmarking approach does not

satisfy the consistency criteria described in Jewell and Nielsen (1993), since it directly

models the conditional hazard h(t|τ, Z(τ)) and does not derive it from the joint distribu-

tion of failure time and marker processes, as in joint modeling. In previous work (Suresh

et al., 2017), we demonstrated that under a binary marker process, landmarking results

in a theoretically incorrect model. However, by increasing model flexibility we were able

to show that landmarking could provide a sufficient approximation to a joint model.

There has been much literature proposing alternative joint modeling methods for dy-

namic prediction (Rizopoulos et al., 2014; Andrinopoulou et al., 2015; Andrinopoulou and

Rizopoulos, 2016; Njagi et al., 2016); however, they still require strong distributional as-

sumptions and computationally intensive techniques for estimation. Similarly, extensions

have been suggested within the landmarking framework that aim to overcome its limita-

tions, but as a result require increased computation or modeling assumptions (Nicolaie

et al., 2013; Parast and Cai, 2013; Huang et al., 2016; Rizopoulos et al., 2017; Ferrer et al.,

2017). There are several benefits of using an ad-hoc approach, such as landmarking, for

dynamic prediction. In comparison to joint modeling, it is a simpler method that does not

require assumptions about the marker distribution and does not impose a computational

burden on estimation or calculating predicted probabilities. However, its violation of the

Jewell and Nielsen (1993) consistency criteria makes it a less attractive option since the

behavior of predictions over time are not restricted to have a sensible relationship.

In this paper, we propose an approximate method for dynamic prediction that re-

quires specifying the marginal models Z|T > τ and T |T > τ for individuals alive at time

τ , and then uses a bivariate Gaussian copula to model the joint distribution (Z, T )|T > τ ,

conditional on being alive at τ . From this joint distribution we can directly compute the

dynamic predictions. Like landmarking, this method does not produce a comprehensive
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probability model; however, we maintain a greater level of consistency in our predictions

by specifying a single model for T , and then deriving the model for T |T > τ , which

will be consistently defined for all τ . Unlike joint modeling, we do not require a flexible

specification of the marker process using random effects that can lead to complex esti-

mation. Instead, to enable easy estimation we specify the marginal distribution of the

longitudinal data at each τ , allowing the mean and variance of the distribution to change

smoothly with τ . We use two-stage estimation to first estimate the parameters from the

marginal models, and then hold them fixed in the joint likelihood to estimate the associ-

ation parameters. Estimation is conducted using likelihood-based methods, which allow

for standard methods of model checking and validation.

Rizopoulos et al. (2008a) and Rizopoulos et al. (2008b) described copulas for the joint

modeling of longitudinal marker and failure time processes. They proposed using the

copula as a reparameterization of a shared random-effects model. The copula models

the joint distribution of the random effects of the marker process and the frailty term of

the survival process with a single association parameter. The authors considered various

dependence structures between the two processes by exploring different copulas. Our aim

is to use the copula to directly model the association between survival and marker data,

with the dependence specified as a flexible, smooth function of time. We assume simple,

but flexible, models for the marginal distributions, which avoids the complexity of random

effects estimation. Although there are a variety of copulas to choose from, we consider the

Gaussian copula because it is flexible, analytically tractable, and allows for the convenient

derivation of marginal and conditional distributions.

An alternative approach within the copula framework could be to use a multivari-

ate copula to obtain a fully specified joint model for T and Z measured at fixed time

points τ1, τ2, . . . , τk, given by (T, Zτ1 , Zτ2 , . . . , Zτk), as described by Ganjali and Bagh-

falaki (2015). This model makes use of an individual’s entire longitudinal marker history,

Z̄, to make predictions. However, there are several aspects of the model specification
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that do not recommend its use for dynamic prediction. This approach will not accommo-

date situations that involve irregular measurement times that vary by individual, which is

common in practice. While EM algorithm estimation is used to handle unbalanced data,

this involves imputing the values of the marker for time points beyond the individual’s

censoring or event time. Another important restriction of this multivariate copula ap-

proach is that the covariance matrix can greatly increase in dimension as the number of

measurement times increase. The authors make an exchangeable correlation assumption

to reduce the number of parameters to be estimated; however, our aim is to keep the

association structure flexible to accommodate changing dependence over time.

We aim to describe a new method for dynamic prediction using a novel Gaussian copula

approach. In Section 2.2, we introduce the model and discuss a two-stage approach for

estimation of the Gaussian copula’s marginal and association parameters. We consider

the situation of both a binary marker (illness-death model) and continuous marker. In

Section 2.3, we explore the performance of our method under both of these situations

using simulation studies and in Section 2.4 we demonstrate using our method to obtain

dynamic predictions with two real-world applications. Section 2.5 ends with a discussion

of the advantages and limitations of our method and future directions.

2.2 Method

Our proposed method for dynamic prediction specifies the marginal distributions of

the marker data and the survival outcome and uses a copula to model the association

between the two outcomes over time. The intuition behind this approach is that we can

specify a simpler model for each of the marginals that imposes fewer restrictive assump-

tions on the marginal distributions, and then model their correlation using a copula with

a time-varying association structure. While copulas are most commonly use in financial

applications, recent statistical literature has shown the applications of copulas for speci-

fying the joint distribution of mixed outcomes (Song et al., 2009), time-to-event outcomes
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(Emura et al., 2018), and joint modeling (Ganjali and Baghfalaki, 2015; Rizopoulos et al.,

2008a,b).

In the bivariate situation, the joint distribution FX,Y of two random variables can be

related to the corresponding marginal distributions FX and FY using a copula C, defined

by

FX,Y (x, y) = C(u, v; ρ)

where u and v are the realizations of the probability integral transforms U = FX(X) ∼

Unif(0, 1) and V = FY (Y ) ∼ Unif(0, 1), and ρ is a measure of the dependence between FX

and FY . Sklar (1959) states that such a C exists and that if FX and FY are continuous,

C is unique. Thus, this approach allows us to specify the marginal distributions of the

marker data and time-to-event process and then model their association using the copula.

The copula is a flexible way of specifying this association since there is no restriction on

the marginal distributions, which do not have to be specified parametrically.

2.2.1 Copula Model and Estimation

Let Dn = {T ∗
i , δi,Xi,Zi; i = 1, . . . , n} denote the observed data, where Ti is the

true event time, Ci is the censoring time, T ∗
i = min(Ti, Ci) is the observed event time,

δi = 1(Ti ≤ Ci) is the censoring indicator, Xi is the baseline covariate vector, and Zi

is the longitudinal marker vector, with zil = Zi(τil) denoting the marker value at time

τil, l = 1, . . . , ni, for subject i.

The dynamic prediction of interest is the predicted probability of surviving up to time

τ + s, s > 0, given that a new subject j has survived up to time τ , i.e.,

pj(τ + s|τ) = Pr(Tj ≥ τ + s|Tj > τ,Dn,Xj, Zj(τ)) (2.1)

where Zj(τ) denotes the subject’s marker value at time τ .

In the context of dynamic prediction with a time-to-event outcome and a longitudinal
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marker, we are interested in specifying the marginal distributions of T and Z for each

landmark time τ . Thus, we are restricting the models for T and Z to be conditional on

the patient being alive at time τ , and are specifically interested in modeling the marginals

of the conditional survival time T |T > τ and marker data Z|T > τ , denoted by Tτ and

Zτ , respectively. A Gaussian copula is then used to link the survival time distribution

and the marker data at all time points, allowing us to compute the dynamic predictions

from an overall model.

We begin by considering the situation of a continuous marker process. Let FTτ and FZτ

be the marginal distributions of the time-to-event outcome and continuous marker data,

respectively, conditional on the individual being alive at time τ . Both of the marginals

can be conditional on baseline covariates X, i.e., FTτ |X and FZτ |X; however, we shall omit

them from the following model specification for brevity. Then the joint distribution FTτ ,Zτ

is defined by a Gaussian copula as

FTτ ,Zτ (t, z) = Φ2

(

Φ−1 {FTτ (t)} ,Φ−1 {FZτ (z)} ; ρτ
)

(2.2)

where Φ is the standard normal distribution, Φ2 is the standard bivariate normal distribu-

tion, and ρτ = ρ(τ) is the correlation, which is specified as a smooth function of landmark

time and possibly baseline covariates X. The joint density is then given by

fTτ ,Zτ (t, z) = Pr(Tτ = t, Zτ = z) =
∂2

∂t∂z
FTτ ,Zτ (t, z)

=
fTτ (t)fZτ (z)
√

1− ρ2τ
exp

{

−ρ
2
τ (q1(t)

2 + q2(z)
2)− 2ρτq1(t)q2(z)

2(1− ρ2τ )

}

where q1(t) = Φ−1(FTτ (t)) and q2(z) = Φ−1(FZτ (z)), and fTτ and fZτ are the marginal

densities of Tτ and Zτ , respectively. This is the likelihood contribution of individuals who

at time τ are alive and have observed marker value z, and at time t have an observed

event. For individuals who are are alive at time τ , but are censored at time t, the joint
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density is given by

Pr(Tτ > t, Zτ = z) =
∂

∂z
[FZτ (z)− FTτ ,Zτ (t, z)]

= fZτ (z)− Φ

(

q1(t)− ρτq2(z)
√

1− ρ2τ

)

fZτ (z)

= Φ

(

−q1(t)− ρτq2(z)
√

1− ρ2τ

)

fZτ (z)

Let θ be the parameter vector containing both the marginal and association parameters

of interest. Thus, the likelihood contribution for an individual i at measurement time τil

is given by

Lil(θ) = fTτil ,Zτil
(ti, zil;θ)

δiPr(Tτil > ti, Zτil = zil;θ)
1−δi (2.3)

where ti is the time at which individual i has the event or was censored (i.e., last observed

time).

We construct a pseudo-likelihood by assuming working independence between mea-

surements at different time points. Thus, we construct the likelihood by multiplying each

individual’s contribution at each measurement time as if they were independent to get the

pseudo-likelihood PL(θ) =
∏n

i=1

∏ni

l=1 Lil(θ). If we were to specify a full likelihood then

we would have to take into account the association between the multiple measurements on

each individual, which would require the specification of several conditional distributions.

The purpose of a pseudo-likelihood is to replace a numerically complex joint density by

a simpler function. In a longitudinal framework, the observations from the same indi-

vidual at different time points are not typically independent; however, in order to avoid

the computational complexity and burden of specifying the full likelihood distribution of

each individual i, fTτi1 ,...,Tτini
,Zτi1 ,...,Zτini

, we use a pseudo-likelihood where we explicitly

model the association between the two processes measured for each individual, but do not

specify the correlation structure of each of the processes themselves between the different

measurement time points. This strategy is appropriate in our framework since we are in-
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terested in the association between the two processes but we consider the correlation due

to repeated measurements a nuisance. Arnold and Strauss (1991) found that maximizing

a pseudo-likelihood produces consistent and asymptotically normal estimates.

Due to the number of parameters associated with both the marginal models and the

association structure, direct maximization of this pseudo-likelihood may still be compu-

tationally difficult. Thus, we further simplify the pseudo-likelihood by using a method of

inference functions for margins (IFM), where the marginal parameters are first estimated

from the marginal models and then held fixed in the pseudo-likelihood to obtain the es-

timates for the association parameters. Joe and Xu (1996) showed that with IFM the

estimate for θ is consistent and asymptotically normally distributed.

The standard errors for the marginal survival model can be obtained in the same way

as with a standard Cox or parametric survival model (Andersen and Gill, 1982). Robust

standard errors for the marginal marker model are computed using a sandwich estimator

(Zeger and Liang, 1986; Long and Ervin, 2000). Following arguments presented in existing

literature (Shih and Louis, 1995; Joe and Xu, 1996; Prenen et al., 2017; Song, 2007),

we describe two-stage parametric variance estimation for the association parameters in

Appendix A.1, with the extension to semiparametric variation following from arguments

presented in Prenen et al. (2017) and Spiekerman and Lin (1998). The analytic standard

errors of the association parameter vector are complicated since they need to account

for the variability from the estimates from the marginal models. Thus, in practice the

standard errors are estimated using a resampling scheme, such as jackknife (Joe and Xu,

1996) or bootstrapping (Efron and Tibshirani, 1994).

Once the parameter estimates θ̂ have been obtained using the IFM method, we can
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compute the dynamic prediction of interest from Eq.(2.1) as,

Pr(T ≥ τ + s|T ≥ τ, Z(τ) = z; θ̂) = Pr(Tτ ≥ τ + s|Zτ = z; θ̂)

=
Pr(Tτ ≥ τ + s, Zτ = z; θ̂)

Pr(Zτ = z; θ̂)

=

∂

∂v

[

FZτ (v; θ̂)− FTτ ,Zτ (t, v; θ̂)
]

|t=τ+s,v=z
fZτ (z; θ̂)

= Φ

(

− q̂1(τ + s)− ρ̂τ q̂2(z)
√

1− ρ̂2τ

)

(2.4)

where q̂1(τ + s) = Φ−1(FTτ (τ + s; θ̂)), q̂2(z) = Φ−1(FZτ (z; θ̂)), and ρ̂τ = ρ(τ ; θ̂).

For the situation where the continuous marker is not observed at the prediction time,

we consider instead using the value q̂2(z) = Φ−1(FZτ∗
(z; θ̂)) in our prediction, where τ ∗

is the time at which the marker was last observed. That is, we compute the quantile

of the marker distribution at the time at which the marker was observed and carry that

forward to the prediction time of interest, rather than carrying the marker value to a

new time at which the marker distribution is different. Carrying forward the marker

value might be particularly problematic for situations with sparse data. For example, if

a person’s marker value is in the 10th percentile of the marker distribution at the time

it is measured, it is intuitive that they will remain in that percentile, rather than the

percentile that corresponds to the marker distribution at the new prediction time, which

can be far in the future.

2.2.2 Modeling copula components

In choosing the models for the components of our copula, we want to consider simple,

flexible, but possibly misspecified models that can serve as a good approximation to the

true models. The aim is to avoid placing restrictive assumptions on the models, and allow

for easy estimation that can be readily implemented in standard software.
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2.2.2.1 Modeling the continuous marker data

Instead of specifying a mixed effects model for the continuous marker data, as is the

case with joint modeling, we describe the behavior of the marker using a marginal model,

where the mean and variance can be specified as a function of landmark time τ and

baseline covariates X. We define the model Zτ = µ(τ,X,γµ) + ǫτ , where γµ is a vector

of regression coefficients, µ(τ,X,γµ) is a function of landmark time, baseline covariates,

and regression coefficients, and ǫτ is an error term that is independently distributed. We

consider a linear regression for Zτ , where we model µ(τ,X,γµ) as a smooth parametric

function of landmark time, and ǫτ ∼ N(0, σ2
Z), where σ2

Z = g(τ,X,γσ) and γσ is a

vector of regression coefficients. From this model we can obtain an interpretation of the

population-averaged effects of the baseline covariates on the marker process, and how

these effects change with landmark time.

2.2.2.2 Modeling the failure time data

We model the time-to-event outcome, FT , and then compute the conditional survival

FTτ from this model as

FTτ (t) =
FT (t)− FT (τ)

1− FT (τ)

To model the time-to-event outcome distribution, we can consider using a non-parametric

method, such the Kaplan-Meier or Nelson-Aalen estimators. However, these two methods

do not lend themselves to the inclusion of multiple baseline covariates. Thus, we propose

modeling the failure time using a Cox model that can be extended to accommodate non-

proportional hazards or additional flexibility,

h(t) = h0(t) exp{d(t,X,ν)}

where h0(t) is the baseline hazard, ν is a vector of regression coefficients, and d(t,X,ν) is a

function of baseline covariates, regression coefficients, and possibly time, to allow for non-
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proportional hazards or time-varying covariate effects. The marginal distribution of the

time-to-event outcome is then given by FT (t) = 1−S(t) = 1− exp
{

−
∫ t

0
h(u) du

}

. From

this model we can also obtain the interpretation of the effect of the baseline covariates on

the risk of death.

2.2.2.3 Modeling the association

Once we define the marginals FTτ and FZτ , we can use the copula defined in Eq.(2.2) to

describe the joint distribution at landmark time τ . To model the association between the

two marginals, we define the association ρτ as a function of landmark time and baseline

covariates X. Since we must restrict ρτ ∈ (−1, 1), we re-parameterize using Fisher’s

z-transformation ητ = log{(1 + ρτ )/(1 − ρτ )}/2. We then define ητ = η(τ,X, ξ) as a

function of landmark time τ , baseline covariates X, and regression coefficients ξ. Thus,

from the association function we can evaluate the extent of the correlation between the

time-to-event outcome and the marker process, and how that relationship changes with

landmark time.

2.2.2.4 Modeling the copula

For the purposes of this chapter, we consider a Gaussian copula due to its tractable

nature, and easy implementation in standard software. However, there are other choices

of copulas that have differing strengths of dependence in the distribution tails. Like the

Gaussian copula, the Student’s t copula is also symmetric. It has an additional parameter

for degrees of freedom that controls the strength of the tail dependence. This copula is

both upper- and lower-tail dependent, which allows for joint extreme events and can

be beneficial if we expect our distribution to have heavy tails. The Clayton and Gumbel

copulas are Archimedean copula that are lower-tail and upper-tail dependent, respectively.

We present the derivation of our model for these three alternative copulas in Appendix

A.2, and consider the performance of the Student’s t copula in our simulation study.
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2.2.3 Copula model for binary marker data

In medical research, we are often faced with information on the occurrence of an

intermediate event (e.g., recurrence), which can inform about the patient’s survival or

other time-to-event outcomes. These intermediate events can be considered as a binary

marker process, and modeled as an irreversible illness-death model. We consider the

covariate process Z(t) ∈ {0, 1} as a time-dependent indicator of whether the individual

has progressed from the “healthy” to “illness” state by time t. Thus, we are now interested

in modeling the joint distribution of a binary marker and a continuous time-to-event

outcome. A Gaussian copula, as was described in the previous section, is applicable only

when linking two continuous outcomes. Joint modeling strategies for mixed outcomes

using a copula approach were explored by Song et al. (2009). We use an extension of

their model for mixed polychotomous and continuous outcomes, as described by de Leon

and Wu (2011). The authors propose using a latent variable formulation of the discrete

outcome to transform it into a continuous one, after which a parametric Gaussian copula

can be used to model the time-varying association between the two continuous outcomes.

2.2.3.1 Model for mixed bivariate copula

We introduce the notation, Z∗ ∼ FZ∗ , as an unobserved continuous latent process

underlying our discrete marker process Z. For patient i, the observed Zi is related to Z∗
i

through

Zi =















0, if Z∗
i ∈ (−∞, 0)

1, if Z∗
i ∈ [0,∞)

We then define the joint distribution FTτ ,Z∗

τ
as in Eq.(2.2) replacing Zτ with Z∗

τ ,

FTτ ,Z∗

τ
(t, z) = Φ2

(

Φ−1 {FTτ (t)} ,Φ−1
{

FZ∗

τ
(z)
}

; ρτ
)

(2.5)

Thus, the marginals FTτ and FZ∗

τ
are absolutely continuous distributions. We can
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define the mean of FZ∗

τ
as E(Z∗

τ ) = µ(τ,X;γ), which is a function of landmark time and

baseline covariates, with parameters γ associated with the marginal distribution of Z.

For identifiability, we assume that Z∗ has unit variance (or scale). The pseudo-likelihood

is then

PL =
n
∏

i=1

ni
∏

j=1

Pr(Tτij = ti, Zτij = 0)I(Zτij=0)δi · Pr(Tτij ≥ ti, Zτij = 0)I(Zτij=0)(1−δi)

Pr(Tτij = ti, Zτij = 1)I(Zτij=1)δi · Pr(Tτij ≥ ti, Zτij = 1)I(Zτij=1)(1−δi)

=
n
∏

i=1

ni
∏

j=1

Pr(Tτij = ti, Z
∗
τij
< 0)

I(Z∗

τij
<0)δi · Pr(Tτij ≥ ti, Z

∗
τij
< 0)

I(Z∗

τij
<0)(1−δi)

Pr(Tτij = ti, Z
∗
τij

≥ 0)
I(Z∗

τij
≥0)δi · Pr(Tτij ≥ ti, Z

∗
τij

≥ 0)
I(Z∗

τij
≥0)(1−δi)

where the likelihood contribution is given by one of the following for an individual at

measurement time τ who:

• Has the event at time t and does not have the intermediate event by time τ

Pr(Tτ = t, Z∗
τ < 0) =

∂

∂t
FTτ ,Z∗

τ
(t, 0) = Φ2

(

q2(0)− ρτq1(t)
√

1− ρ2τ

)

fTτ (t)

• Is alive or censored at time t and does not have the intermediate event by time τ

Pr(Tτ ≥ t, Z∗
τ < 0) = FZ∗

τ
(0)− FTτ ,Z∗

τ
(t, 0)

• Has the event at time t and has the intermediate event at/before time τ

Pr(Tτ = t, Z∗
τ ≥ 0) =

∂

∂t
[FTτ (t)− FTτ ,Z∗

τ
(t, 0)] = Φ2

(

−q2(0)− ρτq1(t)
√

1− ρ2τ

)

fTτ (t)
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• Is censored or still alive at time t and has the intermediate event at/before time τ

Pr(Tτ ≥ t, Z∗
τ ≥ 0) = [1− FZ∗

τ
(0)]− FTτ (t) + FTτ ,Z∗

τ
(t, 0)

where q1(t) = Φ−1(FTτ (t)) and q2(z) = Φ−1(FZ∗

τ
(z)).

Two-stage estimation using the pseudo-likelihood can be conducted via IFM as de-

scribed in the previous section to obtain parameter estimates θ̂, and the dynamic predic-

tions can be computed as

Pr(T ≥ τ + s|T ≥ τ, Z(τ) = 0; θ̂) = Pr(Tτ ≥ τ + s|Zτ = 0; θ̂)

=
FZ∗

τ
(0; θ̂)− FTτ ,Z∗

τ
(τ + s, 0; θ̂)

FZ∗

τ
(0; θ̂)

Pr(T ≥ τ + s|T ≥ τ, Z(τ) = 1; θ̂) = Pr(Tτ ≥ τ + s|Zτ = 1; θ̂)

=
[1− FZ∗

τ
(0; θ̂)]− FTτ (τ + s; θ̂) + FTτ ,Z∗

τ
(τ + s, 0; θ̂)

1− FZ∗

τ
(0; θ̂)

2.2.3.2 Modeling the binary marker data

Under the true illness-death model, we can write out the distribution of the marker

process conditional on surviving up to time τ as

Pr(Z = 0|T ≥ τ,X) =
Pr(Z = 0, T ≥ τ |X)

Pr(T ≥ τ |X)

=
e−

∫ τ
0 λ01(u|X)+λ02(u|X) du

e−
∫ τ
0 λ01(u|X)+λ02(u|X) du +

∫ τ

0
e−

∫ v
0 λ01(u|X)+λ02(u|X) duλ01(v|X)e−

∫ τ
v λ12(u|X) du dv

Pr(Z = 1|T ≥ τ,X) = 1− Pr(Z = 0|T ≥ τ,X)

where λij(t|X) represents the hazard of transitioning from state i to state j (0: Healthy,

1: Ill, 2: Dead), with transition-specific baseline covariate effects. Since the form of this

distribution as a function of X does not correspond to a known distribution, we consider

a misspecified model for the marker data that can serve as a good approximation of the
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true model but allows for easy estimation. As in the previous section, we want to specify

a simple, flexible model, where the mean is a function of landmark time τ and baseline

covariates X. We can define the latent model Z∗
τ = µ(τ,X,γ) + ǫτ where γ is a vector of

regression coefficients, µ(τ,X,γ) is a function of the landmark time, baseline covariates,

and regression coefficients, and ǫτ is an error term that is independently, and identically

distributed.

• If ǫτ is normally distributed N(0, σ2), then Z∗
τ ∼ N(µ(τ,X,γ), σ2) and Zτ is a probit

model, where σ2 = 1 for identifiability.

• If ǫτ has a logistic distribution, then Zτ will be a standard logistic regression.

• If ǫτ is non-standardized Student t-distributed t(0, 1, v) (mean 0, scale 1, and df v),

then Z∗
τ ∼ t(µ(τ,X,γ), 1, v), where we fix unit scale for identifiability.

Modeling the time-to-event process and the association can be performed in the same way

as described in the previous section.

2.3 Simulation Study

We conduct a simulation study for both the situations of a binary and a continu-

ous marker process to evaluate the predictive performance of our proposed method in

comparison to the existing methods of joint modeling and landmarking.

2.3.1 Performance Comparison Metrics

To assess the performance of the dynamic predictions produced under the different

models, we focus on a prediction window, s, during which it is of medical importance to

assess whether or not the individual has the event of interest. We evaluate the discrimina-

tion and calibration of the methods for the interval (τ, τ + s] using dynamic analogues of

weighted area under the curve (AUC) and Brier score (BS), which account for censoring
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(Blanche et al., 2015). We denote these measures as AUC(τ, s) and BS(τ, s), respectively,

and use the following definitions

AUC(τ, s) = Pr(pi(τ + s|τ) > pj(τ + s|τ)|Di(τ, s) = 1, Dj(τ, s) = 0, Ti > τ, Tj > τ)

BS(τ, s) = E
[

(D(τ, s)− p(τ + s|τ))2|T > τ
]

where Di(τ, s) = I(τ < Ti ≤ τ + s) and pi(τ + s|τ) is the dynamic prediction of interest

given in Eq.(2.1).

Since BS depends on the cumulative incidence of death in (τ, τ+s], we use a standard-

ized version that produces an R2-type measure that compares how well the predictions

perform relative to a null model that does not take into account subject-specific infor-

mation, BS0(τ, s). We denote this scaled measure as R2(τ, s) = 1 − BS(τ, s)/BS0(τ, s).

To make comparisons between the different models, we compute AUC and R2 using the

predicted probabilities from the true models, denoted AUCTrue and R2
True, respectively.

We then report the relative measures ∆AUC = AUCTrue − AUC and ∆R2 = R2
True − R2

for each of the models, where a lower value indicates better performance.

To ensure that our method is not consistently predicting higher or lower than the true

probabilities, we also evaluate calibration using the root mean squared prediction errors

(RMSEs) between the true conditional survival probabilities and the predictions obtained

from each of the different models considered. In addition, for the binary marker situation,

for each landmark time we compare the bias and variance of the dynamic predictions under

the various approaches.

Five hundred simulations of 1000 subjects were run for each scenario. Five hundred of

these subjects were randomly selected to create a training data set, to which the model

were fit. The performance metrics were then computed for predictions from the remaining

500 patients who compose the validation data set.
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2.3.2 Simulation: Continuous marker process

In the situation of a continuous marker process, we simulate patients who have been

followed for a period of 15 years, for whom longitudinal biomarker measurements are

available at baseline. We simulate marker measurement under two patterns of observation:

(1) the marker process is observed every year for 14 years following baseline, and (2) the

value of the marker is observed at random inspection times. Inter-inspection times are

exponentially distributed with rate 0.5 and 1, to simulate under situations with more

sparsely collected marker measurements. We simulate a binary baseline covariate X that

has prevalence of 50%. We generate the longitudinal marker measurements using a linear

mixed effects model.

zi(t) = mi(t) + ǫi(t) = α0 + α1t+ α2X + α3Xt+ bi0 + bi1t+ ǫi(t)

where ǫi(t) ∼ N(0, σ2
ǫ ) and bi ∼ N(0,D).

To generate the survival times, we use the following joint model

hi(t|mi(t)) = h0(t) exp{ω2Xi + φmi(t)}

with h0(t) = exp{ω0}ω1t
ω1−1 as the Weibull baseline hazard. We let α0 = −3, α1 =

1, α2 = −0.8, α3 = 0.5, ω1 = 1.4, ω2 = 0.5, γ1 =, D=







1 0.5

0.5 1






. Since φ describes how

the survival process is affected by the longitudinal biomarker, we vary the correlation

between the two processes and consider φ = 0.5 and 1.5. Since σ2
ǫ describes the noisiness

of the marker process, we simulate under the values σǫ = 0.6 and 1.2. We generate right-

censoring from a Uniform(0,15) distribution. Under the various scenarios considered, we

vary the value of ω0 to achieve a censoring rate of about 45%. We are interested in

dynamic predication for the first five years following baseline, thus we consider landmark

times τ = 0, 1, . . . 5. We present results for a prediction of failure within a window of
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s = 3 years beyond the prediction time.

2.3.2.1 Models

The joint, landmark, and copula models fit to the continuous marker data are shown in

Table 2.1. We consider shared random effects models for the joint models, where (JM) is

the model from which the data is simulated under and (JM2) is a misspecified model. For

both, we fit a mixed effects model for the longitudinal marker process; however, in (JM2)

we misspecify the functional form by incorrectly modeling the time relationship. The

landmark models considered are the super model (LM1) and the extended super model

(LM2) from Chapter I. For additional flexibility, we also include an interaction between

the marker value and the baseline covariates in the (LMInt*) models, which was found

to improve performance in Chapter I. Recall that for (LM1) and (LMInt1) we create a

landmark data for each prediction time of interest with administrative censoring at the

prediction horizon, and stack them to form a super data set to which we fit the models.

We do not consider the landmark models with non-proportional hazards since there was

no evidence of improved performance.

To identify the modeling structure for the copula components, we examine diagnostic

plots and test goodness-of-fit, as demonstrated in Appendix A.3.1. We fit a population-

averaged model to the longitudinal data, and from the loess curve plotted to the marker

trajectories, we identify that a basis spline for landmark time with an interaction with the

baseline covariate is the best-fitting function for the marginal mean. Also, we allow the

variance of the population-averaged model to increase with time. We use this structure

for the mean in all of the copula models considered. We model the failure time data

parameterically (W: Weibull) or semiparametrically (C: Cox) and include the effect of

the baseline covariate X. In (C*1), we model the association as a function of time,

the baseline covariate, and their interaction. In models (C*2) we model the association

more flexibly using a basis spline for landmark time. Finally, (C*3) has the same model
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components as (C*1), which are instead joined using a Student’s t copula with 4 degrees

of freedom to identify whether the heavier tails of this copula provide a better fit to the

data.

Table 2.1: Summary of models fit in the continuous marker simulation study.

Class Model Label

Joint Model hi(t|mi(t)) = h0(t) exp{φ1Xi + φ2mi(t)} (JM)
(Correctly specified) mi(t) = α0 + α1t+ α2X + α3Xt+ bi0 + bi1t

zi(t) = mi(t) + ǫi(t)

Joint Model hi(t|mi(t)) = h0(t) exp{ω2Xi + φmi(t)} (JM2)
(Misspecified) mi(t) = α0 + α1t

3 +Xt3 + bi0 + bi1t
zi(t) = mi(t) + ǫi(t)

Landmark Models h0τ exp{β(τ)Z(τ) + αX} (LM1)
h0τ exp{β(τ)Z(τ) + α1X + α2XZ(τ)} (LMInt1)
h0(t) exp{θ(τ) + β(τ)Z(τ) + αX} (LM2)
h0(t) exp{θ(τ) + β(τ)Z(τ) + α1X + α2XZ(τ)} (LMInt2)

Copula Models C: Gaussian copula

µZ = γµ0 + γµ1X +
∑3

k=1 γµ2kBk(τ) +
∑3

k=1 γµ3kBk(τ)X
σ2Z = γσ0 + γσ1τ + γσ2X
ητ = ξ0 + ξ1τ + ξ2X + ξ3Xτ
h(t) = h0(t) exp{νX}; h0(t) modeled nonparametrically (CC1)
h(t) = h0(t) exp{νX}; h0(t) modeled as Weibull hazard (CW2)

C: Gaussian copula

µZ = γµ0 + γµ1X +
∑3

k=1 γµ2kBk(τ) +
∑3

k=1 γµ3kBk(τ)X
σ2Z = γσ0 + γσ1τ + γσ2X

ητ = ξ0 +
∑3

i=1 ξ1kBk(τ) + ξ2X
h(t) = h0(t) exp{νX}; h0(t) modeled nonparametrically (CC2)
h(t) = h0(t) exp{νX}; h0(t) modeled as Weibull hazard (CW2)

C: Student’s t (df=4)

µZ = γµ0 + γµ1X +
∑3

k=1 γµ2kBk(τ) +
∑3

k=1 γµ3kBk(τ)X
σ2Z = γσ0 + γσ1τ + γσ2X
ητ = ξ0 + ξ1τ + ξ2X + ξ3Xτ
h(t) = h0(t) exp{νX}; h0(t) modeled nonparametrically (CC3)
h(t) = h0(t) exp{νX}; h0(t) modeled as Weibull hazard (CW3)

2.3.2.2 Results

We simulate under the scenarios described in Table A.5 and present the results for

all three methods in Appendix A.4, Tables A.6-A.17. The landmarking models with

the interaction perform similarly to their counterparts without the interaction. Thus,
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this effect does not seem to have as much importance as it did in the binary setting in

Chapter I. In Figure 2.1 (Scenario 1a), we compare the performance of all three methods.

The copula model with semiparametric hazard (CC1) performs better than the parametric

version (CW1). The model (CC1) outperform the landmark models (LM1) and (LM2)

across all metrics, with the model (CW1) having similar RMSE and ∆R2, but higher

AUC (i.e., lower ∆AUC). The copula models have lower or similar RMSE, ∆AUC and

∆R2 than the misspecified joint model (JM2) at earlier time points. However, at later

time points the performance of (JM2) is on par with the model from which the data is

generated (JM).
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Figure 2.1: Simulation estimates for continuous marker Scenario 1a (σǫ = 0.6, φ = 0.5,
inter-inspection rate 0.5) for ∆AUC (top-left) and ∆R2 (top-right), and RMSE for X = 0
(bottom-left) and X = 1 (bottom-right) for predicted probability P (T ≤ τ + 3|T > τ, Z(τ), X)
from copula models (CC1), (CW2), joint models (JM), (JM2) and landmark models (LM1),
(LM2).

In Figure 2.2 (Scenario 1a), we compare the performance of the different copula models.

All the copula models have very similar AUC. In terms of the other metrics, We see that

the Weibull models (CW*) do not have as good performance as the Cox models (CC*),

with higher ∆R2 and RMSE. In comparing (C*1) and (C*2) we find that changing the
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association structure results in similar performance. This suggests that choosing a flexible

form for the association function is sufficient as long as well-fitting models are chosen

for the marginal marker and failure time distributions. The (C*3) models that use the

Student’s t copula have similar performance to the (C*1) and (C*2) model, with slightly

better performance in scenarios with more frequent measurement times.
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Figure 2.2: Simulation estimates for continuous marker Scenario 1a (σǫ = 0.6, φ = 0.5,
inter-inspection rate 0.5) for ∆AUC (top-left) and ∆R2 (top-right), and RMSE for X = 0
(bottom-left) and X = 1 (bottom-right) for predicted probability P (T ≤ τ + 3|T > τ, Z(τ), X)
from copula models (CC1), (CC2), (CC3), (CW1), (CW2), (CW3).

As the rate of inspection times increase (Scenarios *b), the RMSE decreases for all

the models, with the copula models still performing better than (LM2) and (LMInt2),

and marginally better or similar to (LM1) and (LMInt1). With a fixed inspection time

(Scenarios *c), all the models have similar AUC that is on par with the joint models,

as demonstrated in Figure 2.3 (Scenario 1c). Model (LM1) has lower RMSE than the

copula model at later inspection times. However, it has comparable ∆AUC and ∆R2.

The copula models still outperform (LM2), which has a smaller improvement in RMSE

and ∆R2 compared to the other models.

As the parameter φ that represents the association between the marker process and the
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Figure 2.3: Simulation estimates for continuous marker Scenario 1c (σǫ = 0.6, φ = 0.5,
fixed inspection every year) for ∆AUC (top-left) and ∆R2 (top-right), and RMSE for X = 0
(bottom-left) and X = 1 (bottom-right) for predicted probability P (T ≤ τ + 3|T > τ, Z(τ), X)
from copula models (CC1), (CW2), joint models (JM), (JM2) and landmark models (LM1),
(LM2).

hazard increases (Scenario 1 vs. 2, and 3 vs. 4), the copula model has better performance

than the landmarking models. With increasing measurement error σǫ (Scenarios 1 vs. 3,

and 2 vs. 4), the RMSE for all the models increase, with the copula model having similar

RMSE as the (LM1) model, but higher AUC and BS.

In general, we find that the performance of the copula model is good across all of

the metrics considered. It has consistently better performance than the landmark model

that allows the baseline hazard to be a function of landmark time, and outperforms the

landmark model with stratified hazards when there are irregular measurement times. The

copula model performs similarly to the joint model from which the data is generated and

the misspecified joint model at earlier prediction times. It also appears to be robust to

the choice of association function if the marginal models are well chosen, and is able to

maintain good prediction with varying levels of measurement error (σǫ) and association

(φ) between the marker and survival process.
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2.3.3 Simulation: Binary marker process

In the situation of a binary marker process, we simulate patients from an illness-death

model. Defining the states as {0: Healthy, 1:Ill, 2:Dead}, the ages of illness onset and

death without illness were generated from

λjk(ti|Xi) =

(

ρjk
κjk

)(

ti
κjk

)ρjk−1

exp{α′
jkXi} for j = 0, k = 1, 2

For transition intensity from illness to death (1 → 2), we generate data under two different

models: (1) Markov, where the transition intensity depends only on current time, i.e.,

λ12(t|X), and (2) semi-Markov (“clock-reset”), where the transition depends on duration

in the illness state i.e., λ12(t− V |X), where V is the known transition time.

We choose the transition intensity shape and scale parameters such that λ12(t) >

λ02(t) > λ01(t) [ρjk = 1.15 for all j → k, κ01 = 15; κ02 = 12.5; κ12 = 10], to achieve 25%

of patients developing illness. We simulate a binary covariate X with prevalence 50%,

that has a stronger effect on death in ill subjects, with α01 = 0.5, α02 = 0.5, α12 = 2.

We generate right-censoring from a Uniform(0,15) distribution to achieve a 50% censoring

rate. We simulate marker measurement under two patterns of observation: (1) the marker

process is continuously observed, and (2) the value of the marker is observed at random

inspection times. Inter-inspection times are exponentially distributed with rate 0.5 and

1, to simulate both frequent and more sparsely collected marker measurements.

In addition to the basic scenario of a single baseline covariate, we also evaluated the

performance of landmark models when the baseline covariate vector varies by transition.

We generate data with two binary baseline covariates X1 that has a stronger effect on

death in ill subjects [α01,1 = α02,1 = 0.5, α12,1 = 2] and X2, which has no effect on death

[α01,2 = 1, α02,2 = α12,2 = 0]. We are interested in the dynamic prediction of failure at the

landmark times τ = 0, 1, . . . , 5, for a prediction window of 3 years beyond the prediction

time.
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2.3.3.1 Binary Marker Models

As described in Chapter I, we fit Markov and semi-Markov models, shown in Table 2.2.

Recall, (MM) is a Markov illness-death model with Weibull transition intensities. (MSM)

accounts for the effect of the observed transition time on the risk of death for those in the

illness state. (MMCox) and (MSMCox) are their semiparametric counterparts. (SMM) is

a parametric semi-Markov (“clock-reset”) illness-death model, where the risk of transition

to death after illness depends on the duration of time the individual has spent in the illness

state. We also consider the flexible landmark models introduced in Chapter I that can

be fit to unbalanced longitudinal data and do not require super data set structuring.

(LM3) is the extended super landmark model and allows for non-proportional hazards.

(LM4) allows the covariate effects of illness status to be a function of both landmark time

(τ) and residual time (t− τ). (LMInt3) and (LMInt4) extend these models to include an

interaction term between illness status and the baseline covariates. Recall, that in Chapter

I these interaction models were found to have significantly improved performance over the

regular landmarking models, especially when there were multiple baseline covariates with

differential effects for the different transitions.

To identify the functional forms of the copula models we examine goodness-of-fit statis-

tics and perform model selection, as outlined in A.3.2, A.3.4, and A.3.3. We present the

results from six flexible copula models, with the model for the failure time data mod-

eled either parametrically (W: Weibull) or semiparametrically (C: Cox) and including the

baseline covariate X. In model (B*1), we model both the association and the mean of

the continuous latent process underlying the binary marker as a function of time and

the baseline covariate. In (B*2), we increase the flexibility by including an interaction

between the baseline covariate and time in the model for the mean of the latent process.

In (B*3), we consider an interaction between the baseline covariate and time in both the

model for the marker and for the association. We also considered more flexible forms

for the mean and association using splines and higher order terms, but found that the
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Table 2.2: Summary of models fit in the binary marker simulation study.

Class Model Label

Markov λWjk,0(t) exp{αjkX} for j → k transition (MM)

Markov, V ∗ λWjk,0(t) exp{αjkX + γV ∗1(j = 1, k = 2)} (MSM)

Semi-Markov λWjk,0(t− V ∗ ∗ 1(j = 1, k = 2)) exp{αjkX} (SMM)

λWjk,0(t) modeled as Weibull hazard

Markov λCox
jk,0(t) exp{αjkX} for j → k transition (MMCox)

Markov, V ∗ λCox
jk,0(t) exp{αjkX + γV ∗1(j = 1, k = 2)} (MSMCox)

λCox
jk,0(t) modeled nonparametrically

Landmark Models1 h0(t) exp{θ(τ) + β0Z(τ) + ω(t− τ)Z(τ) + αX} (LM3)
h0(t) exp{θ(τ) + β0Z(τ) + ω(t− τ)Z(τ) + α1X + α2XZ(τ)} (LMInt3)
h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t− τ)Z(τ) + αX} (LM4)
h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t− τ)Z(τ) + α1X + α2XZ(τ)} (LMInt4)

Copula Models C: Gaussian copula
µZ∗ = γ0 + γ1τ + γ2X
ητ = ξ0 + ξ1τ + ξ2X
h(t) = h0(t) exp{νX}; h0(t) modeled nonparametrically (BC1)
h(t) = h0(t) exp{νX}; h0(t) modeled as Weibull hazard (BW1)
C: Gaussian copula
µZ∗ = γ0 + γ1τ + γ2X + γ3Xτ
ητ = ξ0 + ξ1τ + ξ2X
h(t) = h0(t) exp{νX}; h0(t) modeled nonparametrically (BC2)
h(t) = h0(t) exp{νX}; h0(t) modeled as Weibull hazard (BW2)
C: Gaussian copula
µZ∗ = γ0 + γ1τ + γ2X
ητ = ξ0 + ξ1τ + ξ2X + ξ3Xτ
h(t) = h0(t) exp{νX}; h0(t) modeled nonparametrically (BC3)
h(t) = h0(t) exp{νX}; h0(t) modeled as Weibull hazard (BW3)

1 β(τ) = β0 + β1τ + β2τ
2; θ(τ) = θ1τ + θ1τ

2; ω(s) = ω1s+ ω2s
2
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additional flexibility did not improve fit or performance.

2.3.3.2 Binary Marker Simulation Results

We simulate under the scenarios outlined in Table A.18 and present the results com-

paring the three methods for dynamic prediction in Appendix A.5, Tables A.19-A.27.

First, we simulate under a Markov assumption with a single baseline covariate. In Figure

2.4, we present the results from the inspection time measurement setting (Scenario 1a).

As expected, the joint model from which the data were simulated (MM) has the best

predictive performance. We find that the copula model has better RMSE for both values

of the binary baseline covariate than the misspecified Cox model with semiparametric

baseline hazards (MMCox) and the landmark models (LM3) and (LMInt3). We present

the bias for X = 1, Z = 1 (i.e., those in the illness group with baseline covariate X = 1),

and find that as the landmark time increases the bias for the copula model worsens. At

the later time points there are very few individuals in this group (3% at LM=5), demon-

strating that the copula model does not fit the data well at later time points for groups

that have sparse data at those times. The copula model has low variance and BS rela-

tive to the other models, and comparable AUC. The performance of the copula model fit

with a semiparametric Cox model for the marginal survival time distribution (BC*) has

higher RMSE than the semiparametric version (BW*) but performs similarly or slightly

better for the other performance metrics. As the inspection time increases (Scenario 1b,

1c), the performance of the landmark model with the interaction and semiparametric

Markov model improve to be on par with the copula model. The copula and other models

consistently outperform the landmark model without the interaction term.

For the semi-Markov simulation setting, we compare the copula model with landmark

models and joint models that condition on the observed transition to illness. We present

the results for the unbalanced measurement setting in Figure 2.5 (Scenario 2a). We

find that the copula model has better performance than the landmark models and the
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Figure 2.4: Simulation estimates for binary marker Scenario 1a for bias (upper-left) and
variance (upper-right) for Z(τ) = 1, X = 1, ∆AUC (middle-left), and ∆R2 (middle-right),
and RMSE for X = 0 (bottom-left) and X = 1 (bottom-right) for predicted probability
P (T ≤ τ +3|T > τ, Z(τ), X) from copula models (BC1), (BW1), joint models (MM), (MMCox)
and landmark models (LM3), (LMInt3), under a Markov illness-death model with one baseline
covariate and inspection time marker measurement.

semiparametric semi-Markov model (MSMCox). It has low variance and Brier score and

has an AUC comparable with that of (SMM). As the inspection time increases (Scenario

2b, 2c), the performance of (MSMCox) improves, but the copula model still outperforms

the landmark models across all the metrics.

Finally, we generate data under a Markov model with two baseline covariates that have

differing effects for the different transitions. From Figure 2.6, in the setting with inspection

time measurement (Scenario 3a) we see that the copula model has low variance and Brier

score compared to the landmark models, and comparable RMSE to the landmark model
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Figure 2.5: Simulation estimates for binary marker Scenario 2a for bias (upper-left) and
variance (upper-right) for Z(τ) = 1, X = 1, ∆AUC (middle-left), and ∆R2 (middle-right), and
RMSE for X = 0 (bottom-left) and X = 1 (bottom-right) for predicted probability P (T ≤
τ + 3|T > τ, Z(τ), X) from copula models (BC1), (BW1), joint models (MSM), (MSMCox),
(SMM), and landmark models (LSM3), (LSM4), under a semi-Markov illness-death model with
one baseline covariate and inspection time marker measurement.

with the interaction and the semiparametric Markov model. We present bias for the

group X1 = 1, X2 = 1, Z = 1, and find that for the copula model the bias increases with

landmark time. Again, we find that this is associated with few people being in that group

at later times, preventing the copula from estimating the marginal distributions well at

those times.

Overall, the copula model has good predictive performance across all the metrics, per-

forming better than landmark models and misspecified Markov models with less frequent

inspection times, and on par with other models with a continuously observed binary
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Figure 2.6: Simulation estimates for binary marker Scenario 3a for bias and variance for
Z(τ) = 1, X1 = 1, X2 = 1, ∆AUC, and ∆R2, and RMSE for predicted probability P (T ≤
τ + 3|T > τ, Z(τ),X) from copula models (BC1), (BW1), joint models (MM), (MMCox) and
landmark models (LM3), (LMInt3), fit to data structured as a longitudinal data set, under a
Markov illness-death model with two baseline covariates.
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marker. The copula model consistently outperforms the landmark model without the

interaction term indicating that it has better predictive performance than the simpler

landmark models that do not include the flexibility introduced in Chapter I. The bias

for the copula model can be high for groups at times where there is little data observed;

however, from RMSE we see that overall performance of the copula model by baseline co-

variate is better or comparable to the flexible landmark and misspecified Markov models.

2.4 Application

In this section, we apply our proposed copula method to both a heart valve and

prostate cancer data set, to produce dynamic predictions using a longitudinally measured

continuous and binary marker, respectively.

2.4.1 Continuous marker process: Aortic Heart Valve Study

To demonstrate the ability of the copula method to produce dynamic predictions using

a continuous marker, we use data from an observational study that followed 248 patients

who received an aortic valve replacement with the aim of comparing the efficacy of two

artificial heart valves: homograft or stentless (Lim et al., 2008; Philipson et al., 2017).

Longitudinal measurements of the left ventricular mass index (LVMI) were collected after

surgery (baseline time), with an average of 3.68 and a maximum of 10 measurements per

patient. Long-term buildup of left ventricular muscle mass can result in a fatal heart

attack, thus there is interest in using a patient’s changing LVMI to predict their future

risk of death. The baseline covariate information used in the models considered were:

type of implanted aortic prosthesis (homograft: 53%, stentless: 47%), age (median: 68;

IQR: 59-75), and gender (male: 71%, female: 29%).

In Figure 2.7a we examine the survival curves by stent type and see a significantly

higher survival probability for those who received the stentless valve compared to those

who received the homograft valve. We examine the fit of a Cox model to the failure time
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Figure 2.7: Summary plots for heart valve data. (a) Overall survival curves by valve type.
(b) Longitudinal log(LVMI) marker measurements for individuals over time with loess curves
by valve type and gender.

data and find no violation of the proportional hazards assumption for any of the baseline

covariates. Figure 2.7b depicts the longitudinal log(LVMI) observations per patient and

from the loess curves we see that there is a decrease in mean log(LVMI) in the first

year, after which it appears to be increasing with time. Thus, we consider a non-linear

relationship, with possible interactions between the covariates and time. Selecting the best

fitting model using backwards selection with AIC, we identify the population-averaged

model for Zτ as the main effects model with a basis spline effect for landmark time and

constant variance σ2. We considered more flexible forms for the association function

including interactions and splines, but found that the results are similar to simpler forms.

Thus, we fit the following copula model

C : Gaussian copula

h(t) = h0(t) exp{ν ′X}

µZ = γ0 + γ ′
1X+

3
∑

k=1

γ2kBk(τ)

ητ = ξ0 + ξ′1X+ ξ2τ
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Table 2.3: Coefficient estimates and standard errors for copula model applied to heart valve
data.

Covariate Coef. SE

ν

Age/10 1.029 0.184
Female -0.042 0.299
Homograft 0.026 0.314

γ

Intercept 5.200 0.073
Age/10 -0.013 0.011
Female -0.178 0.029
Homograft 0.079 0.027
B1 -0.527 0.149
B2 0.425 0.258
B3 -0.481 0.385

ξ

Intercept -1.085 0.818
Age/10 0.148 0.118
Female -0.035 0.200
Homograft -0.210 0.194
τ -0.038 0.044

where X is a vector of baseline covariates with age, valve type, and gender, h0(t) is

modeled nonparametrically, and Bk is a B-spline for a natural cubic spline with boundary

knots at 0 and 10 years. The parameter estimates for the copula model are given in Table

2.3, and the standard errors were computed using bootstrapping. From the marginal

model for T we find that the age has a significant positive effect on time to death, while

the effect of gender or stent type was not significant. From the marginal model for Z,

females have a lower average log(LVMI) than males, and those with the homograft valve

have a higher average log(LVMI) than those with the stent valve. There was a significant

cubic spline effect for time on average log(LVMI). For females and those who received the

homograft valve, the association between the risk of death and increased log(LMVI) is

negative indicating decreased time to death.

We also apply the joint modeling and landmarking approaches to the data set for

comparison. We fit a joint model with a random intercept and slope, and the flexible

landmark model with non-proportional hazards and an interaction between the marker

and baseline covariates. In Figure 2.8, we compare the predicted survival curves with
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the empirical Kaplan-Meier estimators for patients still alive at one year. We present the

curves by type of heart value (homograft vs. stentless), male gender, and whether the

patient has a log(LVMI) ≤ 5 vs. > 5 (median log(LVMI) at 1 year). Since the three

methods model continuous log(LVMI), we use the 25th (4.7) and 75th (5.2) percentile

values of log(LVMI) to obtain predictions, and median age. We see that our approach

and joint modeling track each other closely and are similar to the empirical Kaplan-Meier

curves. The landmark model curve splays out from the Kaplan-Meier curve for the higher

range of log(LVMI).
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Figure 2.8: Prediction of future survival probability for patients at risk at 1 year post baseline
by log(LVMI) range and valve type using the fourth methods: (1) Kaplan-Meier estimators, (2)
proposed copula approach; (3) joint modeling, and (4) landmarking.

In Figure 2.9, we depict the predicted survival probabilities for two patients in the data

set as their continuous marker value changes. Individual A is a younger male, who received

the stentless valve, and has lower log(LVMI) that is increasing over time. Individual B is

older, received the homograft valve, and has a steady, but higher log(LVMI) with a sudden
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Figure 2.9: Predicted survival probabilities for risk of death within 3 years from the copula
model for two patients in the heart valve data set. Individual A (top) is male, 59 years old at
baseline, received the stentless valve, and does not die before the end of the study. Individual
B (bottom) is male, 78 years old at baseline, received the homograft valve and died at 5.4 years
after baseline. Blue dotted line indicates time of death.

increase at the last measurement. Since Individual A is a relatively low-risk patient we

see that their predicted probability of death is low, with risk of death increasing as their

log(LVMI) increases. Individual B is at higher risk due to their increased age at baseline,

and their risk of death in the next 3 years increases greatly after their log(LVMI) spikes

suddenly at 4 years, and they eventually die at 5.4 years from baseline. These predicted

probability plots can be used by clinicians to monitor a patient’s prognosis following valve

replacement to identify if the patient’s changing log(LVMI) is putting them at high risk

for future death and further interventions must be implemented.

2.4.2 Binary marker process: Prostate Cancer Study

Returning to the prostate cancer study in Chapter I, we demonstrate and assess the

use of the copula model for obtaining dynamic predictions using a binary marker. Recall,

745 patients with clinically localized prostate cancer were treated with radiation therapy.

Patients were followed from start of treatment (baseline) and monitored for the occurrence

of metastatic clinical failure (CF), treated as a time-dependent binary covariate. The aim

is to use the intermediate CF information to predict a patient’s future risk of death.
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The states of the illness-death model are then “alive without clinical failure”, “alive with

clinical failure”, and “dead”. The median follow-up time was 9 years, and 52 patients

experienced CF. Out of 188 deaths, 154 died before and 34 died after experiencing clinical

failure. The pretreatment prognostic factors measured at baseline are age (median 69;

IQR 63-74), log(PSA + 1) (PSA ng/ml; median 8; IQR 5-12), Gleason score treated

continuously with a score of 7=“3+4” and 7.5=“4+3” (median 7; IQR 6-7.5), prostate

cancer stage (T1: 57%, T2-T3: 43%), and comorbidities (0: 55%, 1-2: 37%, ≥3: 8%).

We obtain predicted probabilities of death within 5 years for landmark times τ =

0, 1, . . . , 8 years. We assume that the marker is continuously observed, and for fitting the

landmark and copula models we structure the data as a super data set, with the LOCF

assumption at each of the landmark times. In Chapter I, Tables 1.3 and 1.4, we present

the parameter estimates from the joint and landmark models, respectively. We found that

the effects of the baseline covariates vary across the different transitions. The landmark

models with an interaction between the baseline covariates and CF status, (LMInt3)

and (LMInt4), produced predicted probabilities similar to the joint models, (MM) and

(MMCox). The landmark models without an interaction, (LM3) and (LM4), were not

able to properly capture the effect of the baseline covariates on the risk of death after a

patient experiences CF.

After performing model selection and assessing goodness-of-fit, we fit the following

copula model

C : Gaussian copula

h(t) = h0(t) exp{νX}

µZ∗ = γ0 + γ1X+
3
∑

k=1

γ2kBk(τ)

ητ = ξ0 + ξ1X+
3
∑

i=1

Bk(τ, ξ2)

whereBk is a B-spline for a natural cubic spline with boundary knots at 0 and 10 years. We
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consider models where h0(t) is modeled nonparametrically (CopCox) and parametrically

with a Weibull baseline hazard (CopWeib).

We evaluate the fit of the Cox model to the failure time data, and find that there is

no violation of the proportional hazards assumption for any of the baseline covariates.

We assess the fit of the probit model to the binary marker and identify that no covariate

transformation is required. The model for the association parameter function was chosen

to be a flexible function of landmark time and baseline covariates.

The parameter estimates for the components of the copula model are given in Table

2.4. Robust standard errors were computed for the marginal marker model coefficient

estimates, and standard errors for the association parameters were computed using boot-

strapping. For the marginal model for time to death, increased age, PSA, Gleason score,

and number of comorbidities are significantly associated with increased risk of death.

These were the results obtained from the landmark models fit in the previous chapter.

From the marginal model for the binary marker data, increased age, Gleason score, and

Stage T2-T3 were associated with increased probability of developing CF. These were

the relationships observed in the joint models fit in Chapter I. Unlike the copula model,

the landmark models are not able to evaluate the effect of the baseline covariates on the

risk of CF. The bootstrapped association parameter standard errors are large due to the

incorporation of the estimation uncertainty of the first-stage parameters. But negative

association parameter estimates suggest that increasing Gleason score and Stage T2-T3

result in more negative association between the latent variable underlying CF and time to

death, indicating that patients with those characteristics have high negative association

between CF and death (i.e., decreased time to death). Similarly, the positive coefficient

for having 1-2 comorbidities compared to 0 comorbidities indicates positive association

between CF and time to death, and thus decreased risk of death. This relationship was

also demonstrated in the landmark models with interactions in Chapter I.

In Figure 2.10, we return to the two individuals in the data set for whom we presented
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Table 2.4: Coefficient estimates and standard errors for copula model applied to prostate
cancer data with binary marker.

CopCox CopWeib

Covariate Coef. SE Coef. SE

ν Age 0.073 0.012
log(PSA+1) 0.263 0.110
Gleason Score 0.311 0.084
Stage T2-T3 0.043 0.158
Comorbidities 1-2 0.472 0.163
Comorbidities ≥ 3 1.228 0.217

γ Intercept -6.152 1.074
Age 0.002 0.012
log(PSA+1) 0.267 0.075
Gleason Score 0.220 0.109
Stage T2-T3 0.245 0.175
Comorbidities 1-2 0.096 0.188
Comorbidities ≥ 3 -0.120 0.280
B1 2.523 0.553
B2 1.416 0.371
B3 1.713 0.323

ξ Intercept -0.498 2.332 -0.283 2.069
Age 0.005 0.016 0.007 0.015
log(PSA+1) 0.024 0.228 -0.020 0.192
Gleason Score -0.151 0.191 -0.147 0.171
Stage T2-T3 -0.314 0.396 -0.285 0.384
Comorbidities 1-2 0.230 0.312 0.225 0.284
Comorbidities ≥ 3 -0.117 0.402 -0.006 0.311
B1 1.789 2.219 1.105 1.871
B2 0.050 0.888 -0.079 0.765
B3 1.207 1.266 0.825 1.059
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predicted probabilities in the previous chapter. Recall, Individual A had increased risk of

death due to risk factors (high PSA and number of comorbidities), and Individual B was

at low risk of death but has some baseline covariates that indicate increased probability

of CF (high PSA and Gleason, Stage T3) and that also increased the risk of death after

experiencing CF. In the probability plots, the predictions from the copula models are very

similar to the joint model and the landmark model with the interaction (LMInt4). Unlike

the landmark model without the interaction (LM4), the copula model is able to take

into account the differential effects of the baseline covariates on the different transitions,

which is demonstrated by the large increase in predicted probability of death after CF

for Individual B, similar to that of the joint models (MM) and (MMCox). There is no

difference in the predicted probabilities for (CopCox) and (CopWeib) for Individual A,

but we see that the predictions from (CopWeib) are lower than (CopCox) in Individual

B after they experience CF. In Figure 2.11, we present the association functions for the

two individuals. Individual B has more negative association between time to death and

CF than Individual A. As landmark time increases the association becomes more positive

and approaches zero, thus indicating that as time from treatment increases the predicted

probability of death relies less on an individual’s CF status. This is also demonstrated

in the effect of the interaction between CF and landmark time in the landmark models

where as landmark time increases the effect of CF on the risk of death decreases.

2.5 Discussion

Dynamic models that incorporate the effects of time-dependent covariates on the risk

of survival are essential for making important, personalized clinical decisions about an in-

dividual’s care. While there are two popular statistical methods for dynamic prediction,

landmarking and joint modeling, they both have limitations that we address by present-

ing an alternative approximate method that has useful advantages and good predictive

performance.
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Figure 2.10: Predicted probability of death within 5 years, P (T ≤ τ+5|T > τ, Z(τ),X) for two
individuals in the prostate cancer data set for landmark, joint, and copula models. Individual
A (left) is 60 years old at baseline, with PSA 19.7 ng/mL, Gleason score 7.5 (“4+3”), T1
Stage, 6 comorbidities, and does not experience clinical failure but dies 10 years from baseline.
Individual B (right) is 54 years old at baseline, with PSA 16 ng/mL, Gleason score 9, T2 Stage,
zero comorbidities, and experiences clinical failure at time 3 before dying at time 4.6 years from
baseline. Black dashed line indicates time of death.
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Figure 2.11: Association functions from (CopCox) for Individual A (solid) and Individual B
(dashed) from the prostate cancer data set.
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In this chapter, we propose the use of a copula-based approach for incorporating

longitudinally collected marker information in predicting an individual’s future survival.

First, we specify from a well established class of models the marginal distributions of

the marker (e.g., linear regression, generalized linear model) and the failure time (e.g.,

Cox, cure model). This allows us to apply standard goodness-of-fit tests and variable

selection techniques to identify the best-fitting marginal models. From these marginals,

we can also perform inference on the survival and marker outcomes using baseline covariate

information to draw useful clinical conclusions. Second, we define the joint distribution

of the survival time and marker conditional on being alive at a particular prediction

time. This formulation allows us to easily derive the dynamic prediction of interest.

We present our modeling framework for both a binary and a continuous marker process

and demonstrate its predictive performance and ability using a simulation study and an

application to real data.

There are several advantages of our approach over the existing joint model and land-

marking methods. In comparison to landmarking, the copula model does not require

the creation of a landmark data set, instead only using marker information available at

measurement times. This allows us to avoid prespecifying landmark times and imputing

unobserved marker values at these times, which can introduce bias. As well, it can ac-

commodate unbalanced data and irregular marker measurement times. We also do not

need to fix a time horizon for prediction, and can obtain predictions for a new patient at

any continuous time point beyond baseline. As well, since we specify a unified time-to-

event model from which we derive the conditional survival, we maintain a greater level

of consistency in our predictions than landmarking. As in joint modeling, we specify a

model for the marker; however, since we are modeling the population-averaged trajectory,

rather than allowing for individual-specific random effects, we are able to specify a sim-

pler model than a shared random effects or frailty model that can require complex and

computationally-intensive estimation. In principle, it is easier to check goodness-of-fit for
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marginal models; thus, by specifying them independently we are able to minimize bias at

this stage.

A limitation of our proposed method is that it relies heavily on the availability of data

at prediction times of interest for it to properly model the joint distribution between the

marker and failure time. In the continuous marker setting, although the copula performs

better than landmarking with increased measurement error, it’s predictive performance

is similar when there are fixed, common measurement times. In the binary marker simu-

lations, we demonstrate that as the number of people in a particular group decreases at

later time points the bias of the predictions increases. This indicates the need for model

validation to be performed before the copula prediction model that is trained on a partic-

ular data set can be applied to a new set of individuals. As well, with the different models

for the marginals and the association, there are several parameters to be estimated. The

two-stage approach results in large standard errors for the association parameters, due

to the estimation variability of the marginal model parameters. However, we found that

the copula model performance is robust to the choice of association function, and thus

we consider a flexible form rather than performing variable selection for the association

parameters.

Using a copula framework provides the potential for several extensions to more com-

plicated data structures. In this chapter, we consider an irreversible illness-death model,

but the use of the copula to model the distribution of the latent marker process over time

suggests an easy extension to the reversible illness-death model (e.g., illness represents

hospitalization). We can then include as a covariate the number of reversals a patient has

experienced by a particular landmark time to account for their increased risk of future

illness and/or death. In addition, we can consider extensions to a multivariate Gaussian

copula to accommodate multiple longitudinal markers. Thus, rather than specifying a

full joint model for the different marker processes, it is easier to consider modeling their

marginal behavior and using a flexible form for the copula association function to model
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their joint distributions. This model structure can also help identify the size and direction

of the correlation between the various longitudinal markers. Such an approach can greatly

increase the dimension of the parameter space, so care should be taken to choose more

parsimonious models for the marginal components and simpler association functions for

the resulting correlation matrix.

While joint modeling and landmarking are popular in current literature, our copula-

based approach provides an alternative method for dynamic prediction that has good

predictive performance and easy estimation. By choosing more flexible and complicated

models for the marginals we could potentially further decrease the bias introduced by

fitting a misspecified model. Future work will focus on extending the copula framework

for dynamic prediction to address more complex data forms and applications.
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CHAPTER III

Dynamic Risk Modelling with a Partially Observed

Covariate using Lévy-based Bridge Processes

3.1 Introduction

In cancer research, we are often interested in predicting a patient’s risk of some future

time-to-event outcome. Survival data can be thought of as a coarsened representation

of a more complex underlying stochastic process that leads to these survival events. For

example, suppose that all men are born with some genetic risk of prostate cancer. Due to

lifestyle and changing biological factors, they then accumulate additional risk over their

lifetime until some of them develop prostate cancer. This developing risk can depend on

observable biomarker processes that change over time, such as prostate-specific antigen

(PSA). These time-dependent markers can be considered as stochastic processes (Taylor

et al., 1994; Jewell and Kalbfleisch, 1996; Shi et al., 1996). With increasing interest in

conducting longitudinal studies, these stochastic markers are often partially observed at

discrete measurement times. In cancer studies, we often have marked endpoints, where

the stochastic marker is only observed at the survival time, providing us with a cross-

sectional observation (mark) of the latent marker process. Thus, there is interest in using

a joint analysis to model the effect of this limited marker process information on the

time-to-event outcome.
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Joint models for longitudinal-survival data specify submodels for the longitudinal

marker and the survival process, and a mechanism by which to link the two (Tsiatis and

Davidian, 2004). The most common form of a joint model, as discussed in Chapter II,

involves modeling the longitudinal marker as a mixed-effect model and the hazard condi-

tional on the marker value using a Cox proportional hazards model. This method requires

the functional form for the marker trajectories to be specified, which restricts the marker

behavior of individuals in the population to follow a similar pattern and ignores biolog-

ical variability. To overcome this limitation, others have modeled the individual marker

trajectories more flexibly using a stochastic process, such as an Ornstein-Uhlenbeck or

Gaussian process (Taylor et al., 1994; Wang and Taylor, 2001; Henderson et al., 2000);

however, these methods still rely on the restrictive assumption of proportional hazards.

Yashin and Manton (1997) proposed a general stochastic process model using a Gaus-

sian diffusion process to link unobserved or partially observed stochastic variables with

a hazard. This hazard rate is described as a time-dependent quadratic function of the

stochastic marker, which can be restrictive if we do not believe that the hazard is U- or

J-shaped. The effect of the marker on mortality risk is also based on the particular marker

and disease process being studied, which relies on prior knowledge. Estimation is con-

ducted using a maximum likelihood approach that involves solving stochastic differential

equations and may be challenging to implement.

Using the sparse longitudinal information from marked data, it can be difficult and

restrictive to develop a joint analysis for the marker and time-to-event outcome that

properly models the trajectory of the biomarker over time and its effect on survival.

Thus, we model the continuous marker as a flexible stochastic process that changes over

time and possibly influences survival. Compared to existing methods, we propose a model

specification that avoids restricting the behavior of the hazard rate and can be applied

to a variety of marker and disease settings. We take advantage of the tractable nature

of our model to perform estimation using a maximum likelihood based method, allowing
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us to avoid the computational burden and complexity often associated with other joint

modeling approaches.

In this chapter, we specify a joint model that incorporates the effects of a partially

observed stochastic covariate on the risk of a time-to-event outcome, with the aim of

predicting both survival and marker behavior. In Section 3.2, we describe the construction

of our submodels for the longitudinal marker and survival processes. In Section 3.3,

we introduce notation and describe our model formulation and estimation under three

scenarios of marker observation. In Section 3.4, we examine the performance of our

model in simulation studies. In Section 3.5, we look at an application of our model to

prostate cancer data to demonstrate its ability to obtain predicted survival probabilities.

Finally, in Section 3.6 we discuss the merits and limitations of our proposed method, and

outline potential future developments.

3.2 Developing the Joint Model

3.2.1 Modeling Survival

Let T be the survival time for the event of interest, X be a vector of baseline covariates,

and Zt be a time-dependent covariate that is observed continuously or partially observed

at discrete time points. Survival conditional on baseline covariates is often modeled using

a Cox proportional hazards model

S(t|X) = exp







−
t
∫

0

h0(s) exp{β′X}ds







= exp{− exp{β′X}H0(t)} = e−H(t|X) (3.1)

where h0(t) and H0(t) represent the baseline hazard and baseline cumulative hazard,

respectively, H(t|X) is the cumulative hazard, and β represents the vector of regression

parameters for the baseline covariates X, which can contain Z0. To increase flexibility,

survival models have been extended to include a frailty, a random effect that accounts
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for the effects of unobserved heterogeneity due to the dissimilarity of individuals (Vaupel

et al., 1979). At baseline, a frailtyWi is drawn from a distribution of non-negative random

variables for each individual i and applied multiplicatively to the baseline hazard. The

frailty determines whether an individual’s risk is increased (Wi > 1) or decreased (Wi < 1).

The marginal survival function is obtained by integrating over the distribution of the

frailty W , and thus is characterized by the Laplace transform of W , EW [e−sW ], evaluated

at s = H(t|X). The marginal survival is then given as

S(t|X) = EW [exp(−W exp{β′X}H0(t)|X)] = EW

[

e−WH(t|X)
]

where H0(t) is the deterministic cumulative baseline hazard, H(t|X) is the cumulative

hazard, and W is the frailty random variable that is typically drawn from a parametric

family, such as gamma or compound Poisson (Vaupel et al., 1979; Aalen, 1992).

Since we expect that an individual’s risk can develop dynamically over time, we con-

sider a generalization of the proportional hazard frailty models where an individual’s

frailty is treated as a stochastic process, Wt. With process-based frailty models, we

specify the survival function as the expectation over the distribution of the unobserved

time-dependent frailty. The marginal survival function is thus an average over all the

possible histories W [0, t] of the process and is characterized by the Laplace functional,

EW [0,t]

[

e−
∫ t
0 Wsf(s) ds

]

for function f(s) = h(s|X), and is given by

S(t|X) = EW [0,t]



exp







−
t
∫

0

Wsh0(s) exp{β′X} ds







|X



 = EW [0,t]

[

e−
∫ t
0 Wsh(s|X) ds

]

(3.2)

where Ws is the time-varying frailty, W [0, t] is the history of Ws, s ∈ [0, t], and h(s|X) =

h0(s) exp{β′X}. Thus, the development of statistical estimation and inference method-

ology is facilitated by the availability of a tractable form of the Laplace functional or

characteristic functional of the frailty process.

Gjessing et al. (2003) therefore modeledWt as a non-negative Lévy process. Lévy pro-
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cesses are a class of stochastic processes with independent, stationary increments (Bertoin,

1998). The family of Lévy processes contains the familiar Wiener processes, Gaussian pro-

cesses, compound Poisson processes, gamma processes, etc. Yashin and Manton (1997)

defined the hazard rate of their model using a Gaussian process, which was squared to

preserve a non-negative hazard rate. By using a Lévy process, Gjessing et al. (2003)

assumes that the individual hazard increases in jumps rather than risk developing as a

diffusion process. Thus, with this specification it is not sufficient to use a Lévy process

that is restricted to be positive (i.e., squaring or exponentiating a Lévy process that can

take on negative values), but requires that the process have non-negative increments.

The class of non-negative Lévy processes leaves a sub-family of Lévy subordinators, i.e.

non-decreasing processes that represent the compound Poisson processes and their limits,

and excludes the Gaussian members of the Lévy family. The use of Lévy subordinators

provides a tractable form for Eq.(3.2), from which the population survival and hazard can

be derived. This process is required to be non-negative since it acts multiplicatively on

the hazard function and must preserve the non-negative hazard function property. How-

ever, this places restrictions on the behavior of the hazard. It assumes that all individuals

have proportional hazards and the use of an increasing Lévy process requires that an

individual’s hazard rate be increasing over time.

Putter and Van Houwelingen (2015) also describe dynamic frailty models using Lévy

processes. The time-dependent frailty Wt is constructed from many independent frailty

components X(u, v) that contribute to the hazard only if u ≤ t and v ≥ t, i.e., the time

period after which they are “born” and before they “die”. Thus, the frailty components

are constructed using a compound birth-death process and are specified as a Lévy process

in two dimensions. The parameters of this model are estimated using the expectation-

maximization algorithm on the full likelihood for a multivariate survival time formulation,

which can be computationally slow. We are interested in the univariate survival setting,

thus allowing us to use likelihood methods of estimation that do not pose as much of a

92



computational burden.

In both the Gjessing et al. (2003) and Putter and Van Houwelingen (2015) applications,

the frailty process is fully unobserved or unobservable and therefore their methods are

based on the marginal survival model, which is difficult to evaluate. Suppose instead that

the frailty Wt is the marker process that is observed at time points τ1, τ2, . . ., but is a

latent process during intervals where it is unobserved (0, τ1), (τ1, τ2), etc. In the simplest

case, Wt is the marker process, but in general, Wt is a function of the marker. Since the

process is observed only at measurement times, we model Wt as a non-decreasing Lévy

bridge process scaled by its final value. A bridge is a stochastic process that has a known

value at some fixed future time point (Fitzsimmons et al., 1993). A Lévy bridge is a Lévy

process that is defined over a finite interval, and the initial and terminal values of the

process are known at baseline.

While in the dynamic frailty framework the non-negative Lévy process is applied

multiplicatively to the hazard, to alleviate the restriction of increasing hazards we propose

using the non-decreasing Lévy bridge process more naturally as a multiplicative effect in

the cumulative hazard function. Peng and Huang (2007) explored a similar class of models

to extend the standard proportional hazards model so that temporal covariate effects

are applied directly to the cumulative hazard function, i.e., S(t|X) = exp{−H(t|X)} =

exp{− exp(h0(t) + b0(t)
′X)}, where H(t|X) is the cumulative hazard function, h0(t) is

an unspecified function, X is a vector of covariates, and b0(t) is a vector of unknown

time-varying regression coefficients. This formulation relaxes the proportional hazards

assumption, and interpretation of covariate effects is performed directly on the survival

function. However, restrictions must be placed on the time-dependent covariates to ensure

the cumulative hazard is non-decreasing. In our approach, the time-dependent covariates

enter into the model through the Lévy bridge, and by taking advantage of its increasing

nature we do not require additional restrictions.

Using the formulation in Eq.(3.2) withWt as a scaled Lévy bridge process, we apply the
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effect of the stochastic process multiplicatively in the cumulative hazard. To compute the

marginal survival we average over the unobserved stochastic process between observations.

Thus, our approach enjoys greater tractability and convenience from being able to obtain

the survival function from the Laplace transform of the Lévy bridge process rather than

the Laplace functional

S(t|X) = E[exp{−WtH(t)}|X] (3.3)

where H(t) is defined as the conditional cumulative hazard. If Wt = w ∀t is known,

then the survival function is given as S(t|Wt = w) = e−wH(t), and can be specified as a

Cox model as in Eq.(3.1). Thus, H(t) represents the cumulative hazard of the proposed

survival model, conditional on the marker process being a known constant. If Wt is

completely observed, the cumulative hazard of our model is WtH(t), which is necessarily

non-decreasing.

3.2.2 Modeling the Marker Process

We assume that the risk of the time-to-event outcome is associated with an underlying

stochastic process {Wt}0≤t≤∞ that takes the form

Wt = UtτVτ (3.4)

where {Utτ}0≤t≤τ is a Lévy bridge over the interval [0, τ ] from 0 to 1, and scaled by Vτ ,

the final value of the process at time τ . This process is applied multiplicatively to the

cumulative hazard, and the survival function is specified as in Eq.(3.3).

The motivation for this construction is two-fold. First, by considering a non-negative

Lévy bridge process, we represent the accumulation of risk over time using an increasing

process. This allows us to apply the effect of the stochastic marker multiplicatively to

the cumulative hazard to model its effect directly on survival while satisfying its non-

decreasing behavior.
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Second, in the development of a model where the marker is partially observed, we

average over the trajectory of the partially observed stochastic process in intervals where

the process is not observed. This can be computationally difficult if, conditional on the

observed marker values, this average does not have a tractable form. We consider a pro-

cess in the family of Lévy processes for which the required survival functions have an

analytically tractable form. The gamma process is often used to model stochastic pro-

cesses due to the convenience of its distributional properties (Gjessing et al., 2003; Putter

and Van Houwelingen, 2015; Lawless and Crowder, 2004). The gamma bridge process has

been proposed in financial mathematics as a model for aggregate claims data, and deriva-

tions of useful properties are available from existing literature (Brody et al., 2008; Hoyle,

2010). Thus, this process is suited for describing the accumulation of risk represented by

the time-varying covariate, and we extend these methods to survival analysis.

Within this framework, we model the dynamic frailty {Wt}0≤t≤∞ as a scaled gamma

process, with growth rate µ and spread σ. The process has independent increments such

that W0 = 0 and Wt has a gamma distribution with mean µt and variance σ2t. Then,

Utτ is the gamma bridge and by special properties of the process, Utτ is independent of

Vτ . Thus, we can imagine that Utτ is the part of the risk process that has no information

about the final observed value Vτ , but provides a flexible way for us to model the unknown

behavior of the process in between measurement times. The Laplace transform of a

gamma bridge is the familiar beta distribution (Brody et al., 2008). Thus, the resulting

construction in Eq.(3.3) is a tractable survival model from which closed-form expressions

for the conditional and marginal survival and hazards can be derived.

Our proposed survival model in Eq.(3.3) and our marker model in Eq.(3.4) fully spec-

ifies a joint model of the marker process and survival time, where the process is chosen

to have a distributional form such that averaging over the unobserved marker process is

simplified. This provides us with a stochastic process model that can be used to predict

future survival for a patient given their partially observed marker history.
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3.3 Model Construction

We describe our model under three different marker observation scenarios: (1) The

marker process is completely observed, (2) The marker is only observed at the survival

time, (3) The marker process is observed indirectly with measurement error. Estimation

is conduction using maximization of the likelihood and standard errors are obtained using

numerical differentiation. We extend our model formulation to the situation with multiple

marker measurement times. In addition, we consider more flexible parametric forms for

the conditional cumulative hazard, and demonstrate the ease with which these can be

implemented in our model formulation. We present the general formulas in the body of

the paper, and describe the derivations under the gamma process example in Appendix

B.1.

3.3.1 Completely observed process

Let Yi and Ci denote the true event time and censoring time, respectively. Let Ti =

min(Yi, Ci) denote the observed survival time, and δi = I(Yi ≤ Ci) be the event indicator.

Let X be a vector of baseline covariates, that can include the baseline value of the marker

process. Let {Wt}0≤t≤T be the Lévy process representing the marker. Suppose that Wt is

completely observed. Our observed data is then Dn = {Ti, δi,Xi, W̄Ti ; i = 1, . . . n}, where

W̄τ = W [0, τ ] is the history of Wt from time 0 until time τ . The survival function is then

S(t) = e−Λ(t) = e−H(t)Wt

where Λ(t) is the cumulative hazard of our survival model, and H(t) is the conditional

cumulative hazard. We can incorporate baseline covariatesX intoH(t) andWt and specify

the survival function conditional on X, S(t|X); however, we exclude X in the following
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model specifications for brevity. The corresponding hazard function is then given by

dΛ(t) = WtdH(t) +H(t)dWt

Estimation is then conducted by maximizing the log-likelihood

l =
n
∑

i=1

{

δi log[dΛ(Ti|W̄Ti)S(Ti|W̄Ti)]− (1− δi)Λ(Ti|W̄Ti)
}

3.3.2 Marker observed at survival time

If we have marked data, then we observe Wt only at the survival time. Let τ be

the marker measurement time. Let {Ut}0≤t≤τ be a Lévy process that is defined on the

finite time horizon [0, τ ], and let {Utτ}0≤t≤τ be a Lévy bridge starting at zero and ending

at one at time τ . Thus, we write the frailty process Wt as a bridge process Utτ that is

scaled by the value of the process at time τ , Vτ , as in Eq.(3.4). We assume that Wt is

a scaled gamma process with mean µt and variance σ2t. For the purposes of derivation,

we use the reparameterization m = µ2/σ2 and κ = σ2/µ, where m can be considered as

a “standardized” growth rate and κ as a scale. Then the gamma bridge Utτ has a beta

distribution with parameters α = mt and β = m(τ − t) for 0 ≤ t ≤ τ (Brody et al., 2008).

The survival conditional on Vτ is then obtained by averaging the effect of the unobserved

trajectory of the gamma bridge on survival over the interval [0, τ ]. Thus, the conditional

survival for 0 ≤ t ≤ τ is the Laplace transform of Utτ and is given by

S(t|Vτ ) = EWt [e
−H(t)Wt |Vτ ] = EU [e

−H(t)UtτVτ |Vτ ] =M(mt,mτ,−H(t)Vτ )

where M is Kummer’s confluent hypergeometric function of the first kind (Hoyle, 2010).

The baseline covariates X can be included in all of the model parts µ, σ2, and H(t).

For individuals who do not experience the event of interest and Vτ is not observed,

97



the marginal survival is obtained by averaging over the distribution of Vτ ,

S(t) = EVτ [EU [e
−H(t)UtτVτ ]] = 1 +

∞
∑

k=1

k
∏

r=1

α + r − 1

α + β + r − 1

(−1)kpkH
k(t)

k!

where pk = E[V k
τ ] is the kth moment of Vτ . We assume that Vτ arises from the same

gamma process as Wt, i.e., Vτ is a gamma random variable with mean µτ and variance

σ2τ , thus the marginal survival is given by

S(t) = (1 + κH(t))−mt (3.5)

which is the Laplace transform of a gamma random variable with mean µt and variance

σ2t, as expected. Detailed derivations are given in Appendix B.1.

Suppose that the marker process is only observed at the event time. Let Vτ = vτ be

the observed value of the marker at time τ , and let WTi = vTi if δi = 1. Using observed

data Dn, estimation is then conducted by maximizing the log-likelihood

l =
n
∑

i=1

{

δi log[dΛ(Ti|vTi)S(Ti|vTi)gVTi (vTi)] + (1− δi) log[S(Ti)]
}

where the conditional survival given the observed marker value S(t|v) is from Eq.(B.2),

the conditional hazard of the survival model dΛ(t|v) is given in Eq.(B.3), the marginal

survival S(t) is from Eq.(3.5), and gVT (v) is the density of a gamma random variable with

mean µT and variance σ2T .

If the marker process was observed for everyone at the survival time (i.e., we observe

the marker measurement for both those who do and do not experience the event), then

we let vτ be the observed value of the marker at time τ , and WTi = vTi for all i. Using

observed data Dn, we then maximize the log-likelihood

l =
n
∑

i=1

{

δi log[dΛ(Ti|vTi)S(Ti|vTi)gVTi (vTi)] + (1− δi) log[S(Ti|vTi)gVTi (vTi)]
}

(3.6)

98



3.3.3 Marker measured indirectly

Suppose that the marker measurement obtained is subject to some “error”, i.e., we

only observe marker value Zτ , which is some surrogate of Vτ . We define Zt|Vt as a white

noise process plus mean Vt, which is the true value of the process at time t. Thus, Zt|Vt at

any two time points are not correlated. Under the assumption that given Vτ , T ⊥ Zτ , the

conditional survival distribution is obtained by averaging the survival function S(t|Vτ )

over the regression Zτ ∼ Vτ , and given by

G(t|Zτ = z) =
EVτ [S(t|Vτ )× fZτ |V (z|Vτ )]

EVτ [fZτ |V (z|Vτ )]

We denote the conditional survival function for our measurement-error model byG(t|z)

and the cumulative hazard as Φ(t). The general and gamma process derivation for this

conditional survival probability are given in Appendix B.1.2. We are interested in distri-

butions for Zτ |Vτ that have mean Vτ and thus consider compound gamma distributions

for which there are closed-form expressions for the conditional survival function. We in-

troduce an additional parameter γ in the variance of the measurement error that measures

the extent to which the assumption that the marker is measured with error is necessary.

We present the derivations for the conditional survival function for Zτ |Vτ with gamma

distribution mean Vτ and variance V 2
τ /γ, and normal distribution mean Vτ and variance

1/γ2 in Appendices B.1.2.1 and B.1.2.2, respectively. Thus, as γ increases the variance of

the measurement error decreases and the observed value goes to the true value. Although

the marginal distributions for Zτ under both of these measurement-error models contain

special functions, they have closed-form expressions. However, the normal distribution

error density contains the parabolic cylinder function and produces numerical complica-

tions due to its approximation in standard software. Thus, we consider the performance

of the gamma measurement-error model in the remainder of this chapter and expect that

future work will expand model evaluation to other measurement-error models as well.
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If the marker process is only observed at the event time, let Zτ = zτ be the observed

value of the marker at time τ , and let WTi = zTi if δi = 1. With observed data Dn,

estimation is conducted by maximizing the log-likelihood

l =
n
∑

i=1

{

δi log
[

dΦ(Ti|zTi)G(Ti|zTi)fZTi
(zTi)

]

+ (1− δi) log [S(Ti)]
}

where the conditional survival given the observed marker value G(t|z) is from Eq.(B.5),

the conditional hazard of the survival model dΦ(t|z) is given in Eq.(B.6), the marginal

survival S(t) is from Eq.(3.5), and fZT
(z) is the density of the observed marker value at

T given in Eq.(B.4).

If we observe the marker process for everyone at their survival time, then we let zτ be

the observed value of the marker at time τ , and WTi = zTi for all i. Using observed data

Dn, we maximize the log-likelihood

l =
n
∑

i=1

{

δi log
[

dΦ(Ti|zTi)G(Ti|zTi)fZTi
(zTi)

]

+ (1− δi) log
[

G(Ti|zTi)fZTi
(zTi)

]}

(3.7)

In an alternative specification, we can present the likelihood as

l =
n
∑

i=1

δi log
[

EVTi

[

dΛ(Ti|vTi)S(Ti|vTi)fZTi
|VTi (zTi |vTi)

]]

+ (1− δi) log
[

EVTi

[

S(Ti|vTi)fZTi
|VTi (zTi |vTi)

]]

where we specify the contributions conditional on VTi and take the expectation with

respect to the unobserved random variable. We derive the likelihood in this form in

Appendix B.1.3 and demonstrate that the result is the same as with the specification in

Eq.(3.7).
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3.3.4 Modeling the Conditional Cumulative Hazard

Due to modeling the marker process effect as multiplicative in the conditional cumu-

lative hazard rather than in the hazard rate as in traditional survival models, we have

additional flexibility in specifying the conditional cumulative hazard function to match

the marginal behavior of the data. While we can choose parametric models for the condi-

tional cumulative hazard, such as exponential, Weibull, or gamma, we can also consider

more flexible parametric or non-parametric models, as is demonstrated in our application

to prostate cancer data in Section 3.5. If we believe that there is unobserved heterogeneity

in the population, we can also consider modeling the conditional cumulative hazard using

a univariate frailty model, where a random effect is drawn at baseline for each individual

and remains fixed for the individual’s lifetime. This frailty is distinct from the frailty

process specified for our marker. The derivation of the conditional and marginal survival

functions for a gamma bridge marker process and a gamma frailty for the conditional

cumulative hazard are demonstrated in Appendix B.4.

3.3.5 Multiple marker measurements and dynamic prediction

So far, we have developed our model for the situation of a single observed marker

measurement for each individual, which is observed jointly with survival data at the

survival time. Here, we set up the framework for extending our model specification

to multiple measurement times with the aim of developing a model and estimation for

dynamic prediction. We derive the conditional survival for two measurement times, which

can be extended to additional measurement times in the same way. We can also extend

the conditional survival function to incorporate multiple marker measurements to use a

patient’s longitudinal marker history to make more accurate predictions at time points

beyond baseline. Derivations for the marginal survival and hazard functions will follow

from arguments similar to those presented in Appendix B.1, and will be explored in future

work.
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Suppose that we observe the marker process at two time points τ and s, with values

Vτ and Vs, respectively. Recall that the conditional survival for one measurement time τ

for 0 ≤ t ≤ τ is given by

S(t|Vτ ) = EU

[

e−H(t)UtτVτ |Vτ
]

=M(mt,mτ,−H(t)Vτ )

If we consider the situation where we observe the marker at another measurement time s

before τ , then the conditional survival for 0 ≤ s ≤ t ≤ τ is

S(t|Vτ , Vs) = EWt

[

e−H(t)Wt |Vτ , Vs
]

= EB

[

e−H(t)(Vs+Btτ (Vτ−Vs))|Vτ , Vs
]

= e−H(t)Vs EB

[

e−H(t)Btτ (Vτ−Vs)|Vτ , Vs
]

= e−H(t)VsM(m(t− s),m(τ − s),−H(t)(Vτ − Vs))

where Btτ is a gamma bridge from 0 to 1 on the interval [s, τ ] and thus has a beta

distribution with parameters α = m(t − s) and β = m(τ − t). Notice that if we have

s = 0, then our formula reduces to the survival function conditioning on Vτ .

Suppose the marker value at time s is not observed, i.e., we are interested in making

predictions for a person beyond their last observed marker value. The general formula for

the future predicted survival for 0 ≤ τ ≤ t is given by

S(t|Vτ = v) =

∞
∫

v

P (T > t|Vτ = v, Vt = y)fVt|Vτ (y|v) dy

=

∞
∫

v

e−yH(t) 1

Γ(m(t− τ))κm(t−τ) (y − v)m(t−τ)−1e−
(y−v)

κ dy

= e−H(t)v(1 + κH(t))−m(t−τ)

Thus, the future survival prediction is the marginal survival probability of surviving
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up to time t with marker value v multiplied by the marginal survival for a gamma process

on the interval [τ, t]. With increasing v, future survival probability worsens, as expected.

Combining these results, the dynamic prediction of survival at time τ for the prediction

horizon τ + s is given by

S(τ + s|Vτ = v, T > τ) =
P (T > τ + s, Vτ = v)

P (T > τ, Vτ = v)

=

∫∞
v
P (T > τ + s, Vτ = v, Vt = y) dy

S(τ |v)fVτ (v)

=

∫∞
v
P (T > τ + s|Vτ = v, Vt = y)fVt|Vτ (y|v)fVτ (v) dy

M(mτ,mτ,−vH(τ))fVτ (v)

=

∞
∫

v

e−yH(τ+s) 1

Γ(ms)κms
(y − v)ms−1e−

(y−v)
κ dy

e−vH(τ)

= e−(H(τ+s)−H(τ))v(1 + κH(τ + s))−ms (3.8)

In Appendix B.2, we derive the conditional survival probabilities under the measurement-

error model.

3.3.6 Marker Prediction

In addition to modeling the effect of the marker on the survival, we may be interested

in the behavior of the marker conditional on the survival data and observed marker

measurements. This can help identify patterns in the marker process over time. We

present the derivation of the following formulas in Appendix B.3.

3.3.6.1 True marker value observed

Suppose that we observe the true marker value at time τ , Vτ . For 0 ≤ t ≤ τ ≤ T ,

E[Wt|T > τ, Vτ = v] =

∫

P (T > τ |Wt, Vτ )q(Wt|Vτ )g(Vτ )Wt dWt
∫

P (T > τ |Wt, Vτ )q(Wt|Vτ )g(Vτ ) dWt

=
tv

τ
(3.9)
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where the probability distribution of Wt|Vτ when 0 ≤ t ≤ τ is given by the beta distribu-

tion scaled by the value of Vτ . Thus, the expected value is the ratio of the time spent in

the interval scaled by the value of the marker at the end of the interval.

For 0 ≤ τ ≤ t ≤ T ,

E[Wt|T > t, Vτ = v] =

∫

P (T > t|Wt, Vτ )q(Wt|Vτ )g(Vτ )Wt dWt
∫

P (T > t|Wt, Vτ )q(Wt|Vτ )g(Vτ ) dWt

= v +
κm(t− τ)

1 + κH(t)
(3.10)

where Wt|Vτ for 0 ≤ τ ≤ t is gamma distributed with mean Vτ + µ(t − τ) and variance

σ2(t − τ), and S(t|Wt, Vτ ) = S(t|Wt) = e−H(t)w. Thus, the mean marker value at time

t > τ is the marker at τ plus the mean value of the marker over the interval [t, τ ] scaled by

the Laplace transform of a gamma random variable with shape 1 and scale κ. The second

term represents the competition between the mean value of the process beyond τ and the

conditional survival. As t increases, the mean value of the process increases; however,

the conditional cumulative hazard in the denominator also increases. This captures the

effect that over time those with high values of Wt experience failure, leaving healthier

individuals with lower marker values in the population. Thus, if H(t) increases faster

than (t−τ) the average conditional marker behavior can increase and then decrease, even

though the marker process for each individual is increasing. This phenomenon is similar

to that of the population average hazard in cure models that can decrease over time due

to the increasing proportion of less frail individuals.

3.3.6.2 Marker observed with measurement error

Suppose that we observe the marker at time τ with gamma measurement error. For

0 ≤ t ≤ τ ≤ T ,
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E[Wt|T > τ, Zτ = z]

=

∫

P (T > τ,Wt, Zτ )Wt dWt
∫

P (T > τ,Wt, Zτ ) dWt

=

∫∞
0

[∫ v

0
S(τ |v)q(w|v)f(z|v)g(v)w dw

]

dv
∫∞
0

[∫ v

0
S(τ |v)q(w|v)f(z|v)g(v) dw

]

dv

=
t

τ
(γz)

1
2

(

H(t) +
1

κ

)− 1
2 Kγ−mτ−1

(

2
√

(

H(t) + 1
κ

)

(γz)
)

Kγ−mτ

(

2
√

(

H(t) + 1
κ

)

(γz)
) (3.11)

where S(τ |Vτ ) = e−H(τ)Vτ , q(Wt|Vτ ) is the beta distribution scaled by Vτ , g(Vτ ) is the

gamma distribution with shape mτ and scale κ, and the distribution f(Zτ |Vτ ) depends

on the measurement-error model. Notice that this has a similar form to Eq.(3.9), where

instead of v we have a function of z representing the value of v measured with error.

For 0 ≤ τ ≤ t ≤ T ,

E[Wt|T > t, Zτ = z] =

∫

P (T > t,Wt, Zτ )Wt dWt
∫

P (T > t,Wt, Zτ ) dWt

=

∫∞
0

[∫∞
0
S(t|w)q(w|v)f(z|v)g(v)w dw

]

dv
∫∞
0

[∫∞
0
S(t|w)q(w|v)f(z|v)g(v) dw

]

dv

= (γz)
1
2

(

H(t) +
1

κ

)− 1
2 Kγ−mτ−1

(

2
√

(

H(t) + 1
κ

)

(γz)
)

Kγ−mτ

(

2
√

(

H(t) + 1
κ

)

(γz)
) +

κm(t− τ)

1 + κH(t)
(3.12)

where S(t|Wt) = e−H(t)Wt , q(Wt|Vτ ) is the gamma distribution with mean Vτ + µ(t − τ)

and variance σ2(t − τ), g(Vτ ) is the gamma distribution with shape mτ and scale κ,

and f(Zτ |Vτ ) is the measurement-error model. Notice that is has the same form as in

Eq.(3.10), where v is replaced with the same function of z as in Eq.(3.11).
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3.3.6.3 Marker value not observed

If the value of the marker is not observed at any measurement time, ∀t ≥ 0

E[Wt|T > t] =

∫

P (T > t|Wt)q(Wt)Wt dWt
∫

P (T > t|Wt)q(Wt) dWt

=
κmt

(1 + κH(t))

(3.13)

This is the second element in Eq.(3.10), which represents the behavior of the marker

after the observed marker measurement. We use these formulas to demonstrate the be-

havior of the marker process in the data application in Section 3.5.

3.4 Simulation study

Simulations were conducted to evaluate the estimation of the proposed survival model.

We simulate our data from both the situation when the marker is measured without error

and when we assume that we observe a surrogate of the marker measured with error.

We fit the models with and without measurement error to evaluate the performance

of the generating model and a misspecified model. We simulate under sample sizes of

n = 200, 300, 500 and perform 500 replications. Standard errors were obtained numerically

from the Hessian matrix evaluated at the estimated parameter values.

We simulate a binary baseline covariate X, with a prevalence of 30%. We simulate

the marker process Wt from a gamma process with mean µt and variance σ2t, where

µ = exp{µ0 + µ1X} and σ2 = exp{η0 + η1X}. The baseline hazard is assumed to

be exponential with rate exp{β0 + β1X}. The true parameter values are chosen to be

µ0 = −1.1, µ1 = 0.3, η0 = −2.1, η1 = 0.5, β0 = −3.6, β1 = 0.6. Failure times are generated

from the model S(t) = e−H(t)Wt and the censoring distribution is Unif(0, c), where we

consider a censoring horizon of c = 20, 30, 50 to achieve censoring rates of 40%, 30%,

20%, respectively. A detailed description of the how the gamma marker process and

event times were simulated is given in Appendix B.5.
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For the simulations with measurement error, we generate the observed marker value

from a gamma distribution with mean at the true value VT and variance VT/ exp(γ), where

T is the survival time and γ represents the measurement error. Values of γ were chosen

based on the scale of VT , and we consider γ = 1, 2, 3 to simulate small, medium, and large

measurement error.

In Tables 3.1 and 3.2 we present the results from data simulated without measure-

ment error and fit with same model. We see that the bias is small even for smaller sample

sizes. The coverage probabilities for the intercept parameters µ0 and η0 are lower than the

95% nominal level; however, the coverage probability of the other parameters correspond-

ing to the baseline covariate (µ1, η1) and the parameters associated with the conditional

cumulative hazard (β0, β1) approach the nominal value.

Table 3.1: Simulation results for the parameters associated with the stochastic marker process
from a gamma bridge survival model with no measurement error fit to marker data simulated
from a gamma bridge process with no measurement error.

µ0 µ1 η0 η1
n %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP Est SE ESD CP Est SE ESD CP

200 20 -1.13 .031 .030 84.6 .290 .062 .063 93.5 -2.17 .131 .134 91.1 .447 .244 .250 94.3
200 30 -1.12 .032 .033 88.1 .286 .064 .062 94.8 -2.16 .132 .137 92.5 .449 .246 .259 92.1
200 40 -1.12 .034 .034 89.3 .290 .067 .069 92.5 -2.15 .133 .133 93.1 .450 .248 .255 93.7
300 20 -1.13 .025 .022 83.4 .291 .050 .050 94.5 -2.16 .107 .107 90.7 .457 .199 .200 93.9
300 30 -1.12 .026 .025 87.9 .285 .052 .051 94.7 -2.16 .107 .116 89.5 .452 .200 .212 92.7
300 40 -1.12 .028 .028 88.3 .284 .055 .058 91.3 -2.15 .109 .111 92.9 .447 .202 .203 93.7
500 20 -1.13 .019 .019 72.8 .286 .039 .040 92.1 -2.16 .083 .082 89.6 .455 .154 .153 92.9
500 30 -1.13 .020 .021 77.0 .289 .041 .039 94.9 -2.16 .083 .084 87.9 .471 .155 .161 93.5
500 40 -1.12 .022 .022 84.0 .284 .043 .042 93.9 -2.15 .084 .085 89.3 .452 .156 .157 93.9

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence interval contains
the true parameter values

In Tables 3.3 and 3.4 we examine the results for simulating from a measurement-error

model and fitting the same model. The coverage probabilities for the mean parameters

are improved compared to the model without measurement error. The bias of the variance

parameters (η0, η1) is high and the standard errors are large. The bias is low and coverage

probabilities approach 95% for the conditional cumulative hazard parameters (β0, β1).

The bias and coverage probabilities are better for smaller values of γ. The coverage
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Table 3.2: Simulation results for the parameters associated with the conditional cumulative
hazard from a gamma bridge survival model with no measurement error fit to marker data
simulated from a gamma bridge process with no measurement error.

β0 β1
n %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP

200 20 -3.60 .094 .094 95.1 .614 .168 .169 95.5
200 30 -3.60 .102 .101 94.8 .614 .178 .172 95.8
200 40 -3.61 .117 .120 94.5 .612 .196 .198 94.1
300 20 -3.60 .077 .076 95.9 .604 .137 .140 94.7
300 30 -3.60 .084 .084 94.1 .601 .145 .143 95.2
300 40 -3.61 .096 .094 95.8 .611 .160 .161 94.1
500 20 -3.60 .059 .060 95.3 .602 .106 .105 94.7
500 30 -3.60 .065 .065 95.2 .600 .112 .115 95.8
500 40 -3.60 .074 .071 95.8 .608 .123 .117 96.8

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95%
confidence interval contains the true parameter values

probabilities improve towards the nominal level as censoring rate decreases.

We present the results of the misspecified models in Appendix B.6. In Tables B.1

and B.2 we generate under a model with no measurement error but fit a measurement-

error model. We find similar coverage probabilities and bias for all the parameters as

when fitting the model without measurement error in Tables 3.1 and 3.2. The standard

errors are slightly larger for the variance parameters (η0, η1) in this setting. We expect

a large estimate for γ relative to the observed marker value at the survival time and

find that the estimate is fairly consistent across all levels of sample size and censoring.

The standard errors of γ are also large, and there is not good agreement between the

empirical standard deviation and the standard errors. This is likely a result of fitting a

more complicated model and attempting to estimate a parameter for which there is little

information available in the data.

In Tables B.3 and B.4 we generate under a measurement-error model but fit a model

without measurement error. We find that the bias of the variance parameters (η0, η1) are

lower compared to when we fit the measurement-error model (Tables 3.3 and 3.4). The

standard errors of all the parameters are also lower. This possibly a result of numer-
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Table 3.3: Simulation results for the parameters associated with the stochastic marker process
from a gamma bridge survival model with no measurement error fit to marker data simulated
from a gamma bridge process with no measurement error.

µ0 µ1 η0 η1
n log(γ) %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP Est SE ESD CP Est SE ESD CP

200 0.0 20 -1.14 .095 .096 91.2 .297 .176 .174 95.0 -2.51 .617 .670 92.8 .325 1.11 1.08 94.2
200 0.0 30 -1.13 .096 .100 90.8 .277 .176 .181 92.9 -2.57 .585 .651 94.2 .367 1.04 1.09 94.9
200 0.0 40 -1.14 .098 .107 91.3 .299 .181 .181 95.4 -2.54 .561 .559 94.7 .405 1.00 .937 97.1
200 0.7 20 -1.13 .072 .068 91.4 .288 .132 .133 94.3 -2.41 .477 .522 95.8 .352 .819 .851 96.9
200 0.7 30 -1.13 .073 .075 93.7 .287 .135 .137 95.2 -2.44 .451 .487 96.0 .380 .766 .870 96.9
200 0.7 40 -1.13 .075 .079 92.2 .285 .138 .138 95.4 -2.45 .410 .470 94.1 .405 .725 .797 96.0
200 1.1 20 -1.13 .062 .060 91.9 .286 .115 .119 94.1 -2.35 .408 .467 94.9 .364 .665 .745 96.0
200 1.1 30 -1.13 .063 .063 92.1 .282 .117 .118 93.8 -2.38 .385 .435 95.5 .425 .637 .719 96.1
200 1.1 40 -1.12 .065 .070 92.2 .280 .120 .125 93.8 -2.37 .356 .368 93.6 .402 .588 .697 94.7
300 0.0 20 -1.13 .077 .076 92.1 .287 .142 .143 93.1 -2.48 .504 .538 92.3 .366 .894 .922 94.6
300 0.0 30 -1.12 .079 .081 92.3 .279 .144 .145 94.8 -2.49 .476 .501 94.6 .374 .841 .857 96.1
300 0.0 40 -1.13 .080 .078 93.6 .280 .148 .147 94.6 -2.54 .457 .509 90.5 .432 .793 .873 96.7
300 0.7 20 -1.13 .059 .056 92.2 .286 .108 .109 94.6 -2.40 .395 .442 93.5 .388 .654 .738 96.5
300 0.7 30 -1.13 .060 .063 91.3 .293 .111 .108 94.7 -2.42 .358 .397 93.8 .454 .602 .625 97.2
300 0.7 40 -1.13 .061 .063 91.7 .283 .113 .117 93.3 -2.39 .326 .354 90.2 .447 .564 .597 95.2
300 1.1 20 -1.13 .051 .049 91.7 .290 .094 .094 94.9 -2.36 .341 .388 93.0 .441 .548 .588 96.6
300 1.1 30 -1.13 .052 .054 89.5 .291 .096 .097 95.0 -2.36 .305 .318 93.1 .461 .500 .521 96.9
300 1.1 40 -1.12 .053 .056 91.3 .280 .098 .103 92.7 -2.34 .281 .283 90.0 .430 .472 .521 96.1
500 0.0 20 -1.13 .060 .064 88.9 .285 .112 .108 94.3 -2.45 .390 .421 93.0 .460 .660 .653 97.0
500 0.0 30 -1.12 .061 .062 93.3 .284 .111 .109 95.4 -2.45 .360 .381 92.5 .422 .627 .651 95.9
500 0.0 40 -1.12 .062 .057 94.6 .285 .114 .106 95.8 -2.47 .333 .345 87.2 .396 .594 .631 94.3
500 0.7 20 -1.13 .046 .045 88.8 .285 .085 .083 94.4 -2.36 .292 .310 90.5 .472 .475 .500 96.3
500 0.7 30 -1.13 .046 .047 90.6 .287 .086 .092 92.9 -2.37 .268 .282 86.7 .443 .450 .500 95.1
500 0.7 40 -1.12 .048 .048 91.8 .282 .088 .087 94.5 -2.36 .245 .239 84.2 .438 .416 .413 96.0
500 1.1 20 -1.13 .039 .040 86.9 .283 .073 .076 92.7 -2.32 .251 .247 91.6 .476 .396 .397 97.4
500 1.1 30 -1.13 .040 .041 90.0 .284 .074 .075 93.2 -2.35 .234 .248 86.8 .476 .378 .397 96.0
500 1.1 40 -1.12 .041 .040 92.2 .285 .076 .074 95.1 -2.33 .213 .217 84.2 .445 .354 .378 95.6

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence interval contains
the true parameter values
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Table 3.4: Simulation results for the parameters associated with the measurement error and
conditional cumulative hazard from a gamma bridge survival model with no measurement error
fit to marker data simulated from a gamma bridge process with no measurement error.

log(γ) β0 β1
n log(γ) %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP Est SE ESD CP

200 0.0 20 -.016 .107 .104 94.6 -3.569 .137 .137 93.4 .616 .250 .242 95.8
200 0.0 30 -.017 .108 .111 92.8 -3.574 .142 .149 92.3 .635 .254 .260 95.9
200 0.0 40 -.020 .112 .106 96.1 -3.58 .153 .157 93.3 .614 .268 .254 96.3
200 0.7 20 .665 .135 .137 93.2 -3.576 .120 .121 94.3 .629 .214 .217 94.5
200 0.7 30 .652 .138 .141 92.4 -3.577 .126 .125 95.0 .625 .223 .216 95.6
200 0.7 40 .646 .142 .156 91.0 -3.589 .138 .136 94.7 .628 .237 .230 95.4
200 1.1 20 1.06 .164 .165 94.5 -3.574 .113 .117 92.6 .630 .200 .211 93.2
200 1.1 30 1.04 .165 .173 91.0 -3.576 .120 .123 93.8 .632 .210 .211 94.0
200 1.1 40 1.03 .171 .187 88.9 -3.594 .132 .132 96.1 .634 .225 .230 95.3
300 0.0 20 -.018 .086 .087 94.4 -3.582 .111 .103 95.3 .619 .203 .198 96.0
300 0.0 30 -.031 .088 .083 94.6 -3.587 .117 .118 96.4 .618 .211 .213 94.3
300 0.0 40 -.035 .090 .091 91.7 -3.599 .125 .126 94.6 .628 .218 .225 94.4
300 0.7 20 .653 .109 .107 92.9 -3.582 .098 .089 95.9 .619 .175 .173 94.8
300 0.7 30 .635 .111 .112 89.8 -3.581 .103 .106 93.4 .605 .182 .181 95.5
300 0.7 40 .640 .115 .115 90.2 -3.595 .113 .115 95.4 .627 .194 .200 93.8
300 1.1 20 1.04 .130 .125 91.1 -3.582 .093 .090 95.1 .617 .165 .171 95.8
300 1.1 30 1.03 .133 .131 91.2 -3.578 .098 .101 93.7 .606 .172 .172 95.8
300 1.1 40 1.03 .138 .137 89.4 -3.596 .108 .111 93.2 .628 .184 .188 94.6
500 0.0 20 -.028 .066 .067 92.1 -3.583 .087 .092 92.5 .615 .159 .154 95.7
500 0.0 30 -.033 .068 .067 91.8 -3.585 .090 .093 93.3 .613 .161 .170 94.7
500 0.0 40 -.039 .069 .067 91.9 -3.587 .096 .092 96.7 .612 .168 .156 96.7
500 0.7 20 .649 .084 .086 89.2 -3.579 .076 .078 92.7 .615 .136 .137 95.3
500 0.7 30 .639 .086 .086 90.3 -3.578 .080 .082 94.2 .613 .141 .151 92.7
500 0.7 40 .625 .088 .089 85.7 -3.584 .087 .088 94.9 .620 .150 .137 96.0
500 1.1 20 1.04 .100 .095 90.6 -3.582 .072 .075 92.5 .619 .128 .124 95.3
500 1.1 30 1.02 .101 .104 84.5 -3.58 .076 .078 93.4 .617 .133 .139 94.5
500 1.1 40 1.01 .105 .105 84.8 -3.583 .084 .083 95.1 .617 .142 .132 96.4

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence interval con-
tains the true parameter values
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ical difficulties in estimation for the measurement-error model in R software, where an

approximation of the special Bessel function K is used.

Overall, there is good agreement between the asymptotic standard errors and the

empirical standard deviation in all simulation settings, indicating that we are correctly

estimating the variability of the parameter estimates. The coverage probability for the

conditional hazard parameters is at the 95% nominal level, indicating that the applica-

tion of the marker process multiplicatively to the conditional hazard has not affected its

estimation. The measurement-error model has high bias for the variance parameters and

greater variability in its estimates than the model without measurement error. When the

measurement-error model is fit to data without error, the γ parameter is large and the

results are similar to the model without error, indicating that it performs well when fitting

a misspecified model. Similarly, the misspecified model without measurement error has

low bias and standard errors when fit to data generated with error.

3.5 PCPT data analysis

The Prostate Cancer Prevention Trial (PCPT) was designed to study whether the

drug finasteride prevented prostate cancer in men aged 55 and older (Thompson et al.,

2003, 2013). The study enrolled 18,882 men who showed no evidence of prostate cancer

and randomized half of them to receive finasteride and the other half to placebo. PCPT

participants were required to visit the study site twice a year to monitor their health.

They received a yearly physical exam which included a digital rectal examination (DRE)

and PSA blood test. If their PSA values were elevated or their DRE was abnormal, they

had a prostate biopsy to check for cancer. At the end of seven years in the study, all

participants who had not been diagnosed with prostate cancer received an end-of-study

prostate biopsy. This involved using a needle to remove at least six small pieces of prostate

tissue.

We restrict our analysis to placebo patients who received at least one biopsy with a
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PSA measurement within 3 months of the final biopsy, and censored those who received

an end-of-study biopsy without cause. We selected only patients with race coded as white

or black, resulting in 4932 subjects being included in the analysis, of which 153 (3%)

are black. The data was structured as one biopsy measurement per person (choosing

the last biopsy available), the time from registration to the last biopsy, the baseline log-

transformed PSA measurement, and the final log-transformed PSA measurement. The

marker of interest is the difference in log-transformed PSA from baseline. For the 20% of

patients with a decreasing PSA value, their change in PSA was set to 0.

From Figure 3.2, the Kaplan-Meier curves for the model exhibit a large drop in the

survival curve at years 1, 2, etc., which is a result of biopsies being conducted every year

since baseline. Thus, we specify the conditional cumulative hazard of our model as a

mixture of normal distributions to capture this step effect. From Figure 3.2, we see that

the survival curves for each race may not be best described by proportional hazards. Thus,

we fit the model to each race separately, and then perform a test for common conditional

cumualtive hazards across the two groups.

To account for the study participants not having zero risk at study entry (i.e., non-zero

PSA), we model the change in log(PSA+1) from baseline as a gamma process with mean µt

and variance σ2t, where µ = exp{µr}, r ∈ {W = white, B = black} and σ2 = exp{ηr}, r ∈

{W,B} and apply its effect multiplicatively to this baseline hazard. We also include the

effect of the baseline log(PSA+1) and baseline age in the mean and variance functions (i.e.,

µr = µr0+µr1 log(PSA0+1)+µr2(Age0/20), ηr = ηr0+ηr1 log(PSA0+1)+ηr2(Age0/20)).

The distributions of these covariates by race are shown in Figure 3.1, where we see good

overlap between the two groups.

We fit a measurement-error model, where we model the marker value v as being

observed as a random gamma variable with mean v and variance v2/ exp{γr}, r ∈ {W,B}.

A higher estimated value for γr would indicate that the measurement-error model is not

required (i.e., the variance of the marker measured with error goes to 0).
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estimates and standard errors from the simpler model without measurement error in Table

3.5.

Table 3.5: Estimates and standard errors for parameters of the gamma bridge process for
difference in log PSA from the gamma bridge survival model with no measurement error applied
to PCPT data.

Parameter Estimate SE
µW0 -5.060 0.274
µW1 1.081 0.080
µW2 0.264 0.088
ηW0 -7.657 0.584
ηW1 2.059 0.173
ηW2 0.667 0.187

µB0 -3.890 0.313
µB1 1.118 0.360
ηB0 -4.900 0.707
ηB1 1.489 0.817

Since we apply the marker process multiplicatively to the conditional cumulative haz-

ard, we can interpret the effect of the coefficient estimates for the mean of the process

directly on survival probabilities. The coefficient estimate for baseline PSA in the mean

of the marker process is positive for both white and black men indicating that those that

start with a high PSA have a greater increase in PSA and higher probability of developing

prostate cancer. The mean coefficient estimate for baseline age is positive for white men,

indicating that those who are older at the start of the study have a greater change in

PSA and a higher probability of prostate cancer. We show the predicted survival curves

from this model (with baseline age and PSA set at their median values) in Figure 3.2 and

demonstrate that they align well with the Kaplan-Meier curves. The predicted survival

curve for black men falls at the top of the steps for the Kaplan-Meier curve but does not

capture the annual step effect as well as the predicted curve for white men does. This is

possibly a result of having less data for black men. With a likelihood ratio test we re-

ject the null hypothesis that there is no significant difference in the mean for the gamma

process between white and black men. Thus, we conclude that the behavior of the PSA
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processes varies between the two races.

3.5.1 Marker and Survival Prediction

In Figure 3.3, we show the dynamic predicted values for the survival probability and

the average marker prediction for three patients in the data set who were censored. Each

individual is censored at τ , indicated by the vertical dotted line, at which time they are

measured to have marker value Vτ = v. We use the marginal survival function S(t) given

in Eq.(3.3) to predict their survival up to time τ , and then use S(τ + t|Vτ = v) in Eq.(3.8)

to compute their conditional survival for t ≥ τ . To compute the predicted marker, we

use Eq.(3.13) to compute the average marker value E[Wt|T > t] up to time τ and then

use Eq.(3.10) for the prediction of the marker value conditioning on the observation at τ ,

E[Wt|T > t, Vτ = v], for t ≥ τ . For demonstration purposes we show the predicted curves

for both races.

0
1

2
3

4

P
re

d
ic

te
d

 C
h

a
n

g
e

 i
n

 P
S

A

●

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time since start of study (Years)

F
re

e
d

o
m

 f
ro

m
 P

ro
s
ta

te
 C

a
n

c
e

r

0
1

2
3

4

P
re

d
ic

te
d

 C
h

a
n

g
e

 i
n

 P
S

A

●

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time since start of study (Years)

F
re

e
d

o
m

 f
ro

m
 P

ro
s
ta

te
 C

a
n

c
e

r

0
1

2
3

4

P
re

d
ic

te
d

 C
h

a
n

g
e

 i
n

 P
S

A

●

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time since start of study (Years)

F
re

e
d

o
m

 f
ro

m
 P

ro
s
ta

te
 C

a
n

c
e

r

Figure 3.3: Dynamic prediction of survival and marker for three individuals in the data set with
censored survival times. Individual A (left) is a black male, age 60 at baseline, has PSA0 = 2.1.
Individual B (middle) is a black male, age 65 at baseline, with PSA0 = 3.0. Individual C (right)
is a white male with, age 72 at baseline, with PSA0 = 0.5. The color of the curves distinguishes
the whether the line is for the marker (red) or the survival (black). The line type indicates the
prediction for a white (dashed) or a black (solid) man. The black dot indicates the individual’s
observed marker value at his censoring time.

The predicted survival curves for black men are lower than those for white men and

the predicted marker trajectory is higher. Individual A is young but with a high baseline

PSA and has a steadily increasing marker process, matched by an increasing probability

of prostate cancer diagnosis. Individual B is slightly older with a higher PSA and at time
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τ we see that his observed marker value is higher than the expected value. Individual

C is older with very low baseline PSA; we see that his observed marker value is close to

predicted, and that they have very slow marker growth, matched by lower risk of prostate

cancer. These marker predictions can be useful for comparing the behavior of the marker

process for different groups, and the dynamically predicted survival can be used in the

context of the previous chapters for informing about a patient’s future prognosis.

3.6 Discussion

Using a stochastic marker process framework, we have developed a joint model for the

incorporation of a partially observed covariate on a time-to-event outcome. We consider

the situation of marked data, where a time-dependent marker is observed only at the

survival time. We suppose that the marker represents a risk process that accumulates over

time leading to the occurrence of a failure event, and model it flexibly using an increasing

Lévy bridge process. By using a stochastic process framework, we do not restrict the

pattern of the individual marker trajectories based on a functional form, instead allowing

for biological variability through individual fluctuations. Thus, this model can be applied

to a variety of marker and disease settings. This flexible formulation also allows us to

overcome the difficulties of joint modeling with a sparse marked survival data structure.

In this work, we extend the theory of gamma bridge processes to a survival frame-

work. Thus, a limitation of our model is that the behavior of the marker and the survival

is dependent on the properties of this particular process. However, we could consider a

wide class of non-decreasing Lévy process models in this framework. For example, the

compound Poisson process, for which a closed-form characteristic function is defined for

its bridge (Hoyle, 2010), or limits of the compound Poisson process. We can also consider

alternative methods for incorporating measurement error into the modeling framework,

such as a piece-wise exponential function for Zτ |Vτ where we define the cutpoints based

on quantiles of the observed marker distribution and estimate a separate measurement
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error parameter for each interval. So far, we have considered a fully parametric approach

for both the marker and survival components of the joint model. Introducing a semi-

parametric conditional cumulative hazard H(t) into the current modeling framework is

straightforward; however, a semiparametric representation of the marker process will pose

difficulties for derivation and estimation.

As outlined in Section 3.3.5, we can extend the survival model formulation to in-

corporate the effect of multiple marker measurements from longitudinal marker data.

Further derivations are required to specify the form for the marginal survival and cumu-

lative hazard functions, which should follow straightforwardly from similar arguments to

those presented in Appendix B.1. This will allow us to extend our model to the situa-

tion described in Yashin and Manton (1997) when dealing with a marker that is partially

observed at multiple time points; however, the gamma framework provides a more analyt-

ically tractable form and we expect estimation to be simpler. We may also be interested

in using longitudinally measured biomarkers to make dynamic survival predictions, as

was the focus in the previous chapters. While with a shared random effects model and

our copula method we have to specify a functional form for the marker process, in this

framework we use the flexibility of a stochastic process to describe the marker behavior

in intervals when it is unobserved.

We can also consider an extension of our proposed model to the multivariate setting

using the same arguments as presented in a shared frailty approach (Hougaard, 2012),

S(t1, t2|Wt) = S1(t1)
−WtS2(t2)

−Wt = e−Wt(H1(t1)+H2(t2))

where we assume that individuals in a pair share the same marker process effect, and

that conditional on the marker their lifetimes are independent. This presents a simpler

approach to modeling multivariate data than explored in Putter and Van Houwelingen

(2015). They use the Lévy process Wt in the hazard rather than the cumulative haz-
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ard, which does not produce a tractable representation for large cluster sizes resulting

in infeasible estimation when the data has a large number of events. Future work will

extend the modeling framework presented in this chapter to address more complicated

data structures.
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CONCLUSION

With this dissertation we aim to provide a useful contribution to the literature for mod-

eling survival using longitudinal marker information. Incorporating this time-dependent

information is essential for obtaining accurate inference and up-to-date survival predic-

tions. The methods presented in the dissertation can be applied to a variety of medical

research problems. As interest in long-term follow-up studies and electronic health sys-

tems grows, the availability of longitudinal information is increasing. Thus, developing

methods for incorporating their time-varying effects, such as those presented in this dis-

sertation, is essential.

In the first two chapters, we explored the use of longitudinal marker data to make

dynamic predictions of survival for a patient at time points beyond baseline. These

predictions can be used by clinicians to tailor a patient’s treatment strategy. In Chapter I

we compared two methods of dynamic prediction, landmarking and joint modeling, with a

binary marker. We assessed whether introducing additional flexibility to an approximate

approach can improve performance to be on par with a joint model. In this work, we

concluded that with a binary marker, the performance of landmarking approaches that of

joint modeling when we consider more flexible forms for modeling the relationship of the

marker effect on the conditional hazard. Thus, when faced with settings where it might

be difficult to fit a joint model, such as with sparsely collected longitudinal information,

using an approximate approach such as landmarking can be a sufficient substitute. Future

work can consider the comparisons of these methods under more complicated situations,

to identify when one method should be selected over the other. For example, when there

are multiple markers that are sparsely and irregularly measured, or when dealing with
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dependent censoring or competing risks.

In Chapter II, we propose an alternative approximate approach to dynamic prediction.

Our aim is to address the limitations posed by joint modeling and landmarking that make

them less desirable to use in certain situations. In comparison with landmarking, the

proposed copula model uses a longitudinal data set for estimation and does not require

us to implement specific data structuring based on prespecifying prediction times and

a prediction window of interest. This also allows us to avoid imputing the value of the

process at prediction times at which it is not observed, proving our method to be useful

for irregular measurement times and unbalanced data. Compared to joint modeling, we

do not have to specify the distribution of the marker trajectories, but instead describe

the marker distribution as a population-averaged model. We use a pseudo-likelihood

based approach that allows for straightforward estimation, and the tractable nature of

the Gaussian copula provides a closed-form expression from which we can easily compute

the dynamic predictions.

The limitations of this method include its reliance on the correct specification of the

marginal distributions. Thus, the bias can be large at later time points at which there is

less longitudinal information available for certain groups. As well, the model can produce

large standard errors for the parameters in the association function. This is a result of

using a two-stage approach, where calculating the variance of parameters in the second

stage also takes into account the estimation uncertainty of the parameters the first stage.

However, we find that with a sufficiently flexible representation, the performance of the

model is robust to the choice of the association function.

In the current copula and landmarking formulation, predictive performance was eval-

uated by computing the dynamic prediction [T > τ + s|T > τ, Z(τ)], where we compute

the survival probability conditional on the individual’s last available marker measurement

at time τ . To achieve a more accurate prediction, it might be of interest to incorporate an

individual’s longitudinal marker history [T > τ + s|T > τ, Z̄(τ)], where Z̄(τ) represents
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the individual’s history of the longitudinal marker values up to time τ . Joint modeling

handles this naturally. Rizopoulos et al. (2013) extended the landmark model specifica-

tion to consider parameterizations that incorporate the marker relationship with survival

in various way, such as the slope of the marker trajectory, Z ′
i(τ), or the area under the

longitudinal trajectory up to time τ ,
∫ τ

0
Zi(t) dt. The copula model can also be extended

to incorporate a summary of the marker history up to time τ , by modeling a different

aspect of the marginal marker distribution instead of the marginal marker mean described

in this dissertation. For example, we could have instead considered a marginal model for

the change in the marker value from baseline, Z(τ) − Z(0)|T > τ . We can also consider

more complicated summary measures, such as the area under longitudinal trajectory, or

even modeling the behaviour of individual trajectories using a mixed effect model if dic-

tated by the data. Thus, the survival depends on the history of the marker and not just

on the distribution of the patient’s marker at time τ . The ability to model the marginals

and their distributions separately allows for more complicated, better fitting, models to

be considered for the marginals, but still maintains simple estimation using the two-stage

method.

There are several other extensions that we could consider within the copula framework.

The most interesting of these would be to use the tractability of the Gaussian copula to

include the effects of multiple time-varying markers. The association structure can provide

insight into the relationship between the markers and survival, but can also identify

interesting dependencies between the markers themselves. With an increased number

of markers, the number of association function parameters will also grow. This means

that care should be taken to perform covariate selection even at the second stage of

estimation to achieve a more parsimonious model. Future work will explore the predictive

performance as well as the interpretations that can be obtained from dealing with other,

more complex forms of survival-longitudinal data.

One such data structure often arising in cancer research is that of marked data, where
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we assume the marker process to be an underlying latent stochastic process that is ob-

served only at the survival time. The data available for each patient is then a current

status observation and an associated cross-sectional surrogate, or “mark”, of the stochas-

tic process. This provides us with very sparse longitudinal data. Thus, it is difficult to

employ a method that relies on establishing the distribution of the marker over time, as

with our proposed copula approach and joint modeling. Landmarking in this situation

can introduce bias due to its reliance on imputing marker values at times at which they

are not observed. Thus, in Chapter III we consider a new class of survival models that

avoids specifying a functional form for the marker, instead letting its behaviour for periods

during which it is not observed be modeled as a flexible, increasing stochastic process.

A particular limitation of this method is that it relies heavily on the properties of the

chosen process. For our formulations, we specifically consider a gamma process due to its

tractable nature. Extensions to this work could explore other processes in the wide family

of Lévy processes. Although the Lévy process is known for its analytical tractability, the

difficulty comes from our use of a Lévy bridge to extend current stochastic process model

formulations to the situation where the marker is partially observed. There is a closed-

form representation of the characteristic function for a compound Poisson process bridge

from financial applications that could be considered (Hoyle, 2010), along with limits of

the process.

We also specify a measurement-error model where we assume that we observe only a

surrogate of the marker. To specify the distribution of the surrogate conditional on the

true marker value we are restricted to compound distributions. We impose the additional

restriction that the mean of the distribution be the true marker value. In the gamma

measurement-error model, this specifies the variance of the surrogate marker to be large

when the true marker value itself is large, which may not be a reasonable assumption.

Thus, future work shall explore additional forms for the measurement-error model distri-

bution, such as the Normal (for which we develop the theory but have not yet been able
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to achieve estimation due to numerical difficulties) and a piece-wise exponential, which

can be easily adapted from the gamma error model.

Finally, we frame our model using a fully parametric approach for both the marker

and survival behaviour. Using a semi-parametric model for the conditional cumulative

hazard is likely a straightforward extension; however, a semiparametric marker process

will prevent us from taking advantage of the tractability of the gamma process to derive

the survival functions, likely rendering such an approach difficult for both derivation and

estimation.

We adapt this model from the field of mathematical finance, where the increasing

risk process represents aggregate insurance claims data (Brody et al., 2008), to a survival

framework. Thus, there are several extensions that can be considered to apply it to

more complex forms of survival and longitudinal data. For example, we can consider a

multivariate setting, and adapt a shared frailty model where we replace the frailty with

our Lévy bridge process. We also begin describing the dynamic predictions that can

be obtained from this model. Future work will require describing the estimation and

derivation of the survival functions for multiple measurement times. By conditioning on

multiple markers, we could compute dynamic predictions that incorporate an individual’s

entire marker history to make a more accurate survival prediction.

We hope that this work provides readers with an appreciation of the importance of

dynamic methods in survival analysis. In this dissertation, we explore existing and new

methods for the statistical task of dynamic prediction and inference of survival with

longitudinal biomarkers. By considering unique approaches, such as the Gaussian copula

and the Lévy-based bridge in a dynamic survival framework, we aim to advance statistical

research in this area.
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APPENDIX A

A Gaussian Copula Approach for Dynamic

Prediction of Survival with a Longitudinally

Measured Marker

A.1 Two-stage parametric variance estimation

Let α, β be the parameter vectors for the margins for Tτ and Zτ , respectively. Let

ℓT (α) and ℓZ(β) be the marginal log-likelihoods. Let θ be the parameter vector of the as-

sociation parameters. Let ℓ(α,β,θ) =
∑N

i=1

∑ni

l=1 ℓil(α,β,θ) be the pseudo-log-likelihood

that considers repeated measurements on the same subject to be uncorrelated.

In the first stage, we estimate α and β by α̂ and β̂ by solving the score equations

U1(α) =
N
∑

i=1

∂ℓi,T (α)

∂α
= 0 U2(β) =

N
∑

i=1

ni
∑

l=1

∂ℓil,Z(β)

∂β
= 0

Under regularity conditions,
√
N(α̂ − α) converges to a multivariate normal dis-

tribution with mean vector 0 and variance-covariance matrix (Iαα)−1, where Iαα =

−E

[

∂2ℓT
∂α∂α′

]

is the Fisher information of U1(α).

Under regularity conditions,
√
N(β̂ − β) converges to a multivariate normal distri-

bution with mean vector 0 and variance-covariance matrix (Iββ)
−1V(Iββ)

−1, where
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V = E

[(

∂ℓZ
∂β

)(

∂ℓZ
∂β

)′]

is the variance-covariance matrix of the score equations U2(β)

and Iββ = −E

[

∂2ℓZ
∂β∂β′

]

is the Fisher information of U2(β). The use of a sandwich esti-

mator is necessary since (Iββ)
−1 is not a consistent estimator of the asymptotic variance-

covariance matrix due to the correlation between repeated measurements on the same

subject.

In the second stage, the association parameter vector θ is estimated by plugging in the

estimates from the marginal models into the pseudo-log-likelihood, and then maximizing

it with respect to θ. Thus, we obtain the estimate θ̂ as the solution to

U3(α̂, β̂,θ) =
N
∑

i=1

ni
∑

l=1

∂ℓil(α̂, β̂,θ)

∂θ
= 0

which is the first derivative of the pseudo-log-likelihood. We now explore the asymptotic

variance of θ.

Let α0 and β0 denote the true parameter vectors of the margins. Expanding the score

functions U1 and U2 using a Taylor series around the true values and evaluating it at the

true values α = α0 and β = β0, under the regularity conditions of maximum likelihood

theory we get

U1(α̂) = 0 = U1(α0) +
∂U1

∂α

∣

∣

∣

∣

α=α0

(α̂−α0) + op(
√
N)

U2(β̂) = 0 = U2(β0) +
∂U2

∂β

∣

∣

∣

∣

β=β0

(β̂ − β0) + op(
√
N)

Similarly,

U3(α̂, β̂, θ̂) = 0 =U3(α0,β0,θ0)

+
∂U3

∂α

∣

∣

∣

∣

(α,β,θ)=(α0,β0,θ0)

(α̂−α0) +
∂U3

∂β

∣

∣

∣

∣

(α,β,θ)=(α0,β0,θ0)

(β̂ − β0)

+
∂U3

∂θ

∣

∣

∣

∣

(α,β,θ)=(α0,β0,θ0)

(θ̂ − θ0) + op(
√
N)
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By the law of large numbers, as N → ∞,

− 1

N

∂U1

∂α

∣

∣

∣

∣

α=α0

=
1

N

N
∑

i=1

− ∂

∂α
Ui,1(α0) → Iαα = E

[

− ∂

∂α
U1(α0)

]

− 1

N

∂U2

∂β

∣

∣

∣

∣

β=β0

=
1

N

N
∑

i=1

− ∂

∂β
Ui,2(β0) → Iββ = E

[

− ∂

∂β
U2(β0)

]

− 1

N

∂U3

∂θ

∣

∣

∣

∣

(α,β,θ)=(α0,β0,θ0)

=
1

N

N
∑

i=1

− ∂

∂θ
Ui,3(α0,β0,θ0) → Iθθ = E

[

− ∂

∂θ
U3(α0,β0,θ0)

]

− 1

N

∂U3

∂α

∣

∣

∣

∣

(α,β,θ)=(α0,β0,θ0)

=
1

N

N
∑

i=1

− ∂

∂α
Ui,3(α0,β0,θ0) → Iθα = E

[

− ∂

∂α
U3(α0,β0,θ0)

]

− 1

N

∂U3

∂β

∣

∣

∣

∣

(α,β,θ)=(α0,β0,θ0)

=
1

N

N
∑

i=1

− ∂

∂β
Ui,3(α0,β0,θ0) → Iθβ = E

[

− ∂

∂β
U3(α0,β0,θ0)

]

Thus,

1√
N













U1(α0)

U2(β0)

U3(α0,β0,θ0)













→
√
N













Iαα 0 0

0 Iββ 0

Iθα Iθβ Iθθ

























α̂−α0

β̂ − β0

θ̂ − θ0













(A.1)

By the central limit theorem, (A.1) converges to multivariate normal with mean 0 and

variance-covariance matrix












Iαα Iαβ Iαθ

Iβα V Iβθ

Iθα Iθβ Iθθ













where

Iαβ = E[U1,1(α0)U1,2(β0)
T ] Iβα = E[U1,2(β0)U1,1(α0)

T ]

Iαθ = E[U1,1(α0)U1,3(α0,β0,θ0)
T ] Iθα = E[U1,3(α0,β0,θ0)U1,1(α0)

T ]

Iβθ = E[U1,2(β0)U1,3(α0,β0,θ0)
T ] Iθβ = E[U1,3(α0,β0,θ0)U1,2(β0)

T ]

V = Var(U1,2(β0)) = E[U1,2(β0)U1,2(β0)
T ]

By proof given in Joe and Xu (1996), Iαθ = Iθα = Iβθ = Iθβ = 0. Thus,
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using theory of inference margins (Joe and Xu, 1996),
√
N













α̂−α0

β̂ − β0

θ̂ − θ0













converges to a

multivariate normal with mean 0 and variance-covariance matrix













Iαα 0 0

0 Iββ 0

Iθα Iθβ Iθθ













−1











Iαα Iαβ 0

Iβα V 0

0 0 Iθθ

























Iαα 0 0

0 Iββ 0

Iθα Iθβ Iθθ













−1T

=













Iαα I−1
ααIαβI

−1

ββ
I−1
αα(Iααa

T
1 + Iαβa

T
2 )

I−1

ββ
IβαI−1

αα I−1

ββ
VI−1

ββ
I−1

ββ
(Iβαa

T
1 +VaT2 )

(a1Iαα + a2Iβα)I−1
αα (a1Iαβ + a2V)I−1

ββ
(a1Iαα + a2Iβα)aT1 + (a1Iαβ + a2V)aT2 + I−1

θθ













where a1 = −IθθIθαI−1
αα and a2 = −I−1

θθ
IθβI

−1

ββ
.

The lower-right element of the covariance matrix is the asymptotic variance of
√
N(θ̂−

θ0) and is given by

I−1

θθ
(IθαI−1

ααIαθ+IθβI
−1

ββ
VI−1

ββ
Iβθ+IθβI

−1

ββ
IβαI−1

ααIαθ+IθαI−1
ααIαβI

−1

ββ
Iβθ)I

−1

θθ
+I−1

θθ
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A.2 Derivation under alternative copulas

A.2.1 Bivariate Student’s t copula

Suppose that the joint distribution FTτ ,Zτ is defined by a bivariate Student’s t copula

as

FTτ ,Zτ (r, z) = tttν,ρ(t
−1
ν (FTτ (r)), t

−1
ν (FZτ (z)); ρτ )

where tν is a univariate t distribution with ν degrees of freedom and tttν(·, ρ) is the mul-

tivariate Student’s t distribution with correlation ρ and ν degrees of freedom, where ν is

fixed and not estimated.

The joint density is then given by

fTτ ,Zτ
(r, z) = Pr(Tτ = r, Zτ = z) =

∂2

∂r∂z
FTτ ,Zτ

(r, z)

= fTτ
(r)fZτ

(z)
Γ( ν+2

2 )/Γ( ν2 )

νπdt(x1(r), ν)dt(x2(z), ν)
√

1− ρ2τ

{

1 +
x1(r)

2 + x2(z)
2 − 2ρτx1(r)x2(z)

ν(1− ρ2τ )

}−
ν+1
2

where x1(r) = t−1
ν (FTτ (r)) and x2(z) = t−1

ν (FZτ (z)), and dt(·, ν) and t−1
ν (·) are the prob-

ability density function and quantile functions, respectively, for the standard univariate

Student’s t-distribution with ν degrees of freedom, expectation 0, and variance ν/(ν− 2).

For individuals who are alive at time τ , but are censored at time t, the joint density

is given by

Pr(Tτ > r, Zτ = z) =
∂

∂z
[FZτ (z)− FTτ ,Zτ (r, z)]

= fZτ (z)− tν+1















x1(r)− ρx2(z)
√

(ν + x2(z)
2)(1− ρ2)

ν + 1















fZτ (z)

= tν+1















− x1(r)− ρx2(z)
√

(ν + x2(z)
2)(1− ρ2)

ν + 1















fZτ (z)
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We can obtain the dynamic prediction of interest as,

Pr(T ≥ τ + s|T ≥ τ, Z(τ) = z; θ̂) =
Pr(Tτ > τ + s, Zτ = z; θ̂)

fZτ (z; θ̂)

= tν̂+1















− x̂1(r)− ρ̂τ x̂2(z)
√

(ν̂ + x̂2(z)
2)(1− ρ̂2τ )

ν̂ + 1















where x̂1(τ + s) = t−1
ν̂ (FTτ (τ + s; θ̂)), x̂2(z) = t−1

ν̂ (FZτ (z; θ̂)), and ρ̂τ = ρ(τ ; θ̂).

A.2.2 Bivariate Clayton’s copula

The Clayton copula is lower-tail dependent, but not upper. Suppose that the joint

distribution FTτ ,Zτ is defined by a bivariate Clayton copula as

FTτ ,Zτ (t, z) =
(

FTτ (t)
−θ + FZτ (z)

−θ − 1
)− 1

θ = A(FTτ (t), FZτ (z), θ)
− 1

θ

where A(u1, u2, θ) = u−θ1 + u−θ2 − 1.

The joint density is then given by

fTτ ,Zτ (t, z) = Pr(Tτ = t, Zτ = z) =
∂2

∂t∂z
FTτ ,Zτ (t, z)

= fTτ (t)fZτ (z)
(1 + θ)(FTτ (t) · FZτ (z))

−1−θ

A(FTτ (t), FZτ (z), θ)
1
θ
+2

where 0 < θ <∞ controls the degree of dependence.

For individuals who are alive at time τ , but are censored at time t, the joint density

is given by

Pr(Tτ > r, Zτ = z) =
∂

∂z
[FZτ (z)− FTτ ,Zτ (r, z)]

= fZτ (z)−
[

FZτ (z)
−θ−1 · A(FTτ (t), FZτ (z), θ)

−1− 1
θ

]

fZτ (z)

= fZτ (z)
[

1− FZτ (z)
−θ−1 · A(FTτ (t), FZτ (z), θ)

−1− 1
θ

]
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We obtain the dynamic prediction of interest as,

Pr(T ≥ τ + s|T ≥ τ, Z(τ) = z; θ̂) =
Pr(Tτ > τ + s, Zτ = z; θ̂)

fZτ (z; θ̂)

= 1− FZτ (z; θ̂)
−θ̂−1 · A(FTτ (t; θ̂), FZτ (z; θ̂), θ̂)

−1− 1

θ̂

A.2.3 Bivariate Gumbel copula

The Gumbel copula is upper-tail dependent, but not lower. The Gumbel copula is

also an asymmetric copula, but it exhibits greater dependence in the positive tail than

the negative. Suppose that the joint distribution FTτ ,Zτ is defined by a bivariate Gumbel

copula as

FTτ ,Zτ (t, z) = exp
[

−{(− log(FTτ (t)))
θ + (− log(FZτ (z)))

θ}
]

= exp[−(x1(t) + x2(z))
1
θ ]

where x1(t) = (− log(FTτ (t)))
θ, x2(z) = (− log(FZτ (z)))

θ, and θ ≥ 1. The joint density is

then given by

fTτ ,Zτ (t, z) =Pr(Tτ = t, Zτ = z) =
∂2

∂t∂z
FTτ ,Zτ (t, z)

=fTτ (t)fZτ (z)FTτ ,Zτ (t, z; θ)
1

FTτ (t)FZτ (z)
(x1(t) + x2(z))

−2+ 2
θ

·
[

(log(FTτ (t)) log(FZτ (z)))
θ−1{1 + (θ − 1)(x1(t) + x2(z))

− 1
θ }
]

For individuals who are alive at time τ , but are censored at time t, the joint density is

Pr(Tτ > r,Zτ = z) =
∂

∂z
[FZτ (z)− FTτ ,Zτ (r, z)]

= fZτ (z)−
[

−exp{−(x1(t) + x2(z))
1
θ }(x1(t) + x2(z))

1
θ
−1x2(z)

FZτ (z) log(FZτ (z))

]

fZτ (z)

= fZτ (z)

[

1 +
exp{−(x1(t) + x2(z))

1
θ }(x1(t) + x2(z))

1
θ
−1x2(z)

FZτ (z) log(FZτ (z))

]
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We obtain the dynamic prediction of interest as,

Pr(T ≥ τ + s|T ≥ τ, Z(τ) = z; θ̂) =
Pr(Tτ > τ + s, Zτ = z; θ̂)

fZτ (z; θ̂)

= 1 +
exp{−(x1(t; θ̂) + x2(z; θ̂))

1

θ̂ }(x1(t; θ̂) + x2(z; θ̂))
1

θ̂
−1x2(z; θ̂)

FZτ (z; θ̂) log(FZτ (z; θ̂))
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A.3 Sample of Results from Simulations

Here, we present sample results from the simulation settings used for evaluating the

performance of the copula method.

A.3.1 Continuous marker setting

A.3.1.1 Data Summary

Table A.1: Proportion of patients (n = 1000) with particular number of inspection times
within 15 years for the continuous marker simulation setting.

No. insp times 1 2 3 4 5 6 7 8 9 10 11 12 13 ≥14
Insp rate 0.5 21% 20% 21% 13% 9% 5% 3% 3% 2% 1% 0.2% 0.6% 0.2% 0%
Insp rate 1 10% 10% 12% 12% 11% 10% 9% 6% 5% 3% 3% 1% 3% 6%
Every 1 year 6% 10% 19% 19% 10% 9% 7% 5% 4% 2% 2% 2% 3% 2%

A.3.1.2 Modeling Failure Time data
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Figure A.1: Overall Kaplan-Meier curves by baseline covariate X for the continuous marker
simulation setting.

Testing proportional hazards assumption: From the Schoenfeld residuals we find

that there is no significant evidence against the assumption of proportional hazards for

the baseline covariate X (p=0.89) (Figure A.2).
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Figure A.5: Predicted vs. actual probabilities for patients in the validation data set alive
at time 3 by quantiles of the marker measurement at time 3 for continuous marker simulation
setting. Red circles indicate predictions produced by the joint model and blue triangles indicate
predictions from the copula model.

probabilities of death for patients in the validation data set at landmark time 3. We see

overlap between the predictions from both of these models.

A.3.2 Binary marker setting: Markov

A.3.2.1 Data Summary

Table A.2: Proportion of patients (n = 1000) with particular number of inspection times
within 15 years for binary marker Markov simulation setting with one baseline covariate.

No. insp times 1 2 3 4 5 6 7 8 9 10 11 12 13 ≥14
Insp rate 0.5 26% 21% 15% 11% 10% 6% 4% 3% 2% 1% 1% 0% 0.1% 0.1%
Insp rate 1 14% 14% 11% 9% 9% 9% 5% 7% 5% 4% 3% 2% 2% 6%

A.3.2.2 Modeling Failure Time data

Testing proportional hazards assumption: We test the proportional hazards

assumption using the Schoenfeld residuals and find that there is no significant evidence

against the assumption (p=0.78) (Figure A.7).

Checking influential observations: We check for outliers by examining the de-

viance residuals (normalized transform of martingale residuals) and find that they are

symmetrically distributed about 0 (Figure A.7).
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A.3.2.3 Modeling Binary marker data

We examine the Pearson residuals from the probit model (BC1) fit to the marker data.

We see that there is deviation from zero at later landmark times (Figure A.8).
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Figure A.8: Pearson residuals for probit model (BC1) by landmark time (LM), baseline co-
variate X, and the linear predictor for the binary marker Markov simulation setting with one
baseline covariate.

A.3.2.4 Evaluating predictions

We compare the predicted vs. actual probabilities for the joint, landmark, and copula

models. The predictions for the MM, LMInt3, and BC1 models are similar. However, the

predicted probabilities of the LM3 model (landmark model without the interaction) does

not have a high enough prediction for those with X = 1 and Z = 1 (Figure A.9).

A.3.3 Binary marker setting: Semi-Markov

A.3.3.1 Data summary

Table A.3: Proportion of patients (n = 1000) with particular number of inspection times within
15 years for the binary marker semi-Markov simulation setting with one baseline covariate.

No. insp times 1 2 3 4 5 6 7 8 9 10 11 12 13 ≥14
Insp rate 0.5 27% 20% 14% 13% 10% 6% 4% 2% 1% 1% 1% 1% 0.3% 0.4%
Insp rate 1 14% 14% 12% 10% 9% 6% 7% 6% 5% 4% 3% 3% 2% 7%
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Figure A.9: Predicted vs. actual probabilities by landmark time for the binary marker Markov
simulation setting with one baseline covariate.
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Figure A.10: Overall survival (left) and Freedom from illness (right) curves by baseline co-
variate for the binary marker semi-Markov simulation setting with one baseline covariate.
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A.3.3.3 Modeling Binary marker data

We examine the Pearson residuals from the probit model (BC1) and find that there is

deviation from zero at later landmark times (Figure A.12).
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Figure A.12: Pearson residuals for probit model (BC1) by landmark time (LM), baseline
covariates X1, X2, and the linear predictor for the binary marker semi-Markov simulation setting
with one baseline covariate.

A.3.3.4 Evaluating predictions

We compare the predicted vs. actual probabilities for the joint, landmark, and copula

models. The predictions for the landmark model without an interaction (LM3) deviate

from the true probabilities for those with X1 = 1 and Z = 1 (Figure A.13).
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Figure A.13: Predicted vs. actual probabilities by landmark time for the binary marker
semi-Markov simulation setting with one baseline covariate.
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A.3.4 Binary marker setting: Two baseline covariates

A.3.4.1 Data summary

Table A.4: Proportion of patients (n = 1000) with particular number of inspection times
within 15 years for the binary marker Markov simulation setting with two baseline covariates.

No. insp times 1 2 3 4 5 6 7 8 9 10 11 12 13 ≥14
Insp rate 0.5 27% 21% 17% 11% 8% 6% 4% 2% 1% 1% 0.5% 0.6% 0.1% 0%
Insp rate 1 15% 12% 12% 11% 11% 8% 6% 6% 4% 4% 3% 2% 1% 5%
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Figure A.14: Overall survival (left) and Freedom from illness (right) curves by baseline co-
variates for the binary marker Markov simulation setting with two baseline covariates.

A.3.4.2 Modeling Failure Time data

Testing proportional hazards assumption: We test the proportional hazards

assumption and find that there is no significant evidence against the assumption for the

baseline covariates X1 (p=0.33) and X2 (p=0.15) (Figure A.15).

Checking influential observations: We check for outliers and find that they are

symmetrically distributed about zero (Figure A.16).

A.3.4.3 Modeling Binary marker data

We examine the Pearson residuals from the probit model (BC1) and find that there is

deviation from zero at later landmark times (Figure A.17).
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Figure A.17: Pearson residuals for probit model (BC1) by landmark time (LM), baseline
covariates X1, X2, and the linear predictor for the binary marker Markov simulation setting
with two baseline covariates.
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A.3.4.4 Evaluating predictions

We compare the predicted vs. actual probabilities for the joint, landmark, and copula

models. The predictions for the landmark model without an interaction (LM3) deviate

from the true probabilities for those with X1 = 1 and the intermediate event (Z = 1)

(Figure A.13).
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Figure A.18: Predicted vs. actual probabilities by landmark time for the binary marker
Markov simulation setting with two baseline covariates.
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A.4 Continuous marker simulation results

Table A.5: Summary of scenarios for continuous marker process simulations.

Scenario σǫ φ Inter-inspection rate
1a 0.6 1.5 0.5
1b 0.6 1.5 1
1c 0.6 1.5 Fixed time
2a 0.6 0.5 0.5
2b 0.6 0.5 1
2c 0.6 0.5 Fixed time
3a 1.2 1.5 0.5
3b 1.2 1.5 1
3c 1.2 1.5 Fixed time
4a 1.2 0.5 0.5
4b 1.2 0.5 1
4c 1.2 0.5 Fixed time
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A.5 Binary marker simulation results

Table A.18: Summary of scenarios for binary marker process simulations.

Scenario Model Baseline covariates Inter-inspection rate
1a Markov X 0.5
1b Markov X 1
1c Markov X Continuously observed

2a Semi-Markov X 0.5
2b Semi-Markov X 1
2c Semi-Markov X Continuously observed

3a Markov X1, X2 0.5
3b Markov X1, X2 1
3c Markov X1, X2 Continuously observed
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APPENDIX B

Dynamic Risk Modelling with a Partially Observed

Covariate using Lévy-based Bridge Processes

B.1 Derivation of conditional and marginal survival functions

B.1.1 Gamma bridge process

If Ut is gamma process with mean and variance µt, then the gamma bridge from 0 to 1

over the interval [0, τ ] is distributed Utτ ∼ Beta(µt, µ(τ − t)), for 0 ≤ t ≤ τ . The Laplace

function of the bridge is then given by

E[exp{−sUtτ}] = 1 +
∞
∑

k=1

[

k
∏

r=1

α + r − 1

α + β + r − 1

]

(−1)k

k!
sk :=M(α, α + β,−s) (B.1)

where α = µt and β = µ(τ − t), and M is Kummer’s confluent hypergeometric function.

If Ut is a scaled gamma process with mean µt and variance σ2t, then the gamma bridge

is distributed Utτ ∼ Beta(mt,m(τ − t)), where m = µ2/σ2 represents a standardized

growth rate. The Laplace function of the bridge, is then given as in Eq.(B.1), where

α = mt and β = m(τ − t).

The survival function conditional on the value of the marker at time τ , Vτ = v, is then
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given by

S(t|v) = EU [exp{−H(t)Utτv}] = 1 +
∞
∑

k=1

k
∏

r=1

α + r − 1

α + β + r − 1

(−1)kvkHk(t)

k!

=M(α, α + β,−vH(t))

=M(mt,mτ,−vH(t)) (B.2)

The conditional hazard is derived as

dΛ(t|v) = ∂

∂t
[− logS(t|v)]

= − 1

S(t|v)
∂

∂t
[S(t|v)]

= − 1

S(t|v)
∂

∂t
M(α, α+ β,−H(t)v)

= − 1

S(t|v)
∂

∂t

∞
∑

k=0

(α)k
(α+ β)k

(−1)kvkHk(t)

k!

= − 1

S(t|v)
∂

∂t

∞
∑

k=0

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

(−1)kvkHk(t)

k!

= − 1

S(t|v)
∂

∂t

[

1 +

∞
∑

k=1

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

(−1)kvkHk(t)

k

]

= − 1

S(t|v)

∞
∑

k=1

Γ(mτ)

Γ(mτ + k)

(−1)kvk

k

∂

∂t

[

Hk(t)

B(mt, k)

]

= − 1

S(t|v)

∞
∑

k=1

Γ(mτ)

Γ(mτ + k)

(−1)kvk

k

[

mHk(t)

B(mt, k)
[ψ0(mt+ k)− ψ0(mt)] +

kHk−1(t)h(t)

B(mt, k)

]

= − 1

S(t|v)

∞
∑

k=1

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

(−1)kvkHk(t)

k

[

m[ψ0(mt+ k)− ψ0(mt)] +
kh(t)

H(t)

]

(B.3)

where (x)n = Γ(x+n)/Γ(x) is the Pochhammer symbol and ψ0(·) is the digamma function.

B.1.1.1 Vτ and Ut are based on a common Wt

The marginal survival function is obtained by integrating the conditional survival in

Eq.(B.2) over the distribution of Vτ ,

S(t) = EVτ [EU [exp{−H(t)UtτVτ}]] = 1 +
∞
∑

k=1

k
∏

r=1

α + r − 1

α + β + r − 1

(−1)kpkH
k(t)

k!
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where pk is the kth moment of Vτ , E[V
k
τ ].

Although various models can be considered for the value of the observed marker, for the

purposes of our formulation we suppose that Vτ and Ut are based on the common gamma

process Wt with mean µt and variance σ2t. Thus, Vτ ∼ Gamma(shape = mτ, scale = κ)

and the kth moment of Vτ is pk = κk(mτ + k− 1)!/(mτ − 1)!. Thus, the survival function

in Eq.(3.5) is given by

S(t) = 1 +
∞
∑

k=1

[

k
∏

r=1

α + r − 1

α + β + r − 1

]

(−1)kpkH
k(t)

k!

= 1 +
∞
∑

k=1

[

k
∏

r=1

mt+ r − 1

mt+m(τ − t) + r − 1

]

(−1)kHk(t)

k!

κk(mτ + k − 1)!

(mτ − 1)!

= 1 +
∞
∑

k=1

[

(mt+ k − 1)!

(mt− 1)!

(mτ − 1)!

(mτ + k − 1)!

]

(−1)kHk(t)

k!

κk(mτ + k − 1)!

(mτ − 1)!

= 1 +
∞
∑

k=1

Γ(mt+ k)

Γ(mt)

(−1)kκkHk(t)

k!

=
∞
∑

k=0

(

mt+ k − 1

k

)

[−κH(t)]k

= (1 + κH(t))−mt

which is the Laplace transform of a gamma random variable with shape mt and scale κ,

i.e., L(s) = (1− κs)−mt with s = −H(t).

The cumulative hazard is then Λ(t) = − log S(t) and the hazard is given by

dΛ(t) = ∂/∂t[− log S(t)]

= m log(1 + κH(t)) +
κmt

1 + κH(t)
h(t)

We perform estimation of the model parameters by maximizing the log-likelihood

l =
n
∑

i=1

{δi log(dΛ(Ti|vTi)S(Ti|vTi)f(vTi)) + (1− δi) log[S(Ti|vTi)g(vTi)]}
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where δi is an indicator of whether the patient had the event of interest, and vTi is the

observed value of Vτ at the event time T for subject i.

B.1.2 Incorporating measurement error with Zτ ∼ Vτ

We suppose that Vτ is gamma distributed with mean µτ and variance σ2τ (shape=mτ ,

scale=κ). Then the probability density function of Vτ is given as

g(v) =
1

Γ(mτ)κmτ
vmτ−1e−v/κ

We now extend to the situation where we write Zτ as a regression on Vτ , Zτ ∼ Vτ .

We then write the conditional survival function G(t|Zτ ) as an average of S(t|Vτ ) over the

regression Zτ ∼ Vτ , where z is the observed value of Zτ . We use the assumption that

given Vτ , T ⊥ Zτ . Let f(z|v) be the probability density function of Zτ |Vτ and g(v) be

the probability density function of Vτ .

G(t|Zτ = z) =
Pr(T > t, Zτ = z)

Pr(Zτ = z)

=

∫

Pr(T > t, Zτ = z|Vτ )g(Vτ ) dVτ
∫

Pr(Zτ = z|Vτ )g(Vτ ) dVτ

=

∫

Pr(T > t|Vτ )Pr(Zτ = z|Vτ )g(Vτ ) dVτ
∫

Pr(Zτ = z|Vτ )g(Vτ ) dVτ

=

∫

S(t|Vτ )f(z|Vτ )g(Vτ ) dVτ
∫

f(z|Vτ )g(Vτ ) dVτ

=
EVτ [S(t|Vτ )× f(z|Vτ )]

EVτ [f(z|Vτ )]

The denominator is given by

EVτ [f(z|Vτ )] = f(z) =

∫

f(z|v)g(v) dv (B.4)
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The numerator is given by

EVτ [S(t|Vτ )× f(z|Vτ )] =
∫

S(t|v)f(z|v)g(v) dv

=

∫

(

1 +
∞
∑

k=1

k
∏

r=1

α + r − 1

α + β + r − 1

(−1)kvkHk(t)

k!

)

f(z|v)g(v) dv

=
∞
∑

k=0

Γ(α + k)

Γ(α)

Γ(α + β)

Γ(α + β + k)

(−1)kHk(t)

k!

∫

vkf(z|v)g(v) dv

The survival function of [T |Zτ ] is then derived as

G(t|Zτ = z) =

∞
∑

k=0

Γ(α + k)

Γ(α)

Γ(α + β)

Γ(α + β + k)

(−1)kHk(t)

k!

∫

vkf(z|v)g(v) dv
∫

f(z|v)g(v) dv (B.5)

Let Φ(t) denote the cumulative hazard of the survival model G(t). To get the conditional

hazard dΦ(t|ZT ) we take the derivative of the negative log of the conditional survival

function,

dΦ(t|z) = ∂

∂t
[− logG(t|z)]

= − 1

G(t|z)
∂

∂t
G(t|z) (B.6)

and derive the derivative of G(t|z) with respect to t.

The marginal survival function, S(t), is given as above by

S(t) = (1 + κH(t))−mt

where κ = 1 and m = µ if the process is a standard gamma process with mean and

variance µt.

The hazard is given by

dΛ(t) = ∂/∂t[− logG(t)] = m log(1 + κH(t)) +
κmt

1 + κH(t)
h(t)
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We perform estimation of the model parameters by maximizing the log-likelihood

l =
n
∑

i=1

δi log(dΦ(Ti|zTi)G(Ti|zTi)f(zTi)) + (1− δi) log[G(Ti|zTi)f(zTi)]

The following subsections derive the conditional and unconditional survival functions

for various distributions of Zτ |Vτ .

B.1.2.1 Compound Gamma-Gamma distribution

We assume that Zτ |Vτ = v is Gamma distributed with shape γ and scale v/γ (i.e.,

mean v and variance v2/γ). Thus, the probability distribution function of Zτ |Vτ is given

by

f(z|v) = γγ

Γ(γ)vγ
zγ−1e−zγ/v

The denominator of the conditional survival [T |Zτ ] is then given by

fZτ (z) = EVτ [f(z|Vτ )] =
∫

f(z|v)g(v) dv

=

∞
∫

0

1

Γ(γ)

γγ

vγ
zγ−1e−zγ/v

1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

=
2

Γ(γ)Γ(mτ)z

(γz

κ

)
γ+mτ

2
Kmτ−γ(2

√

γz/κ) {Re[γz/κ] > 0}

where Kα(n) is the modified Bessel function of the second kind. The mean and variance

of Zτ are then given by

E(Zτ ) = µτ = mκτ Var(Z) = σ2τ
(mτ + γ + 1)

γ
= mκ2τ

(mτ + γ + 1)

γ
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The numerator is given by

EVτ
[S(t|Vτ )× f(z|Vτ )] =

∫

S(t|v)f(z|v)g(v) dv

=

∞
∑

k=0

Γ(α+ k)

Γ(α)

Γ(α+ β)

Γ(α+ β + k)

(−1)kHk(t)

k!

∞
∫

0

vk
1

Γ(γ)

γγ

vγ
zγ−1e−zγ/v 1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

=
∞
∑

k=0

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k!

2

Γ(γ)Γ(mτ)z

(γz

κ

)
γ+mτ

2

(γκz)
k
2Kmτ−γ+k(2

√

γz/κ)

{Re[γz/κ] > 0}

The survival function is then

G(t|z) = 1 +
∞
∑

k=1

1

k

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)
((−1)H(t)

√
γκz)k

Kmτ−γ+k(2
√

γz/κ)

Kmτ−γ(2
√

γz/κ)

where B(·, ·) is the Beta function.

To get the conditional hazard, the derivative of G(t|z) is given by

∂

∂t
G(t|Zτ ) =

∂

∂t

[

1 +
∞
∑

k=1

1

k

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)
((−1)H(t)

√
γκz)k

Kmτ−γ+k(2
√

γz/κ)

Kmτ−γ(2
√

γz/κ)

]

=
∞
∑

k=1

1

k

Γ(mτ)

Γ(mτ + k)
((−1)

√
γκz)k

Kmτ−γ+k(2
√

γz/κ)

Kmτ−γ(2
√

γz/κ)

∂

∂t

[

Hk(t)

B(mt, k)

]

=
∞
∑

k=1

1

k

Γ(mτ)

Γ(mτ + k)
((−1)

√
γκz)k

Kmτ−γ+k(2
√
γκz)

Kmτ−γ(2
√

γz/κ)

(

mHk(t)

B(mt, k)
(ψ0(mt+ k)− ψ0(mt)) +

kHk−1(t)h(t)

B(mt, k)

)

=
∞
∑

k=1

1

k

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)
((−1)H(t)

√
γκz)k

Kmτ−γ+k(2
√

γz/κ)

Kmτ−γ(2
√

γz/κ)

(

m(ψ0(mt+ k)− ψ0(mt)) +
kh(t)

H(t)

)

where ψ0(·) is the digamma function.

B.1.2.2 Compound Normal-Gamma distribution

We assume that Zτ |Vτ = v is Normal distributed with mean v and variance τ 2 =

1/γ2. Thus, the probability distribution function of Zτ |Vτ is given by

f(z|v) = 1√
2πτ

e
−

1

2τ 2
(z−v)2
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The denominator of the conditional survival [T |Zτ ] is then given by

EVτ
[f(z|Vτ )] =

∫

f(z|v)g(v) dv

=

∞
∫

0

1√
2πτ

e−
1

2τ2 (z−v)2 1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

=
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

∞
∫

0

e
1
τ2 zve−

1
2τ2 v2

e−v/κvmτ−1 dv

=
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

∞
∫

0

e−1/(2τ2)v2
−(1/κ−z/τ2)vvmτ−1 dv

=
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

∞
∫

0

e−βv2
−γvvα−1 dv

{

α = mτ ;β =
1

2τ2
; γ =

τ2 − κz

κτ2

}

=
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

(

(2β)−α/2Γ(α)eγ
2/(8β)D−α

(

γ√
2β

))

{Re[α, β] > 0}

=
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

(

1

τ2

)

−
mτ
2

Γ(mτ) exp

{

(τ2 − κz)2

4κ2τ2

}

D−mτ

(

τ2 − κz

κτ

)

=
1√
2πτ

1

κmτ

(

1

τ2

)

−
mτ
2

exp

{

− 1

2τ2
z2 +

(τ2 − κz)2

4κ2τ2

}

D−mτ

(

τ2 − κz

κτ

)

where Dn is the parabolic cylinder function and can be written in terms of the Whittaker

function Wk,m(z) as

Dν(z) = 2ν/2+1/4z−1/2Wν/2+1/4,−1/4

(

1

2
z2
)
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The numerator is given by

EVτ
[S(t|Vτ )× f(z|Vτ )]

=

∫

S(t|v)f(z|v)g(v) dv

=
∞
∑

k=0

Γ(α+ k)

Γ(α)

Γ(α+ β)

Γ(α+ β + k)

(−1)kHk(t)

k!

∞
∫

0

vk
1√
2πτ

e
−

1
2τ2 (z−v)2 1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

=
∞
∑

k=0

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k!

1√
2πτ

1

Γ(mτ)κmτ
e
−

1
2τ2 z2

∞
∫

0

e−1/(2τ2)v2
−(1/κ−z/τ2)vvmτ+k−1 dv

=

∞
∑

k=0

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k!

1√
2πτ

e
−

1
2τ2 z2

Γ(mτ)κmτ

∞
∫

0

e−βv2
−γvvα−1 dv

{

α = mτ + k;β =
1

2τ2
; γ =

τ2 − κz

κτ2

}

=
∞
∑

k=0

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k!

1√
2πτ

1

Γ(mτ)κmτ
e
−

1
2τ2 z2

[

(2β)−α/2Γ(α)eγ
2/(8β)D−α

(

γ√
2β

)]

=
∞
∑

k=0

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k!

1√
2πτ

e
−

1
2τ2 z2

Γ(mτ)κmτ

(

1

τ2

)

−
mτ+k

2

Γ(mτ + k)e
(τ2

−κz)2

4κ2τ2 D−mτ−k

(

τ2 − κz

κτ

)

=

∞
∑

k=0

Γ(mt+ k)

Γ(mt)

(−1)kHk(t)

k!

1√
2πτ

1

κmτ

(

1

τ2

)

−
mτ+k

2

exp

{

− 1

2τ2
z2 +

(τ2 − κz)2

4κ2τ2

}

D−mτ−k

(

τ2 − κz

κτ

)

=
1√
2πτ

1

κmτ

(

1

τ2

)

−
mτ
2

exp

{

− 1

2τ2
z2 +

(τ2 − κz)2

4κ2τ2

}

D−mτ

(

τ2 − κz

κτ

)

+
∞
∑

k=1

1

k

1

B(mt, k)
(−1)kHk(t)

1√
2πτ

1

κmτ

(

1

τ2

)

−
mτ+k

2

exp

{

− 1

2τ2
z2 +

(τ2 − κz)2

4κ2τ2

}

D−mτ−k

(

τ2 − κz

κτ

)

The survival function is then

G(t|z) = 1 +
1

D−mτ

(

τ 2 − κz

κτ

)

∞
∑

k=1

1

k

1

B(mt, k)
((−1)H(t)τ)kD−mτ−k

(

τ 2 − κz

κτ

)

To get the conditional hazard, the derivative of G(t|z) is given by

∂

∂t
G(t|Zτ ) =

∂

∂t









1 +
1

D−mτ

(

τ2 − κz

κτ

)

∞
∑

k=1

1

k

1

B(mt, k)
((−1)H(t)τ)kD−mτ−k

(

τ2 − κz

κτ

)









=
1

D−mτ

( τ

κ
− z

τ

)

∞
∑

k=1

1

k
(−1)kτkD−mτ−k

( τ

κ
− z

τ

) ∂

∂t

[

Hk(t)

B(mt, k)

]

=
1

D−mτ

( τ

κ
− z

τ

)

∞
∑

k=1

1

k
(−1)kτkD−mτ−k

( τ

κ
− z

τ

)

(

mHk(t)

B(mt, k)
(ψ0(mt+ k)− ψ0(mt)) +

kHk−1(t)h(t)

B(mt, k)

)

=
1

D−mτ

( τ

κ
− z

τ

)

∞
∑

k=1

1

k

1

B(mt, k)
((−1)H(t)τ)kD−mτ−k

( τ

κ
− z

τ

)

(

m(ψ0(mt+ k)− ψ0(mt)) +
kh(t)

H(t)

)

where ψ0(·) is the digamma function.
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B.1.3 Alternate method of derivation

Alternatively, we could have specified the likelihood in the following form, where we

specify the distributions conditional on Vτ and then take the expectation with respect

to the unobserved random variable. As a check, we find that the resulting likelihood

contributions are the same as with the previous specification.

l =
n
∑

i=1

δi log (EV [dΛ(Ti|vi)S(Ti|vi)f(zTi |vi)])− (1− δi)Λ(Ti)

where

EV [dΛ(t|V )S(t|V )f(z|V )]

=

∫

dΛ(t|v)S(t|v)f(z|v)g(v) dv

=

∫

− 1

S(t|v)

[

∂

∂t
S(t|v)

]

S(t|v)f(z|v)g(v) dv

=

∫

−
[

∂

∂t
S(t|v)

]

f(z|v)g(v) dv

= −
∫ ∞
∑

k=1

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

(−1)kvkHk(t)

k

[

m[ψ0(mt+ k)− ψ0(mt)] +
kh(t)

H(t)

]

f(z|v)g(v) dv

= −
∞
∑

k=1

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k

[

m[ψ0(mt+ k)− ψ0(mt)] +
kh(t)

H(t)

] ∫

vkf(z|v)g(v) dv

= −
∞
∑

k=1

Ck

∫

vkf(z|v)g(v) dv

where Ck =
1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

(−1)kHk(t)

k

[

m[ψ0(mt+ k)− ψ0(mt)] +
kh(t)

H(t)

]

B.1.3.1 Compound Gamma-Gamma distribution

Assume that Zτ |Vτ = v is Gamma distributed with shape γ and scale v/γ (i.e.,

mean v and variance v2/γ). The probability distribution function of Zτ |Vτ is given by

f(z|v) = γγ

Γ(γ)vγ
zγ−1e−zγ/v
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Then,

EV [dΛ(t|V )S(t|V )f(z|V )]

= −
∞
∑

k=1

Ck

∞
∫

0

vk
1

Γ(γ)

γγ

vγ
zγ−1e−zγ/v

1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

= −
∞
∑

k=1

Ck
2

Γ(γ)Γ(mτ)z

(γz

κ

)
γ+mτ

2
(γκz)

k
2Kmτ−γ+k(2

√

γz/κ) {Re[γz/κ] > 0}

B.1.3.2 Compound Normal-Gamma distribution

Assume that Zτ |Vτ = v is Normal distributed with mean v and variance τ 2. The

probability distribution function of Zτ |Vτ is given by

f(z|v) = 1√
2πτ

e
−

1

2τ 2
(z−v)2

Then,

EV [dΛ(t|V )S(t|V )f(z|V )]

= −
∞
∑

k=1

Ck

∞
∫

0

vk
1√
2πτ

e−
1

2τ2 (z−v)2 1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

= −
∞
∑

k=1

Ck
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

∞
∫

0

e−1/(2τ2)v2
−(1/κ−z/τ2)vvmτ+k−1 dv

= −
∞
∑

k=1

Ck
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

∞
∫

0

e−βv2
−γvvα−1 dv

{

α = mτ + k;β =
1

2τ2
; γ =

1

κ
− z

τ2

}

= −
∞
∑

k=1

Ck
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

[

(2β)−α/2Γ(α)eγ
2/(8β)D−α

(

γ√
2β

)]

=

∞
∑

k=1

Ck
1√
2πτ

1

Γ(mτ)κmτ
e−

1
2τ2 z2

(

1

τ2

)

−
mτ+k

2

Γ(mτ + k) exp

{

(τ2 − κz)2

4κ2τ2

}

D−mτ−k

(

τ2 − κz

κτ

)

=
∞
∑

k=1

Ck
1√
2πτ

τmτ+k

κmτ

Γ(mτ + k)

Γ(mτ)
exp

{

(τ2 − κz)2

4κ2τ2
− z2

2τ2

}

D−mτ−k

(

τ2 − κz

κτ

)

where Dν(z) is the parabolic cylinder function.
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B.2 Derivations for dynamic prediction

In this section, we repeat the derivations for the conditional survival functions for

the measurement error model where only a surrogate Zτ for Vτ is observed. Recall, the

conditional survival for 0 ≤ t ≤ τ is given by

G(t|z) = 1 +
∞
∑

k=1

1

k

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)
((−1)H(t)

√
γκz)k

Kmτ−γ+k(2
√

γz/κ)

Kmτ−γ(2
√

γz/κ)

Suppose that we are interested in making predictions for a person beyond their last

observed marker value. Then the future predicted survival for 0 ≤ τ ≤ t is given by

G(t|Zτ = z) =

∫

P (T > t|Zτ , Vτ )P (Zτ |Vτ )P (Vτ ) dVτ
fZτ (z)

=
1

fZτ (z)

∞
∫

0

S(t|Vτ = v)fZτ |Vτ (z|v)g(v) dv

=
1

fZτ (z)

∞
∫

0

e−H(t)v(1 + κH(t))−m(t−τ) γγ

Γ(γ)vγ
zγ−1e−zγ/v

1

Γ(mτ)κmτ
vmτ−1e−v/κ dv

= (1 + κH(t))−m(t−τ)+ 1
2
(γ−mτ)

Kmτ−γ
(

2
√

(H(t) + 1
κ)(γz)

)

Kmτ−γ
(

2
√

1
κ(γz)

)

Thus, the dynamic prediction at time τ for surviving a prediction horizon of τ +s is given

by

G(τ + s|Zτ = z, T > τ) =
G(τ + s|Zτ = z)

G(τ |Zτ = z)

=
(1 + κH(τ + s))−ms+

1
2
(γ−mτ)

(1 + κH(τ))
1
2
(γ−mτ)

Kmτ−γ

(

2
√

(H(τ + s) + 1
κ
)(γz)

)

Kmτ−γ

(

2
√

(H(τ) + 1
κ
)(γz)

)
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B.3 Derivations for marker predictions

• Corresponding to Eq.(3.9). For 0 ≤ t ≤ τ ≤ T ,

E[Wt|T > τ, Vτ ] =

∫

P (T > τ |Wt, Vτ )q(Wt|Vτ )g(Vτ )Wt dWt
∫

P (T > τ |Wt, Vτ )q(Wt|Vτ )g(Vτ ) dWt

=

∫

S(τ |Vτ )q(Wt|Vτ )g(Vτ )Wt dWt
∫

S(τ |Vτ )q(Wt|Vτ )g(Vτ ) dWt

=

∫

q(Wt|Vτ )Wt dWt
∫

q(Wt|Vτ ) dWt

=

v
∫

0

1

vB(mt,m(τ − t))

(w

v

)mt−1
(

v − w

v

)m(τ−t)−1

w dw

v
∫

0

1

vB(mt,m(τ − t))

(w

v

)mt−1
(

v − w

v

)m(τ−t)−1

dw

=
mtv

mt+m(τ − t)

=
tv

τ

• Corresponding to Eq.(3.10). For 0 ≤ τ ≤ t ≤ T ,

E[Wt|T > t, Vτ = v] =

∫

P (T > t|Wt, Vτ )q(Wt|Vτ )g(Vτ )Wt dWt
∫

P (T > t|Wt, Vτ )q(Wt|Vτ )g(Vτ ) dWt

=

∫

S(t|Wt, Vτ )q(Wt|Vτ )g(Vτ )Wt dWt
∫

S(t|Wt, Vτ )q(Wt|Vτ )g(Vτ ) dWt

=

∞
∫

v

e−Htw
1

Γ(m(t− τ))κm(t−τ)
(w − v)m(t−τ)−1e−

(w−v)
κ

1

Γ(mτ)κmτ
vmτ−1e−v/κw dw

∞
∫

v

e−Htw
1

Γ(m(t− τ))κm(t−τ)
(w − v)m(t−τ)−1e−

(w−v)
κ

1

Γ(mτ)κmτ
vmτ−1e−v/κ dw

= v +
κm(t− τ)

1 + κHt
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• Corresponding to Eq.(3.11). For 0 ≤ t ≤ τ ≤ T ,

E[Wt|T > τ, Zτ ]

=

∫

P (T > τ,Wt, Zτ )Wt dWt
∫

P (T > τ,Wt, Zτ ) dWt

=

∫

Wt

[

∫

Vτ
P (T > τ,Wt, Zτ , Vτ ) dVτ

]

Wt dWt
∫

P (T > τ,Wt, Zτ ) dWt

=

∫

Wt

[

∫

Vτ
P (T > τ |Wt, Zτ , Vτ )q(Wt|Zτ , Vτ )f(Zτ |Vτ )g(Vτ ) dVτ

]

Wt dWt

∫

Wt

[

∫

Vτ
P (T > τ |Wt, Zτ , Vτ )q(Wt|Zτ , Vτ )f(Zτ |Vτ )g(Vτ ) dVτ

]

dWt

=

∫

Wt

[

∫

Vτ
S(τ |Vτ )q(Wt|Vτ )f(Zτ |Vτ )g(Vτ ) dVτ

]

Wt dWt

∫

Wt

[

∫

Vτ
S(τ |Vτ )q(Wt|Vτ )f(Zτ |Vτ )g(Vτ ) dVτ

]

dWt

=

∫

∞

0

[∫ v
0 S(τ |v)q(w|v)f(z|v)g(v)w dw

]

dv
∫

∞

0

[∫ v
0 S(τ |v)q(w|v)f(z|v)g(v) dw

]

dv

=

∞
∫

0





v
∫

0

1

vB(mt,m(τ − t))

(w

v

)mt−1
(

v − w

v

)m(τ−t)−1

w dw



 e−Htv
γγ

Γ(γ)vγ
zγ−1e−zγ/v vmτ−1

Γ(mτ)κmτ
e−v/κ dv

∞
∫

0





v
∫

0

1

vB(mt,m(τ − t))

(w

v

)mt−1
(

v − w

v

)m(τ−t)−1

dw



 e−Htv
γγ

Γ(γ)vγ
zγ−1e−zγ/v vmτ−1

Γ(mτ)κmτ
e−v/κ dv

=
t

τ
(γz)

1
2

(

H(t) +
1

κ

)

−
1
2 Kmτ−γ+1

(

2
√

(

H(t) + 1
κ

)

(γz)
)

Kmτ−γ

(

2
√

(

H(t) + 1
κ

)

(γz)
)

• Corresponding to Eq.(3.12). For 0 ≤ τ ≤ t ≤ T ,

E[Wt|T > t, Zτ ]

=

∫

P (T > t,Wt, Zτ )Wt dWt
∫

P (T > t,Wt, Zτ ) dWt

=

∫

Wt

[

∫

Vτ
S(t|Wt)q(Wt|Vτ )f(Zτ |Vτ )g(Vτ ) dVτ

]

Wt dWt

∫

Wt

[

∫

Vτ
S(t|Wt)q(Wt|Vτ )f(Zτ |Vτ )g(Vτ ) dVτ

]

dWt

=

∫

∞

0

[∫

∞

0 S(t|w)q(w|v)f(z|v)g(v)w dw
]

dv
∫

∞

0

[∫

∞

0 S(t|w)q(w|v)f(z|v)g(v) dw
]

dv

=

∞
∫

0





∞
∫

v

e−Htw
1

Γ(m(t− τ))κm(t−τ)
(w − v)m(t−τ)−1e−

w−v
κ w dw





γγ

Γ(γ)vγ
zγ−1e−zγ/v vmτ−1

Γ(mτ)κmτ
e−v/κ dv

∞
∫

0





∞
∫

v

e−Htw
1

Γ(m(t− τ))κm(t−τ)
(w − v)m(t−τ)−1e−

w−v
κ dw





γγ

Γ(γ)vγ
zγ−1e−zγ/v vmτ−1

Γ(mτ)κmτ
e−v/κ dv

= (γz)
1
2

(

H(t) +
1

κ

)

−
1
2 Kmτ−γ+1

(

2
√

(

H(t) + 1
κ

)

(γz)
)

Kmτ−γ

(

2
√

(

H(t) + 1
κ

)

(γz)
)

+
κm(t− τ)

1 + κH(t)
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• Corresponding to Eq.(3.13),

E[Wt|T > t] =

∫

P (T > t|Wt)q(Wt)Wt dWt
∫

P (T > t|Wt)q(Wt) dWt

=

∫

∞

0
e−Htw

1

Γ(mt)κmt
wmt−1e−w/κw dw

∫

∞

0
e−Htw

1

Γ(mt)κmt
wmt−1e−w/κ dw

=
κmt(1 + κHt)

−mt−1

(1 + κHt)−mt

=
κmt

(1 + κHt)
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B.4 Univariate frailty model for conditional cumulative hazard

We can model the baseline hazard using a frailty. We define the hazard as

h(t) = Rλ0(t) exp{β′X}

where R represents the frailty and X is a vector of baseline covariates. The conditional

cumulative hazard is then given by

H(t) = RΛ0(t) exp{β′X} = RΛ(t)

We exclude baseline covariates for brevity. The survival function is then given by

S(t) = ER[EVτ [EU [e
−H(t)UtτVτ ]]]

= ER[EVτ [EU [e
−RΛ(t)UtτVτ ]]]

= ER

[

1 +
∞
∑

k=1

k
∏

r=1

α + r − 1

α + β + r − 1

(−1)kpkR
kΛk(t)

k!

]

= 1 +
∞
∑

k=1

k
∏

r=1

α + r − 1

α + β + r − 1

(−1)kpkqkΛ
k(t)

k!

where pk is the kth moment of Vτ , E[V
k
τ ] and qk is the kth moment of R, E[Rk]. Taking

Vτ ∼ Gamma(shape = mτ, scale = κ), the kth moment of Vτ is pk = κk(mτ + k −

1)!/(mτ − 1)!. If R ∼ Gamma(shape = 1/ρ2, scale = ρ2). The kth moment of R is then
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qk = (ρ2)k(1/ρ2 + k − 1)!/(1/ρ2 − 1)!. Thus, the survival function is then

S(t) = 1 +
∞
∑

k=1

[

k
∏

r=1

α+ r − 1

α+ β + r − 1

]

(−1)kpkqkΛ
k(t)

k!

= 1 +

∞
∑

k=1

[

k
∏

r=1

mt+ r − 1

mt+m(τ − t) + r − 1

]

(−1)kΛk(t)κkρ2k

k!

(mτ + k − 1)!

(mτ − 1)!

(1/ρ2 + k − 1)!

(1/ρ2 − 1)!

= 1 +
∞
∑

k=1

[

(mt+ k − 1)!

(mt− 1)!

(mτ − 1)!

(mτ + k − 1)!

]

(−1)kΛk(t)κkρ2k

k!

(mτ + k − 1)!

(mτ − 1)!

(1/ρ2 + k − 1)!

(1/ρ2 − 1)!

= 1 +
∞
∑

k=1

Γ(mt+ k)

Γ(mt)

Γ(1/ρ2 + k)

Γ(1/ρ2)

(−1)kΛk(t)κkρ2k

k!

The conditional survival is given by

S(t|Vτ ) = ER[EU [exp{−H(t)UtτVτ}]]

= ER[EU [exp{−RΛ(t)UtτVτ}]]

= ER

[

1 +

∞
∑

k=1

k
∏

r=1

α+ r − 1

α+ β + r − 1

(−1)kVτ
kRkΛk(t)

k!

]

= 1 +

∞
∑

k=1

k
∏

r=1

α+ r − 1

α+ β + r − 1

(−1)kVτ
kqkΛ

k(t)

k!

= 1 +

∞
∑

k=1

k
∏

r=1

α+ r − 1

α+ β + r − 1

(−1)kVτ
kqkΛ

k(t)

k!

= 1 +

∞
∑

k=1

Γ(mt+ k)

Γ(mt)

Γ(mτ)

Γ(mτ + k)

Γ(1/ρ2 + k)

Γ(1/ρ2)

(−1)kV k
τ ρ

2kΛk(t)

k!

= 1 +

∞
∑

k=1

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

Γ(1/ρ2 + k)

Γ(1/ρ2)

(−1)kV k
τ ρ

2kΛk(t)

k!

The conditional hazard is given by − 1

S(t|v)
∂

∂t
[S(t|v)], where

∂

∂t
S(t|v) = ∂

∂t

[ ∞
∑

k=0

1

B(mt, k)

Γ(mτ)

Γ(mτ + k)

Γ(1/ρ2 + k)

Γ(1/ρ2)

(−1)kvkρ2kΛk(t)

k

]

=

∞
∑

k=0

Γ(mτ)

Γ(mτ + k)

Γ(1/ρ2 + k)

Γ(1/ρ2)

(−1)kvkρ2k

k

∂

∂t

[

Λk(t)

B(mt, k)

]

=
∞
∑

k=0

Γ(mτ)

Γ(mτ + k)

Γ(1/ρ2 + k)

Γ(1/ρ2)

(−1)kvkρ2kΛk(t)

k

[

m[ψ0(mt+ k)− ψ0(mt)] +
kλ(t)

Λ(t)

]
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B.5 Simulation setup

For subjects i = 1, . . . , n, we generate data using the following process:

1. Simulate a gamma process {Wt} with mean mt and variance σ2t, using the method

described in Avramidis et al. (2003)

2. Derive event time, Y , using the inverse transform method by generating random

variable A ∼ Unif(0, 1) and solving S(t) = A⇒ e−H(t)Wt − A = 0 for t.

3. Simulate censoring by generating C ∼ Unif(0, τ) and apply administrative censoring

at time τ .

4. Set T = min(Y, C) to get the observed time. Set δ = I(T = Y ) as an indicator of

whether the individual experienced the event of interest.

5. If δ = 1 (i.e., for individuals that experienced the event),

(a) Obtain Vτ = v from {Wt} at time τ = T .

(b) Simulate Zτ = z from the distribution Zτ |Vτ

We perform estimation by maximizing the log-likelihood for the model without measure-

ment error

l =
n
∑

i=1

{δi log(dΛ(Ti|vTi)S(Ti|vTi)g(vTi)) + (1− δi) log[S(Ti|vTi)g(vTi)]}

or the log-likelihood for the model with measurement error

l =
n
∑

i=1

{δi log(dΦ(Ti|zTi)G(Ti|zTi)f(zTi)) + (1− δi) log[G(Ti|zTi)f(zTi)]}
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B.6 Additional simulation results

Here we present additional simulations from the misspecified models fit in the simu-

lation study in Section 3.4.

Table B.1: Simulation results for the parameters associated with the stochastic marker process
from a gamma bridge survival model with no measurement error fit to marker data simulated
from a gamma bridge process with measurement error.

µ0 µ1 η0 η1
n %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP Est SE ESD CP Est SE ESD CP

200 20 -1.13 .032 .030 84.9 .290 .064 .064 93.6 -2.28 .194 .202 87.2 .497 .287 .292 93.6
200 30 -1.12 .033 .034 89.3 .287 .067 .062 94.7 -2.26 .182 .181 89.5 .493 .282 .295 92.4
200 40 -1.12 .035 .035 89.6 .290 .069 .070 93.0 -2.27 .184 .183 87.0 .488 .284 .289 93.8
300 20 -1.13 .026 .023 82.9 .291 .052 .050 94.7 -2.24 .149 .144 83.4 .502 .226 .225 93.9
300 30 -1.12 .027 .026 87.4 .286 .054 .052 94.8 -2.26 .148 .150 81.2 .492 .227 .237 93.2
300 40 -1.12 .029 .028 89.1 .284 .057 .058 91.8 -2.25 .147 .142 87.8 .478 .232 .228 95.5
500 20 -1.13 .020 .019 74.0 .286 .040 .041 91.1 -2.24 .115 .110 78.8 .496 .173 .178 90.3
500 30 -1.13 .022 .022 77.8 .289 .043 .040 95.5 -2.24 .116 .113 78.1 .513 .183 .180 93.2
500 40 -1.12 .022 .022 85.8 .284 .044 .042 94.9 -2.24 .113 .115 74.6 .486 .176 .175 94.6

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence interval
contains the true parameter values

Table B.2: Simulation results for the parameters associated with the conditional cumulative
hazard from a gamma bridge survival model with no measurement error fit to marker data
simulated from a gamma bridge process with measurement error.

log(γ) β0 β1
n %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP Est SE ESD CP

200 20 4.35 1.04 .692 - -3.58 .096 .096 93.9 .624 .170 .173 94.8
200 30 4.32 1.05 .683 - -3.58 .104 .105 94.1 .628 .182 .175 94.1
200 40 4.21 1.07 .726 - -3.59 .119 .122 93.7 .623 .199 .204 93.3
300 20 4.45 .843 .596 - -3.58 .078 .077 94.7 .618 .138 .146 93.5
300 30 4.30 .857 .649 - -3.58 .085 .087 92.5 .614 .148 .146 95.0
300 40 4.24 .909 .683 - -3.60 .097 .096 95.7 .624 .162 .166 94.6
500 20 4.44 .702 .525 - -3.58 .060 .063 91.8 .615 .108 .110 93.4
500 30 4.40 .716 .565 - -3.58 .065 .067 93.2 .613 .114 .119 93.3
500 40 4.25 .726 .603 - -3.58 .075 .071 96.2 .621 .125 .120 95.8

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence interval contains
the true parameter values
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Table B.3: Simulation results for the parameters associated with the stochastic marker process
from a gamma bridge survival model with no measurement error fit to marker data simulated
from a gamma bridge process with measurement error.

µ0 µ1 η0 η1
n log(γ) %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP Est SE ESD CP Est SE ESD CP

200 0.0 20 -1.13 .031 .030 84.5 .290 .062 .064 93.6 -2.17 .131 .134 91.0 .447 .244 .251 94.2
200 0.0 30 -1.12 .032 .033 88.4 .286 .064 .061 95.1 -2.16 .132 .136 92.7 .448 .246 .257 92.3
200 0.0 40 -1.12 .034 .034 89.4 .290 .067 .069 92.6 -2.15 .133 .133 93.2 .450 .248 .255 93.6
200 0.7 20 -1.13 .031 .030 84.6 .290 .062 .064 93.6 -2.17 .131 .135 91.0 .448 .244 .251 94.2
200 0.7 30 -1.12 .032 .033 88.4 .287 .064 .062 95.0 -2.16 .132 .136 92.8 .449 .246 .257 92.4
200 0.7 40 -1.12 .034 .034 89.4 .290 .067 .069 92.6 -2.15 .133 .133 93.2 .451 .248 .255 93.8
200 1.1 20 -1.13 .031 .030 84.6 .290 .062 .064 93.6 -2.17 .131 .134 91.0 .447 .244 .251 94.2
200 1.1 30 -1.12 .032 .033 88.2 .287 .064 .062 95.0 -2.16 .132 .136 92.6 .449 .246 .257 92.4
200 1.1 40 -1.12 .034 .034 89.4 .290 .067 .069 92.6 -2.15 .133 .133 93.2 .451 .248 .255 93.6
300 0.0 20 -1.13 .025 .022 83.4 .291 .050 .049 94.6 -2.17 .107 .108 90.4 .458 .199 .200 94.0
300 0.0 30 -1.12 .026 .025 88.2 .285 .052 .051 94.6 -2.16 .107 .115 89.4 .449 .200 .212 92.6
300 0.0 40 -1.12 .028 .028 88.6 .284 .055 .058 91.4 -2.15 .109 .110 92.8 .448 .202 .202 93.8
300 0.7 20 -1.13 .025 .022 83.4 .291 .050 .049 94.6 -2.17 .107 .108 90.4 .458 .199 .200 94.0
300 0.7 30 -1.12 .026 .025 88.2 .285 .052 .051 94.6 -2.16 .107 .115 89.4 .450 .200 .212 92.6
300 0.7 40 -1.12 .028 .028 88.6 .284 .055 .058 91.4 -2.15 .109 .110 92.8 .447 .202 .202 93.8
300 1.1 20 -1.13 .025 .022 83.4 .291 .050 .049 94.6 -2.17 .107 .108 90.4 .458 .199 .200 94.0
300 1.1 30 -1.12 .026 .025 88.2 .285 .052 .051 94.6 -2.16 .107 .115 89.4 .450 .200 .212 92.6
300 1.1 40 -1.12 .028 .028 88.6 .284 .055 .058 91.4 -2.15 .109 .110 92.8 .448 .202 .202 93.8
500 0.0 20 -1.13 .019 .019 73.0 .286 .039 .040 92.0 -2.16 .083 .082 89.4 .455 .154 .153 92.8
500 0.0 30 -1.13 .020 .021 77.2 .289 .041 .039 95.0 -2.16 .083 .084 88.0 .470 .155 .161 93.4
500 0.0 40 -1.12 .022 .022 83.8 .284 .043 .042 94.0 -2.15 .084 .085 89.4 .451 .156 .157 93.8
500 0.7 20 -1.13 .019 .019 73.0 .286 .039 .040 92.0 -2.16 .083 .082 89.4 .455 .154 .153 92.8
500 0.7 30 -1.13 .020 .021 77.2 .289 .041 .039 95.0 -2.16 .083 .084 88.0 .470 .155 .161 93.4
500 0.7 40 -1.12 .022 .022 83.8 .284 .043 .042 94.0 -2.15 .084 .085 89.4 .451 .156 .157 93.8
500 1.1 20 -1.13 .019 .019 73.0 .286 .039 .040 92.0 -2.16 .083 .082 89.4 .455 .154 .153 92.8
500 1.1 30 -1.13 .020 .021 77.2 .289 .041 .039 95.0 -2.16 .083 .084 88.0 .470 .155 .161 93.4
500 1.1 40 -1.12 .022 .022 83.8 .284 .043 .042 94.0 -2.15 .084 .085 89.4 .451 .156 .157 93.8

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence interval contains
the true parameter values
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Table B.4: Simulation results for the parameters associated with the conditional cumulative
hazard from a gamma bridge survival model with no measurement error fit to marker data
simulated from a gamma bridge process with measurement error.

β0 β1
n log(γ) %Cens Est1 SE2 ESD3 CP4 Est SE ESD CP

200 0.0 20 -3.60 .090 .090 95.0 .610 .170 .170 95.6
200 0.0 30 -3.60 .100 .100 94.9 .610 .180 .170 95.7
200 0.0 40 -3.61 .120 .120 94.4 .610 .200 .200 94.0
200 0.7 20 -3.60 .090 .090 95.0 .610 .170 .170 95.6
200 0.7 30 -3.60 .100 .100 94.8 .610 .180 .170 95.8
200 0.7 40 -3.61 .120 .120 94.4 .610 .200 .200 94.0
200 1.1 20 -3.60 .090 .090 95.2 .610 .170 .170 95.6
200 1.1 30 -3.60 .100 .100 94.8 .610 .180 .170 95.8
200 1.1 40 -3.61 .120 .120 94.4 .610 .200 .200 94.0
300 0.0 20 -3.60 .080 .080 96.0 .600 .140 .140 94.6
300 0.0 30 -3.60 .080 .080 94.0 .600 .150 .140 95.2
300 0.0 40 -3.61 .100 .090 95.8 .610 .160 .160 94.0
300 0.7 20 -3.60 .080 .080 96.0 .600 .140 .140 94.6
300 0.7 30 -3.60 .080 .080 94.0 .600 .150 .140 95.2
300 0.7 40 -3.61 .100 .090 95.8 .610 .160 .160 94.0
300 1.1 20 -3.60 .080 .080 96.0 .600 .140 .140 94.6
300 1.1 30 -3.60 .080 .080 94.0 .600 .150 .140 95.2
300 1.1 40 -3.61 .100 .090 95.8 .610 .160 .160 94.0
500 0.0 20 -3.60 .060 .060 95.2 .600 .110 .110 94.8
500 0.0 30 -3.59 .060 .070 95.2 .600 .110 .120 95.8
500 0.0 40 -3.60 .070 .070 95.8 .610 .120 .120 96.8
500 0.7 20 -3.60 .060 .060 95.2 .600 .110 .110 94.8
500 0.7 30 -3.59 .060 .070 95.2 .600 .110 .120 95.8
500 0.7 40 -3.60 .070 .070 95.8 .610 .120 .120 96.8
500 1.1 20 -3.60 .060 .060 95.2 .600 .110 .110 94.8
500 1.1 30 -3.59 .060 .070 95.2 .600 .110 .120 95.8
500 1.1 40 -3.60 .070 .070 95.8 .610 .120 .120 96.8

1 Est: Average of the parameter estimates over 500 simulations
2 SE: Average of estimated standard errors
3 ESD: Empirical standard deviation of parameter estimates
4 CP: Coverage probability of the proportion of simulations that the 95% confidence
interval contains the true parameter values
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Song, P. X.-K., M. Li, and Y. Yuan (2009), Joint regression analysis of correlated data
using Gaussian copulas, Biometrics, 65 (1), 60–68.

Song, X.-K. (2007), Correlated data analysis: Modeling, analytics, and applications,
Springer Science & Business Media.

Spiekerman, C. F., and D. Lin (1998), Marginal regression models for multivariate failure
time data, Journal of the American Statistical Association, 93 (443), 1164–1175.

Suresh, K., J. M. Taylor, D. E. Spratt, S. Daignault, and A. Tsodikov (2017), Comparison
of joint modeling and landmarking for dynamic prediction under an illness-death model,
Biometrical Journal, 59 (6), 1277–1300.

Taylor, J. M., W. Cumberland, and J. Sy (1994), A stochastic model for analysis of
longitudinal AIDS data, Journal of the American Statistical Association, 89 (427), 727–
736.

Taylor, J. M., M. Yu, and H. M. Sandler (2005), Individualized predictions of disease pro-
gression following radiation therapy for prostate cancer, Journal of Clinical Oncology,
23 (4), 816–825.

Taylor, J. M., Y. Park, D. P. Ankerst, C. Proust-Lima, S. Williams, L. Kestin, K. Bae,
T. Pickles, and H. Sandler (2013), Real-time individual predictions of prostate cancer
recurrence using joint models, Biometrics, 69 (1), 206–213.

Thompson, I. M., P. J. Goodman, C. M. Tangen, H. L. Parnes, L. M. Minasian, P. A.
Godley, M. S. Lucia, and L. G. Ford (2013), Long-term survival of participants in the
prostate cancer prevention trial, New England Journal of Medicine, 369 (7), 603–610.

Thompson, I. M., et al. (2003), The influence of finasteride on the development of prostate
cancer, New England Journal of Medicine, 349 (3), 215–224.

Touraine, C., P. Joly, and T. Gerds (2013), SmoothHazard: Fitting illness-death model
for interval-censored data, R package version, 1 (9).

Tsiatis, A. A., and M. Davidian (2004), Joint modeling of longitudinal and time-to-event
data: An overview, Statistica Sinica, pp. 809–834.

van Houwelingen, H., and H. Putter (2011), Dynamic prediction in clinical survival anal-
ysis, CRC Press.

van Houwelingen, H. C. (2007), Dynamic prediction by landmarking in event history
analysis, Scandinavian Journal of Statistics, 34 (1), 70–85.

195



Vaupel, J. W., K. G. Manton, and E. Stallard (1979), The impact of heterogeneity in
individual frailty on the dynamics of mortality, Demography, 16 (3), 439–454.

Wang, Y., and J. M. G. Taylor (2001), Jointly modeling longitudinal and event time data
with application to acquired immunodeficiency syndrome, Journal of the American
Statistical Association, 96 (455), 895–905.

Yashin, A. I., and K. G. Manton (1997), Effects of unobserved and partially observed
covariate processes on system failure: A review of models and estimation strategies,
Statistical Science, pp. 20–34.

Zeger, S. L., and K.-Y. Liang (1986), Longitudinal data analysis for discrete and contin-
uous outcomes, Biometrics, pp. 121–130.

Zheng, Y., and P. J. Heagerty (2005), Partly conditional survival models for longitudinal
data, Biometrics, 61 (2), 379–391.

196


