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ABSTRACT

Quantitative analysis of morphological changes in a cell nucleus is important for
the understanding of nuclear architecture and its relationship with cell differentiation,
development, proliferation, and disease. Changes in the nuclear form are associated
with reorganization of chromatin architecture related to altered functional proper-
ties such as gene regulation and expression. Understanding these processes through
quantitative analysis of morphological changes is important not only for investigating
nuclear organization, but also has clinical implications, for example, in detection and
treatment of pathological conditions such as cancer.

While efforts have been made to characterize nuclear shapes in two or pseudo-three
dimensions, several studies have demonstrated that three dimensional (3D) represen-
tations provide better nuclear shape description, in part due to the high variability of
nuclear morphologies. 3D shape descriptors that permit robust morphological anal-
ysis and facilitate human interpretation are still under active investigation. A few
methods have been proposed to classify nuclear morphologies in 3D, however, there
is a lack of publicly available 3D data for the evaluation and comparison of such al-
gorithms. There is a compelling need for robust 3D nuclear morphometric techniques
to carry out population-wide analyses.

In this work, we address a number of these existing limitations.

First, we present a largest publicly available, to-date, 3D microscopy imaging
dataset for cell nuclear morphology analysis and classification. We provide a detailed
description of the image analysis protocol, from segmentation to baseline evaluation

of a number of popular classification algorithms using 2D and 3D voxel-based mor-



phometric measures. We proposed a specific cross-validation scheme that accounts
for possible batch effects in data.

Second, we propose a new technique that combines mathematical modeling, ma-
chine learning, and interpretation of morphometric characteristics of cell nuclei and
nucleoli in 3D. Employing robust and smooth surface reconstruction methods to ac-
curately approximate 3D object boundary enables the establishment of homologies
between different biological shapes. Then, we compute geometric morphological mea-
sures characterizing the form of cell nuclei and nucleoli. We combine these methods
into a highly parallel computational pipeline workflow for automated morphological
analysis of thousands of nuclei and nucleoli in 3D. We also describe the use of visual
analytics and deep learning techniques for the analysis of nuclear morphology data.

Third, we evaluate proposed methods for 3D surface morphometric analysis of our
data. We improved the performance of morphological classification between epithelial
vs mesenchymal human prostate cancer cells compared to the previously reported re-
sults due to the more accurate shape representation and the use of combined nuclear
and nucleolar morphometry. We confirmed previously reported relevant morpholog-
ical characteristics, and also reported new features that can provide insight in the
underlying biological mechanisms of pathology of prostate cancer. We also assessed
nuclear morphology changes associated with chromatin remodeling in drug-induced
cellular reprogramming. We computed temporal trajectories reflecting morphological
differences in astroglial cell sub-populations administered with 2 different treatments
vs controls. We described specific changes in nuclear morphology that are character-
istic of chromatin re-organization under each treatment, which previously has been
only tentatively hypothesized in literature. Our approach demonstrated high classi-
fication performance on each of 3 different cell lines and reported the most salient
morphometric characteristics.

We conclude with the discussion of the potential impact of method development

x1



in nuclear morphology analysis on clinical decision-making and fundamental investi-
gation of 3D nuclear architecture. We consider some open problems and future trends

in this field.
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CHAPTER I

Introduction

The cell nucleus is an essential structure that contains the genome and maintains
its three-dimensional structural organization ( Wilson, 1925; White, 1977; Jeuvtic et al.,
2014; Stephens et al., 2018b). Nuclear morphology is a study of size and shape of
a cell nucleus that are regulated by complex biological mechanisms related to cell
differentiation, development, proliferation, and disease (Jevtic¢ et al., 2014; Uhler and
Shivashankar, 2018). More specifically, morphology of a cell nucleus is determined
by both the cytoskeletal links and the degree of chromatin condensation within the
nucleus (Uhler and Shivashankar, 2018). DNA is folded into a chromatin fiber by
histone and nonhistone proteins and the associated chemical modifications on the
histone proteins (Allis and Jenuwein, 2016). The chromatin fiber, depending on
such modifications as histone acetylation or methylation, dictates the higher-order
compaction, thereby implying both genetic and nongenetic functions of the genome
(Bustin and Misteli, 2016). This higher-order structure comprises megabase-pair
topologically associated domains (TADs) leading to a highly organized chromatin
structure (Higgins et al., 2015; Gonzalez-Sandoval and Gasser, 2016). Changes in
nuclear morphology are reflective of reorganization of chromatin architecture and are
related to altered functional properties such as gene regulation and expression (Jevtié

et al., 2014; Uhler and Shivashankar, 2018). Conversely, studies in mechanobiol-



ogy show that external geometric constraints and mechanical forces that deform the
cell nucleus affect chromatin dynamics and gene and pathway activation (Uhler and
Shivashankar, 2017, 2018). Recent studies showed revealed separate roles for chro-
matin and lamins in determining the nuclear mechanical properties and morphology
(Stephens et al., 2018a,b). Thus, nuclear morphological quantification becomes of
major relevance as the studies of the reorganization of the chromatin and DNA archi-
tecture in the spatial and temporal framework, known as the 4D nucleome, emerge
(Chen et al., 2015; Cremer et al., 2015; Higgins et al., 2015; Zheng et al., 2018). Cel-
lular structures of interest in the context of the 4D nucleome include not only the
nucleus itself, but also the nucleolus and nucleolar-associating domains, chromosome
territories, TADs, lamina-associating domains, and loop domains in transcription fac-
tories (Higgins et al., 2015, 2017).

At the same time, quantitative analyses of nuclear and nucleolar morphological
changes also have clinical implications, for example, in detection and treatment of
pathological conditions such as cancer (Montanaro et al., 2008; Veltri and Christu-
dass, 2014; Zink et al., 2004). Abnormal nuclear morphology has been used as one of
the gold standards for cancer diagnoses for nearly a century in tests such as the Pap
smear (Zink et al., 2004; Papanicolaou and Traut, 1941; Stephens et al., 2018b; Uhler
and Shivashankar, 2018). However, since morphologies in cell populations are highly
heterogeneous, morphometric assays performed by pathologists are highly subjective
and rely on human interpretation (Uhler and Shivashankar, 2018). To address these
limitations, automated analysis of cell morphology is employed to improve the accu-
racy and efficiency for the pathology detection. For example, the Cell-CT®) platform
relies on automated 3D morphometry and machine learning algorithms to assess the
morphology of epithelial cells in sputum samples for early stage lung cancer detection
(Wilbur et al., 2015; Meyer et al., 2015; Pantanowitz et al., 2018). The relevance of

nuclear morphology to both understanding fundamental principles of cellular organi-



zation and improving disease detection and treatment presents a compelling need for
accurate and robust ways to analyze cell nuclear morphology.

While many efforts have been made to develop cell and nuclear morphological
characteristics in 2D or pseudo-3D (Huang et al., 2014b; Pincus and Theriot, 2007),
several studies have suggested that 3D measures provide better results for nuclear
morphometry description and discrimination (Choi and Chot, 2007; Meyer et al.,
2009). Although a number of signal processing and computer vision algorithms have
been proposed to analyze cell and nuclear morphological phenotypes using 3D repre-
sentations (Dufour et al., 2015), there is a lack of publicly available 3D cell imaging
datasets that could serve for the evaluation of various tools and methods. This lim-
itation becomes of great importance in the modern reality of big data microscopy,
when the ability to evaluate different approaches on publicly available data is needed
for better dissemination of the current state of the art methods for bioimage analysis
(Caicedo et al., 2017; Meijering et al., 2016).

The way nuclear morphologies can be quantified depends on their representation
extracted from image data (Pincus and Theriot, 2007). Many 3D morphometric
measures are applied as is to 3D geometric objects represented by volumetric data.
However, such morphological representations can be noisy, and they may lose fine
geometric details or even break the objects topological structure. 3D shape descriptors
that permit robust morphological analysis and facilitate human interpretation are still
under active investigation (Dufour et al., 2015). Additionally, the dimensionality and
volume of acquired data, various image acquisition conditions, and great variability
of cell shapes in a population present challenges for 3D shape analysis methods that
should be scalable, robust to noise, and specific enough across cell populations at the
same time. Thus, there is a need for robust 3D nuclear morphometric techniques to
carry out population-wide analysis (Pegoraro and Misteli, 2016).

The remainder of this work examines and addresses a number of current limitations



relevant to the 3D nuclear morphological analysis.

The second chapter addresses the lack of available 3D imaging data for nuclear
morphology analysis and describes a new, biggest publicly available dataset of 3D
microscopic images for cell nuclear morphology analysis and classification. We pro-
vide detailed description of image analysis protocol, from segmentation to a baseline
evaluation of a number of popular classification algorithms using 2D and 3D voxel-
based morphometric measures. Contents of the first chapter were partially published
in Kalinin et al. (2018d,a).

In the third chapter we focus on the development of the robust and accurate 3D
nuclear morphometry methods. We employ 3D surface modeling, morphometric fea-
ture extraction, and machine learning to construct a high-throughput computational
workflow for automated 3D morphology classification. We also discuss the use of
visual analytics and deep learning for the analysis of nuclear morphology data. Con-
tents of the second chapter were partially published in Kalinin et al. (2017, 2018¢,b);
Ching et al. (2018).

In the fourth chapter we evaluate proposed methods for 3D surface morphometry
on our data. Specifically, we demonstrate the efficiency and accuracy of out approach
for morphological discrimination of combined nuclear and nucleolar morphologies of
prostate cancer cells in epithelial and mesenchymal conditions, outperforming pre-
viously proposed solutions. We also introduce a new experiment on evaluating nu-
clear morphology changed over time during drug-induced cellular reprogramming of
astroglial cells. We were able to quantitatively show the differences in over time
morphometric measures three-way: between two treatments and the controls. High
efficiency and analytical performance of proposed methods are demonstrated, along
with the ability to derive new biological insight from the obtained results. Contents
of the fourth chapter were partially published in Kalinin et al. (2018c); Ching et al.
(2018).



We conclude with the discussion of the potential impact of method development in
nuclear morphology analysis on clinical decision-making and fundamental investiga-
tion of 3D nuclear architecture. We discuss future perspectives in both basic science
and transnational applications as well as open science considerations. Finally, we
consider some open problems and future trends in this field. Some conclusions were

partially published in Kalinin et al. (2018c,b); Ching et al. (2018).



CHAPTER II

3D Cell Nuclear Morphology Imaging Dataset

2.1 Introduction

Although a number of signal processing and computer vision algorithms have been
proposed to analyze cell and nuclear morphological phenotypes using 3D represen-
tations (Dufour et al., 2015), there is a lack of publicly available 3D cell imaging
datasets that could serve for the evaluation of various tools and methods. This lim-
itation becomes of great importance in the modern reality of big data microscopy,
when the ability to evaluate different approaches on publicly available data is needed
for better dissemination of the current state of the art methods for bioimage analysis
(Meijering et al., 2016; Caicedo et al., 2017; Ellenberg et al., 2018).

To begin to address the lack of data for 3D cell nuclear morphological analysis
and enable objective evaluation of the methods for nuclear morphometric classifica-
tion, we created a 3D cell nuclear morphology dataset (Kalinin et al., 2018d). The
dataset includes 3D confocal fluorescence microscopy volumetric images of cell nu-
clei and nucleoli of two different cell collections: primary human fibroblast cells and
human prostate cancer cells (PC3). In turn, each collection contains images of cells
in two different phenotypic states that have previously been shown to exhibit quan-
tifiable changes in nuclear or nucleolar morphology. This allows for the evaluation

of quntitative methods in morphometry on 2 sub-sets of data as binary classification



problems.

We also provide a baseline classification performance evaluation of simple voxel-
based morphometric analysis methods. First, we use 3D automatic segmentation
methods to extract individual nuclear and nucleolar binary masks from the original
z-stack images. We then extract common 2D and 3D voxel-based measures of binary
mask morphology and combine them into per-nucleus feature vectors. These feature
vectors then used to evaluate a number of machine learning algorithms to provide
morphology classification performance baselines. To account for batch effects, while
enabling calculations of interval estimates for the Area under the Precision-Recall
curve (AUPR) and the Area Under the Receiver Operating Characteristic (ROC)
curve (AUC) performance metrics, we propose a specific cross-validation scheme.

Finally, we evaluate how much of the difference between cell phenotypic conditions
can be explained by morphology as opposite to the pixel intensity information. We
perform classification of both binary and intensity 2D projections of 3D microscopic
images of fibroblast cells. More specifically, we compare direct classification of pixel
data from either raw intensity images or binary masks, which contain only object

morphology information, but not texture.

2.2 Sample preparation

The presented dataset is composed of two different cell collections (Kalinin et al.,
2018d). Each collection includes 3D volumetric images of cells in two phenotypic
states that have been shown to exhibit different nuclear and /or nucleolar morphology.

The first collection includes images of primary human fibroblast cells (newborn
male) that were purchased from ATCC (BJ Fibroblasts CRL-2522 normal). In order
to introduce morphology changes, a part of this collection was subjected to a GO/G1
Serum Starvation Protocol (Langan and Chou, 2011). This protocol is used for cell

cycle synchronization and has previously been shown to cause morphology changes in



human fibroblasts, affecting nuclear size and shape (Seaman et al., 2015). Full details
of the fibroblast cell sample preparation protocol are given in A.1. Cell cycle profiles
were confirmed for synchronized serum-starved and proliferating fibroblasts with flow
cytometry, see A.4. As a result, the first collection contains 3D volumetric images of
cells in the following phenotypic classes: (1) proliferating fibroblasts (PROLIF), and
(2) cell cycle synchronized by the serum-starvation protocol (SS). These classes serve
as two categories in a binary morphology classification setting.

The second collection contains images of human prostate cancer cells (PC3).
Through the course of progression to metastasis, malignant cancer cells undergo a
series of reversible transitions between intermediate phenotypic states bounded by
pure epithelium and pure mesenchyme ( Veltri and Christudass, 2014). These transi-
tions in prostate cancer are associated with quantifiable changes in both nuclear and
nucleolar structure (Montanaro et al., 2008; Verdone et al., 2015). Microscope slides
of prostate cancer cell line PC3 were cultured in: (1) epithelial (EPI), and (2) mes-
enchymal transition (EMT) phenotypic states, as described in ( Verdone et al., 2015).
Full details of the PC3 cell sample preparation protocol are given in A.2. Thus, this

setting can also be treated as a binary classification task.

2.3 Image acquisition

Cells in both collections are labeled with 3 different fluorophores: DAPI (4’,6-
diamidino-2-phenylindole), a common stain for the nuclei, fibrillarin antibody (anti-
fibrillarin) and ethidium bromide (EtBr), both used for nucleoli staining. Although
anti-fibrillarin is a commonly used nucleolar label, we find it to be too specific, which
makes the extraction of a shape mask problematic. It has been shown that EtBr
can be used for staining dense chromatin, nucleoli, and ribosomes (Biggiogera and
Biggiogera, 1989). We find that it provides better overall representation of nucleolar

shape. Anti-fibrillarin is combined with EtBr by co-localization to confirm correct



Figure 2.1: 3D visualization of a fibroblast collection data sub-volume

Notes. Figure panels show: (A) DAPI channel; (B) EtBr channel; (C) anti-fibrillarin channel; (D)
a composite image. Images are thresholded by 25% the for the clarity of visual appearance and
visualized using ClearVolume (Royer et al., 2015).

detection of nucleoli locations as described below. 3D imaging used a Zeiss LSM
710 laser scanning confocal microscope with a 63x PLAN/Apochromat 1.4NA DIC
objective. Full details of sample staining and imaging are given in A.3 and A.5.

For multichannel data in the vendor-defined format, the channels are separated
and saved as individual volumes labeled as c0, c1, ¢2, representing the DAPI, anti-
fibrillarin, and EtBr channels, respectively, see figure 2.1. Each channel-specific vol-
ume is then re-sliced into a 1,024 x 1,024 x Z lattice (Z = {30,50}), where regional
sub-volumes facilitate the alignment with the native tile size of the microscope. All
sub-volumes are saved as multi-image 3D TIFF volumes. For every sub-volume, ac-
companying vendor meta-data are extracted from the original data.

As a result, the fibroblasts collection includes the total of 178 sub-volumes (64
PROLIF and 112 SS), see table 2.1. The PC3 collection includes the total of 101
sub-volumes (50 EPI and 51 EMT), see table 2.2.



’ Class ‘ Sub-volumes ‘ GBs ‘

PROLIF 64 10.6
SS 112 19.2
TOTAL 178 29.8

Table 2.1: The size of the fibroblast cell collection. Sub-volumes column shows the
number of 1024 x 1024 x Z sub-volumes per channel.

\ Class \ Sub-volumes \ GBs \

EPI 20 15.7
EMT 51 21.3
TOTAL 101 37.0

Table 2.2: The size of the PC3 cell collection. Sub-volumes column shows the number
of 1024 x 1024 x Z sub-volumes per channel.

2.4 Segmentation

To establish baseline morphometry classification results, we first segment nuclei
and nucleoli from the original data sub-volumes as described in (Kalinin et al., 2018d).
Then, we extract multiple voxel-based morphometric characteristics from 3D binary
masks and their 2D projections (2D masks). We use these features to evaluate the
performance of a number of widely used classification algorithms. We also assess

possible batch effects in data by comparing two different cross-validation techniques.

2.4.1 Nuclear segmentation

Model-based cell segmentation approaches are the most common in bioimage anal-
ysis and typically perform well for fluorescence microscopy images of cultured cells
(Caicedo et al., 2017). Moreover, they allow to avoid a very labor-intensive process
of manual pixel-level expert annotation of large 3D volumetric imaging data. After
testing a number of implementations of 3D thresholding-based and watershed-like
methods in commonly used bioimage analysis packages, we perform the automatic

3D segmentation of nuclei using Nuclear Segmentation algorithm from the Farsight
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Figure 2.2: A schematic view of the dataset segmentation protocol

3D Morphology Imaging Dataset
EtBr

DAPI| anti-fibrillarin composite image

Nuclear Segmentation Nucleolar Segmentation NI
N P Finalized masks
- Farsight Nuclear - application of nuclear masks
N N . - EthBr confirmed by
Segmentation 3D - Weka Trainable Segmentation
co-localization with
- 3D hole filling - 3D hole filling
anti-fibrillarin
- curation - curation

Masking

Notes. Figure panels show exemplar 2D slices of fibroblast data: (A) steps for the DAPI segmentation
process that produces nuclear masks after hole-filling (color-coded by quality control filter); (B) steps
for EtBr segmentation that outputs nucleolar masks (colored by connected component labeling);
(C) co-localization nucleolar segmented masks with the segmented anti-fibrillarin channel; (D) the
composite image of segmented data.

toolkit (Al-Kofahi et al., 2010). This tool was created specifically to segment DAPI-
stained nuclei in 2D or 3D, it does not require a labeled training set, has a convenient
command line interface, and demonstrated stable results on these data. The algo-
rithm implements multiple steps which include a graph-cut algorithm to binarize the
sub-volumes, a multi-scale Laplacian of Gaussian filter to convert the nuclei to blob
masks, fast clustering to delineate the nuclei, and nuclear contour refinement using
graph-cuts with alpha-expansions (Al-Kofahi et al., 2010).

After segmentation of the DAPI channel sub-volumes, figure 2.2, data were con-
verted to 16-bit 3D TIFF files, each segmented nucleus was represented as a binary
mask, and given a unique index value. Post-segmentation processing of nuclear masks
included 3D hole filling and a filtering step that removed the objects if they span the

edge of a tile, are connected to other objects, or their compactness or voxel count val-

11



ues were outside of the empirically estimated interval. This quality control protocol
allowed to remove most of the artifacts, as confirmed by visual inspection. Details of

the curation and post-processing protocol are described in A.7.

2.4.2 Nucleolar segmentation

Since nucleolar labels are not very specific and produce strong background, see
figure 2.1, segmentation of nucleoli using model-based approaches did not demon-
strate acceptable results. Therefore, segmentation of objects within the nucleus was
performed using the Trainable Weka Segmentation (Arganda-Carreras et al., 2017), a
machine learning tool for microscopy pixel classification bundled with Fiji (Schindelin
et al., 2012), a commonly used bioimage analysis framework. The Trainable Weka
Segmentation plugin is the most popular segmentation tool in the ImageJ techno-
logical landscape (Schindelin et al., 2015), and it is convenient to use for labeling
biological structures in 3D images, since it does not require the exact mask contour
tracing. Instead, it allows the extraction of a number of features from scarcely labeled
pixel groups from both classes, which then are used train a classification algorithm
from the WEKA Data Mining software package (Hall et al., 2009). Intra-nuclear
segmentation was independently performed on EtBr and anti-fibrillarin stained nu-
cleoli. Nuclear masks were used to isolate sub-nuclear segmentations in the EtBr and
anti-fibrillarin channels to objects within a nucleus. An individual Random Forest
classification model (Liaw and Wiener, 2002) was created for each channel by us-
ing a random selection of 10% of the sub-volumes within that channel for training.
Trained models were then applied to all sub-volumes and nucleolar masks were cre-
ated from the resulting probability maps and labeled as connected components, figure
2.2. Finally, both EtBr and anti-fibrillarin segmented volumes were used as input to
a co-localization algorithm to validate the segmented EtBr-stained nucleoli based on

the presence of anti-fibrillarin, figure 2.2.
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The quality control protocol for nucleolar masks was similar to that for the nuclear
masks. Since uneven staining can cause occasional segmentation artifacts, filtering
step also measured spherical compactness of identified objects (Montero and Bribi-
esca, 2009) and removed the masks if their compactness were outside of the empirically

estimated interval.

2.5 Baseline analysis and classification

2.5.1 Voxel-based morphometric feature extraction

We extracted 2D and 3D voxel-based morphometric features of both nuclear and
nucleolar binary masks, shown in figure 2.2, using image processing library, scikit-
image (van der Walt et al., 2014).

The 2D feature set included: area of the object, area of the 2D bounding box,
diameter of a circle with the same area as the object, ratio of the object area to
the bounding box area, convex hull area, eccentricity, two biggest eigenvalues of the
inertia tensor of the region, major and minor axis of an ellipse fitted to the region,
the angle between the X-axis and the major axis of the fitted ellipse, perimeter of an
object which approximates the contour of the region, the ratio of the region area to
the convex hull area.

The set of 3D morphometry features included: object volume, volume of the 3D
bounding box, diameter of a sphere with the same volume as the object, and ratio of
the object volume to the bounding box volume.

In order to aggregate the nucleolar features per nucleus we computed median,
minimum, maximum, and standard deviation for each morphometry measure across
the nucleoli within one nucleus. Correspondingly, nuclei that did not have any in-
ternally positioned nucleoli were excluded from the further analysis. The number of

detected nucleoli per nucleus was included as an individual feature. Thus, the total

13



number of features per nucleus was 5 x N + 1, where N is the number of either 2D
or 3D morphometric measures.

Feature preprocessing included feature standardization by subtracting the mean
and scaling to unit variance of the training set. In this study, we assigned the label

of the whole image to every single cell extracted from it.

2.5.2 Cross-validation

We compared various supervised classification algorithms from scikit-learn, a pop-
ular Python machine learning toolkit (Pedregosa et al., 2011), including Gaussian
Naive Bayes (NB), Linear Discriminant Analysis (LDA), k nearest neighbors classi-
fier (kNN), support vector machines with linear (SVM) and Gaussian/Radial Basis
Functions (RBF) kernels, Random Forest (RF), Extremely Randomized Trees (ET),
and Gradient Boosting (GBM). All classifiers used default hyper-parameters.

We evaluated the possible batch effect that could occur during the sample prepa-
ration and image acquisition (Caicedo et al., 2017). In order to do so, we compare the
traditional k-fold cross-validation (CV) scheme with alternatives that can account for
such batch effects. A traditional approach to address this issue is to use Leave-One-
Group-Out CV (LOGO). LOGO is a cross-validation scheme which holds out the
samples according to a provided list of groups. In case of image-level labeled nuclei
classification, group information encodes the image from which the specific nucleus
was extracted. However, the disadvantage of LOGO lies in inability to compute per-
split metrics such as the Area Under the Receiver Operating Characteristic (ROC)
curve (AUC), the Area under the Precision-Recall curve (AUPR), and F1 score, as
they require the presence of samples from both classes in the testing set.

A receiver operating characteristic, or simply ROC curve, is a graphical plot which
illustrates the performance of a binary classifier system as its discrimination threshold

is varied (Davis and Goadrich, 2006), see figure 2.3. It is created by plotting the
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fraction of true positives out of the positives (TPR = true positive rate) vs. the
fraction of false positives out of the negatives (FPR = false positive rate), at various
threshold settings. TPR is also known as sensitivity, and FPR is one minus the
specificity or true negative rate.

The precision-recall curve shows the trade-off between precision and recall for dif-
ferent threshold, (Davis and Goadrich, 2006). A high area under the curve represents
both high recall and high precision, where high precision relates to a low false positive
rate, and high recall relates to a low false negative rate, see figure 2.3. High scores
for both show that the classifier is returning accurate results (high precision), as well
as returning a majority of all positive results (high recall). A system with high recall
but low precision returns many results, but most of its predicted labels are incorrect
when compared to the training labels. A system with high precision but low recall
is just the opposite, returning very few results, but most of its predicted labels are
correct when compared to the training labels. An ideal system with high precision
and high recall will return many results, with all results labeled correctly. We do not
use any interpolation to compute AUPR, since a linear interpolation of points on the
precision-recall curve provides an overly-optimistic measure of classifier performance
(Davis and Goadrich, 2006; Flach and Kull, 2015).

As both AUC and AUPR rely on the presence of both positives and negatives in
the test set, they cannot be calculated per-split in LOGO scheme, all nuclei from a
single image (group) will have the same label. One option is to go through all splits
in LOGO and predict labels on the whole dataset before calculating global values of
AUC and AUPR, but that method only gives a point estimate of a metric, but not
the interval. Instead, we suggested Leave-2-Opposite-Groups-Out (L20GO) scheme,
see figure 2.4. L20GO ensures that: (1) all masks derived from one image fall either
in the training or testing set, and (2) testing set always contains masks from 2 images

of different classes. Each training set is thus constituted by all the samples except the
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Figure 2.3: ROC and PR curves
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Notes. Examples of ROC and PR curves for voxel-based morphological classification of fibroblast
nuclei in 2D. 33% of data was used for testing and the rest was used to train a Random Forest
classification model with default parameters from the scikit-learn software package (Pedregosa et al.,
2011).

ones related to a specific group. L20GO enables per-split evaluation of performance
metrics such as AUPR and AUC. Since original volumes are of different size and
contain different number of nuclei, we joined smaller volumes into bigger groups to
reduce class imbalance in testing sets and the variance of the performance metric
estimates. Given the fact that L20GO may introduce or augment class imbalance,
besides AUC we also compute AUPR and F1 score to compare algorithms, as they

have been shown to be more suitable in such settings (Saito and Rehmsmeier, 2015).

2.5.3 Fibroblast voxel-based morphometric analysis

After the curation process and the exclusion of nuclei without detected nucleoli,
the full collection of segmented fibroblasts consists of total 965 nuclear (498 SS and
470 PROLIF) and 2,181 nucleolar (1,151 SS and 1,030 PROLIF) binary masks. 2D
and 3D morphometric measures of nuclear and nucleolar masks are merged into per-
nucleus feature vectors as described above.

Next, we evaluate the performance of algorithms for fibroblast morphometric clas-
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Figure 2.4: Comparison of cross-validation strategies
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Notes. Schematic comparison of k-fold cross-validation procedure with Leave 2 Opposite Groups
Out cross-validation in the presence of batch effects. Two image classes are: round objects in yellow
and faceted objects in orange. Batch effects are shown as slight object shape differences across
images of the same class.

sification on 2 different CV schemes: 20 splits in L2Z0GO and a 7 times repeated 4-fold
CV in order to obtain more stable estimates. Results in figure 2.5 do not show any
apparent batch effects in the 2D classification setting. However, 3D performance es-
timates for all classifiers using L20GO are more pessimistic compared to 4-fold CV,
which indicates the possibility of batch effects and overly optimistic classification
results in 4-fold CV. As expected, L20GO led to an increased variance of metrics,
especially in the F1 score, which can be explained by classifiers’ sensitivity to differ-
ent class imbalances in each iteration of this scheme. Within L20GO, a number of
algorithms showed higher performance on 3D morphometry compared to 2D features.
The best overall result is achieved by the Gaussian SVM (RBF) classifier in 3D with
the median AUC = 0.814 4+ 0.245, AUPR = 0.724 + 0.206, and F'1 = 0.709 + 0.185.

2.5.3.1 2D maximum intensity projection classification

Fluorescent labels are not always specific to the object of interest and often pro-

duce noisy background, see figure 2.1. In order to assess changes in the nuclear
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Figure 2.5: Voxel-based fibroblast morphometry classification
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Notes. The comparison of cross-validation strategies and commonly used algorithms to evaluate the
classification performance and possible batch effects using combined morphometric features of 2D
and 3D fibroblast nuclear and nucleolar binary masks.

architecture, we first apply nuclear masks provided with the dataset to all 3 channels
of original microscopy data. Due to the anisotropy in original data, we then re-scale
volumes in Z dimension by a factor extracted from the corresponding meta-data.
Since each of 1,024 x 1,024 x Z sub-volumes typically contains between 1 and 5 nu-
clei, we crop re-scaled volumes into smaller 256 x 256 x 57 sub-volumes, centered at
the centroid of the corresponding nuclear mask and zero-pad them, when necessary.
Finally, we produce 2D representation of sub-volumes by a maximum intensity pro-
jection along the Z dimension, as shown in figure 2.6. As a result, we create a set of

999 256 x 256 images per channel.
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Figure 2.6: Fibroblast 2D maximum intensity projections
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Notes. An exemplar visualization of 256 x 256 2D maximum intensity projections of a masked,
re-scaled, and cropped fibroblast sub-volumes in: (A) DAPI channel, c0; (B) anti-fibrillarin channel,
cl; (C) EtBr channel, c2.

We compare classification algorithms from scikit-learn (Pedregosa et al., 2011)
with default hyper-parameters. Every image is flattened into a 1D feature vector.
Feature preprocessing includes subtracting the mean and scaling to unit variance of
the training set. In order to further assess batch effects in the intensity images and
binary masks, we compare 4-fold cross-validation with L20GO.

First, we evaluate the performance of algorithms for fibroblast nuclear classifica-
tion using only 2D morphological information, i.e. binary masks. We compute AUC
per channel using 2 different CV schemes: 20 splits in L20GO and a 10 times re-
peated 4-fold CV. Results in table 2.3 do not show any apparent batch effects in the
2D classification setting in any of the channels, as performance levels L20GO are only
slightly lower compared to 4-fold CV. As expected, classifiers are not able to pick up
complex morphological relationships from flattened binary vectors, even when 3 chan-
nels are combined. Results are dominated by the voxel-based morphometry features

extracted from binary masks. The best overall result with L20GO is achieved by the
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Table 2.3: Classification AUC (mean + std) on binary masks for 2 cross-validation
schemes (CV: 4-fold and L20GO) and a number of algorithms (CIf: NB,
LDA, kNN, SVM, RBF, RF, ET, GBM) per image channel (c0, cl, c2,
and all 3 channels combined). VBM: voxel-based morphometry.

Binary images VBM

Clf

c0

cl

c2

cOclc2

c0c2

kNN
SVM
RBF
RF
ET
GBM

4-fold

0.604 = 0.056
0.597 £ 0.067
0.647 £ 0.053
0.635 £ 0.061
0.581 + 0.059
0.659 £ 0.049

0.615 £ 0.059
0.583 £ 0.075
0.648 £ 0.078
0.642 £ 0.061
0.577 £ 0.077
0.658 £ 0.062

0.610 £ 0.059
0.582 £ 0.054
0.644 £ 0.056
0.635 + 0.054
0.573 £ 0.058
0.641 £+ 0.061

0.620 £ 0.062
0.650 £ 0.071
0.678 £ 0.062
0.661 + 0.064
0.651 + 0.054
0.721 £ 0.054

0.706 £ 0.030
0.646 £ 0.090
0.785 + 0.027
0.735 £ 0.029
0.732 £ 0.034
0.783 £ 0.032

kNN
SVM
RBF
RF
ET
GBM

L20GO

0.582 £ 0.047
0.557 £ 0.057
0.616 + 0.060
0.635 £ 0.038
0.637 £ 0.039
0.642 £ 0.037

0.582 £ 0.047
0.568 £ 0.050
0.616 £ 0.060
0.636 + 0.037
0.637 £ 0.039
0.644 £+ 0.038

0.582 £ 0.047
0.555 £ 0.046
0.616 £ 0.060
0.626 £ 0.050
0.641 £+ 0.044
0.639 + 0.037

0.582 £ 0.047
0.564 + 0.053
0.616 + 0.060
0.627 £ 0.041
0.636 £ 0.042
0.643 = 0.041

0.695 £ 0.030
0.650 £ 0.077
0.772 + 0.041
0.719 £ 0.039
0.717 £ 0.034
0.758 £ 0.041

Gaussian SVM (RBF) classifier in with AUC' = 0.7724+0.041, AUPR = 0.731£0.063,
and F'1 = 0.682 % 0.060.

Next, we evaluate the performance using only 2D pixel intensity information.
Results in table 2.4 indicate possible batch effects. The performance on the nuclear
c0 channel does not benefit from the presence of additional information compared to
only 2D masks. But nucleolar-stained channels ¢l and ¢2 demonstrate 20% gain in
performance even using more conservative L2Z0GO CV. However, L20GO here leads
to a large variance of the performance metric. On average, the EtBr channel (c2)
seems to provide a sightly better representation of nucleolar structure compared to
the anti-fibrillarin (c1). Almost all classifiers in both channels show results superior of
those obtained with morphometric features, see table 2.3. Combining all 3 channels
gives the best result, demonstrating the complement nature of stains. The best
overall result is achieved by the the Gaussian SVM (RBF) classifier with AUC' =
0.990 £ 0.029, AUPR = 0.980 4+ 0.040, and F'1 = 0.877 £ 0.177.

Although DAPI structure classification did not benefit from using the intensity

information, our results indicate usefulness of intensities of nucleolar labels: anti-
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Table 2.4: Classification AUC (mean + std) on raw intensity images for 2 cross-
validation schemes (CV: 4-fold and L20GO) and a number of algorithms
(CIf: NB, LDA, kNN, SVM, RBF, RF, ET, GBM) per image channel (c0,
cl, ¢2, and all 3 channels combined).

Raw intensity images

CV Clf c0 cl c2 cOclc2
kNN | 0.581 £0.059 | 0.771 +0.048 | 0.862 4+ 0.041 | 0.865 4 0.039
SVM | 0.610 £ 0.077 | 0.726 +0.080 | 0.829 +0.059 | 0.896 4+ 0.043
RBF | 0.647 +0.058 | 0.814 + 0.052 | 0.892 £ 0.0326 | 0.938 + 0.026
Afold RF | 0.630 +0.040 | 0.868 £ 0.039 | 0.890 £ 0.035 | 0.948 £ 0.022
ET | 0.606 +0.054 | 0.864 £0.045 | 0.875+£0.035 | 0.961 £ 0.021
GBM | 0.673 £ 0.046 | 0.9194+0.031 | 0.912+0.026 | 0.974 +0.011
kNN | 0.552 £0.030 | 0.755 4+ 0.207 | 0.826 +0.170 | 0.933 4+ 0.044
SVM | 0.579 £ 0.053 | 0.671 +0.166 | 0.794 +0.183 | 0.964 4+ 0.068
RBF | 0.579 +0.053 | 0.766 + 0.261 | 0.844 + 0.204 | 0.990 + 0.021
L20GO RF | 0.579 +0.053 | 0.823 £0.202 | 0.841 £+ 0.188 | 0.966 + 0.057
ET | 0.61340.047 | 0.816 £0.209 | 0.839£0.181 | 0.975 £ 0.034
GBM | 0.637 £ 0.045 | 0.844 +0.235 | 0.857 £0.204 | 0.990 £ 0.029

fibrillarin and EtBr. Nuclear morphometry extracted from binary masks seems to
reflect most of the relevant changes. Increased potential for batch effects is only
observed in classification of nucleolar structures in channels c1 and c2. Interestingly,
combining 3 channels together seems to alleviate this issue and lead to near-perfect
performance in L20GO scheme.

The evaluation as presented here has a number of drawbacks and requires further
investigation. First, we only use flattened vectors of pixels, while there exist multiple
methods for texture feature extraction, which may speed up the calculation. Alter-
natively, deep learning-based methods can be used for automatic feature learning
(Ching et al., 2018; Kalinin et al., 2018b). Second, we only evaluate performance on
2D maximum intensity projections of 3D images. Bigger study could further address
similar issues in the original 3D space. Finally, we assume each nucleus in the same
image to be representative of the phenotypic label that is provided for the whole im-

age. This can be addressed by using methods that are robust to label noise (Kalinin

and Lisitsin, 2011).
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2.5.4 PC3 voxel-based morphometric analysis

After the exclusion of nuclei without detected nucleoli, the segmented PC3 col-
lection consists of 458 nuclear (310 EPI and 148 EMT) and 1,101 nucleolar (649 EPI
and 452 EMT) binary masks.

Figure 2.7: Voxel-based PC3 morphometry classification
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Notes. The comparison of cross-validation strategies and commonly used algorithms to evaluate the
classification performance and possible batch effects using combined morphometric features of 2D
and 3D fibroblast nuclear and nucleolar binary masks.

After merging smaller EMT groups, L2Z0GO scheme produced 4 pairs of groups
as training and testing sets. Given smaller number of volumes and apparent class
imbalance, we compared L20GO to 4-fold CV repeated 2 times to match the total

number of splits. Similar to the previous experiment, 2D morphometry classification

performance was quite similar for both CV schemes, see figure 2.7. However, in 3D,
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the performance of algorithms degraded as measured by L20GO CV, such that no
methods performed better than in 2D. This can indicate possible batch effects, given
the perfect performance estimates for 3 classifiers on 2D features. However, it is hard
to judge given the large performance metrics’ variation in 3D. In this case, the best
classification by single classifier was the result of applying the Gradient Boosting
classifier (GB) with the median AUC = 0.774 + 0.017, AUPR = 0.875 £ 0.019,
F1=0.818£0.018.

Results of classification on both collections suggest that the combination of the
voxel-based morphometry and common algorithms with default parameters can pro-
vide a good baseline performance. Best performance is typically achieved by the ap-
plication either of Gaussian SVM or tree-based ensemble algorithms, such as Gradient
Boosting. This can be explained by the ability of such models to capture complex
non-linear relationships in data (Gao et al., 2018; Tang et al., 2018), for example,
between nuclear volume and surface area, without manually introducing them as in-
dividual features. We controlled for over-fitting using cross-validation, which showed
that standard deviations of performance metrics were not increasing substantially
when using non-linear models. Using 3D masks can improve the performance as it
did in fibroblast classification. However, it suggests that having the three-dimensional
information sometimes can lead to more apparent batch effects and, thus, may require

more complex validation schemes.

2.6 Concluding remarks

A lack of publicly available 3D cell imaging datasets limits the evaluation of various
3D cell and nuclear morphology analysis solutions. To address this limitation, we
present a new dataset that consists of two collections of 3D volumetric microscopic
images. Each collection includes images of cells in two phenotypic states and, thus,

poses a binary classification problem that can be used for the assessment of cell
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nuclear and nucleolar morphometry analysis methods. We share these data publicly
to promote results reproducibility, facilitate open-scientific development, and enable
collaborative validation. To the best of our knowledge, this 3D imaging dataset is
one of the largest publicly available datasets of its type.

In order to establish baseline evaluation of simple voxel-based morphometric anal-
ysis methods, we provide an example of 3D image processing workflow: from segmen-
tation, to feature extraction, to morphometric analysis. First, we use both model-
based and machine learning segmentation methods to extract individual nuclear and
nucleolar binary masks in 3D. Then, we extract commonly used 2D and 3D voxel-
based measures of binary mask morphology and combine them into per-nucleus fea-
ture vectors. We compare a number of commonly used machine learning classification
algorithms on both collections of data using voxel-based morphometric measures. To
account for batch effects, while enabling calculations of AUC and AUPR performance
metrics, we also propose a specific cross-validation scheme (L20GO). Our results in-
dicate potential usefulness of 3D cell imaging data for morphology analysis. However,
they also indicate the possibility of stronger batch effects compared to the 2D setting,
which may be related to the different in imaging resolution in 7Z dimension.

As a possible limitation of this work, the microscope settings did not meet the
Nyquist sample rates and may have created distortions in the digitized images (Cole
et al., 2011). However, sampling was consistent across experiments. Larger variability
of the performance estimates in 3D using the suggested CV scheme (L20GO) may
be reduced by better class balancing or loss weighting during the each iteration of
the cross-validation process. Although produced nuclear and nucleolar binary masks
are visually inspected, they are produced by segmentation algorithms rather than
hand-labeled by an expert. We provide an example of 3D image processing workflow,
which, in general, does not have to always include segmentation (Caicedo et al.,

2017). The size of the produced 3D morphological dataset should be big enough
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to use segmentation-free deep learning-based morphology analysis approaches ( Ching
et al., 2018; Kalinin et al., 2018b). Recent examples in medical image analysis have
already demonstrated successful applications of such models in the small data regime
(Rakhlin et al., 2018; Iglovikov et al., 2018; Shvets et al., 2018b,a) and on devices
with limited resources (Solovyev et al., 2018). Finally, we assume each cell in the
same image to be representative of the same phenotypic label that is provided on the
level of the whole image. However, this assumption does not always hold. One 3D
volumetric image can contain cells of multiple phenotypes. This can be addressed by
using methods for weakly-supervised classification that are robust to label noise.
Imaging protocols, original and segmented data, and the source code are made
publicly available on the project web-page: http://www.socr.umich.edu/projects/
3d-cell-morphometry/data.html. Additionally, extracted morphometric features
are made available for interactive exploration and analysis online via our visual ana-

lytics platform SOCRAT (Kalinin et al., 2017).
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CHAPTER III

3D Cell Nuclear Surface Morphometry

3.1 Introduction

The first part of this chapter describes 3D morphometry metrics for nuclear and
nucleolar shape description and classification. First, surfaces of 3D masks extracted
from the microscopy data are reconstructed using Laplace-Beltrami eigen-projection
and topology-preserving boundary deformation (Shi et al., 2010). Then, we com-
puted intrinsic and extrinsic geometric metrics, which are used as derived signature
vectors (shape biomarkers) to characterize the complexity of the 3D shapes and dis-
criminate between observed clinical and phenotypic traits. These metrics include
volume, surface area, mean curvature, curvedness, shape index, and fractal dimen-
sion (Koenderink and Van Doorn, 1992; Thompson et al., 1996; Meyer et al., 2003).
Although these methods were previously used in recent neuroimaging studies (Di-
nov et al., 2009; Fani et al., 2013; Moon et al., 2015), this was the first attempt
to apply robust smooth LB-based surface reconstruction with intrinsic and extrinsic
morphometric measure extraction to 3D cell nuclear and nucleolar shape modeling
and morphometry (Kalinin et al., 2018c). Suggested modeling and analysis methods
are not restricted to nuclear and nucleolar shapes and can be used for the shape

quantification of other cellular compartments, depending on their topology.
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3.1.1 3D shape representation and morphometric measures

The way cell nuclear shapes can be measured depends on their representation
extracted from image data (Pincus and Theriot, 2007). Many 3D morphometric
measures are applied as is to 3D geometric objects represented by volumetric data
(Kalinin et al., 2018d). However, voxel-based shape representations are noisy, and
they may lose fine geometric details or even break the objects topological structure.
Moreover, these representations are not intrinsic, and vary when changing pose or
deforming the object. A recent review of approaches to 3D cell shape description
by Dufour et al. (2015) separated them into three categories in increasing order of
complexity: landmark-based, graph-based, and moment-based. This last category
includes approaches that are widely used in cellular morphology and allow the user
to obtain a global representation that combines low-order moments describing the
coarse conformation with high-order moments retaining information at higher fre-
quency. Typically, before applying these methods, a binary mask or outline of the
shape (surface) is first extracted from image data, which is done by most segmenta-
tion methods. These masks are assumed to have a sphere-like topology and can be
projected onto an appropriate basis. Two popular approaches of this type are spheri-
cal harmonics (SPHARM) (Brechbiihler et al., 1995) and spherical wavelets (Antoine
and Vandergheynst, 1999). Both methods first map the surface of interest onto the
sphere using appropriate spherical parameterization techniques, and then project it
onto a reference function basis living on the sphere.

SPHARM is arguably one of the most widely applied cell morphology modeling
approaches (Khairy et al., 2008; Singh et al., 2011; Ducroz et al., 2012; Du et al.,
2013). In SPHARM, the spherical signal is projected onto a basis of Legendre poly-
nomials, extending the classical Fourier analysis to signals on the two-sphere (Ducroz
et al., 2012). In the same way that vectors can be described through projections onto

each axis (using scalar products), expansion coefficients (scalar product between func-
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tions) can be used to describe functions. On the unit sphere, an orthonormal basis for
the Hilbert space of square-integrable function is given by the spherical harmonics:
Y™ (0, p) = kim, P/"(cosf)e™™?, where [ and m are respectively the degree and order of
the harmonic, k;,, is the expansion coefficient and P/™ is the associated Legendre poly-

nomial (Ducroz et al., 2012). Using this basis, any spherical scalar function f(6, ¢)

o 1
can be expanded into f(6, ) = Z Z F(,m)Y™(0,¢), where f(I,m)) is the (I,m)
harmonic coefficient, given by: fl(;?nn;)_:l Kim [ OQW e~"™? £(0, ) P/ (cosh)sin Odyp db.
The coefficients f(I,m) are unique and can thus describe any arbitrary shape. The
spectral decomposition of the input signal is then straightforward: lower degrees
(i.e. [) correspond to low frequencies and hence describe the global shape of the
object, while higher degrees describe the details of the surface. Higher dimensional
(non-scalar) spherical functions can also be expanded using spherical harmonics, by
expanding each component of the function independently. The spherical harmonic
transform can be performed on a surface defined in the Cartesian space (z,y, z) and
parametrized into a spherical signal defined in the polar system (6, ) as v(6,p) =
(z(6,0)y(0,0)2(0, )T (Ducroz et al., 2012). As (6, ) runs over the sphere, v(, ¢)
runs over the object surface. By applying the SPHARM transform to each component
of v(#, ¢) independently, coefficients with three components can be obtained (Ducroz
et al., 2012). SPHARM coefficients describe general conformation of the shape of
interest at different spatial scales, are rotation invariant, and can be directly used as
features for further analysis (Shen and Makedon, 2006; Ducroz et al., 2012).

SPHARM coefficients can be computed by first performing surface reconstruction
and spherical parametrization using the CALD algorithm (Shen and Makedon, 2006).
Then, the object surface is expanded of into a complete set of spherical harmonic basis
functions. Finally,the SHREC method (Ducroz et al., 2012) is used to minimize the
mean square distance between corresponding surface parts.

However, SPHARM methods are most appropriate when low order approxima-
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Figure 3.1: Exemplar SPHARM shape representation workflow

Topology fixing

ﬂ

Spherical
parameterization

Shape representation £

Notes. Based on the topology fixed binary volume and the spherical parameterization result, spher-
ical harmonics are employed to describe an object shape. After that, measurements of local and
global dynamic cell shape changes can be conducted. Adapted from Du et al. (2013) under CC-BY
2.0 license.

tion is satisfactory and become less effective in preserving surface details, as artificial
oscillations start to appear when higher order basis functions are incorporated (Shi
et al., 2010). The spherical parameterization introduces metric distortion which com-
pounds the reconstruction error (Seo and Chung, 2011). More robust smooth surface
reconstruction can be obtained from a 3D binary mask via Laplace-Beltrami (LB)
eigen-projection (Shi et al., 2010). On a unit sphere, the LB eigen-functions corre-
spond to spherical harmonics, so overall they can be viewed as a generalization of the
SPHARM to the complex geometry manifold with local adaptation of the basis to the
dataset at hand (Lévy, 2006; Seo and Chung, 2011). Consider a closed compact man-
ifold M C R®. Let L?(M) be the space of square integrable functions on M with the
inner product (f,g)m = [y, f(P)9(P)du(p), where p is the Lebesgue measure such
that p(M) is the total area of M (Seo and Chung, 2011). The orthonormal basis in
L*(M) is given by the eigenfunctions of Aq1); = —Atb;, where Ay is the LB-operator
in M (Lévy, 2006; Seo and Chung, 2011). The eigen-functions g, 11, 19, ... can be

sorted by the corresponding eigenvalues, 0 = \g < A\ < Ay < .... Then, for surface
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coordinates p = (p',p?, p*)’, each coordinate function p‘(p) € L?(M) can be repre-
sented as a linear combination of the LB eigen-functions: p'(p) = Zf:_ol Bi;(p),
where 5; = (p', ¥;) m are Fourier coefficients, and K is the number of basis functions
(Seo and Chung, 2011). Laplace-Beltrami (LB) eigen-projection does not require the
spherical parameterization and thus avoids the corresponding metric distortion during
reconstruction. It has been also suggested that the representation using the LB eigen-
functions has far less between-subject reconstruction error variability and converges
faster to the ground truth with fewer basis functions than SPHARM (Seo and Chung,
2011). The proposed method has been demonstrated to produce smoother and more
detailed surfaces compared to both the SPHARM and the topology preserving level
sets (Han et al., 2003). Extracted surfaces are smooth, accurately represent the shape
of an object, and can be further used for morphometric analysis.

In order to extract shape geometric characteristics, boundary surfaces of binary
masks are typically reconstructed from voxel data and discretized as meshes. At
the next step, various useful morphometric descriptors can be computed based on
this representation. Useful extrinsic and intrinsic geometric descriptors aim to dis-
tinguish between global and local shape features. Intrinsic measures capture shape
properties that are invariant under transformations (e.g., affine: rotation, translation
and scaling). Various shape morphometry measures, like surface area and Gaussian
curvature, represent invariant metrics of complexity, which are stable under special
transformations of the surface (e.g., bending) that do not affect the inner geome-
try of the boundary of the 3D volume (Batchelor et al., 2002). Alternatively, shape
metrics, e.g., mean Ls-norm and the extrinsic curvature index, are sensitive to affine
transformation and other shape morphology in the ambient space. Shape index and
curvedness are morphometric descriptors that can capture local shape features, inde-
pendently or in relation to the size of an object (Koenderink and Van Doorn, 1992).

Combination of the object surface reconstruction with the extraction of such shape
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measures demonstrated high performance in recent neuroimaging studies for discrim-
inatory morphometric analysis of complex 3D shapes of cortical and subcortical brain

areas (Dinov et al., 2009; Fani et al., 2013; Moon et al., 2015).

3.1.2 High-throughput processing workflow protocol

When it comes to a choice of tools for 3D cell nuclear morphometrics, reproducibil-
ity and implementation availability are among major concerns in the field of bioimage
analysis (Dufour et al., 2015). To date, many of the widely available software tools
for cell shape morphometry were either developed for the analysis of 2D (Pincus and
Theriot, 2007; Ramo et al., 2009; Held et al., 2010; Pau et al., 2010; Kamentsky et al.,
2011; Chiang et al., 2015), or pseudo-3D images (Peng and Murphy, 2011). Other
tools only implement slice-by-slice or voxel-based morphometry (Schindelin et al.,
2012; de Chaumont et al., 2012; Kankaanpaa et al., 2012; Ollion et al., 2013), pro-
viding a coarse approximation of the global cell shape that is sensitive to increasing
amounts of noise and usually fails to characterize morphological variations occurring
at different spatial scales. Other common limitations of many 3D cell morphology
solutions include a lack of high-throughput processing capabilities or restrictions to
the specific programming language or platform that dictate principles of tool imple-
mentation (Eliceiri et al., 2012; Peng et al., 2014; Li et al., 2016). Implementations
of methods in a bioimage analysis landscape are highly diverse. They range across
programming languages, software libraries, and file formats, which increases module
interoperability issues and makes code reuse extremely difficult. Re-implementing
underlying methods is often very challenging, time-consuming, and error prone (Ince
et al., 2012). Some of the existing bioimage analysis frameworks, including ImageJ
(Schneider et al., 2012), rely on a plugin architecture, which allows their extension
via third-party contributions (Schindelin et al., 2012; de Chaumont et al., 2012; OI-

lion et al., 2013). High-throughput capabilities of some of these software packages
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are limited to processing of multiple objects simultaneously within its graphical user
interface (GUI), for example, Tango (Ollion et al., 2013). More advanced packages,
such as CellProfiler 2.0 (Kamentsky et al., 2011), BioimageXD (Kankaanpaa et al.,
2012), and Icy (de Chaumont et al., 2012), provide a basic graphical interface to as-
semble elementary tasks into reusable pipelines that make it possible to execute in
GUT and batch modes. However, these solutions are still limited to specific scripting
languages and libraries supported by the main software package. They also dont
provide a straightforward way to take advantage of the growing number of parallel
hardware configurations, such as clusters, clouds, and high-performance computing,
which limits the scalability of these solutions.

An alternative to plugin-based solutions, software platforms with modular design
allow integration of already existing solutions into workflows without re-implementing
them in a specific language, and provide methods for optimizing module interaction,
re-usage, and extension. An example of an extensive and feature rich solution for
building and executing complex workflows is the LONI Pipeline (Dinov et al., 2009,
2010). This client-server platform enables users to efficiently describe atomic mod-
ules and end-to-end protocols in a graphical canvas using a large library of powerful
computational tools. The Pipeline back-end server has extensive support for paral-
lel execution on a grid cluster, including automated data converting, formatting and
transfer, optimal job submission and management, pausing execution, and combin-
ing local and remote software and data sources. Most importantly, it makes it very
easy to create new custom modules from any software that supports a command line
interface (CLI). The Pipeline allows users to take advantage of a highly diverse set
of tools and connect them together as steps of a computational protocol that is then
executed in a high-throughput, parallel fashion. Validated individual modules and
end-to-end workflows may be saved, reused in other workflows, easily modified and

repurposed. Additionally, the LONI Pipeline saves information about executed steps
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(such as software origin, version, and architecture) providing provenance information
(Dinov et al., 2010, 2011).

We develop a reproducible pipeline workflow implementing the entire process that
can be customized and expanded for deep exploration of associations between 3D nu-
clear and nucleolar shape phenotypes in health and disease. High-throughput imaging
(HTT) can include automatization of liquid handling, microscopy-based image acqui-
sition, image processing, and statistical data analysis (Pegoraro and Misteli, 2016).
Our work focuses on the last two aspects of this definition. We implemented a stream-
lined multi-step protocol using a diverse set of tools to achieve optimal performance
compared to alternatives at each step of analysis. These tools are represented as indi-
vidual modules seamlessly connected in the LONI Pipeline workflow. This workflow
meets modern standards for high-throughput imaging processing and analysis and
is mostly automated with a focus on validity and reproducibility. Our implementa-
tion is massively parallel, customizable, and provides fully automated execution and
data provenance out-of-the-box. At the final step of the workflow, we employed ma-
chine learning methods to investigate the associations between cell phenotypes and

treatment conditions using cell shape morphometric measures as features.

3.1.3 Visual analytics for morphometric data analysis

Data visualization and analytics are crucial components of any study of com-
plex biomedical data (Dinov, 2016). The goal of visual analytics (VA) is to support
analytical reasoning and decision making with a combination of highly interactive
visualizations and data analysis techniques. This includes data management, compu-
tational transformation, hypothesis testing, and knowledge discovery (Keim et al.).
Visual analytics workflow encompasses an iterative process in which data analysts
interactively interrogate their datasets. Visual analytics workflow encompasses an

iterative process in which an analyst interrogates the dataset in hand in the form of
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interactive dialogue motivated by an analytical question and supported by visualiza-
tions and data analysis components.

The rapid advances in web-based information, communication and computation
technologies support the explosive growth of interactive services and tools implement-
ing novel solutions for exploration and visualization of large, complex, incongruent,
multisource and incomplete data. Web-based visualization solutions dramatically re-
duce deployment issues by running directly in the desktop or mobile web browser,
yielding a high degree of accessibility and avoiding complex installation, version up-
date and incompatibility, and other problems characteristic of standalone software
(Steed et al., 2014). Together with increased graphical and interactive capabilities
native to modern web browsers (HTML5/JavaScript), this enabled enhancement of
visualizations by user-focused data-driven real-time interactions.

Furthermore, integrating statistical and machine learning methods with visual-
izations can greatly amplify visual data analysis approaches (Tukey, 1977). Simi-
larly, improved computational capabilities of web browsers enabled implementations
of mathematical, statistical, machine learning, and computing JavaScript libraries
(Khan et al., 2014). Combining these resources with existing interactive visualization
frameworks would open a path to the development of more effective and powerful
VA web-based systems without re-implementing standard components from scratch.
However, there are a number of challenges associated with this endeavor such as sig-
nificant incongruences in design, development, and deployment. Earlier review of
information visualization system architectures pointed out the difficulty of identify-
ing common design patterns within existing visualization tools, and consequently the
high cost for users to learn and evaluate unfamiliar systems (Heer and Agrawala,
2006). Moreover, building general purpose visual analytics web systems is even more
challenging than creating visualization tools, since VA application design requires

their uniform integration with data management and analysis solutions into a com-
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plex large-scale web application. Existing VA applications implement this approach
combining web-based interactive visualization libraries with specific analytical func-
tionality, however, such solutions remain scattered and very problem-specific. Thus,
practices for development of sophisticated large-scale VA web applications are not
well established (Booth et al., 2014).

Our motivation to address these challenges comes in part from over a decade of
designing, building, and maintaining the Statistics Online Computational Resource
(SOCR) (Dinov, 2006). SOCR includes a large collection of web applications for in-
browser data processing, analysis, and visualization. SOCR implemented a feature-
rich educational web toolkit for in-browser interactive data visualization, modeling,
and statistical analysis (Dinov, 2006). Visualization components were based on open-
source Java charting library JFreeChart (Object Refinery Limited, 2017), and included
SOCR Charts (Dinov, 2006), Hyperbolic Wheel (Lam and Dinov, 2012), and Motion
Charts (Al-Aziz et al., 2010) that allowed computation of data summary statistics
and provided a number data representation types, including raw data display, data
mapping, and over 30 various highly interactive data plots, charts and diagrams,
including 3D, spatial, cartographic, and GIS data visualizations. SOCR Modeler
(Dinov, 2006) implemented interactive visual model fitting, including distribution-
mixture-modeling and generalized-expectation-maximization implemented in the set-
ting of 2D point clustering and classification. SOCR Analyses component (Chu et al.,
2009) provided hypothesis testing of both parametric and nonparametric models, data
modeling (linear regression and ANOVA), and computation of power and sample size.
SOCR Analyses was implemented using model-view-controller (MVC) software design
pattern, allowing to decouple interactive visual representation from modeling tech-
niques, such that the latter could be used separately as external computational library
and easily extended. The SOCR Distributome project (Dinov et al., 2016) addressed

complementary computational modeling applications from the viewpoint of probabil-
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ity distributions, including tools for simulation, analysis and inference, model-fitting,
examination of the analytical, mathematical and computational properties of specific
distributions, and exploration of the inter-distributional relations.

The suite of SOCR tools (Dinov et al., 2008; Dinov and Christou, 2009) has been
proven over time to successfully realize visual analytics workflows, in which an analyst
interrogates the dataset in hand in the form of interactive dialogue motivated by an
analytical question and supported by visualizations and data analysis components.
Examples implementing such VA workflow include California ozone pollution case
study using SOCR Charts and Analysis (Dinov and Christou, 2011) and visual anal-
ysis of big medicare, labor, census and econometric data with interactive SOCR Data
Dashboard (Husain et al., 2015). The original SOCR Java applets were open-source
and generally scalable, but did not build on a common platform to enable component
interoperability, resource sharing, and runtime interaction. SOCR infrastructure re-
alizes a suite of web tools providing many features important for VA workflows, but
became disconnected and hard to maintain due to the lack of common infrastructure.
Moreover, most of SOCR applets along with other in-browser Java based visualiza-
tion tools are becoming unsupported by major web browsers, which either removed or
announced timelines for the removal of standards based plugin support, eliminating
the ability to embed Flash, Silverlight, Java and other plugin based technologies, in
part as a response to numerous vulnerability reports (US-CERT, 2013).

This experience shows limitations of the earlier Java-based SOCR tools, designs
and implementations, which inhibits our efforts to further expand and maintain them.
We introduce SOCRAT-a web-based scalable platform for in-browser interactive data
analysis and visualization (Kalinin et al., 2017). It relies on principles of multi-level
modularity with central module control, re-usage, extension, and optimized inter-
action to address these challenges. This design broke down functional part of an

integrated VA system into atomic functional parts and proposed a way to compose
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them such that the whole system is flexible, extensible, and robust.

We show how combining multiple interactive visualization and analytical tools in
SOCRAT allows employing custom in-house developed solutions together with third-
party libraries to perform quick and easy exploration of extracted 3D morphometry
measures. SOCRAT is used to investigate structures and patterns in the extracted
morphometric dataset, from loading the feature tables into the toolbox, to wran-
gling missing and/or incongruent data values, to building interactive plots and using

statistical and machine learning analysis tools.

3.1.4 Deep learning for 3D morphology classification

Deep learning describes a class of machine learning algorithms that are capable of
combining raw inputs into layers of intermediate features (Ching et al., 2018). While
biomedical applications of deep learning are still emerging, they have already shown
promising advances over the prior state-of-the-art in several tasks. Deep learning
methods have transformed the analysis of natural images and video, and similar
examples are beginning to emerge with cell images. We employ deep learning as an
additional approach to 3D cell nuclear morphology classification.

Conventional machine learning algorithms used in sections above are typically
limited in their ability to process raw cell imaging data. Their performance heavily
depends on the extraction of relevant morphological representations or morphometric
features that require careful engineering and considerable domain expertise. Overall,
limitations of conventional machine learning methods include the need for extensive
human guidance, painstaking feature handcrafting, careful data preprocessing and
the dimensionality reduction to achieve top performance. In contrast, deep learning
methods model data by learning high-level representations with multilayer computa-
tional models such as artificial neural networks (ANNs) (LeCun et al., 2015). While

classic feed-forward artificial neural networks might serve as drop-in replacement for
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other machine learning models and require input preprocessing and feature extrac-
tion, deep learning architectures, such as convolutional neural networks (CNNs), allow
the algorithm to automatically learn features from raw and noisy data. Deep neural
networks rely on algorithms that optimize feature engineering processes to provide
the classifier with relevant information that maximizes its performance with respect
to the final task. Such deep learning models can be thought of as automated feature
learning or feature detection, which facilitates learning of hierarchical, increasingly
abstract representations of high-dimensional heterogeneous data (LeCun et al., 2015;
Kalinin et al., 2018b), also known as representation learning.

CNNss specifically have achieved great performance improvements in various com-
puter vision tasks. CNNs are designed to process data that come in the form of
multiple arrays, for example a colour image composed of three 2D arrays containing
pixel intensities in the three colour channels. Many data modalities are in the form of
multiple arrays: 1D for signals and sequences; 2D for images or audio spectrograms;
and 3D for video or volumetric images. There are four key ideas behind CNN that
take advantage of the properties of natural signals: local connections, shared weights,
pooling, and the use of many layers (LeCun et al., 2015). The architecture of a typical
CNN is structured as a series of stages, 3.2. The first few stages are composed of two
types of layers: convolutional layers and pooling layers. Units in a convolutional layer
are organized in feature maps, within which each unit is connected to local patches
in the feature maps of the previous layer through a set of weights called a filter bank.
The result of this local weighted sum is then passed through a non-linearity such as a
ReLU. All units in a feature map share the same filter bank. Different feature maps in
a layer use different filter banks. The reason for this architecture is two-fold. First, in
array data such as images, local groups of values are often highly correlated, forming
distinctive local motifs that are easily detected. Second, the local statistics of images

and other signals are invariant to location. In other words, if a motif can appear in

38



one part of the image, it could appear anywhere, hence the idea of units at different
locations sharing the same weights and detecting the same pattern in different parts
of the array. Mathematically, the filtering operation performed by a feature map is a
discrete convolution, hence the name (LeCun et al., 2015). One of the most popular
deep CNN architectures is a 16-layer network, named VGG-16 (Simonyan and Zis-
serman, 2014). It consists of a number of convolutional blocks, each representing a
stack of convolutional layers that employ filters with a very small receptive field (e.g.,
3x3). VGG-16 has been applied to many tasks in biomedical image analysis (Rakhlin
et al., 2018; Iglovikov et al., 2018; Shvets et al., 2018b,a). Figure 3.2 demonstrates an

example of applying VGG-16 to multi-scale feature extraction from pathology images.

Figure 3.2: Exemplar VGG-16 architecture
Extraction of Deep CNN features with VGG-16
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Notes. Each convolutional block consists of teo convolutional layers with a non-linearity, such as
ReLU, and batch normalization (Ioffe and Szegedy, 2015) in between. Using global average pooling,
it is possible to extract features from various levels of the network, capturing both low- and high-level
representations. Adapted from Rakhlin et al. (2018) under CC-BY-ND 4.0 license.

Deep learning models have already been applied to 2D cell morphological profiling

for both drug discovery (Caicedo et al., 2018) and disease diagnostics (Doan et al.,
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2018; Uhler and Shivashankar, 2018). However, efficiently scaling deep learning is
challenging, and there is a high computational cost (e.g. time, memory and energy)
associated with training neural networks and using them to make predictions (Ching
et al., 2018). Thus, directly applying deep learning models to 3D cell imaging data is
inefficient due to the so called curse of dimensionality: the number of points on the
grid grows exponentially with its dimensionality. In such scenarios, it becomes in-
creasingly important to exploit data sparsity whenever possible in order to reduce the
computational resources needed for data processing. Traditional convolutional net-
work implementations are optimized for data that lives on densely populated grids,
and cannot process sparse data efficiently. Alternatively, convolutional network im-
plementations that are tailored to work efficiently on sparse data can alleviate that
limitation (Graham, 2015).

Sparse CNNs can be thought of as an extension of the idea of sparse matrices
(Graham, 2014, 2015). If a large matrix only has small number of non-zero entries
per row and per column, then it makes sense to use a special data structure to store
the non-zero entries and their locations; this can both dramatically reduce memory
requirements and speed up operations such as matrix multiplication. However, if 10%
of the entries are non-zero, then the advantages of sparsity may be outweighed by the
efficiency which which dense matrix multiplication can be carried out (Graham, 2015)
. Since as our object representation we propose surface reconstruction, the resulting
meshes can be used to render highly sparse discrete nuclear shape voxel representa-
tions that can benefit from using sparse CNNs. We show how sparse 3D CNNs can
be used for for accurate and efficient cell nuclear morphology classification and reach

performance comparable to hand-crafted morphometric feature-based approaches.
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3.2 3D surface morphometry

Figure 3.3 shows a high-level view of the end-to-end protocol. We start with
a dataset of 3D binary nuclear and nucleolar masks. We modeled 3D nuclear and
nucleolar boundaries by their surface reconstruction and extracted the derived mor-
phometry measures. Finally, we computed statistical differences, identified shape

morphometry-phenotype associations, and evaluated the results.

Figure 3.3: High-level schematic flow of the 3D surface morphometry protocol
3D shape modeling and morphometry
Robust 3D surface Morphometric feature extraction: Morphological analysis
reconstruction size and shape

3D binary mask data

AUROC

Feature ranking
Features

il

Notes. Figure panels show: (A) 3D binary mask data; (B) mathematical representation and modeling
of shape and size; (C) calculation of derived intrinsic and extrinsic geometric measures; and (D)
machine learning based classification, feature ranking, and analysis.

B

3.2.1 Robust smooth surface reconstruction

To model the 3D shape of cell nuclei and nucleoli, boundaries of their 3D masks
extracted from the microscopy data are modeled as genus zero two-dimensional man-
ifolds (homeomorphic to a 2-sphere S?) (Ferri and Gagliardi, 1982) that are embed-
ded as triangulated surfaces in IR?, see figure 3.3. Our approach uses an iterative
Laplace-Beltrami eigen-projection and a topology-preserving boundary deformation
algorithm (Shi et al., 2010). This algorithm performs robust reconstruction of the
objects surfaces from their segmented masks using an iterative mask filtering process.
First, a mesh representation is constructed from the boundary of an objects binary
mask. Then, the boundary is projected onto the subspace of its Laplace-Beltrami

eigen-functions (Lévy, 2006), which allows the algorithm to automatically locate the
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position of spurious features by computing the metric distortion in eigen-projection.
LB eigen-functions are intrinsically defined and can be easily computed from the
boundary surface with no need of any parameterizations. They are also isometry
invariant, and thus robust to the jagged nature of the boundary surface, which is de-
sirable for biomedical shape analysis (Niethammer et al., 2007). As previously shown
in Shi et al. (2010), the discretized LB spectrum captures intrinsic shape character-
istics (e.g., global shape transformations will preserve the spectral signature). The
magnitude of the eigenvalues of the LB operator intuitively corresponds to the fre-
quency in Fourier analysis, thus it provides a convenient mechanism to control the
smoothness of the reconstructed surface. Using this information, the second step is a
mask deformation process that only removes the spurious features while keeping the
rest of the mask intact, thus preventing unintended volume shrinkage. This defor-
mation is topology-preserving and well-composed such that the boundary surface of
the mask is a manifold. The last two steps iterate until convergence and the method
generates the final surface as the eigen-projection of the mask boundary, which is a
smooth surface with genus zero topology (Shi et al., 2010). These properties allow
application of this algorithm to any shape, including, for example, crescent-shaped,
multi-lobed, and folded, as long as shape topology is homeomorphic to a sphere. The
exemplar results of this step performed on nuclear and nucleolar masks are shown in

figure 3.4.

3.2.2 Morphometric feature extraction

In this study, we used six shape measures as features quantifying geometric charac-
teristics of the 3D surfaces, see figure 3.5. To calculate these measures, first the prin-
cipal (min and max) curvatures (k; < ko) were computed using triangulated surface
models representing the boundaries of genus zero solids Terzopoulos (1988). Then,

shape morphometry measures can be expressed in terms of principal curvatures: mean
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Figure 3.4: Robust smooth 3D surface reconstruction

Notes. 3D visualization of: (A) a binary mask representation of a nucleus segmented from a Fi-
broblast cell image; (B) a mesh representation of a reconstructed smooth surface of a nucleus; (C)
three binary masks for nucleoli segmented within this nucleus; and (D) three mesh representations
of nucleolar surfaces, color-coded along the Z axis. Visualizations are produced with the SOCR
Dynamic Visualization Toolkit web application (SOCR, 2018).

ky + ko 2 ky + ko
curvature as M C' = ———, shape index as SI = — arctan(———), and curvedness
2 s ko — ky
ki 4 k3
as CV = — The principal curvatures of a surface are the eigenvalues of the

Hessian matrix (second fundamental form), which solve for k, |H — kI| = 0, where
I is the identity matrix. If S is a surface with second fundamental form H(X,Y),
p € M is a fixed point, and we denote an orthonormal basis u, v of tangent vectors at
p, then the principal curvatures are the eigenvalues of the symmetric Hessian matrix,
H = gzz Z:v = H,,0u*+2H, ,0udv + H,,0v?, a.k.a. shape tensor. Let r = r(u,v)
be a parameterization of the surface S C IR?, representing a smooth vector valued

function of two variables with partial derivatives with respect to v and v denoted by
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r, and r,, see figure 3.5. Then, the Hessian coefficients H; ; at a given point (p) in the

parametric u, v-plane are given by the projections of the second partial derivatives of

Ty X Ty

r at that point onto the normal to .S, n = , and can be computed using the

|7 X Ty
dot product operator: H, , = 1y 1, Hyy = Hyy = Typ -1y Hyyy = 14, - 1, see figure

3.5.
Figure 3.5: The (local) geometry of 2-manifolds
Normal
Principal Vector
Curvature L Ty XTy,
Planes (at p) n=——
[Ty X 1]

Tangent
Plane

Notes. Per vertex definitions of curvature, relative to a local coordinate framework.

Volume is the amount of 3D space enclosed by a closed boundary surface and can
be expressed as V = [[[ s Ip(x,y, z)dedydz, where Ip(z,y, z) represents the indi-
cator function of the region of interest (D) (Larson and Edwards, 2009). If r(u,v) is
a continuously differentiable function and the normal vector to the surface over the

appropriate region D in the parametric u,v plane is denoted by o X 7"_3, then Sq
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r=r(u,v), (u,v) € €, is the parametric surface representation of the region bound-
ary (Santal, 2004). Then surface area can be expressed as SA = [/ |70 % Ty |dudv.
The fractal dimension calculations are based on the fractal scaling down ratio, p, and
the number of replacement parts, N (Mandelbrot, 1982). Accurate, discrete approx-
imations of these metrics are used to compute them on mesh-represented surfaces
(Ferri and Gagliardi, 1982; Jagannathan, 2005). These discrete metrics were first in-
troduced as a part of the shape analysis protocol (Dinov et al., 2009) and were further
applied in neuroimaging studies (Fani et al., 2013; Moon et al., 2015). Mathematical
formulas and intuitive descriptions of size and shape measures are also given in table
B.1 and table B.2, correspondingly.

The extracted 3D morphometric measures serve as features for training a number
of machine learning algorithms in order to assess classification performance, see figure
3.3. The number of detected nucleoli per nucleus is included as an individual feature.
We merged nucleoli-level features within each nucleus by computing sample statis-
tics (e.g., average, minimum, maximum, and higher moments) for each morphometry
measure as described in Kalinin et al. (2018d). These statistics are used to augment
the signature feature vectors of the corresponding parent nuclei such that all feature
vectors are of the same length. Correspondingly, nuclei that do not have any auto-
matically detected internally positioned nucleoli were excluded from further analysis,

such that for each nucleus there was at least one nucleolus.

3.2.3 High-throughput workflow protocol

While the LONI Pipeline is a popular tool in neuroimaging and bioinformatics,
it has not yet been utilized as widely by the bioimage analysis community. In this
work, we implement a streamlined multi-step protocol that relies on a diverse set of
tools and solutions seamlessly connected in the LONI Pipeline workflow, see figure

3.6. From a high-level perspective, every step of data processing and analysis protocol
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is wrapped as an individual module in the workflow that provides input and output
specifications that allow the Pipeline to automatically connect and manage atomic
modules. The modular structure of our implementation makes it highly flexible and
not limited to specific tools included in the workflow. It can be repurposed for a wide
range of different experiments by adjusting parameters, adding, removing, or replac-
ing individual modules, while preserving high-throughput capabilities, as presented
in the Discussion section. Every module represents an independent component that
can be used in a stand-alone fashion. As a result, a distributed, massively parallel
implementation of our protocol makes it possible to easily process thousands of nuclei
and nucleoli simultaneously. The workflow does not depend on the total number of
3D objects, biological conditions, or a number of running instances since its execu-
tion is completely automated once the workflow configuration is fixed, including job
scheduling and resource allocation. During the execution, our workflow provides a
researcher with real-time information about progress and allows the viewing of inter-
mediate results at every individual step. In addition, failed modules may easily be
restarted.

The workflow is configured in such a way that it can consume data in the specific
format we used, i.e. 1024 x 1024 x Z 3D volumes in different channels as 16-bit 3D
TIFF files. Each volume is processed independently, in parallel fashion, such that
workflow automatically defines how many processes are needed to analyze all of the
input data. 3D shape modeling and morphometric feature extraction are performed
on individual masks independently, which allows us to simultaneously run up to
1,200 jobs on the cluster during our experiments, effectively reducing the computing
time. Finally, the workflow collects morphometry information from each individual
mask and combines them in the results table that is further used as an input to
classification algorithm. These capabilities allow the user to take advantage of modern

computational resources, lift the burden of low-level configuration from researchers,
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Figure 3.6: Morphometry graphical workflow in the LONI Pipeline client
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Notes. Screenshots of the exemplar graphical workflow in the LONI Pipeline client interface that
include: (left) overview of the validated workflow protocol showing nested groups of modules; (A)
expanded Volume to Shape group that includes modules that perform 3D shape modeling refinement;
and (B) expanded Morphometry group that includes a module that performs morphological measure
extraction.

make it easier to control the execution process, and improve reproducibility of the

whole process.

3.3 Visual analytics with SOCRAT

We perform exploratory visual analysis of extracted morphometric features using
SOCRAT, a web platform for interactive visual analytics. SOCRAT serves as a
flexible platform for building powerful VA applications by providing a convenient
way to seamlessly integrate custom and third-party components. In order to achieve
that, we proposed a loosely coupled and centrally controlled platform architecture

with modular structure (Kalinin et al., 2017).
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3.3.1 SOCRAT architecture

The proposed system is represented by a loosely coupled architecture (Osmani,
2011) with functionality broken down into independent modules with, ideally, no
inter-module dependencies. Modules are single-purpose parts of a system with lim-
ited permissions. They are interchangeable in the sense that the system is capable of
supporting, adding, removing or replacing modules without the rest of the modules
in the system failing, which facilitates flexibility and robustness. In this decoupled
setting, modules do not directly communicate with each other. Instead, they provide
a means to communicate with the Core module. The Core module is a central control
piece responsible for the initialization and internal communications of other modules,
and for satisfying the interoperability requirement, similar to the Kernel module in
(Bender et al., 2000). If necessary, it performs module runtime validation and mon-
itoring. Extensibility is implemented in the form of plug-in support, which enables
wrapping third-party components as modules, providing them with a standard for
other modules API.

The starting point for designing modular architecture was actually to break it
down into independent functional pieces and then define their responsibilities. For
web systems, it’s common to design modules following MV C-like patterns (MV*), sep-
arating the data from the display, and organizing their interaction with the medium
component. For VA application architecture, it’s natural to initially separate vi-
sualization from data analytics and data storage, although, different views, on the
contrary, should be made possible to combine. Thus, interactivity is more difficult
to decouple into separate modules. Two simple options to approach this limitation
are either to: (1) provide basic interactivity specifications within general intermediate
display layer, that would be accessible by different modules, or (2) define more specific
interactions individually in the scope of each module. The second option allows for

more flexibility in terms of implementation, including easier third-party component
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integration.

In suggested architecture, we do not impose strict module classification. Instead,
we suggest that there are a few loosely defined types of modules: for example, mod-
ules that perform specific actions on data, such as calculations without implementing
the UI (background modules) or modules that use data to populate interactive visu-
alization specifications (visual modules). Modules with new visualization capabilities
should be able to implement high-level predefined specifications as well as low-level
control definitions, depending on the task. To combine such variety of approaches, the
module’s components should be modular as well. Intra-module component structure
should allow for simple ways to circulate information within a module. For inter-
module communication, module inner components can be exposed by opening access
to them for other modules via Core, for example, providing calculations-as-a-service
or visualization-as-a-service. In practice, however, it is reasonable to expect that a

typical module of a web VA system will be a hybrid of these types.

Figure 3.7: General modular SOCRAT architecture
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Notes. Human-computer and inter-modular interactions (via Sandbox-Mediator pattern) are shown
by arrows. From left to right: (1) user uploads CSV file using module A, which broadcasts “Save
data” message; Core module redirects the message to module B that saves the data into database;
(2) then user requests visualization of data in module C, which requests data from module B, receives
the data, and displays it in the view component.
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Upon module initialization by the Core module, all modules are provided with
Sandbox, an instance representing Facade software design pattern (Osmani, 2012),
that hides inner Core structure from the module behind high-level messaging inter-
face. This interface, in turn, is represented by a Mediator pattern (Osmani, 2012)
that prevents modules from directly referring to each other and instead acts as an
intermediary. Core can use Mediator to start, stop, and restart individual modules
selectively in the runtime, without breaking the application. It is also responsible
for answering module’s request. For example, if a visual module requested specific
data transformation that was outsourced to another module, which is currently not
available, Core will use Mediator to provide visual module with negative result, such

that it can display an appropriate error message or placeholder and/or try again later.

3.3.2 SOCRAT user interface

Similar to the UI designs of Tableau (formerly Polaris) Stolte et al. (2002), Voy-
ager and PoleStar Wongsuphasawat et al. (2016, 2017), SOCRAT user interface (UI)
consists of three top-level elements: main menu, sidebar and the central area, see fig-
ure 3.8. Main menu is used to provide access to core Ul components. It is indicated
in declarative fashion in every module definition along with its subcomponents.

On the applications start, SOCRAT Core recursively parses the module list and
automatically adds links to all Ul modules into main menu, while registering their
URL in the routing scheme. This takes the menu-building burden from the devel-
oper, and allows to organize the main menu in many configurations, including nested
dropdown sub-menus.

Sidebar is a common Ul pattern that is typically used for auxiliary control place-
ment. Both the main area and hideable sidebar are automatically initialized for every
SOCRAT module, along with the methods for their interaction. Sidebar typically im-

plements requests for current datasets and displays some of their properties, while
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Figure 3.8: SOCRAT user interface
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Notes. Overview of SOCRAT UL (1) main menu indicating the currently active module, (2) sidebar
with various data sources, (3) central panel includes module-specific data display and manipulation
controls, (4) for example, dynamic, editable spreadsheet-like data grid that contains raw data values
view and also allows to drag-and-drop CSV/TSV file to load the data, and (5) summary information
panel below the data grid shows histogram and reports summary statistics for for each variable in
the dataset.

central area can be used as a view for particular visualization specifications. This is
the only UI restriction that SOCRAT imposes onto modules with UI; the developer
can choose any visualization library in combination with any analytical methods that

will be further used to build the application.

3.3.3 SOCRAT analytical capabilities

As a toolbox SOCRAT provide a wide range of VA capabilities, from data input,
storage, management, and wrangling, to interactive visualizations, statistical analysis,

and machine learning.
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Spreadsheet-like live editor is used to display raw data values in a scrollable grid
with dynamic loading of content, which allows the analyst to briefly glaze over the
values in familiar Excel-like manner. Additionally, SOCRAT implements a module
that wraps third-party data utility library Datalib (Wongsuphasawat et al., 2016).
Upon data loading we use Datalib for tabular data parsing, column type inference,
and summary statistic calculation, including histogram generation. SOCRAT displays
per-column summary statistics and histogram of values above each corresponding
column of the dataset to improve efficiency of initial data exploration, see figure 3.8.

Data Wrangler (Kandel et al., 2011; Guo et al., 2011) allows highly interactive in-
browser data cleaning and transformation supported by analytics and visualizations.
It couples a mixed-initiative user interface with an underlying declarative transforma-
tion language. We created a module for data wrangling that embeds Wrangler into
SOCRAT interface. As a result, Wrangler is represented as a separate SOCRAT UI
module and declaratively specified in the SOCRAT platform configuration to appear
in the dynamically built main menu.

Interactive visualizations in SOCRAT are based on D? (Bostock et al., 2011) and
vega-lite (Satyanarayan et al., 2017) libraries. They provide over 30 various types of
easily customizable chart configurations for in-depth analysis of multivariate tabular
data based on histograms, scatter plots, line, area, bar, bubble, and pie charts. In or-
der to assess the variability of extracted morphometry data, we include t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) visualizations of
the feature space generated by SOCRAT. Below we provides a formulation of t-SNE
based on Dinov (2018).

The t-SNE technique represents a recent machine learning strategy for nonlinear
dimensionality reduction that is useful for embedding (e.g., scatter-plotting) of high-
dimensional data into lower-dimensional (1D, 2D, 3D) spaces. For each object (point

in the high-dimensional space), the method models similar objects using nearby and
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dissimilar objects using remote distant objects. The two steps in t-SNE include (1)
construction of a probability distribution over pairs of the original high-dimensional
objects where similar objects have a high probability of being paired and correspond-
ingly, dissimilar objects have a small probability of being selected; and (2) defin-
ing a similar probability distribution over the points in the derived low-dimensional
embedding minimizing the Kullback-Leibler divergence between the high- and low-
dimensional distributions relative to the locations of the objects in the embedding
map (Dinov, 2018). Either Euclidean or non-Euclidean distance measures between
objects may be used as similarity metrics.

Suppose we have high dimensional data (ND): x1, s, ...,xy. In step 1, for each
pair (z;,z;), t-SNE estimates the probabilities p;; that are proportional to their

corresponding similarities, pj;:

—||zi—=;]?
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The similarity between z; and x; may be thought of as the conditional probabil-
ity, pj;- That is, assuming ND Gaussian distributions centered at each point z;,
neighbors are selected based on a probability distribution (proportion of their prob-
ability density), which represents the chance that z; may select x; as its neighbor,
Dij = Z% The perplexity (perp) of a discrete probability distribution, p, is
defined as an exponential function of the entropy, H(p), over all discrete events:
perp(z) = 2P = 2= X, p(@)log2p(=)  t_ SNE performs a binary search for the value o;
that produces a predefined value perp. The simple interpretation of the perplexity
at a data point z;, 27®) is as a smooth measure of the effective number of points
in the z; neighborhood. The performance of t-SNE may vary with the perplexity
value, which is typically specified by the user, e.g., between 5 < perp < 50. Then,

the precision (variance, o;) of the local Gaussian kernels may be chosen to ensure
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that the perplexity of the conditional distribution equals a specified perplexity. This
allows adapting the kernel bandwidth to the sample data density — smaller o; values
are fitted in denser areas of the sample data space, and correspondingly, larger o;
are fitted in sparser areas. A particular value of o; yields a probability distribution,
p;i, over all of other data points, which has an increasing entropy as o; increases.
t-SNE learns a mapping f : {1, 29, ...,2x} — {y1,¥2, ..., ¥a}, where z; € RY and
y; € RY (N > d) that resembles closely the original similarities, p; ; and represents

the derived similarities, ¢; ; between pairs of embedded points y;, y;, defined by:

= Uty =l
T k(U Y — el

The t-distributed reference in t-SNE refers to the heavy-tailed Student-t distribution
(tgr=1) which coincides with Cauchy distribution, f(z) = ﬁ (Dinov et al., 2016).
It is used to model and measure similarities between closer points in the embedded
low-dimensional space, as well as dissimilarities of objects that map far apart in the
embedded space (Dinov, 2018). The rationale for using Student t distribution for
mapping the points is based on the fact that the volume of an ND ball of radius r,
BN is proportional to rV. Specifically, Vy(r) = %TN, where I' is the Fuler’s
gamma function ( Wikipedia, 2018), which is an extension of the factorial function to
non-integer arguments. For large N, when we select uniformly random points inside
BY | most points will be expected to be close to the ball surface (boundary), SN¥-1,
and few will be expected near the BY center, as half the volume of BY is included

in the hyper-area inside B and outside a ball of radius r = x r ~ r. For

1
R/2
example with N = 2, {x € R?| ||z|| < r} is representing a disk in a 2D plane (Dinov,
2018). When reducing the dimensionality of a dataset, if we used the Gaussian

distribution for the mapping embedding into the lower dimensional space, there will be

a distortion of the distribution of the distances between neighboring objects. This is
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simply because the distribution of the distances is much different between the original
(high-dimensional) and a the map-transformed low-dimensional spaces. t-SNE tries
to (approximately) preserve the distances in the two spaces to avoid imbalances that
may lead to biases due to excessive attraction-repulsion forces. Using Student t
distribution df = 1 (aka Cauchy distribution) for mapping the points preserves (to
some extent) the distance similarity distribution, because of the heavier tails of ¢
compared to the Gaussian distribution. For a given similarity between a pair of
data points, the two corresponding map points will need to be much further apart in
order for their similarity to match the data similarity (Dinov, 2018). A minimization
process with respect to the objects y; using gradient descent of a (non-symmetric)
objective function, Kullback-Leibler divergence between the distributions ) and P ,

is used to determine the object locations y; in the map, i.e.,

Dij
L(Pl|Q) = pr log ]‘
i#]

The minimization of the KL objective function by gradient descent may be analyti-

cally represented by:

OKL(P
% = (g — @) (|2 — 2w,

J

where f(z) =

= and u;; Is a unit vector from y; to y;. This gradient represents
the aggregate sum of all spring forces applied to map point x;. This optimization
leads to an embedding mapping that ”preserves” the object (data point) similarities
of the original high-dimensional inputs into the lower dimensional space. Note that
the data similarity matrix (p; ;) is fixed, whereas its counterpart, the map similarity
matrix (¢; ;) depends on the embedding map. Of course, we want these two distance

matrices to be as close as possible, implying that similar data points in the original

space yield similar map-points in the reduced dimension (Dinov, 2018). Examples
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of t-SNE applications to real biomedical data are available in Dinov (2018) and in
SOCRAT Kalinin et al. (2017).
Additionally, SOCRAT analytical tools provide a number of tools for exploration

of tabular data:

e statistical tests, such as t-test, Wilcoxon rank sum test, Kruskal-Wallis test,
Friedman’s test, ANOVA, ANCOVA, Generalized Linear Models, Contingency

tables, Friedman’s test and Fisher’s exact test;
e regression analysis, including linear and logistic regression models;
e power and sample size analysis;

e regression analysis, including linear and logistic regression models power and

sample size analysis;
e interactive clustering, including k-Means and spectral clustering algorithms

e dimensionality reduction with PCA decomposition and t-SNE algorithm with

2D and 3D interactive visualizations

3.4 Sparse 3D convolutional neural networks

Each layer of a CNN consists of a finite graph, with a vector of input/hidden units
at each site. For regular two dimensional CNNs, the graphs are square grids. The
convolutional filters are square-shaped too, and they move over the underlying graph
with two degrees of freedom (Graham, 2015). Similarly, 3D CNNs are normally
defined on cubic grids. The convolutional filters are cube-shaped, and they move
with three degrees of freedom. In the interests of efficiency, we consider CNNs with
a different family of underlying graphs (Graham, 2015). In 2D, we can build CNNs

based on triangles. For each layer, the underlying graph is a triangular grid, and the
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convolutional filters are triangular, moving with two degree of freedom. In 3D, we can
use a tetrahedral grid and tetrahedral filters that move with three degrees of freedom
(Graham, 2015). 3D tetrahedral sparse CNN is implemented by tweaking sparse CNN
algorithm from Graham (2014) to work efficiently on general lattices. We employ 3D
sparse CNN for nuclear morphology classification. Specifically, we use a CNN with
the tetrahedral grid and tetrahedral filters that allow for a noticeable speed up when
compared to cubic grid-based CNNs, although they may be less accurate at the small
scales (Graham, 2015). We applied data augmentations during training using affine
transformations. VGG-16 (Simonyan and Zisserman, 2014), shown in figure 3.2, was
chosen as a network architecture, as it has shown to be a powerful deep learning model
in many applications to biomedical image analysis (Ching et al., 2018; Rakhlin et al.,
2018; Iglovikov et al., 2018). We use 3D robust surface reconstruction (Shi et al.,
2010) to obtain mesh-based nuclear shape representations that are used as inputs to
the network. At the input each shape is discretized in a tetrahedral grid and 10% of
the training set is used for validation. Network is then trained for 500 epochs with

stochastic gradient descent with momentum (Ruder, 2016).

3.5 Concluding remarks

In this chapter, we proposed a solution for 3D modeling, morphological feature
extraction, analysis, and classification of cells by treatment conditions. Compared
to other studies using 2D projections, this approach operates natively in 3D space
and takes advantage of extrinsic and intrinsic morphometric measures that are more
representative of the real, underlying nuclear and nucleolar geometry and allow easy
human interpretation. Given the limitations of using 3D voxels for accurate shape
representation, we employed 3D surface models to extract more informative size and
shape measures to improve the morphology classification performance.

Our computational protocol implementation is highly parallel with throughput,
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limited only by the number of available computing nodes, and it can process thousands
of objects simultaneously with minimal human intervention. This pipeline workflow
integrates a number of open-source tools for different steps of data processing and
analytics. Every module in our workflow represents an individual component that
can be easily modified, removed, or replaced by an alternative. Such modular soft-
ware platform architectures have been shown to enable high reusability and ease of
modification. This allows the user to use the same workflow or customize and expand
it (e.g., specification of new datasets, swapping of specific atomic modules) for other
purposes that require the analysis of a diverse array of cellular, nuclear, or other stud-
ies. The live demo available via the LONI Pipeline demonstrates the simplicity of use
and high efficiency of parallel data processing. LONI also provides guest access (see
Supplementary Information) and an opportunity to utilize a 4,500-core LONI cluster
after applying for a collaboration account. Our computational approach is scalable
and capable of processing complex big 3D imaging data, and is not limited to nu-
clear and nucleolar shapes. With some changes, it can be applied to other cellular
and nuclear compartments of interest. More specifically, the robust smooth surface
reconstruction algorithm can be directly applied to any 3D shapes, as long as their
topology is sphere-like.

As one of the approach limitations, we pointed out that other geometric mea-
sures can be used to characterize shapes of interest, such as intrinsic shape context,
compactness, symmetry, smoothness, convexity, etc. In the current representation,
analyzable shapes are limited to genus zero surfaces, which is a fair assumption when
modeling objects like nuclei or nucleoli. However, it might be not trivial when con-
sidering other nuclear structures, for example, chromosome territories or interchro-
mosomal loops, since their topologies may not be homeomorphic to a sphere, or may
not appear to be genus zero under some imaging conditions and modalities. It is also

conceivable, yet not very likely for the discretized Laplace-Beltrami (LB) operator,
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that 2 different shapes may have the same spectra. In this case, the algorithm may
fail to detect the intrinsic differences between them due to false-negative error. Even
though our workflow only requires little intervention (classifier selection and tuning),
further improvements would involve adaptive implementations with even less manual
intervention, as well as extraction of additional features. For example, 3D textu-
ral features could possibly increase discriminatory power of the method and provide
more information on chromatin reorganization (Kalinin et al., 2018a). Since nuclear
deformation serves as a proxy to underlying processes, the importance of particular
features and the methods ability to classify nuclei does not provide direct insight
into the fundamental biological mechanism driving the observed morphometric dif-
ferences between cell phenotypes or environmental conditions. The computational
results should be further tested and externally validated using other experimental
conditions and prospective data.

The goal of visual analytics is to support analytical reasoning and decision making
with a combination of highly interactive visualizations and data analysis techniques.
SOCRAT implements a visual analytics workflow that encompasses an iterative pro-
cess, in which data analysts can interactively interrogate extracted morphometric
measures in the form of interactive dialogue supported by visualizations and data
analysis components. For example, in order to assess the variability of extracted
morphometry data, SOCRAT includes such visualization methods as t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) of the morpho-
logical feature space. It also can be used to demonstrate interactions between various
morphometric features in order to assess their relationships. Finally, we demonstrated
the ability to visualize volumetric images and extracted meshes online via SOCR Dy-
namic Visualization Toolkit web application (SOCR, 2018).

In general, correct classification of every single cell (type, stage, treatment, etc.)

is a challenging task due to significant population heterogeneity of the observed cell
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phenotypes. For example, the same sample may contain a close mixture of intertwined
cancerous and non-cancerous cell phenotypes; or, both classes may include apoptotic
cells exhibiting similar shapes or sizes. Given the nature of cell samples, culturing,
preparation, and collection, we have considered classification of cell sets rather than
single cells. The idea of classifying sets of cells, rather than individual samples, is
not new and has been used in recent biomedical image classification studies (Huang
et al., 2014a; Cheplygina et al., 2015). The rationale behind this is based upon
the observation that even if an algorithm misclassifies a few cells in a sample, the
final (cell set) label will still be assigned correctly, as long as majority of cells are
classified correctly. Using this strategy, we performed classification on small groups
of cells, ranging from 3 to 31 cells per set. During each fold of the internal cross-
validation, these small cell sets were randomized by bootstrapping procedure with
1,000 repetitions. Random uniform sub-sampling was used to resolve the sample-size
imbalance between the classes. Due to the possible presence of batch effects in data,
we employed L20GO cross-validation scheme.

The source code for image processing and derived data are made publicly available
on the project web-page: http://www.socr.umich.edu/projects/3d-cell-morphometry/
data.html. Additionally, extracted morphometric features are made available for in-
teractive exploration and analysis online via our visual analytics platform SOCRAT

(Kalinin et al., 2017).
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CHAPTER IV

Applications of 3D Nuclear Surface Morphological

Analysis

4.1 Introduction

In this chapter we consider applications of 3D surface morphology modeling, mor-
phometrics, visual analytics and deep learning to cell nuclear morphology classifica-
tion and analysis. First, we validate accuracy of the proposed 3D surface morphome-
try method using synthetically generated data of various shapes. Then, we compare
the use of nuclear morphometry using 3D robust surface reconstruction with spheri-
cal harmonics as features for morphological classification of fibroblast nuclei using a
number of common machine learning algorithms. Sparse 3D CNN classification per-
formance is also tested on fibroblast nuclear morphology classification. Then, we use
3D surface morphometry and SOCRAT visual analytics for more detailed analysis
of both fibroblast and PC3 nuclear and nucleolar data. Finally, we introduce a new
experiment in which we use 3D morphometry to observe morphological changes in

astrocyte cells treated with a chromatin remodeling chemical compound.
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4.2 Validation on synthetic data

To validate the shape morphometry metrics, we first applied them to synthetically
generated 3D binary masks. We used the scikit-image Python library (van der Walt
et al., 2014) to create 3D solids representing cubes, octahedra, spheres, ellipsoids,
and 3 overlapping spheres with linearly aligned centers , see figure 4.1. We processed
these objects and compare the resulting shape morphometry measures. Specifically,
we aimed to confirm the expected close relation between the analytically derived mea-
sures of volume and surface area computed using the corresponding shape parameters
(e.g., radius, size), and their computationally derived counterparts reported by the
processing pipeline workflow. Our results illustrate that for nucleus-like shapes, e.g.,
spheres and ellipsoids, the computational error is within 2%. For faceted objects,
e.g., cubes and octahedrons, the calculation error is within 6%. The increased error
in the latter case can be explained by the mesh smoothing the surface reconstruction
algorithm applies at the shape vertices to resolve points of singularity (e.g., smooth
but non-differentiable surface boundaries).

To demonstrate the detection of shape differences between different types of 3D
objects, we also compared overlapping spheres against circumscribed ellipsoids. As
expected, the average mean curvature and curvedness measures are lower and shape
index values are higher for spheres compared to ellipsoids. We observed a similar
trend when comparing changes in these shape morphometry measures for spheres, el-
lipsoids, and overlapping spheres. For example, average mean curvature and curved-
ness were highest for overlapping spheres and lowest for spheres, which is expected
based on definitions of these measures. This simulation confirms our ability to ac-
curately measure size and shape characteristics of 3D objects, which forms the basis
for machine-learning based object classification based on boundary shapes. Exemplar

results of synthetic data morphometry are available in table 4.1.
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Figure 4.1: Example of synthetic data

Notes. Overlapping spheres, or beads, (R=30, overlap=>5) within an ellipsoid (a=80, b=40, c=40)
used to validate shape morphometry measure calculations and differences in morphometric features.

] Primitive \ AMC \ SA \ Volume \ Curvedness \ SI \ FD ‘
Cube 0.029 | 144438.190 | 4060563.200 0.323 0.012 | 2.181
Octahedron | 0.036 | 42441.207 | 687556.250 0.349 0.017 | 2.016
Sphere 0.015 | 79633.500 | 2111214.800 0.713 0.009 | 2.095
Ellipsoid 0.026 | 33973.812 | 526245.700 0.633 0.013 | 2.097
Beads 0.029 | 29279.334 | 322649.560 0.612 0.035 | 2.147

Table 4.1: Morphometry of synthetic objects. Cube (a=160), octahedron and sphere
(R=80). AMC-average mean curvature, SA—surface area, SI-shape index,
FD-fractal dimensionality.

4.3 Fibroblast nuclear surface morphometry analysis

4.3.1 Comparison with SPHARM and sparse 3D CNN

(Classification of single cell nuclear morphology from the fibroblast collection may
be assessed using shape morphometry metrics as salient discriminatory features, which
we compare against their corresponding SPHARM coefficients (Dufour et al., 2015;
Ducroz et al., 2012). We used fibroblast binary nuclear masks to calculate both

SPHARM and morphometric features.
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Classifier | SPHARM, mean AUC (£SD) | Morphometry, mean AUC (£5D)
KNN 0.556(=0.103) 0.629(£0.204)
SVM 0.593(£0.165) 0.677(£0.354)
RBF 0.513(40.145) 0.682(40.264)
RF 0.619(+£0.175) 0.645(+£0.200)
AD 0.612(=£0.246) 0.663(£0.252)
GBM 0.620(£0.234) 0.674(+£0.229)

Table 4.2: Comparison of SPHARM coefficients and 3D surface morphometry de-
scriptors for single cell fibroblast nuclei classification. KNN-k nearest
nighbors, SVM-support vector machine with linear kernel, RBF-support
vector machine with Gaussian kernel, RF—Random Forest, AD-AdaBoost,
GBM-gradient boosting machines.

We used the popular SPHARM-MAT toolbox (Shen, 2010) with default parame-
ters to compute SPHARM shape description coefficients as described in Ducroz et al.
(2012) and used as feature vectors for classification.

Then we used machine learning classification methods on derived feature vec-
tors with default parameters for each method. Performance was compared using the
L20GO cross-validation scheme and the area under the receiver operating character-
istic curve as a performance metric. As shown in table 4.2, 3D shape morphometric
measures not only demonstrate comparable discriminative performance to SPHARM
coefficients, but outperform them using all tested algorithms.

Using the same fibroblast nuclear surface representations that were used to extract
morphometric measures we test the performance of the sparse 3D tetrahedral CNN.
At the input of the network, each 3D nuclear shape mesh is discretized in a tetrahedral
grid with the size of 212x212x212. We train VGG-16-like network with the rate of 260
sec/epoch using a single NVIDIA GeForce GTX TITAN X Maxwell 12GB GPU. After
500 epochs the model reaches 2.96% error rate on training set and 21.12% error rate
on the validation set (10% of original dataset). Although sparse 3D CNN outperforms
both SPHARM and 3D morphometry classification, further investigation is required,

due to the differences in cross-validation, parameter tuning, etc. The error rate on
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the training set may indicate over-fitting, which may require more sophisticated data
augmentation strategies (Buslaev et al., 2018). Nevertheless, this result does show
the potential for efficient and accurate applications of deep learning models for 3D

morphological classification.

4.3.2 3D surface morphological classification

The full collection of fibroblast masks for binary classification consists of total 965
nuclei (498 SS and 470 PROLIF) and 2,181 nucleoli (1,151 SS and 1,030 PROLIF).

In order to assess the variability of extracted morphometry data, we include t-
Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) vi-
sualizations of the feature space generated by SOCRAT. Figure 4.2 demonstrates
the variability of the extracted morphometry measures in a t-SNE projection visual-
ized in SOCRAT. Although there was a small degree of grouping, there was no clear
separation between classes.

The best result by a single classifier was achieved using a stochastic gradient
boosting classifier with 1,500 base learners, maximum tree depth 8, subsampling
rate 0.5. Hyper-parameters were fine-tuned using a cross-validated grid search. To
evaluate these classification results, we measured accuracy, precision, sensitivity, and
AUC over L20GO cross-validation, which are presented in Table 2 for single cell and
19-cell-set classifications. Figure 5B shows mean AUC values for set sizes from 3 to
19 cells. A 90% mean AUC was reached when classifying sets with 19 cells and 92.5%
for sets with 31 or more cells.

The gradient boosting classifier also computes and reports cross-validated feature
importance, see figure 4.2. These allow us to evaluate which measures differ between
two cell conditions, and potentially propose novel research hypotheses that can be
tested using prospective data. Previous analysis has reported quantifiable changes

in both nuclear size and shape under serum-starvation70. In our results, both nu-
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Figure 4.2: Fibroblast morphometric analysis
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Notes. Fibroblast morphometric analysis:(A) SOCRAT visualization of t-SNE projection of morpho-
metric feature space; (B) mean AUC for various cell set sizes; (C) top-10 features for classification
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that were also reported in top-10 for PC3 cells are shown in blue font); and (D): SOCRAT visual-
ization of interactions between top-3 features.
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Measure single cell, mean (£SD) | 19 cells set, mean (£5D)
Accuracy 0.699 (40.076) 0.899 (£0.123)
Precision 0.701 (£0.075) 0.922 (£0.115)
Sensitivity 0.692 (£0.127) 0.874 (£0.224)
AUC 0.699 (£0.076) 0.899 (£0.123)

Table 4.3: Morphometry of synthetic objects. Cube (a=160), octahedron and sphere
(R=80). AMC-average mean curvature, SA-surface area, SI-shape index,
FD-fractal dimension.

clear (top-6, out of top-10) and nucleolar (4 of top-10) morphometric size and shape
features are reported to be of high importance for distinguishing SS fibroblasts from
PROLIF, see figure 4.2. We also visualized the relationship between top-3 features
using SOCRAT figure 4.2. Visualizations suggest the smaller variation of morphome-
tric measures in SS fibroblast nuclei compared to their PROLIF counterparts. This
result may provide insight in further downstream analysis of potential underlying
mechanisms that lead to these morphometric changes. We made the fibroblast mor-
phometry data publicly available within SOCRAT for further analysis and validation
(Kalinin et al., 2017).

4.4 PC3 nuclear surface morphometry analysis

The second collection contains images of human prostate cancer cells (PC3).
Through the course of progression to metastasis, malignant cancer cells undergo a
series of reversible transitions between intermediate phenotypic states bounded by
pure epithelium and pure mesenchyme ( Veltri and Christudass, 2014). These tran-
sitions in prostate cancer are associated with quantifiable changes in both nuclear
and nucleolar structure (Montanaro et al., 2008; Verdone et al., 2015). PC3 cells
were cultured in: (1) epithelial (EPI), and (2) mesenchymal transition (EMT) pheno-
typic states. The collection includes 458 nuclear (310 EPI and 148 EMT) and 1,101
nucleolar (649 EPI and 452 EMT) 3D binary masks. Figure 4.3 demonstrates the
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variability of the extracted morphometry measures in a t-SNE projection visualized
in SOCRAT. Similar to fibroblasts, the projection of the PC3 morphometric feature
space does not demonstrate clear separation between classes.

In this case, the best classification performance by single classifier is the result
of applying a random forest model (1,000 trees, maximum tree depth 12, maximum
number of features for the best split 40%). Hyper-parameters fine-tuning, accuracy
metrics, and cross-validation procedures are identical to the ones reported in the pre-
vious fibroblast experiment. Classification of sets of 19 cells achieves a mean AUC of
76.2%, Table 3. Figure 6B reports the AUC for different group sizes to show how the
classification performance increases with the cell-set size and reaches 80% for sets of
27 or more cells. In this experiment, we also examined the classifier-reported feature
importance, Fig. 6C. The top-10 important features in this classification included
nuclear (4 of top-10, which were also in Fibroblast top-6) and nucleolar (top-3, 6
out of top-10) shape morphometry features. Top feature interactions visualized using
SOCRAT demonstrate the important changes in distributions of nucleolar morpho-
metric measures, see figure 4.3. For example, it seems that the EPI nucleoli tend to
have more variability in minimal curvedness and average fractal dimension, compared
to EMT nucleoli. Previously reported PC3 morphological analyses (Verdone et al.,
2015) only used simple 2D nuclear form measures, such as diameter and the size of
the bounding box. While we confirmed the importance of nuclear form in our re-
sults and suggested the need for further investigation of other highly ranked features,
such as nucleolar curvedness, shape index, and fractal dimension, which may provide
additional mechanistic insights. PC3 morphometry data are made publicly available

within SOCRAT for further analysis and validation.
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Figure 4.3: PC3 morphometric analysis
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visualization of interactions between top-3 features.
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Measure single cell, mean (£SD) | 19 cells set, mean (£5D)
Accuracy 0.699 (40.076) 0.899 (£0.123)
Precision 0.701 (£0.075) 0.922 (£0.115)
Sensitivity 0.692 (£0.127) 0.874 (£0.224)
AUC 0.699 (£0.076) 0.899 (£0.123)

Table 4.4: Morphometry of synthetic objects. Cube (a=160), octahedron and sphere
(R=80). AMC-average mean curvature, SA-surface area, SI-shape index,
FD-fractal dimension.

4.5 VPA-treated astrocyte morphometry analysis

4.5.1 Motivation and experiment description

Changes in nuclear morphology are associated with reorganization of chromatin
architecture and related to altered gene regulation, cell function, differentiation and
proliferation. One of the most important mechanisms in chromatin remodeling is
the post-translational modification of the N-terminal tails of histones by acetylation
(Géttlicher et al., 2001). Histone deacetylation results in chromatin condensation
and subsequent transcriptional repression while acetylation has an antagonistic ef-
fect leading to gene expression in cells (Yang and Seto, 2007; Ganai et al., 2015).
Acetylation of histones and other nuclear proteins plays an important role in cancer
development and progression (Kortenhorst et al., 2009). Therefore, inhibition of his-
tone deacetylases (HDACs) through small-molecule inhibitors has gained significant
attention in clinical research (Ververis et al., 2013; Ganai et al., 2015; Eckschlager
et al., 2017).

Valproic acid (VPA, 2-propylpentanoic acid) is an established drug in the long-
term therapy of epilepsy, bipolar disorders, social phobias, and neuropathic pain
(Géttlicher et al., 2001; Ganai et al., 2015). VPA has been shown to relieve HDAC-
dependent transcriptional repression and to cause hyperacetylation of histones in
cultured cells and in vivo (Gdttlicher et al., 2001). Most importantly, VPA induces

differentiation, apoptosis, and autophagy of a variety of cancer cells and reduces tumor
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growth and metastasis formation (Géttlicher et al., 2001; Montani et al., 2017). VPA
is now together with other short chain fatty acids HDAC inhibitors tested in clinical
studies as anticancer drugs (Eckschlager et al., 2017). At the same time, it has been
shown that VPA treatment results in quantifiable dose- and time-dependent changes
in the nuclear structure of prostate cancer cell lines, reflecting change in chromatin
remodeling dynamics in prostate cancer cells (Kortenhorst et al., 2009).

Another potential application of VPA is related to its ability to promote neurogen-
esis and neuronal maturation by to enhancing the efficiency of cellular reprogramming
mediated by HDAC inhibition (Hsieh et al., 2004; Zhang et al., 2015; Gao et al., 2017,
Jang and Jeong, 2018). Neuronal regeneration in adult mammalian brain is impor-
tant for alleviation of brain injuries or neurodegenerative diseases. However, there
are reports indicating that the regeneration capacity of adult brains may be lim-
ited and insufficient for brain repair (Goldman, 2016; Li and Chen, 2016; Wang and
Zhang, 2018). Thus, cell replacement therapy using exogenous cells seems promising,
including neuronal reprogramming from terminally differentiated somatic cells as a
strategy to generate functional neurons (Goldman, 2016; Gao et al., 2017). Astro-
cytes, the most abundant cell types in the brain, play important roles in maintaining
brain homeostasis and modulating neural circuit activity (Clarke and Barres, 2013).
Astrocytes developmentally originate from the same precursor cells as neurons, are
capable of proliferating in response to brain damages, and therefore are considered
as ideal starting cells to regenerate neurons (Amamoto and Arlotta, 2014). Astro-
cytes can be converted first into neuroblast cells and then differentiated into neuronal
cells (Niu et al., 2013; Su et al., 2014). Many studies have already revealed that
astrocytes of the central nervous system can be reprogrammed into induced neuronal
cells by virus-mediated overexpression of specific transcription factors in vitro and in
vivo (Heinrich et al., 2010; Niu et al., 2013; Guo et al., 2014). However, application

of this virus-mediated direct conversion is still limited due to concerns on clinical
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safety Cheng et al. (2015). Compared to transcription-factor-based reprogramming,
small molecules offer ease of use and a broader range of downstream applications
Zhang et al. (2015). Recent studies have demonstrated the ability to directly repro-
gramming human astrocytes into functional neurons with a set of small molecules,
including VPA (Cheng et al., 2015; Zhang et al., 2015; Gao et al., 2017). Both Cheng
et al. (2015) and Zhang et al. (2015) showed that removal of VPA from the the chem-
ical small molecule cocktail reduced reprogramming efficiency. While Cheng et al.
(2015) reported that VPA alone can induce astrocytes into neurons, Zhang et al.
(2015) showed that if VPA is included in the reprogramming medium for more than
2 days it increased cell death. Such results are probably highly dependent on a spe-
cific protocol and concentrations of VPA, and moreover, may not serve as a good
analogy to in vivo treatments. While corresponding changes in cell morphology were
reported (Cheng et al., 2015; Zhang et al., 2015; Gao et al., 2017), changes in nuclear
morphology haven’t been observed or quantified.

In this experiment we applied two different treatment protocols to human astro-
cytes culture with a goal to observe and measure the changes in 3D nuclear morphol-
ogy that are reflective of chromatin reorganization. Both treatments went on for a
week: cells first were imaged at the initial condition on day 0 and then treatment and
imaging was conducted on days 3, 5, and 7. The first treatment protocol included
only VPA. The second protocol used a small molecule cocktail treatment from (Zhang
et al., 2015) that also included VPA, but only on day 3. Full details of treatment are
given in C.1. As a result, we obtained images of astrocytes in following conditions:
control (CTRL), treated with VPA (VPA), and treated with small molecules (SM).
We used DAPI as a nuclear stain, and the overall imaging protocol was similar to

that for fibroblasts and PC3s, as desribed in A.3.
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Day
Treatment 0 3 g 7
CTRL 51 | 100 | 93 | 108
VPA - | 98 | 71| 82
SM - | 8 | 98 | 139

Table 4.5: Number of segmented astrocyte nuclei per treatment per day.

4.5.2 Morphological analysis of VPA-treated astrocyte nuclei

Each 3D volumetric image was re-sliced into a 1,024 x 1,024 x Z lattice (Z =
{50,80}), where regional sub-volumes facilitate the alignment with the native tile
size of the microscope. All sub-volumes were saved as multi-image 3D TIFF vol-
umes. For every sub-volume, accompanying vendor meta-data was extracted from
the original data. Then, we segmented 3D nuclear binary masks from the original
data sub-volumes with the Nuclear Segmentation algorithm from the Farsight toolkit
(Al-Kofahi et al., 2010; Kalinin et al., 2018d), following the protocol described in
Section 2.4.1. Table 4.5 shows the number of extracted 3D nuclear binary masks per
cell condition per day. We then reconstructed surfaces of 3D binary nuclear masks us-
ing Laplace-Beltrami eigen-projection and topology-preserving boundary deformation
(Shi et al., 2010; Kalinin et al., 2018c¢), as described in section 3.1.1. Using obtained
surface representations, we computed intrinsic and extrinsic geometric metrics, in-
cluding volume, surface area, mean curvature, curvedness, shape index, and fractal
dimension (Kalinin et al., 2018c) using a high-throughput computational workflow
protocol introduced in section 3.1.2.

Figure 4.4 shows changes of morphometric measures over time for the control
(CTRL) and two treatment cell conditions (VPA, SM). At each time point we cal-
culate median values for each measure per treatment and then subtract the median
value of the control group from medians of each of treatment groups. The results sug-

gest that change is size and shape of nuclei occurred in astrocytes treated with the
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Figure 4.4: 3D surface morphometry of VPA-treated astrocytes
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small molecule cocktail were bigger than those in VPA-treated cells. Small molecule
treatment results indicate that nuclear size was drastically decreasing as shown by
both direct measures of nuclear surface area (ComputeArea) and volume (Volume)
as well as indirect effect on extrinsic (not scale invariant) measures of shape, namely,
mean curvature (AvgMeanCurvature) and curvedness (Curvedness). On the contrary,
VPA-only treatment seems to be increasing the size of cell nuclei, especially on day
5. Scale invariant shape index (Shapelndex) also indicated bigger changes of shape
towards more round in cells treated with small molecules compared to VPA alone.
As a next step, we use extracted morphometric measures as features to train a
Random Forest classification model (Liaw and Wiener, 2002) and evaluate pairwise
discrimination between different treatments across time points using 3-fold cross vali-

dation. Mean AUC values shown in 4.6 demonstrate classification performance results
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Day
Treatments 3 g 7
CTRL vs VPA 0.677 (£0.093) | 0.773 (£0.069) | 0.692 (40.088)
CTRL vs SM 0.737 (£0.070) | 0.840 (£0.085) | 0.948 (40.027)
VPA vs SM 0.734 (£0.072) | 0.826 (£0.065) | 0.939 (£0.034)

Table 4.6: Pairwise classification performance of astrocyte nuclear morphologies,
mean AUC.

that are in general agreement with trends presented in figure 4.4. Both VPA and SM
treatments introduce morphological changes in astrocyte nuclei that are indicated by
the classification performance improvement from day 3 to day 6. However, on the
day 7, nuclear morphologies of VPA-treated cells become more similar to those of the
control population. Astrocytes treated with the small molecule cocktail exhibit the
biggest difference in morphology from both control and VPA-treated groups on the
last day of measurement.

Finally, to confirm that small molecule cocktail treatment results in larger, more
round nuclear shapes, we computed voxel-based measure of 3D object sphericity.
Sphericity is the measure of how closely the shape of an object approaches that of a
mathematically perfect sphere. Sphericity of an arbitrary 3D object can be computed
as a the ratio of the surface area of a sphere (with the same volume as the given
object) to the surface area of the object (Wadell, 1935). We measure sphericity of
a cell nucleus by fitting a 3D ellipsoid to the binary voxel mask using linear least
squares (Fitzgibbon et al., 1999) to calculate principal semi-axes: a, b, and c¢. We

then compute the sphericity ¥ as following:
7T1/3(6V;0)2/3

U = ~
SA,

(a*bx*c)??

(1/3 % (a*b)P 4 (a*c)P + (cx b)P)L/P’ (4.1)

where V, is the volume of an ellipsoid and S'A, is the surface area, computed by the

approximate formula using p &~ 1.6075 that yields a relative error of at most 1.061%
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Figure 4.5: Nuclear sphericity of VPA-treated astrocytes
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(Xu et al., 2009). Results shown in figure 4.5, confirm that nuclei of SM-treated cells
become more spherical over time. VPA treatment slightly decreased roundness of
nuclei on day 5, but then it was recovered on day 7 to that of control group. These
results are in agreement with the 3D surface morphometry results shown in fugue 4.4.

Results of this experiment show that chromatin remodeling in astrocyte cell in-
duced by VPA and small molecule cocktail treatments is reflected in quantifiable
changes in nuclear morphology. 3D surface morphometry captures the trends in
morphology changes over the course of treatment and allows to assess the difference
between treatments and the control at every time point. As suggested by Zhang
et al. (2015), VPA alone as a treatment in vitro seems to be not as effective as
when combined with other small molecules. That is confirmed by characterization of
VPA-only treated astrocytes that towards that end of the treatment course exhibited
morphologies close to those of the control group. Small molecule cocktail treatment
seems to be more effective and showed a robust deviation from controls in almost
all measured morphological features. Using a machine learning model confirmed the
better discrimination between controls and SM treatment compared to VPA. Finally,
an additional voxel-based sphericity measure confirmed that SM treatment lead to

larger, more spherical and round nuclear morphologies. These observations can pro-
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vide further insight in details of chromatin reorganization in the astrocyte-to-neuron

reprogramming process and relate them to underlying molecular mechanisms.

4.6 Concluding remarks

In this section we demonstrated applications of 3D surface morphology model-
ing, morphometrics, visual analytics, and deep learning to cell nuclear and nucleolar
morphology classification and analysis. Robust surface reconstruction allows accu-
rate approximation of 3D object boundaries that was validated on synthetic data.
Suggested shape morphometric measures outperform another popular approach and
demonstrated their universality across different cell types, conditions, and even do-
mains. Using 3D reconstructed nuclear surfaces as inputs to a sparse 3D tetrahedral
convolutional neural network have demonstrated a notable increase in the morpholog-
ical classification performance, which indicates the high potential for applying deep
learning models for this type of problems.

We tested our approach on the 3D cell nuclear morphology microscopy imaging
dataset, which includes fibroblast and PC3 cells with a total of 1,500 nuclear and 2700
nucleolar masks. The classification results on these data comparing epithelial vs.
mesenchymal human prostate cancer cell lines, and serum-starved vs. proliferating
fibroblast cell lines, demonstrate the high accuracy of cell type prediction using 3D
morphometry, especially when applied to sets of cells. Although different classifica-
tion algorithms appear to be optimal for different experiments, we observed that both
nuclear and nucleolar morphometric measures are important features for discriminat-
ing between treatment conditions or cell phenotypes. Similarly to the baseline results,
tree-based ensemble classifiers have demonstrated best performance results, due to
their ability to capture complex patterns in data. Reported feature importance ranks
confirm and extend previously published results. Interestingly, there were 3 common

morphometric features among the top-10 most important ones for both cell lines.
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In the case of fibroblast classification, the results show the importance of nuclear
morphometry, as reported in previous studies (Seaman et al., 2015) Additionally, the
number of nucleoli per nucleus and various internal nucleolar morphometric measures
such as nucleolar curvature and nuclear fractal dimension appeared too be important
for discriminating between serum-starved and proliferating fibroblasts, which may
indicate possible effects of serum-starvation on the nucleolar structure.

For PC3 cells, the most important classification features are the moments of the
distributions of various nucleolar morphometric measures, along with nuclear size
and shape. This confirms previously reported observations (Verdone et al., 2015)
and suggests new important morphological characteristics, such as nuclear curvature
and nucleolar fractal dimension. This demonstrates that our method extracts relevant
information from cell forms to successfully classify cells using a combination of criteria.
In addition, this also shows the importance of sophisticated shape metrics, compared
to volume and surface area, that alone, were not the most informative features for
the classification results.

The use of SOCRAT enables interactive interrogation of morphometric data in a
visual manner, supported by analytical tools. This method of interactive visual ana-
lytics provides insight into feature dependencies and interactions, and can be used for
result interpretation. We also demonstrated the visualization of 3D volumetric images
and derived meshed surface representations using the SOCR Dynamic Visualization

Toolkit web application (SOCR, 2018).
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CHAPTER V

Conclusions

Cell nuclear morphology aids in the proper 3D organization of the genome and is
perturbed across a wide spectrum of human diseases. 3D cell microscopy is a powerful
technique that enables investigation of biological mechanisms related to morpholog-
ical changes in the cell nucleus through analysis of changes in its size and shape.
Quantification of nuclear morphology enables more subtle characterization of cellular
phenotypic traits, which can be associated with functional changes coupled to under-
lying biological processes. In this chapter, we discuss how the ability to automate the
processes of specimen collection, image acquisition, data pre-processing, computation
of derived biomarkers, modeling, classification, and analysis can significantly impact

clinical decision-making and fundamental investigation of cell nuclear deformation.

5.1 Main findings

In this work we contributed a scientific framework for 3D cell nuclear morpholog-
ical analysis. This framework includes our knowledge-base regarding morphological
microscopy imaging data collection, pre-processing, segmentation and analysis, which
resulted in a publication of the biggest freely available dataset for 3D nuclear and
nucleolar morphological analysis and classification. We have provided sample spe-

cific preparation protocols, imaging conditions, and summary information about the
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dataset, along with baseline voxel-based morphometry classification results. We also
suggested a specific cross-validation scheme that enables computing interval estimates
for classification performance metrics while accounting for possible batch effects.

Next, we contributed an approach for accurate 3D surface morphometry. To our
knowledge, this is the first attempt to combine 3D cell nuclear shape modeling by
robust smooth surface reconstruction and extraction of shape morphometry mea-
sures into a highly parallel pipeline workflow protocol for morphological analysis of
thousands of nuclei and nucleoli in 3D. Surface reconstruction protocol is based on
Laplace-Beltrame eigen-projection method that has been shown to be more accurate
and less susceptible to noise that widely used alternative spectral-based approaches,
such as spherical harmonics. Validation on synthetic data confirmed the ability of
the proposed technique to accurately represent and distinguish geometric character-
istics of various 3D shapes. We also considered new powerful approach encompassing
first ever application of sparse 3D deep convolutional neural networks to nuclear mor-
phological classification that demonstrated state-of-the-art performance on fibroblast
data. Coupled with the toolbox for interactive exploratory visual analytics, this ap-
proach allows efficient and informative evaluation of cell nuclear shapes in the imaging
data and represents a reproducible technique that can be validated, modified, and re-
purposed by the biomedical community.

Finally, we demonstrated successful applications of proposed methodology to mul-
tiple nuclear morphology analysis problems. Our processing protocol was able to
extract relevant information about 3D object morphologies from imaging data of dif-
ferent cell types in various conditions. There were two specific applications that have
demonstrated the power and the efficiency of the proposed approach.

First, we compared morphologies of human prostate cancer cells (PC3) that un-
dergo epithelial-to-mesenchymal transition. We were able to discriminate with higher

confidence subtle morphological differences compared to the previously reported re-
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sults due to the two main reasons: the flexibility and accuracy of the proposed pipeline
and the use of both nuclear and nucleolar morphological measures. Moreover, we were
able to not only confirm previously reported results regarding relevant morphologi-
cal measures, but also obtained new ones that can provide insight in the underlying
biological mechanisms and progress understanding of pathology of prostate cancer.

Second application involved monitoring nuclear morphologies of cell during drug-
induced chromating remodeling via the inhibition of histone deacetylases in astroglial
cells. Observing astrocyte nuclear morphologies over time allowed us to use our
approach for building morphological trajectories or timelines that reflected the differ-
ences in drug-treated cell sub-populations compared to controls. In the presence of
two different treatment we were not only able to distinguish them from controls, but
also demonstrate the difference in their effects on cells, something that was previously
only hinted in the literature.

Thus, the combination of suggested methods allows to perform both hypothesis
testing as well as data-driven discovery in 3D nuclear morphology analysis. Moreover,
these methods are universal and are not limited to limited to nuclear and nucleolar
shapes. With some minor changes, it can be applied to other 3D cellular, sub-cellular,

and sub-nuclear compartments and organelles of interest.

5.2 Future perspective: impact on basic research

There are multiple trends that indicate the importance of 3D morphological anal-
ysis in future investigations of fundamental investigation of cell nuclear architecture.
Results from the 4D nucleome program, funded by the National Institutes of
Health (NIH), have led to the realization that significant molecular variation, which
accounts for human differences in medication response and adverse reactions are likely
based on the intricate organization of the spatial genome. Spatial and temporal mor-

phological changes in the nucleus and nucleoli are associated with the underlying
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reorganization of the chromatin architecture in 3D, as our results have confirmed.
Thus, accurate quantitative measures of cell and nuclear morphologies will become of
even more importance as a accessible and powerful proxy representation of underly-
ing mechanistic transformations. At the same time, advances in imaging technologies
allow capturing more different objects simultaneously, with higher resolution, and
over time. From morphology point of view this progress lays out an important per-
spective of being able to quantitatively, on a level of cell population, obtain 3D cell
and sub-cellular morphometries on a different hierarchical levels: from cell and nu-
cleus, to nucleoli and other organelles, to chromosome territories and TADs. This
will provide an opportunity for the multi-scale assessment of effects of underlying
biological processes on cellular architecture. Moreover, together with molecular level
techniques, such as Hi-C, such 3D shape morphometry workflow can form even more
powerful combination for the investigation of DNA architecture in the spatial and
temporal framework of the 4D nucleome. For example, measuring effects of various
biomarkers and genetic and epigenetic variation on the chromatin re-organization
(e.g. TAD-affecting regulatory SNPs), also captured by the morphometry from 3D
imaging assays, would allow establishing a new mechanistic model of the processes
that connect these modalities.

Another example of the many possible future applications of this workflow is to
study asymmetric cell division (Zheng et al., 2018). Stem and progenitor cells are
characterized by their ability to self-renew and produce differentiated progeny. A
balance between these processes is achieved through controlled asymmetric divisions
and is necessary to generate cellular diversity during development and to maintain
adult tissue homeostasis. Disruption of this balance may result in premature depletion
of the stem/progenitor cell pool, or abnormal growth. In many tissues, dysregulated
asymmetric divisions are associated with cancer. Whether there is a causal rela-

tionship between asymmetric cell division defects and cancer initiation is unknown.
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Our shape analysis pipeline can be useful in studying the 4D nucleome topology of
morphogenesis and cancer initiation.
Such deep synergies of genome- and phenome-level information will enable more

effective two-sided approaches to uncovering the shape—function dynamics of the cell.

5.3 Future perspective: impact on clinical applications

Application of cellular and nuclear morphometry are already in use in both phe-
notypic drug discovery and diagnostics.

As discussed in the Introduction, pathologists have been using cell and nuclear
morphology to detect various pathologies such as cancel for decades. While 3D imag-
ing may not be always necessary for more straightforward tasks, there are cases when
it is more beneficial. Specifically, Vision Gate company that produces Cell-CT plat-
form (Wilbur et al., 2015; Meyer et al., 2015; Pantanowitz et al., 2018), uses 3D
cell morphometry for early detection of lung cancer from spitum samples that is not
possible to confidently recognize from lung CTs. More globally, more diseases and
conditions that are knows to affect cell, nuclear, and sub-nuclear shape and size will
be possible to detect via morphometry as sample preparation, imaging technologies,
and data analysis methodologies evolve. Powerful new analytics methods such as deep
learning will enable better-than-human performance in such complex pattern recogni-
tion tasks without the need to hand-craft hundreds of features for every experiment.
Furthermore, wider use of transfer learning will help to alleviate the need of collecting
massive amounts of data, allowing instead to re-purpose learnt patterns from task to
task. Our preliminary results showed a great promise for improved morphological
discrimination using this type of models.

On the other hand, such companies as Recursion Pharmaceuticals are using mor-
phological cell profiling to screen thousands of compounds against hundreds of disease

models and find promising combinations (Bray et al., 2016). They have a goal of
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building a comprehensive database mapping the effects of tens of millions of genetic,
chemical, and other biological perturbations on many cell types relevant to human
disease. This would allow to predict potentially useful applications of already known
treatments to new conditions, reducing the need for de novo experimentation.
Finally, these trends show the possibility of the personalized prediction of the
treatment outcome, adverse events, and even dosage recommendation prediction,
given the genomic, phenomic, ad other types of data and assisted by accurate mor-
phometry. In the novel framework of pharmacoepigenomics, advances in cell morpho-
logical characterization will enable identification mechanisms assosiated with novel
regulatory variants located in noncoding domains of the genome and their function;

the mechanistic prediction of drug response, targets and their interactions.

5.4 Open science considerations

The very first challenged that we faced in this work was the lack of any public
datasets for morphological analysis and classification. The sharing of high qual-
ity, labeled datasets is extremely valuable for the progress in this field; however, a
clear asymmetry exists with government-sponsored academic researchers directed to
share, while researchers in industry (e.g., from abovementioned companies) are often
prohibited from sharing code, data and results due to proprietary and intellectual
property protections. However, this situation is already changing in the machine
learning and deep learning communities, that has witnessed acceleration of progress
via public-posting of various datasets for benchmarking and software tools, including
those developed and used in the industrial setting. Code-sharing and open-source
licensing are also essential for continued progress in this domain. In order to pro-
mote the reproducibility of results, facilitate open-scientific development, and enable
collaborative validation, we made the pipeline workflows, together with underlying

source code, documentation, and derived data from this study, available online on the
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project web-page: http://www.socr.umich.edu/projects/3d-cell-morphometry.
Additionally, extracted morphometric features are made available for interactive ex-

ploration and analysis online via our visual analytics platform SOCRAT.

5.5 Open challenges and future directions

There are many remaining challenges related to different aspects of this work.
For example, although the proposed cross-validation technique (L20GO) allows to
account for possible batch effects and calculate interval estimates of classification per-
formance measures, in the case of imbalanced data or when the number of segmented
nuclei varies a lot between images, it causes high variability of computed metrics.
This can be possibly addressed by better class balancing, e.g. via subsampling or
oversampling, or loss weighting during the each iteration of the cross-validation pro-
cess.

Furthermore, one label per image is not always representative of all cell phenotypes
in that image. Images can contain artifacts, debris, apoptotic and other non-target
phenotypes. This can be addressed by using weakly-supervised methods that are ro-
bust to label noise or more advances curation steps that filter out such objects before
the final classification step. Such filter could be tuned by observing the morphome-
tric feature space and singling out objects who’s metrics do not fit well into typical
distribution for a given phenotype. Another option is to have a machine learning
model trained to filter out objects that are not of interest, however, it may require a
substantial amount of manual labeling.

In order to increase the number of extracted features and, this, the numeric shape
representation, more geometric measures can be used to characterize object of inter-
est, such as intrinsic shape context, compactness, symmetry, smoothness, convexity,
etc. In the current representation, analyzable shapes are limited to genus zero sur-

faces, which is a fair assumption when modeling objects like nuclei or nucleoli. How-
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ever, it might be not trivial when considering other nuclear structures, for example,
chromosome territories or interchromosomal loops, since their topologies may not be
homeomorphic to a sphere, or may not appear to be genus zero under some imaging
conditions and modalities. It is also conceivable, yet not very likely for the discretized
LB, that 2 different shapes may have the same spectra. In this case, the algorithm
may fail to detect the intrinsic differences between them due to false-negative error.
Combining features extracted from different object shape representations, e.g. voxel-
based and surface-based can be helpful for improving the classification performance.
Additionally, 3D textural features could possibly increase discriminatory power of the
method and provide more information on chromatin reorganization. Since nuclear
deformation serves as a proxy to underlying processes, the importance of particular
features and the methods ability to classify nuclei does not provide direct insight
into the fundamental biological mechanism driving the observed morphometric dif-
ferences between cell phenotypes or environmental conditions. The computational
results should be further tested and externally validated using other experimental
conditions and prospective data.

Although deep learning based model applications have demonstrated superior clas-
sification performance, their interpretability and computational requirements remain
main challenges. Unlike human-defined geometric features, weights of an artificial
neural networks do not provide a direct mapping of their values to an intuitively
understandable characteristics of the object. Interpretability of deep networks is an
increasingly popular area of research that already produced a number of potential so-
lutions that could be employed to address this challenge. Interesting prospect lies in
relating deep neural network coefficients and hand-crafted geometric measures, which
could lead to both improved discriminative performance and better interpretability.

SOCRAT implements a visual analytics workflow that encompasses an iterative

process, in which data analysts can interactively interrogate extracted morphometric
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measures in the form of interactive dialogue supported by visualizations and data
analysis components. However, at this point, SOCRAT requires the user to enter
data in a specific format ("long” or "tidy” data format). One of possible directions
of future development there is to provide better user experience supported by both
more convenient interface and smarter tools that can recognize data formats and help
user to convert between different ones.

Overall, we expect biological image analysis approaches to become increasingly
automated, accurate, and reliable. The capabilities of current solutions are already
moving beyond simply automating what a biologist can do and are beginning to en-
able comprehensive analysis of all available information. This is especially important,
given that imaging is not the only source of information in biology. Genomics, pro-
teomics, transcriptomics, metabolomics, and other omics’ all provide complementary
views on biological processes of interest, and their combination with imaging will be-
come a much richer source of knowledge than each field can offer individually. The
abundance of data in all these fields poses major challenges in terms of standardized
data storage and retrieval, but even more so for integrative data analysis. Although
the development of methods for data analysis from each individual source remains
important, methods that properly account for the relationships between types and
modalities of data from heterogeneous sources have the potential to obtain results
that that would be impossible to produce otherwise. Thus we anticipate research in
this field to rely more on data-driven approaches and involve knowledge from different
areas and disciplines. Meanwhile, current developments in biological image analysis
are already equipping biologists with more automated, robust, and accurate tools
and will prove indispensable in investigating the cellular and molecular organization

in health and disease.
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APPENDIX A

Additional Information for Chapter 11

A.1 Fibroblast sample preparation protocol

Fibroblasts (newborn male) were purchased from ATCC (BJ Fibroblasts CRL-
2522 normal) and subjected to a GO/G1 Serum Starvation Protocol. They were
recovered from cryogenic storage with growth in full media (MEM + 10% FBS Sigma-
Aldrich + 1% MEM NEA Gibco Lot 1656019 + 1% Antibiotics Gibco Lot 1523692)
for 48 hours. This was followed by a change to serum free media (0.1% FBS) for
4 days, followed by resuspension and growth on coverslips in serum free media for

24hrs. Aliquots were taken for fixation every 2hrs for 12hrs.

A.2 PC3 sample preparation protocol

PC3 EPI /EMT slides were prepared as follows:

1. 40K cells were seeded on slides and grown for 48 hours @ 37C, 5% CO2, and
90% RH

2. slides were washed in PBS @ RT
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3. slides were fixed in 4% paraformaldehyde for 30 minutes @ RT
4. slides were washed in PBS @ RT

5. slides were dehydrated in 50% EtOH for 5 minutes @ RT

6. slides were dehydrated in 50% EtOH for 5 minutes @ RT

7. slides were dehydrated in 70% EtOH for 5 minutes @ RT

8. slides were dehydrated in 100% EtOH for 10 minutes @ RT

9. slides were allowed to air dry @ RT

A.3 Staining protocol

Before use, cells were rehydrated in descending ethanol concentration washes,
S5mins each. Staining proceeded according to the following methods for each stain,
with stains for up to five features applied jointly to the same sample in different colors

to be imaged on different fluorescent channels:

1. Prolong Gold antifade reagent with DAPI (4’,6-diamidino-2-phenylindole) (In-
vitrogen, Lot 168129) was applied to all samples according to manufacturer

protocol to image the nucleus as a whole.

2. For EtBr imaging of nucleoli, Ethidium Bromide was applied by application of
5ul of EtBr working suspension onto a wet coverslip for 20 seconds, followed by

a PBS wash, immediately prior to the application of DAPI.

3. For fibrillarin imaging of the nucleoli, antifibrillarin Alexa 448 label was pur-
chased from ABCAM (EPR10823(B) Lot GR175169-1) and applied according

to the manufacturers protocol prior to the application of DAPI.
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A.4 Flow cytometry for fibroblast cells

Cell cycle profiles were confirmed for synchronized serum-starved and prolifer-
ating fibroblasts with flow cytometry. Serum-starved and proliferating cells were
trypsinized, then fixed in PBS suspension with 100% cold ethanol added drop-wise
while vortexing, followed by incubation for 20 minutes at -20C. Cells were then pel-
leted by centrifugation at 1000 rpm for 5-7 minutes, the excess ethanol decanted,
and cells re-suspended in PBS. Approximately cells were filtered through a 40um cell
strainer. Propidium lodide (TOCRIS Biosciences (Batch 1A/170341) was prepared
as a stock solution of 10mg/10mls in PBS, and diluted 1:20 to the working solution,
with 1:1000 of RNAse Cocktail Enzyme (Ambion L/N 00268539) added. Resuspen-
sion was followed by incubation for 40 minutes at RT. Flow cytometry was performed
by the University of Michigan Flow Cytometry core using Beckman Coulter CyAn
ADP. Flow cytometry results show 92.6% of the cells in the GO/G1 phase for the

synchronized serum-starved fibroblasts vs 69.5% for proliferating fibroblasts.

A.5 Imaging protocol

3D confocal imaging used a Zeiss LSM 710 laser scanning confocal microscope
using a 63x PLAN/Apo chromate 1.4na DIC objective. Laser excitation for each
channel proceeded with a Zeiss laser of the appropriate wavelength, followed by imag-
ing in a set of wavelengths corresponding to the emission peaks of the fluorophore
according to the Zeiss fluorophore database or manufacturer specifications, trimmed
to avoid overlap between channels. Imaging proceeded with 1024 x 1024 pixels in a
128 x 128 M area. For 3D imaging, the confocal pinhole was approximately 0.5 Airy
Units, with stacks of optical sections at 0.4 micron intervals, and stitchless no-overlap
scanning across many frames of view in the XY plane, acquired by the LSM 710s au-

tomated scanning stage. Laser intensity was identical for each run using a particular
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stain, while photomultiplier gain was adjusted to compensate for staining variability
between samples. Further detail is provided in the metadata of our imaging dataset.
Volume data in vendor-specific formats (e.g. Zeiss CZI) was archived in Omero
(https://www.openmicroscopy.org/site/products/omero), the image repository of the
Open Microscopy Environment (OME), and run through a series of pre-processing
steps. The vendor-specific metadata stored in the file was parsed, extracted, saved in
a local database and made available for use by other pipeline modules. This metadata
included fields such as number of channels, X, Y, and Z size, and X, Y, and Z scaling
factors. Typically, hundreds of metadata fields were extracted for each volume. The
Bio-Formats Library (https://www.openmicroscopy.org/site/products/bio-formats) de-
veloped by the OME consortium was used to open and read the vendor-specific files

and perform metadata extraction.

A.6 Segmentation details

Nuclear segmentation protocol included following steps:

e Convert each volume to 8-bit greyscale and apply despeckling using ImagelJ

(Schindelin et al., 2015)

e Segment each volume in 3D using the Farsight toolkit’s Nuclear Segmentation

algorithm (Al-Kofahi et al., 2010)
e [ill holes in derived 3D nuclear masks

Parameters for the Farsight toolkit’s Nuclear Segmentation module were chosen

as following:
e high sensitivity: 0

o LoG_size: 30
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e max_scale: 35

e xy_clustering_res: 2

e 7 clustering res: 1

e finalize_segmentation: 1

e sampling ratio XY to_7Z: 2
e Use_Distance_ Map: 2

e refinement_range: 2

A.7 Curation data flow and post-processing modules

A.7.1 CurateCn

Inputs a segmented image file (1st parameter) and computes these voxel parame-

ters for each segment ID and reported in the corresponding .log and .csv files.
e Centroid
e Voxel count
e Surface voxel count
e Spherical compactness
e Void count
e Edge count
e Bound true/false

e Adjacency matrix (only reported on .csv file)
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Inputs the filter file (2nd parameter) and applies it to the computed voxel parameters.

The filter file contains inclusive min/max values for these voxel parameters.
e Voxel count

Void count

Edge count

Bound true/false

Spherical compactness
Outputs:
e name_c0_gGGG _mask.log — log file

e name_c0_gGGG_mask.Ist — contains the filenames of image files that passed the

filter test
e name_c0_gGGG_mask.csv — spreadsheet readable file with voxel parameters
Notes:
e Processes a single .TIF file and can be executed in parallel with other images.

e For C2 images, the corresponding name_c0_gGGG_mask.lIst file must have been

processed

A.7.2 FilterC2Lst

Inputs these files given at parameters:
e name_c2_gGGG_statistics.txt — statistics file created by an earlier process

e name_c2_gGGG_connected_prelim.Ist file - created after
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e CurateCn processed at C2 image

Evaluates each nucleoli in the input .LST to see if it contains a non-zero amount of

Fibrillarin (given in the .TXT tile). Outputs:

e name_c2_gGGG_connected.lst — contains filenames that passed the Fibrillarin

test
Notes:
e Processes a single .LST file and can be executed in parallel with other images.

e The corresponding name_c2_gGGG_connected_prelim.lst file must have been

processed.

A.7.3 MergeCn

Inputs all .LLST files with names that match the 2nd command line parameter. The
contents of all input .LST files is merged into a single file (name is the 1st parameter).
Note the 1st parameter is traditionally the name of the working folder. Example to

merge files in the run 0169 data set:
e java -cp . MergeCn ../0000169/0000169_c0.1st mask.lst
e java -cp . MergeCn ../0000169/0000169_c2_pre.lst prelim.lst

e java -cp . MergeCn ../0000169/0000169_c2.1st connected.lst
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APPENDIX B

Additional Information for Chapter 111

B.1 Definitions of morphometric measures

Table B.1: Size measure descriptions.

Geometric measure

Mathematical formulas

Interpretation

Volume

fff]RS [D (.T, Y, x)dl‘dydz

The amount of 3D space enclosed
by a closed boundary inside of a
3D solid which is quantified
numerically in world coordinates.
The volume of a solid represents
the space capacity of the object.

Surface area

[J o |7 x 7y |dudv

The surface area of a 3D solid
object is the total area of its
(curved) boundary (a
2-manifold). Surface areas of flat
polygonal shapes must agree with
their geometrically defined area.
Volume and surface area are
invariant under the group of
Euclidean motions.
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Table B.2: Shape measure descriptions.

Geometric measure

Mathematical formulas

Interpretation

Mean curvature

ki + Fo
2

MC=H =

The only surface in IR? with
constant positive mean curvature
is the sphere. The curvature
provides (local at each vertex)
surface classification:

e Elliptical both principal
curvatures have the same
sign and the surface is
locally convex.

e Hyperbolic: the principal
curvatures have opposite
signs, and the surface will
be locally saddle shaped.

e Parabolic: one of the
principal curvatures is zero.
Parabolic points generally
lie in a curve separating
elliptical and hyperbolic
regions.

Shape index

SI = — arctan(k2 — 7471)

Shape index is a qualitative
measure of shape and can be
sensitive to very subtle changes in
surface shape, particularly in
regions where the total curvature
(or the curvedness) is very low.

Curvedness

v — \/kfwcg

Curvedness is a function of the
root-mean-square curvature of
the surface, with flat areas of the
surface having a low curvedness
and areas of sharp curvature
having a high curvedness.

Fractal dimension

=

I
Fp =%

=

Fractal dimension is a ratio
providing a statistical index of
complexity comparing how detail
in a pattern (strictly speaking, a
fractal pattern) changes with the
scale at which it is measured.
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B.2 Nuclear morphometric classification live demo

This demo is prepared for classification of serum-starved Fibroblast cells (SS, 160).
This workflow take as an input original 16 1024 x 1024 x Z 3D TIFF images (sub-
volumes) in DAPI channel (c0) and metadata. It demonstrates nuclear binary mask
preparation, 3D shape modeling, morphometric measure extraction, and classifica-
tion running in distributed mode on a cluster using LONI Pipeline guest mode. It
outputs .csv file with image-level output label, nucleus-level accuracy and average
probability as well as labels and probabilities for individual nuclear masks that were
segmented out of 3D input sub-volume, passed the curation, 3D shape modeling,
feature extraction, and classification.

Instructions below describe how to use Pipeline in a guest mode. If you already
have LONI Pipeline credentials you can just download Pipeline Client and log in

using your username and password.

1. Download and install LONI Pipeline Client Web Start (requires Java)

2. Create "Try-It-Now” connection by clicking Connections icon at the bottom-
right corner of the client to connect to the server without credentials (enter

space for password)
3. Download workflow file and open in the Pipeline client

4. Click Run button at the bottom of the client — after workfklow validates the
protocol, presence of input data, and availability of free nodes in cluster, it will

start running jobs

5. Running the worflow take 2-3 hours on average, depending on availability of

computing nodes in the cluster

6. After workflow is completed, right-click on Calculate Accuracy module in Clas-

sification group and download or view the output file from Output Files tab
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You can double-click on group in the workflow at any moment to see individual
modules inside. You can disconnect while the workflow is running — under Connec-
tions you will be able to see your unique GUEST-ID that you can use to reconnect
later and check workflow status (enter space for password). Having your GUEST-ID
you should be able to use LONI Pipeline Web App to reconnect to the same ses-
sions (web app is still in Beta and might not work as expected). Workflow protocol
can be ran multiple times to validate reproducibility of the morphometry results.
Pipeline documentation, including instructions module definition, modification, and

execution, is available on the official website.
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APPENDIX C

Additional Information for Chapter IV

C.1 Astrocyte treatment protocol

Day 0:

Collect 8 Day 0 samples

Fix samples in 4% PFA for 10mins

rinse 3 x bmins in PBS

store samples in PBS at 4deg

Replace media with 50% growth media and 50% N2 media (DMEM/F12 + 1X
pen/strep, 1X N2 supplements)

Day 1: Completely replace media with N2 media containing: TTNPB (0.5 M),
SB431542 (5 M,), LDN193189 (0.25 M,), and Tzv (0.5 M,) for SM treated samples:

e SMI1 Treated samples: For 30ml of N2 media add 1.5ul TTNPB, 30ul SB431542,
1.5ul LDN193189, 3ul Tzv

e control samples: For 30ml of N2 media add 36ul DMSO
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e VPA Treated (1.5mM VPA): For 30ml of N2 media add 450ul VPA

Day 3: Collect 6 Day 3 SM treated Samples, 6 Day 3 control samples and 6 Day
3 VPA samples:

e fix samples in 4% PFA for 10mins
e rinse 3 x 5mins in PBS

e store samples in PBS at 4deg

Replace with a different set of small molecules including CHIR99021 (1.5 M,),
DAPT (5 M,), VPA (0.5mM,), and Tzv (0.5 M).

e SM2 Treated samples: For 30ml of N2 media add 4.5ul CHIR99021, 30ul DAPT,
150ul VPA, 3ul Tzv.

e Control samples: For 30ml of N2 media add 187.5ul DMSO.

e VPA Treated (1.5mM VPA): For 30ml of N2 media add 450ul VPA

Day 5: Collect 6 Day 5 SM treated Samples, 6 Day 5 control samples and 6 Day
5 VPA samples.

e fix samples in 4% PFA for 10mins

e rinse 3 x bmins in PBS

Replace media with N2 media containing only CHIR99021 (1.5M), DAPT (5 M),
and Tzv (0.5 M)

e SM3 Treated samples: For 30ml of N2 media add 4.5ul CHIR99021, 30ul DAPT,
3ul Tzv

e Control samples: For 30ml of N2 media add 37.5ul DMSO

e VPA Treated (1.5mM VPA): For 30ml of N2 media add 450ul VPA
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