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ABSTRACT

The Bayesian additive regression trees (BART) is a method proposed by Chipman

et al. (2010) that can handle non-linear main and multiple-way interaction effects

for independent continuous or binary outcomes. It has enjoyed much success in areas

like causal inference, economics, environmental sciences, and genomics. However,

extensions of BART and application of these extensions are limited. This thesis

discusses three novel applications and extensions for BART.

We first discuss how BART can be extended to clustered outcomes by adding

a random intercept. This work was motivated by the need to accurately predict

driver behavior using observable speed and location information with application to

communication of key human-driver intention to nearby vehicles in traffic. Although

our extension can be considered a special case of the spatial BART (Zhang et al.,

2007), our approach differs by providing a relatively simple algorithm that allows

application to clustered binary outcomes.

We next focus on the use of BART in missing data settings. Doubly robust (DR)

methods allow consistent estimation of population means when either non-response

propensity or modeling of the mean of the outcome is correctly specified. Kang and

Schafer (2007) showed that DR methods produce biased and inefficient estimates when

both propensity and mean models are misspecified. We consider the use of BART

for modeling means and/or propensities to provide a “robust-squared” estimator that

reduces bias and improves efficiency. We demonstrate this result, using simulations,

for the two commonly used DR methods: Augmented Inverse Probability Weighting

(AIPWT, Robbins et al., 1994) and penalized splines of propensity prediction (PSPP,
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Zhang and Little, 2009). We successfully applied our proposed model to two national

crash datasets to impute missing change in deceleration values (delta-v) and missing

Blood Alcohol Concentration (BAC) levels respectively.

Our final effort considers how a negative wealth shock (sudden large decline in

wealth) affects the cognitive outcome of late middle aged US adults using the Health

Retirement Study, a longitudinal study of US adults, enrolled at age 50 and older and

surveyed biennially since 1992. Our analysis faced three issues: lack of randomization,

confounding by indication, and censoring of the cognitive outcome by a substantial

number of deaths in our subjects. Marginal structural models (MSM), a commonly

used method to deal with censoring by death, is arguably inappropriate because it

upweights subjects who are more likely to die, creating a pseudo-population which

resembles one where death is absent. We propose to compare the negative wealth

shock effect only among subjects who survived under both sets of treatment regimens

– a special case of principal stratification (Frangakis and Rubin, 2002). Because

the counterfactual survival status would be unobserved, we imputed their survival

status and restrict analysis to subjects who were observed and predicted to survive

under both treatment regimes. We used a modified version of penalized spline of

propensity methods in treatment comparisons (PENCOMP, Zhou et. al, 2018) to

obtain a robust imputation of the counterfactual cognitive outcomes. Finally, we

consider several possible extensions of these efforts for future work.
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CHAPTER I

Introduction

Since its introduction in 2007 and formal publication in 2010, Bayesian additive

regression trees (BART) has enjoyed much success in a variety of applications includ-

ing biomarker discovery in proteomic studies (Hernández et al., 2015), estimating

indoor radon concentrations (Kropat et al., 2015), estimation of causal effects (Leonti

et al., 2010), genomic studies (Liu et al., 2010), hospital performance evaluation (Liu

et al., 2015), prediction of credit risk (Zhang and Härdle, 2010), predicting power

outages during hurricane events (Nateghi et al., 2011), prediction of trip durations in

transportation (Chipman et al., 2010a), and somatic prediction in tumor experiments

(Ding et al., 2012). BART has also been extended to survival outcomes (Bonato

et al., 2011; Sparapani et al., 2016), multinomial outcomes (Kindo et al., 2016; Agar-

wal et al., 2013), and heterogeneous outcomes (Green and Kern, 2012).

The primary reason for BARTs success is its ability to model non-linear main and

multiple-way interaction effects without having to specify the type of non-linear or

interaction mechanism. BART estimates multiple-way interactions ‘automatically’

by using regression trees which, in its simplest form (a constant mean parameter at

the terminal nodes), can be viewed as an analysis of variance (ANOVA) model. To

estimate the non-linear effects, BART uses a sum of regression trees. As the number

of regression trees used in the sum increases, the non-linear effect estimation by BART
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improves. To keep BART from over-fitting, a strong prior is then placed on the tree

structure of each regression tree to keep trees from growing too deep or too ‘bushy’

(trees with many terminal nodes).

Despite the flexibility, BART is still mostly applied to independent continuous or

binary outcomes. Extensions and application of BART to situations outside of the

independent continuous or binary outcomes setup are scarce. Two exceptions are

Zhang et al. (2007), who extended BART using a spatial random intercept to merge

two datasets in a statistical matched problem (Rässler , 2002) and Low-Kam et al.

(2015), who modeled their terminal nodes of the regression tree as a cubic splines

regression and used an autoregressive covariance matrix with truncated support on

[0, 1] to account for the correlation in their outcomes. These examples address com-

plex extensions of BART to correlated continuous outcomes. Hence, in Chapter III

of my thesis, I extended BART to correlated binary outcomes. For Chapter IV and

V, I considered applications of BART to issues in the area of missing data and causal

inference for longitudinal studies respectively.

I begin with a review chapter, where explicit details of how BART is formulated

and implemented are discussed. Using a simple sum of two regression trees as an

illustration, we will also attempt to answer a frequently asked question: “What is a

sum of regression trees?” Included in this review chapter is also a brief discussion

of why we think that application and extension of BART to models outside of the

independent continuous and binary outcomes setting are lacking.

My next chapter was motivated by a project where the main aim was to deter-

mine whether a human driven vehicle would stop at an intersection before executing

a left-turn. To answer this question, we used data where drivers would drive cars

fitted with devices to capture various vehicle dynamics like speed, acceleration, turn

signal use, etc. We used the vehicle speed collected to construct a prediction model

to determine whether a driver would stop at an intersection before executing a left-
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turn. Preliminary work suggested that BART performed better and was more stable

compared to many state-of-the-art machine learning methods, for example, Super

Learner (van der Laan and Polley , 2010). Unfortunately, BART was designed for

independent outcomes but in our data, each driver could take multiple left turns cre-

ating correlation among our binary outcomes. Thus far, there has been no literature

extending BART to handle correlated binary outcomes. Hence, we introduced a ran-

dom intercept to BART to handle clustered binary outcomes. The crucial idea lies in

the fact that given a draw of the random intercept, the resulting model is once again

BART and the BART algorithm can be applied to estimate the remaining parameters.

We found that our proposed method, which we call “random intercept BART (riB-

ART)”, produced better empirical prediction properties compared to BART without

the random intercept in simulations with correlated continuous or binary outcomes

and when applied to our data.

Chapter IV focuses on the area of missing data. Under the missing at random

(MAR) assumption, doubly robust (DR) estimators provide a consistent estimate of

the mean when either the mean or propensity model is correctly specified. Unfortu-

nately, Kang and Schafer (2007) showed using a simulation example that DR estima-

tors could be highly biased and inefficient when both the propensity and mean model

are modestly misspecified. We recognized that the misspecification of the propensity

and mean model in Kang and Schafer’s example mainly comes from the fact that

common regression methods have difficulty in specifying a model that can handle

non-linear main and multiple-way interaction effects. Hence, we propose to replace

the usual regression models in DR estimators with BART and investigate whether

such a strategy would improve the bias and efficiency of common DR estimators. We

found that by replacing the model specification of the various DR estimators with

BART greatly improved the robustness of these estimators to model misspecification.

In addition, when applied to two publicly available datasets, we found that by com-
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paring our proposed estimator with existing DR estimators, we could get a sense of

the relationship of the outcome of interest with the various covariates in the data.

In Chapter V we turn our attention to a causal inference problem in the context of

longitudinal studies. This work was motivated by the Health and Retirement Survey

(Sonnega et al., 2014) which is a longitudinal study of US adults, enrolled at age

50 and older. Enrolled subjects were surveyed biennially starting from 1992 with

detailed modules on financial status and health. The primary aim of this work was

to determine how the cognitive ability of late middle aged US adults is affected by a

negative wealth shock, i.e. a sudden large decline in wealth. We faced three issues in

this analysis. First, there is a lack of randomization for which subjects get a negative

wealth shock; factors like socio-economic status and gender are likely confounders.

Second, the risk of receiving a negative wealth shock may depend on prior cognitive

ability, a situation commonly termed as “confounding by indication”. Finally, and

most importantly, death occurs at a 13% higher rate during follow-up in our data,

causing a large proportion of our outcomes to be censored. A common approach is

to employ Marginal Structural Models (MSM, Robins et al., 2000) which accounts

for confounding by indication and censoring by death by weighting using the inverse

probability of the treatment received based on the previous values of the time-varying

covariates and outcomes and inverse probability of death respectively. The issue with

this approach – perhaps much under appreciated – is that by weighting using the

inverse probability of death, subjects who are more likely to die would be upweighted

creating a pseudo-population which resembles one where death is absent over time

(Chaix et al., 2012). We propose to compare the effect of a negative wealth shock on

cognitive outcome only among subjects who would potentially survive under both sets

of treatment regimes, a special case of principal stratification (Frangakis and Rubin,

2002). Because the survival status of the counterfactuals (for example, negative

wealth shock survival status of subjects who did not get a negative wealth shock and
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vice versa) are unobserved, we imputed their survival status and restricted analysis

to subjects who were observed and predicted to have survived. We then modified

the penalized spline of propensity methods in treatment comparisons (PENCOMP,

Zhou et al., 2018) using BART to impute the counterfactual cognitive ability among

this restricted set. This modified version of PENCOMP is doubly robust and eases

the model specification burden on the researcher. Simulation studies suggested that

our proposed method worked better than existing methods. Results from our data

analysis also suggested a slightly different estimate of the effect of a negative wealth

shock on cognitive ability compared to MSM.

5



CHAPTER II

Review

2.1 Bayesian additive regression trees

We next review in detail the Bayesian additive regression trees (BART) model pro-

posed by Chipman et al. (2010b) for independent continuous and binary outcomes.

Included in this review is a discussion of what a regression tree is and what a “sum

of regression trees” mean. We also discuss how the prior distribution and hyperpa-

rameters are set as well as how the posterior distribution of BART is calculated.

2.2 Setup

Suppose we have n subjects indexed by k and we have outcomes Yk. For contin-

uous outcomes, Yk ∈ R, while for binary outcomes, Yk ∈ {0, 1}. In addition to the

outcomes, we have p predictors/covariates notated as Xk = (Xk1, . . . , Xkp)
T . The

objective of BART is to estimate a flexible model to fit the following problem

Yk = f(Xk) + εk (2.1)

where εk
i.i.d∼ N(0, σ2).
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2.3 Continuous outcomes

2.3.1 Model and regression trees

For continuous outcomes, BART estimates equation (2.1) as

Yk =
m∑
j=1

g(Xk, Tj,Mj) + εk εk
i.i.d.∼ N(0, σ2) (2.2)

where Tj is the jth binary tree structure and Mj = (µ1j, . . . , µbjj)
T is the set of bj

terminal node parameters associated with tree structure Tj. Typically, the number of

trees m is fixed and no prior distribution is placed on m. Chipman et. al. suggested

fixing m at 200 as this performs well in many situations. Alternatively, they suggested

using cross-validation to determine m.

The binary tree Tj is made up of both internal nodes and terminal nodes. At

each internal node, there is a decision rule that splits estimation of the mean of Yk

depending on the covariates Xk. For example in Figure 2.1, the first internal node at

the top of the tree drops the mean to the left if the corresponding covariate Xk2 < 100

or to the right if Xk2 ≥ 100. At a terminal node (a node with no decision rules to split

an outcome), the sample mean of the outcomes allocated to the terminal node can

be calculated to obtain the parameter µij at the terminal node. Thus, g(Xk, Tj,Mj)

can be viewed as the jth function that assigns the mean µij to the kth outcome, Yk.
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Figure 2.1: Example of a regression tree where µij is the mean parameter of the ith

node for the jth regression tree.

Xk2 < 100

µ1j =

1.19
T

Xk4 < 200

Xk3 < 150

µ2j =

2.37

T

Xk5 < 50

µ3j =

2.93

T

µ4j =

4

F

F

T
µ5j =

4.5

F

F

We may view the regression tree in Figure 2.1 as an ANOVA model because it
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can be similarly expressed as

Yk = µ1jI{Xk2 < 100}+ µ2jI{Xk2 ≥ 100}I{Xk4 < 200}I{Xk3 < 150}

+ µ3jI{Xk2 ≥ 100}I{Xk4 < 200}I{Xk3 ≥ 150}I{Xk5 < 50}

+ µ4jI{Xk2 ≥ 100}I{Xk4 < 200}I{Xk3 ≥ 150}I{Xk5 ≥ 50}

+ µ5jI{Xk2 ≥ 100}I{Xk4 ≥ 200}+ εk

where I{.} is the indicator function and εk
i.i.d.∼ N(0, σ2). This representation as an

ANOVA model clearly shows how a regression tree handles multiple-way interactions.

In equation (2.2), note that we have a sum of g(Xk, Tj,Mj) or, a sum of regression

trees. What is a sum of regression trees? We attempt to explain this using a simplified

example. Suppose p = 3, n = 10, and we have the following data.

Table 2.1: Example data to explain sum of regression trees.

k Y X1 X2 X3

1 Y1 -182 235 -333

2 Y2 54 339 244

3 Y3 -106 -50 -682

4 Y4 -80 -62 -320

5 Y5 -123 198 -77

6 Y6 175 108 -46

7 Y7 -44 11 136

8 Y8 -131 -10 -70

9 Y9 -56 68 257

10 Y10 7 324 282

Suppose again that we used two regression trees to fit this data i.e. m = 2, and

we have the following two regression tree structures estimated in one of the Monte
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Carlo Markov Chain (MCMC) draws (See Figures 2.2 and 2.3).

Figure 2.2: Regression tree, j = 1.

Xk1 < 100

Xk2 < 200

µ̂11

T

µ̂21

F
T

µ̂31

F

Figure 2.3: Regression tree, j = 2.

Xk3 < 100

µ̂12

T

Xk2 < 200

µ̂22

T

µ̂32

F

F

For this hypothetical example, the resulting posterior estimation of
∑2

j=1 g(Xk, Tj,Mj)

can be summarized as follows
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Table 2.2: Posterior estimation for
∑2

j=1 g(Xk, Tj,Mj)

k Y g(X, T1,M1) g(X, T2,M2)
∑2

j=1 g(X, Tj,Mj)

1 Y1 µ̂21 µ̂12 µ̂21 + µ̂12

2 Y2 µ̂21 µ̂22 µ̂21 + µ̂22

3 Y3 µ̂11 µ̂12 µ̂11 + µ̂12

4 Y4 µ̂11 µ̂12 µ̂11 + µ̂12

5 Y5 µ̂11 µ̂12 µ̂11 + µ̂12

6 Y6 µ̂31 µ̂12 µ̂31 + µ̂12

7 Y7 µ̂11 µ̂22 µ̂11 + µ̂22

8 Y8 µ̂11 µ̂12 µ̂11 + µ̂12

9 Y9 µ̂11 µ̂22 µ̂11 + µ̂22

10 Y10 µ̂21 µ̂32 µ̂21 + µ̂32

where µ̂ij ∼ h(Rk1j+Rk2j+. . .+Rkni ,j
, θ), with h(.) being the posterior distribution

of µij, θ being the set of prior hyperparameters for µij, Rkj = Yk−
∑

l 6=j g(Xk, Tl,Ml)

being the residual data taken in by h(.) to obtain the posterior distribution of µij,

and ni being the number of residuals Rkj allocated to the terminal node µij by the

jth regression tree. For example, µ̂21 ∼ h(R11 + R21 + R10,1, θ) with R11 = Y1 − µ̂12,

R21 = Y2−µ̂22, and R10,1 = Y10−µ̂32; µ̂12 ∼ h(R12+R32+R42+R52+R62+R82, θ), with

R12 = Y1−µ̂21, R32 = Y3−µ̂11, R42 = Y4−µ̂11, R62 = Y6−µ̂31, and R82 = Y8−µ̂11; etc.

Note that during the posterior estimation of g(Xk, Tj,Mj) for each j, the residuals

Rk1j, Rk2j, . . . , Rkni ,j
are used instead of Yk1 , . . . , Ykni . Hence, we estimate Yk using

the sum of the allocated parameters µ̂ij instead of their mean. To obtain µ̂ij, an

iterative process with Ȳ
m

as the initial value is used. From this illustration, it is clear

that the sum of regression trees occur at the terminal node parameters and not the

tree structure. In addition, as we increase the number of regression trees m to 200,
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this ‘additive’ property of BART allows estimation of non-linear effects easily without

having a need to specify the form of non-linear relationship between the outcomes

and predictors.

2.3.2 Prior distribution

In subsection 2.3.1, we assumed that the tree structure was specified. Of course,

we would like the data to determine the tree structure. BART does this in a Bayesian

framework, first specifying a prior on the tree structure, terminal node parameters,

and variance. The joint prior distribution for (2.2) is

P [(T1,M1), . . . , (Tm,Mm), σ]. (2.3)

Assuming independence of εk and (Tj,Mj) and between all m tree structures and

terminal node parameters, equation (2.3) can be decomposed as

P [(T1,M1), . . . , (Tm,Mm), σ] = [
m∏
j=1

P (Tj,Mj)]P (σ)

= [
m∏
j=1

P (Mj|Tj)P (Tj)]P (σ)

= [
m∏
j=1

{
bj∏
i=1

P (µij|Tj)}P (Tj)]P (σ).

where i = 1, . . . , bj indexes the terminal node parameters in tree j. The prior distri-

bution of µij|Tj and σ2 can be specified as

µij|Tj ∼ N(µµ, σ
2
µ),

σ2 ∼ IG(
ν

2
,
νλ

2
),
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where IG(α, β) is the inverse gamma distribution with shape parameter α and rate

parameter β. The prior for P (Tj) can be specified using three aspects. The first is the

probability that a node at depth d = 0, 1, 2, . . . is an internal node, which is α(1+d)−β

where α ∈ (0, 1) and β ∈ [0,∞). Here, α controls how likely a terminal node in the

tree would split, with smaller α implying a lesser likelihood that a terminal node

would split, and β controls the number of terminal nodes with a larger β decreasing

the number of terminal nodes. The second aspect is the distribution used to choose

which covariate is selected for the decision rule in an internal node. The final aspect

is the distribution for the value of the selected covariate for the decision rule in an

internal node. For the distribution in the second and third aspect of P (Tj), the default

distirbution used is the discrete uniform distribution for the available covariates. A

more flexible distribution like the multinomial distribution with certain variables or

values weighted higher can be used (Kapelner and Bleich, 2016).

2.3.3 Hyperparameters

The specification of these priors implies that the following hyperparameters need

to be set: α, β, µµ, σµ, ν, and λ. These hyperparameters are constructed as a mix

of apriori fixed and data-driven. For α and β, the default values of α = 0.95 and

β = 2 provide a balanced penalizing effect for the probability of a node splitting. For

µµ and σµ, they are set such that E[Yk|Xk] ∼ N(mµµ,mσ
2
µ) assigns high probability

to the interval (min
k

(Yk),max
k

(Yk)). This can be achieved by defining v such that

min
k

(Yk) = mµµ − v
√
mσµ and max

k
(Yk) = mµµ + v

√
mσµ. For ease of posterior

distribution calculation, Yk is transformed by Ỹk =
Yk−

min
k

(Yk)+max
k

(Yk)

2

max
k

(Yk)−min
k

(Yk)
. This results in

Ỹk ∈ (−0.5, 0.5) where min
k

(Yk) = −0.5 and max
k

(Yk) = 0.5. This has the effect of

allowing the hyperparamter µµ to be set as 0 and σµ to be determined as σµ = 0.5
v
√
m

where v is to be chosen. For v = 2, N(mµµ,mσ
2
µ) assigns a prior probability of 0.95

to the interval (min
k

(Y ),max
k

(Y )) and is the default value. Finally for ν and λ, the
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default value for ν is 3 and λ is the value such that P (σ2 < s2; ν, λ) = 0.9 where s2

is the estimated variance of the residuals from the multiple linear regression with Yk

as the outcomes and Xk as the covariates.

2.3.4 Posterior distribution calculation

The prior distribution and hyperparameters would induce the posterior distribu-

tion

P [(T1,M1), . . . , (Tm,Mm), σ|Yk] ∝ P (Yk|(T1,M1), . . . , (Tm,Mm), σ)

× P ((T1,M1), . . . , (Tm,Mm), σ)

where P (Yk|(T1,M1), . . . , (Tm,Mm), σ) ∼ N(
∑m

j=1 g(Xk, Tj,Mj), σ
2) which can be

simplified to two major posterior draws using Gibbs sampling. First, draw m succes-

sive

P [(Tj,Mj)|T(j),M(j), Yk, σ] (2.4)

for j = 1, . . . ,m, where T(j) and M(j) consist of all the tree structures and terminal

nodes except for the jth tree structure and terminal node; then, draw

P [σ|(T1,M1), . . . , (Tm,Mm), Yk] (2.5)

from IG(ν+n
2
,
νλ+

∑n
k=1(yk−

∑m
j=1 gk(Xk,Tj ,Mj))

2

2
).

To obtain a draw from (2.4), note that this distribution depends on (T(j),M(j), Yk, σ)

through

Rkj = Yk −
∑
w 6=j

g(Xk, Tw,Mw), (2.6)

the residuals of them−1 regression sum of trees fit excluding the jth tree. Thus (2.4) is

equivalent to the posterior draw from a single regression tree Rkj = g(Xk, Tj,Mj)+εk
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or

P [(Tj,Mj)|Rj, σ]. (2.7)

We can obtain a draw from (2.7) by first integrating out Mj to obtain P (Tj|Rj, σ).

This is possible since a conjugate prior on µij was employed. We draw P (Tj|Rj, σ)

using a Metropolis-Hastings (MH) algorithm where first, we generate a candidate tree

T ∗j for the jth tree with probability distribution q(Tj, T
∗
j ) and then, we accept T ∗j with

probability

α(Tj, T
∗
j ) = min{1,

q(T ∗j , Tj)

q(Tj, T ∗j )

P (Rj|X,T ∗j ,Mj)

P (Rj|X,Tj,Mj)

P (T ∗j )

P (Tj)
}. (2.8)

A new tree T ∗j can be proposed given the previous tree Tj by four steps: (i) grow,

where a terminal node is split into two new child nodes; (ii) prune, two terminal

child nodes immediately under the same non-terminal node are combined together

such that their parent non-terminal node becomes a terminal node; (iii) swap, the

splitting criteria of two non-terminal nodes are swapped; (iv) change, the splitting

criteria of a single non-terminal node is changed. Once we draw P (Tj|Rj, σ), we then

draw P (µij|Tj,Rj, σ) ∼ N(
σ2
µ

∑ni
i rij

niσ2
µ+σ2 ,

σ2σ2
µ

niσ2
µ+σ2 ), where rij is the subset of elements in

Rj allocated to the terminal node parameter µij and ni is the number of rijs allocated

to µij.

Complete details for the derivation of P (µij|Tj,Rj, σ), equation (2.5) as well as

the explicit formula for equation (2.8) for the grow and prune steps can be found in

Appendix A.

2.4 Binary outcomes

For binary outcomes, BART uses the probit link to model the relationship between

Xk and Yk. Formally,

P (Yk = 1|Xk) = Φ[G(Xk)] (2.9)
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where Φ[.] is the cumulative distribution function of a standard normal distribution

and

G(Xk) =
m∑
j=1

g(Xk, Tj,Mj). (2.10)

The notation m, Tj, and Mj are similar to equation (2.2) and m by default is once

again set at 200.

Because we employed a probit link, we may view the binary outcomes BART as

the continuous outcomes BART with σ ≡ 1. Hence, only prior distributions for Tj and

µij|Tj need to be specified under binary outcomes BART. The same prior distributions

as continuous outcomes BART can be used. The α and β hyperparameters are the

same but the µµ and σµ hyperparameters are specified differently from continuous

outcomes BART. To set the hyperparameters for µµ and σµ, Chipman et al. suggests

µµ = 0 and σµ = 3
v
√
m

where v = 2 would result in an approximate 95% probability

that draws of G(Xk) will be within (−3, 3).

To draw the posterior distribution of Tj and µij, we first use data augmentation

(Tanner and Wong , 1987; Albert and Chib, 1993) to draw a continuous latent variable

Zk given Yk. Chipman et al. (2010b) suggests drawing Zk as

Zk =

max(N(G(Xk), 1), 0) if Yk = 1

min(N(G(Xk), 1), 0) if Yk = 0.
(2.11)

We differ slightly by drawing Zk as

Zk =

 N(0,∞)(G(Xk), 1) if Yk = 1

N(−∞,0)(G(Xk), 1) if Yk = 0.
(2.12)

where N(a,b)(µ, σ
2) is the normal distribution with mean µ variance σ2 truncated to

(a, b). We then replace the continuous outcomes Yk in equations (2.4) to (2.8) with

Zk and σ set to 1. Once the draws of Tjs and µijs are made, the estimate of G(Xk)
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can be updated followed by Zk. The algorithm then iterates between the draws of

Zk, Tjs, and µijs until convergence.

2.5 Motivation for re-writing BART code and future work

In summary, the BART algorithm for continuous and binary outcomes can be

visualized as follows:

INPUT: Yk outcome and Xk covariates.

OUTPUT:
∑m

j=1 ĝ(Xk, Tj,Mj) and σ̂ for continuous outcomes, Ĝ(Xk) for binary

outcomes.

BART algorithm(Yk,Xk){

1. If outcome is continuous, transform Yk to the range (−0.5, 0.5). If outcome

is binary, draw Zk.

2. Setup hyperparameters α, β, σµ, and for continuous outcomes ν and λ.

3. Draw (Tj,Mj)|T(j),M(j), Yk, σ for j = 1, . . . ,m.

• Draw P [Tj|T(j),M(j), Yk, σ] using Metropolis-Hastings algorithm.

– Propose a new tree using either grow, prune, change, or swap.

– Accept a new tree based on equation (2.8).

• Draw P [Mj|Tj, T(j),M(j), Yk, σ].

4. If outcome is continuous, draw P [σ|(T1,M1), . . . , (Tm,Mm), Yk]. If outcome

is binary, σ is fixed at 1.

5. Repeat steps 3 to 4 using the most updated parameters until convergence.

For binary outcomes, update Zk before repeating steps 3 to 4.

}
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Based on the above algorithm, there are four publicly available software packages

that can implement the BART algorithm. They are

• BayesTree from Chipman et al. (2010b),

• bartMachine from Kapelner and Bleich (2016),

• Parallel BART from Pratola et al. (2014), and

• dbarts from Chipman et al. (2015).

The first three packages implement BART as a whole complete function i.e., there

are no separate functions for 1-4. dbarts allows a single MCMC draw of 3 and 4.

It is immediately clear that these implementations of BART are not modular in the

sense that it is not easy to manipulate or modify any of the steps and substeps in the

algorithm, especially for step 3. Due to this lack of modularity, extensions of BART

to other outcomes or applying BART into other research areas would be tedious since

the researcher will have to re-write the BART algorithm from scratch when often,

an extension will only require a slight modification of one step or substep within the

BART algorithm.

In order to provide the researcher flexibility in the implementation of BART, we

re-coded the BART algorithm in R such that each substep in 3 is a separate function

and step 4 is a separate function on its own. For step 3, this means that we have

a separate function which can propose a new tree structure and another function

which can accept or reject a new tree structure. Once the tree structure is fixed, we

then have another function to draw the terminal nodes in the tree structure. Such

flexibility can allow researchers to extend BART easily or modify different parts of

the BART model to suit their own research application. In addition, by providing

the codes in R, our implementation allows the researcher to easily follow the BART

algorithm. To maintain efficiency, we then used Rcpp to re-write our R codes.
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2.6 Discussion

In this chapter, we reviewed BART in great detail re-coded the BART algorithm

to help us better understand the mechanism of BART. Our codes allows the m drawn

tree structures at each MCMC to be extracted, hence, enchancing the interpretabil-

ity of BART compared to existing methods. In terms of prediction performance

compared to other existing machine learning methods like Lasso, Gradient boost-

ing, Neural nets, and Random forests, Chipman et al. (2010b) already showed that

BART was either comparable or performed better. Literature regarding the compu-

tation complexity of BART compared to these machine learning methods is a topic

for future investigation.
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CHAPTER III

Predicting human-driving behavior to help

driverless vehicles drive: random intercept

Bayesian Additive Regression Trees

3.1 Introduction

In transportation statistics, a new area of research brought about by improve-

ments in artificial intelligence and engineering is the creation of the autonomous

(self-driving) vehicle. These vehicles have been tested on city streets in certain lo-

cations since 2009. A number of companies have deployed or announced plans for

deployment of such vehicles (Google, 2015; Mchugh, M., 2015; Davies, A., 2015). A

major hurdle for self-driving vehicles on public roads is that these vehicles will have

to interact with human-driven vehicles for the foreseeable future. Human drivers do

not always communicate their plans to other drivers well. For example, when making

a turn, the turn signal is the only explicit means of communicating plans, and even

they are used with less than perfect reliability. Hence, the ability to deploy driverless

vehicles on a large scale will critically depend on the development of a good prediction

model for human driving behavior.

Currently, driverless vehicles developed generally use onboard sensors to gather

data from their surrounding environment to make driving decisions. We envision in
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the future that vehicles (both human driven and driverless) would be connected such

that a driving intent model could first be evaluated on the human driver’s vehicle and

subsequently “communicated” to the driverless vehicle enabling it to make a better

driving decision. Such vehicle-to-vehicle communication would become increasingly

available as technology improves resulting in a connected environment. Under such

a connected environment, developing a good prediction model for human driving

behavior would make sense especially when the driving pattern of a human driven

vehicle depends heavily on the unique tendencies of the human driver.

Building a prediction model that addresses all or most of the human driving be-

havior and driving intent is a massive and complex task. To keep this paper concise,

we focus on the the development of a prediction model for a single driving behavior:

whether a human driver would stop at an intersection before executing a left turn.

We are particularly interested in left turn stops because in countries with right-side

driving, for example, US, left turn crashes can result in severe passenger-side impacts.

Since left turn maneuvers already present a challenge for human drivers, we expect

this maneuver to present difficulty for the driverless vehicle. Placing this prediction

scenario in the context of a connected environment, the driverless vehicle will be

evaluating data from the human-driven vehicle, supplied from an adapted version of

existing “black-box” technology that would broadcast speed and location informa-

tion to driverless vehicles. The connected driverless vehicle would then combine this

transmitted information together with the data it has gathered from its surrounding

environment to make a driving decision.

To develop such a prediction model, we used a naturalistic driving study, the Inte-

grated Vehicle Based Safety System (IVBSS) study Sayer et al. (2011). Naturalistic

driving studies (including the IVBSS) involve the collection of driving data from ve-

hicles as they are piloted on actual roads. These driving data are collected by a data

acquisition system (DAS) installed on a study subject’s vehicle or a research vehicle.
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Typical data collected include vehicle speed, brake application, and miles traveled.

Prediction models in statistics typically rely on regression models that require

estimation of covariate main effects and interactions, and, when predictors are con-

tinuous or on a fine ordinal scale, assessment of non-linearities. In the settings where

understanding associations or, under appropriate assumptions, causal mechanism be-

tween predictors and outcomes are of interest, approximations for non-linearities and

averaging over interactions might be used to develop summaries to ease interpreta-

tion. In prediction, since obtaining the most accurate forecast is the goal, estimating

highly complex non-linearities, including the interactions, is at a premium, as long as

these non-linearities are true signals and not noise.

Perhaps the most common method for modeling non-linearity is to use a poly-

nomial transformation for a covariate, usually centered at the mean to reduce corre-

lation. More sophisticated approaches use penalized splines or additive models that

only require assumptions of smoothness (existence of derivatives) to obtain consistent

estimates of a non-linear trend Hastie and Tibshirani (1990); Ruppert et al. (2003).

Modeling of non-linear interactions between two or more predictors using thin-plate

splines Franke (1982) can quickly become difficult, suffering from the “curse of dimen-

sionality”, as the data required to estimate high-dimensional surfaces become enor-

mous. In the binary outcomes setting, methods such as classification and regression

trees (CART; Breiman et al., 1984) as well as more sophisticated machine learning

techniques such as artificial neural networks (ANN; Smith et al., 1993) and support

vector machines (SVM; Gammermann, 2000) are commonly used. Although CART

is able to model complex interactions naturally, it faces difficulty when modeling non-

linear interactions. In contrast, ANN and SVM excel at modeling non-linearities but

may face difficulties when modeling complex interactions.

Because our goal is prediction, we prefer regression methods that are able to

account for non-linear main and multiple-way interaction effects. Bayesian additive
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regression trees (BART; Chipman et al., 2010b) is one such model which allows flexible

estiamtion of non-linear main and multiple-way interaction effects without much input

from the researcher. Hence, we employed BART to predict whether a human-driven

vehicle would stop before executing a left turn at an intersection. However, BART was

designed for independent subjects, but we would like to evaluate the tendencies of each

driver and decide whether including their tendency would improve the prediction of

whether a human-driven vehicle would stop before executing a left turn. We are aware

of two papers that extended BART to handle longitudinal or clustered observations:

Zhang et al. (2007) used a spatial random intercept BART to merge two datasets,

and Low-Kam et al. (2015) did so in a dose-finding toxicity study. Zhang et al.

(2007) developed an imputation model for a statistical matching problem Rässler

(2002) that used BART with a conditional auto-regressive distribution for the random

intercept. Since the correlation our dataset was induced by repeated measurements

and not spatial effects, the distribution Zhang et al. (2007) placed on the random

intercept may not be appropriate. Moreover, they did not discuss how their model

could be extended to clustered binary outcomes. Low-Kam et al. (2015) investigated

the associations between the physico-chemical properties of nanoparticles and their

toxicity profiles over multiple doses. The complex nature of their goal prompted them

to first specify an autoregressive covariance matrix with truncated support on [0, 1] to

handle the correlated measurements, and then they specified a conditionally conjugate

P-spline prior for the terminal nodes of the regression trees. The complexity of their

method makes implementation to our dataset difficult since our outcomes are binary.

Neither papers provided convenient software for implementing their methods.

Motivated by the lack of an appropriate and straightforward method to implement

BART to handle clustered binary outcomes, we propose an extension of BART to

account for longitudinal binary observations. Our proposed method accounts for

clustering by adding a random intercept to BART and we call this random intercept
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BART (riBART). We proceed by first providing a review of BART in the next section

followed by a discussion of how we extended BART to riBART in Section 3. In Section

4, we use a simulation study to compare the performance of riBART against BART,

fixed effects BART, and linear regression models when applied to clustered datasets.

We implement riBART on our dataset and compare its prediction performance with

BART, fixed effects BART, random intercept linear logistic regression, and multiple

linear logistic regression in Section 5. Finally, we conclude with a discussion and

possible future work in Section 6.

3.2 Bayesian Additive Regression Trees

3.2.1 Continuous outcomes

Denote a continuous outcome Yk with associated p covariates Xk = (Xk1, . . . , Xkp)
T

for k = 1, . . . , n subjects. BART models the outcome as

Yk =
m∑
j=1

g(Xk, Tj,Mj) + εk εk
i.i.d.∼ N(0, σ2) (3.1)

where Tj is the jth binary tree structure and Mj = (µ1j, . . . , µbjj)
T is the set of bj

terminal node parameters associated with tree structure Tj Chipman et al. (2010b).

g(Xk, Tj,Mj) can be viewed as the jth function that assigns the mean µij to the kth

outcome, Yk. Typically, the number of trees m is fixed and no prior distribution is

placed on m. Chipman et al. (2010b) suggested setting m = 200 as this performs

well in many situations. Alternatively, cross-validation could be used to determine m

Chipman et al. (2010b).

The joint prior distribution for Eq. (3.1) is P [(T1,M1), . . . , (Tm,Mm), σ]. Note

that by the independence of εk and (Tj,Mj) as well as the independence between

all m tree structures and terminal node parameters, the joint prior distribution
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P [(T1,M1), . . . , (Tm,Mm), σ] can be decomposed as

P [(T1,M1), . . . , (Tm,Mm), σ] = [
m∏
j=1

P (Tj,Mj)]P (σ)

= [
m∏
j=1

P (Mj|Tj)P (Tj)]P (σ)

= [
m∏
j=1

{
bj∏
i=1

P (µij|Tj)}P (Tj)]

× P (σ).

where i = 1, . . . , bj indexes the terminal node parameters in tree j. This implies

that we need to assign priors to Tj, µij|Tj, and σ in order to obtain the posterior

distributions of Tj, µij, and σ. Chipman et al. (2010b) suggested the following prior

distributions on µij|Tj and σ:

µij|Tj ∼ N(µµ, σ
2
µ),

σ2 ∼ IG(
ν

2
,
νλ

2
).

where IG(α, β) is the inverse gamma distribution with shape parameter α and rate

parameter β. The prior distribution of P (Tj) can be specified using three aspects:

(i) the probability that a node at depth d = 0, 1, 2, . . . is an internal node given

by α(1 + d)−β where α ∈ (0, 1) and β ∈ [0,∞) so that α controls how likely a

terminal node in the tree would split, with a smaller α implying lesser likelihood

a terminal node would split, and β controls the number of terminal nodes, and a

larger β decreasing the number of terminal nodes; (ii) the distribution used to choose

which covariate to be selected for the decision rule in an internal node; and (iii) the

distribution for the value of the selected covariate for the decision rule in an internal

node. Chipman et al. (2010b) suggests a discrete uniform distribution for the available

covariates and values in both (ii) and (iii) respectively, although other more flexible
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distributions could be used Kapelner and Bleich (2016).

In Chipman et al. (2010b), α = 0.95 and β = 2. For µµ and σµ, they are set such

that N(mµµ,mσ
2
µ) assigns high probability to the interval (min

k
(Yk),max

k
(Yk)). This

can be achieved by defining v such that min
k

(Yk) = mµµ − v
√
mσµ and max

k
(Yk) =

mµµ+v
√
mσµ. For convenience when implementing the posterior draws of Tj and µij,

Chipman et al. (2010b) suggested transforming the observed Yk to Ỹk =
Yk−

min
k

(Yk)+max
k

(Yk)

2

max
k

(Yk)−min
k

(Yk)
,

and then treating Ỹk as the outcome. This has the effect of allowing the hyperpa-

rameter of µµ to be set as µµ = 0 and σµ to be set as σµ = 0.5
v
√
m

where v is to be

chosen. For v = 2, N(mµµ,mσ
2
µ) assigns a prior probability of 0.95 to the interval

(min
k

(Y ),max
k

(Y )) and is the suggested value. Finally for ν and λ, Chipman et al.

(2010b) suggested setting ν = 3 and λ is the value such that P (σ2 < s2; ν, λ) = 0.9

where s2 is the estimated variance of the residuals from the multiple linear regression

with Yk as the outcomes and Xk as the covariates.

This setup induces the posterior distribution P [(T1,M1), . . . , (Tm,Mm), σ|Yk] which

can be simplified to two major posterior draws using Gibbs sampling. First, draw m

successive

P [(Tj,Mj)|T(j),M(j), Yk, σ] (3.2)

for j = 1, . . . ,m, where T(j) and M(j) consist of all the tree structures and ter-

minal nodes except for the jth tree structure and terminal node; and then, draw

P [σ|(T1,M1), . . . , (Tm,Mm), Yk].

To obtain a draw from Eq. (3.2), note that this distribution depends on

(T(j),M(j), Yk, σ) through

Rkj = Yk −
∑
w 6=j

g(Xk, Tw,Mw), (3.3)

the residuals of the m − 1 regression sum of trees fit excluding the jth tree. Thus,

Eq. (3.2) is equivalent to the posterior draw from a single regression tree Rkj =
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g(Xk, Tj,Mj) + εk or

P [(Tj,Mj)|Rkj, σ]. (3.4)

We can obtain a draw from Eq. (3.4) by first drawing from P (Tj|Rkj, σ) using a

Metropolis-Hastings (MH) algorithm outlined in Chipman et al. (1998). A new tree

T ∗j can be proposed given the previous tree Tj by four steps: (i) grow, where a terminal

node is split into two new child nodes; (ii) prune, where two terminal child nodes

immediately under the same non-terminal node is combined together such that their

parent non-terminal node becomes a terminal node; (iii) swap, where the splitting

criteria of two non-terminal nodes are swapped; (iv) change, where the splitting

criteria of a single non-terminal node is changed. Once we draw P (Tj|Rkj, σ), we then

draw P (µij|Tj, Rkj, σ) ∼ N(
σ2
µ

∑ni
i rij+σ

2µµ

niσ2
µ+σ2 ,

σ2σ2
µ

niσ2
µ+σ2 ), where rij is the subset of elements

in Rkj allocated to the terminal node with parameter µij and ni is the number of rijs

in Rkj allocated to µij. Note that µµ = 0 after transformation. Complete details for

the derivation of P (µij|Tj, Rkj, σ) and P [σ|(T1,M1), . . . , (Tm,Mm), Yk] are provided

in the supplementary materials available online. Explicit MH algorithm details for

Eq. (3.4) can be found in Appendix A of Kapelner and Bleich (2016).

3.2.2 Binary outcomes

Extending BART to binary outcomes involve a modification of Eq. (3.1). First,

let

G(Xk) =
m∑
j=1

g(Xk, Tj,Mj). (3.5)

Using the probit formulation, the binary outcomes Yk can be linked to Eq. (3.5) using

P (Yk = 1|Xk) = Φ[G(Xk)] where Φ[.] is the cumulative density function of a standard

normal distribution. This formulation implicitly assumes that σ ≡ 1. Assuming once

again that all m tree structures and terminal node parameters are independent, this

implies that we only need priors for Tj and µij|Tj. Chipman et al. (2010b) assumes
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that priors for Tj and µij as well as the hyperparameters for α and β are the same

as BART for continuous outcomes. However, for the hyperparameters of µµ and σµ,

Chipman et al. (2010b) suggested that µµ and σµ should be chosen such that G(Xk)

is assigned to the interval (−3, 3) with high probability. This can be achieved by

setting µµ = 0 and choosing an appropriate v in the formula σµ = 3
v
√
m

. Similar to

the continuous outcome case, Chipman et al. (2010b) suggested v = 2.

To draw from the posterior distribution P [(T1,M1), . . . , (Tm,Mm)|Yk], Chipman

et al. (2010b) proposed the use of data augmentation Albert and Chib (1993); Tanner

and Wong (1987). This method proceeds by first generating a latent variable Zk

according to

(Zk|Yk = 1,Xk) ∼ N(0,∞)(G(Xk), 1)

(Zk|Yk = 0,Xk) ∼ N(−∞,0)(G(Xk), 1),

where N(a,b)(µ, σ
2) is the truncated normal distribution with mean µ and variance

σ2 truncated to the range (a, b). Once Zk is drawn, P [(T1,M1), . . . , (Tm,Mm)|Zk] is

drawn next as in Eq. (3.2) to Eq. (3.4) with the latent variables Zk replacing Yk in

Eq. (3.2) and σ fixed at 1. Note that at each iteration, G(Xk) will be updated with

the new (T1,M1), . . . , (Tm,Mm) draws from P [(T1,M1), . . . , (Tm,Mm)|Zk] so that an

updated draw of the latent variable Zk can be obtained.

3.3 Random Intercept BART

3.3.1 Continuous outcomes

We now extend BART to account for repeated measurements. We start with

the clustered continuous outcomes. We introduce to Eq. (3.1) a random intercept

ak, k = 1, . . . , K. Here, k still indexes the subjects but i = 1, . . . , nk indexes the
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observations within a subject. With the addition of ak, Eq. (3.1) becomes

Yik =
m∑
j=1

g(Xik, Tj,Mj) + ak + εik, (3.6)

where εik
i.i.d.∼ N(0, σ2), ak

i.i.d.∼ N(0, τ 2), and ak⊥εik. We decompose the joint prior

distribution (assuming σ2 and τ 2 are a priori independent) as

P [(T1,M1), . . . , (Tm,Mm), σ, τ ] = [
m∏
j=1

{
bj∏
l=1

P (µlj|Tj)}P (Tj)]

× P (σ)P (τ).

Next, we place the same prior distributions as the independent BART model for Tj,

µlj|Tj (this is µij for the independent BART model), and σ2. The prior distribution

of τ 2 could be set as ∼ IG(1, 1) although other specifications are definitely possible.

We explore some alternatives in our supplementary materials available online. We

use the same hyperparameter values for α, β, µµ, and ν that Chipman et al. (2010b)

suggested for the independent BART model. For σµ, we found that σµ = 1.96
v
√
m

worked

better for reasons we shall discuss later in this section. For λ, we first estimated

the outcomes Yik using multivariate adaptive regression splines (MARS; Friedman,

1991) with Xk as the predictors. We then estimated an initial random intercept,

â
(0)
k , by taking the mean of the MARS residuals for each k. Finally, we obtained an

initial estimate of σ2 using s(0)2 =
∑K
k=1

∑nk
i=1(Yik−Ŷ

(0)
ik −â

(0)
k )2

N−N(1−
√

RSS
GCV×N )

, where N =
∑K

k=1 nk, RSS

and GCV are the residual sum of squares and generalized cross-validation value from

MARS respectively, and N(1 −
√

RSS
GCV×N ) is the effective number of parameters in

MARS. Then λ can be set as the value such that P (σ2 < s(0)2; ν, λ) = 0.9. We call

this model the random intercept BART (riBART).

To draw from the posterior distribution of riBART, we employ a Metropolis within

Gibbs procedure. We first draw the Gibbs sample of σ, τ , and ak separately from their
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respective posterior distribution. Then, using the updated ak, we obtain Ỹik = Yik−ak.

Now Ỹik|Xk can be viewed as a BART model. The idea of viewing Ỹik|Xk as a BART

model has been discussed in Zhang et al. (2007) and Dorie et al. (2016). To allow

for convenient implementation of the posterior draws of Tj and µlj|Tj, we transform

the outcomes Ỹik to Y̌ik =
(2×1.96)[Ỹik−

min
i,k

(Ỹik)+max
i,k

(Ỹik)

2
]

max
i,k

(Ỹik)−min
i,k

(Ỹik)
. This transformation produced

posterior draws for σ and τ with better repeated sampling properties across the range

of our simulation studies compared to the usual transformation employed in BART,

and suggests setting σµ = 1.96
2
√
m

so that (min
i,k

(Ỹik),max
i,k

(Ỹik)) has a prior probability of

0.95. We suspect this transformation produces better repeated sampling properties

for the posterior draws of σ and τ because it controls the range of values Y̌ik would

vary in. Further investigation beyond the scope of this paper is needed in order to

determine why this is the case. After obtaining Y̌ik, we use Y̌ik as the outcome in the

BART algorithm to obtain the posterior distribution of Tj. In our implementation, we

employed the grow and prune steps for the proposal of a new tree T ∗j for computational

ease. Given Tj, we then draw µlj. Derivation of the Gibbs sampling distributions of

σ, ak, and τ are provided in the supplementary materials available online.

3.3.2 Binary outcomes

Extending riBART to binary outcomes proceed in a similar fashion. We add ak

to Eq. (3.5) to obtain

Ga(Xik) =
m∑
j=1

g(Xik, Tj,Mj) + ak. (3.7)

We once again assume ak ∼ N(0, τ 2). To link the sum of trees to the binary outcomes

Yik, we use the probit link and write P (Yik = 1|Xik) = Φ[Ga(Xik)]. We suggest prior

distributions similar to the continuous outcomes riBART for Tj, µlj, and τ 2. The

same hyperparameters in BART for binary outcome can be used for α, β, µµ, and σµ.
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To obtain the posterior draws of Tj, Mj, ak, and τ 2, we employ the data augmentation

method suggested by Albert and Chib (1996). First, we draw a latent variable Zik

according to

(Zik|Yik = 1,Xik) ∼ N(0,∞)(Ga(Xik), 1)

(Zik|Yik = 0,Xik) ∼ N(−∞,0)(Ga(Xik), 1).

We then draw τ followed by ak. Next, we remove ak from Zik to obtain Z̃ik =

Zik−ak. Z̃ik|Xik can now be viewed as a continuous BART model and the usual BART

algorithm can be applied with σ fixed at 1. In our implementation, we employed a

further transformation of Z̃ik to Žik =
6[Z̃ik−

min
i,k

(Z̃ik)+max
i,k

(Z̃ik)

2
]

max
i,k

(Z̃ik)−min
i,k

(Z̃ik)
. This keeps Žik within

the range of (−3, 3), which we found produces posterior draws for τ with better

repeated sampling properties across the range of our simulation studies. The posterior

draw is then completed by updating Zik using the most recent posterior draws of

(T1,M1), . . . , (Tm,Mm), and ak.

3.4 Simulation Study

We conducted a simulation study to determine the in-sample performance of riB-

ART compared to three alternative methods on a longitudinal dataset with correlated

outcomes. The methods we considered were: (I) BART, (II) riBART, (III) fixed ef-

fects BART where variables indicating which row belonged to which subject was

added as a predictor in BART, and (IV) multiple linear regression (MLR) for con-

tinuous outcomes or multiple linear logistic regression (MLLR) for binary outcomes.

We focused on the prediction performance of the models by using the mean squared

error (MSE; continuous) and area under the receiver operating characteristic curve

(AUC; binary) produced by each model. In addition, we investigated the bias, root

mean squared error (RMSE), 95% coverage, and average 95% credible interval length
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(AIL) of
∑m

j=1 g(Xik, Tj,Mj) + ak abbreviated as g(x) + ak and σ (for continuous

correlated outcomes only).

We generated our correlated outcomes dataset by first drawing the predictors

using Xikq
i.i.d.∼ Uniform(0, 1), q = 1, . . . , 10. For continuous outcomes, we generated

Yik = 10 sin(πXik1Xik2) + 20(Xik3 − 0.5)2 + 10Xik4 (3.8)

+ 5Xik5 + ak + εik

where εik
i.i.d.∼ N(0, σ2), ak

i.i.d.∼ N(0, τ 2), and ak⊥εik. For binary outcomes, we first

generated

Ga(Xik) = 1.35[sin(πXik1Xik2) + 2(Xik3 − 0.5)2] (3.9)

− 1.35Xik4 − 0.675Xik5 + ak

where ak
i.i.d.∼ N(0, τ 2). Then, we generated the binary outcomes Yik by drawing

Zik ∼ N(Ga(Xik), 1) and setting Yik = 1 if Zik > 0, otherwise Yik = 0. Eq. (3.8) and

Eq. (3.9) suggest that only the first 5 predictors were important for prediction. The

rest of the predictors were “junk” variables.

For the study design, we considered K = 50 clusters with nk = 5 observations

per cluster and K = 100 clusters with nk = 20 observations per cluster. We also

considered τ = 0.5 and τ = 1. This produces eight different simulation scenarios

summarized in Tables 3.1 and 3.2. For each simulation, we conducted 1,000 burn ins

followed by 5,000 posterior draws. Bias, RMSE, 95% coverage, AIL, MSE, and AUC

were estimated from 200 simulations for each scenario. All our simulations were done

in R 3.1.1 R Core Team (2015).

Figure 3.1 shows the boxplots of the MSEs for scenarios 1 to 4 while Figure 3.2

shows the boxplots of the AUCs produced for scenarios 5 to 8. For Figure 3.1, because

the boxplots of the MSE for MLR were much larger compared to the rest of the
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methods, these boxplots were not presented in the manuscript. Interested readers may

refer to our supplementary materials available online for the graphs including MLR

results. For continuous correlated outcomes, riBART produces a clear advantage

compared to BART and fixed effects BART when K = 100, nk = 20, and τ = 1. In

other simulation scenarios, riBART does not seem to produce lower MSEs compared

to BART and fixed effects BART. For binary correlated outcomes, the advantage of

BART in terms of producing a better AUC is more apparent. We observed from

Figure 3.2 that riBART produces the higher AUC compared to BART, fixed effects

BART, and MLLR in all our simulation scenarios. This suggests that for continuous

correlated outcomes, riBART may not yield an obvious prediction advantage except

when the values of K, nk, and τ are large. However, for binary correlated outcomes,

riBART would produce an obvious prediction advantage regardless of K, nk, and τ .

In terms of the inference for the parameters
∑m

j=1 g(Xik, Tj,Mj) + ak and σ,

Table 3.1 suggests that for continuous correlated outcomes, the bias and RMSE for

all methods would be similar under all scenarios for g(x) +ak. However, the coverage

for riBART would be closer to the nominal coverage of 95% under all scenarios. For

σ, the bias produced by riBART was usually the smallest and coverage was usually

the highest. These results suggest that riBART should be employed for continuous

correlated outcomes if inference for
∑m

j=1 g(Xik, Tj,Mj) + ak or σ are desired. For

binary correlated outcomes, the main focus of our paper, Table 3.2 suggests that

riBART usually has the smallest bias compared with BART, fixed effects BART, and

MLLR under all simulation scenarios. riBART also has the better coverage in our

simulation scenario compared to the rest of the methods we considered. These results

together with the AUC results from Figure 3.2 suggest that for binary correlated

outcomes, riBART should be employed.
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Figure 3.1: Boxplots of mean squared error (MSE) for continuous correlated outcomes
produced by BART, Fixed effects BART, and riBART.

(a) nk = 5, K = 50, τ = 1, σ = 1 (b) nk = 20, K = 100, τ = 1, σ = 1
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Figure 3.2: Boxplots of area under the receiver operating characteristic curve (AUC)
for binary correlated outcomes produced by BART, Fixed effects BART,
MLR, and riBART.

(a) nk = 5, K = 50, τ = 1 (b) nk = 20, K = 100, τ = 1
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Table 3.1: Simulation results for continuous correlated outcomes. Bias and coverage
of

∑m
j=1 g(Xk, Tj,Mj) + ak (g(x) + ak) and σ for BART, riBART, fixed

effects BART, and multiple linear regression (MLR).
Scenario 1: continuous, nk = 5, K = 50, τ = 1, σ = 1

g(x) + ak σ
Bias RMSE Coverage (%) AIL∗ Bias RMSE Coverage (%) AIL

BART < 0.01 0.06 95.05 3.40 0.04 0.14 92.00 0.51
riBART < 0.01 0.06 95.44 3.22 -0.04 0.07 99.50 0.41
Fixed effects BART < 0.01 0.06 94.68 3.18 0.11 0.15 83.00 0.42
MLR < 0.01 0.06 48.72 6.92 3.64 3.64 0.00 0.76

Scenario 2: continuous, nk = 20, K = 100, τ = 1, σ = 1

g(x) + ak σ
Bias RMSE Coverage (%) AIL Bias RMSE Coverage (%) AIL

BART < 0.01 0.02 82.72 2.50 0.32 0.33 0.00 0.10
riBART < 0.01 0.02 92.77 1.81 -0.01 0.02 92.50 0.08
Fixed effects BART < 0.01 0.02 89.57 1.78 0.06 0.06 34.50 0.11
MLR < 0.01 0.02 45.74 6.42 3.69 3.70 0.00 0.27

Scenario 3: continuous, nk = 5, K = 50, τ = 0.5, σ = 1

g(x) + ak σ
Bias RMSE Coverage (%) AIL Bias RMSE Coverage (%) AIL

BART < 0.01 0.06 89.22 2.64 -0.24 0.25 37.50 0.41
riBART < 0.01 0.06 94.80 3.05 -0.09 0.10 96.00 0.37
Fixed effects BART < 0.01 0.06 94.66 3.09 0.07 0.12 90.00 0.40
MLR < 0.01 0.06 49.32 6.91 3.56 3.56 0.00 0.74

Scenario 4: continuous, nk = 20, K = 100, τ = 0.5, σ = 1

g(x) + ak σ
Bias RMSE Coverage (%) AIL Bias RMSE Coverage (%) AIL

BART < 0.01 0.02 91.02 2.04 0.05 0.05 36.00 0.08
riBART < 0.01 0.02 92.69 1.78 -0.01 0.02 91.00 0.08
Fixed effects BART < 0.01 0.02 90.03 1.76 0.05 0.05 45.50 0.11
MLR < 0.01 0.02 46.26 6.42 3.61 3.62 0.00 0.27

*AIL = Average interval length.
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Table 3.2: Simulation results for binary correlated outcomes. Bias and coverage of∑m
j=1 g(Xk, Tj,Mj)+ak (g(x)+ak) for BART, riBART, fixed effects BART,

and multiple linear logistic regression (MLLR).
Scenario 5: binary, nk = 5, K = 50, τ = 1

g(x) + ak
Bias RMSE Coverage (%) AIL∗

BART 0.02 0.09 73.01 2.12
riBART 0.01 0.10 93.31 2.61
Fixed effects BART 0.03 0.09 62.77 1.61
MLLR < 0.01 0.11 43.13 1.37
Scenario 6: binary, nk = 20, K = 100, τ = 1

g(x) + ak
Bias RMSE Coverage (%) AIL

BART 0.02 0.04 52.35 1.40
riBART < 0.01 0.03 94.56 1.62
Fixed effects BART 0.02 0.04 53.60 1.08
MLLR -0.01 0.04 32.54 1.01
Scenario 7: binary, nk = 5, K = 50, τ = 0.5

g(x) + ak
Bias RMSE Coverage (%) AIL

BART < 0.01 0.08 92.51 2.13
riBART < 0.01 0.08 95.32 2.22
Fixed effects BART 0.01 0.08 84.27 1.63
MLLR -0.02 0.11 62.14 1.53
Scenario 8: binary, nk = 20, K = 100, τ = 0.5

g(x) + ak
Bias RMSE Coverage (%) AIL

BART < 0.01 0.03 80.72 1.42
riBART < 0.01 0.03 94.81 1.40
Fixed effects BART 0.01 0.03 78.53 1.05
MLLR -0.02 0.05 51.40 1.18

*AIL = Average interval length.
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3.5 Predicting Driver Stop before Left Turn Execution

Given the success of riBART in our simulation scenarios, especially for possibly

correlated binary outcomes, we now turn to investigate whether this superior perfor-

mance produced by riBART would propagate to our dataset.

3.5.1 Integrated Vehicle-Based Safety Systems (IVBSS) Study

The dataset we used to develop our prediction model was obtained from the

Integrated Vehicle Based Safety System (IVBSS) study conducted by Sayer et al.

(2011). This study collected naturalistic driving data from 108 licensed drivers in

Michigan between April 2009 and April 2010. In the study, 16 late-model Honda

Accords were fitted with cameras, recording devices, and several integrated collision

warning systems. Each driver used a vehicle for a total of 40 days – 12 days baseline

period with IVBSS switched off followed by 28 days with IVBSS activated. Since

our objective was to develop a prediction model for human driving behavior, we used

the 12 days baseline unsupervised driving data. In total, the 107 drivers made 1,822

left turns (One driver removed because he or she only made one left turn). Each

driver took on average of 35 turns, with a range of 8 to 139 turns per driver. This

suggests that riBART could potentially improve the prediction performance of our

model compared to BART, while simultaneously producing an estimate of a driver’s

tendency to stop before executing a left turn.

3.5.2 Data preparation

A detailed description of how we determined and prepared our dataset for analysis

using riBART can be found in the Appendix C. We provide a brief description in the

following paragraphs to aid discussion.

We begin by extracting both the speed of the vehicle (in m/s) and the distance

traveled (in m) at 10 millisecond intervals starting from 100 meters away from the
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center of an intersection. To obtain a practical prediction model, we converted the

time series of vehicle speeds to a distance series to provide a distance-varying definition

for our binary outcomes of whether a vehicle would stop before executing a left turn in

the future. Our outcome was whether a vehicle would eventually stop before executing

a left turn, estimated repeatedly at 1 meter intervals before the intersection. We

defined Yikd = 1 for the vehicle that would stop eventually before executing a left

turn where d is the dth meter from the center of an intersection and i indexes the

turns for driver k, i = 1, . . . , nk. For the vehicles that would not stop before executing

a left turn, we defined them as Yikd = 0. For example, if the vehicle’s current location

is -45 meters, the outcome is whether the vehicle will stop between -44 and -1 meter.

If a vehicle stops and restarts, the outcome is reset: a vehicle that stops at -40 meters

and then proceeds through the intersection will have an outcome of 1 (stopping) from

-94 to -40 meters, and 0 (not stopping) from -39 to -1 meters.

Figure 3.3 shows the resulting profile of proportion of stops from -100 meters to

the center of the intersection (0 meters). We can see that majority (about 65%) of

the left turns did not stop before executing a left turn. At -100m, about 35% of the

vehicles would stop before executing a left turn. As vehicles approach the center of an

intersection, the proportion of vehicles that eventually stop decreases gradually until

about -25m. Beyond -25m, there was a quick drop in the proportion of vehicles that

stop suggesting that most vehicles ‘decide’ to stop about 25m away from the center

of an intersection.

At any given distance, we could use the full profile of a vehicle’s past speeds as the

predictors, but these speeds may contain irrelevant information. Thus, we employed

Principal Components Analysis (PCA) to summarize the distance series of vehicle

speeds. A detailed description of our decision to use PCA can be found in Tan et al.

(2017). In brief, we found that the principal components (PCs) of vehicle speed

provided us with much more information than just dimension reduction. The first
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Figure 3.3: Proportion of vehicles in our study that would be stopped ( ≤ 1m/s) at
some future point for each meter away from the center of an intersection.
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three PC loadings were fairly similar meter by meter as the vehicle approaches the

center of an intersection. In addition, these PCs seemed fairly interpretable as first,

second, and third derivatives of the vehicle’s location relative to the center of the

intersection. The first PC could be loosely interpreted as average speed, second PC

as acceleration, and third PC as jerk, change in acceleration. We only included the

first two PCs as our predictors because the first two PC scores explained more than

99% of the variation in vehicle speed at all distances (See Figure 3.4). In addition,

we found that adding PC scores beyond these did not produce a large improvement

in prediction (See Figure 3.5).

To decide on our preliminary prediction method, we compared the AUC perfor-

mance of the following models: logistic regression with polynomial transformation

on the predictors, logistic regression with splines for the predictors, BART, and Su-

perLearner van der Laan and Polley (2010) with elastic net Friedman et al. (2010),

logistic regression, K-Nearest Neighbor, generalized additive models Hastie and Tib-

shirani (1990), mean of the outcomes, and BART as the ensemble learners (results

not shown here). BART easily outperformed all of the approaches with respect to

AUC except the SuperLearner. For the SuperLearner, it sometimes somewhat out-

performed BART at a far distance from the intersection but as the vehicle approaches

the intersection, SuperLearner stabilized at or a little below BART. Given the un-

stable AUC performance of the SuperLearner, we focused our attention on extending

BART to account for the clustering in our dataset.

Incorporating information from further distances into the estimation of the PCs

might also introduce noise to our two PC predictors. Hence, we estimated 8 sets of

the first and second PCs from the moving window of vehicle speeds with lengths 3

meters, 4 meters, . . ., 10 meters. We then computed the 10-fold cross validation AUC

profile produced by each set with the first and second PCs as the predictor and BART

as the model. We finally compared these 8 different AUC profiles and found that a
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Figure 3.4: Principal Component loadings for the first and second PC from -95m to
-90m, -70m to -65m, -45m to -40m, and -20m to -15m (left to right). The
percentages indicate the proportion of variation explained by each PC.
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Figure 3.5: Comparing the Area Under the receiver operating characteristic Curve
(AUC) profile gains of including each Principal Component (PC) in the
logistic regression model.
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Table 3.3: Example of resulting matrix for our IVBSS study dataset.
d k i Xikd1 Xikd2 Xikd3

1 1 1 x x x
...

...
...

...
...

...
1 1 n1 x x x
1 2 1 x x x
...

...
...

...
...

...
1 2 n2 x x x
...

...
...

...
...

...
1 107 n107 x x x
2 1 1 x x x
...

...
...

...
...

...
2 1 n1 x x x
...

...
...

...
...

...
94 107 n107 x x x

window length of 6 meters gave us the best balance between AUC value and window

length. The result of this comparison can be found in Figure 6 of (Tan et al., 2017).

Finally, we included a categorical predictor, the number of times the vehicle has

stopped up to the current location, to adjust for the likely correlation within each

turn. The categories for this predictor were: for -94m to -64m, 0 or ≥ 1; for -63m

to -20m, 0, 1, or ≥ 2; and for -19m to -1m, 0, 1, 2, or ≥ 3. Table 3.3 illustrates the

resulting data matrix before analysis.

3.5.3 Analysis

We fit riBART with a random effect at the driver level which incorporates within-

driver correlation to our dataset. Because we fit riBART meter-by-meter, a slight

clarification in notation of the riBART is needed. We model P (Yikd = 1|Xikd) as

P (Yikd = 1|Xikd) = Φ[G(Xikd)],
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where Xikd = (Xikd1, Xikd2, Xikd3)T , k = 1, . . . , K indexes the drivers, i indexes the

turns for driver k, i = 1, . . . , nk, and d = −94, . . . ,−1 indexes the distance from the

center of an intersection. The riBART model is then

G(Xikd) =
m∑
j=1

g(Xikd, Tjd,Mjd) + akd, (3.10)

where akd ∼ N(0, τ 2
d ). Note that we are estimating each model at distance d separately

and assuming that there is a different random intercept for each driver at each d.

For comparison, we also ran BART, which ignores within-driver correlation; fixed

effects BART, which ignores within-driver correlation but adjusts for the driver effect

in the model; a random intercept linear logistic regression (riLogistic), which incor-

porates within-driver correlation but ignores non-linearity and complex interactions;

and MLLR, which ignores within-driver correlation, non-linearity, and complex inter-

actions. It may have been more straight forward to use polynomial or splines of our

first two PCs together with a random intercept to obtain a model that handles non-

linearity and driver correlations. Unfortunately, even simple models with a quadratic

main effect or a single knot spline at the mean or median produced convergence errors

for the random intercept GLM model. Hence, we did not include them as competitors

against riBART. We obtained the linear logistic regression using the glm function in

R while the random intercept linear logistic regressions were obtained using the glmer

function from the R package lme4. We compared the in-sample AUC of the six meth-

ods and computed the 95% CI of the AUCs using the method of Hanley and McNeil

(1982), which uses a linear approximation of the AUC to the Somer’s D statistic to

obtain an estimate of the variance of AUC. In addition, we investigated the propor-

tion of depth of the 200 regression trees over 5,000 iterations for each meter as well

as the marginal effects of each main effects and interaction to explore the additional

features provided by riBART.
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3.5.4 Results

Figure 3.6 shows (a) the the estimated intra-class correlation (ICC, τ2

τ2+1
) profile;

(b) the AUC profiles of riBART, BART, fixed effects BART, riLogistic, and MLLR;

and (c) the AUC profile difference between riBART versus BART, riBART versus

fixed effects BART, riBART versus riLogistic, and riBART versus MLLR.

The posterior mean profile of ICC was small, between about 0.12 and 0.15, and

fairly stable as the vehicle approaches the center of an intersection. This suggests

firstly that the variance parameter, τ , for the random intercept, ak, is small for left

turn stops and secondly that as the vehicle approaches the center of the intersection,

the effect of individual ‘habits’ of the driver remained relatively stable throughout

the left turn maneuver. For the AUC profile, we see evidence that riBART performed

better than BART, fixed effects BART, riLogistic, and MLLR. The difference in AUC

profile between riBART versus BART, riBART versus fixed effects BART, riBART

versus riLogistic, and riBART versus MLLR remained negative throughout the left

turn maneuver suggesting the superior prediction performance of riBART to the other

prediction methods we considered.

At 94m away from the center of intersection, riBART produced an AUC estimate

of 0.79 [95% C.I. (0.77, 0.81)]. Comparatively, fixed effects BART produced an AUC

of 0.76 (0.74, 0.78), BART produced an AUC of 0.74 (0.71, 0.76), riLogistic produced

an AUC of 0.73 (0.70, 0.75), and MLLR produced an AUC of 0.64 (0.61, 0.66). In

situations where last-second decisions are needed for example, Automatic Emergency

Braking, an AUC of 0.79 would not be enough. However, the application that we

envision for our algorithm is to provide further information to an oncoming driverless

vehicle and help it make better decisions in conjunction with its own sensor-based

algorithms. As such, almost any AUC value greater than 0.50 should improve the

decision made by the driverless vehicle. Most likely, a driverless vehicle would use

this information to adjust its own speed (up or down) so that any potential conflict
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Figure 3.6: (a) The intra-class correlation (ICC) profile of riBART as a factor of dis-
tance from the intersection; (b) Area under the receiver operating char-
acteristic curve (AUC) profile of riBART, BART, and random intercept
logistic regression (dotted lines are 95% Credible Interval); and (c) AUC
difference profile between riBART versus BART and riBART versus ran-
dom intercept linear logistic regression.
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Figure 3.7: Proportion of depth of regression tree meter by meter.
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between it and the human-driven turning vehicle is less ambiguous (e.g., speeding

up to pass before the turning vehicle would turn or slowing down to let the turning

vehicle go).

Figure 3.7 shows the proportion of depth of each regression tree meter by meter

from -94m away from the center of an intersection to -1m away from the center of

an intersection. About 90% of the regression trees employed by riBART were single

terminal nodes for every meter, 9% were trees with one internal node with two child

terminal nodes, and the rest, about 1%, had regression tree depths of more than 1.

This suggests a rather strong penalization effect for the tree structure depth which
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was what the BART portion of riBART was aiming for. We also investigated the

frequency of each main and interaction effect being used by each regression tree to

give us a sense of which main or interaction effect was most used, hence an indication

of effect importance (results not shown here). We found that the main effects were

most frequently used (excluding single terminal node trees) followed by the two-way

interactions and lastly the three-way interaction. These results suggest that the two

most important variables could be the first two PCs.

Figure 3.8 shows the smoothed marginal effect plots of all the main effects at

-45m (approximately halfway through the left turn). The clear non-linearity of the

main effects and the reduced use of the interactions by riBART suggests that the

substantial improvement provided by riBART over random intercept linear logistic

regression came from the non-linear effects. Since PC1 can be loosely interpreted as

the average speed, plot (a) suggest that at -45m, a higher average speed suggests a

lower probability of stopping with a sharp decline in the probability when the average

speed increases to around 12-13 m/s. As the average speed increases to about 17-18

m/s, the probability of stopping increases again. Smoothed marginal effect plots for

PC1 from -94m to -1m can be found in the supplementary materials available online.

For PC2, since it could be loosely defined as the acceleration of the vehicle, plot (b)

suggests that negative acceleration produces a higher probability of stopping while

positive acceleration produces a lower probability of stopping halfway through the

left turn maneuver. This result continues as the vehicle approaches the center of an

intersection. The smoothed marginal effect plots for PC2 from -94m to -1m can be

found in the supplementary materials available online. Note that for PC2, the PC

loadings sometimes suggest deceleration instead of acceleration i.e. the slope for PC2

in Figure 3.4 is negative instead of positive. We have placed a condition (multiplying

the loadings by -1 whenever this occurs) in our implementation to ensure that the

heuristic interpretation of PC2 will always stay as acceleration.
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Figure 3.8: Smoothed (a) marginal effect of PC1 (b) marginal effect of PC2; and (c)
boxplots of the predicted probability of stopping stratified by the number
of times a vehicle has stopped previously. Dotted red lines show smoothed
95% credible interval.
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Plot (c) shows the boxplot of the predicted probability of stopping stratified by

the number of times a vehicle has stopped previously before -45m. From the stratified

boxplots, we can see that as the number of times the vehicle has stopped previously

increases, the vehicle is slightly more likely to be predicted to stop before executing

a left turn.

In summary, Figure 3.8 suggests that vehicles with lower average speed, and/or

slowing down quickly, and/or have stopped multiple times previously would be more

likely to stop compared to vehicles with higher average speed, accelerating, and has

not made a previous stop. This agrees with our understanding of how a vehicle

would stop at an intersection before executing a left turn and suggests that riBART

is producing sensible results.

3.6 Discussion

In this paper, we developed a model, riBART, to help engineers developing self

driving vehicles predict whether a human-driven vehicle would stop at an intersection

before executing a left turn. We achieved this by utilizing the model that did well in

our preliminary analysis, BART, and extending it to account for the key feature in

our dataset, clustered observations. Although existing methods extending BART to

longitudinal datasets were available, our approach was more straight-forward and can

be implemented on correlated binary outcomes. We have also provided codes that

would implement riBART in our supplementary materials available online. Our codes

could be used to explore some of the properties and features that riBART provided

over the random intercept linear logistic regression. These results could help the

researcher make sense of the marginal effects provided by each variable estimated

using riBART.

Applying riBART to our dataset, substantial improvement in prediction compared

to BART can be obtained when we take into account that different drivers have dif-
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ferent ‘propensities to stop’ before executing a left turn at an intersection; that is, the

inclusion of a random intercept improves prediction performance for our dataset com-

pared to a model without a random intercept. This implies that future development

of an operational algorithm should try to accommodate the similarities of stopping

behavior for a given human driver through a learning algorithm. For example, devices

that are able to transmit information about a driver’s propensity to stop could be

installed on vehicles to improve the decision-making performance of the self driving

vehicle.

To elaborate, we are assuming that this method would be used to create a pre-

diction profile that would be broadcast to autonomous vehicles, thus utilizing all of

the available information on the turning behavior both across and within vehicles.

For a new vehicle to this system, we could treat the posterior means of the random

intercepts in our dataset as a “quasi” distribution for the random intercept of the

unseen driver. Alternatively, we could draw an initial random intercept distribution

using the posterior distribution of the random intercept variance parameter. Once

this driver makes a turn, their random intercept can be estimated and updated.

In our simulation study, we found that the 95% coverage for σ was reduced when

the number of clusters and the number of observations within a cluster was large

(nk = 20, K = 100). The likely cause for the poor coverage is due to low variation in

the posterior draw of σ resulting in reduced average 95% credible interval length. We

believe this low variation in σ is due to the regression trees in BART getting stuck at

certain tree structures. This phenomenon of regression trees getting stuck at certain

tree structures has been discussed by Pratola (2016) previously. The difference here

is that Pratola (2016) only reported observing regression trees being stuck when the

true σ is small for regression trees. We argue that regression trees might also get stuck

when the effective sample size, N , is large. This is because with a large N , deeper

trees tend to produce a better fit for Rkj in Eq. (3.3). However, when a regression
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tree gets deep, the standard grow, prune, change, and swap steps will have trouble

proposing new trees with radically different tree structures. This lack of radically

different tree structures implies reduced variability in the tree structures, which is

indirectly reflected by the lack of variation in σ.

This issue is separate from the development of BART in the correlated data con-

text, and indeed would occur even when observations are independent. We illustrate

this with an example using BART implemented via the BayesTree package in R.

We generated Yk = 10 sin(πXk1Xk2) + 20(Xk3 − 0.5)2 + 10Xk4 + 5Xk5 + εk with

Xkq
i.i.d.∼ Uniform(0, 1), q = 1, . . . , 5 and εik

i.i.d.∼ N(0, 1). We then ran 200 simulations

with σ = 1 and a sample size of 2,000. The resulting bias, RMSE, 95% coverage, and

AIL for σ were -0.04, 0.04, 79%, and 0.09 respectively. We observe once again that

although bias and RMSE were small, the 95% coverage for σ was far from nominal

because the AIL was small. We think that this issue of a lack in variation of σ when

the sample size is large could be solved by either increasing the number of regression

trees used, re-calibrating the α and β parameters used to penalize each regression

tree, or to include the rotate step proposed by Pratola (2016) in the proposal of a

new regression tree in the MH algorithm of BART. As inference about σ is not the

key focus of this paper, we leave investigation of this problem with BART to future

work.

Although our analysis of left turn data found that the first two PCs appeared to

be the most important predictors based on the frequency of the trees drawn, caution

should be exercised when using riBART to decide whether a variable was important.

This is because of the default discrete uniform prior we placed on the variables which

forces the model to use the variables uniformly for prediction. If variable selection is

desired, spike and slab priors could be considered but such an implementation would

go beyond the scope of this work.

Our proposed model only included a random intercept but, there may be situations
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where the researcher believes that there may be more complicated linear random effect

mechanisms occurring. In our application, estimating a “turn-level” random effect

nested within the driver-level random effect is possible. Eq. (3.10) could be modified

to become

G(Xikd) =
m∑
j=1

g(Xikd, Tjd,Mjd) + akd + lik,

where akd ∼ N(0, τ 2
d ), lik ∼ N(0, τ 2), and akd⊥lik. To estimate this model, we would

employ once again a Gibbs-sampling type method by drawing τ or lik conditional on

the rest of the parameters and the observed data. By estimating τ and comparing

it with τd, we could determine if we require additional variables to account for the

dependencies in our outcome. This is because if τ was much larger compared to

τd, this suggests that not all of the variation is captured by the driver level random

intercept and there is still some variation left at the turn level. However, such a

model is not practical for our prediction situation. This is because the estimated

turn-level effect would only be useful for prediction for that turn – but once that

turn is completed, we have no interest in predicting it. Other plausible areas for

future research include extending BART and riBART to outcomes of other forms, for

example, ordinal outcomes or counts.
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CHAPTER IV

“Robust-squared” Imputation Models Using

BART

4.1 Introduction

Missing data are common in many surveys and experiments. Data may be missing

because of the subject’s refusal to provide information or survey drop-out, or by the

design of the experiment or survey. If the amount of missing data is large, or if the

missing data differ from the observed data and would change our conclusions if we had

observed it, failure to account for missing data during analysis leads to biased param-

eter estimation and misleading conclusions. Missing data in surveys, including major

US transportation safety-related surveys, is very common. The National Automotive

Sampling System – Crashworthiness Data System (NASS-CDS) is representative of

all police-reported towaway crashes in the US. A key measure of crash severity is the

“instantaneous” change in velocity, delta-v. Because estimation of delta-v requires a

careful crash investigation that is not always possible, it is commonly missing. Sim-

ilarly, the Fatality Analysis Reporting System (FARS) releases information annually

from all fatal motor vehicle crashes that occur on US public roads. Here, blood alco-

hol concentration (BAC) levels are often missing because subjects were not tested at

the crash site.

55



Determining a dataset’s missingness mechanism is the first step in handling miss-

ing data. There are three categories of missingness mechanism: missing completely

at random (MCAR), where the data are missing by chance and are not related to ob-

served or unobserved variables; missing at random (MAR), where the data are missing

depending on some variables which are fully observed; and not missing at random

(NMAR), where the data are missing depending on the variable that contains the

missing value. In our examples, delta-v is often missing in vehicles that have either

quite limited damage (so that the vehicle may be been driven off and not available

for followup) or very severe damage (so that the algorithms used to estimate it do not

have reliable inputs); while this might seem to imply NMAR, there are a number of

observed measures such as towaway status, injury severity, and speed limit to make

the MAR assumption more plausible. Similarly, BAC measures are often missing in

subjects that did not appear to be intoxicated; again factors such as gender, age, time

of day, and crash severity can strengthen what, without other covariates, would seem

to imply an NMAR mechanism. Since MAR assumptions do not typically need to

rely on unobservable parameters and can be reasonable given sufficient fully observed

covariates, it is a common assumption that researchers adopt and shall be the focus

of this paper.

Common methods to handle missing data under MAR is to impute the missing val-

ues via mean imputation, regression imputation, or hot deck (Little and Rubin, 2002,

Chapter 4). Once the missing values are imputed, standard statistical techniques can

be employed as though there were no missingness in the dataset. To obtain valid

inferences, multiple imputation (MI) can then used to account for the imputation

uncertainty. MI first generates D imputed datasets. Then, the within and between

variability of the estimator are calculated and combined to give the total uncertainty

of the imputed estimator (See Little and Rubin, 2002, Chapter 5 ). MI usually rely

on modeling assumptions that might be incorrect or difficult to test.
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Robins et al. (1994) proposed a robust method, the augmented inverse probability

estimator (AIPWT), which separately models the response propensity and mean of

the outcome as a function of observed data, and yields a consistent estimator if either

model is specified correctly. Another robust method is the penalized splines of propen-

sity prediction (PSPP; Zhang and Little, 2009), which is based on a Bayesian predic-

tion framework different relative to the method proposed by Robins et al. (1994), but

having the same property that either a correct specification of response propensity or

mean model produces consistent estimates. These methods are usually called doubly

robust (DR) estimators. Extensions to multiply robust estimators that allow multiple

models to be specified and yield consistent estimates as long as at least one is correct

have been developed as well (Han and Wang , 2013).

Unfortunately, DR estimators may not work that well in situations where both

the propensity and mean models are misspecified. Kang and Schafer (2007) showed

this using a simulation example where both the propensity and mean model were

moderately misspecified. AIPWT and PSPP did worse in terms of bias compared

to a method that only used a mean model for imputation. For real-life datasets,

of course, true models are almost never known. Thus, modifying the AIPWT and

PSPP so that these methods are robust to misspecification of both the propensity and

mean model becomes important for AIPWT and PSPP to remain relevant outside

theoretical and simulation settings.

Current literature modifying DR estimators so that they become robust to mis-

specification mainly focus on two observations. First, the propensity model can pro-

duce large weights and hence cause severely biased estimates in DR estimators when

both propensity and mean models are incorrectly specified. Second, the propensity

and mean model are misspecified because of the non-linear main and multiple-way

interaction effects.

For the former observation, Kang and Schafer (2007) proposed to replace the
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logistic regression with the robit regression (Liu, 2004) where the robit regression

replaces the logistic link with the Student-t distribution. In Cao et al. (2009), they

recognized that good performance of the propensity model in AIPWT relies on the

summation of the multiplication of the propensity score and response being close

to the sample size. Hence, they suggested estimating the logistic regression with

the restriction that the summation of the multiplication of the propensity score and

response is approximately equal to the sample size. More recently, Imai and Ratkovic

(2014) proposed the covariate balancing propensity score (CBPS) where they focused

on balancing the moments of the covariates between missing and non-missing groups

instead of searching for a better parametric approach.

In this paper, we capitalize on the fact that the PSPP is already robust to the

misspecification of the mean model, since it only requires that residuals of the mis-

specified mean model be a smooth function of the probability of non-response. Hence,

a robust estimator of the response propensity will yield an estimator with especially

strong robustness properties. Specifically, we estimate the propensity model using

Bayesian additive regression trees (BART; Chipman et al., 2010b). BART models

the conditional mean of Y given X as a sum of regression trees. Use of regression

trees allows automatic incorporation of multi-way interactions; non-linear main ef-

fects and multi-way interactions can be incorporated through the summation of these

trees.

The use of BART as the imputation model is not entirely new. Xu et al. (2016)

suggested using BART for situations where there is sequential missingness while

Kapelner and Bleich (2015) suggested an approach to estimate regression trees if

there are missingness in the predictors. The novelty of our work is the combination

of the AIPWT or PSPP with BART to create a doubly-robust estimator where the

degree of the misspecification for the estimation of the propensity model is greatly

reduced: hence, our “robust-squared” terminology.
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We organize the rest of our manuscript as follows. In Section 2, we describe

our missing data problem followed by a brief review of the AIPWT, PSPP, and

BART. We present our proposed methods for extending AIPWT and PSPP followed

by suggesting two imputation methods using BART directly in Section 3. In Section 4,

we employ a simulation study to compare our proposed methods against AIPWT and

PSPP. In Section 5, we compared various imputation methods on the estimation of the

population mean of delta-v and unadjusted odds ratio of injury severity using the 2014

National Automotive Sampling System Crashworthiness Data System (NASS-CDS)

dataset as well as estimation of the population mean of Blood Alcohol Concentration

(BAC) and proportion of subjects with BAC more than .010 and .100 using the 2015

Fatality Analysis Reporting System (FARS) dataset. Section 6 concludes with a

discussion and possible future work.

4.2 Review of existing Doubly Robust methods for MAR

data

4.2.1 Description and Notation

Suppose we have a continuous outcome Yk, k = 1, . . . , n and we are interested

in estimation and inference of E[Y] = µ, the population mean. Let Rk = 1 denote

the kth element of Y is observed and Rk = 0 denote the kth element is missing. We

restrict to situations where missingness of Yk depends on p fully-observed covariates

Xk = (Xk1, . . . , Xkp)
T .

4.2.2 Robbins, Rotnitzky, Zhao (1994) augmented inverse probability es-

timator (AIPWT)

To address the missing data problem described above, Robins et al. (1994) pro-

posed a double robust estimator by solving a set of estimating equations. In brief, µ
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is estimated as

µ̂AIPWT =
1

n

n∑
k=1

{RkYk
Zk
− Rk − Zk

Zk
m(Xk, β̂)} (4.1)

where m(Xk, β̂) is the conditional mean of Yk and Zk is the conditional propensity

of response. Typically the conditional mean of Yk is estimated by multiple linear

regression (MLR)

m(Xk, β̂) = E[Yk|Xk; β̂] = β̂0 + β̂1Xk1 + . . .+ β̂pXkp. (4.2)

For Zk, logistic regression is typically used,

Zk = P (Rk = 1|Xk) =
exp(Xkθ̂)

1 + exp(Xkθ̂)
. (4.3)

The AIPWT estimator is doubly robust because

E[µ̂AIPWT ] = µ+ E[{Rk

Zk
− 1}{Yk −m(Xk, β̂)}], (4.4)

and under MAR assumption, E[{Rk
Zk
− 1}{Yk − m(Xk, β̂)}] = 0 if either the mean

or propensity model is correctly specified. Full details of the proof can be found in

Appendix D.

4.2.3 Penalized splines of propensity prediction (PSPP)

Another commonly used double robust estimator is the PSPP (Zhang and Little,

2009). First, equation (4.3) is computed followed by imputing Yk using

Yk = s[Zk|φ] + f(Xk1, . . . , Xkp, η) + εk (4.5)

where εk ∼ N(0, σ2) and s[Zk|φ] is the penalized spline formulation with H fixed knots

for Zk (Ruppert et al., 2003) and usually f(Xk1, . . . , Xkp, η) = η0+η1Xk1+. . .+ηpXkp.
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For s[P (Zk)|φ], we consider a penalized linear mixed effect model using cubic splines.

µ is estimated by taking the mean of Yks after imputation.

PSPP is doubly robust because when the mean model is specified correctly, the

propensity model may be treated as random noise. Hence, PSPP is consistent for

µ. Suppose the propensity model is specified correctly and we omit the mean model.

By the balancing property of the propensity score, E[Yk|Zk] = g(Zk) for an unknown

function g(.). Using a cubic spline for g(.) allows the robust estimation of g(Zk)

i.e., E[Yk|Zk] = g(Zk)
p→ µ. Zhang and Little (2009) showed that this property can

be extended to any misspecified form of f(Xk1, . . . , Xkp, η) so that E[Yk|Zk,Xk] =

g(Zk,Xk)
p→ µ if the propensity model is correctly specified. Details of this proof can

be found in Appendix E.

4.3 Proposed methods

4.3.1 Bayesian additive regression trees

4.3.1.1 Continuous outcomes

Suppose a continuous outcome Yk with associated p covariates Xk = (Xk1, . . . , Xkp)
T

for k = 1, . . . , n subjects. BART models the outcome as

Yk =
m∑
j=1

g(Xk, Tj,Mj) + εk εk
i.i.d.∼ N(0, σ2) (4.6)

where Tj is the jth binary tree structure and Mj = (µ1j, . . . , µbjj)
T is the set of bj

terminal node parameters associated with tree structure Tj (Chipman et al., 2010b).

The function g(Xk, Tj,Mj) can be viewed as the jth function that assigns the mean

µij to the kth outcome, Yk. Typically, the number of trees m is fixed and no prior

distribution is placed on m. Chipman et al. (2010b) suggested setting m = 200 as

this performs well in many situations. Alternatively, cross-validation could be used
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to determine m (Chipman et al., 2010b).

The joint prior distribution for (4.6) is

P [(T1,M1), . . . , (Tm,Mm), σ]. (4.7)

Assuming εk and (Tj,Mj) are independent and all m tree structures and terminal

node parameters are independent between each other, we decompose equation (4.7)

to become

[
m∏
j=1

{
bj∏
i=1

P (µij|Tj)}P (Tj)]P (σ) (4.8)

where i = 1, . . . , bj indexes the terminal node parameters in tree j. Assigning

priors to Tj, µij|Tj, and σ completes the setup of BART. The posterior draw of

P [(T1,M1), . . . , (Tm,Mm), σ|Yk] is achieved using a combination of Bayesian backfit-

ting (Hastie and Tibshirani , 2000) and Metropolis within Gibbs algorithm. Details of

the suggested priors and hyperparameters for Tj, µij|Tj, and σ as well as the Bayesian

backfitting and Metropolis within Gibbs algorithm can be found in Chipman et al.

(2010b).

4.3.1.2 Binary outcomes

Extending BART to binary outcomes involve a modification of (4.6). First, let

G(Xk) =
m∑
j=1

g(Xk, Tj,Mj). (4.9)

Using the probit formulation, the binary outcomes Yk can be linked to (4.9) using

P (Yk = 1|Xk) = Φ[G(Xk)] where Φ[.] is the cumulative density function of a standard

normal distribution. This implicitly assumes that σ ≡ 1. Assuming that all m tree

structures and terminal node parameters are independent, this implies that we only

need priors for Tj and µij|Tj. Further details regarding the prior distribution of
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binary outcomes BART can be found in Chipman et al. (2010b). To draw from the

posterior distribution, Chipman et al. (2010b) proposed the use of data augmentation

(Albert and Chib, 1993). This method proceeds by first generating a latent variable

Zk according to

(Zk|Yk = 1,Xk) ∼ N(0,∞)(G(Xk), 1)

(Zk|Yk = 0,Xk) ∼ N(−∞,0)(G(Xk), 1),

where N(a,b)(µ, σ
2) is the truncated normal distribution with mean µ and variance

σ2 truncated to the range (a, b). Once Zk is drawn, it is used to replace Yk in

the algorithm to calculate the posterior distribution of continuous outcomes BART

with σ fixed at 1. Note that at each iteration, G(Xk) will be updated with the new

(T1,M1), . . . , (Tm,Mm) draws from P [(T1,M1), . . . , (Tm,Mm)|Zk] so that an updated

draw of the latent variable Zk can be obtained.

4.3.2 Modifying the augmented inverse probability estimator with BART

To modify the AIPWT, we replace Zk in equation (4.1) with

Z∗k = P (Rk = 1|Xk) = Φ[G(Xk)]. (4.10)

G(Xk) is estimated using equation (4.9). Next, we model m(Xk, β̂) as a sum of

regression trees i.e replace equation (4.2) with

Yk =
m∑
j=1

g(Xk, Tj,Mj) + εk, (4.11)

where εk
i.i.d.∼ N(0, σ2). This allows the propensity model and mean model to be

approximately close to the true generating model if the true model contains non-

linear main and/or multiple-way interaction effects (Rockova and van der Pas , 2017).

63



4.3.3 Modifying PSPP using BART: Penalized splines of BART propen-

sity prediction (PSBPP)

We modify PSPP by replacing Zk in equation (4.5) with equation (4.10). This

gives

Yk = φ0 +
L∑
l=1

φlZ
∗l
k +

H∑
h=1

φL+h(Z
∗
k − τh)L+ + f(Xk1, . . . , Xkp, η) + εk. (4.12)

Since BART was used to estimate the propensity score, we call this the penalized

splines of BART propensity prediction (PSBPP).

4.3.4 Imputing directly using BART

Kang and Schafer (2007) argued that using the mean model is more appropriate

in situations where misspecifying both the propensity and mean model is high. Since

BART has the potential to approximate models with non-linear main and multiple-

way interaction effects closely, it may be more straight forward to impute Yk directly

using equation (4.11).

4.3.5 Adding the BART propensity score to BART

Although PSPP uses a spline to reduce model misspecification for the prediction

of Yk given Zk, possible interaction with Xk might still be present. Hence, using

BART at both stages of modeling may be worth considering where

Yk =
m∑
j=1

g(Z∗k ,Xk, Tj,Mj) + εk, (4.13)

with εk
i.i.d.∼ N(0, σ2), i.e. impute the missing Yk outcomes using equation (4.11) with

the addition of the BART estimated propensity score Z∗k as a predictor.
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4.4 Simulations

We used three simulation scenarios to investigate how misspecification due to

incorrect model would affect the bias, root mean squared error (RMSE), 95% coverage,

and average length of the 95% confidence interval (AIL) of PSPP, AIPWT, PSBPP,

AIPWT with BART, BART, and BARTps. For reference, we included the usual

sample mean estimator before partial removal of outcomes (BD), the complete case

estimation of the sample mean (CC), as well as imputation using only the mean model

(MLR).

4.4.1 Linear interaction in mean model

In scenario 1, we included a linear two-way interaction term in both the propensity

and mean model. We generated 2 predictors as Xk1 ∼ N(0, 0.5) and Xk2 = Xk1 +Wk

where Wk ∼ N(0.25, 0.5). The true propensity model was specified as

logit[P (Mk = 1|Xk1, Xk2)] =
1

3
{0.15 + 0.75(Xk1 +Xk2)− 2Xk1Xk2} (4.14)

and the mean model as

Yk = 10.8125 + 0.75(Xk1 +Xk2)− 2Xk1Xk2 + εk (4.15)

where εk
iid∼ N(0, 22). The resulting population mean for this model is 10.

We consider four types of model misspecification:

(i) Propensity model and mean model are specified correctly as equations (4.14)

and (4.15),

(ii) Mean model is misspecified by dropping the interaction term in equation (4.15),

(iii) Propensity model is misspecified by dropping the interaction term in equation
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(4.14), and

(iv) Both propensity and mean models are misspecified by dropping the interaction

terms in equations (4.14) and (4.15).

For BD and CC, note that because these estimators do not involve the specification

of a propensity or mean model when estimating the population parameter µ, the

estimators will be the same under all situations. For MLR, since it does not involve

the specification of a propensity model, the MLR estimate under situations (i) and

(iii), and (ii) and (iv) will be the same. Because BART automatically takes care of

non-linear main effects and non-linear multiple-way interaction effects, the PSBPP

estimator under situations (i) and (iii), and (ii) and (iv) will be the same. For the

AIPWT with BART, BART, and BARTps, because each of them rely on BART to

estimate their propensity and mean model, the estimators for all four situations will

be the same.

4.4.2 Quadratic interaction in mean model

In scenario 2, the propensity model is still equation (4.14), but the mean model

is now

Yk = 11.875 + 0.75(Xk1 +Xk2)− 2(Xk1Xk2)2 + εk (4.16)

where εk
iid∼ N(0, 22). Xk1 and Xk2 are generated as in subsection 4.1 and the pop-

ulation mean for this model is still 10. This scenario allows us to see how a slight

non-linear effect in the simple two-way interaction of the mean model would affect

the results of the eight mean estimation methods. The misspecification of the four

situations is similar to the previous section in that the misspecification will remove

the two-way interaction term.
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4.4.3 Kang and Schafer (2007) example

Our third scenario was the Kang and Schafer (2007) example. The propensity

model is given by

logit[P (Rk = 1|Uk1, Uk2, Uk3, Uk4)] = −Uk1 + 0.5Uk2 − 0.25Uk3 − 0.1Uk4, (4.17)

where Ukj
iid∼ N(0, 1), j = 1, . . . , 4. The mean model is given by

Yk = 210 + 27.4Uk1 + 13.7(Uk2 + Uk3 + Uk4) + εk (4.18)

where εk
iid∼ N(0, 1). In the misspecification situations, we assume that the Ukjs are

latent and we only observe Xkjs which are given by

Xk1 =
exp[Uk1]

2
,

Xk2 =
Uk2

1 + exp[Uk1]
,

Xk3 = [
Uk1Uk3

25
+ 0.6]3, and

Xk4 = [Uk2 + Uk4 + 20]2.

For the four situations, we use Ukjs to estimate the propensity and mean model

when both models are specified correctly. When the propensity model is specified

correctly but the mean model is misspecified, we use Ukj to estimate the propensity

model but replace the Ukj with Xkj when estimating the mean model. When the mean

model is specified correctly but the propensity model is misspecified, we replace Ukj

with Xkj to estimate the propensity model but use Ukj to estimate the mean model.

When both propensity and mean model are misspecified, we replace Ukj with Xkjs to

estimate both the propensity and mean model.

For each of the simulation scenarios, we further split them into four situations: 1.
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both the propensity and mean models are correctly specified; 2. the mean model is

misspecified but the propensity model is correctly specified; 3. the propensity model

is misspecified but the mean model is correctly specified; and 4. both models are

misspecified. 500 simulations were used to estimate the empirical bias, RMSE, 95%

coverage, and AIL. For PSPP and PSBPP, we used the linear truncated basis with

20 equally spaced knots on the propensity score, Zk or Z∗k , to estimate the penalized

splines. We estimated the penalized splines following the method described in Chap-

ter 9 of Ruppert et al. (2003). The 95% confidence interval (CI) and the length of

this interval were estimated using a modified bootstrap approach with 200 resamples

(Heitjan and Little, 1991) which accounts for the uncertainty of the parameter esti-

mates during imputation. Essentially, Rubin’s combining rules were applied to the

D bootstrap means from the resampled datasets. This modified bootstrap approach

accounts for the uncertainty of the parameter estimates during imputation. In addi-

tion to bootstrap, we also performed MI using the posterior mean of the propensity

score in equations (4.5), (4.12), and (4.13) as well as MI using a posterior draw of the

propensity score in equations (4.5), (4.12), and (4.13). Finally, we considered sample

sizes of 500, 1,000, and 5,000 to investigate how changes in sample size would affect

the performance of each estimator.

4.4.4 Results

Table 4.1 shows the result under scenario 1 for a sample size of 1,000. The CC

estimators were substantially biased under all four types of misspecification. When

the propensity model was correctly specified, both PSPP and AIPWT were approxi-

mately unbiased, although PSPP had much smaller RMSE and better coverage. The

MLR, PSPP, and AIPWT estimators performed very well in terms of bias and RMSE

when the mean model was correctly specified. When both models were misspecified,

MLR, PSPP, and AIPWT were biased with coverage of both models decreasing dra-
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matically. For PSBPP and AIPWT with BART, we observed that specifying the

propensity model of PSPP using BART had little effect on the bias, RMSE, 95%

coverage, and AIL when either one or both the propensity and mean model were

correctly specified. When both models were misspecified, PSBPP was able to pro-

duce nearly unbiased estimation of the population mean and relatively similar AIL.

In contrast, AIPWT with BART had bias and relatively poor coverage compared to

AIPWT when at least one of the models in AIPWT was specified correctly. AIPWT

with BART only performed better than AIPWT when both models were misspeci-

fied. Still, some bias and below nominal coverage remained. AIPWT with BART was

more biased with larger RMSE and poorer coverage compared to PSBPP under all

situations. BART alone generally had performance similar to AIPWT with BART, if

slightly poorer in terms of bias and RMSE. For BARTps, the bias was reduced com-

pared to BART with only Xks as the predictors. Addition of BART propensity scores

Z∗k improves the 95% coverage compared to BART; nominal coverage was achieved

for BARTps.

As the sample size increases, the bias, RMSE, and AIL of all methods reduce, and

nominal 95% coverage increases (See Tables 1 to 3 in Appendix F). MI results were

similar to bootstrap results (See Tables 4 to 6 in Appendix F). Using a posterior draw

of the propensity scores instead of posterior mean increased bias slightly for PSBPP

and BARTps (See Tables 7 to 9 in Appendix F).

Table 4.2 shows the result under scenario 2 for a sample size of 1,000. This sce-

nario was more challenging compared to scenario 1, with larger bias, RMSE, and AIL

with smaller 95% coverage for all methods. For the PSPP and AIPWT method, when

the propensity model was correctly specified or when the mean model was correctly

specified, we started to see substantial increases in the bias, RMSE, and AIL with

a substantial reduction in the 95% coverage. When both models were misspecified,

we started to see very poor performance: bias, RMSE, and AIL further increased
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Table 4.1: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 1,000.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.2 0.34 0 0.09 94.2 0.34
CC 0.51 0.53 0.6 0.42 0.51 0.53 0.6 0.42
MLR 0 0.12 99 0.62 0.45 0.46 10 0.57
PSPP 0.01 0.14 99.8 0.78 0.05 0.13 97.4 0.61
AIPWT 0 0.12 94.4 0.47 0.04 0.18 87.2 0.6
PSBPP 0 0.13 99.2 0.64 -0.06 0.15 98.4 0.71
AIPWT with BART 0.11 0.17 78.2 0.44 0.11 0.17 78.2 0.44
BART 0.14 0.19 87.4 0.57 0.14 0.19 87.4 0.57
BARTps 0.07 0.14 95.8 0.6 0.07 0.14 95.8 0.6

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.2 0.34 0 0.09 94.2 0.34
CC 0.51 0.53 0.6 0.42 0.51 0.53 0.6 0.42
MLR 0 0.12 99 0.62 0.45 0.46 10 0.57
PSPP 0 0.12 99 0.63 0.22 0.26 85 0.78
AIPWT 0 0.12 92.8 0.46 0.43 0.45 5 0.43
PSBPP 0 0.13 99.2 0.64 -0.06 0.15 98.4 0.71
AIPWT with BART 0.11 0.17 78.2 0.44 0.11 0.17 78.2 0.44
BART 0.14 0.19 87.4 0.57 0.14 0.19 87.4 0.57
BARTps 0.07 0.14 95.8 0.6 0.07 0.14 95.8 0.6
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with further reduction in the 95% coverage. For the PSBPP, the bias, RMSE, and

AIL were similar to PSPP when either both models were correctly specified or only

one model was correctly specified, although when the mean model was misspecified,

PSBPP produced a better nominal 95% coverage. When both models were misspeci-

fied, PSBPP performed the best compared to all the other six methods with modest

bias and approximately correct nominal coverage. For AIPWT with BART, BART

was able to help the AIPWT estimator when both propensity and mean models were

misspecified but when either one or both models were correctly specified, AIPWT

with BART performed worse compared to AIPWT. In addition, the performance of

AIPWT with BART when both propensity and mean models were misspecified was

not as good compared to PSBPP. BART and AIPWT with BART performed simi-

larly with BARTps having reduced bias and RMSE with improved the 95% coverage

compared to BART. BARTps was still biased and nominal coverage was somewhat

poor.

Similar to the linear interaction in mean model scenario, we found that as sample

size increases, the bias, RMSE, and AIL of all methods reduce while 95% coverage

increases (See Tables 10 to 12 in Appendix F). MI results echo those observed using

bootstrap (See Tables 13 to 15 in Appendix F) while MI results using a posterior

draw of the propensity score produced an increase in bias for PSBPP and BARTps

methods (See Tables 16 to 18 in Appendix F).

Table 4.3 shows the result under the Kang and Schafer (2007) example for a sam-

ple size of 1,000. For the PSPP and AIPWT methods, we found that misspecification

of the mean model increased the bias, RMSE, and AIL of these methods slightly

more than misspecification of the propensity model does. When both models were

misspecified, both models performed badly with the AIPWT estimator being highly

unstable, producing a bias and RMSE more than the CC estimator. The standard

MLR imputation performed fairly well even when the mean model was misspecified.
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Table 4.2: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 1,000.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 91.8 0.86 0 0.24 91.8 0.86
CC 1.21 1.23 0.2 0.63 1.21 1.23 0.2 0.63
MLR 0 0.26 99 1.32 1.24 1.25 0 0.8
PSPP 0 0.26 98.8 1.33 0.21 0.44 81.2 2
AIPWT 0 0.26 91.2 0.93 0.22 0.72 67 1.68
PSBPP 0 0.26 98.6 1.33 0.13 0.35 94 2.16
AIPWT with BART 0.45 0.51 29.8 0.77 0.45 0.51 29.8 0.77
BART 0.52 0.57 42 0.97 0.52 0.57 42 0.97
BARTps 0.41 0.47 63.4 1.07 0.41 0.47 63.4 1.07

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 91.8 0.86 0 0.24 91.8 0.86
CC 1.21 1.23 0.2 0.63 1.21 1.23 0.2 0.63
MLR 0 0.26 99 1.32 1.24 1.25 0 0.8
PSPP 0 0.26 98.6 1.33 0.72 0.77 61.8 1.69
AIPWT 0 0.25 91 0.92 1.21 1.22 0 0.59
PSBPP 0 0.26 98.6 1.33 0.13 0.35 94 2.16
AIPWT with BART 0.45 0.51 29.8 0.77 0.45 0.51 29.8 0.77
BART 0.52 0.57 42 0.97 0.52 0.57 42 0.97
BARTps 0.41 0.47 63.4 1.07 0.41 0.47 63.4 1.07
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Table 4.3: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 1,000.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.07 1.11 95.2 4.38 0.07 1.11 95.2 4.38
CC -9.96 10.09 0 5.97 -9.96 10.09 0 5.97
MLR 0.07 1.11 99.4 6.38 -0.74 1.63 98 7.78
PSPP 0.06 1.11 99.4 6.38 -0.07 1.21 99.2 6.66
AIPWT 0.06 1.11 95.6 4.38 0.07 1.66 94.2 6.01
PSBPP 0.07 1.11 99.4 6.38 1.46 1.95 96.8 7.4
AIPWT with BART -0.05 1.12 95.2 4.42 -0.31 1.19 93.8 4.61
BART -0.13 1.12 99.6 6.38 -0.59 1.29 99.2 6.5
BARTps 0 1.11 99.4 6.46 0.39 1.23 99.2 6.8

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.07 1.11 95.2 4.38 0.07 1.11 95.2 4.38
CC -9.96 10.09 0 5.97 -9.96 10.09 0 5.97
MLR 0.07 1.11 99.4 6.38 -0.74 1.63 98 7.78
PSPP 0.07 1.11 99.4 6.38 -2.12 2.52 77.2 6.29
AIPWT -0.08 2.28 95.6 5.1 -35.69 477.13 41.2 196.51
PSBPP 0.07 1.11 99.4 6.38 -1.13 1.73 99 7.84
AIPWT with BART -0.06 1.12 95.2 4.42 -0.45 1.24 93.2 4.62
BART -0.13 1.12 99.6 6.38 -0.59 1.29 99.2 6.5
BARTps -0.05 1.12 99.6 6.46 -0.52 1.27 99.2 6.7

For the PSBPP and AIPWT with BART, PSBPP performed better in terms of bias,

RMSE, 95% coverage, and AIL when both the propensity and mean models are cor-

rectly specified or when only the mean model is correctly specified. When only the

propensity model is correctly specified or when both models are misspecified, PSPP

and AIPWT with BART had similar (slightly below nominal) coverage; AIPWT with

BART had reduced bias, RMSE, and smaller AIL. Compared to AIPWT and PSPP,

AIPWT with BART and PSBPP respectively showed improvements in performance

when both models were misspecified. BART and BARTps generally performed well

under all of the misspecification scenarios with BARTps having the better perfor-

mance.

We note that as sample size increases, the bias, RMSE, and AIL of all methods re-

duce (See Tables 19 to 21 in Appendix F). The 95% coverage of all methods remained

relatively similar as the sample size increased except for PSPP and AIPWT where
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coverage decreased as sample size increased. MI results produced similar conclusions

with bootstrap (See Tables 22 to 27 in Appendix F).

4.5 Applications to Missing Data in Transportation Research

4.5.1 Imputing Delta-v in 2014 National Automotive Sampling System

Crashworthiness Data System dataset

The NASS-CDS dataset is an annual three-stage representative probability sample

of passenger vehicle crashes sponsored by the National Highway and Transportation

Safety Authority (NHTSA). To be eligible, a crash must: (1) be police reported,

(2) involve a harmful event (property damage and/or personal injury) resulting from

a crash, and (3) involve at least one towed passenger car or light truck or van in

transport on a traffic way. When a crash is selected, NASS-CDS investigators obtain

police reports and conduct interviews with the occupants to collect information such

as drivers age and sex, severity of injury measured using the KABCO scale (K=fatal;

A=incapacitating Injury; B=non-incapacitating injury; C=possible injury; O=no in-

jury; Hedlund , 2008), and the principal direction of impact from the crash. Often,

the variable that estimates instantaneous change in velocity (delta-v), is missing.

This variable is important because many studies have shown that delta-v is a strong

predictor for the severity of injuries in tow-away crashes.

The 2014 NASS-CDS dataset contains 3,660 non-rollover passenger vehicle crashes.

We converted all continuous variables to categorical and coded missingness in a vari-

able as a level. We removed variables that had more than 80% missing, were derived

from other variables in the dataset, or were 100% missing for vehicles missing delta-v.

Simple descriptive statistics of the variables in our dataset stratified by missingness

in delta-v can be found in Tables 1 to 9 of Appendix G. Out of the 44 variables, only

climate, body type of vehicle, whether the trajectory data was reconstructed, make of
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the vehicle, model year, number of occupants, pre-event movement, road alignment,

road surface type, number of seriously injured occupants, and driver’s age, height,

and weight were not statistically different between non-rollover passenger vehicles

missing total delta-v and not missing delta-v.

We were interested in the population mean of the 2014 total delta-v and the

unadjusted odds ratio of the police reported injury severity (any injury or severe

injury) as a function of delta-v (between 15kph and 35kph, and more than 35kph,

versus less than 15kph). To estimate the unadjusted odds ratio, we imputed the

missing delta-v values and then categorized delta-v as: less than 15kph, between

15kph and 35kph, and more than 35kph. We ran a simple logistic regression with

this categorized delta-v as the predictor and the police reported injury severity as

the outcome. We compared the estimate and 95% confidence interval produced by

CC, MLR, PSPP, AIPWT, PSBPP, and BARTps. To obtain the estimate and 95%

confidence interval for all six methods, we employed the finite Bayesian bootstrap

method developed by Zhou et al. (2016). This procedure allows us to compute a

valid estimate and 95% confidence interval for our dataset while non-parametrically

accounting for the sample design in the imputation.

The result of our analysis is given in Table 4.4. The population mean of delta-v

estimated by PSBPP and BARTps were similar, more than 21.7 kph while MLR, CC,

PSPP, and AIPWT suggested that the population delta-v was about 21.5 kph. The

95% confidence interval of PSBPP and BARTps were also slightly wider compared

to MI, CC, PSPP, and AIPWT. For the odds ratios, PSPP and PSBPP tended to

agree with each other under any injury, CC and AIPWT suggested somewhat similar

results, while BARTps and MLR results were more similar. All methods suggested

a significant association between delta-v and presence of injury with higher delta-v

levels associated with a higher odds of experiencing injury in a non-rollover passenger

vehicle crash. For severe versus non-severe injury, we observe similar results as injury
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Table 4.4: Estimated population mean, and unadjusted odds ratios of injury severity,
any injury (ORNULL) or severe injury (ORSEV), where reference group is
delta-v less than 15 kph (X < 15).

Ȳdelta-v ORNULL ORNULL

Method Estimate 95% CI 15 ≤ X ≤ 35 95% CI X > 35 95% CI
CC 21.57 ( 20.64 , 22.47 ) 1.72 ( 1.15 , 2.43 ) 5.88 ( 2.94 , 8.79 )
MLR 21.57 ( 20.64 , 22.47 ) 1.37 ( 1.08 , 1.76 ) 2.78 ( 1.92 , 3.52 )
PSPP 21.55 ( 20.06 , 22.99 ) 1.86 ( 1.23 , 2.84 ) 7.93 ( 3.66 , 13.33 )
AIPWT 21.5 ( 20.01 , 23.33 ) 1.5 ( 1 , 2.12 ) 5.87 ( 3.39 , 9.25 )
PSBPP 21.75 ( 18.29 , 25.61 ) 1.86 ( 1.11 , 3.03 ) 7.67 ( 2.39 , 13.74 )
BARTps 21.9 ( 18.51 , 24.79 ) 1.62 ( 1.08 , 2.36 ) 2.95 ( 1.54 , 5.18 )

ORSEV ORSEV

Method 15 ≤ X ≤ 35 95% CI X > 35 95% CI
CC 2.31 ( 1.49 , 3.64 ) 17.99 ( 9.31 , 30.42 )
MLR 1.43 ( 1.19 , 1.69 ) 6.08 ( 4.25 , 8.17 )
PSPP 3.19 ( 1.82 , 5.21 ) 33.73 ( 16.16 , 60.17 )
AIPWT 1.58 ( 1 , 2.21 ) 14.67 ( 9.19 , 21.77 )
PSBPP 3.3 ( 1.51 , 6.8 ) 33.23 ( 9.63 , 71.67 )
BARTps 1.77 ( 1.18 , 2.64 ) 7.48 ( 4.09 , 12.27 )

versus no injury in that PSPP and PSBPP suggested similar results, CC and AIPWT

suggested similar results, and BARTps and MLR suggested similar results. Again all

methods suggested a significant association between delta-v and presence of injury

with higher delta-v levels associated with a higher odds of experiencing injury in a

non-rollover passenger vehicle crash. Given that CC results and AIPWT results were

similar and BARTps and MLR results were similar, we suspect there to be non-linear

main and interaction effects between delta-v and the NASS-CDS variables as well as

non-linear main and interaction effects between the missingness of delta-v and the

NASS-CDS variables.

4.5.2 Imputing Blood Alcohol Concentration levels in 2015 Fatality Anal-

ysis Reporting System dataset

The FARS releases information annually from all fatal motor vehicle crashes that

occur on US public roads. Information collected include age, surface conditions, gross

weight of vehicle, type of road, and accident type. Of the information collected, BAC,

which is used to identify alcohol involvement in fatal crashes, is often missing. The

fact that alcohol involvement is more commonly reported in fatal crashes compared to

personal injury and property-damage-only crashes makes this issue more concerning
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because high levels of missingness in BAC hinders the investigation of the trend and

extent of alcohol involvement in fatal crashes, the successful identification of high-risk

groups for countermeasures, and evaluation of drunk-driving prevention programs.

Due to the importance of the BAC measure, NHTSA considered several ap-

proaches to remedy the missing data problem before deciding to use MI in 2002

(Subramaniam, 2002). Although MI was a great improvement from previous im-

putation methods (Klein, 1986), misspecification of the model in MI could lead to

biased results. Replacing the imputation methods with DR estimators like PSPP and

AIPWT could further bias results if the propensity and mean model were not spec-

ified correctly. Hence, we applied our proposed methods to the 2015 FARS dataset

to impute BAC levels and compared the imputation results with existing MI results

provided by the FARS dataset.

Details of how the publicly available imputed BAC values were clculated for the

2015 dataset can be found in Rubin et al. (1998) Section 3. We modified this im-

putation strategy slightly. First, we used the imputed 2015 BAC FARS dataset to

determine all the 55,502 “actively-involved” subjects eligible for imputation (See Ru-

bin et al., 1998, , Section 2). We restrict our attention to passenger vehicles as defined

in Section 3 of Rubin et al. (1998) which gave us 19,425 subjects. We recoded contin-

uous variables as categorical variables and coded missing entries as a category in all

variables. We removed variables that had more than 80% missing, derived from other

variables in 2015 FARS, or 100% missing for subjects missing BAC values. Simple

descriptive statistics of the variables in our dataset stratified by missingness in BAC

can be found in Tables 10 to 21 of Appendix G. All variables except whether crash

occurred within the boundaries of a work zone were significantly different between

subjects missing BAC and subjects not missing BAC.

We impute BAC values as follows:

1. We employed binary BART to predict BAC=0 (Y = 0) versus BAC > 0
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(Y = 1) using all available predictors (See Tables 33 to 36 in Appendix G for

all predictors employed).

2. We set the predicted BAC=0 values as 0 and focus on the set of observed

BAC > 0 and predicted BAC > 0. For the observed BAC > 0, we employed

a Box-Cox transformation (Box and Cox , 1964) using all available predictors

to obtain the Box-Cox transformation parameter λ̂. We used λ̃ = λ̂ + 1 as

suggested by Rubin et al. (1998).

3. We next imputed the Box-Cox transformed BAC value for the predicted BAC >

0 using the following methods, PSPP, AIPWT, PSBPP, and BARTps. For the

transformed BAC values that were predicted to be negative, we set them as

0. For transformed BAC values that were predicted to be positive, an inverse

transformation was applied to the predicted transformed BAC values to obtain

the predicted BAC value in the original scale.

4. We drew 200 resampled datasets and repeated Steps 1-3 on each dataset. Ru-

bin’s combine rules were used to estimate the imputation uncertainty.

For the estimate of interest, we examined the population mean of the BAC value, the

proportion of BAC more than .010 g/100 ml, and the proportion of BAC more than

.100 g/100 ml among passenger vehicles in 2015.

Table 4.5 gives the result of our analysis. MLR was calculated using the imputed

BAC values provided in the 2015 FARS dataset. Comparing CC and MLR, we can

see that CC likely overestimates the population mean of BAC as well as the pro-

portion of subjects with BAC more than .010 and .100 g/ 100 ml. MLR estimates

that the population mean BAC value was 4% with the proportion of subjects with

BAC more than .010 estimated at 24% and for the proportion of subjects with BAC

more than .100 estimated at 18%. MLR results were significantly different from the

imputed values estimated by PSPP and AIPWT. PSPP and AIPWT suggested that
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Table 4.5: Estimated population mean of BAC, proportion of BAC > .010, and pro-
portion of BAC > .100. All values in precentages.

Mean BAC > 1% BAC > 10%
Method Estimate 95% CI Estimate 95% CI Estimate 95% CI
CC 5.72 (5.53, 5.91) 0.34 (0.33, 0.35) 0.26 (0.26, 0.27)
MLR 3.97 (3.83, 4.11) 0.24 (0.24, 0.25) 0.18 (0.18, 0.19)
PSPP 3.07 (2.89, 3.26) 0.18 (0.17, 0.19) 0.14 (0.13, 0.15)
AIPWT 3.12 (2.10, 4.14) 0.16 (0.15, 0.16) 0.13 (0.13, 0.14)
PSBPP 3.08 (2.88, 3.28) 0.18 (0.17, 0.19) 0.14 (0.13, 0.15)
BARTps 3.13 (2.95, 3.27) 0.19 (0.18, 0.19) 0.15 (0.14, 0.15)

the population mean BAC value was about 3.1% while the proportion of subjects

with BAC more than .010 was estimated at about 18% and 16% respectively while

the proportion of subjects with BAC more than .100 was estimated at about 14%.

PSBPP and BARTps were similar compared to PSPP and AIPWT. The significant

difference between MLR versus the doubly robust and robust-squared methods sug-

gest that there is likely some non-linear relation between BAC and the variables in

the FARS dataset. The non-significant difference in the results produced by PSPP,

PSBPP, and BARTps further suggests that the relationship between missingness in

BAC and the rest of the FARS variables is linear without any interactions.

4.6 Discussion

In many situations, researchers would not know the true propensity and mean

model and thus both models have a high chance that they will be misspecified, lim-

iting the value of the doubly-robust property. Even if the misspecification was mild

for example, removal of the two-way interaction terms when the true mean model in-

cluded a linear two-way interaction term or quadratic two-way interaction term, the

resulting bias may be almost as large as a complete case analysis. Hence we consider

use of a highly flexible estimation method – specifically Bayesian Additive Regression

Trees or BART – to reduce the risk of model misspecification. We consider the use of
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BART in propensity score estimation when using the penalized spline of propensity

prediction (PSPPB) or when using the augmented inverse probability weighted esti-

mator (AIPWT with BART). We also consider direct imputation using BART, and

a “double flexible” robust method that adds a BART-estimated propensity score to

the BART imputation, so that both the mean and propensity are estimated in the

PSPP using BART (BARTps).

By using BART, we were able to demonstrate the reduction in bias and RMSE of

the double robust estimators when both propensity and mean models were misspeci-

fied, with little loss in efficiency when either one or both of the mean and propensity

models can be correctly specified by standard linear or logistic regression. Our simula-

tion study suggests that PSPP with BART performs considerably better than AIPWT

with BART under settings with missing interaction terms. However, when both the

propensity and mean model are complex, BARTps tends to perform better. Hence,

we suggest PSBPP and BARTps as the preferred methods for imputing datasets un-

der MAR, while acknowledging that these recommendations are empirically based on

simulations that are somewhat limited in nature.

We also found in our simulation results that MI using a posterior draw of the

propensity score in equations (4.12) and (4.13) increased bias compared to using the

posterior mean of the propensity score for linear and quadratic interaction scenarios.

This is because the propensity model in both scenarios tended to create datasets

where there is not much overlap in the predictors for response and non-response.

Hence, the researcher might want to rely on bootstrap to obtain the uncertainty of

PSBPP and BARTps during analysis.

Although we focused our attention on MAR for a continuous outcome, extension

to a binary outcome is possible using generalized additive models or generalized linear

mixed models for the PSPPB setting, or use of latent variables models (e.g, probit

models) for PSPPB or the BARTps setting. The MAR assumption remains a restric-
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tion in these “robust” estimation methods; extensions to NMAR mechanisms remains

a topic for further research.
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CHAPTER V

Accounting for selection bias due to death in

estimating the effect of wealth shock on cognition

for the Health and Retirement Study

5.1 Introduction

Late middle age adults commonly experience chronic health conditions like high

blood pressure or diabetes as well as declining cognitive abilities. Factors known to

be associated with accelerated decrease in cognitive abilities include smoking, high

alcohol consumption, physical inactivity, high dietary intake of sodium and saturated

fats, low dietary intake of fruits and vegetables (Lee et al., 2010; Stuck et al., 1999);

hypertension, elevated serum cholesterol, diabetes, obesity, cerebrovascular and car-

diovascular disease (Plassman et al., 2010); depression, lower socioeconomic status,

and exposure to acute stressful life events and chronic perceived stress (Krieger , 2001).

In particular, the acute stress of a sudden decrease in wealth – “a negative wealth

shock” – may have a negative impact on the cognitive ability of late middle aged

adults. Because income typically exceeds consumption at this stage in life, sudden

decreases in wealth during this period not only decrease the amount of wealth saved

for retirement, but there are fewer remaining years left to replenish the lost wealth

(Butrica et al., 2010). The stress of losing substantial wealth during the savings pe-
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riod of the life cycle coupled with the pressure to replenish the lost wealth can lead

to stress-related health conditions which in turn reduces the cognitive ability of an

individual (Shrira et al., 2011). In addition, individuals who have received a negative

wealth shock may have to reduce consumption of health-enhancing goods and ser-

vices which in turn leads to poor management of existing chronic conditions, further

reducing cognitive abilities (Friedman, 1956).

Three issues arise when trying to estimate the causal effect of a negative wealth

shock on cognitive ability. The first of these is the lack of randomization: negative

wealth shocks are not randomly distributed in the population, but rather are con-

founded by factors such as gender and socio-economic status. The second issue is

confounding by indication: the risk of the wealth shock at any point in time may

depend on the prior cognitive ability up to the point. Finally, we face the fact that a

sufficiently large fraction of the sample and the population will die during our follow-

up, leading to “censoring by death”. Those observed to have survived a negative

wealth shock include those who would survive under either condition together with

those that would survive only if they experienced a negative wealth shock (if any),

while those observed to have survived in the absence of a negative wealth shock in-

clude those that would survive under either condition together with those that would

survive only in the absence of a negative wealth shock. These “missing values” asso-

ciated with cognition among the deceased are different from the measure of cognition

being “missing” due to dropout, where the cognitive ability measure exists but is un-

observed. As with wealth shock, death is not a random occurrence, and is positively

associated with demographic measures that increase the risk of a negative wealth

shock, increased cognitive ability decline, and the experience of a negative wealth

shock. Hence, the measure for cognitive ability may be confounded by death if not

considered appropriately.

Methods have been developed to deal with these barriers to causal inference. To
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deal with the lack of randomization, we might hope that, conditional on available

covariates, negative wealth shocks would truly be random. In this case, conditioning

on the probability of receiving a negative wealth shock as a function of these covari-

ates – the propensity scores (Rosenbaum and Rubin, 1983) – can be used to remove

the effect of confounding, either by regression, matching, or weighting (Imbens and

Rubin, 2015). For the second issue – confounding by indication – marginal structural

models (MSM, Robins et al., 2000) and more recently, penalized spline of propensity

methods in treatment comparisons (PENCOMP, Zhou et al., 2018), have been used

to account for confounding by the time-dependence association of the cognitive mea-

sures, either by weighting using the inverse probability of treatment actually received

based on the previous values of the time-varying covariates and outcomes (MSM), or

by imputation of the missing counterfactual values (PENCOMP). For censoring by

death, MSMs have typically been extended by multiplying the treatment assignment

weights with the inverse of the predicted probability of death. The issue with this

approach – perhaps under appreciated – is that the resulting pseudo-population is

not only balanced with respect to exposure “assignment”, but also “immortal”, in

the sense that those more likely to die are upweighted so that the population over

time resembles that would have been obtained in the absence of death up till time t

(Chaix et al., 2012). This is arguably not a sensible population for inference, at least

from a policy and public health perspective.

A more refined approach would be to compare the difference in the effect of neg-

ative wealth shock on cognitive ability among subjects who would have survived

whether they experienced a negative wealth shock or not. This approach is consis-

tent with the potential outcomes approach of Neyman (1934) and Rubin (1974), which

defines causal effects as the within-subject difference of an outcome at a particular

time under different exposure or treatment regimen, averaged over the population.

This idea is not new (Elliott et al., 2006) and can be viewed as a specific example
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of the principal stratification (PS) method discussed in Frangakis and Rubin (2002).

Our innovation here is to embed this in a longitudinal setting where confounding

by indication is present. We view this as a large missing data problem where sur-

vival status and, among survivors, unobserved outcomes under a given treatment

pattern are imputed. We extend the method proposed in Example 3 of Elliott and

Little (2015), which provides a Bayesian MSM approach to compare two treatments

at two time points. This approach was further extended by PENCOMP in Zhou

et al. (2018) which, like augmented inverse probability weighting (AIPWT, Robins

et al., 1994), has a doubly-robust property in that if either the mean or propensity

model is correctly specified, consistent estimates of the causal effect will be obtained.

We modified PENCOMP slightly using Bayesian additive regression trees (BART), a

flexible model to ease the burden of model specification by the researcher, and apply

this to our proposed method.

We organize our paper as follows. We set up the framework for our problem,

and provide a brief review of of MSM, PENCOMP, and Bayesian additive regression

trees (BART) in Section 2. We develop our proposed method in Section 3. We then

explore some of the empirical properties of our proposed method compared to a näıve

method and MSM using a simulation study in Section 4. Section 5 describes the HRS

data and the results of our negative wealth shock analysis. Section 6 concludes with

a discussion of the implication of our results as well as future work.

5.2 Review of Relevant Methods

5.2.1 Setup and notation

Let V = {V1, V2, . . . , Vp} be p baseline covariates, Zt be the treatment allocation at

time t = 1, . . . , T where Zt = 1 indicates a subject receiving a negative wealth shock

at t and Zt = 0 indicates no negative wealth shock, and Wt = {W1t,W2t, . . . ,Wqt}
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be q covariates that may vary with time, but are unaffected by a given treatment

regimen. For example, fixed covariates by definition would belong to this class.

Let YZ1,...,Zt be the potential outcome under treatments Z1, . . . , Zt and XZ1,...,Zt =

{XZ1,...,Zt,1, XZ1,...,Zt,2, . . . , XZ1,...,Zt,r} be the time-varying covariates affected by treat-

ments Z1, . . . , Zt. Similarly, we define the potential survival indicator SZ1,...,Zt−1 , for

survival at time t. The survival outcome at t measures whether a subject would

survive after being exposed to treatment Z1, . . . , Zt−1; hence, the lagged notation

for the potential survival outcome, SZ1,...,Zt−1 . v, zt, wt, yz1,...,zt , xz1,...,zt , and sz1,...,zt

indicate the observed baseline, treatment allocation, time varying covariates unaf-

fected by a given treatment regimen, outcome, time-varying covariates affected by a

given treatment regime, and survival status variables respectively. As in Pool et al.

(2018), we assume that a negative wealth shock is an “absorbing state” so that once

a subject receives a negative wealth shock at time t, i.e. Zt = 1, the subject is

“forever” shocked, i.e. Zt+1 = . . . = ZT = 1. Note that this need not be the

case for a more general set up where we could have Zt = 0 when Zj = 1 for any

j = 1, . . . , t − 1. In our context, the potential outcomes for time t = 2 are then

YZ1=0,Z2=0 = Y00, YZ1=0,Z2=1 = Y01, and YZ1=1,Z2=1 = Y11; similarly, XZ1=0,Z2=0 = X00,

XZ1=0,Z2=1 = X01, and XZ1=1,Z2=1 = X11 for time-varying covariates under the vari-

ous treatment regimes; and SZ1=0 = S0, SZ1=1 = S1 for survival states. Subjects who

die at time t have structurally missing data for outcomes and covariates i.e., S0 = 0

implies that Y00 = Y01 = NA and X00 = X01 = NA, while S1 = 0 implies that

Y11 = NA and X11 = NA, where ‘NA’ indicates a structurally missing observation.
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5.2.2 Marginal structural model

To estimate the causal effect for confounding by indication and censoring by death

problems, MSM makes the following assumptions. First, MSM assumes that

P (Sz1,...,zt−1|z1, . . . , zt−1, yz1 , . . . , yz1,...,zt−1 , xz1 , . . . , xz1,...,zt−1 , w1, . . . , wt−1, v) > 0.

(5.1)

and

P (Zt|z1, . . . , zt−1, yz1 , . . . , yz1,...,zt−1 , xz1 , . . . , xz1,...,zt−1 , w1, . . . , wt−1, v) > 0 (5.2)

for any zt i.e. the probability of survival under treatment profile z1, . . . , zt−1 and the

probability of treatment allocation for time t is bounded away from 0. This is an

extension of the standard positivity assumption to allow that at least some subjects

will survive under a given treatment regimen. Second, MSM assumes that there is

no interference between subjects i.e. the potential outcome of subject i, Yi,Z1,...,Zt =

Yi,z1,...,zt , is independent of whatever treatment regimen subject j is allocated to i 6=

j. Third, MSM assumes no unmeasured confounding and sequential randomization

condition

YZ1,...,Zt⊥Zt|z1, . . . , zt−1, yz1,...,zt−1 , . . . , yz1 , xz1,...,zt−1 , . . . , xz1 , w1, . . . , wt−1, v.

Finally, MSM assumes that the model specifications for Equations 5.1, 5.2, and

Yz1,...,zt |z1, . . . , zt, yz1,...,zt−1 , . . . , yz1 , xz1,...,zt−1 , . . . , xz1 , w1, . . . , wt−1, v

are correct.

With these assumptions in place, E[Yz1,...,zt − Yz′1,...,z′t ] (note that this estimand

is not conditioned on the survival status) is obtained by maximizing the weighted
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likelihood of
n∏
i=1

f(Yi;z1,...,zt |θit)wit , (5.3)

where i indexes the subjects and θit are the parameters involved in the model for

Yi;z1,...,zt and

wit = [
t∏

j=1

P (Zij = zij |zi1, . . . , zi,j−1, yi1, . . . , yi,j−1, xi1, . . . , xi,j−1, wi1, . . . , wi,j−1, vi; τj)]
−1.

(5.4)

By weighting using the inverse probability of receiving the observed treatment regime

given all covariates and previous treatments, the association between treatment and

all observed confounders, including confounding by indication, are broken. Un-

der these four assumptions, inference about the treatment effects under a pseudo-

population in which treatment is randomized can then be obtained.

Similarly, this weighting method can be used to remove bias due to dropout. Let

Ri = 1 indicate that the subject’s cognitive score is observed and Ri = 0 indicate

that the subject’s cognitive score is missing. The weight used to account for missing

cognitive score is

writ = [

t∏
j=1

P (Rij = rij |ri1, . . . , ri,j−1, zi1, . . . , zi,j−1, yi1, . . . , yi,j−1, xi1, . . . , xi,j−1, wi1, . . . , wi,j−1, vi; γj)]
−1.

(5.5)

Finally, death is typically treated as equivalent to dropout in MSM (Do et al.,

2013; Pool et al., 2018). Let Dit = 1 indicate that subject i is dead at time t and

Dit = 0 indicate that the subject survived at time t (thus Dit = 1− Sit). The weight

for death censoring is then

wdit = [
t∏

j=1

P (Dij = dij |zi1, . . . , zi,j−1, yi1, . . . , yi,j−1, xi1, . . . , xi,j−1, wi1, . . . , wi,j−1, vi;λj)]
−1.

(5.6)

Assuming that these three weights are independent of each other, the final weight

that we used becomes wfit = witw
d
itw

r
it. To stabilize the weights, the numerators of

Equations 5.4, 5.5, and 5.6 are replaced by the marginal probabilities of treatment,
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dropout, and death at baseline given by

t∏
j=1

P (Zij = zij|zi1, . . . , zi,j−1, vi; τ
′
j),

t∏
j=1

P (Rij = rij|ri1, . . . , ri,j−1, vi; γ
′
j),

and
t∏

j=1

P (Dij = dij|vi;λ′j)

respectively. We use the stabilized weights in our simulations and analysis.

5.2.3 Penalized Spline of Propensity Methods for Treatment Comparison

PENCOMP uses the same four assumptions made by MSM excluding Equation

5.1 for confounding by indication problems. Full details of PENCOMP can be found

in Zhou et al. (2018). We briefly describe the algorithm for PENCOMP using multi-

ple imputation (MI) with longitudinal treatment assignments here. Without loss of

generality, we assume no time-varying covariates in the data.

1. For b = 1, . . . , B, generate a bootstrap sample S(b) from the original data S

by sampling units with replacement, stratified on treatment group. For each

sample b, carry out steps 2-7.

2. Estimate a logistic regression model for the distribution of Z1 given baseline

covariates V with regression parameters γz1 . Estimate the propensity to be

assigned treatment Z1 = z1 as P̂z1(V ) = Pr(Z1 = z1|V ; γ̂bz1), where γ̂bz1 is the

maximum likelihood (ML) estimate of γz1 . Define P̂ ∗z1 = log[
P̂z1 (V )

1−P̂z1 (V )
].

3. Using the cases assigned to treatment group Z1 = z1, estimate a normal linear
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regression of Yz1 on V , with mean

E(Yz1|V, Z1 = z1, θz1 , βz1) = s(P̂ ∗z1|θz1) + gz1(P̂
∗
z1
, V ; βz1), (5.7)

where s(P̂ ∗z1 |θz1) denotes a penalized spline with fixed knots and parameters θz1

and gz1(.) represents a parametric function of other predictors of the outcome,

indexed by parameters βz1 . One of the covariates might be omitted to avoid

collinearity in the covariates in Equation 5.7.

4. For z1 = 0, 1, impute the values of Yz1 for subjects in treatment group 1 − z1

in the original data with draws from the predictive distribution of Yz1 given V

from the regression in Step 3, with the ML estimates θ̂
(b)
z1 , β̂

(b)
z1 substituted for

the parameters θ
(b)
z1 , β

(b)
z1 .

5. Estimate a logistic regression model for the distribution of Z2 given V, Z1, (Y0, Y1),

with regression parameters γz2 and missing values of (Y0, Y1) imputed from Step

4. Estimate the propensity to be assigned treatment Z2 = z2 given Z1, YZ1 , and

V as P̂z2(Z1, YZ1 , V ) = Pr(Z2 = z2|Z1 = z1, Yz1 , V ; γ̂
(b)
z2 ), where γ̂

(b)
z2 is the ML

estimate of γz2 . The probability of treatment regimen (Z1 = z1, Z2 = z2) is

denoted as P̂z1z2 = P̂z1(V )P̂z2(Z1, YZ1 , V ), and define P̂ ∗z1,z2 = log[
P̂z1z2

1−P̂z1z2
].

6. Using the cases assigned to treatment group (z1, z2), estimate a normal linear

regression of Yz1,z2 on Z2, Z1, YZ1 , and V with mean

E(Yz1,z2 |V, Yz1 , Z1 = z1, Z1 = z2, θz1,z2 , βz1,z2 ) = s(P̂ ∗z1,z2 |θz1,z2 ) + gz1,z2 (P̂ ∗z1,z2 , Z2, Z1, YZ1 , V ;βz1,z2 ).

(5.8)

7. For each combination of (z1, z2) impute the values of Yz1,z2 for subjects not as-

signed this treatment combination in the original data with draws from the pre-

dictive distribution of Yz1,z2 in Step 6, with ML estimates θ̂
(b)
z1,z2 , β̂

(b)
z1,z2 substituted

for the parameters θ
(b)
z1,z2 , β

(b)
z1,z2 . Let ∆̂

(b)
01,00 = E[Y01−Y00], ∆̂

(b)
11,00 = E[Y11−Y00],
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and ∆̂
(b)
11,01 = E[Y11− Y01] denote the average treatment effects, ∆̂

(b)
jk,lm, with as-

sociated pooled variance estimates W
(b)
jk,lm, based on the observed and imputed

values of Y for each treatment regimen.

8. The MI estimate of ∆jk,lm is then ∆̄jk,lm,B =
∑B

b=1 ∆̂
(b)
jk,lm, and the MI estimate

of the variance of ∆̄jk,lm is TB = W̄jk,lm,B +(1+1/B)Djk,lm,B, where W̄jk,lm,B =∑B
b=1W

(b)
jk,lm/B, Djk,lm,B =

∑B
b=1

(∆̂
(b)
jk,lm−∆̄jk,lm,B)2

B−1
. The estimate ∆jk,lm follows

a t distribution with degree of freedom ν,
∆jk,lm−∆̄jk,lm,B√

TB
∼ tν , where ν = (B −

1)(1 +
W̄jk,lm,B

Djk,lm,B(B+1)
)2.

5.2.4 Bayesian additive regression trees

BART (Chipman et al., 2010b) is a flexible estimation technique for any arbitrary

function. Suppose we have a continuous outcome Y and corresponding p predictors

X = (X1, . . . , Xp). Suppose Y is related to X via

Y = f(X) + e (5.9)

where f(.) is any arbitrary function which could involve complicated non-linear and

multiple-way interactions and e ∼ N(0, σ2). Formally, BART is written as

Y =
m∑
j=1

g(X,Tj,Mj) + e (5.10)

where (Tj,Mj) is the joint distribution of the jth binary tree structure Tj with its

corresponding bj terminal node parameters Mj = (µ1j, . . . , µbjj). m is the number of

regression trees used to estimate f(X) and it is usually fixed at 200.

BART is able to model multiple-way interactions by using regression trees. In

essence, a binary regression tree in BART may be viewed as a penalized form of an

Analysis of Variance (ANOVA) model. When the binary regression tree only splits on
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one variable for the whole tree, a main effects model is obtained. When the regression

tree involve splits on many different variables, a multiple-way interaction model is

obtained. BART combines all m regression trees together in an additive manner

to obtain non-linear estimates of the main and interaction effects. This additive

procedure is done by first ‘breaking’ Y into m equal ‘pieces’ and fitting a regression

tree to each piece. Subsequently, the regression tree in each m piece is then estimated

by looking at the residual produced by the other m−1 most updated regression trees.

MCMC procedures are then used to obtain the posterior distribution of f(X). When

the default priors of BART suggested by Chipman et al. (2010b) are assumed, the

MCMC ensures that the eventual distribution of the the sum of regression trees is

concentrated around the true distribution of the model (Rockova and van der Pas ,

2017).

For binary outcomes, BART uses a probit link where

P (Y = 1|X) = Φ(
m∑
j=1

g[X,Tj,Mj]) (5.11)

where Φ(.) is the cdf of a standard normal distribution. Estimation of the posterior

distribution is similar to that of continuous outcomes but with the use of data aug-

mentation methods, i.e. draw a continuous latent variable based on whether Y = 1

or Y = 0 and then run the BART algorithm on the drawn latent variables.

Kapelner and Bleich (2015) suggested a procedure to allow the BART algorithm

to include covariates that might contain missing values. In brief, the missingness in

the covariates are not imputed but instead, viewed as a ‘value level’ in the MCMC

algorithm. The MCMC algorithm then ‘sends’ missing data to terminal nodes in

the regression trees that would maximize the likelihood. This is termed as “Missing

Incorporated in Attributes” (MIA, Twala et al., 2008, Section 2). Kapelner and Bleich

(2015) showed using simulation examples that incorporating MIA within BART allows
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the appropriate handling of different types of missing mechanism, MCAR, MAR, and

NMAR, for each covariate. We utilize this approach to accommodate the missingness

in our covariates for the data analysis.

5.3 Dealing with Censoring by Death

5.3.1 Determining the principal strata

To determine the principal strata definition, we first investigated what the data

for our problem could potentially look like. We constructed Table 5.1 for t = 3, p = 1,

and no time-varying covariates without loss of generality. In this table, ‘x’ indicates

an observed value, ‘?’ represent a missing observation which needs to be imputed,

and ‘NA’ indicates a structurally missing observation. For the potential survival

outcomes, we did not indicate whether they were missing or observed because we

wanted to use Table 5.1 to help us decide how we should be stratifying our subjects

once our proposed method imputes the counterfactual survival status.
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Table 5.1: Sample example of a censoring by death dataset until t = 3 where Zt = 1 indicates a subject having experienced a
negative wealth shock and Zt = 0 indicates a subject have not experienced any negative wealth shock till time t

V Z1 Y1 Y0 S1 S0 Z2 Y00 Y01 Y11 S00 S01 S11 Z3 Y000 Y001 Y011 Y111

Subject 1 x 1 x ? 1 1 1 ? ? x 1 1 1 1 ? ? ? x
Subject 2 x 0 ? x 1 1 1 ? x ? 1 1 1 1 ? ? x ?
Subject 3 x 1 x ? 1 1 1 ? ? x 1 1 0 NA ? ? ? NA
Subject 4 x 0 ? x 1 1 1 ? x ? 1 1 0 1 ? ? x NA
Subject 5 x 0 ? x 1 1 0 x ? ? 1 0 1 0 x ? NA ?
Subject 6 x 0 ? x 1 1 0 x ? ? 0 1 1 NA NA NA ? ?
Subject 7 x 0 ? x 1 1 0 x ? ? 0 1 1 NA NA NA ? ?
Subject 8 x 0 ? x 1 1 0 x ? ? 1 0 0 0 x ? NA NA
Subject 9 x 1 x ? 0 1 NA ? ? NA 1 1 0 NA ? ? ? NA
Subject 10 x 1 x ? 0 1 NA ? ? NA 0 1 0 NA NA NA ? NA
Subject 11 x 0 ? x 0 1 1 ? x NA 0 1 0 1 NA NA x NA
Subject 12 x 0 ? x 0 1 0 x ? NA 0 1 0 NA NA NA ? NA
Subject 13 x 1 x ? 1 0 1 NA NA x 0 0 1 1 NA NA NA x
Subject 14 x 0 ? x 1 0 NA NA NA ? 0 0 1 NA NA NA NA ?
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From Table 5.1, we can see that the goal of our analysis is to provide inference

about E[YZ1,...,Zt−YZ′1,...,Z′t |SZ1,...,Zt−1 = SZ′1,...,Z′t−1
= 1], where Zl 6= Z ′l for at least one l

with l = 1, . . . , t i.e. we condition on subjects who would potentially survive under two

different treatment regimes Z1, . . . , Zt−1 and Z ′1, . . . , Z
′
t−1. Thus, the distribution of

(SZ1,...,Zt−1 , SZ′1,...,Z′t−1
) form our principal strata and meaningful contrasts are defined

only in the stratum where SZ1,...,Zt−1 = SZ′1,...,Z′t−1
= 1 since the potential outcomes

for the two different treatment regimes exist only in this stratum. For example,

if we want to estimate the effect for a negative wealth shock at t = 2 versus no

negative wealth shock by t = 2 that is E[Y01 − Y00|S0 = 1], we restrict to subjects

who survive if they did not receive a negative wealth shock at t = 1 i.e. subjects

with S0 = 1 (Subjects 1-12 in Table 5.1). Note that the definition, E[YZ1,...,Zt −

YZ′1,...,Z′t |SZ1,...,Zt−1 = SZ′1,...,Z′t−1
= 1], is different from the parameter MSM estimates

which is E[YZ1,...,Zt − YZ′1,...,Z′t ].

5.3.2 Proposed method

We make the same four assumptions used by MSM (See Section 5.2.2). Our pro-

posed method estimates E[YZ1,...,Zt−YZ′1,...,Z′t |SZ1,...,Zt−1 = SZ′1,...,Z′t−1
= 1] by imputing

the survival status of each subject at the current time t and then combine the imputed

counterfactual survival status together with the observed survival status to deter-

mine which principal stratum a subject belongs to. We then use a slightly modified

PENCOMP to impute the counterfactual outcomes among the potentially surviving

subjects to account for the bias due to confounding by indication. This approach is

doubly robust and reduces the burden of model specification by the researcher. Sub-

sequently, the average difference in the treatment effect within the desired principal

strata is calculated. Variance is estimated using Rubin’s combine rule to account for

the imputation uncertainty (Heitjan and Little, 1991). Detailed steps for our method

are given below.
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1. Generate a bootstrap sample b from the data by sampling the units with re-

placement.

2. Estimate the model X
(b)

z
(b)
1

|Z(b)
1 = z

(b)
1 ,W

(b)
1 , V (b). Use this model to compute the

counterfactual of X
(b)

z
(b)
1

for bootstrap sample b.

3. Estimate the distribution of Z
(b)
1 |W

(b)
1 , V (b). Use this model to estimate the

propensity to be assigned treatment Z
(b)
1 = z

(b)
1 as P ∗

z
(b)
1

= Pr(Z
(b)
1 = z

(b)
1 |W

(b)
1 , V (b)).

Note that we did not perform a logit transformation to obtain P ∗
z
(b)
1

(See PEN-

COMP Steps 2 and 5). This is because by using PENCOMP modified with

BART to predict the outcomes, the non-linear effect of the propensity of as-

signed treatment will be handled automatically. Hence, any non-linear trans-

formation on the propensity of assigned treatment would not be needed.

4. Estimate the model Y
(b)

z
(b)
1

|P ∗
z
(b)
1

, Z
(b)
1 = z

(b)
1 , X

(b)

z
(b)
1

,W
(b)
1 , V (b). As mentioned, we

used PENCOMP modified with BART to estimate this model. The advantage

of using BART is the researcher no longer needs to specify the model. BART

automatically takes care of any linear or non-linear main effects as well as linear

or non-linear interactions. If we observe Equations 5.7 and 5.8, we can see that

these two equations are constructed using a non-linear spline specification on

the propensity of assigned treatment combined with possible linear interactions

between the propensity of assigned treatment and remaining covariates. This

fits well with the type of estimation problems that BART was designed to solve.

We then use the model produced by BART-modified PENCOMP to compute

the counterfactual of Y
(b)

z
(b)
1

for bootstrap sample b.

5. Estimate the distribution for S
(b)

z
(b)
1

|Z(b)
1 = z

(b)
1 , Y

(b)

z
(b)
1

, X
(b)

z
(b)
1

,W
(b)
1 , V (b) at t = 2.

Use this model to generate a survival status for the counterfactual of S
(b)

zb1
.

6. Estimate the model X
(b)

z
(b)
1 ,z

(b)
2

|Z(b)
1 = z

(b)
1 , Z

(b)
2 = z

(b)
2 , Y

(b)

z
(b)
1

, X
(b)

z
(b)
1

,W
(b)
1 ,W

(b)
2 , V (b).
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Use the respective models to impute the counterfactual of X
(b)

z
(b)
1 ,z

(b)
2

, using any

previously imputed values for the unobserved treatment regimes and restricting

to the subjects that are observed and predicted to survive under the given

treatment regimen of interest at t = 1.

7. Estimate the distribution of Z
(b)
2 |Z

(b)
1 = z

(b)
1 , Y

(b)

z
(b)
1

, X
(b)

z
(b)
1

,W
(b)
1 ,W

(b)
2 , V (b). Use

this model to estimate the propensity to be assigned treatment Z
(b)
2 = z

(b)
2 as

P
z
(b)
2

= Pr(Z
(b)
1 = z

(b)
1 |X

(b)

z
(b)
1

, Z
(b)
1 = z

(b)
1 ,W

(b)
1 , V (b)). The probability of treat-

ment regimen (Z
(b)
1 = z

(b)
1 , Z

(b)
2 = z

(b)
2 ) is denoted as P ∗

z
(b)
2

= P
z
(b)
2
P ∗
z
(b)
1

.

8. Estimate the model

Y
(b)

z
(b)
1 ,z

(b)
2

|P ∗
z
(b)
2

, Z
(b)
1 = z

(b)
1 , Z

(b)
2 = z

(b)
2 , Y

(b)

z
(b)
1

, X
(b)

z
(b)
1

, X
(b)

z
(b)
1 ,z

(b)
2

,W
(b)
1 ,W

(b)
2 , V (b)

again restricting to subjects that are observed and predicted to survive under

the treatment regimes of interest at t = 2. Use the respective models to impute

the counterfactual of Y
(b)

z
(b)
1 ,z

(b)
2

.

9. Using a similar procedure for steps 5-8 with the restriction determined by

S
(b)

z
(b)
1 ,...,z

(b)
t−1

= S
(b)

z
′(b)
1 ,...,z

′(b)
t−1

= 1 for time t where at least one z
(b)
t 6= z

′(b)
t and

extend the estimation until the desired time point t = T .

10. Repeat Steps 1-9 to obtain B bootstrap values for

∆̂
(b)

z
(b)
1 ,...,z

(b)
t−1,z

′(b)
1 ,...,z

′(b)
t−1

= E[Y
(b)

z
(b)
1 ,...,z

(b)
t−1

− Y (b)

z
′(b)
1 ,...,z

′(b)
t−1

|S(b)

z
(b)
1 ,...,z

(b)
t−1

= S
(b)

z
′(b)
1 ,...,z

′(b)
t−1

= 1].

with associated pooled variance W
(b)

z
(b)
1 ,...,z

(b)
t−1,z

′(b)
1 ,...,z

′(b)
t−1

.

11. The estimate of

∆Z1,...,Zt,Z′1,...,Z
′
t

= E[YZ1,...,Zt − YZ′1,...,Z′t|SZ1,...,Zt−1 = SZ′1,...,Z′t−1
= 1]
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is then

∆̄z1,...,zt,z′1,...,z
′
t,B

=
B∑
b=1

(∆̂
(b)

z
(b)
1 ,...,z

(b)
t−1,z

′(b)
1 ,...,z

′(b)
t−1

)/B,

and the estimate of the variance of ∆̄z1,...,zt,z′1,...,z
′
t,B

is

TB = W̄z1,...,zt,z′1,...,z
′
t,B

+ (1 + 1/B)Dz1,...,zt,z′1,...,z
′
t,B
,

where

W̄z1,...,zt,z′1,...,z
′
t,B

=
B∑
b=1

(W
(b)

z
(b)
1 ,...,z

(b)
t−1,z

′(b)
1 ,...,z

′(b)
t−1

)/B

and

Dz1,...,zt,z′1,...,z
′
t,B

=
B∑
b=1

(∆̂
(b)

z
(b)
1 ,...,z

(b)
t−1,z

′(b)
1 ,...,z

′(b)
t−1

− ∆̄z1,...,zt,z′1,...,z
′
t,B

)2

B − 1
.

The estimate ∆Z1,...,Zt,Z′1,...,Z
′
t

follows a t distribution with degree of freedom ν,

∆Z1,...,Zt,Z′1,...,Z
′
t
− ∆̄z1,...,zt,z′1,...,z

′
t,B√

TB
∼ tν ,

where ν = (B − 1)(1 +
W̄z1,...,zt,z

′
1,...,z

′
t,B

Dz1,...,zt,z′1,...,z
′
t,B

(B+1)
)2.

Remark. The idea of including the BART estimated propensity score within BART

as a predictor in Steps 4 and 8 is not new. Hahn et al. (2018) showed that including

a BART estimated propensity score as a predictor within BART improved the esti-

mation of heterogenous treatment effects for observational studies. Tan et al. (2018)

also reported that the inclusion of the BART estimated propensity score as a predic-

tor within BART to impute missing data, under the missing at random assumption,

worked well in situations where the non-linear main and interaction effects are com-

plex for the mean and propensity model. For situations with simpler non-linear effects

like a quadratic relationship, using BART to estimate the propensity score and im-

puting the missing values using penalized splines of propensity prediction (Zhang and
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Little, 2009, PENCOMP version for missing data) worked better. Using PENCOMP

with a BART estimated propensity score for Steps 4 and 8 would be an interesting

alternative. However, our aim of Steps 4 and 8 was to ease the implementation burden

on the researcher. Hence, we suggest the use of PENCOMP with a BART estimated

propensity score for Steps 4 and 8 only if the researcher is certain that the non-linear

effect has a simple form for example, a quadratic or cubic relationship.

5.4 Simulation

We conducted a simulation study to determine how well our proposed method

would perform compared to the näıve method and MSM in three scenarios: 1) where

there is low association between treatment allocation and confounder as well as treat-

ment and survival status; 2) where there is a strong association between treatment

and confounder as well as treatment and survival status; and finally 3) where there

is a strong association between treatment and confounder, treatment and survival

status, and an interaction between treatment, confounder, and survival status. We

expect all three methods to perform well in the first scenario because there is little to

no confounding. For the second scenario, we expect MSM and our proposed method

to perform well because there is no difference in the treatment effect between the

principal strata, and other stratification groups. The näıve method should not per-

form well due to the strong association between treatment and confounder as well as

treatment and survival status. Finally, for scenario three, we expect only our pro-

posed method to perform well because an association between the treatment effect

and principal strata, SZ1,...,Zt−1 = SZ′1,...,Z′t−1
= 1, is induced by the stronger interac-

tion effect between treatment, confounder, and survival status. We fit standard linear

and logistic regression models rather than BART and PENCOMP with BART since

our focus is not on model misspecification but rather, the effect of confounding by

indication and censoring by death.
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5.4.1 Setup

To set up our simulation study, we set the size of our target population as 1

million. We then generate a single baseline variable V from a normal distribution.

We set T = 3 and model our treatment allocation, Z1, as

logit[P (Z1 = 1|V )] = γ0 + γ1V. (5.12)

For the potential outcome at t = 1, YZ1 , we model it as

YZ1 = β0 + βZI{Z1 = 1}+ βV V + βV ZV I{Z1 = 1}+ e, (5.13)

where e ∼ N(0, 1).

We model the potential survival status at t = 2, SZ1 as

logit(P [SZ1 = 1|V, YZ1 ]) = α0 + αY1Y1I{Z1 = 1}+ αY0Y0[1− I{Z1 = 1}]

+ αZI{Z1 = 1}+ αV V + αV ZV I{Z1 = 1}. (5.14)

Because a negative wealth shock is an absorbing state, if Z1 = 1, then Z2 = 1. So

when Z1 = 0, we have

logit(P [Z2 = 1|V, Y0]) = γ0 + γY0,2Y0 + γ2V. (5.15)

We model the potential outcome at t = 2, YZ1,Z2 as

YZ1,Z2 = β0 + βZ01I{Z1 = 0, Z2 = 1}+ βZ11I{Z1 = 1, Z2 = 1}

+ βY0Z00Y0I{Z1 = 0, Z2 = 0}+ βY0Z01Y0I{Z1 = 0, Z2 = 1}

+ βY1Z11Y1I{Z1 = 1, Z2 = 1}+ βV V + βV Z01V I{Z1 = 0, Z2 = 1}

+ βV Z11V I{Z1 = 1, Z2 = 1}+ e, (5.16)
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where e ∼ N(0, 1).

For the potential survival status at t = 3, SZ1,Z2 , if SZ1 = 0, then SZ1,Z2 = 0.

When SZ1 = 1, we have

logit(P [SZ1,Z2 = 1|X, YZ1,Z2 , SZ1 = 1]) = α0 + αZ01I{Z1 = 0, Z2 = 1}

+ αZ11I{Z1 = 1, Z2 = 1}

+ αY00Z00Y00I{Z1 = 0, Z2 = 0}

+ αY01Z01Y01I{Z1 = 0, Z2 = 1}

+ αY11Z11Y11I{Z1 = 1, Z2 = 1}

+ αV V + αV Z01V I{Z1 = 0, Z2 = 1}

+ αV Z11V I{Z1 = 1, Z2 = 1}. (5.17)

For the treatment allocation at t = 3, Z3, if Z1 = Z2 = 0, we have

logit(P [Z3 = 1|X, Y00]) = γ0 + γY00Y00 + γY0,3Y0 + γ3V. (5.18)

For the potential outcome at t = 3, YZ1,Z2,Z3 , we have

YZ1,Z2,Z3 = β0 + βZ001I{Z1 = 0, Z2 = 0, Z3 = 1}+ βZ011I{Z1 = 0, Z2 = 1, Z3 = 1}

+ βZ111I{Z1 = 1, Z2 = 1, Z3 = 1}+ βY00Z000Y00I{Z1 = 0, Z2 = 0, Z3 = 0}

+ βY00Z001Y00I{Z1 = 0, Z2 = 0, Z3 = 1}

+ βY01Z011Y01I{Z1 = 0, Z2 = 1, Z3 = 1}

+ βY11Z111Y11I{Z1 = 1, Z2 = 1, Z3 = 1}+ βY0Z0Y0I{Z1 = 0}

+ βY1Z1Y1I{Z1 = 1}+ βV V + βV Z001V I{Z1 = 0, Z2 = 0, Z3 = 1}

+ βV Z011V I{Z1 = 0, Z2 = 1, Z3 = 1}

+ βV Z111V I{Z1 = 1, Z2 = 1, Z3 = 1}+ e. (5.19)
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Table 5.2 shows the parameters we used to achieve the three different simulation

scenarios. Scenario 1 is achieved by setting γ1, αZ , γ2, γY0,2, αZ01 , αZ11 , γ3, γY0,3,

and γY00 to be about 10 times smaller than the values in Scenarios 2 and 3. The

rest of the differences between Scenario 1 versus 2 and 3 were to ensure the resulting

simulated population would have enough deaths and subjects in the various different

treatment regimes for the assumptions used by MSM and our proposed method to be

valid. The difference between Scenario 2 versus 3 lie in βV Z , αY1 , αY0 , βY0Z00 , βY0Z01 ,

βY1Z11 , αY0Z00 , αY0Z01 , αY1Z11 , βY00Z000 , βY00Z001 , βY01Z011 , and βY11Z111 where the values

for Scenario 2 is about 10 times smaller compared to Scenario 3.

To calculate the true parameters, we used the generated population data (size 1

million), and then took:

1. ∆1,0 = Ȳ1 − Ȳ0;

2. ∆01,00 = Ȳ01 − Ȳ00 given S0 = 1;

3. ∆11,00 = Ȳ11 − Ȳ00 given S0 = S1 = 1;

4. ∆11,01 = Ȳ11 − Ȳ01 given S0 = S1 = 1;

5. ∆001,000 = Ȳ001 − Ȳ000 given S00 = 1;

6. ∆011,000 = Ȳ011 − Ȳ000 given S00 = S01 = 1;

7. ∆111,000 = Ȳ111 − Ȳ000 given S00 = S11 = 1;

8. ∆011,001 = Ȳ011 − Ȳ001 given S00 = S01 = 1;

9. ∆111,001 = Ȳ111 − Ȳ001 given S00 = S11 = 1; and

10. ∆111,011 = Ȳ111 − Ȳ011 given S01 = S11 = 1.

We measured performance using the empirical bias, root mean squared error

(RMSE), 95% coverage, and the average 95% Confidence Interval (CI) length (AIL).
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Table 5.2: Table of parameters for simulation
Scenario 1 Scenario 2 Scenario 3

V N(0, 22) N(17, 22) N(17, 22)
γ0 0 2 2
γ1 -0.02 -0.2 -0.2
β0 0 5.3 5.3
βZ -1.5 -1.5 -1.5
βV 0.015 0.15 0.2
βV Z -0.005 -0.11 -0.05
α0 0 1 0
αY1 0.005 0.00625 0.0625
αY0 0.01 0.0125 0.125
αZ -0.01 -0.2 -0.2
αV 0.002 0.02 0.02
αV Z -0.002 -0.02 -0.02
γ2 -0.002 -0.02 -0.02
γY0,2 -0.02 -0.2 -0.2
βZ01 -1.5 -1.5 -1.5
βZ11 -1 -1 -1
βY0Z00 0.015 0.02 0.3
βY0Z01 0.01 0.015 0.2
βY1Z11 0.005 0.01 0.1
βV Z01 -0.00011 -0.011 -0.011
βV Z11 -0.00005 -0.005 -0.005
αZ01 -0.01 -0.2 -0.2
αZ11 -0.015 -0.1 -0.1
αY0Z00 0.01 0.0125 0.125
αY0Z01 0.005 0.00625 0.0625
αY1Z11 0.0025 0.003125 0.03125
αV Z01 -0.0001 -0.02 -0.02
αV Z11 -0.0005 -0.05 -0.05
γ3 -0.0002 -0.002 -0.002
γY0,3 -0.002 -0.02 -0.02
γY00 -0.02 -0.2 -0.2
βZ001 -1.5 -1.5 -1.5
βZ011 -1 -1 -1
βZ111 -0.5 -0.5 -0.5
βY00Z000 0.015 0.02 0.3
βY00Z001 0.01 0.015 0.2
βY01Z011 0.005 0.01 0.1
βY11Z111 0.0025 0.005 0.05
βY0Z0 0.0008 0.08 0.08
βY1Z1 0.0003 0.03 0.03
βV Z001 -0.00011 -0.011 -0.011
βV Z011 -0.00005 -0.005 -0.005
βV Z111 -0.00003 -0.003 -0.003
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1000 simulations were used to estimate these quantities. Under each simulation, a

simple random sample of 4,000 or 8,000 subjects was drawn from the target pop-

ulation data. All methods were then implemented on the sampled data to obtain

the effect estimates. For MSM and our proposed method, the models were speci-

fied using Equations 5.12 to 5.19 respectively. For our proposed method, because

our focus is not on model misspecification but rather, confounding by indication and

censoring by death, we chose to implement a simpler version of our method by skip-

ping Steps 3 and 7 of our algorithm and using Y
(b)

z
(b)
1

|Z(b)
1 = z

(b)
1 , X

(b)

z
(b)
1

,W
(b)
1 , V (b) and

Y
(b)

z
(b)
1 ,z

(b)
2

|Z(b)
1 = z

(b)
1 , Z

(b)
2 = z

(b)
2 , Y

(b)

z
(b)
1

, X
(b)

z
(b)
1

, X
(b)

z
(b)
1 ,z

(b)
2

,W
(b)
1 ,W

(b)
2 , V (b) for Steps 4 and 8

respectively. We also simplified the prediction of the potential outcomes and survival

status by using linear and logistic regression instead of BART.

5.4.2 Results

Table 5.3 shows the simulation results for sample size of 4,000. As expected, under

Scenario 1, all three methods were relatively unbiased with all three methods achieving

similar RMSE. MSM and our proposed method reported slightly greater than nominal

coverage due to the wider AIL. Under Scenario 2, the absolute bias of the näıve

method was always larger than MSM and our proposed method. RMSE was larger as

well in comparison and coverage was often far below the nominal 95% value. For this

scenario MSM produced the less conservative coverage while our proposed method

suggested better bias performance and reduced RMSE. Finally, under Scenario 3, the

näıve method was clearly biased with poor RMSE and coverage. MSM performed

slightly better compared to the näıve method but absolute bias clearly increased

compared to Scenario 2. Coverage for some treatment effects were poor as well. Our

proposed method remained unbiased, produced a lower RMSE compared to the other

two methods, and reached nominal coverage under Scenario 3. All methods behaved

as expected under these three scenarios.
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Table 5.4 shows the results with the sample size increased to 8,000, approximately

the sample size in our application. The simulation results for all three methods under

Scenario 1 remained relatively similar. Under Scenario 2, an increase in sample size

did not affect the absolute bias of all three methods but, the coverage of the näıve

method was clearly affected with huge decreases in the coverage for all parameters.

Coverage for MSM and our proposed method remained fairly similar. Finally, under

Scenario 3, we observe once again that the amount of bias for the three methods

remained the same but, coverage for the näıve method and MSM decreased for most

of the treatment effects when the sample size increased to 8,000. Coverage for our

proposed method remained relatively similar to the results observed for the sample

size of 4,000. In summary, bias for the three methods was rather stable when the

sample size changed. However, if the method is poor in the estimation of the particular

treatment effect, increasing the sample size can cause large decreases in coverage.
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Table 5.3: Simulation results for sample size 4,000
Scenario 1 Näıve MSM Proposed

Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -1.497 -0.001 0.032 95.4 0.123 -0.0002 0.032 95.1 0.123 -0.0003 0.032 96.8 0.143
∆01,00 -1.499 -0.004 0.062 95.0 0.247 -0.004 0.062 95.2 0.247 -0.003 0.063 96.3 0.264
∆11,00 -1.005 -0.005 0.055 95.3 0.214 -0.004 0.055 95.2 0.214 -0.003 0.056 99.3 0.334
∆11,01 0.493 0.001 0.055 93.8 0.214 0.002 0.055 94.3 0.214 0.001 0.057 99.7 0.333
∆001,000 -1.502 -0.013 0.124 94.6 0.494 -0.013 0.124 99.2 0.713 -0.013 0.126 96.5 0.531
∆011,000 -1.006 -0.007 0.110 94.2 0.428 -0.007 0.111 99.2 0.616 -0.006 0.113 99.4 0.669
∆111,000 -0.494 -0.014 0.101 94.0 0.392 -0.013 0.102 99.2 0.566 -0.012 0.105 100.0 0.893
∆011,001 0.498 0.004 0.111 94.2 0.428 0.004 0.112 99.5 0.614 0.005 0.115 99.8 0.662
∆011,001 1.002 0.004 0.100 94.7 0.390 0.005 0.100 99.8 0.562 0.006 0.104 100.0 0.885
∆111,011 0.511 -0.007 0.080 94.6 0.304 -0.005 0.080 99.5 0.435 -0.005 0.083 100.0 0.695

Scenario 2 Näıve MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -3.367 -0.047 0.061 78.5 0.154 0.002 0.041 93.8 0.160 0.002 0.041 96.0 0.177
∆01,00 -1.727 -0.039 0.056 83.9 0.161 -0.034 0.053 87.6 0.162 -0.003 0.040 97.3 0.172
∆11,00 -1.201 -0.137 0.147 25.5 0.206 -0.019 0.058 92.8 0.209 -0.002 0.054 97.3 0.252
∆11,01 0.527 -0.098 0.112 50.9 0.203 0.015 0.056 94.4 0.205 0.001 0.054 97.5 0.248
∆001,000 -1.728 -0.027 0.072 93.4 0.259 -0.020 0.069 97.5 0.299 0.002 0.064 96.8 0.266
∆011,000 -1.184 -0.060 0.085 82.7 0.233 -0.042 0.073 94.3 0.269 0.005 0.058 97.7 0.281
∆111,000 -1.168 -0.159 0.176 41.9 0.291 -0.029 0.081 96.8 0.343 0.010 0.074 99.3 0.418
∆011,001 0.545 -0.034 0.066 89.9 0.218 -0.022 0.061 95.7 0.251 0.002 0.054 98.7 0.264
∆011,001 0.558 -0.130 0.149 54.8 0.280 -0.006 0.075 97.4 0.329 0.009 0.074 99.3 0.397
∆111,011 0.016 -0.099 0.118 66.8 0.256 0.013 0.069 97.4 0.302 0.006 0.067 99.4 0.379

Scenario 3 Näıve MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -2.347 -0.123 0.130 14.5 0.160 0.002 0.042 94.0 0.160 0.002 0.041 96.5 0.176
∆01,00 -2.561 -0.115 0.123 26.8 0.176 -0.060 0.074 73.0 0.175 -0.002 0.040 97.5 0.174
∆11,00 -3.073 -0.230 0.238 4.0 0.236 -0.023 0.065 92.5 0.230 0.0009 0.059 98.0 0.285
∆11,01 -0.508 -0.118 0.132 50.6 0.236 0.034 0.069 91.1 0.231 0.0006 0.060 97.9 0.286
∆001,000 -2.822 -0.128 0.144 53.4 0.264 -0.065 0.092 91.1 0.313 -0.002 0.058 96.2 0.245
∆011,000 -3.611 -0.142 0.153 28.1 0.217 -0.086 0.103 77.4 0.260 -0.005 0.052 96.9 0.228
∆111,000 -4.046 -0.285 0.297 5.7 0.326 -0.069 0.110 93.1 0.405 0.003 0.081 99.0 0.450
∆011,001 -0.787 -0.017 0.066 93.1 0.246 -0.023 0.067 96.3 0.294 -0.005 0.058 96.2 0.258
∆011,001 -1.224 -0.158 0.180 58.3 0.347 -0.005 0.088 98.3 0.429 -0.0003 0.083 99.5 0.494
∆111,011 -0.445 -0.133 0.156 62.6 0.313 0.026 0.086 97.6 0.390 0.009 0.078 99.6 0.445
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Table 5.4: Simulation results for sample size 8,000
Scenario 1 Näıve MSM Proposed

Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -1.497 -0.0007 0.023 94.2 0.087 0.0003 0.023 94.0 0.087 0.0003 0.023 96.6 0.100
∆01,00 -1.499 -0.004 0.044 95.9 0.174 -0.003 0.044 95.9 0.174 -0.003 0.045 96.0 0.186
∆11,00 -1.005 -0.005 0.039 94.5 0.151 -0.004 0.039 94.2 0.151 -0.003 0.039 99.5 0.236
∆11,01 0.493 0.00004 0.039 95.0 0.152 0.001 0.039 95.0 0.152 0.0007 0.040 99.5 0.235
∆001,000 -1.502 -0.010 0.087 95.0 0.349 -0.010 0.087 99.6 0.499 -0.010 0.088 96.2 0.374
∆011,000 -1.006 -0.004 0.076 95.3 0.303 -0.004 0.076 99.6 0.433 -0.004 0.077 99.6 0.466
∆111,000 -0.494 -0.012 0.071 94.4 0.277 -0.011 0.071 99.4 0.396 -0.009 0.073 100.0 0.617
∆011,001 0.498 0.004 0.076 94.8 0.302 0.004 0.076 99.7 0.432 0.005 0.078 99.7 0.466
∆011,001 1.002 0.004 0.068 96.2 0.276 0.005 0.068 99.7 0.394 0.006 0.071 100.0 0.613
∆111,011 0.511 -0.007 0.056 94.4 0.215 -0.006 0.056 99.3 0.306 -0.006 0.058 100.0 0.489

Scenario 2 Näıve MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -3.367 -0.047 0.055 59.6 0.109 0.002 0.029 94.0 0.113 0.003 0.029 96.3 0.125
∆01,00 -1.727 -0.037 0.047 73.9 0.114 -0.032 0.043 79.9 0.115 -0.002 0.029 96.7 0.123
∆11,00 -1.201 -0.135 0.140 4.1 0.146 -0.017 0.042 93.2 0.147 -0.0008 0.037 98.2 0.177
∆11,01 0.527 -0.098 0.105 22.4 0.144 0.015 0.040 93.6 0.145 0.001 0.037 97.8 0.174
∆001,000 -1.728 -0.026 0.053 90.1 0.183 -0.019 0.051 96.0 0.211 0.004 0.046 95.9 0.189
∆011,000 -1.184 -0.060 0.074 69.0 0.165 -0.041 0.060 87.9 0.189 0.006 0.042 97.9 0.198
∆111,000 -1.168 -0.160 0.169 14.1 0.206 -0.029 0.061 94.7 0.241 0.010 0.054 98.9 0.296
∆011,001 0.545 -0.035 0.053 85.6 0.154 -0.023 0.046 94.8 0.177 0.001 0.039 98.1 0.185
∆011,001 0.558 -0.132 0.141 26.2 0.198 -0.008 0.053 96.7 0.232 0.007 0.052 99.1 0.282
∆111,011 0.016 -0.099 0.110 41.9 0.181 0.013 0.051 96.1 0.212 0.005 0.048 99.1 0.266

Scenario 3 Näıve MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -2.347 -0.123 0.126 1.5 0.133 0.002 0.029 94.5 0.113 0.003 0.029 95.8 0.124
∆01,00 -2.561 -0.115 0.119 4.8 0.124 -0.059 0.067 55.2 0.123 -0.002 0.030 95.7 0.123
∆11,00 -3.073 -0.229 0.233 0.1 0.167 -0.022 0.047 91.6 0.162 0.002 0.041 98.1 0.201
∆11,01 -0.508 -0.117 0.125 21.0 0.167 0.034 0.053 88.6 0.163 0.001 0.041 98.1 0.201
∆001,000 -2.822 -0.129 0.138 21.8 0.186 -0.066 0.081 82.9 0.220 -0.003 0.041 95.1 0.173
∆011,000 -3.611 -0.141 0.147 6.3 0.154 -0.084 0.094 55.2 0.183 -0.004 0.038 96.5 0.162
∆111,000 -4.046 -0.288 0.294 0.2 0.230 -0.071 0.094 86.6 0.285 -0.0003 0.057 99.0 0.316
∆011,001 -0.787 -0.015 0.047 94.0 0.174 -0.021 0.049 96.7 0.207 -0.003 0.041 97.2 0.182
∆011,001 -1.224 -0.159 0.171 28.1 0.245 -0.005 0.064 97.6 0.301 -0.002 0.060 99.6 0.345
∆111,011 -0.445 -0.137 0.148 33.3 0.221 0.023 0.063 96.8 0.274 0.006 0.055 99.3 0.314
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5.5 Determining the effect of a negative wealth shock on cog-

nitive score for Health and Retirement Study subjects

5.5.1 Health and Retirement Study

To investigate the association between negative wealth shock and cognitive abil-

ity in late middle aged US adults, we used data from the Health and Retirement

Study (HRS). HRS is a longitudinal study of US adults, enrolled at age 50 and older.

These individuals have been surveyed biennially since 1992 with detailed modules on

financial status and health (Sonnega et al., 2014).

We use HRS data collected from 1996 to 2002 for our analysis. Subjects were

obtained from the original HRS cohort, born in the years 1931-1941. Although data

collection began in 1992, consistent collection of a subject’s cognitive ability only

began in 1996. Hence, we excluded the data collected before 1996 and treated the

variables collected in 1996 as the baseline for our analysis. We excluded subjects who

did not have longitudinal measurements for net worth because we were unable to

distinguish whether they have already experienced a negative wealth shock. Subjects

with zero or negative net worth at baseline were excluded since we did not know if

these subjects have lifelong asset poverty or experienced a negative wealth shock prior

to study entry. We also removed subjects who experienced a negative wealth shock

and death between 1992 to 1996. These subjects were removed because they were no

longer at risk for a negative wealth shock or death. There were 9,750 participants

in the original HRS cohort, and of these, 7,106 participants (72.9%) were eligible for

this analysis. These participants consists of a representative sample of the 1996 US

population aged 55 to 65 who had not experienced a negative wealth shock in the

previous five years.
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5.5.1.1 Determining negative wealth shock

To determine whether a subject experienced a negative wealth shock from the

previous follow-up period to the current follow-up period, we first obtained data from

the module assessing net worth administered at every wave of HRS. Measured assets

include housing value, net value of businesses, individual retirement accounts, check-

ing/savings accounts, certificates of deposits and savings bonds, investment holdings,

net value of vehicles, and the value of any other substantial assets. From this asset

total, debts were subtracted, including home mortgages, other home equity loans, and

unsecured debt values, like credit card balances, student loans, and medical debts.

Missing values for wealth were imputed at the level of each asset or debt, using an

unfolding bracket imputation method (Juster and Smith, 1997). Wealth data were

not imputed for those who do not participate in a given wave. Negative wealth shock

was measured and then dichotomized (yes or no) for each time point. Loss of 75%

or more of total wealth between two consecutive waves was used as the cut-point

for negative wealth shock (Pool et al., 2018). Subjects were considered at risk for

negative wealth shock until they have experienced a negative wealth shock or reached

age 65.

5.5.1.2 Cognitive ability

The cognitive ability of a subject is assessed in HRS using the Telephone Interview

for Cognitive Status (TICS). Unfortunately, the full HRS cognitive battery is not

available for participants under 65. Hence, we used an abbreviated measure that

included questions about episodic memory (Immediate Word recall [10 points] and

Delayed Word recall [10 points]) and mental status (Serial 7’s [5 points], backwards

counting from 20 [2 points]) (Crimmins et al., 2011). All responses were combined to

create a composite score ranging from 0 to 27, with a higher score indicating higher

cognitive ability. Some of these measures may be imputed implying that the cognitive
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summary score may include one or more imputed scores (Fisher, G.G. and Hassan, H.

and Faul, J.D. and Rodgers, W.L. and Weir, D.R., 2018). We treated this measure

as continuous and normally distributed.

5.5.1.3 Descriptive statistics at baseline

Tables 5.5 to 5.6 show the descriptive statistics of the subjects at baseline by

whether or not they experienced a negative wealth shock over the next six years

regardless of survival status. At baseline, aside from whether the subject eventually

survived until 2002 and health conditions like whether the subject ever had heart

problems, high blood pressure, and stroke, all the other variables in Tables 5.5 to 5.6

were significantly associated with experiencing a negative wealth shock. A typical

subject who would eventually experience a wealth shock would have a lower cognitive

score at baseline; slightly higher BMI; lower opinion about his or her health; lower

word recall score; likely still smoking; not insured; have depression; slightly lower

income; either working, unemployed, or disabled; divorced or never married; lower

wealth rank; have diabetes and/or psychological problems; younger; lesser years of

education; and likely non-White.

Table 5.7 shows the change in unadjusted mean cognitive score between consec-

utive waves for subjects who did not receive a wealth shock versus those who ever

received a negative wealth shock. Follow-up surveys occurred at years 2, 4, and 6.

We can see that for a subject who ever got shocked, the largest observed decline in

cognitive score occurs from Baseline to Wave 1. Subsequently, the decline in cognitive

score is no longer as large between waves. Similarly, the bulk of our subjects were

shocked at Wave 1 (second year of follow up). In later waves, the proportion of new

subjects who received a negative wealth shock decreases.
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Table 5.5: Descriptive statistics of 1996 Health and Retirement Study (baseline), part
1

No wealth shock Ever wealth shock
Variables Mean/Frequency (S.E./%) Mean/Frequency (S.E./%) p-value
Eventually survived?: 0.57

Yes 6,207 (94.7) 516 (94.0)
No 350 (5.3) 33 (6.0)

Cognitive score 17.07 (4.07) 16.26 (4.35) < 0.01
BMI 27.21 (4.84) 27.73 (5.40) 0.03
Self-reported health < 0.01

Excellent 1,207 (19.9) 83 (15.7)
Very Good 2,126 (35.0) 128 (24.3)
Good 1,715 (28.2) 163 (30.9)
Fair 763 (12.6) 103 (19.5)
Poor 261 (4.3) 50 (9.5)

Current Smoking status: < 0.01
Never 2,353 (40.0) 166 (32.4)
Former 2,410 (41.0) 187 (36.5)
Current 1,116 (19.0) 159 (31.1)

Alcohol consumption: < 0.01
Never 3,799 (62.9) 347 (66.1)
Moderate 1,686 (27.9) 116 (22.1)
Heavy 555 (9.2) 62 (11.8)

Insured?: < 0.01
No 1,014 (15.5) 120 (21.9)
Yes 5,543 (84.5) 429 (78.1)

Depression?: < 0.01
No 4,922 (85.5) 361 (73.1)
Yes 832 (14.5) 133 (26.9)

Income (log transformed) 10.48 (1.21) 10.18 (1.45) < 0.01
Labor force status: < 0.01

Working 3,111 (51.2) 314 (59.6)
Unemployed 96 (1.6) 13 (2.5)
Retired 2,178 (35.9) 104 (19.7)
Disabled 143 (2.4) 43 (8.2)
Not in labor force 547 (9.0) 53 (10.1)

Martial status: < 0.01
Married 4,897 (80.8) 373 (70.8)
Divorced 591 (9.7) 90 (17.1)
Widowed 426 (7.0) 42 (8.0)
Never Married 149 (2.5) 22 (4.2)

Wealth rank in tertiles: < 0.01
0 1,728 (26.4) 326 (59.4)
1 2,360 (36.0) 124 (22.6)
2 2,469 (37.7) 99 (18.0)

Gender: 0.08
Male 3,113 (47.5) 239 (43.5)
Female 3,444 (52.5) 310 (56.5)
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Table 5.6: Descriptive statistics of 1996 Health and Retirement Study (baseline), part
2

No wealth shock Ever wealth shock
Variables Mean/Frequency (S.E./%) Mean/Frequency (S.E./%) p-value
Ever had diabetes?: < 0.01

No 5,474 (90.2) 451 (85.6)
Yes 596 (9.8) 76 (14.4)

Ever had heart problems?: 0.43
No 5,343 (88.0) 457 (86.7)
Yes 730 (12.0) 70 (13.3)

Ever had HBP?: 0.07
No 3,888 (64.0) 316 (60.0)
Yes 2,183 (36.0) 211 (40.0)

Ever had psych problems?: < 0.01
No 5,691 (93.7) 469 (89.2)
Yes 380 (6.3) 57 (10.8)

Ever had stroke?: 0.1
No 5,912 (97.3) 506 (96.0)
Yes 161 (2.7) 21 (4.0)

Age 59.73 (3.19) 57.26 (2.18) < 0.01
Number of education years centered 0.52 (2.93) -0.17 (3.32) < 0.01
Race: < 0.01

Non-hispanic White 5,236 (79.9) 342 (62.3)
Non-hispanic Black 759 (11.6) 120 (21.9)
Hispanic 449 (6.8) 70 (12.8)
Other 113 (1.7) 17 (3.1)

Table 5.7: Change in unadjusted cognitive score between consecutive waves stratified
by negative wealth shock status

Never shocked Ever shocked Change in proportion shocked
Baseline to Wave 1 0.19 -1.61 3.5%
Wave 1 to Wave 2 -0.55 0.06 2.1%
Wave 2 to Wave 3 -0.05 -0.10 1.3%
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5.5.2 Analysis

We were interested in how a negative wealth shock would affect the cognitive abil-

ity of late middle aged adults in the HRS during the six years of follow-up as well

as how the duration of a negative wealth shock affects cognitive ability accounting

for missingness in the cognitive outcome as well as censoring by death. We employed

four different methods to estimate this effect and make inference. The four methods

were the näıve method, where all subjects who died under their observed negative

wealth shock status were removed from analysis; baseline adjusted method, where

similar to the näıve method, all subjects who died were removed from analysis but

the mean cognitive score was adjusted using a model that included all baseline covari-

ates; MSM, where negative wealth shock allocation, missingness, and censoring by

death were accounted for by inverse probability weighting; and our proposed method

including the PENCOMP modification described in Subsection 5.3.2. We assumed

that depression was the time-varying covariate that depends on the negative wealth

shock status (XZ1,...,Zt in Section 5.2) and the rest of the time-varying covariates are:

self-reported health status, whether subject was insured, labor force status of subject,

income, level of alcohol consumption, current smoking status, and number of health

conditions (Wt in Section 5.3). We also assumed that the cognitive score is missing

at random given the baseline variables presented in Tables 5.5 to 5.6, past negative

wealth shock status, time-varying covariates, and cognitive score. For MSM, we ac-

counted for this missingness by modeling the propensity of response while for our

proposed method, we imputed the missing cognitive score by using the modified ver-

sion of PENCOMP discussed in Subsection 5.3.2. All our models (baseline adjusted,

MSM, and our proposed method) were specified using BART. For the näıve, baseline

adjusted, and MSM method, we employed 1,000 bootstrap samples to calculate the

mean and the 95% Confidence Interval (CI). The 95% CI was determined by taking

the 2.5 and 97.5 percentile. For our proposed method, we estimated the effect and
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accounted for our uncertainty using our algorithm described in Subsection 5.3.2.

5.5.3 Results

Table 5.8 shows the adjusted effect estimate of a negative wealth shock on cognitive

score depending on the duration of the shock for late middle aged adults in the original

HRS cohort from 1996 to 2002. In general, the näıve and baseline adjusted method

suggests that experiencing a negative wealth shock has a much larger negative effect

on the cognitive score of subjects in our sample compared to the adjusted estimates

reported by MSM and our proposed method. The näıve and baseline adjusted method

produced very similar results suggesting low association between cognitive score and

the baseline covariates. The effect for subjects who experienced a negative wealth

shock within the first 2 years of follow up versus no shock (6 years vs. no shock),

subjects who experienced a negative wealth shock within the first 2 years of follow

up versus subjects who experienced a negative wealth shock between the second and

fourth year of follow up (6 years vs. 2 years), and subjects who experienced a negative

wealth shock within the first 2 years of follow up versus subjects who experienced a

negative wealth shock between the fourth and sixth year of follow up (6 years vs. no

shock), were significantly larger than 0 under the näıve and baseline adjusted method.

For MSM and our proposed method all effects were reported to be not significant.

114



Table 5.8: Effect estimate of negative wealth shock on cognitive score for late middle aged adults in original Health Retirment
Study cohort from 1996 to 2002.

Näıve Baseline adjusted† MSM* Proposed*
Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

2 years vs. no shock -0.51 (-1.45, 0.35) -0.51 (-1.37, 0.3) -0.01 (-1.18, 1.07) -0.16 (-0.84, 0.52)
4 years vs. no shock -0.69 (-1.45, 0.05) -0.7 (-1.4, 0.03) -0.31 (-1.23, 0.58) 0.21 (-0.66, 1.08)
6 years vs. no shock -1.95 (-2.62, -1.25) -1.94 (-2.6, -1.26) -0.12 (-1.12, 0.89) -0.28 (-1.23, 0.67)
4 years vs. 2 years -0.18 (-1.33, 1.04) -0.19 (-1.26, 0.94) -0.3 (-1.78, 1.15) 0.34 (-0.65, 1.32)
6 years vs. 2 years -1.45 (-2.54, -0.38) -1.43 (-2.46, -0.4) -0.1 (-1.61, 1.36) -0.14 (-1.02, 0.75)
6 years vs. 4 years -1.26 (-2.27, -0.2) -1.24 (-2.2, -0.24) 0.19 (-1.11, 1.61) -0.45 (-1.34, 0.44)

*Adjusted by gender, education category, race, cognitive score, BMI, self-reported health status, alcohol consumption, insurance status, depression
status, income, labor force status, marital status, age, smoking status, diabetes status, heart condition, HBP status, psychological problem status,
and stroke status at baseline as well as time-varying self-reported health status, alcohol consumption, insurance status, income, labor force status,
smoking status, number of health conditions, and depression.

†Adjusted by gender, education category, race, cognitive score, BMI, self-reported health status, alcohol consumption, insurance status, depression

status, income, labor force status, marital status, age, smoking status, diabetes status, heart condition, HBP status, psychological problem status,

and stroke status at baseline.
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5.6 Discussion

In this paper, we were interested in how a negative wealth shock affects the cog-

nitive ability of late middle aged Americans participating in the HRS from 1996 to

2002. The main difficulty we faced was the presence of death in some subjects causing

their cognitive score to be censored. Under situations where we believe death does

not depend on the cognitive ability or whether a subject received a negative wealth

shock, removing subjects who have died from our analysis would yield an unbiased

estimate of the effect of negative wealth shock on cognitive ability as our simulation

results suggest. Unfortunately, it is very possible that subjects with lower cognitive

ability and/or have experienced a negative wealth shock would have a higher risk

of death. In this situation, accounting for the censoring by death would be needed.

This is because without randomization, there is a high likelihood that the proportion

of deaths between subjects who did not receive a negative wealth shock versus those

who received a wealth shock, would be imbalanced. In addition, subjects who die are

more likely to have a lower cognition score. As a result, if we remove the subjects

who died from our analysis, the effect of the negative wealth shock on cognitive abil-

ity that we measure would be confounded by death. Although MSM is commonly

employed to weight the subjects who survived, this approach is arguably not sensible

and would likely produce biased estimates when the effect depends on the principal

strata as well as when adjustments on the weights have to be employed in order to

stabilize the MSM estimate. To overcome these issues, we propose a new method to

estimate the effect by imputing the counterfactual survival status of each subject in

order to compare outcomes among individuals who would survive only under both

sets of treatments being considered. Our method remained unbiased for all the sim-

ulation scenarios we tried and produced reasonable coverage. When applied to the

HRS dataset, our method suggested that the effect of a negative wealth shock on the

cognitive ability is close to null whereas the näıve method and MSM suggested an
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estimate with a slightly larger effect.

One shortcoming of our approach is our failure to incorporate the HRS sample

design, in particular the sampling weights, in our inference. Given that a key use of

weights in regression-type analysis is to reduce the effect of model misspecification

(Korn and Graubard , 1995), we hope that our use of BART will minimize the degree

of model misspecification. We leave the incorporation of such features in a general

approach to future work. Another aspect of our method which could be improved is

to allow our method to be applicable to studies where the follow-up time is not fixed.

In such a situation, Cox based survival models would have to be employed and time

would have to be included as a covariate in the survival and outcome models. The

difficulty in this extension would be how to develop a systematic way, applicable to all

subjects, to determine the relation in time between the allocation of the treatment,

measuring the outcome, and death.
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CHAPTER VI

Future work

6.1 Joint BART models

Although riBART was very successful in improving the prediction performance of

BART under correlated outcomes, the model formulation of riBART was restrictive

in the sense that it can only be applied to correlated continuous and binary outcomes.

However, there may be various situations where the general idea of allowing a portion

of the model to be specified using BART while the rest of the model is specified using

other methods, for example, linear regression. Hence, it is worthwhile to investigate

how we may generalize this idea and provide guidance for future researchers on the

properties and important assumptions that such “joint” BART models require in

order to provide valid estimation and inference. In the next few paragraphs, I shall

briefly provide a brief sketch of my idea.

Suppose the usual BART model with Yk being the outcomes, Xk being the co-

variates, Tj and Mj being the jth tress structure and terminal nodes, and σ being

the uncertainty parameter. We now add an additional model H|Zk ∼ P (Zk|θ) where

P (Zk) is a distribution with parameter θ possibly depending on Zk, another set of q

covariates Zk = (Zk1, . . . , Zkq)
T . Note that θ could be either a vector or scalar. The

important feature of this modeling framework is that θ is independent of all Tjs, Mjs,

and σ.

118



The whole modeling framework can thus be written as

Yk =
m∑
j=1

g(Xk, Tj,Mj) +H(Zk; θ) + εk (6.1)

where εk
i.i.d.∼ N(0, σ2). This framework encompasses a few types of models discussed

in literature thus far. The spatial BART (Zhang et al., 2007) and survival BART

model of (Bonato et al., 2011) can be considered special cases of equation (6.1).

Similarly, our riBART model in Chapter III can be considered a special case. More

interesting special cases include setting the model H(Zk; θ) as BART.

6.2 Generalizing the censoring by death imputation method

In Chapter V we proposed a method which successfully allowed us to estimate the

unbiased effect of a negative wealth shock on the cognitive score of late middle aged

US adults under the presence of censoring due to subject death in our longitudinal

dataset. Because our follow-up time was the same and at fixed intervals for each

subject, we were able to estimate the survival model by using less complex models

which need not consider the time of death. However, many studies may have follow-up

times that are irregular and at different times for example clinical trials where subjects

are not recruited at the same time and hence treatment allocation times and follow-

up times would be different. In such scenarios, our proposed method is no longer

applicable and some modifications would be required. Although a straight forward

way to handle this problem is to include the time of death into the survival model

and perhaps employ a Cox proportional hazard model to estimate the probability of

death, the treatment allocation may be time-dependent especially when more than

one treatment type is allocated to a subject during the study. This makes the problem

more complex as we would need to decide how to handle the modeling of both the

treatment allocation and event of death. Hence, a possible future work is to investigate
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how to extend our proposed model in Chapter V to irregular and varying follow-up

times.

A second improvement for our proposed method in Chapter V is to investigate

how to generalize our method to the target population of the data. In studies where

the weights for the target population are provided, this is not as straightforward as re-

weighting by the weights provided in the study. This is because these study reported

weights are derived under the assumption that the sample is drawn from the study’s

target population. However, under principal stratification, the target population is

no longer the study’s population. The target population is now the principal strata

population. Therefore, some form of adjustments would be needed in order for our

proposed method to be generalized to the principal strata population of interest. I

suggest two approaches here.

First, I propose to re-weight by the estimated probability of belonging to the

principal strata. For example, let V be the baseline covariates, Zt be the treatment

allocation at time t = 1, . . . , T where Zt = 1 indicates a subject receiving treatment

at t. For simplicity, I assume that there are no time-varying covariates. Let YZ1,...,Zt

be the potential outcome under treatments Z1, . . . , Zt. To simplify notation, we write

YZ1=0 = Y0 and YZ1=1 = Y1 for the potential outcomes at t = 1. For the poten-

tial survival outcome SZ1,...,Zt−1 , SZ1,...,Zt−1 = 1 indicates survival under treatments

Z1, . . . , Zt−1 at time t while SZ1,...,Zt−1 = 0 indicates death. We simplify our notation

for the potential survival outcomes as SZ1=0 = S0 and SZ1=1 = S1 at t = 1. Under

the estimated effect E[Y11] − E[Y00], the principal stratification is S1 = S0 = 1. Let

PS be the principal stratification status where PS = 1 indicate that the subject was

estimated to belong to the principal strata S1 = S0 = 1 and PS = 0 indicate that the

subject does not belong to S1 = S0 = 1. The probability of the subjects belonging

to principal strata S1 = S0 = 1 can then be estimated as P (PS = 1|Z1, YZ1 , V ). The
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inverse estimated probability weight can be calculated as

wPS =
1

P (PS = 1|Z1, YZ1 , V )
. (6.2)

The multiplication of the weight provided by the study and wPS can then be used to

re-weight our outcomes to obtain the estimated effect E[Y11]−E[Y00] for the principal

strata population of interest.

The second approach utilizes ideas discussed by Zhou et al. (2016) where they

proposed to use Bayesian Finite bootstrapping methods to create a synthetic pop-

ulation and conduct analysis on the re-created synthetic population to obtain the

estimated effect for the target population. The Zhou et al. (2016) method can be

used to re-create the synthetic population and our method proposed in Chapter V

can then be used to obtain the estimated effect and uncertainty. Results from such a

method should be reflective of the target principal strata population.

For both approaches, work needs to be done to verify that these proposals are

valid and if not valid, investigate whether there are ways to modify the approach to

make them valid.

6.3 Bayesian Dynamic Treatment Regime

It is commonly known that variance estimates for commonly used DTR methods

are difficult to obtain. However, if we setup the framework of DTR methods from

a Bayesian perspective, variance estimates can be easily obtained from the MCMC

draws making such an endeavor worthwhile. Briefly, DTR randomizes subjects to

different treatment regimes at each follow-up time based on the subject’s baseline

and past covariates. At the start of the study, subjects would be randomized based

on their baseline. At the next time point, depending on the collected covariates and

possibly outcome in addition to the baseline information, the subject is once again
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randomized to another or the same treatment. Subsequent time points will then ran-

domize subjects to the same or different treatment given current and past measured

covariates and possibly outcome of interest. At the end of the study, the final outcome

of interest is then recorded and the analysis proceeds to identify the treatment regime

that maximizes the desirable outcome for each subject. Commonly, DTRs have been

solved using algorithms such as Q-learning and reinforcement learning. Although a

maximization technique is used here, we observe that some form of uncertainty is still

involved in the sense that the value of the desired outcome is random and hence the

maximum value observed involves some form of variability. Thus, the natural way to

view this problem would be to think of each regime providing a probability that would

maximize the desirable outcome for the subject. This suggests that formulating DTR

in a Bayesian framework would also aid the understanding this problem and provide

new insights.

6.3.1 Setup

Let t = 0, 1, . . . , T denote the different time points with 0 indicating baseline

and i = 1, . . . , n denoting the subjects. Suppose we have q covariates denoted as

X1it, . . . , Xqit where X1i0, . . . , Xqi0 are the baseline covariates. X1it means covariate

1 for subject i at time t and so on. Let Zit = 1, . . . , z be the treatment for subject i

at time t. This means that we have z possible treatments available to each subject

although at time t depending on the values of the covariates and outcome, only some

treatments are possible. Let Yit be the outcome of interest for subject i at time t and

let p = 1, . . . , P be the possible paths generated by the combination of treatments

from t = 0, . . . , T − 1. Then Rip = YiT (p) would be the reward for path p which is

just the potential outcome of treatment path p or regime p for individual i at the

end of the study. Note that if path p was observed, under the usual causal inference

assumptions, Rip = YiT . Assume that a desirable outcome is to have Rip be as large
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as possible we are then looking at a problem of

P (Ria > Rip|X1i0, . . . , X1iT , . . . , Xqi0, . . . , XqiT , Zi0, . . . , Zi,T−1, Yi0, . . . , YiT ) (6.3)

∀ p 6= a, a = 1, . . . , P .

6.3.2 Method

In the Bayesian context, this can be easily solved by examining the joint distri-

bution of

P (Ri1, . . . , RiP |X1i0, . . . , X1iT , . . . , Xqi0, . . . , XqiT , Zi0, . . . , Zi,T−1, Yi0, . . . , YiT ), (6.4)

The posterior joint distribution of the rewards. The main essential work will be then

to tease out how the conditional distribution in equation (6.4) can be decomposed so

that the usual MCMC or Bayesian draws can be made. For example, given certain

combinations or values of the covariates at certain time points t, a certain path p

may not be available to the subject. The decomposition would have to take this into

consideration among many others like sequential randomization, etc. Assuming these

issues have been taken care of and the MCMC algorithm is valid and can produce

results in a timely manner, tackling equation (6.3) just reduces to investigating the

proportion of Ria > Rip ∀ p 6= a, a = 1, . . . , P in the MCMC draws. Moreover,

equations (6.3) and (6.4) are written in a way that is very general so different types

of DTR problems could be solved e.g.

P (a ≤ Rip ≤ b|X1i0, . . . , X1iT , . . . , Xqi0, . . . , XqiT , Zi0, . . . , Zi,T−1, Yi0, . . . , YiT ) (6.5)

i.e. we are interested in which regime would give us a potential outcome which would

lie within a certain range of values [a, b].
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APPENDIX A

Derivations of the conditional draws and

Metropolis-Hastings ratio in BART

A.1 Posterior distributions for µij and σ2 in BART

A.1.1 P (µij|Tj, σ,Rj)

Let Rij = (r1j, . . . , rnij)
T be a subset from Rj where ni is the number of rijs allo-

cated to the terminal node with parameter µij. We note that Rij|g(Xik, Tj,Mj), σ ∼

N(µij, σ
2) and µij|Tj ∼ N(µµ, σ

2
µ). Then the posterior distribution of µij is given by

P (µij|Tj, σ,Rj) ∝ P (Rij|Tj, µij, σ)P (µij|Tj)

∝ exp[−
∑

i(rij − µij)2

2σ2
] exp[−(µij − µµ)2

2σ2
µ

]

∝ exp[−
(niσ

2
µ + σ2)µ2

ij − 2(σ2
µ

∑
i rij + σ2µµ)µij

2σ2σ2
µ

]

∝ exp[−
(µij −

σ2
µ

∑
i rij+σ

2µµ

niσ2
µ+σ2 )2

2
σ2σ2

µ

niσ2
µ+σ2

]

where
∑

i(rij−µij)2 is the summation of the squared difference between the parameter

µij and the rijs allocated to the terminal node with parameter µij.
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A.1.2 P (σ2|(T1,M1), . . . , (Tm,Mm),Y)

Let Y = (y1, . . . , yn)T and k index the subjects k = 1, . . . , n. With σ2 ∼ IG(ν
2
, νλ

2
),

we obtain the posterior draw of σ as follows

P (σ2|(T1,M1), . . . , (Tm,Mm),Y) ∝ P (Y|(T1,M1), . . . , (Tm,Mm), σ)P (σ2)

= P (Y |
m∑
j=1

g(Xk, Tj,Mj), σ)P (σ2)

= {
n∏
k=1

(σ2)−
1
2 exp[−

(yk −
∑m

j=1 gk(Xk, Tj,Mj))
2

2σ2
]}

(σ2)−( ν
2

+1) exp(− νλ

2σ2
)

= (σ2)−( ν+n
2

+1)

exp[−
νλ+

∑n
k=1(yk −

∑m
j=1 gk(Xk, Tj,Mj))

2

2σ2
]

where
∑m

j gk(Xk, Tj,Mj) is the predicted value of BART assigned to observed out-

come yk.

A.2 Metropolis-Hastings ratio for the grow and prune step

This section is modified from Appendix A of Kapelner and Bleich (2016). Note

that

α(Tj, T
∗
j ) = min{1,

q(T ∗j , Tj)

q(Tj, T ∗j )

P (Rj|X,T ∗j ,Mj)

P (Rj|X,Tj,Mj)

P (T ∗j )

P (Tj)
}.

where
q(T ∗j ,Tj)

q(Tj ,T ∗j )
is the transition ratio,

P (Rj |X,T ∗j ,Mj)

P (Rj |X,Tj ,Mj)
is the likelihood ratio, and

P (T ∗j )

P (Tj)

is the tree structure ratio of Kapelner and Bleich, Appendix A. We now present the

explicit formula for each ratio under the grow and prune proposal.
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A.2.1 Grow proposal

A.2.1.1 Transition ratio

q(T ∗j , Tj) indicates the probability of moving from Tj to T ∗j i.e. selecting and

terminal node and growing two children from Tj. Hence,

P (T ∗j |Tj) = P (grow)P (selecting terminal node to grow from)×

P (selecting covariate to split from)×

P (selecting value to split on)

= P (grow)
1

bj

1

p

1

η
.

In the above equation, P (grow) is fixed at 0.5 in our codes, bj is the number of

available terminal nodes to split on in Tj, p is the number of variables left in the

partition of the chosen terminal node, and η is the number of unique values left in

the chosen variable after adjusting for the parents’ splits.

q(Tj, T
∗
j ) on the other hand indicates a pruning move which involves the proba-

bility of selecting the correct internal node to prune on such T ∗j becomes Tj. This is

given as

P (Tj|T ∗j ) = P (prune)P (selecting the correct internal node to prune)

= P (prune)
1

w∗2

where w∗2 denotes the number of internal nodes which have only two children terminal

nodes.

This gives a transition ratio of

q(T ∗j , Tj)

q(Tj, T ∗j )
=
P (T ∗j |Tj)
P (Tj|T ∗j )

=
P (prune)

P (grow)

bjpη

w∗2
.
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If there are no variables with two or more unique values, this transition ratio will be

set to 0.

A.2.1.2 Likelihood ratio

Since the rest of the tree structure will be the same between T ∗j and Tj except

for the terminal node where the two children are grown, we need only concentrate on

this terminal node. Let l be the selected node and lL and lR be the two children of

the grow step. Then

P (Rj|X,T ∗j ,Mj)

P (Rj|X,Tj,Mj)
=
P (Rl(L,1),j, . . . ,Rl(L,nL),j|σ2)P (Rl(R,1),j, . . . ,Rl(R,nR),j|σ2)

P (R1,j, . . . ,Rnl,j|σ2)

=

√
σ2(σ2 + nlσ2

µ)

(σ2 + nLσ2
µ)(σ2 + nRσ2

µ)
exp[

σ2
µ

2σ2
(
(
∑nL

i=1 Rl(L,i),j)
2

σ2 + nLσ2
µ

+
(
∑nR

i=1 Rl(R,i),j)
2

σ2 + nRσ2
µ

−
(
∑nl

i=1 Rl(l,i),j)
2

σ2 + nlσ2
µ

)].

A.2.1.3 Tree structure ratio

Because the T can be specified using 3 aspects, we let PSPLIT (θ) denote the

probability that a selected node θ will split and PRULE(θ) denote the probability that

which variable and value is selected. Then based on PSPLIT (θ) ∝ α
(1+dθ)β

and because

Tj and T ∗j only differs at the children nodes, we have

P (T ∗j )

P (Tj)
=

∏
θ∈H∗terminals

(1− PSPLIT (θ))
∏

θ∈H∗internals
PSPLIT (θ)

∏
θ∈H∗internals

PRULE(θ)∏
θ∈Hterminals(1− PSPLIT (θ))

∏
θ∈Hinternals PSPLIT (θ)

∏
θ∈Hinternals PRULE(θ)

=
[1− PSPLIT (θL)][1− PSPLIT (θR)]PSPLIT (θ)PRULE(θ)

1− PSPLIT (θ)

=
(1− α

(1+dθL )β
)(1− α

(1+dθR )β
) α

(1+dθ)β
1
p

1
η

α
(1+dθ)β

= α
(1− α

(2+dθ)β
)2

[(1 + dθ)β − α]pη

because dθL = dθR = dθ + 1.
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A.2.2 Prune proposal

Since prune is the direct opposite of the grow proposal, the explicit formula of

α(Tj, T
∗
j ) will just be the inverse of the grow proposal.
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APPENDIX B

Derivations of the conditional draws for riBART

MCMC algorithm

B.1 Posterior distributions of ak and σ2 for riBART

In this section, k still indexes the subjects and while i now indexes the number of

repeated measures for each subject i.e. i = 1, . . . , nk. Let

Y = (y11, . . . , y1n1 , . . . , yK1, . . . , yKnK )T and ŷik =
∑m

j=1 g(Xik, Tj,Mj).
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B.1.1 P (ak|Y, (T1,M1), . . . , (Tm,Mm), σ, τ)

Since ak ∼ N(0, τ 2), we have

P (ak|Y, (T1,M1), . . . , (Tm,Mm), σ, τ) ∝ P (Y|
m∑
j=1

g(Xik, Tj,Mj), σ, ak)P (ak|τ 2)

∝ {
nk∏
i=1

exp[−(yik − ŷik − ak)2

2σ2
]} exp[− a2

k

2τ 2
]

∝ exp[−
∑nk

i=1(yik − ŷik − ak)2

2σ2
] exp[− a2

k

2τ 2
]

∝ exp[−(nkτ
2 + σ2)a2

k − 2τ 2ak
∑nk

i=1(yik − ŷik)
2σ2τ 2

]

= exp[−
(ak − τ2

∑nk
i=1(yik−ŷik)

nkτ2+σ2 )2

2 σ2τ2

nkτ2+σ2

].

B.1.2 P (σ2|Y, (T1,M1), . . . , (Tm,Mm), ak, τ)

For the posterior of σ2, since we have σ2 ∼ IG(ν
2
, νλ

2
), we obtain

P (σ2|Y, (T1,M1), . . . , (Tm,Mm), ak, τ) ∝ P (Y|
m∑
j=1

g(Xik, Tj,Mj), σ, ak)P (σ2)

∝ {
K∏
k=1

nk∏
i=1

(σ2)−
1
2 exp[−(yik − ŷik − ak)2

2σ2
]}

(σ2)−( ν
2

+1) exp[− νλ

2σ2
]

∝ (σ2)−(N+ν
2

+1)

exp[−
∑K

k=1

∑nk
i=1(yik − ŷik − ak)2 + νλ

2σ2
]

where
∑K

k=1 nk = N .
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B.2 Posterior distribution of τ under P (τ 2) ∝ 1 and τ 2 ∼

IG(1, 1)

B.2.1 τ 2|Y, (T1,M1), . . . , (Tm,Mm), ak, σ for P (τ 2) ∝ 1

P (τ 2|Y, (T1,M1), . . . , (Tm,Mm), ak, σ) ∝ {
K∏
k=1

P (ak|τ 2)}P (τ)

∝ (τ 2)−
K
2 exp[−

∑K
k=1 a

2
k

2τ 2
].

B.2.2 τ 2|Y, (T1,M1), . . . , (Tm,Mm), ak, σ for τ 2 ∼ IG(1, 1)

P (τ 2|Y, (T1,M1), . . . , (Tm,Mm), ak, σ) ∝ {
K∏
k=1

P (ak|τ 2)}P (τ)

∝ (τ 2)−
K
2 exp[−

∑K
k=1 a

2
k

2τ 2
](τ 2)−(1+1) exp[− 1

τ 2
]

∝ (τ 2)−(K
2

+1+1) exp[−
∑K

k=1 a
2
k + 2

2τ 2
].
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B.3 Posterior distributions for ξ, ηk, θ and σ2 for riBART

with half-Cauchy prior on τ 2

B.3.1 P (ξ|Y, (T1,M1), . . . , (Tm,Mm), ηk, θ, σ)

We note that ξ ∼ N(0, B2), ηk ∼ N(0, θ2), σ2 ∼ νλχ2
ν , and θ2 ∼ IG(e, f). Now

for

P (ξ|Y, (T1,M1), . . . , (Tm,Mm), ηk, θ, σ) ∝ P (Y |
m∑
j=1

g(Xik, Tj,Mj), σ, ηk, ξ)P (ξ)

∝ {
K∏
k=1

nk∏
i=1

(σ2)−
1
2 exp[−(yik − ŷik − ξηk)2

2σ2
]}

exp[− ξ2

2B2
]

∝ exp[−
(ξ − B2

∑K
k=1

∑nk
i=1 ηk(yik−ŷik)

B2
∑K
k=1

∑nk
i=1 η

2
k+σ2

)2

2 σ2B2

B2
∑K
k=1

∑nk
i=1 η

2
k+σ2

].

is the kernel of a N(
B2

∑K
k=1

∑nk
i=1 ηk(yik−ŷik)

B2
∑K
k=1

∑nk
i=1 η

2
k+σ2

, σ2B2

B2
∑K
k=1

∑nk
i=1 η

2
k+σ2

). Set e = f = 0.5 and

B = 25 to obtain a half-Cauchy prior on τ 2.

B.3.2 P (ηk|Y, (T1,M1), . . . , (Tm,Mm), ξ, θ, σ)

P (ηk|Y, (T1,M1), . . . , (Tm,Mm), ξ, θ, σ) ∝ P (Y |
m∑
j=1

g(Xik, Tj,Mj), σ, ηk, ξ)P (ηk)

∝ {
nk∏
i=1

(σ2)−
1
2 exp[−(yik − ŷik − ξηk)2

2σ2
]}

exp[− η2
k

2θ2
]

∝ exp[−
(ηk − θ2ξ

∑nk
i=1(yik−ŷik)

θ2ξ2nk+σ2 )2

2 σ2θ2

θ2ξ2nk+σ2

].
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B.3.3 P (θ2|Y, (T1,M1), . . . , (Tm,Mm), ξ, ηk, σ)

P (θ2|Y, (T1,M1), . . . , (Tm,Mm), ξ, ηk, σ) ∝ {
K∏
k=1

p(ηk|θ2)}p(θ2)

∝ (θ2)−
K
2 exp[−

∑K
k=1 η

2
k

2θ2
](θ2)−( e

2
−1) exp[− ef

2θ2
]

∝ (θ2)−( e+K
2
−1) exp[−

∑K
k=1 η

2
k + ef

2θ2
].

B.3.4 P (σ2|Y, (T1,M1), . . . , (Tm,Mm), ξ, ηk, θ)

P (σ2|Y, (T1,M1), . . . , (Tm,Mm), ξ, ηk, θ) ∝ P (Y|
m∑
j=1

g(Xik, Tj,Mj), σ, ξ, ηk, θ)P (σ2)

∝ {
K∏
k=1

nk∏
i=1

(σ2)−
1
2 exp[−(yik − ŷik − ξηk)2

2σ2
]}

(σ2)−( ν
2

+1) exp[− νλ

2σ2
]

∝ (σ2)−(N+ν
2

+1)

exp[−
∑K

k=1

∑nk
i=1(yik − ŷik − ξηk)2 + νλ

2σ2
]
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APPENDIX C

Data preparation for Chapter III

Our original data contains the time series of speed for the vehicle every 10 millisec-

onds starting from 100 meters away from the center of an intersection. We rescale

the original time series predictors to measure distance-series of vehicle speed from

the intersection because, in a turn that is not complete, only the distance from the

intersection will be known in advance. We recorded the distance series at every single

meter i.e. d = −100, . . . ,−1 where 0 is the center of an intersection and -100 is 100

meters from the center of an intersection. To determine the vehicle speed at a certain

meter, we searched for the vehicle speed recorded that was closet to the meter mark.

In the situation where more than one speed sample point was closest to the meter,

we took their average as the speed at that meter.

Because vehicles can stop and restart before reaching the center of the intersection,

we define “stopping” as a distance-varying outcome. Let i = 1, . . . , nk index the ith

turn made by the kth driver where k = 1, . . . , K index the driver. Let sikd be the

distance series of vehicle speed and yikd be the distance-varying outcome (1=stopped

in future, 0=will not stop in future). We defined yikd as follows:

1. If sikd > 1m/s∀ d = −100, . . . ,−1, then set yikd = 0 for all d.
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2. If sikd ≤ 1m/s for some d ∈ {−100, . . . ,−1}, let c ∈ {−100, . . . ,−1} be the

index such that for every d > c, sikd > 1m/s. We set yik,−100 = yik,−99 = . . . =

yik,c = 1 and yik,c+1 = yik,c+2 = . . . = yik,−1 = 0.

Next, for every dth meter, we defined the moving window of speeds as,

Mikd = {sik,d−w+1, sik,d−w+2, . . . , sikd}

where w is the size of the moving window. We the implemented PCA on these Mikds

to reduce the number of covariates in our prediction model. Before reduction, the

covariates are s..,k−w+1, s..,k−w+2, . . . , s..d. We let

Md =



s11,d−w+1 s11,d−w+2 . . . s11j

...
...

...
...

s1n1,j−w+1 s1n1,j−w+2 . . . s1n1j

...
...

...
...

sKnK ,j−w+1 sKnK ,j−w+2 . . . sKnKj


and

u(d) =



ud−w+1

ud−w+2

...

ud


where Md is the matrix of moving windows with the first row being M11d, n

th
1 row

being M1n1d,. . ., and the last row being MKnKd. There are w (number of columns in

Md) orthogonal vectors u(d) that decompose the variance of Md into w parts under

the condition that for each u(d), ||u(d)|| = 1. To obtain the w decomposed variances,
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we used the formula: PCd = V ar[Mdu(d)]. If we let PCd(q) be the ordered statistic

where q = 1, . . . , w and u(d)(q) be the ordered vector corresponding to PCd(q), then

the first PC is Xd1 = Mdu(d)(w), the second PC is Xd2 = Mdu(d)(w−1), and so on.

We used the first two PCs in our analysis for reasons already covered in our main

paper. We then added a third predictor, the number of stops made by the vehicle

until distance d to obtain Table 3.3.
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APPENDIX D

Consistency of the AIPWT estimator

The AIPWT estimator is a consistent estimator for the population mean param-

eter µ when either the propensity model or mean model in equation (1) is correctly

specified. To see this, we first assume that β̂
p→ β∗ and θ̂

p→ θ∗ i.e. the parameters in

equations (2) and (3) are consistent. This is valid since the models we used to esti-

mate these parameters were multiple linear regression and multiple logistic regression

which under the usual maximum likelihood assumptions, will converge asymptotically

to their true values. From equation (1), this implies that

µ̂AIPWT =
1

n

n∑
k=1

{RkYk
Zk
− Rk − Zk

Zk
m(Xk, β̂)}

p→ E[
RkYk
Zk
− Rk − Zk

Zk
m(Xk, β̂)]

= E[Yk − Yk +
RkYk
Zk
− Rk − Zk

Zk
m(Xk, β̂)]

= µ+ E[
RkYk
Zk
− Rk − Zk

Zk
m(Xk, β̂)− Yk]

= µ+ E[
Rk

Zk
Yk −

Rk

Zk
m(Xk, β̂)− {Yk −m(Xk, β̂)}]

= µ+ E[{Rk

Zk
− 1}{Yk −m(Xk, β̂)}].
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Under the MAR assumption, we have Y ⊥ R|X. Hence, we have

µ̂AIPWT
p→ µ+ E[{Rk

Zk
− 1}{Yk −m(Xk, β̂)}]

= µ+ E[E[{Rk

Zk
− 1}{Yk −m(Xk, β̂)}|Xk]]

= µ+ E[E[(
Rk

Zk
− 1)|Xk]E[(Yk −m(Xk, β̂))|Xk]].

Suppose that the true propensity model is π0(X) and the propensity model in

equation (1) is correctly specified. Then Zk
p→ π0(Xk) and

E[(
Rk

Zk
− 1)|Xk]

p→ E[(
Rk

π0(Xk)
− 1)|Xk]

=
π0(Xk)

π0(Xk)
− 1

= 0.

This implies that µ̂AIPWT
p→ µ if the propensity model is correctly specified regardless

of whether the mean model is correctly specified. Now suppose that the true mean

model is m0(Xk) and the mean model in equation (1) is correctly specified. Then

m(Xk, β̂)
p→ m0(Xk) and

E[(Yk −m(Xk, β̂))|Xk]
p→ E[(Yk −m0(Xk))|Xk]

= µ− µ

= 0.

Hence, µ̂AIPWT
p→ µ if the mean model is correctly specified.
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APPENDIX E

Consistency of the PSPP estimator

We show that the PSPP model is doubly robust closely following Zhang and Little

(2009)’s arguments in the first corollary of their supplementary materials. We first

rewrite equation (4) as

(Yk|Zk, Xk1, . . . , Xkp;φ, η) ∼ N(s(Zk;φ) + f(Xk1, . . . , Xkp, η), σ2), (E.1)

where s[Zk;φ] = φ0 +
∑L

l=1 φlZ
L
k +

∑H
h=1 φL+h(Zk − τh)L+. Suppose we specified the

mean function f(Xk1, . . . , Xkp, η) correctly, then s(Zk;φ) is absorbed into the error

term and hence s(Zk;φ) + f(Xk1, . . . , Xkp, η)
p→ µ.

Now suppose instead that equation (3) was specified correctly. We consider two

scenarios, one where we omit f(Xk1, . . . , Xkp, η) in equation (4) and the other where

f(Xk1, . . . , Xkp, η) is specified. Let

Z = [1, Zk, (Zk − τ1)+, . . . , (Zk − τL)+],

the truncated linear basis of the propensity score and

X = [f1(Xk1, . . . , Xkp), . . . , fT (Xk1, . . . , Xkp)] = [Vk1, . . . , VkT ]
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be the elements in the function f . Let T be the total number of elements in f . For

the scenario where we omit f(Xk1, . . . , Xkp, η), E[Yk|Zk] = φ0+φ1Zk+
∑H

h=1 φ1+h(Zk−

τh)+ and we obtain φ by minimizing ||Y−Zφ||2+λ2φTDφ where φ = (φ0, φ1, . . . , φ1+H)T ,

λ is the penalty, and D = diag(1H). Using the mixed model representation and by

restricted maximum likelihood estimation, Ŷ(Zk, λ̂,D) = Z(ZTZ + λ̂2D)−1ZTY. As

n→∞, λ̂→ 0 and hence the predicted value of Y converges to

Ŷ(Z, 0,D) = Z(ZTZ)−1ZTY = Zφ̂. (E.2)

Equation (E.2) estimates the marginal mean of Y consistently because of the bal-

ancing property of propensity score, Zk, that is, missingness is completely at random

conditional on Zk, so predicted values of Yk using a smooth function of Z should yield

consistent estimation of the missing values.

If f(Xk1, . . . , Xkp), η) was specified but incorrect, then the conditional mean of Y

is

E[Yk|Zk, Xk1, . . . , Xkp] = s(Zk;φ) + f(Xk1, . . . , Xkp, η)

= φ0 + φ1Zk +
H∑
h=1

φ1+h(Zk − τh)+ + Xη.

(φ, η)T is obtained by minimizing ||Y− [Z,X](φ, η)T ||2 + λ2(φ, η)D(φ, η)T where λ is

the penalty and D = diag(1H , 02+T ). Using the mixed model representation and by

restricted maximum likelihood estimation,

Ŷ(Zk, Xk1, . . . , Xkp, λ̂,D) = [Z,X]([Z,X]T [Z,X] + λ̂2D)−1[Z,X]TY.

When n→∞, λ̂→ 0 and

Ŷ(Zk, Xk1, . . . , Xkp, λ̂,D)→ [Z,X]([Z,X]T [Z,X])−1[Z,X]TY,
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the predicted value of Y can then be written as

Ŷ(Zk, Xk1, . . . , Xkp, 0,D) = Zφ̂+ Xη̂. (E.3)

Now we regress each term in f on the propensity score i.e. Vi on Z for all i = 1, . . . , T

where Z is the predictor and each Vi are the outcome. As n→∞, the predicted value

of each element in f , V̂i(Z; λ̂) → V̂i(Z; 0) → Z(ZTZ)−1ZVi. Let X̂ = [V1, . . . ,VT ]

and substitute X̂ into equation (E.3). Then

E[Ŷ(Zk, Xk1, . . . , Xkp)|Zk] = Zφ̂+ X̂η̂. (E.4)

By lemma 1 in Zhang and Little (2009)’s supplementary materials, equation (E.4)

converges to equation (E.2) as n → ∞ and hence equation (4) is consistent for the

marginal mean of Y if the propensity model is correctly specified but the mean model

is incorrectly specified.
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APPENDIX F

Simulation Results for Sample Sizes 500, 1,000,

and 5,000

F.1 Linear interaction in mean model
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Table F.1: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 500 using bootstrap.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD -0.01 0.13 94 0.48 -0.01 0.13 94 0.48
CC 0.51 0.53 9.8 0.59 0.51 0.53 9.8 0.59
MLR 0 0.17 98.6 0.87 0.44 0.47 40.6 0.81
PSPP -0.01 0.21 99 1.29 0.05 0.18 97.4 0.86
AIPWT 0 0.18 93.4 0.67 0.03 0.36 89.2 1.04
PSBPP 0 0.18 98.8 0.95 -0.06 0.21 98.6 1.1
AIPWT with BART 0.15 0.23 78.4 0.61 0.15 0.23 78.4 0.61
BART 0.19 0.26 86.8 0.79 0.19 0.26 86.8 0.79
BARTps 0.11 0.21 93.6 0.83 0.11 0.21 93.6 0.83

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD -0.01 0.13 94 0.48 -0.01 0.13 94 0.48
CC 0.51 0.53 9.8 0.59 0.51 0.53 9.8 0.59
MLR 0 0.17 98.6 0.87 0.44 0.47 40.6 0.81
PSPP 0 0.18 98.8 0.9 0.25 0.31 90.4 1.04
AIPWT 0 0.18 93 0.65 0.42 0.46 25.8 0.61
PSBPP 0 0.18 98.8 0.95 -0.06 0.21 98.6 1.1
AIPWT with BART 0.15 0.23 78.4 0.61 0.15 0.23 78.4 0.61
BART 0.19 0.26 86.8 0.79 0.19 0.26 86.8 0.79
BARTps 0.11 0.21 93.6 0.83 0.11 0.21 93.6 0.83
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Table F.2: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 1,000 using bootstrap.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.2 0.34 0 0.09 94.2 0.34
CC 0.51 0.53 0.6 0.42 0.51 0.53 0.6 0.42
MLR 0 0.12 99 0.62 0.45 0.46 10 0.57
PSPP 0.01 0.14 99.8 0.78 0.05 0.13 97.4 0.61
AIPWT 0 0.12 94.4 0.47 0.04 0.18 87.2 0.6
PSBPP 0 0.13 99.2 0.64 -0.06 0.15 98.4 0.71
AIPWT with BART 0.11 0.17 78.2 0.44 0.11 0.17 78.2 0.44
BART 0.14 0.19 87.4 0.57 0.14 0.19 87.4 0.57
BARTps 0.07 0.14 95.8 0.6 0.07 0.14 95.8 0.6

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.2 0.34 0 0.09 94.2 0.34
CC 0.51 0.53 0.6 0.42 0.51 0.53 0.6 0.42
MLR 0 0.12 99 0.62 0.45 0.46 10 0.57
PSPP 0 0.12 99 0.63 0.22 0.26 85 0.78
AIPWT 0 0.12 92.8 0.46 0.43 0.45 5 0.43
PSBPP 0 0.13 99.2 0.64 -0.06 0.15 98.4 0.71
AIPWT with BART 0.11 0.17 78.2 0.44 0.11 0.17 78.2 0.44
BART 0.14 0.19 87.4 0.57 0.14 0.19 87.4 0.57
BARTps 0.07 0.14 95.8 0.6 0.07 0.14 95.8 0.6
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Table F.3: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 5,000 using bootstrap.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.04 96 0.15 0 0.04 96 0.15
CC 0.51 0.52 0 0.19 0.51 0.52 0 0.19
MLR 0 0.05 99.4 0.27 0.44 0.45 0 0.26
PSPP 0 0.05 99.2 0.29 0.03 0.06 97.6 0.27
AIPWT 0 0.05 94.4 0.21 0.01 0.1 88.4 0.32
PSBPP 0 0.05 99.4 0.28 -0.04 0.07 97.2 0.29
AIPWT with BART 0.05 0.07 80.6 0.2 0.05 0.07 80.6 0.2
BART 0.06 0.08 88.8 0.27 0.06 0.08 88.8 0.27
BARTps 0.02 0.06 97.6 0.27 0.02 0.06 97.6 0.27

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.04 96 0.15 0 0.04 96 0.15
CC 0.51 0.52 0 0.19 0.51 0.52 0 0.19
MLR 0 0.05 99.4 0.27 0.44 0.45 0 0.26
PSPP 0 0.05 99.4 0.28 0.16 0.19 69.4 0.4
AIPWT 0 0.05 94.8 0.2 0.43 0.43 0 0.19
PSBPP 0 0.05 99.4 0.28 -0.04 0.07 97.2 0.29
AIPWT with BART 0.05 0.07 80.6 0.2 0.05 0.07 80.6 0.2
BART 0.06 0.08 88.8 0.27 0.06 0.08 88.8 0.27
BARTps 0.02 0.06 97.6 0.27 0.02 0.06 97.6 0.27

Table F.4: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 500 using MI with posterior mean of propensity
scores.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.13 95 0.49 0 0.13 95 0.49
CC 0.51 0.53 4 0.41 0.51 0.53 4 0.41
MLR 0 0.18 94.6 0.7 0.44 0.47 27.4 0.66
PSPP 0 0.21 96.4 0.9 0.06 0.19 92.2 0.69
PSBPP 0 0.18 94.6 0.76 0.01 0.2 93.8 0.79
BART 0.18 0.26 80.6 0.68 0.18 0.26 80.6 0.68
BARTps 0.1 0.21 90.6 0.73 0.1 0.21 90.6 0.73

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.13 95 0.49 0 0.13 95 0.49
CC 0.51 0.53 4 0.41 0.51 0.53 4 0.41
MLR 0 0.18 94.6 0.7 0.44 0.47 27.4 0.66
PSPP 0 0.18 94.2 0.73 0.22 0.32 69.2 0.73
PSBPP 0 0.18 94.6 0.76 0.01 0.2 93.8 0.79
BART 0.18 0.26 80.6 0.68 0.18 0.26 80.6 0.68
BARTps 0.1 0.21 90.6 0.73 0.1 0.21 90.6 0.73

146



Table F.5: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 1,000 using MI with posterior mean of propensity
scores.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.6 0.35 0 0.09 94.6 0.35
CC 0.51 0.52 0 0.29 0.51 0.52 0 0.29
MLR 0 0.12 95 0.5 0.44 0.46 5.2 0.47
PSPP 0 0.14 96.6 0.58 0.06 0.14 93.2 0.49
PSBPP 0 0.13 95.6 0.52 0 0.14 94.4 0.55
BART 0.14 0.19 78.6 0.49 0.14 0.19 78.6 0.49
BARTps 0.06 0.15 90.6 0.52 0.06 0.15 90.6 0.52

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.6 0.35 0 0.09 94.6 0.35
CC 0.51 0.52 0 0.29 0.51 0.52 0 0.29
MLR 0 0.12 95 0.5 0.44 0.46 5.2 0.47
PSPP 0 0.13 95.2 0.51 0.2 0.27 63.8 0.51
PSBPP 0 0.13 95.6 0.52 0 0.14 94.4 0.55
BART 0.14 0.19 78.6 0.49 0.14 0.19 78.6 0.49
BARTps 0.06 0.15 90.6 0.52 0.06 0.15 90.6 0.52

Table F.6: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 5,000 using MI with posterior mean of propensity
scores.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.04 97 0.15 0 0.04 97 0.15
CC 0.51 0.52 0 0.13 0.51 0.52 0 0.13
MLR 0 0.05 96.8 0.22 0.44 0.45 0 0.21
PSPP 0 0.05 96.4 0.24 0.03 0.07 90 0.22
PSBPP 0 0.05 96.6 0.22 0 0.06 95.4 0.23
BART 0.06 0.08 80.2 0.22 0.06 0.08 80.2 0.22
BARTps 0.03 0.06 94.8 0.23 0.03 0.06 94.8 0.23

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.04 97 0.15 0 0.04 97 0.15
CC 0.51 0.52 0 0.13 0.51 0.52 0 0.13
MLR 0 0.05 96.8 0.22 0.44 0.45 0 0.21
PSPP 0 0.05 96 0.22 0.16 0.19 33.6 0.22
PSBPP 0 0.05 96.6 0.22 0 0.06 95.4 0.23
BART 0.06 0.08 80.2 0.22 0.06 0.08 80.2 0.22
BARTps 0.03 0.06 94.8 0.23 0.03 0.06 94.8 0.23

147



Table F.7: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 500 using MI with posterior draw of propensity
scores.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.13 95.2 0.49 0 0.13 95.2 0.49
CC 0.51 0.53 4 0.41 0.51 0.53 4 0.41
MLR 0 0.18 94.6 0.7 0.44 0.47 27.6 0.66
PSPP 0.01 0.2 96.6 0.92 0.06 0.18 93.6 0.69
PSBPP 0 0.18 94.6 0.75 0.2 0.27 86.2 0.84
BART 0.18 0.26 80.8 0.68 0.18 0.26 80.8 0.68
BARTps 0.17 0.25 84.2 0.71 0.17 0.25 84.2 0.71

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.13 95.2 0.49 0 0.13 95.2 0.49
CC 0.51 0.53 4 0.41 0.51 0.53 4 0.41
MLR 0 0.18 94.6 0.7 0.44 0.47 27.6 0.66
PSPP 0 0.18 94.2 0.73 0.25 0.32 80.6 0.91
PSBPP 0 0.18 94.6 0.75 0.2 0.27 86.2 0.84
BART 0.18 0.26 80.8 0.68 0.18 0.26 80.8 0.68
BARTps 0.17 0.25 84.2 0.71 0.17 0.25 84.2 0.71

Table F.8: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 1,000 using MI with posterior draw of propensity
scores.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.6 0.35 0 0.09 94.6 0.35
CC 0.51 0.53 0 0.29 0.51 0.53 0 0.29
MLR 0 0.12 95 0.5 0.44 0.46 5.2 0.47
PSPP 0 0.14 96.4 0.58 0.06 0.14 91.6 0.49
PSBPP 0 0.13 95.4 0.52 0.16 0.2 83.8 0.6
BART 0.14 0.19 78.4 0.49 0.14 0.19 78.4 0.49
BARTps 0.12 0.18 84 0.51 0.12 0.18 84 0.51

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.09 94.6 0.35 0 0.09 94.6 0.35
CC 0.51 0.53 0 0.29 0.51 0.53 0 0.29
MLR 0 0.12 95 0.5 0.44 0.46 5.2 0.47
PSPP 0 0.13 95.6 0.51 0.23 0.27 79.6 0.72
PSBPP 0 0.13 95.4 0.52 0.16 0.2 83.8 0.6
BART 0.14 0.19 78.4 0.49 0.14 0.19 78.4 0.49
BARTps 0.12 0.18 84 0.51 0.12 0.18 84 0.51
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Table F.9: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the linear interaction in mean model
scenario with sample size 5,000 using MI with posterior draw of propensity
scores.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.04 97 0.15 0 0.04 97 0.15
CC 0.51 0.52 0 0.13 0.51 0.52 0 0.13
MLR 0 0.05 96.8 0.22 0.44 0.45 0 0.21
PSPP 0 0.05 97.8 0.23 0.04 0.06 92 0.23
PSBPP 0 0.05 95.4 0.23 0.08 0.09 82 0.26
BART 0.06 0.08 80.2 0.22 0.06 0.08 80.2 0.22
BARTps 0.05 0.07 87.2 0.23 0.05 0.07 87.2 0.23

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.04 97 0.15 0 0.04 97 0.15
CC 0.51 0.52 0 0.13 0.51 0.52 0 0.13
MLR 0 0.05 96.8 0.22 0.44 0.45 0 0.21
PSPP 0 0.05 97.4 0.22 0.17 0.19 63.6 0.38
PSBPP 0 0.05 95.4 0.23 0.08 0.09 82 0.26
BART 0.06 0.08 80.2 0.22 0.06 0.08 80.2 0.22
BARTps 0.05 0.07 87.2 0.23 0.05 0.07 87.2 0.23

F.2 Quadratic interaction in mean model

149



Table F.10: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 500 using bootstrap.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.02 0.34 90.4 1.19 0.02 0.34 90.4 1.19
CC 1.21 1.23 2.8 0.89 1.21 1.23 2.8 0.89
MLR 0.01 0.36 96.8 1.84 1.24 1.26 3.4 1.15
PSPP 0.01 0.37 97.2 1.87 0.31 0.54 82.6 2.39
AIPWT 0.02 0.36 91.2 1.31 0.16 1.75 63.8 2.75
PSBPP 0.01 0.37 97.4 1.87 0.21 0.49 92.4 3.03
AIPWT with BART 0.57 0.67 35 1.02 0.57 0.67 35 1.02
BART 0.64 0.71 46.8 1.28 0.64 0.71 46.8 1.28
BARTps 0.54 0.63 60.4 1.41 0.54 0.63 60.4 1.41

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.02 0.34 90.4 1.19 0.02 0.34 90.4 1.19
CC 1.21 1.23 2.8 0.89 1.21 1.23 2.8 0.89
MLR 0.01 0.36 96.8 1.84 1.24 1.26 3.4 1.15
PSPP 0.01 0.36 97 1.87 0.83 0.89 61.4 2.05
AIPWT 0.02 0.36 91.4 1.3 1.21 1.23 2 0.84
PSBPP 0.01 0.37 97.4 1.87 0.21 0.49 92.4 3.03
AIPWT with BART 0.57 0.67 35 1.02 0.57 0.67 35 1.02
BART 0.64 0.71 46.8 1.28 0.64 0.71 46.8 1.28
BARTps 0.54 0.63 60.4 1.41 0.54 0.63 60.4 1.41
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Table F.11: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 1,000 using bootstrap.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 91.8 0.86 0 0.24 91.8 0.86
CC 1.21 1.23 0.2 0.63 1.21 1.23 0.2 0.63
MLR 0 0.26 99 1.32 1.24 1.25 0 0.8
PSPP 0 0.26 98.8 1.33 0.21 0.44 81.2 2
AIPWT 0 0.26 91.2 0.93 0.22 0.72 67 1.68
PSBPP 0 0.26 98.6 1.33 0.13 0.35 94 2.16
AIPWT with BART 0.45 0.51 29.8 0.77 0.45 0.51 29.8 0.77
BART 0.52 0.57 42 0.97 0.52 0.57 42 0.97
BARTps 0.41 0.47 63.4 1.07 0.41 0.47 63.4 1.07

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 91.8 0.86 0 0.24 91.8 0.86
CC 1.21 1.23 0.2 0.63 1.21 1.23 0.2 0.63
MLR 0 0.26 99 1.32 1.24 1.25 0 0.8
PSPP 0 0.26 98.6 1.33 0.72 0.77 61.8 1.69
AIPWT 0 0.25 91 0.92 1.21 1.22 0 0.59
PSBPP 0 0.26 98.6 1.33 0.13 0.35 94 2.16
AIPWT with BART 0.45 0.51 29.8 0.77 0.45 0.51 29.8 0.77
BART 0.52 0.57 42 0.97 0.52 0.57 42 0.97
BARTps 0.41 0.47 63.4 1.07 0.41 0.47 63.4 1.07
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Table F.12: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 5,000 using bootstrap.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.1 94 0.39 0.01 0.1 94 0.39
CC 1.21 1.21 0 0.29 1.21 1.21 0 0.29
MLR 0.01 0.11 98.6 0.59 1.24 1.24 0 0.37
PSPP 0.01 0.11 98.6 0.59 0.12 0.23 80.8 0.87
AIPWT 0.01 0.11 95 0.42 0.09 0.45 71.8 1.16
PSBPP 0.01 0.11 98.6 0.59 0.09 0.17 91.2 0.9
AIPWT with BART 0.24 0.26 26 0.39 0.24 0.26 26 0.39
BART 0.28 0.3 40.6 0.5 0.28 0.3 40.6 0.5
BARTps 0.2 0.23 67.8 0.54 0.2 0.23 67.8 0.54

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.1 94 0.39 0.01 0.1 94 0.39
CC 1.21 1.21 0 0.29 1.21 1.21 0 0.29
MLR 0.01 0.11 98.6 0.59 1.24 1.24 0 0.37
PSPP 0.01 0.11 98.6 0.59 0.52 0.56 50.6 0.99
AIPWT 0.01 0.11 93.8 0.42 1.21 1.21 0 0.27
PSBPP 0.01 0.11 98.6 0.59 0.09 0.17 91.2 0.9
AIPWT with BART 0.24 0.26 26 0.39 0.24 0.26 26 0.39
BART 0.28 0.3 40.6 0.5 0.28 0.3 40.6 0.5
BARTps 0.2 0.23 67.8 0.54 0.2 0.23 67.8 0.54

Table F.13: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 500 using MI with posterior mean of
propensity scores.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.02 0.34 91 1.23 0.02 0.34 91 1.23
CC 1.2 1.23 0.8 0.62 1.2 1.23 0.8 0.62
MLR 0.01 0.37 93.2 1.37 1.24 1.26 2 1
PSPP 0.01 0.36 93 1.39 0.28 0.65 61.2 1.18
PSBPP 0.01 0.37 93.8 1.4 0.25 0.66 68.4 1.31
BART 0.59 0.68 35 0.94 0.59 0.68 35 0.94
BARTps 0.47 0.59 49.8 1.04 0.47 0.59 49.8 1.04

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.02 0.34 91 1.23 0.02 0.34 91 1.23
CC 1.2 1.23 0.8 0.62 1.2 1.23 0.8 0.62
MLR 0.01 0.37 93.2 1.37 1.24 1.26 2 1
PSPP 0.02 0.37 93.2 1.39 0.75 0.87 36.4 1.16
PSBPP 0.01 0.37 93.8 1.4 0.25 0.66 68.4 1.31
BART 0.59 0.68 35 0.94 0.59 0.68 35 0.94
BARTps 0.47 0.59 49.8 1.04 0.47 0.59 49.8 1.04
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Table F.14: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 1,000 using MI with posterior mean of
propensity scores.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 92.6 0.89 0 0.24 92.6 0.89
CC 1.21 1.23 0 0.44 1.21 1.23 0 0.44
MLR 0 0.26 94.2 0.98 1.24 1.25 0 0.7
PSPP 0 0.26 94.4 0.99 0.16 0.56 54.4 0.88
PSBPP 0 0.26 93.8 0.99 0.21 0.41 68.2 0.91
BART 0.47 0.53 31.4 0.71 0.47 0.53 31.4 0.71
BARTps 0.35 0.44 51 0.77 0.35 0.44 51 0.77

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 92.6 0.89 0 0.24 92.6 0.89
CC 1.21 1.23 0 0.44 1.21 1.23 0 0.44
MLR 0 0.26 94.2 0.98 1.24 1.25 0 0.7
PSPP 0 0.26 94 0.99 0.66 0.75 28.4 0.84
PSBPP 0 0.26 93.8 0.99 0.21 0.41 68.2 0.91
BART 0.47 0.53 31.4 0.71 0.47 0.53 31.4 0.71
BARTps 0.35 0.44 51 0.77 0.35 0.44 51 0.77

Table F.15: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 5,000 using MI with posterior mean of
propensity scores.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.1 94.8 0.4 0.01 0.1 94.8 0.4
CC 1.21 1.21 0 0.2 1.21 1.21 0 0.2
MLR 0.01 0.11 95 0.44 1.24 1.24 0 0.32
PSPP 0.01 0.11 95 0.44 0.1 0.24 52 0.4
PSBPP 0.01 0.11 95.2 0.44 0.15 0.22 56.4 0.39
BART 0.25 0.27 29.8 0.36 0.25 0.27 29.8 0.36
BARTps 0.17 0.21 56.8 0.39 0.17 0.21 56.8 0.39

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.1 94.8 0.4 0.01 0.1 94.8 0.4
CC 1.21 1.21 0 0.2 1.21 1.21 0 0.2
MLR 0.01 0.11 95 0.44 1.24 1.24 0 0.32
PSPP 0.01 0.11 95.4 0.44 0.5 0.56 15 0.39
PSBPP 0.01 0.11 95.2 0.44 0.15 0.22 56.4 0.39
BART 0.25 0.27 29.8 0.36 0.25 0.27 29.8 0.36
BARTps 0.17 0.21 56.8 0.39 0.17 0.21 56.8 0.39
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Table F.16: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 500 using MI with posterior draw of
propensity scores.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.34 90.8 1.24 0.01 0.34 90.8 1.24
CC 1.2 1.23 0.8 0.62 1.2 1.23 0.8 0.62
MLR 0.01 0.37 93 1.38 1.23 1.26 2 1
PSPP 0.01 0.37 92.4 1.39 0.3 0.52 72 1.46
PSBPP 0.01 0.37 93.6 1.41 0.67 0.79 54 2.18
BART 0.59 0.68 35.4 0.94 0.59 0.68 35.4 0.94
BARTps 0.57 0.66 40.4 1.03 0.57 0.66 40.4 1.03

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.34 90.8 1.24 0.01 0.34 90.8 1.24
CC 1.2 1.23 0.8 0.62 1.2 1.23 0.8 0.62
MLR 0.01 0.37 93 1.38 1.23 1.26 2 1
PSPP 0.01 0.37 93.6 1.41 0.79 0.86 50.4 1.72
PSBPP 0.01 0.37 93.6 1.41 0.67 0.79 54 2.18
BART 0.59 0.68 35.4 0.94 0.59 0.68 35.4 0.94
BARTps 0.57 0.66 40.4 1.03 0.57 0.66 40.4 1.03

Table F.17: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 1,000 using MI with posterior draw of
propensity scores.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 92.2 0.89 0 0.24 92.2 0.89
CC 1.21 1.23 0 0.44 1.21 1.23 0 0.44
MLR 0 0.26 94 0.98 1.24 1.25 0 0.7
PSPP 0 0.26 93.6 0.99 0.19 0.45 71.4 1.24
PSBPP 0 0.26 93 0.99 0.53 0.64 58.6 2.07
BART 0.47 0.53 30.6 0.71 0.47 0.53 30.6 0.71
BARTps 0.44 0.51 39 0.78 0.44 0.51 39 0.78

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0 0.24 92.2 0.89 0 0.24 92.2 0.89
CC 1.21 1.23 0 0.44 1.21 1.23 0 0.44
MLR 0 0.26 94 0.98 1.24 1.25 0 0.7
PSPP 0 0.26 93.6 0.99 0.71 0.77 52.8 1.53
PSBPP 0 0.26 93 0.99 0.53 0.64 58.6 2.07
BART 0.47 0.53 30.6 0.71 0.47 0.53 30.6 0.71
BARTps 0.44 0.51 39 0.78 0.44 0.51 39 0.78
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Table F.18: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) of the eight estimators under the quadratic interaction in mean
model scenario with sample size 5,000 using MI with posterior draw of
propensity scores.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.1 94.8 0.4 0.01 0.1 94.8 0.4
CC 1.21 1.21 0 0.2 1.21 1.21 0 0.2
MLR 0.01 0.11 95 0.44 1.24 1.24 0 0.32
PSPP 0.01 0.11 95.4 0.44 0.1 0.23 65.6 0.54
PSBPP 0.01 0.11 95 0.44 0.32 0.36 65.4 1.31
BART 0.25 0.27 29.8 0.36 0.25 0.27 29.8 0.36
BARTps 0.23 0.25 43.4 0.41 0.23 0.25 43.4 0.41

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.1 94.8 0.4 0.01 0.1 94.8 0.4
CC 1.21 1.21 0 0.2 1.21 1.21 0 0.2
MLR 0.01 0.11 95 0.44 1.24 1.24 0 0.32
PSPP 0.01 0.11 95.8 0.44 0.53 0.58 41.6 0.91
PSBPP 0.01 0.11 95 0.44 0.32 0.36 65.4 1.31
BART 0.25 0.27 29.8 0.36 0.25 0.27 29.8 0.36
BARTps 0.23 0.25 43.4 0.41 0.23 0.25 43.4 0.41

F.3 Kang and Schafer (2007) example
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Table F.19: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 500
using bootstrap.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.11 1.58 95.6 6.17 0.11 1.58 95.6 6.17
CC -9.96 10.2 0.2 8.42 -9.96 10.2 0.2 8.42
MLR 0.03 1.55 99.2 9.04 -0.66 2.04 99.4 10.99
PSPP 0.03 1.55 99.2 9.04 -0.11 1.71 99.6 9.66
AIPWT 0.1 1.58 95.6 6.18 0.25 2.17 94 8.19
PSBPP 0.03 1.55 99.2 9.04 1.72 2.54 97.4 11.18
AIPWT with BART -0.13 1.6 94.4 6.37 -0.6 1.75 91 6.74
BART -0.32 1.59 99.6 9.12 -1.05 1.94 98.6 9.36
BARTps -0.06 1.57 99.4 9.39 0.49 1.7 99 9.9

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.11 1.58 95.6 6.17 0.11 1.58 95.6 6.17
CC -9.96 10.2 0.2 8.42 -9.96 10.2 0.2 8.42
MLR 0.03 1.55 99.2 9.04 -0.66 2.04 99.4 10.99
PSPP 0.03 1.55 99.2 9.04 -1.99 2.77 92 9.42
AIPWT 0.32 5.09 95.6 8 -46.4 858.18 68.6 326.68
PSBPP 0.03 1.55 99.2 9.04 -1.39 2.43 98.8 11.89
AIPWT with BART -0.13 1.6 94.4 6.37 -0.75 1.81 90.8 6.74
BART -0.32 1.59 99.6 9.12 -1.05 1.94 98.6 9.36
BARTps -0.15 1.58 99.8 9.39 -0.89 1.87 99.2 9.75
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Table F.20: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 1,000
using bootstrap.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.07 1.11 95.2 4.38 0.07 1.11 95.2 4.38
CC -9.96 10.09 0 5.97 -9.96 10.09 0 5.97
MLR 0.07 1.11 99.4 6.38 -0.74 1.63 98 7.78
PSPP 0.06 1.11 99.4 6.38 -0.07 1.21 99.2 6.66
AIPWT 0.06 1.11 95.6 4.38 0.07 1.66 94.2 6.01
PSBPP 0.07 1.11 99.4 6.38 1.46 1.95 96.8 7.4
AIPWT with BART -0.05 1.12 95.2 4.42 -0.31 1.19 93.8 4.61
BART -0.13 1.12 99.6 6.38 -0.59 1.29 99.2 6.5
BARTps 0 1.11 99.4 6.46 0.39 1.23 99.2 6.8

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.07 1.11 95.2 4.38 0.07 1.11 95.2 4.38
CC -9.96 10.09 0 5.97 -9.96 10.09 0 5.97
MLR 0.07 1.11 99.4 6.38 -0.74 1.63 98 7.78
PSPP 0.07 1.11 99.4 6.38 -2.12 2.52 77.2 6.29
AIPWT -0.08 2.28 95.6 5.1 -35.69 477.13 41.2 196.51
PSBPP 0.07 1.11 99.4 6.38 -1.13 1.73 99 7.84
AIPWT with BART -0.06 1.12 95.2 4.42 -0.45 1.24 93.2 4.62
BART -0.13 1.12 99.6 6.38 -0.59 1.29 99.2 6.5
BARTps -0.05 1.12 99.6 6.46 -0.52 1.27 99.2 6.7
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Table F.21: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 5,000
using bootstrap.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.02 0.49 96.4 1.96 0.02 0.49 96.4 1.96
CC -9.94 9.97 0 2.65 -9.94 9.97 0 2.65
MLR 0.02 0.5 99.4 2.87 -0.84 1.06 92 3.49
PSPP 0.02 0.5 99.4 2.87 -0.04 0.53 99.2 2.95
AIPWT 0.01 0.49 96.2 1.96 0.05 0.7 94.4 2.76
PSBPP 0.02 0.5 99.4 2.87 0.86 1.01 88.8 3.07
AIPWT with BART -0.02 0.49 95.8 1.97 -0.08 0.51 95.6 2
BART -0.04 0.5 99.4 2.87 -0.24 0.56 99.2 2.89
BARTps -0.02 0.5 99.4 2.87 0.16 0.53 99.6 2.9

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.02 0.49 96.4 1.96 0.02 0.49 96.4 1.96
CC -9.94 9.97 0 2.65 -9.94 9.97 0 2.65
MLR 0.02 0.5 99.4 2.87 -0.84 1.06 92 3.49
PSPP 0.02 0.5 99.4 2.87 -2.28 2.36 5.2 2.62
AIPWT -0.01 0.59 96 2.07 -19.29 91.29 0.2 44.76
PSBPP 0.02 0.5 99.4 2.87 -0.26 0.6 99.2 3.17
AIPWT with BART -0.02 0.49 95.8 1.97 -0.21 0.54 94.2 2
BART -0.04 0.5 99.4 2.87 -0.24 0.56 99.2 2.89
BARTps -0.02 0.5 99.4 2.87 -0.23 0.56 99.2 2.9

Table F.22: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 500
using MI with posterior mean of propensity scores.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.09 1.56 96.8 6.36 0.09 1.56 96.8 6.36
CC -10.02 10.25 0 6.11 -10.02 10.25 0 6.11
MLR 0.08 1.56 96.4 6.34 -0.74 2.13 95 8.08
PSPP 0.08 1.56 96.4 6.34 -0.06 1.74 95 6.69
PSBPP 0.09 1.56 96.4 6.35 1.39 2.28 91.2 7.7
BART -0.15 1.58 96.4 6.36 -0.74 1.8 93.4 6.74
BARTps -0.05 1.58 97 6.47 0.35 1.7 97.4 6.97

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.09 1.56 96.8 6.36 0.09 1.56 96.8 6.36
CC -10.02 10.25 0 6.11 -10.02 10.25 0 6.11
MLR 0.08 1.56 96.4 6.34 -0.74 2.13 95 8.08
PSPP 0.08 1.56 96.4 6.34 -1.99 2.82 80.4 7.79
PSBPP 0.08 1.56 96.4 6.35 -1.4 2.46 91.4 8.17
BART -0.15 1.58 96.4 6.36 -0.74 1.8 93.4 6.74
BARTps -0.08 1.58 96.8 6.48 -0.61 1.76 94.2 6.96
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Table F.23: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 1,000
using MI with posterior mean of propensity scores.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.05 1.11 96.2 4.49 0.05 1.11 96.2 4.49
CC -9.97 10.11 0 4.32 -9.97 10.11 0 4.32
MLR 0.04 1.11 96.4 4.49 -0.82 1.68 90.8 5.69
PSPP 0.05 1.11 96.4 4.49 -0.07 1.22 94.8 4.71
PSBPP 0.05 1.11 96.6 4.49 0.99 1.61 91.2 5.27
BART -0.08 1.13 96.2 4.5 -0.46 1.24 95 4.71
BARTps -0.04 1.12 96.2 4.54 0.26 1.21 95.4 4.83

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.05 1.11 96.2 4.49 0.05 1.11 96.2 4.49
CC -9.97 10.11 0 4.32 -9.97 10.11 0 4.32
MLR 0.04 1.11 96.4 4.49 -0.82 1.68 90.8 5.69
PSPP 0.05 1.11 96.4 4.49 -2.17 2.57 65.4 5.34
PSBPP 0.05 1.11 96.4 4.49 -1.41 1.92 83.8 5.55
BART -0.08 1.13 96.2 4.5 -0.46 1.24 95 4.71
BARTps -0.03 1.13 96.4 4.54 -0.4 1.24 95.4 4.85

Table F.24: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 5,000
using MI with posterior mean of propensity scores.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.01 0.49 96.4 2.01 0.01 0.49 96.4 2.01
CC -9.94 9.96 0 1.93 -9.94 9.96 0 1.93
MLR 0.01 0.49 96.4 2.01 -0.86 1.08 70.8 2.54
PSPP 0.01 0.49 96.4 2.01 -0.03 0.53 97 2.1
PSBPP 0.01 0.49 96 2.01 0.44 0.69 89 2.22
BART -0.03 0.49 96.6 2.01 -0.19 0.54 95.8 2.08
BARTps -0.02 0.5 96.8 2.01 0.1 0.51 96 2.08

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.49 96.4 2.01 0.01 0.49 96.4 2.01
CC -9.94 9.96 0 1.93 -9.94 9.96 0 1.93
MLR 0.01 0.49 96.4 2.01 -0.86 1.08 70.8 2.54
PSPP 0.01 0.49 96.4 2.01 -2.28 2.36 1.8 2.32
PSBPP 0.01 0.49 96.4 2.01 -0.49 0.73 89.2 2.33
BART -0.03 0.49 96.6 2.01 -0.19 0.54 95.8 2.08
BARTps -0.02 0.5 97 2.01 -0.21 0.55 95.4 2.1
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Table F.25: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 500
using MI with posterior draw of propensity scores.

n = 500 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.09 1.56 96.8 6.36 0.09 1.56 96.8 6.36
CC -10.02 10.25 0 6.11 -10.02 10.25 0 6.11
MLR 0.08 1.56 96.4 6.34 -0.74 2.13 95 8.08
PSPP 0.08 1.56 96.4 6.34 -0.11 1.72 96.6 7.22
PSBPP 0.09 1.56 96.4 6.35 0.3 1.81 98 8.68
BART -0.15 1.58 96.4 6.36 -0.74 1.8 93.4 6.74
BARTps -0.12 1.58 97 6.5 -0.39 1.67 96.4 7.08

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.09 1.56 96.8 6.36 0.09 1.56 96.8 6.36
CC -10.02 10.25 0 6.11 -10.02 10.25 0 6.11
MLR 0.08 1.56 96.4 6.34 -0.74 2.13 95 8.08
PSPP 0.09 1.56 96.6 6.35 -1.94 2.73 84.2 8.24
PSBPP 0.08 1.56 96.4 6.35 -1.22 2.26 96 8.88
BART -0.15 1.58 96.4 6.36 -0.74 1.8 93.4 6.74
BARTps -0.13 1.58 97 6.47 -0.76 1.81 93.8 6.95

Table F.26: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 1,000
using MI with posterior draw of propensity scores.

n = 1, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.05 1.11 96.2 4.49 0.05 1.11 96.2 4.49
CC -9.97 10.11 0 4.32 -9.97 10.11 0 4.32
MLR 0.04 1.11 96.4 4.49 -0.82 1.68 90.8 5.69
PSPP 0.05 1.11 96.4 4.49 -0.12 1.21 96.4 5.03
PSBPP 0.05 1.11 96.4 4.49 0.07 1.26 98.2 6.14
BART -0.08 1.13 96.2 4.5 -0.46 1.24 95 4.71
BARTps -0.07 1.12 96.4 4.54 -0.22 1.18 96.6 4.91

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.05 1.11 96.2 4.49 0.05 1.11 96.2 4.49
CC -9.97 10.11 0 4.32 -9.97 10.11 0 4.32
MLR 0.04 1.11 96.4 4.49 -0.82 1.68 90.8 5.69
PSPP 0.05 1.11 96.4 4.49 -2.12 2.52 68.6 5.47
PSBPP 0.05 1.11 96.6 4.49 -1.42 1.92 89.4 6.25
BART -0.08 1.13 96.2 4.5 -0.46 1.24 95 4.71
BARTps -0.07 1.12 96.4 4.54 -0.47 1.25 96.2 4.85
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Table F.27: Bias, RMSE, 95% coverage, and average 95% confidence interval length
(AIL) under the Kang and Schafer (2007) example with sample size 5,000
using MI with posterior draw of propensity scores.

n = 5, 000 Both correct Propensity correct
Method Bias RMSE Coverage AIL* Bias RMSE Coverage AIL
BD 0.01 0.49 96.4 2.01 0.01 0.49 96.4 2.01
CC -9.94 9.96 0 1.93 -9.94 9.96 0 1.93
MLR 0.01 0.49 96.4 2.01 -0.86 1.08 70.8 2.54
PSPP 0.01 0.49 96.4 2.01 -0.04 0.53 97.6 2.21
PSBPP 0.01 0.49 96.2 2.01 -0.17 0.55 98.6 2.53
BART -0.03 0.49 96.6 2.01 -0.19 0.54 95.8 2.08
BARTps -0.02 0.5 96.8 2.02 -0.08 0.51 96.8 2.1

Mean correct Both wrong
Method Bias RMSE Coverage AIL Bias RMSE Coverage AIL
BD 0.01 0.49 96.4 2.01 0.01 0.49 96.4 2.01
CC -9.94 9.96 0 1.93 -9.94 9.96 0 1.93
MLR 0.01 0.49 96.4 2.01 -0.86 1.08 70.8 2.54
PSPP 0.01 0.49 96.4 2.01 -2.27 2.34 2.8 2.35
PSBPP 0.01 0.49 96 2.01 -1 1.13 74.6 2.7
BART -0.03 0.49 96.6 2.01 -0.19 0.54 95.8 2.08
BARTps -0.02 0.5 96.8 2.02 -0.2 0.54 95.8 2.11
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APPENDIX G

Web Appendix D: Simple descriptive statistics for

NASS-CDS 2014 and FARS 2015

G.1 NASS-CDS 2014
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Table G.1: Summary statistics stratified by missingness in total delta-v.
Variables Missing (%) Non-missing (%) p-value
Crash type < 0.01

Change traffic-way, vehicle turning 18.4 32.3
Same traffic-way 29.3 32.8
Single driver 31.1 11.5
Others or missing 21.3 23.4

Heading angle < 0.01
Frontal 17.8 24.6
Back 16.2 21.3
Left 18.2 21.3
Right 16.6 21.7
Missing 31.2 11.1

Climate 0.09
Clear 76.1 72.9
Cloudy 11.1 12.7
Others or Missing 12.8 14.4

Bodytype 0.23
Automobiles 66.9 67.8
SUV 17.1 18.1
Trucks 16 14

Curb weight < 0.01
< 1500kg 38.7 42.3
1500-2000kg 40.5 44
≥ 2000kg or Missing 20.8 13.7

Documentation of trajectory? 0.75
Yes 22.4 22.9
No 77.6 77.1

Driver distracted? < 0.01
Attentive 23.7 29.6
Distracted 10.7 10.4
Missing 65.6 60

Police reported alcohol presence < 0.01
Yes 9.3 6.5
No 84.2 88.1
Missing 6.4 5.4

Pre-impact location < 0.01
Stayed on roadway 69.1 86.5
Did not stay on roadway or missing 30.9 13.5
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Table G.2: Summary statistics stratified by missingness in total delta-v, continued.
Variables Missing (%) Non-missing (%) p-value
No. of lanes < 0.01
≤ 2 or Missing 46 42.5
3 17.5 17.6
4 14.2 19.4
5 15.5 15.3
≥ 6 6.9 5.2

Light condition < 0.01
Dark 10.6 6.7
Dark but lighted 25 23.9
Daylight 60.3 65.7
Dusk, Dawn, or Missing 4.1 3.7

Vehicle make 0.11
American 47.2 50.6
Japanese 39.6 36.3
Europe or other foreign 13.2 13.1

Avoidance maneuver? < 0.01
Yes 18.8 23.6
No 35.8 36.7
Missing 45.4 39.8

Model year 0.16
< 2003 or Missing 33.7 31.5
≥ 2003 66.3 68.5

No. of occupants 0.81
1 71.3 70.6
2 19.1 19.9
≥ 3 9.6 9.5

Pre-crash event < 0.01
Traveling 42.1 35.1
Loss control 9.3 5.7
Other or Missing 48.6 59.3

Pre-event movement 0.59
Going straight 55.6 54.6
Other or Missing 44.4 45.4

Pre-impact stability < 0.01
Skidding 10.6 9.5
Tracking 74.2 79
Other or Missing 15.3 11.5

Road alignment 0.31
Straight 79.5 80.7
Curve left 10.6 9.1
Curve right 9.9 10.2
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Table G.3: Summary statistics stratified by missingness in total delta-v, continued.
Variables Missing (%) Non-missing (%) p-value

Surface condition 0.03
Dry 81.4 79.6
Wet 12.6 15.5
Other or Missing 5.9 4.9

Surface type 0.07
Concrete 13.4 11.4
Asphalt and Others 86.6 88.6

Race < 0.01
White 34.8 38.4
Black 10.3 12.3
Other or Missing 54.9 49.3

Relation to interchange < 0.01
Interchange area related 12.7 11.5
Intersection related 41.4 57.5
Non-interchange area and non-junction 45.9 31

Other drug test results < 0.01
No test given 80.9 87.2
Drugs found 1.7 2.6
Drugs not found 3 2
Results not known 3.2 1.9
Missing 11.1 6.2

Traffic control device < 0.01
No traffic control 64.7 54.8
Traffic control signal 25.3 35.8
Other or Missing 10.1 9.4

Travel speed < 0.01
≤ 40km/h 13.3 15.9
40-80km/h 10.6 14.2
> 80km/h 7.4 4.2
Missing 68.7 65.7

Traffic flow < 0.01
Not Divided or One way 66.4 66.6
Divided with barrier 18.9 12.7
Divided/no barrier 14.8 20.8

Other drug present? < 0.01
Yes 2.3 1.7
No 75.4 82.6
Missing 22.4 15.7

Vehicle has roof? < 0.01
Yes 81.1 86.9
No or missing 18.9 13.1
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Table G.4: Summary statistics stratified by missingness in total delta-v, continued.
Variables Missing (%) Non-missing (%) p-value
Antilock brakes < 0.01

Not available 3.4 3.5
Standard 71.6 75
Optional 16.9 19.2
Missing 8.1 2.4

Daytime running lights < 0.01
Not available 34.9 34.3
Standard 39.5 43.6
Optional 14.1 16.3
Missing 11.5 5.7

Other vehicle body type < 0.01
Automobiles 23.5 57.6
SUV 9.9 20.9
Trucks 10.1 15.9
Other or Missing 56.6 5.6

Direct damage width < 0.01
< 50cm 10.1 14.4
50-100cm 7.3 21.6
100-150cm 8.1 26.7
≥ 150cm 8.5 21.8
Missing 66 15.6

Highest deformation extent < 0.01
1 12.8 26.3
≥ 2 32.5 60.9
Missing 54.7 12.8

Second highest deformation extent < 0.01
1 8.8 15
≥ 2 8.8 10.6
Missing 82.4 74.4

Second highest object contacted < 0.01
Vehicle 11.1 18.1
Other 15.1 12.6
Missing 73.8 69.3

Principal direction of force < 0.01
Frontal 40 63
Back 5.4 9.3
Left 5.1 9.8
Right 4.9 8
Other or Missing 44.6 9.9
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Table G.5: Summary statistics stratified by missingness in total delta-v, continued.
Variables Missing (%) Non-missing (%) p-value
No. of seriously injured occupants 0.15

0 29.6 28
≥>= 1 4 5.3
Missing 66.4 66.7

Age 0.49
< 21 or Missing 12.7 12.9
21-30 26.4 25
30-40 18.9 19.2
40-50 14.9 13.9
50-60 12.9 12.7
≥ 60 14.2 16.4

Police reported airbag use < 0.01
Not deployed 33.4 28.9
Deployed 38.9 52.5
Not reported 22.1 12
Other or Missing 5.6 6.6

Driver’s height 0.63
< 160cm 5.4 6.3
160-170cm 14.6 15.4
170-180cm 16.8 15.7
≥ 180cm 12.6 11.9
Missing 50.6 50.8

Police reported injury severity < 0.01
No injury (O) 44.6 39.2
Possible injury (C) 18.7 21.3
Nonincapaciting injury (B) 10.8 15.5
Incapacitating injury (A) 16.1 18.3
Killed (K) 5.6 2.8
Unknown injury or Missing 4.2 2.8

Police reported belt use 0.01
None used 8.1 6.6
Used 82.1 85.7
Not reported or Missing 9.8 7.6

Sex < 0.01
Female 40.4 46
Male or Missing 59.6 54
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Table G.6: Summary statistics stratified by missingness in total delta-v, continued.
Variables Missing (%) Non-missing (%) p-value
Driver’s weight 0.84

< 60kg 6.4 6.9
60-70kg 9 9.6
70-80kg 11.7 10.5
80-90kg 8.2 9
90-100kg 6 6.2
≥ 100kg 8.4 8.2
Missing 50.3 49.6

G.2 2015 FARS
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Table G.7: Summary statistics stratified by missingness in blood alcohol concentra-
tion (BAC)

Variables Missing (%) Non-missing (%) p-value
Hour of crash < 0.01

12-6am 15.5 23.1
6-10am 13.1 13.4
10am-4pm 26.8 23.5
4-8pm 24.3 19.9
8pm-12am 20 19.4
Unknown 0.4 0.7

Day of crash < 0.01
Mon-Thu 52.9 50.1
Fri 15.9 15.1
Sat 16.1 17.7
Sun 15.1 17.1

Intersection type < 0.01
4-way 23.2 15.7
Other 11 9.1
Not an intersection, Not reported, or Unknown 65.8 75.2

Work zone? 0.06
Yes 2.3 1.9
No 97.7 98.1

Relation to road < 0.01
On roadside 14.5 31.3
On roadway 80.7 60.2
Other, Not reported, or Unknown 4.8 8.5

Climate 0.01
Clear 71.6 69.4
Cloudy 16.7 17.7
Rain 7.9 8.9
Other, Not reported, or Unknown1 3.7 4

No. of fatalities < 0.01
1 92.5 87.8
2 6.3 9.9
≥ 3 1.2 2.3

Number of motor vehicles in transport < 0.01
≤ 2 78 90.2
≥ 3 22 9.8

Functional system < 0.01
Arterial 56.7 53.5
Collector 10.7 17.1
Interstate 12.8 11.5
Local, not in state inventory, not reported, or unknown 19.8 17.9

Manner of collision < 0.01
Front to front 13.3 18.1
Front to rear 12.4 7.4
Angle 29.1 22.8
Non-collision, other, not reported, or unknown 45.1 51.7

Month of crash < 0.01
Jan 7.5 8.5
Feb 6.4 6.6
Mar 7.5 8.1
Apr 7 8.1
May 8.3 8.9
Jun 8.3 8.3
Jul 9.1 8.4
Aug 8.5 9
Sep 8.7 8.6
Oct 9.7 8.8
Nov 9.4 8.3
Dec 9.6 8.5

Vehicle make < 0.01
American 43.6 50.1
Japanese 41.2 36.2
Other 15.2 13.6
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Table G.8: Summary statistics stratified by missingness in blood alcohol concentra-
tion (BAC), continued

Variables Missing (%) Non-missing (%) p-value
Model year < 0.01

Before 1995 4.6 7.5
1995-2005 33.8 41
2005-2015 55.7 48.1
Beyond 2015 or unknown 5.9 3.3

Fire? < 0.01
Yes 2 4.4
No 98 95.6

Age < 0.01
Younger than 21 12.3 12.8
21-30 24.6 28.7
30-40 16.1 17
40-50 11.8 10.7
50-60 12.2 11.7
Older than 60 21.4 19.1
Not reported or unknown 1.6 0.1

Sex < 0.01
Male 58.7 66.1
Female, not reported or unknown 41.3 33.9

Police reported injury severity < 0.01
No injury (O), Not reported or unknown 37.6 11.8
Possible injury (C) 12.4 4.1
Minor injury (B) 12.1 6.6
Serious injury (A) 11 6.7
Fatal injury (K) 27 70.8

Restraint used < 0.01
None used 12.6 33.1
Lap and shoulder belt use 75 56.1
Other, not applicable, not reported, or unknown 12.4 10.8

Air bag deployed? < 0.01
Not deployed or switched off 43.6 27.8
Deployed 49.1 64.3
Not applicable, not reported, or unknown 7.3 7.9

Driver extricated? < 0.01
Extricated 9.5 24.1
Not extricated 88.1 71.4
Unknown 2.4 4.4

Police reported alcohol involvement < 0.01
Yes 4.8 24.3
No 67.1 47.9
Not reported 17.2 6.9
Unknown 10.9 20.9

Method of alcohol determination < 0.01
Evidential Test 0.8 25.3
Other 7.6 10.4
Not reported 91.6 64.3
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Table G.9: Summary statistics stratified by missingness in blood alcohol concentra-
tion (BAC), continued

Variables Missing (%) Non-missing (%) p-value
Alcohol test type < 0.01

Blood test 2.3 91.9
Other 0.1 6.4
Not given, not reported, or unknown 97.6 1.7

Police reported drug involvement < 0.01
Yes 2.2 12
No 61.4 49.1
Not reported 26.2 19.3
Unknown 10.2 19.6

Method of drug determination < 0.01
Evidential Test 0.9 18.4
Other 7.9 17.8
Not reported 91.1 63.9

No. of occupants < 0.01
1 62.2 68.2
2 24.1 21.2
3 8.3 6.6
≥ 4 or unknown 5.4 4

Hit and run? < 0.01
Yes 4.1 1.3
No or unknown 95.9 98.7

Owner of vehicle < 0.01
Driver 59.5 59.9
Not driver 32.7 34.7
Company or Rental 4.7 3.6
Not applicable or unknown 3.2 1.8

Travel speed < 0.01
Stopped 6.3 2.1
1-50 mph 19.5 12
≥ 50 mph 17.1 23.2
Not reported or unknown 57.1 62.6

Underride? < 0.01
Yes or unknown 0.7 1.7
No 99.3 98.3

Rollover location < 0.01
No rollover 91.7 80.1
On roadside 5.6 14.2
Other or unknown 2.6 5.8

Vehicle towed? < 0.01
Not towed 14.7 2.7
Towed due to disabling damage 72.8 90.5
Towed not due to disabling damage 11.1 5.6
Not reported or unknown 1.4 1.2

Most harmful event < 0.01
Non collision 5.7 13.8
Collision with vehicle 60.3 51.5
Collision with non-vehicle 21 10.1
Collision with fixed object 10.1 23.2
Other or unknown 2.9 1.4
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Table G.10: Summary statistics stratified by missingness in blood alcohol concentra-
tion (BAC), continued

Variables Missing (%) Non-missing (%) p-value
Any vehicle related factors? 0.04

Yes or unknown 1.4 1
No 98.6 99

License status < 0.01
Licensed 86.2 84.2
Not licensed or no driver 11.3 15.1
Unknown 2.4 0.7

Any license restrictions? < 0.01
Yes 31.5 29.5
No 65.8 69.5
No driver or unknown 2.7 1

Driver height < 0.01
< 65 inches 27.4 24.8
65-70 inches 35 39.6
> 75 inches 22.8 28
No driver or unknown 14.9 7.7

Driver weight < 0.01
< 150 pounds 20.8 22.9
150-200 pounds 25.6 33.9
> 200 pounds 11.4 15.7
No driver or unknown 42.1 27.5

No. of previous accidents < 0.01
0 73.3 73
1 12 13.4
≥ 2 3.3 4.2
No driver, not reported, or unknown 11.4 9.4

Speed related crash? < 0.01
Yes 12.8 26.8
No 84.1 68.4
No driver or unknown 3 4.8

Trafficway description < 0.01
One way 1.6 1.1
Two way, divided 37.4 29
Two way, not divided 58.5 67.5
Entrance/exit ramp 1.4 1.5
Non trafficway, not reported, or unknown 1.1 0.9

No. of lanes < 0.01
1 1.4 1.3
2 58.4 72
3 14.1 9.8
4 13 8.5
≥ 5 11.8 7.4
Non trafficway, not reported, or unknown 1.4 1
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Table G.11: Summary statistics stratified by missingness in blood alcohol concentra-
tion (BAC), continued

Variables Missing (%) Non-missing (%) p-value
Speed limit < 0.01
≤ 25 mph 5 4.5
30 mph 5.4 4.6
35 mph 11.4 10
40 mph 8.7 7.3
45 mph 17.2 15
50 mph 4.9 5.4
55 mph 21.9 29.4
60 mph 3.7 3.8
65 mph 8.7 8.5
≥ 70 mph 7.5 7.3
No limit, not reported or unknown 5.7 4.1

Road alignment < 0.01
Straight 81.8 72.4
Curve left 6.8 12.2
Curve right 6.4 11.1
Curve unknown direction 1.1 1.8
Non trafficway, not reported, or unknown 4 2.5

Profile < 0.01
Uphill 3.5 4.5
Downhill 4.2 6.5
Grade, unknown slope 9.4 11.7
Hillcrest or sag 2.6 3.4
Level 71.2 67.1
Non trafficway, not reported, or unknown 9.1 6.8

Surface type < 0.01
Blacktop, bituminous, or asphalt 63.2 75.7
Concrete 7.3 8
Other, non trafficway, not reported, or unknown 29.4 16.3

Surface condition < 0.01
Dry 84 81.1
Wet 12 14.3
Other 2.3 3
Non trafficway, not reported, or unknown 1.7 1.6

Traffic control device < 0.01
Traffic signals 14.7 8.5
Regulatory signs 9.4 12.2
No controls, not reported, or unknown 75.9 79.3

Pre-event movement < 0.01
Going straight 64 60.9
Other 35.4 38.5
Unknown 0.6 0.6

Pre-crash event < 0.01
Traveling 55.4 63
Loss of control 5.4 12.2
Other vehicle in lane 39.3 24.7

Attempt avoidance? < 0.01
Yes 14.8 16.8
No 36.2 37.3
No driver or unknown 49 45.8
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Table G.12: Summary statistics stratified by missingness in blood alcohol concentra-
tion (BAC), continued

Variables Missing (%) Non-missing (%) p-value
Pre-impact stability < 0.01

Tracking 83.4 72.9
Other 8.1 17
No driver or unknown 8.5 10.1

Pre-impact location < 0.01
Stayed in original travel lane 68 40.5
Stayed on roadway, but left original travel lane 10.3 16.4
Stayed on roadway, not known if left original travel lane 1.7 1.1
Departed roadway 17.2 38.5
Other, no driver or unknown 2.8 3.5

Crash type < 0.01
Changing trafficway, vehicle turning 12.8 9
Intersecting paths 9.4 8.3
Same trafficway, opposite direction 14.9 22.4
Same trafficway, same direction 10.9 8.8
Single driver, Misc or no impact 52 51.5

Driver drinking < 0.01
Yes 4.8 36.5
No 95.2 63.5

Drug test results < 0.01
Positive 3.2 32.1
Negative 0.5 42.6
Not tested 96.3 25.3

Any crash factors? < 0.01
Yes 9.9 6.2
No 90.1 93.8

Any driver factors? < 0.01
Yes 35.1 53.4
No 64.9 46.6
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