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ABSTRACT  

 

The transportation sector is undergoing a major transformation. Emerging technologies 

play indispensable roles in driving this mobility shift, including vehicle electrification, connection, 

and automation. Among them, wireless power transfer (WPT) technology, or commonly known 

as wireless charging technology, is in the spotlight in recent years for its applicability in charging 

electric vehicles (EVs). On one hand, WPT for EVs can solve some of the key challenges in EV 

development, by: (1) reducing range anxiety of EV owners by allowing “charging while driving”; 

and (2) downsizing the EV battery while still fulfilling the same trip distance. More en-route 

wireless charging opportunities result in battery downsizing, which reduces the high EV price and 

vehicle weight and improves fuel economy. On the other hand, WPT infrastructure deployment is 

expensive and resource-intensive, and results in significant economic, environmental, and energy 

burdens, which can offset these benefits. 

This research aims to develop and apply a life cycle analysis and optimization framework 

to examine the role of wireless charging technology in driving sustainable mobility. This research 

highlights the technology trade-offs and bridges the gap between technology development and 

deployment by establishing an integrated life cycle assessment and life cycle cost (LCA-LCC) 

model framework to characterize and evaluate the economic, environmental, and energy 

performance of WPT EV systems vs. conventional plug-in charging EV systems. Life cycle 

optimization (LCO) techniques are used to improve the life cycle performance of WPT EV fleets. 

Based on case studies, this research draws observations and conditions under which wireless 

charging technology has potential to improve life cycle environmental, energy, and economic 

performance of electric vehicle fleets. 

This study begins with developing LCA-LCC and LCO models to evaluate stationary 

wireless power transfer (SWPT) for transit bus systems. Based on a case study of Ann Arbor bus 

systems, the wirelessly charged battery can be downsized to 27–44% of a plug-in charged battery, 

resulting in vehicle lightweighting and fuel economy improvement in the use phase that cancels 
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out the burdens of large-scale infrastructure. Optimal siting strategies of WPT bus charging 

stations reduced life cycle costs, greenhouse gases (GHG), and energy by up to 13%, 8%, and 8%, 

respectively, compared to extreme cases of “no charger at any bus stop” and “chargers at every 

stop”. 

Next, the LCA-LCC and LCO model framework is applied to evaluate the economic, 

energy, and environmental feasibility of dynamic wireless power transfer (DWPT) for charging 

passenger cars on highways and urban roadways. A case study of Washtenaw County indicates 

that optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces 

life cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables 

downsizing of the EV battery capacity by up to 48% compared to the non-DWPT scenarios and 

boosts EV market penetration to around 50% of all vehicles in 20 years. 

Finally, synergies of WPT and autonomous driving technologies in enhancing sustainable 

mobility are demonstrated using the LCA framework. Compared to a plug-in charging battery 

electric vehicle system, a wireless charging and shared automated battery electric vehicle 

(W+SABEV) system will pay back GHG emission burdens of additional infrastructure 

deployment within 5 years if the wireless charging utility factor is above 19%.
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1 CHAPTER 1  

Introduction 

 

1.1 Overview of wireless power transfer technology 

The transportation sector is responsible for over 28% of energy use [1] and 27% of 

greenhouse gas (GHG) emissions [2] in the United States, mainly resulting from the combustion 

of petroleum fuels. Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) 

and battery electric vehicles (BEVs), are propelled by an efficient electric powertrain system which 

can be charged with electricity generated from renewable sources such as solar, hydro, and wind 

energy. Depending on the energy sources for charging, EVs offer opportunities to reduce 

worldwide energy use, GHG emissions, and criteria air pollutants [3] and enhance the 

sustainability of transportation systems.  

Limited charging options and availability, however, became a major hurdle for accelerating 

vehicle electrification. Even though the global electric car stock increased almost six-fold from 

2013 to 2016, the global electric car stock is currently only 0.2% of the total number of passenger 

light-duty vehicles in circulation [4]. 

Wireless power transfer (WPT) technology, or commonly known as wireless charging 

technology, offers a potential solution to the EV charging problems. A century ago, Nicola Tesla 

conducted experiments to transfer power wirelessly [5, 6]. In recent decades, WPT has been an 

area of intensive research to develop Tesla’s prototype and improve the charging convenience of 

electric products in our lives. Typical examples include wireless charging cell phones, implanted 

medical devices, robots, home electronic appliances, as well as EVs. Unlike conventional plug-in 

charging technology for EVs, the wireless charging electric power is typically transferred via an 

electromagnetic field (EMF) in an air gap from the coil transmitters embedded in road pavement 

to the onboard coil receiver installed on the vehicle chassis [7-11]. This charging configuration no 

longer requires human intervention of plugging and unplugging the charging cables, which enables 
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drivers to charge EVs in the following two modes: (1) stationary mode when EVs are parked or 

stopped above the wireless charging coil pads, often referred to as “stationary wireless charging” 

or stationary wireless power transfer (SWPT), and (2) dynamic mode when EVs are moving along 

a wireless charging lane on highways or urban roads, often referred to as “dynamic wireless 

charging” or dynamic wireless power transfer (DWPT). By enabling charging-while-driving for 

EVs, DWPT can help eliminate the “range anxiety” of EV drivers so as to boost the market 

adoption of EVs [12, 13]. The increasing demand for WPT stems from its inherent convenience 

and possibility of seamless operation without charging downtime that are otherwise two major 

problems for wired chargers. Therefore, WPT for EVs has the potential to overcome the drawbacks 

of wired chargers and eliminate some hurdles toward vehicle electrification and sustainable 

mobility.  

Benefits of wireless charging in terms of energy, environmental, and economic metrics 

include: 

 Battery downsizing and vehicle lightweighting. For example, wireless charging 

infrastructure has been constructed in Korea to charge electric buses [14-16] approaching 

bus stations to pick up and drop off passengers. Charging opportunities throughout the day-

long bus operation would reduce the onboard battery size to one-third to one-fifth of the 

original battery, which usually comprises about a quarter of the weight of a bus [12, 17, 

18]. Battery downsizing offers not only additional energy savings due to reduced vehicle 

weight, but also cost savings in terms of battery and use-phase electricity costs [17]. For 

passenger cars, a smaller battery is also possible when charging-while-driving becomes a 

reality. Although a downsized battery reduces the cost and production burdens and 

lightweights the vehicle, there is a trade-off of battery life versus battery capacity as 

reported in [19]. Therefore, battery life should also be incorporated when calculating 

battery life cycle burdens. 

 Boost EV market penetration. Ubiquitous charging infrastructure enabled by dynamic 

WPT would theoretically allow EVs to have unconstrained range and a minimal capacity 

of onboard battery [20], and therefore the range anxiety of EV customers can be eliminated. 

Recent studies have predicted that DWPT would boost the EV sales share of light-duty 

vehicles from 2% in 2020 up to 70% in 2050, as compared to the business-as-usual case 
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with the EV sales share increasing from 2% in 2020 to 24% in 2050 [13]. The more DWPT 

road coverage, the more EVs would be expected in the market, thereby replacing 

conventional gasoline internal combustion engine (ICE) vehicles so that the energy savings 

and environmental benefits of EVs can be realized sooner. 

 More opportunities for charging renewable energy. Electricity demand from wireless 

charging can be supplied by renewable energy such as solar panels deployed along the 

roadways as well as storage batteries for addressing solar intermittency, which offers 

emission-free electricity in the use phase. Therefore, DWPT offers another opportunity for 

charging with renewable energy and reducing use-phase emission and energy burdens. 

Nevertheless, integration of WPT technology for EVs poses fundamentally unique 

challenges and burdens in terms of charging infrastructure deployment, and therefore there is a 

pressing need to develop robust and comprehensive frameworks to systematically evaluate the 

impacts and enhance the sustainability performance of WPT deployment, which is the focus of 

this dissertation. Despite the benefits of wireless charging, the challenges regarding the technology 

and its deployment include: 

 Large-scale charging infrastructure. Charging-while-driving requires widespread 

coverage of DWPT infrastructure on major highways and urban roadways. Also, traffic 

intersections can be covered by SWPT when vehicles are waiting at traffic lights. This 

large-scale infrastructure would bring significant additional energy, environmental, and 

economic burdens associated with material production and energy consumption during the 

deployment phase.  

 Technical bottlenecks. The grid-to-battery wireless charging efficiency is currently around 

85% to 90% for SWPT and 72% to 83% for DWPT, as compared to 90% for plug-in 

charging [12]. There are also challenges in recognition of fast-moving WPT-EVs 

approaching charging lanes and real-time computation of electricity costs billed to the EV 

drivers. Other technical bottlenecks include the compatibility of DWPT and SWPT 

equipment, electromagnetic shielding, and detection and elimination of foreign objects in 

DWPT systems. 

1.2 Research goals, novelties, and highlights 
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Research goals. From the sustainability perspective, wireless charging EV systems have 

the trade-off of large infrastructure deployment versus the benefits of battery downsizing and 

vehicle lightweighting in the use phase due to more in-route charging opportunities. Therefore, it 

is necessary to systematically assess the deployment and strategically optimize the siting of the 

charging infrastructure in order to minimize the life cycle burdens. Following overarching goals 

are established for this dissertation research: 

a. Apply a life cycle analysis and optimization framework to examine the role of wireless 

charging technology in driving sustainable mobility.  

b. By establishing the systems approach, highlight the trade-offs of stationary and dynamic 

wireless charging technology compared to plug-in charging technology in terms of 

infrastructure burdens and use phase savings. 

c. Based on case studies, draw generalizable observations and conditions under which 

wireless charging technology has potential to improve life cycle environmental, energy, 

and economic performance of electric vehicle fleets. 

d. Demonstrate the synergies of emerging technologies (wireless charging, shared mobility, 

autonomous driving, and battery electric vehicles) in enhancing sustainable mobility. 

Research novelties. This dissertation fills the research gap by quantitatively characterizing 

the trade-offs and identifying sustainability challenges and opportunities for improving WPT EV 

system performance during their life cycles, including both public transit bus systems with 

stationary WPT and passenger car systems with both stationary and dynamic WPT. An integrated 

life cycle assessment (LCA) and life cycle cost (LCC) model is developed to provide a holistic 

view of technology deployment, encompassing not only the use-phase energy use, but also the 

burdens of infrastructure and equipment deployment necessary for the system. A comprehensive 

life cycle scope is important to objectively evaluate the emerging technology because wireless 

charging technology has trade-offs between infrastructure deployment burdens and use-phase 

benefits.  

Research highlights. Moreover, the life cycle modeling framework is also integrated with 

optimization techniques to evaluate and improve the energy, environmental, and economic 

performance of electric transportation systems utilizing the emerging wireless charging technology, 
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compared to the conventional plug-in charging technology. The modeled EV systems include: (1) 

urban transit buses, (2) passenger car networks on arterial roads, and (3) shared autonomous 

battery electric vehicle (SABEV) systems. 

 For urban transit bus systems, discrete optimization using genetic algorithm is employed 

to select the bus stops as stationary wireless charging stations based on the bus dwell time 

at each stop and number of bus routes sharing each bus stop in order to improve the utility 

of charging infrastructure and minimize costs, GHG emissions, and energy during the life 

cycle of the fleet. Based on the case study of the University of Michigan bus routes, the 

optimal siting strategies can help reduce life cycle costs, GHG, and energy by up to 13%, 

8%, and 8%, respectively, compared to conventional charging schemes. 

 For passenger car systems, the arterial road networks in Washtenaw County in Michigan 

are used as a case study to demonstrate the economic, environmental, and energy feasibility 

of dynamic wireless charging technology for charging moving EVs on highways and urban 

roadways. Optimization using genetic algorithm techniques is used to select the ideal 

candidate road segments for wireless charging lane deployment based on the traffic volume, 

speed, and pavement condition according to transportation agency data (e.g., traffic counts 

and pavement remaining service life) [21, 22]. 

 For the SABEV systems, the synergies of the following technologies are demonstrated by 

a life cycle model calculating system payback time of GHG emissions from charging 

infrastructure production and deployment: (a) wireless charging technology; (b) shared 

mobility; (c) automated vehicles; and (d) battery electric vehicles. Results indicate that 

when the four technologies are deployed together and the wireless charging infrastructure 

is optimally deployed and highly utilized, the payback time of GHG emissions can be 

significantly reduced from more than 10 years to less than 5 years, compared to 

conventional mobility systems.  

1.3 Overview of chapters 

An overview of chapters is summarized in Table 1.1. Detailed description of each chapter 

is provided in the following sections.  
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Table 1.1 An overview of chapters 

 
Technology studied 

Case study Research aims 
Impacts 

assessed SWPT DWPT 

Chapter 1 (Introduction) 

Chapter 2 ✓ ✓ N/A 

Identify the trade-offs, research gaps, challenges, 

and opportunities to enhance sustainability of 

wireless charging technology 

N/A 

Chapter 3 ✓  
Ann Arbor 

transit bus fleet 

Compare the life cycle costs (LCC) of an electric 

transit bus system using wireless charging vs. 

plug-in charging, by integrating the LCC model 

with the life cycle assessment model 

Life cycle 

costs, GHG*  

emissions, 

and energy 

Chapter 4 ✓  

University of 

Michigan bus 

routes 

Enhancing the life cycle performance of an 

electric transit bus fleet by optimizing the siting 

of wireless charging bus stops 

Life cycle 

costs, GHG*  

emissions, 

and energy 

Chapter 5 ✓ ✓ 

Washtenaw 

County arterial 

roads and 

passenger cars 

Evaluate and enhance the life cycle performance 

of wireless charging technology for passenger 

car networks 

Life cycle 

costs, GHG*  

emissions, 

and energy 

Chapter 6 ✓ ✓ 

Shared 

autonomous and 

battery electric 

vehicle 

(SABEV) fleet 

Evaluate the payback time of GHG* emissions of 

wireless charging infrastructure for an SABEV 

fleet, compared to a plug-in charging fleet, and 

demonstrate the synergies of wireless charging 

and SABEV to enhance sustainable mobility. 

Life cycle 

GHG*  

emissions 

Chapter 7 (Conclusions) 

Note: GHG = greenhouse gases; SWPT = stationary wireless power transfer; and DWPT = 

dynamic wireless power transfer.  

 

This research has been (or would be) published in the following journal articles, and the 

following chapters are based on these publications: 

 Chapter 2: Bi Z, Kan T, Mi CC, Zhang Y, Zhao Z, Keoleian GA. A review of wireless 

power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl Energ 

2016;179:413-25. [12] 

 Chapter 3: Bi Z, De Kleine R, Keoleian GA. Integrated life cycle assessment and life cycle 

cost model for comparing plug-in versus wireless charging for an electric bus system. J Ind 

Ecology 2016;21(2):344-55. [17] 

 Chapter 4: Bi Z, Keoleian GA, Ersal T. Wireless charger deployment for an electric bus 

network: A multi-objective life cycle optimization. Appl Energ 2018;225:1090-101. [23] 

 Chapter 5: Bi Z, Keoleian GA, Lin Z, Moore MR, Chen K, Song L, Zhao Z. Life cycle 

assessment and tempo-spatial optimization of deploying dynamic wireless charging 

technology for electric cars. Transport Res C (Under Review) 
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 Chapter 6: Enhancing sustainability of electrified mobility: Synergies of Wireless 

charging technology and Shared Autonomous Battery Electric Vehicles (W+SABEV) 

(Manuscript in preparation) 

 

1.3.1 Chapter 2 - A review of wireless power transfer for electric vehicles: Prospects to 

enhance sustainable mobility 

Research Question: What are the challenges and opportunities surrounding wireless charging 

that influence the viability of this technology for future sustainable transportation? 

This chapter provides a comprehensive literature review that not only highlights the state-

of-the-art technology development, but also identifies the opportunities and challenges for 

improving sustainability of WPT EVs. This review serves as a basis to guide research tasks of 

subsequent chapters. 

The literature review encompasses the technical perspectives from leading research teams 

working on WPT technology development worldwide, in conjunction with the environmental and 

socio-economic perspectives that stem from the hands-on experience of practitioners working on 

deploying WPT-enabled EV systems. This chapter first highlights the technical aspects of both 

stationary and dynamic wireless charging systems. The chapter then evaluates case studies of real-

world implementation and reviews the energy, environmental, economic, and societal impacts of 

WPT deployment, and provides insights to critically examine the role of WPT technology in the 

trend of advancing vehicle electrification and improving the sustainability of electrified mobility. 

1.3.2 Chapter 3 - Integrated life cycle assessment and life cycle cost model for comparing 

plug-in versus wireless charging for an electric bus system 

Research Questions: 

 What are the environmental, energy, and economic trade-offs of integrating stationary 

wireless charging in an electric transit bus system vs. the alternative plug-in charging 

technology? 

 Under what conditions would wireless charging enhance the environmental, energy, and 

economic performance of electrified transit bus systems compared to plug-in charging? 
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The research in this chapter aims to fill the knowledge gap of understanding the trade-offs 

of wireless charging technology from life cycle energy, environmental, and economic perspectives, 

by modeling a transit bus system in Ann Arbor as a case study. Through a comparative analysis of 

stationary wireless charging vs. plug-in charging for an all-electric bus system, this chapter 

highlights the battery downsizing and lightweighting benefits vs. the additional burden from 

wireless charging infrastructure deployment. The conditions under which wireless charging 

technology can have better life cycle performance are highlighted by a sensitivity analysis of key 

parameters. A scenario analysis is conducted to investigate the effect of battery recycling, carbon 

emission costs, and discount rate on the life cycle performance of wireless charging EV systems. 

An integrated LCA-LCC model framework has been developed to provide a comprehensive 

comparative assessment of plug-in charging vs. wireless charging with application for an electric 

bus fleet, as shown in Figure 1.1. 

 
Figure 1.1 Integrated life cycle assessment and life cycle cost (LCA-LCC) model for 

comparative assessment of plug-in versus wireless charging systems with key parameters 

highlighted. The production of electric buses (excluding the batteries), use-phase maintenance, 

and battery recycling are only relevant to the LCC model 
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1.3.3 Chapter 4 - Wireless charger deployment for an electric bus network: A multi-

objective life cycle optimization 

Research Question: How can wireless chargers be strategically sited at bus stops and batteries 

be sized while accounting for battery life, in order to minimize life cycle economic, environmental, 

and energy burdens? 

A multi-objective life cycle optimization framework is developed to enhance the economic, 

environmental, and energy performance of a wireless charging electric bus route network by 

strategically siting wireless chargers at bus stops and sizing battery capacity with a consideration 

of battery life. 

Figure 1.2 shows the trade-offs of two extreme charger deployment cases, where “case 1” 

has no charger deployed en route while “case 2” has chargers deployed at every bus stop. The two 

cases are compared from the perspectives of infrastructure burden, battery burden, and use phase 

electricity burden. According to the comparison, “case 1” would require a smaller-scale charging 

infrastructure, larger battery capacity, and more use phase electricity consumption than “case 2”, 

and each specific state of charge (SOC) pattern has unique impacts on battery life. Apparently, 

these two cases are not optimal with respect to either cost or GHG emissions, so there must exist 

an optimal case where chargers are optimally sited and battery capacity is right-sized in order to 

achieve minimal life cycle burdens. 
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Figure 1.2 Trade-offs of a wireless charging all-electric transit bus route. The green check means 

a beneficial impact on life cycle burdens, and the cross in red indicates a negative impact on life 

cycle burdens 

 

Given these trade-offs, a multi-objective life cycle optimization framework is established 

to strategically site the chargers and select battery capacity to minimize life cycle cost, GHG 

emissions, and energy. The model is based on the bus system operated by the University of 

Michigan. The charger siting considers the intersections of different routes and the utilization of 

each charger. The battery burden calculation considers the effect of SOC pattern on battery life 

[24]. The result indicates where the wireless chargers are best located and how large the battery 

should be in order to achieve the minimal life cycle cost, GHG emissions, and energy use.  

 

1.3.4 Chapter 5 - Life cycle assessment and tempo-spatial optimization of deploying 

dynamic wireless charging technology for electric cars 

Research Questions: 

 What are the economic, environmental, and energy trade-offs of integrating dynamic 

wireless charging for charging moving electric vehicles vs. the alternative plug-in 

charging technology and conventional gasoline vehicles? 
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 What are the optimal charging infrastructure deployment scenarios that minimize the life 

cycle economic, environmental, and energy burdens of the dynamic wireless charging 

vehicle systems? 

The life cycle model framework developed in previous chapters for stationary wireless 

charging electric buses is adapted and applied in this chapter for the assessment of dynamic 

wireless charging technology for charging electric cars in-motion. The study in this chapter 

develops a multi-objective life cycle optimization model that evaluates the economic, 

environmental, and energy performance of wireless charging EVs and wireless charging 

infrastructure systems from an LCA perspective. This study creates scenarios to understand under 

what conditions wireless-charging-based transportation systems could have better life cycle 

performance compared to plug-in charging systems in terms of costs, GHG, and energy. In addition, 

a detailed and comprehensive life cycle inventory analysis is conducted to quantify the life cycle 

primary energy, GHG emissions, and criteria pollutant emissions for the material production and 

manufacturing stages of dynamic wireless charging infrastructure and hardware devices.   

A highlight of this LCA study is that the deployment of DWPT infrastructure is optimized 

both spatially and temporally. This study features not only the spatial optimization of DWPT 

charging lanes studied in literature [25, 26] showing that optimized deployment on key highways 

and urban roadways can electrify the majority of vehicle miles traveled (VMT) in a region, but 

also has a unique temporal optimization component for the gradual rollout of the DWPT 

infrastructure, which is usually overlooked in the literature. This optimization analysis aims to 

understand how to deploy DWPT considering spatial and temporal variations with objectives of 

minimizing life cycle costs, GHG, and energy:  

 Spatial optimization component. This study studied the spatial optimization of DWPT 

charging lanes on highways and urban roadways, i.e., which road segments are selected for 

charging lane deployment. Three major characteristics or parameters of the roadway 

segments are considered: (1) traffic volume; (2) vehicle speed; and (3) remaining service 

life (RSL) of pavement, which quantitatively reflects the pavement condition. In general, 

a road segment with high volume, low speed, and poor condition is preferred for initial 

deployment as it will generate a high electrified VMT which means a high utilization rate 

of the deployed infrastructure, and also will reduce the burdens of charging lane 
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deployment as it is more likely to deploy at the same time of scheduled pavement 

reconstruction and rehabilitation work.  

 Temporal optimization component. This study also focuses on the temporal optimization 

of DWPT infrastructure rollout, i.e., in which year to deploy wireless charging lanes at 

each road segment. There are four major considerations: (1) EV sales; (2) costs of wireless 

charging infrastructure and battery; (3) wireless charging efficiency; and (4) battery 

downsizing. In general, DWPT deployment is good for boosting EV sales [13] more than 

business-as-usual so that the benefits of EVs can be realized sooner and it is also good for 

downsizing the battery and lightweighting the vehicle [18]. In contrast, later deployment is 

good when considering that DWPT and battery costs would both be cheaper and charging 

efficiency would be higher due to mass production and technology improvement. The 

market share of WPT-enabled hybrid EVs can be predicted from the given coverage rate 

of WPT infrastructure in a particular year, using the Market Acceptance of Advanced 

Automotive Technologies (MA3T) model developed by Oak Ridge National Lab [13]. 

In summary, the novel contribution of this study is the combined spatial and temporal 

optimization utilizing the holistic LCA scope to evaluate the performance of wireless charging 

under different scenarios and to provide guidance for DWPT deployment. The spatial optimization 

of selecting roadway segments considers traffic volume, speed, and pavement condition, and the 

temporal optimization of “when to deploy” considers cost reduction, technical improvement of 

wireless charging technology in the future, and EV market share growth as a function of DWPT 

coverage rate. To the best of authors’ knowledge, it is also the first study using real-world traffic 

counts data for each segment of highways and urban roads [21] to evaluate life cycle performance 

of wireless charging technology deployment. The model is demonstrated using a case study of 

arterial roads in Washtenaw County in Michigan, USA. 

1.3.5 Chapter 6 - Enhancing sustainability of electrified mobility: Synergies of Wireless 

charging technology and Shared Autonomous Battery Electric Vehicles (W+SABEV) 

Research Question: How much synergy will wireless charging technology bring when applied to 

a shared autonomous battery electric vehicle fleet in terms of payback time of GHG emissions 

from charging infrastructure, as compared with the baseline case with plug-in charging 

technology? 
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This chapter synthesizes the insights from previous chapters and expands the research 

scope to investigate the synergies of the following four emerging technologies that have been 

growing rapidly in recent years for sustainable mobility: 

 Wireless charging technology 

 Shared mobility services (e.g., Uber and Lyft) 

 Autonomous driving technology 

 Battery electric vehicles 

This work evaluates the synergies and trade-offs that wireless charging technology will 

bring to a shared autonomous battery electric vehicle (SABEV) fleet, by comparing a plug-in 

charging scenario to a wireless charging scenario.  Previous research has demonstrated the 

opportunities in integrating autonomous vehicle technology into car sharing services and evaluated 

the fleet efficiency improvement benefits using an agent based modeling approach [27]. However, 

little research has evaluated the synergies of integrating both autonomous technology and wireless 

charging technology into a shared electric car fleet. 

There are many pairs of synergies between these four emerging technologies. For example, 

autonomous vehicles provide strong synergy to accelerate the adoption of WPT technology by 

leveraging capabilities (such as charging alignment precision) to improve driving performance and 

wireless charging efficiency. For another example, wireless charging enables seamless operation 

which means there will be less charge downtime compared to plug-in charging, so that vehicles 

may operate more efficiently, resulting in the requirement of fewer number of vehicles serving the 

same passenger travel demand. However, the trade-off is that a larger scale infrastructure 

deployment is needed to ensure seamless operation.  

The synergistic effect of autonomous driving technology integrated with wireless charging 

is evaluated using a case study of a wireless charging SABEV fleet in metropolitan areas. By 

comparing to the plug-in charging alternative, the benefits and trade-offs of coupling autonomous 

and wireless technologies are quantitatively characterized. The results indicate whether wireless 

charging will enhance the fleet performance in terms of reducing the payback time of GHG 

emissions from wireless charging infrastructure. 
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2 CHAPTER 2  

A review of wireless power transfer for electric vehicles: Prospects to enhance 

sustainable mobility 

 

Abstract 

Wireless power transfer (WPT), which transmits power by an electromagnetic field across 

an intervening space, provides the prospect of new opportunities for electric vehicles (EVs) to 

enhance sustainable mobility. This review evaluates WPT technology for EV applications from 

both technical and sustainability perspectives. The objectives of this review include: (1) to present 

the state-of-the-art technical progress and research bottlenecks in WPT development and 

applications in the transportation sector; (2) to characterize the demonstrations of the real-world 

deployment of WPT EV systems; and (3) to evaluate the sustainable performance and identify 

challenges and opportunities for improvement. From the technical perspective, progress is 

reviewed with a focus on system performance. From the sustainability perspective, performance 

is defined in terms of energy, environmental, and economic metrics, and policy drivers and issues 

of health and safety are also examined. 

 

2.1 Introduction 

A century ago, Nicola Tesla conducted experiments to transfer power wirelessly [1, 2]. In 

recent decades, wireless power transfer (WPT) has been an area of intensive research to facilitate 

the penetration of electric products into our lives. Typical examples include wireless charging cell 

phones, electric vehicles (EVs), implanted medical devices, robots, and home electronic appliances. 

The power is typically transferred via an electromagnetic field (EMF). The widespread 

applications and increasing demand for WPT stems from its inherent convenience and possibility 

of seamless operation without charging downtime that are otherwise two major problems for wired 
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chargers. Based on the working principles, WPT can be categorized as (1) electromagnetic 

radiation (microwave or laser) WPT that is applicable for long-distance power transmission, such 

as transmission between solar power satellites and the earth, (2) electric induction/coupling WPT 

(also known as capacitive coupling WPT) that is for near field transmission, and (3) magnetic 

coupling WPT (inductive or resonant) that is also for near field transmission but does much less 

harm to the human body than electric induction/coupling WPT due to the intensity of the electric 

field [3, 4]. Extensive work [3, 5-8] has been done on magnetic coupling WPT for EV charging 

applications, which is the focus of this review. In terms of working modes, WPT can be classified 

as either (1) static or stationary WPT: charge while the vehicle is not in motion; or (2) dynamic 

WPT: charge while the vehicle is moving along the WPT-enabled roadway. 

WPT for EVs has the potential to overcome the drawbacks of wired chargers and eliminate 

some hurdles toward vehicle electrification and sustainable mobility [9]. Aside from its 

convenience compared to wired chargers, WPT can enable significant downsizing of the onboard 

EV battery. Take the stationary WPT for electric transit buses as an example where the onboard 

rechargeable battery can be downsized by at least two thirds [10, 11] due to the frequent 

“opportunity charges” while loading and unloading passengers at bus stations during bus operation. 

Attributable to these charges en route, it is reasonable to carry a much smaller onboard battery 

while still fulfilling the vehicle route requirements. This results in a substantial vehicle weight 

reduction given that the battery pack can comprise about a quarter of the weight of an all-electric 

transit bus for sustaining day-long operation [12]. Battery downsizing has significant implications 

for lightweighting the vehicle and improving the fuel economy [10]. In the scenario of dynamic 

WPT for passenger cars on major roadways, ubiquitous charging infrastructure would theoretically 

allow EVs to have unconstrained range and a minimal capacity of onboard battery [13]. 

Nevertheless, WPT for EVs poses additional sustainability trade-offs and concerns that have 

stimulated discussion in academia and industry. The trade-off is on the burden of large-scale WPT 

infrastructure deployment versus the benefits of battery downsizing and fuel economy 

improvement. The concern is on the technical and economic feasibility of dynamic WPT and the 

decrease in charging performance when the vehicle is moving at high speeds. 

This chapter summarizes both the most up-to-date technical advances of WPT technology 

for EV applications and the state of sustainability assessments of WPT EV systems. It presents 
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current research highlights, gaps, challenges, and opportunities of WPT technology for EVs from 

both the technical and sustainability perspectives. The chapter first introduces the fundamental 

theory of WPT and reviews the technical advances and challenges for both stationary and dynamic 

WPT. The second part highlights selected case studies of WPT applications. The third part 

summarizes the discussions on the sustainability, safety, and social implications of WPT 

technology, identifies challenges and opportunities for improving performance, and provides 

prospects to enhance sustainable mobility. 

 

2.2 State-of-the-art research and technology development 

Figure 2.1 shows a non-ionizing radiative wireless charging system for EVs through near-

field magnetic coupling. The alternating current (AC) utility power first goes through the 

electromagnetic interface (EMI) stage, and then gets rectified and boosted to direct current (DC) 

power with a power factor of nearly 1.0 (0.95–0.98 in most cases), which is similar to a conductive 

charging system [14]. The voltage of the DC power is decreased by the BUCK stage. The BUCK 

stage can tune its output voltage to range from 0.03 to 0.97 of its input voltage, which achieves 

“soft” start/stop of the charger and continuous tuning of its output power. Here, the buck stage is 

optional since alternatively a pre-charge circuit, which is composed of two contactor relays and 

one resistor, is able to help achieve “soft” start of the charger and a phase-shift method can be used 

in the inverter stage to ensure the low power operation and “soft” stop of the charger. This 

combination of a pre-charge circuit and phase-shift method instead of a buck stage may reduce the 

system efficiency, but it will lower the total cost and volume of a wireless charging system. In the 

inverter stage, the DC power is converted to high frequency AC power, which then resonates in 

the primary compensation network and the primary coil, with the resonant frequency adjusted to 

the switching frequency of the inverter. The secondary coil receives the high frequency AC power 

wirelessly through the mutual inductance between the primary and secondary coils. The secondary 

compensation network, together with the secondary coil, is required to be tuned to have the same 

resonant frequency in order to maximize the transfer efficiency. The high frequency AC power is 

then rectified to DC power through the rectifier stage and filtered by the filter network. Finally, 

the DC power is available to charge the battery pack. 
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Figure 2.1 A non-ionizing radiative wireless charging system for electric vehicles. AC = 

alternating current; EMI = electromagnetic interface; PFC = power factor correction; DC = direct 

current 

 

The coil is one of the most significant parts in a wireless charging system, for it converts 

energy between its electric form and its magnetic form, making WPT possible, while also 

determining the amount of power transferred and the system efficiency. In the literature, a coil 

system is generally classified as either a four-coil or a two-coil system. A four-coil system [15-17] 

offers the advantage of two degrees of freedom that the source coil can be mounted and coupled 

with the sending coil to adjust the system input impedance, and the load coil can be mounted and 

coupled with the receiving coil to adjust the equivalent load resistance seen from the receiving coil 

to match the load condition. A four-coil system is suitable for mid-range applications while a two-

coil system gives better performance in short-range applications [18]. In [18], applications are 

considered short-range or mid-range based on whether the transmission distance is smaller or 

larger than the coil dimension. In EV applications, the transmission distance, also known as air 

gap, ranges typically from 100 mm to 300 mm [19], and the coil dimension is always larger than 

the transmission distance. Therefore, a two-coil system is preferable and will be reviewed in detail. 

In addition, ferrite bars or plates are always employed in coil systems to guide magnetic flux and 

provide magnetic shielding. Aluminum shields are often built into a coil system and serve as 

magnetic shields. Wireless charging systems for EVs are divided into stationary and dynamic 

charging systems, with each type having different coil designs. 

 

2.2.1 Coil design for stationary charging systems 
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Basic coil systems for stationary charging systems are shown in Figure 2.2. Circular coil 

structures were studied and optimized in [20]. With the proposed coil structure, the system was 

able to transfer 2–5 kW wirelessly at a relatively high efficiency [20, 21]. However, the height of 

magnetic flux generated by the circular coil is limited. In order to solve this problem, [22] 

developed the solenoid coil structure, which improved the magnetic flux path. It was reported in 

[23] that a 3 kW wireless charging system using a solenoid coil structure was built and a DC-DC 

efficiency of 90% was achieved with an air gap of 200 mm. In addition, the solenoid coil structure 

performs well in wireless power transmission with a large air gap. [24] optimized the solenoid coil 

shapes and demonstrated a wireless charging system that delivered 1.403 kW power at an air gap 

of 3 m. The performance of the solenoid structure is fairly good, but there is a severe drawback. It 

generates double-sided flux and half of the flux is not used in transferring power. In addition, the 

unused flux may couple with the chassis of the vehicle and steel buried in the ground, which will 

greatly decrease the system efficiency. Therefore, this coil structure is not widely used in EV 

charging applications. In order to have a single-sided flux path and a larger charging zone than the 

circular coil structure, a bipolar coil structure known as a DD coil structure was developed in [25]. 

The bipolar coil structure shows excellent system efficiency at the desired power level with good 

tolerance to horizontal misalignment. [5] simulated the bipolar coil structure with the same size 

but different aspect ratios (ratio of width and length of a rectangular geometry). They built a 

wireless charging system employing the bipolar coil structure with the optimized aspect ratio to 

transfer 8 kW with a DC-DC efficiency of 95.66% at an air gap of 200 mm. Even when the 

horizontal misalignment increased to 300 mm, the system DC-DC efficiency was still as high as 

95.39% [5]. 
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Figure 2.2 Coil systems: (a) circular structure, (b) solenoid structure, and (c) bipolar structure 

 

A more advanced coil design can be found in [26]. Figure 2.3 shows the proposed coil 

structure, where intermediate Lint is embedded into the primary coil structure L1. Lint and its 

resonant capacitor form a passive resonant circuit, which is energized through coupling effect 

between Lint and L1. Since there is also a coupling effect between Lint and the secondary coil 

structure L2, the coupling of the whole coil system is improved. This design claims a higher 

efficiency than that of a circular coil system, though in terms of tuning it is more complicated. 

 
Figure 2.3 Advanced coil structure. Lint = intermediate structure; L1 = primary coil structure; L2 = 

secondary coil structure [26] 

 

2.2.2 Coil design for dynamic charging systems 

Dynamic charging systems can help further reduce the size of the battery pack on a vehicle 

and offer the vehicle more convenience and flexibility. There are two kinds of coil structures used 
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in dynamic charging systems for EVs. The major difference between the two coil structures is on 

the primary coil side: one uses the single-coil design (a long track loop that can still be considered 

as a coil because of its working principle) [27-29] shown in Figure 2.4(a) and the other employs 

the segmented-coil design [6, 9, 30, 31] shown in Figure 2.4 (b). 

 
Figure 2.4 Typical coil configurations for dynamic charging systems with (a) single-coil design 

for primary coil and (b) segmented-coil design for primary coil. L1 = track conductor; L2 = 

receiver coils; M = mutual inductance between L1 and L2; i1 = the (excitation) current in the 

primary coil [27, 30] 

 

In a single-coil design for the primary coil, the drawback is that when the track conductor 

(L1) is not covered by the receiver coils (L2), it not only generates a redundant EMF, but also results 

in low efficiency of the whole system. To overcome this problem, researchers from Korea 

Advanced Institute of Science and Technology (KAIST) proposed a new cross-segmented power 

supply rail, in which two pairs of power cables were wound in I-type ferrites. By controlling the 

current direction in the power cables, they were able to power the rails on and off selectively. In 

addition, the power cables were wound in twisted pairs, which greatly reduced EMF issues [28]. 

In order to further improve system performance, they introduced a new track rail wound in ultra-

slim S-type ferrite cores. The minimal amount of power cables and ferrite cores were employed, 

reducing the total construction cost. This design had better misalignment tolerance and lower EMF 

than the rail wound in the I-type cores [29]. Researchers from North Carolina State University 

(NCSU) used a segmented-coil design for the primary coil and employed the reflected reactance 
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from the secondary coil to self-increase the magnetic field strength in the coupled section between 

the transmitter and the receiver [30]. As shown in Figure 2.4(b), the magnetic field is strong in the 

coupled coils and weak in the uncoupled coils. This not only simplifies the control method, but 

also improves the system efficiency. However, speed-dependent pulsating power is common in 

this coil design, resulting from the moving vehicle passing over a sequence of coils that causes the 

alignment and straddling of magnetic fields. The power pulsation can shorten the battery service 

life and is detrimental to the power grid. Researchers from Oak Ridge National Laboratory (ORNL) 

had an innovative solution that utilized electrochemical capacitors to smooth power pulsation on 

both the grid side and vehicle side. They demonstrated that the active parallel combination of 

lithium-capacitor (LiC) energy storage and the grid supply resulted in very uniform power draw 

from the grid, where active parallel means that a high-power, bidirectional controllable power flow, 

DC-DC converter interfaces the LiCs to the DC input of the high-frequency inverter. Furthermore, 

they installed passive parallel LiCs in vehicle and successfully smoothed the battery currents [31]. 

 

2.3 System performance and technical challenges 

Table 2.1 summarizes the system parameters of selected stationary charging systems. The 

efficiency is high at the desirable output power levels, but note that the efficiency measurement is 

inconsistent in the literature. For example, some studies use AC grid to battery pack measurements, 

some use DC input to battery pack efficiency, and some report coil efficiency. From the system 

analysis and sustainability assessment perspectives, it is preferable to know the AC grid to battery 

pack efficiency as it provides comprehensive characterization of the charger performance and it is 

directly related to the overall energy consumption assessment and electricity cost calculation for 

the economic evaluation. It is recommended to consistently report AC grid to battery pack 

efficiency as a preferred common practice for efficiency measurement. 
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Table 2.1 Summary of system parameters of selected stationary charging systems 

Institute 
Power 

(kW) 
Efficiency 

Switching 

frequency 

(Hz) 

Air gap 

(mm) 

Transmitter 

size (cm2) 

Receiver 

size (cm2) 
Year References 

Univ. of 

Auckland 
2  20k 200 3848 3848 2011 [20] 

2–7  20k 100-250 3100 3100 2013 [25] 

1 91.3%c 85k 100 1385 1385 2015 [26] 

UM-Dearborn 3.3 95%b 1M 150 1024 1024 2015 [32] 

6 95.3%b 95k 150 3600 3600 2015 [33] 

7.7 96%b 79k 200 4800 4800 2014 [5] 

KAIST 43235  20k 150 9900 1400 2014 [34] 

Utah State Univ. 5 90%a 20k 175-265 5191 5191 2012 [21] 

Saitama Univ. 3 90%b 50k 200 960 960 2012 [23] 

ETH Zurich 5 96.5%b 100k 52 346 346 2015 [35] 
a AC grid to battery pack efficiency. 
b DC input to battery pack efficiency. 
c Coil efficiency. 

 

The sizes of both primary coils and secondary coils are larger than conductive chargers in 

most cases. Researchers from ETH Zurich developed a relatively compact wireless charging 

system and the power density is higher than any other system listed in Table 2.1. However, the 

system may be more sensitive to misalignment than other listed systems. There is a trade-off 

between compact and lightweight structure and good system performance [36], and balancing the 

size of the stationary charging system and its misalignment tolerance is an ongoing practical 

challenge for researchers. 

The recent system performance of dynamic charging systems is given in Table 2.2. One 

challenge in dynamic charging systems is how to improve the system efficiency. The system 

efficiency is lower for dynamic systems than for stationary charging systems, and this is mainly 

because a certain amount of magnetic flux generated by the primary coil is not coupled with the 

secondary coil. The other challenge is how to maximize the amount of energy received by the 

secondary coils. When the vehicle is at high speed and the track length is limited, it is hard for 

EVs to get enough energy. 
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Table 2.2 Summary of system parameters of selected dynamic charging systems 

Institute 
Power 

(kW) 
Efficiency 

Switching 

frequency 

(Hz) 

Air gap 

(mm) 

Transmitter width 

(cm) 

Receiver 

size (cm2) 
Year References 

KAIST 3–25 72–83%a 20k 10–200 10–140 
990–

13,600 
2009 [7] 

ORNL 1.5 75%b 23k 100 33 855 2013 [6] 

NCSU 0.3 77.82%b 100k 170 35 1225 2014 [30] 
a AC grid to battery pack efficiency. 
b DC input to battery pack efficiency. KAIST = Korea Advanced Institute of Science and Technology; ORNL = Oak Ridge National 

Laboratory; NCSU = North Carolina State University. 

 

The system performance of stationary and dynamic wireless chargers is fundamentally 

determined by the materials. Currently, copper is widely used as the coil material because of its 

good conductivity and relatively low price. Thin copper strands are twisted and woven together to 

make litz wires that are employed for winding coils, which not only minimizes the skin effects, 

but also gives enough current density. Mn-Zn ferrites are selected as the core materials to provide 

sufficient magnetic shielding at the desired frequencies. Aluminum is used for magnetic shielding 

because of its competitive performance and cost. With the advent of the new materials, such as 

high-temperature superconducting (HTS) materials and metamaterials, higher transfer efficiency 

and longer transmission distance can be achieved. [37] proposed a wireless charging system with 

copper transmitter coils and HTS receiver coils. Their experimental results showed that both the 

transfer efficiency and impedance matching were enhanced. Similarly, [38] built a wireless 

charging system with HTS transmitter coils and copper receiver coils. They proved that with the 

application of HTS materials, both the transfer efficiency and distance increased. Researchers from 

Mitsubishi Electric Research Laboratories analyzed the metamaterials, which had negative 

permeability. They demonstrated that the coupling effect between the two coils was able to be 

improved and the transfer efficiency was also further boosted with the use of a metamaterial slab 

[39]. Though their WPT system is not for EV applications, they provide potential possibilities for 

an EV wireless charging system to transfer power with higher efficiency and longer distance. 

 

2.4 Real-world applications and selected case studies 

2.4.1 Public transit buses 
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Because of the fixed-route attributes of urban transit bus systems, a significant portion of 

recent development and application of wireless charging has been focused on electric transit buses. 

A growing number of demonstrations of wireless charging electric bus systems have been reported, 

as highlighted in Table 2.3. 

 

Table 2.3 Summary of selected wireless charging electric bus projects 
Project 

Start 

year 
Location Efficiency 

Frequency 

(Hz) 

Power 

(kW) 

Battery 

capacity 

(kW h) 

Air 

gap 

(mm) 

References 

Bus projects in Italy 2003 Turin, Italy 90%b 15–20k 60  40 [40, 41] 

KAIST On-Line Electric Vehicle 

(OLEV) 
2009 South Korea 72–83% a 20k 6–100  170–

200 
[7, 42] 

Bombardier PRIMOVE IPT for 

Electric Buses 
2010 

Germany, 

Belgium 
>90% b 20k 40–200 36–90  [7, 43] 

Chattanooga Area Regional 

Transportation Authority (CARTA) 
2011 

United States 

(TN) 
90% a 15–20k 60  40 [40, 44, 45] 

Wireless Advanced Vehicle 

Electrification (WAVE) 
2012 

United States 

(UT, CA, TX, 

MD) 

90% b 20k 25–50  150–

250 
[40, 46] 

ZTE Corporation projects 2014 
China (various 

cities) 
90% a 45k 30, 60  200 [47-49] 

a AC grid to vehicle terminal efficiency. 
b Measurement terminals unknown. 

 

Wireless charging can eliminate a major stumbling block for deploying urban electric 

transit buses – the range limitation. According to the Chattanooga Area Regional Transportation 

Authority (CARTA) project, a short “opportunity charge” of 1 min at 60 kW can extend the range 

by approximately 1 mile (≈ 1.61 km) so that multiple charges in a day would release the range 

constraint to cover the required daily route of 100 miles (≈ 161 km), which otherwise requires 

battery swapping during the day [45]. 

Another obstacle for the expansion of traditional pure electric transit buses lies in the 

battery size, cost, and life. For a long-range all-electric bus, the battery pack can comprise about 

26% of the weight and 39% of the total cost of the bus [10, 12, 50]. Among the various bus projects, 

the KAIST On-Line Electric Vehicle (OLEV) project in Korea has advanced technologies that 

allow buses to charge either while stationary or in motion to significantly downsize the battery. 

Beginning in 2009, the OLEV research group developed and applied the Shaped Magnetic Field 

in Resonance (SMFIR) technology in buses and a tram to demonstrate the dynamic wireless 

charging of EVs as a commercially viable approach [42]. The battery installed on a Gumi City bus 

is less than one-fifth the size of a normal conductively charged electric bus battery, which 
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significantly reduces the procurement cost of OLEVs [11]. As a result of dynamic wireless 

charging, the state of charge (SOC) of an OLEV battery can be kept in a narrow 40–60% SOC 

band that may help extend the battery life, instead of the large 20–90% SOC swing of a normal 

conductively charged electric bus [51]. 

 

2.4.2 Passenger cars 

As early as 2012, the U.S. Department of Transportation recognized the emergence of WPT 

for EV applications and identified the need to understand the implications of dynamic wireless 

charging of EVs on U.S. highways [13]. In 2015, Utah State University built an advanced test 

facility for dynamic wireless charging [52]. Dynamic WPT may enable unlimited range extension 

for EVs [13]. EVs can run continuously without stopping in areas with available dynamic WPT 

infrastructure. Also, the battery capacity could be reduced to below 20% of a conventional EV 

battery [53]. 

Several feasibility studies were conducted to test the idea of deploying a dedicated WPT 

lane on major roadways for in-motion charging. ORNL partnered with three other U.S. Department 

of Energy laboratories and conducted a feasibility analysis of dynamic wireless charging using 

traffic data from Atlanta, GA [54]. The power requirement versus the vehicle speed profile was 

characterized using data from Argonne National Laboratory’s chassis dynamometer testing facility 

and field tests of advanced vehicles at Idaho National Laboratory. A vehicle speed of 40 miles per 

hour (≈ 64.37 km/h) was selected to meet the minimal speed requirements for operational status 

of typical commuter roadways, which corresponds to a power transfer level of 25 kW. This power 

level is required to sustain vehicle travel and maintain the SOC. A higher power transfer level and 

relatively higher power from the vehicle propulsion system is required for greater speeds. The 

arterial routes that maximize roadway electrification return on investment were identified by using 

information from the National Renewables Energy Laboratory, including the most frequently 

traveled roadways based on vehicle miles traveled (VMT) and representative traffic volumes 

versus time of day. The 1% of arterial roads in Atlanta where 17% of VMT took place were 

selected as the most desirable road segments for charging. The infrastructure proposed to support 

this system included 12 transformers and inverters per mile (1 mile ≈ 1.61 km) with a 100-m 

maximum distance between inverter and coil [54]. In addition to research, ORNL is facilitating 
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technology development and standards establishment by partnering with Evatran and Clemson 

University’s International Center for Automotive Research (ICAR) to demonstrate ORNL WPT 

systems in fully operational original equipment manufacturer (OEM) vehicles in various 

applications in the spring of 2015 [54]. In Europe, another feasibility study being conducted with 

test sites in France, Italy, and Sweden is the feasibility analysis and development of on-road 

charging solutions for future electric vehicles (also called FABRIC). The project duration is from 

January 2014 to December 2017 with a total cost of 9 million Euros and it seeks to pave the way 

for large scale deployment of electromobility. It is supported and co-funded by the European Union 

in the Seventh Framework Programme for Research, Technological Development and 

Demonstration, European Council for Automotive R&D (EUCAR) and ERTICO-ITS Europe [55]. 

 

2.4.3 Other applications 

Wireless charging can also be applicable for other transportation modes that require 

continuous fixed-route operations, such as harbor, airport, rail systems, and theme parks. 

Transporting commodities from shipping ports to nearby distribution zones is often referred to as 

drayage operations. “Zero emission” drayage operations are the long term goal of many large port 

cities and wireless charging can help these vehicles operate continuously and enhance regional 

sustainable mobility in densely populated areas. The Port of Long Beach in Los Angeles, CA is 

identified as a candidate for such an implementation to combat the pollution and energy 

consumption related to the intense drayage operations [54]. 

 

2.5 Sustainability, safety and social implications of WPT technology 

2.5.1 Energy and environmental assessments 

Recent energy and environmental assessments have focused on the comparative analysis 

of wireless charging electric automobiles versus either conventional powertrain or plug-in 

charging electric automobiles. 

Wireless charging electric buses were found to have better performance than diesel buses 

in terms of carbon emissions. The CARTA project compared the use phase performance of a 
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wireless charging electric bus to a diesel bus providing the same service. They reported an electric 

bus reduces CO2 emissions by approximately 38% (equivalent to a reduction of 567 g per mile), 

assuming fuel economies of 7 miles per gallon (mpg) for a diesel bus and 1.5 kW h per mile for 

an electric bus and emission factors of 10,274 g of CO2 per gallon of diesel and 600 g of CO2 per 

kW h of U.S. average electricity (1 mile ≈ 1.61 km; 1 gallon ≈ 3.785 l) [45]. However, these results 

are use-phase only and lack the comprehensive perspective that a life cycle assessment also 

encompassing the burden of manufacturing, infrastructure deployment, and end-of-life would 

provide. 

Wireless charging electric buses were found to have comparable performance with plug-in 

charging electric buses in terms of energy and greenhouse gas (GHG) emissions from a life cycle 

scope. The positive implication of wireless charging in terms of energy and environmental 

performance lies in the requirement of a downsized battery that significantly reduces vehicle 

weight and helps improve the fuel economy. The trade-off is the requirement of large-scale 

charging infrastructure deployment. In order to understand the energy and environmental trade-

offs of wireless charging technology, a life cycle analysis has been conducted as part of this 

dissertation to compare plug-in versus stationary wireless charging technologies and illustrated the 

trade-off of the infrastructure burdens versus the battery-related savings by modeling an existing 

bus system in Ann Arbor, MI over a 12-year time frame [10]. Two main conclusions were drawn 

from this study: (1) although there are additional energy and GHG emission burdens from the 

wireless charging infrastructure for transit buses, the benefits of battery downsizing can offset 

these burdens so that a wireless charging all-electric bus system would still be attractive in energy 

and environmental terms; (2) the bottleneck for further enhancing the sustainability of wireless 

charging mainly lies in the grid-to-battery charging efficiency. The wirelessly charged battery was 

shown to be 27–44% the size of a plug-in charged battery. Although the associated reduction of 

12–16% in bus weight for the wireless buses can induce a reduction of 5.4–7.0% in battery-to-

wheel energy consumption, the relatively lower wireless charging efficiency could cancel out this 

lightweighting benefit from a primary energy perspective. As a result, a similar cumulative energy 

demand and global warming impact were obtained in the use phase for both charging technologies 

[10]. With the current technical maturity, the energy and environmental impact of wireless 

charging technology is similar to the plug-in charging technology from a life cycle perspective. 

However, further advances in charging efficiency and renewable energy penetration into the 
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daytime or peak-hour electricity grid (provided that majority of wireless charging is during the 

daytime and the majority of plug-in charging is overnight) would enhance the sustainability 

performance of a wireless charging bus system [10]. 

Researchers at Utah State University [56] developed a model to evaluate the environmental 

impacts and techno-economic feasibility of dynamic WPT applied to interstate and urban 

roadways in the U.S., compared to conventional internal combustion engine vehicles (ICEVs). 

They reported that a light duty WPT EV has a 49% CO2 reduction compared to a light duty ICEV 

as well as some reduction in the criteria pollutants, such as VOC, CO, NOx, PM10, and PM2.5, 

except SOx [56]. An increase in SOx is primarily due to the dominance of coal, which was assumed 

to represent 39% of the U.S. power grid for the WPT EVs [56]. For both light duty vehicles and 

trucks in the U.S., a reduction of 10.1% in total CO2 emissions was reported assuming a 20% 

market penetration [56]. They also reported 2.6 years of societal payback time for the infrastructure 

at a 20% market penetration, resulting from the cost savings associated with the operation, 

maintenance, and purchase of the WPT vehicle architecture and roadway [56]. Although dynamic 

wireless charging electric automobiles showed good environmental performance compared to 

conventional powertrain vehicles, its environmental performance relative to the plug-in charging 

alternative is yet to be examined in the literature. 

For the energy and environmental assessment of highway dynamic wireless charging for 

passenger cars, the design of coil pitch that characterizes the longitudinal space between the 

adjacent coils is the key to analyzing the trade-off of infrastructure burden versus use phase 

performance. A coil pitch of 70% was used in the ORNL two-coil apparatus, resulting in a 

longitudinal gap between the adjacent coils. The power transfer minimum is 50% of full power 

when the receiver coil is midway between the transmitter coils [13]. Lower-density and separated 

power transfer pads would reduce material consumption and thus lower the infrastructure burdens, 

but it could result in a decrease of energy transmitted to the moving vehicle and pose large 

fluctuations on the grid attributable to the varying charging power demand [55]. Thus, an optimal 

coil pitch design is needed to minimize infrastructure burdens while still maintaining an acceptable 

level of power transfer. 

Prospective energy and environmental assessments would need to incorporate the spatial 

and temporal heterogeneity of additional demand on the electricity grid from wireless charging 
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EVs. For example, the power demand from in-motion WPT EV systems would be dynamic across 

both time and space [13]. There is an anticipated extra burden of energy supply on electricity load 

profiles as the demand from the dynamic WPT EVs is likely during peak hours of electricity 

consumption [13]. It would be useful for future work to compare the environmental assessment 

results between marginal and average grid emission intensities [57] to better understand the 

consequential/marginal environmental impacts of WPT EV adoption. Researchers have also 

proposed an optimization framework linking traffic assignment with power distribution in order 

to have a better understanding about transportation electrification and to answer these questions: 

(1) How many drivers are going to use the charging-in-motion services, in which locations, and at 

what time frame? (2) What level of power demand is expected in these locations, and what is the 

optimal operational plan for electric power distribution to respond to the demand? [58] Vehicle-

to-grid (V2G) and grid-to-vehicle (G2V) communication and management should be another key 

aspect of prospective energy and environmental assessment of wireless charging technology. 

Instead of posing additional demand at peak load times, EVs have the potential for electricity load 

shifting, and their batteries provide storage for variable and transient energy sources, such as wind 

and solar power, that produce electricity in excess of current demand [53, 59]. In the future, EV 

recharging would be expected to interact with a smart grid in sophisticated and optimal 

management strategies, and more energy and environmental analyses would be required to 

investigate these impacts. 

The continuous V2G and G2V communication and constant dynamic wireless charging on 

arterial roads would lead to a full vehicle autonomy and unconstrained range extension, at least 

where WPT infrastructure is deployed. Future environmental and energy assessment should 

address the rebound effect brought by this emerging technology due to the convenience of wireless 

charging technology and reduced range anxiety [60], that is, the growth of environmental impacts 

due to the increase in VMT could offset the relative reduction of environmental impacts due to 

battery downsizing, vehicle lightweighting, and fuel economy improvement. 

 

2.5.2 Economic and policy analyses 

The economic competitiveness of wireless charging technology is influenced by three main 

components of the product life cycle: charging infrastructure; battery; and use phase energy costs. 
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Compared to the wired charging hardware, the major difference with a wireless charger for a 

stationary WPT design is the two magnetic couplers which bring an extra material cost of about 

US$400 for an 8 kW charger [53]. The cost increase for WPT charging hardware can be quite 

acceptable considering the convenience, battery downsizing, and long-term operation cost savings 

brought by wireless charging [40]. Wireless bus charging can reduce fuel costs by over 80% 

(US$90,000) over the vehicle’s life compared to a diesel bus [45]. For dynamic wireless charging 

on highways, it is noteworthy that the infrastructure investment would be cost effective given that 

the U.S. interstate highways make up only about 1% of roadway miles, yet they carry 22% of all 

miles traveled [61]. Meanwhile the utilization of the installed infrastructure can be high due to a 

large number of vehicles traveling on the same roadway segments [9]. Given more opportunity for 

charging while driving, dynamic wireless charging can further mitigate the high purchase cost of 

EVs by allowing a substantially downsized onboard energy-storage system [9], which lightweights 

the vehicle and would further improve the overall energy and economic performance during 

operation [10, 62]. Wireless charging electric buses were found to be more economically 

competitive than conventional diesel, diesel hybrid and plug-in charging electric buses in a life 

cycle scope [62], but the life cycle economic performance of dynamic wireless charging cars is 

not well established yet. Current available cost data for wireless charging obtained from the 

literature, government reports, and manufacturers are summarized in Table 2.4. 
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Table 2.4 Reported economic data for wireless charging systems 
Model 

or 

real 

case 

Cost scope Mode Vehicle Location Cost Note Source 

Model Life cycle Stationary Bus 
Ann Arbor, 

MI 
$0.99/bus-km 

Infrastructure + use phase, 

also includes bus cost 
[62] 

Model 
Infrastructure 

only 
Dynamic Car Atlanta, GA $2.8 million/lane-mile 

Hardware + deployment 

including labor 
[54] 

Model 
Infrastructure 

only 
Dynamic Car Atlanta, GA $350,000/lane-mile Grid connection cost only [54] 

Model 
Infrastructure 
only 

Dynamic Car + Truck United States $2.4 million/lane-mile 

WPT electronics + electric 

power delivery 

infrastructure 

[56] 

        

Real 

case 

Infrastructure 

only 
Dynamic Bus Korea $0.85–1.07 million/km 

Electronic components and 
construction for two-way 

roads 

[7] 

Real 

case 

Infrastructure 

only 
Dynamic Bus Korea 

$15,000 
(fixed) + $200/m 

(variable) per station 

Fixed cost mainly includes 
the inverter cost and the 

labor cost to connect it to 

the grid. The variable cost 
depends on the length of 

the power transmitter 

[63] 

Real 

case 
Charger only Stationary Car Worldwide 

$1940–$2440 per 

3.3 kW charger 

Wireless chargers sold by 

Plugless Power 
[64] 

Real 

case 

Use phase 

only 
Stationary Bus Italy $9000/bus-year Electricity cost [40] 

Real 
case 

Use phase 
only 

Stationary Bus 
Chattanooga, 
TN 

<$0.10/bus-mile Energy cost [45] 

Note: All currency is U.S. dollars; 1 mile ≈ 1.60934 km. 

 

A key issue in the economic analysis of wireless charging technology lies in the economic 

allocation of charging infrastructure and determination of battery capacity. More wireless charging 

stations deployed will lead to a requirement of a smaller onboard battery, and vice versa. Trade-

off of these two design variables has been evaluated in several optimization studies to minimize 

the investment cost of a wireless charging bus route in Korea [63, 65, 66]. The cost function to be 

minimized consists of the battery cost and cost of the power transmitters. The power transmitter 

cost is made up of a fixed cost and a variable cost. Fixed cost mainly includes the inverter cost 

(one for each power transmitter) and the labor cost to connect it to the grid. The variable cost 

depends on the length of the power transmitter [63]. Further studies are needed to extend this 

optimization framework to a network of multiple bus routes with interconnected charging stations 

where the utilization of each charging station can be increased. The cost function would also need 

to be extended to include not only the capital cost but also the use phase cost (battery replacement, 

charger maintenance, and electricity costs). For highway dynamic wireless charging for passenger 

cars, a framework to optimize the distribution of charging infrastructure and battery capacity with 

the minimum life cycle cost is yet to be established. 
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Road infrastructure improvements and increasing EV sales need to be coordinated by a 

portfolio of policy instruments to guide the proper deployment of wireless charging infrastructure. 

This massive transformation in personal and commercial electric mobility would require a focused 

long-term strategy and large scale infrastructure planning and deployment for targeted 

municipalities [54]. If WPT for EVs is demonstrated to enhance sustainable mobility, it would 

require government subsidies and incentives to enable penetration of this new and disruptive 

technology and guide the synergistic deployment of WPT technologies and the increasing 

penetration of EVs in the auto market [54]. In order to characterize the impact of advanced 

technologies on consumer behavior, ORNL developed the Market Acceptance of Advanced 

Automotive Technologies (MA3T) model and predicted that dynamic wireless charging could 

boost the EV share of light duty vehicle (LDV) sales to more than 60% by 2050. In comparison, 

when there is no dynamic WPT system deployment throughout the timeline, the share can only 

reach 20–30% by 2050 [54, 67]. EV sales boosted by WPT technology would be of value for car 

manufacturers as it will be a technology multiplier to credit their fleet corporate average fuel 

economy (CAFE) figures in the 2025 calculations [54]. To guide policy makers on infrastructure 

deployment, researchers tested three vehicles (a compact car: Honda Insight, a large car: Chevrolet 

Impala, and an SUV: Ford Explorer) to find out the infrastructure coverage required for 300 mile 

(≈ 482.8 km) range (30 kW delivered to the vehicle). They found that a coverage of 0.46–1% of 

lane-miles is required for the UDDS city drive cycle, a 17–43.8% coverage is required for the 

HWFET highway drive cycle, and a 17.2–64.3% coverage is required for the HW-MTN (highway 

driving in a mountainous region) drive cycle [9, 68]. They concluded that if only 1% of the 

roadway is powered in urban areas, most vehicle types can easily reach the 300-mile target range 

with a relatively small battery pack [9, 68]. 

 

2.5.3 Health and safety 

Although the road-embedded WPT technologies would improve system operational safety 

(since there are no exposed high voltage cables or power outlets as plug-in vehicles) [40], 

significant research has been conducted [6, 21, 69, 70] to investigate the EMF issues with human 

electromagnetic exposure limits. Well-defined biological responses caused by exposure to electric 

and magnetic fields below 100 kHz include annoyance, surface electric-charge effects, the 



 

35 

 

stimulation of central and peripheral nervous tissues, and the induction in the retina of phosphenes 

(a perception of faint flickering light in the periphery of the visual field) [71]. The EMF may also 

induce high field strengths and heating in nearby human bodies, implanted medical devices, small 

animals, and metals. The two most prevailing exposure limits are those published by the Institute 

for Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing 

Radiation Protection (ICNIRP) [44]. For example, ICNIRP [71] sets limitations on both electric 

fields and magnetic fields. For electric fields, a human body is a good conductor. The external 

electric field will induce an electric field inside the human body. ICNIRP has a limit on the internal 

electric fields of all human tissues, which cannot exceed 1.35 × 10−4 times the frequency value. 

Furthermore, ICNIRP has a limit on general public exposure to electric fields, which is set to be 

83 V/m. For magnetic fields, the tissue has the same permeability as air. The tissue has the same 

magnetic flux density with that of the external field. ICNIRP has a limit on general public exposure 

to magnetic fields, which is updated as 27 μT in 2010. Additionally, 6.25 μT, which was the limit 

set in 1998, is still commonly used in recent experiments. 

Current research found that EMF can be effectively controlled within acceptable levels, 

but further research is still required to ensure health and safety under variable conditions and as 

the technology evolves. For transit buses, researchers characterized potential exposure of people 

to the fields associated with a wireless charging electric bus operated by CARTA in Tennessee. 

They found that during charging none of the magnetic or electric fields measured either inside or 

outside the bus exceeded the IEEE or the ICNIRP limits for the general public [44]. Researchers 

can effectively shield the EMF from affecting passengers onboard by utilizing aluminum plates at 

the back of the secondary pad to protect the interior of the vehicle and aluminum rings at both the 

primary and secondary pads to limit the stray field in the lateral direction [9, 40]. The eddy currents 

generated when the magnetic flux passes through the aluminum shield will induce a new magnetic 

flux that is in the opposite direction of the original magnetic flux, resulting in an effect of shielding 

the original magnetic flux. For dynamic wireless charging of in-motion passenger cars, researchers 

at ORNL [6] controlled the EMF at 23 kHz within the acceptable standards for the general public 

of 6.25 μT set by the ICNIRP by utilizing aluminum shielding. Further research, however, is still 

required to ensure health and safety of dynamic charging under open traffic environments that 

have more unforeseeable conditions than for lab test environments, such as variable power levels 

required for light-duty and heavy-duty vehicles under varying speeds and accidental leakage 
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exposure to nearby passing pedestrians, cyclers, and patients with implanted medical devices. 

Living object detection systems and foreign object detection systems are required for detecting 

subjects and metals nearby. 

 

2.5.4 Prospects to enhance sustainable mobility 

Challenges and opportunities coexist in the near-term and long-term development of WPT 

technology for sustainable transportation. A series of technical and sustainability challenges and 

opportunities are identified in Table 2.5. 
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Table 2.5 Prospects to enhance sustainable mobility – coexistence of challenges and 

opportunities of WPT technology 
 Short description Detailed description 

Challenges [13, 31, 55] Maintenance of dynamic 

alignment 

Lateral alignment for lane keeping and optimal power 

transfer coupling for dynamic charging 

Charger life and durability 

Need to remain in the road without degrading the structure 

for at least 20 years and cope with resurfacing works every 

10–12 years 

Utility power distribution 
Connect and distribute the power supply to the point of 

charging event 

Burden on electricity grid 
Multiple vehicles on charging lane and power flow 

management 

Synchronization of energizing 

coils 

Low-latency private and secure vehicle-to-infrastructure 

communications for roadway coil excitation sequencing 

Economic management Time of use and revenue structure 

Health and safety 

Leakage fields: the magnetic and electric fringe fields 

associated with high frequency magnetic resonance power 

transfer 

Tolerance for diverse power 

demands 

Acceptable power levels versus different vehicle class types 

(car, truck, bus, etc.) 

Opportunities 

New materials 

With the advent of the new materials, such as high-

temperature superconducting (HTS) materials and 

metamaterials, higher transfer efficiency can be 

achieved [37-39] 

Dynamic charging: range 

extension 

Depending on the power capability, the use of dynamic 

charging would further increase driving range and reduce 

the size of the battery pack [9] 

Coupling with automated 

vehicles (AVs) 

AVs would accelerate the adoption for WPT technology by 

leveraging capabilities such as charging alignment precision 

by lane-following technologies to keep proper alignment 

between the vehicle and the grid power supply units and 

improve the driving performance and energy efficiency [54] 

Vehicle connectivity 

Vehicle connectivity and communication will be required 

for proper system effectiveness: both with the grid and other 

vehicles as well as vehicle speed control [54] 

Automated highway system 

(AHS) 

This concept called for continued personal ownership of the 

vehicle, but capable of commuting on traditional highways 

and streets in addition to a higher speed operation on an 

automated guideway. The highway carrying capacity could 

be dramatically increased to more than 2500 

vehicle/hour/lane and remain environmentally 

sustainable [13] 

 

2.6 Conclusions 

This chapter contains a review of the status of WPT development and applications in the 

transportation sector. The challenges and opportunities in terms of technology and sustainability 

performance have been enumerated and discussed. 

The first section was a review of the technical aspects of both stationary and dynamic 

charging systems in three areas: (1) coil design; (2) compensation topologies; and (3) power 

electronics converters and control methods. Progress in technology has led to improved system 
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performance. Stationary wireless charging systems have comparable system performance to 

conductive charging systems, and dynamic wireless charging systems are on the path to achieve 

the charging of vehicles in motion. From the technical perspective, major research gaps are: (1) 

how to improve the system efficiency of dynamic charging systems and maximize the amount of 

energy received by vehicles at high speed in a limited charging lane range; and (2) how to balance 

the size of the charging system and its misalignment tolerance and efficiency. 

From the sustainability perspective, WPT EVs have the trade-off of large infrastructure 

deployment versus the benefits of battery downsizing and vehicle lightweighting. WPT technology 

offers the possibilities for better energy performance, lower environmental impacts, lower life 

cycle cost, and more convenience and operational safety benefits compared to wired EVs and 

conventional ICEVs. In order to realize these possibilities of WPT EVs, the following research 

gaps need to be filled: (1) electricity grid management that balances the demand and supply of 

electricity for both static and moving vehicles; (2) optimization of large scale charging 

infrastructure deployment and battery capacity with a consideration of battery life for both public 

transit and passenger car applications; and (3) policies that coordinate the growth and development 

of WPT technology with other emerging EV technologies, such as connected and automated 

vehicles (CAVs). 

Challenges and opportunities remain in the design and deployment of WPT EV systems. 

Dynamic wireless charging offers opportunities for sustaining the battery charge while driving so 

that the large battery pack that represents a bottleneck for deploying EVs can be eliminated and 

range anxiety will be reduced. The environmental, economic and societal impacts of large scale 

infrastructure deployment and performance in terms of energy efficiency, durability, and reliability 

must be carefully evaluated for prospective real-world deployment of dynamic WPT EVs. 

Stationary WPT for residential and commercial charging is expected to have earlier widespread 

adoption than dynamic charging given its technical maturity and economic feasibility, while 

dynamic WPT could be implemented gradually if the market develops enough to significantly 

lower the high initial infrastructure cost. Connected and automated vehicles (CAVs) would provide 

strong synergy and accelerate the adoption of WPT technology by leveraging capabilities (such as 

charging alignment precision) to improve driving performance and energy efficiency. WPT 

technology also offers more active connectivity with the electric grid through V2G and G2V 
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bidirectional power transfer, enabling EVs to become mobile energy storage devices to help 

regulate the grid by storing excess generation from uncontrolled renewables. In the next decade, 

improvements of WPT in these areas will determine how significant the role of WPT technology 

will be in advancing vehicle electrification and improving the sustainability of electrified mobility. 
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3 CHAPTER 3  

Integrated life cycle assessment and life cycle cost model for comparing plug-

in versus wireless charging for an electric bus system 

 

 

Abstract 

An integrated life cycle assessment and life cycle cost (LCC) model was developed to 

compare the life cycle performance of plug-in charging versus wireless charging for an electric 

bus system. The model was based on a bus system simulation using existing transit bus routes in 

the Ann Arbor-Ypsilanti metro area in Michigan. The objective is to evaluate the LCCs for an all-

electric bus system utilizing either plug-in or wireless charging and also compare these costs to 

both conventional pure diesel and hybrid bus systems. Despite a higher initial infrastructure 

investment for off-board wireless chargers deployed across the service region, the wireless 

charging bus system has the lowest LCC of US$0.99 per bus-kilometer among the four systems 

and has the potential to reduce use-phase carbon emissions attributable to the lightweighting 

benefits of on-board battery downsizing compared to plug-in charging. Further uncertainty 

analysis and sensitivity analysis indicate that the unit price of battery pack and day or night 

electricity price are key parameters in differentiating the LCCs between plug-in and wireless 

charging. Additionally, scenario analyses on battery recycling, carbon emission pricing, and 

discount rates were conducted to further analyze and compare their respective life cycle 

performance. 

 

3.1 Introduction 

Conventional powertrain vehicles are mostly propelled by the combustion of fossil fuels 

that produce emissions of greenhouse gases (GHGs). Electrified vehicles offer an opportunity to 
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mitigate global warming and fossil energy scarcity, and reduce air pollutants in urban environment 

[1, 2]. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery 

electric vehicles (BEVs) are slowly gaining market share [3]. BEVs, however, require larger 

batteries than HEVs and PHEVs, and they still face obstacles with commercialization as a result 

of the heavy and expensive on-board battery packs [4]. Another challenge for electric vehicles lies 

in the charging method. Conventional plug-in charging can be inconvenient and requires waiting 

time to recharge the vehicle [4]. 

The emergence of wireless charging technology for electric vehicles can overcome these 

two problems of plug-in charging [5-10]. Wireless charging occurs by electromagnetic resonance 

between two contactless coil plates: one equipped on the bottom of the vehicle (on-board), another 

paved in the roadway (off-board), as detailed in Chapter 2. Such a configuration allows charging 

on the roadway without the need to handle the charging cable and coupler, and it is especially 

applicable to fixed-route vehicles, such as transit buses. Wireless charging is categorized as 

stationary wireless charging and dynamic wireless charging (charging while vehicles are in 

motion). In this study, wireless charging refers specifically to stationary wireless charging, which 

means that wireless chargers are only deployed at some bus stations and a parking lot for buses to 

charge when they drop off and pick up passengers or park overnight. Because of the frequent 

charging opportunities available during bus operation, it is feasible to carry a smaller on-board 

battery and lightweight the vehicle. This mass reduction of the bus can improve fuel economy and 

has important implications for reducing life cycle energy consumption, GHG emissions, and costs. 

Despite the convenience of wireless charging and its potential economic benefits from 

battery downsizing and vehicle lightweighting, there are significant costs related to initial 

infrastructure investment, including the procurement and installation of wireless chargers. 

Compared to the smaller scale of plug-in charging infrastructure, which is usually confined to a 

parking lot or facility, wireless charging infrastructure needs to be distributed across the entire bus 

service region to support a wirelessly charged transit bus fleet. Thus, it is useful to quantify the 

trade-offs of infrastructure-related costs and battery-associated savings to explore the potential 

advantages of wireless charging over plug-in charging. 

Life cycle cost analysis (LCCA) is a useful tool to provide a holistic evaluation of costs 

from capital investment to use-phase operation and, finally, to the end of life (EoL) [11]. LCCA is 
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widely used by transit agencies to evaluate cost benefits of fleet procurement plans. The U.S. 

Federal Transit Administration conducted an LCCA to compare costs of a conventional diesel bus 

fleet, hybrid bus fleet, and compressed natural gas bus fleet [12]. The Ann Arbor Area 

Transportation Authority (AAATA) also commissioned an LCCA comparing a conventional 

diesel bus fleet with a diesel hybrid bus fleet [13]. Although economic analysis of wireless 

charging has been reported in the literature [4], analysis of the trade-offs of wireless charging 

systems is limited, and a comprehensive LCCA comparing plug-in charging versus wireless 

charging bus fleet has not been established. 

An integrated life cycle assessment and life cycle cost (LCA-LCC) model [11, 14] was 

developed to provide a comprehensive assessment and comparison of plug-in charging and 

wireless charging for an all-electric bus system. Such a comprehensive LCA-LCC model 

framework for evaluating the sustainability performance of this emerging wireless charging 

technology has not yet been established in the literature. This current study builds upon a 

previously conducted LCA comparing global warming impact and cumulative energy demand for 

the plug-in and wireless charging systems [15]. The LCA model was developed based on a 

simulation of an existing transit bus system serving the Ann Arbor and Ypsilanti metro area in 

Michigan. Parameters and intermediate results from the LCA and bus system simulation were used 

as input parameters for the LCCA. An advantage of this integrated LCA-LCC model is the ability 

to conduct energy, GHG emissions, and cost analyses simultaneously. For example, this model 

can be used to evaluate the magnitude of the environmental costs of carbon emissions and compare 

them with conventional LCCs. 

In this study, a detailed cost analysis was conducted to compare the cumulative costs and 

total costs per bus-kilometer (km) between the plug-in and wireless bus systems. The results were 

also contrasted against a conventional pure diesel bus fleet and a diesel hybrid bus fleet for 

reference. Uncertainties associated with the results were evaluated by a Monte Carlo simulation. 

The relative importance of the key parameters influencing the LCCs of plug-in and wireless 

charging systems was identified by a sensitivity analysis. Finally, scenario analyses of EoL battery 

recycling, carbon emission costs, and different discount rates were conducted. This chapter 

demonstrates the trade-offs between plug-in and wireless charging and supplements current 

research on wireless charging technology through a detailed LCA-LCC evaluation. 
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3.2 Method 

An integrated LCA-LCC model was developed to provide a comprehensive comparative 

assessment of plug-in charging and wireless charging with application for an electric bus fleet. The 

model framework is shown in Figure 3.1, and the LCA and LCC models are described in the 

sections below. 

 
Figure 3.1 Integrated life cycle assessment and life cycle cost (LCA-LCC) model for 

comparative assessment of plug-in versus wireless charging systems with key parameters 

highlighted. The production of electric buses (excluding the batteries), use-phase maintenance, 

and battery recycling are only relevant to the LCC model 

 

3.2.1 The Life Cycle Assessment Model and Bus System Simulation 

The LCA model was constructed to simulate a bus fleet of 67 buses. The bus system in 

Ann Arbor-Ypsilanti metro area in Michigan, called TheRide, was used as a basis for the bus 

system simulation [16]. The main characteristics of this bus system, including fleet lifetime travel 
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distance, dwell time at bus stops, distribution of routes, and bus stops, were used as parameters for 

the simulation. The rationale of selecting this bus system as a case study is that it is familiar to the 

modelers and route data were readily accessible. It is a typical multi-route system serving two 

major municipalities, Ann Arbor and Ypsilanti, and this simulation can be generalized and 

extended to other bus systems by tuning those characteristic parameters for a bus system. Bus 

systems with greater overlapping routes would be expected to require fewer total number of 

charging stations and would help increase the utilization of each charging station, and bus systems 

with longer dwell time at charging stations would help further downsize the onboard battery. The 

bus service life was assumed to be 12 years [12], and, on average, each bus traveled 716,932 km 

during that period [15]. The buses in this fleet are all assumed to be pure electric buses for which 

two charging scenarios were compared: plug-in charging and wireless charging. Major differences 

between the two bus systems using either charging method are highlighted, including chargers, 

batteries, and use-phase energy consumption. Sixty-seven plug-in chargers were assumed to be 

located at a parking lot for all-electric buses to charge overnight only, that is, no daytime charging. 

For the wireless charging scenario, 67 on-board wireless chargers (on-WCs) were installed on the 

buses and 428 off-board wireless chargers (off-WCs) were assumed to be deployed across the bus 

service region and located at transit centers, key downtown bus stops, some suburban bus stops, 

and a parking lot for buses to charge both day and night. Major input parameters used in the LCA 

model are listed in Table 3.1. Further details on the parameters and assumptions of the bus system 

simulation can be found in the Appendix. 
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Table 3.1 Main input parameters of the life cycle assessment model 
Parameter Value Unit References Note 

Life of a bus 12 years [12]  

Life of a plug‐in or wireless charger 24 years [15, 17] Techno‐economic life 

Weight of a plug‐in charged bus 15000 kg [18, 19] 
Included 1,000 kg of passengers, 

driver and cargo 

Battery‐to‐wheel energy consumption 

rate of a plug‐in all‐electric bus 
1.46 kWh/km [18] Average of several real road tests 

Lightweighting correlation 4.5% percent [15] 

Percentage of battery‐to‐wheel 

energy consumption reduction per 

10% bus mass reduction 

Plug‐in charging efficiency 90% percent [20] Grid to battery 

Wireless charging efficiency 85% percent [5, 21-23]  Grid to battery 

Charger power 60 kW [18] 
Plug‐in and wireless chargers have 

the same power rate. 

Battery charge/discharge efficiency 90% percent [24, 25] 

Energy discharged from battery 

divided by energy charged into 

battery 

SOC range (SOCR) 60% percent [26] The battery state of charge window 

Battery cycle life 3000 cycles [20, 24, 27]  

Battery specific energy 0.13 kWh/kg [28] 
Battery chemistry of lithium 

manganese oxide (LMO) 

Note: SOC = state of charge; kg = kilograms; kWh/km = kilowatt-hours per kilometer; kW = kilowatts; kWh/kg = kilowatt-hours 

per kilogram. 

 

3.2.2 The Life Cycle Cost Model 

Results from the LCA model were used as input parameters in the LCC model. The LCA 

model quantified the battery sizes for plug-in buses and wireless buses. A plug-in battery was 

assumed to be 3,525 kilograms (kg) (458 kilowatt-hours [kWh]) with a battery-to-wheel energy 

consumption rate of 1.46 kWh/km. A wireless battery size can be downsized to 948 to 1,546 kg 

(123 to 201 kWh) with a battery-to-wheel energy consumption rate of 1.36 to 1.38 kWh/km, 

depending on the distance of the route and available charging time [15]. Use-phase energy 

consumption was also computed in the LCA model based on fleet travel distance. Using the U.S. 

annual carbon dioxide (CO2) total output emission rate (0.559 kg CO2/kWh) from the Emissions 

& Generation Resource Integrated Database (eGRID) database [29], the CO2 emissions in the use 

phase were calculated and then used for the scenario analysis of carbon emission costs in the LCC 

model. 

The time horizon for the LCC model is 24 years, that is, twice the life of a bus and the same 

as the techno-economic life of the charging infrastructure. In addition to plug-in and wireless 

charging all-electric bus systems, conventional diesel bus and diesel hybrid bus systems were also 
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included in the LCC model so that the results can be contrasted for reference. Common cost 

parameters shared by the four systems are summarized in Table 3.2 and specific cost parameters 

for each system are listed in Table 3.3 and classified as capital and operation costs. The LCC model 

also considered the inflation or deflation of products and the discount rate. 

 

Table 3.2 General cost parameters for the life cycle cost analysis 
Name Value Unit References 

Unit price of battery pack 500 $/kWh [30-32] 

Electricity rate in Michigan (day & night) 0.1137 $/kWh [33] 

Diesel price 3.14 $/gal [13] 

Fuel economy of a conventional diesel bus 4.3 miles/gal [13]  

Fuel economy of a hybrid bus 5.3 miles/gal [13] 

Discount rate (20‐year, nominal) 3.6% percent [34] 

Annual inflation rate of lithium‐ion battery –9% percent [32, 35, 36] 

Annual inflation rate of electricity rate 2% percent [37, 38] 

Annual inflation rate of diesel 5.84% percent [37, 38] 

Note: A negative inflation rate means the price is actually deflating. $/kWh=dollars per kilowatt-hour; $/gal = dollars per gallon; 

miles/gal = miles per gallon. 

 

Table 3.3 Cost parameters and intermediate calculated values for life cycle cost analysis 
Name Unit Plug‐in References Wireless References Conventional References Hybrid References 

Capital costs 

Procurement of a 

bus (w/o battery) 
$ 500000 [39] 500000 Assumption 455298 [13] 615763 [13] 

Procurement of a 

battery pack 

(average) 

$ 229125 Calculated 91192 Calculated — — 35000 [13] 

Procurement of a 

plug‐in charger (60 

kW) 

$ 8000 [39] — — — — — — 

Procurement of an 

onboard wireless 

charger (60 kW) 

$ — — 5000 [17] — — — — 

Procurement of an 

off-board wireless 

charger (60 kW) 

$ — — 5000 [17] — — — — 

Installation of a 

charger 
$ 1000 Assumption 10000 [17] — — — — 

Operation costs 

Energy: electricity 

(day) 
$/fleet/year — — 473101 Calculated — — — — 

Energy: electricity 

(overnight) 
$/fleet/year 820475 Calculated 345608 Calculated — — — — 

Energy: diesel $/fleet/year — — — — 1816283 Calculated 1473588 Calculated 

Maintenance of 

facility & 

infrastructure 

$/fleet/year 100000 Assumption 100000 Assumption 114746 [12, 13]  97159 [12, 13]  

Maintenance of 

propulsion 
$/fleet/year 352638 Assumption 352638 Assumption 362234 [12, 13]  352638 [12, 13]  

Note: kW = kilowatts; fleet = 67 buses. 
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3.2.2.1 Capital Costs 

Capital costs include bus and battery procurement, charger procurement, and installation 

of chargers. Batteries were assumed to be replaced every 8 years, and buses (excluding the batteries) 

were assumed to be replaced every 12 years [12, 15]. Batteries’ costs were calculated from 

multiplying battery unit price ($/kWh) 1 by the battery capacities (kWh). The battery capacities 

were quantified so that they can meet daily range requirements and have enough capacity buffer 

to accommodate future capacity degradation. Details of battery sizing can be found in the LCA 

model [15]. A 60-kilowatt (kW) wireless charger is comprised of an on-board portion (on-WC) 

and an off-board portion (off-WC) that have an identical unit price of US$5,000 each. The market 

price for a 60-kW wireless charger and its installation costs, including pavement removal and 

restoration, were based on empirical and expert estimates [17], and further sensitivity analysis was 

conducted on these parameters. 

 

3.2.2.2 Operation Costs 

Operation costs include energy costs and maintenance costs. Operation costs were assumed 

to be paid at the end of each year. Other use-phase costs, including driver wages and vehicle 

insurance/warranty, were assumed to be the same for all four bus systems, thus not included in the 

comparison. Federal subsidies for purchasing buses by municipalities were not considered. The 

additional operation costs incurred by a decrease in battery charge/discharge efficiency resulting 

from battery degradation were assumed to be the same for both plug-in and wireless systems, but 

the methods can be refined to incorporate a specific battery efficiency and degradation profile for 

wireless charging. Additionally, although regenerative braking was included in terms of 

quantifying energy performance of the electrified buses in this study, its potential benefit of 

reducing the wear of the brake pad and cutting the maintenance costs of brake components [40] 

was not included. 

For plug-in and wireless systems, use-phase electricity E (kWh) was calculated based on 

the battery-to-wheel energy consumption rate k (kWh/km), charging efficiency ηc (%), battery 

charge/discharge efficiency ηb (%), and fleet travel distance D (km), as shown in Eq. 3.1. Similarly, 
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for conventional pure diesel and hybrid buses, diesel consumption was calculated from dividing 

fleet travel distance by fuel economy. 

b c/ /E k D                                              (Eq. 3.1) 

Annual maintenance costs are comprised of two parts: maintenance of facilities and 

infrastructure and maintenance of vehicle propulsion or powertrain systems. As shown in Table 

3.3, the maintenance costs of conventional pure diesel and hybrid buses were obtained and 

calculated from the literature. Because of lack of specific data on the maintenance costs of plug-

in charging and wireless charging, three assumptions were made: (1) The propulsion maintenance 

costs of plug-in and wireless charging electric buses were assumed to be the same as the hybrid 

buses ($352,638/fleet/year); (2) the annual maintenance cost of 428 off-board wireless chargers 

[15] deployed across the bus service area is around 5% of their total procurement cost; and (3) a 

wireless charger will have the same rate of degradation as a plug-in charger during operation. The 

assumptions on the maintenance costs of plug-in and wireless chargers were further examined in 

the sensitivity analysis. 

3.2.2.3 End-of-Life Battery Salvage Value 

For the base case, the battery recycling was not considered, but it was considered in a 

scenario analysis. The threshold for battery retirement is usually a 20% loss of battery capacity 

[27, 41], that is, 80% of the nameplate capacity is still usable. Given the large capacity of a plug-

in or wireless battery, it is meaningful to reuse the battery for other energy storage purposes. The 

scenario analysis was based on a battery salvage value varying from $0 to $400 per kWh of 

nameplate capacity. A 20% loss of battery usable capacity at EoL is assumed to reduce the original 

battery unit price (500/kWh) by 20%, thus the upper limit of battery salvage value is $400 per 

kWh of nameplate capacity. The battery recycling price was assumed to have the same annual 

inflation rate as the battery unit price (-9.00%). 

 

3.2.2.4 Carbon Emission Costs 

Another scenario analysis examined carbon emission costs. In the base case, no carbon 

costs were included. In the scenario analysis, however, the carbon emissions from diesel 
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combustion or electricity generation during the use phase were assumed to be charged at a carbon 

price ranging from 0 to 100 $/tonne (t) CO2,
2 based on the social cost of carbon [42]. 

 

3.3 Results and Discussion 

3.3.1 Cumulative and Total Costs 

Model results are reported as cumulative costs on a year-to-year basis and also cost per 

bus-km basis. Figure 3.2 shows the cumulative costs of plug-in all-electric, wireless all-electric, 

conventional pure diesel, and hybrid bus systems. At the beginning of the time horizon (year 0), 

the plug-in system has the highest capital cost and conventional pure diesel system has the lowest 

capital cost. At the end of the 24th year, the hybrid system has the highest costs over the period 

with a final life cycle cost of US$125.6 million. The wireless system is found to be the lowest with 

a final life cycle cost of US$94.7 million. Plug-in system has a final life cycle cost of US$102.2 

million, which is US$115.6 million. Conventional and hybrid buses are powered solely by diesel, 

and plug‐in or wireless buses are powered solely by electricity. The alternative powertrains have 

better energy efficiencies compared to conventional powertrains [43]. Thus, the differences in fuel 

type and fuel economy result in different fueling cost increases per year, reflected in the slopes of 

the curves. At the 8th and 16th years, there are scheduled battery replacements for all-electric and 

hybrid buses, and at the 12th year, there is a bus replacement for all types of buses (except the 

batteries). The plug-in battery has around 2.5 times the capacity of the wireless battery, thus it 

costs more to replace a plug-in battery. The battery replacement plays an important role in 

determining the difference between the plug-in system and the wireless system. 
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Figure 3.2 Cumulative costs of plug-in all-electric, wireless all-electric, conventional pure diesel, 

and diesel hybrid bus systems 

 

A detailed breakdown of the total life cycle costs per bus-km of the four systems is shown 

in Figure 3.3. The hybrid, conventional, plug-in, and wireless systems cost US$1.31, US$1.20, 

US$1.06, and US$0.99 per bus-km, respectively. Trade-offs between plug-in and wireless systems 

are compared directly against each other. One major advantage of wireless charging is the lower 

battery costs, including initial procurement and use-phase replacements. Wireless batteries cost 

60% less than plug-in batteries, but there are increased infrastructure costs for wireless charging, 

including procurement and installation of chargers. The infrastructure costs only 0.7 cent per bus-

km for plug-in charging, but increases to 7 cents per bus-km for wireless charging. In terms of use-

phase electricity consumption, the two systems have almost the same electricity costs. The reason 

is that, though there is a lightweighting benefit of battery-to-wheel energy consumption reduction 

of approximately 5.4% to 7.0%, the wireless charging efficiency was assumed to be 85%, which 

is less than the assumed plug-in charging efficiency of 90%. The lightweighting benefit is offset 

by the difference in charging efficiencies, thus the difference found in final electricity costs 

between the plug-in and wireless systems is small. 
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Figure 3.3 Total costs per bus-km of plug-in all-electric, wireless all-electric, conventional pure 

diesel, and diesel hybrid bus systems. km = kilometer 

 

3.3.2 Uncertainty Analysis 

Wireless charging has not been commercialized in a large scale. Thus, in this model, many 

parameter values were based on assumptions. These uncertain parameters are listed in the 

Appendix, along with their respective possible ranges. An uncertainty analysis using a Monte 

Carlo simulation [44] was conducted based on these ranges, assuming a triangular distribution of 

low, most likely, and high values for each parameter. The Monte Carlo simulation was run with 

20,000 trial times, and each time the parameter values were changed stochastically based on their 

respective ranges and distributions. The simulation results are reported in the Appendix, showing 

the minimum, first quartile, median, third quartile, and maximum of the trial results for each bus 
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system. Among the four systems, the wireless system has the lowest median of US$0.99/bus-km 

and the hybrid system has the highest median of US$1.31/bus-km. In terms of minimum and 

maximum, the wireless system could have the lowest possible cost of US$0.81 per bus-km and the 

hybrid system could have the highest possible cost of US$1.63 per bus-km. 

 

3.3.3 Sensitivity Analysis 

To evaluate the individual contribution of key parameters to the overall uncertainty, a 

sensitivity analysis was conducted. In the sensitivity analysis, each parameter was changed 

independently, based on the same range defined for the Monte Carlo simulation. The results of 

sensitivity analysis are summarized in Figure 3.4. The tornado graph ranks parameters according 

to their contribution to the difference between the plug-in system and wireless system. The initial 

unit price of battery pack ($/kWh) is an important parameter in determining the difference between 

the two systems. The wireless charging system has an advantage in terms of battery size reduction. 

If the battery unit price is lower, however, this advantage of wireless charging will be smaller. If 

the initial battery price is US$300/kWh, the wireless charging system will cost only 2.2% less than 

the plug-in charging system. If the battery unit price starts at US$700/kWh, the wireless charging 

system will cost around 9.5% less than the plug-in system. The day and night electricity prices 

were also identified as important parameters, but they each affect the difference in an opposite 

way. Either a lower daytime electricity rate or a higher nighttime electricity rate will make wireless 

charging more advantageous. This is because for wireless charging, 58% of the use-phase 

electricity consumption is charged during bus operation and 42% is charged overnight, but for 

plug-in charged buses, they were assumed to be charged only overnight. Finally, the result is also 

sensitive to the changes in installation cost of off-WCs and wireless charging efficiency, but the 

result is less sensitive to the procurement cost of off-WC, maintenance costs of plug-in and 

wireless chargers, time of charging at each transit center, inflation rate of lithium-ion battery, 

lightweighting correlation, and procurement of on-board wireless charger. 
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Figure 3.4 Sensitivity analysis. Each input parameter is changed independently from values of 

“low; base; high” as shown beside each parameter's name. The base case (7.4%) is shown as the 

red line 

 

3.3.4 Scenario Analyses 

Three scenario analyses were conducted to evaluate the (1) potential benefits of recycling 

the large on-board batteries for electric buses, (2) external cost of carbon emissions, and (3) 

uncertainty in discount rate, and results are shown in Figure 3.5. The plug-in charged bus has a 

battery with a capacity of 458 kWh, and the wireless bus has a battery with a capacity of 123 to 

201 kWh. These batteries have a potential of being recycled after retirement. As shown in Figure 

3.5, a battery salvage value was applied, with US$0 per nameplate kWh as the most pessimistic 

scenario and US$400 per nameplate kWh as the most optimistic scenario. When a battery is 

recycled at a price of US$400 per nameplate kWh, the wireless and plug-in charging systems will 

have very similar costs per bus-km. 
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Figure 3.5 Scenario analyses: (a) end-of-life battery recycling; (b) carbon costs; and (c) discount 

rate 

 

A carbon emission price, ranging from US$0 to US$100 per tonne of CO2, was placed on 

the use-phase carbon emissions of the four systems, either from the combustion of diesel or the 

generation of electricity, as shown in Figure 3.5. From US$0 to US$100/t CO2, the cost per bus-

km increases by 8.0% (US$0.10) for the hybrid system, 10.7% (US$0.13) for the conventional 

pure diesel system, 7.9% (US$0.08) for the plug-in system, and 8.5% (US$0.08) for the wireless 

system. The difference between the conventional and hybrid systems is mainly attributable to the 

difference in fuel economies. The reason for the same price increases of plug-in and wireless 

systems is that the lightweighting benefit is offset by lower wireless charging efficiency. 
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The choice of discount rate is somewhat subjective in LCCA, thus a scenario analysis using 

different discount rates was conducted, as shown in Figure 3.5. At a high discount rate of 10%, the 

difference among the four systems is much smaller than that at a discount rate of 0%. The 

conventional system is more affected by the change in discount rate because of greater use-phase 

costs. A large portion of cost for conventional system is the diesel cost. When the discount rate is 

higher, the fuel cost is lower at present value. Thus, discount rate affects the conventional system 

more than the other three systems. 

 

3.4 Conclusion 

The model was used to evaluate the trade-offs of utilizing wireless charging technology for 

an electric bus system. Deploying wireless chargers for an all-electric bus system has benefits of 

downsizing the battery and reducing the battery and use-phase electricity costs. In contrast, the 

wireless charging infrastructure brings additional costs of charger procurement and installation. 

Though this study indicates that a wireless charging system has a lower overall LCC compared to 

a plug-in charging system, there is considerable uncertainty associated with this finding. The 

difference in LCCs between plug-in charging and wireless charging is largely dependent on the 

battery unit price, wireless charging efficiency, and procurement, installation, and maintenance 

costs of wireless chargers. If any of these parameters changes significantly in the future, it will 

greatly affect the relative cost differences between the two charging methods. For example, if the 

wireless charging efficiency is improved, it will further help reduce the LCC of the wireless 

charging bus system. Also, after initial commercialization, the mass production and economy of 

scale benefits are expected to decrease wireless charger costs as the market matures. 

Future studies can incorporate and extend a recently established optimization method [45] 

to screen the best candidate bus stops for installation of charging infrastructure and quantify the 

optimal battery sizes to minimize LCC of a wireless charging bus system. The established 

optimization study was based on a single route in Korea to allocate the charging infrastructure for 

the least total cost of battery and infrastructure only. To extend the method, the optimization 

algorithm needs to consider the characteristics of a network of different bus routes, such as the 

sharing of a single charging station by multiple routes. The utilization of a charging station may 

also affect the life and maintenance cost of the charging infrastructure. The charge/discharge 
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frequency and state of charge pattern may also have an impact on battery degradation, which would 

affect the frequency of battery replacement and battery cost [46]. Therefore, it can be meaningful 

to explore the optimal deployment of off-WCs and consider the infrastructure utilization rate and 

battery degradation to minimize life cycle energy consumption, GHG emissions, or costs. The 

trade-off of charging infrastructure and battery size also needs to be further explored by extending 

the model to incorporate dynamic wireless charging. With more charging infrastructure available 

and charging in motion, a wirelessly charged bus can carry a further downsized on-board battery 

[21, 47]. It will be useful to analyze whether the marginal benefit of further battery downsizing 

will offset the marginal burdens from increased wireless charging infrastructure. 

Notes 

1. Throughout the chapter and Appendix, all dollar values presented are in U.S. dollars. 

2. Throughout the chapter and Appendix, “t” refers to metric tons. 
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Appendix A  Supporting information for Chapter 3 

The appendix contains additional background information on the bus system simulation 

that was based on the transit bus fleet operating in Ann Arbor and Ypsilanti area in Michigan, 

U.S.A. The detailed calculation and results of life cycle costs comparing the plug-in all-electric, 

wireless all-electric, conventional pure diesel and diesel hybrid bus systems are also provided. 

Bus System Simulation 

The integrated life cycle assessment and life cycle cost (LCA-LCC) model was based on a 

bus system simulation using the Ann Arbor and Ypsilanti area bus fleet as a case study [16]. The 

adapted bus system map is shown in Figure 3.6. Detailed parameters are summarized in Table 3.4 

and Table 3.5 [15]. The simulation was a simplification of the real bus system and several 

assumptions were made to facilitate modeling, including: 

 Twenty-one routes were modeled and classified into three groups: the blue, red and green 

routes. Thirteen blue routes operate around Ann Arbor, four red routes operate between 

Ann Arbor and Ypsilanti, and four green routes operate near Ypsilanti. 

 Altogether 67 buses were modeled. 

 Buses in the same group were assumed to operate in the same manner, including the same 

range traveled, the same dwell time at bus stops and the same size of battery. 

 Ann Arbor and Ypsilanti downtown areas were assumed to be the areas illustrated as the 

white boxes shown in Figure 3.6, where multiple routes can share a same bus stop. 

However, a suburban bus stop was assumed to be used by a single route exclusively. 

 At the Ann Arbor’s Blake Transit Center (BTC) and the Ypsilanti Transit Center (YTC), 

buses were assumed to stay as long as 6 minutes. 

 Approximately 25% of the bus operation time was assumed to be the dwell time at bus 

stops and transit centers [48].  

 The onboard wireless charging coil weight (order of magnitude of kilograms) is assumed 

to be negligible compared to the battery downsizing (order of magnitude of metric tonne). 

Therefore, the impact of additional charging coil weight is not considered in this model but 

can be incorporated in future work for a more sophisticated model. 
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Based on the bus system simulation described above, four hypothesized scenarios were 

compared: 

1) Plug-in charging all-electric bus fleet: There assumed to be 67 plug-in chargers located at 

a parking lot for buses to charge overnight only, that is to say no charging during operation 

at bus stops and transit centers. 

2) Wireless charging all-electric bus fleet: Off-board wireless chargers (off-WCs) were 

assumed to be located at transit centers, some bus stops as well as a parking lot to allow 

buses to charge both overnight and during operation. Altogether 428 off-WCs were 

assumed to be distributed across the Ann Arbor and Ypsilanti area. 

3) Conventional pure diesel bus fleet and 4) diesel hybrid bus fleet: Buses in these two 

scenarios were assumed to be fueled by existing pumps, thus no additional costs of fueling 

facilities were accounted. 

 

 
Figure 3.6 Adapted TheRide bus system map, based on the bus system map from the Ann Arbor 

Area Transportation Authority [16] 
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Table 3.4 Bus system simulation: route details 
 Route Details (Downtown + Suburb) Suburb Details 

Route 

Group 

How 

many 

routes 

miles/ 

loop 

stops/ 

loop 

loops/ 

weekday 

loops/ 

Sat or 

Sun 

hour/ 

loop 

buses/ 

route 

stops (both 

directions)/ 

route 

off-WCs 

(both 

directions)/

route 

charging 

time 

(hour) 

Blue 13 9  
(= 14 km) 

42 13 7 1 3 28 8 0.008 

Red 4 13 
(= 21 km) 

64 9 5 1.5 4 32 10 0.008 

Green 4 9 
(= 14 km) 

42 13 7 1 3 28 8 0.008 

Note: Take the blue routes as an example. There are 13 blue routes, and each route has 3 buses. Each bus travels 9 

miles (= 14 km) in each loop (round trip). One loop has 42 stops deployed and takes 1 hour. Each bus travels 13 

loops on weekday and 7 loops on Saturday or Sunday. Of the 42 stops in each loop, 28 stops are in suburb and 8 

stops out of those 28 stops are equipped with off-board wireless chargers (off-WCs). In suburb, the bus charges 

0.008 hour at each off-WC. 

Table 3.5 Bus system simulation: details of downtown, transit centers and parking lot 
Downtown Details Ann Arbor downtown Ypsilanti downtown 

Number of bus stops 160 80 

Number of off-WCs 80 40 

Time of charging/charging stop (hour) 0.01 0.01 

Transit Center Details 

 BTC CCTC Hospital Union YTC 

Number of off-WCs 10 4 4 2 6 

Time of charging (hour) 0.1 0.01 0.01 0.01 0.1 

Parking Lot Details 

Number of plug-in chargers 67 

Number of off-WCs 67 

Note: BTC = Blake Transit Center; CCTC = Central Campus Transit Center; YTC = Ypsilanti Transit Center.  
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Life Cycle Cost Calculation 

Table 3.6 Life cycle cost calculation: plug-in charging all-electric bus system (unit: U.S. $) 
  Capital Costs Operation Costs Total Cumulative 

Year 
Discount 

Factor 

Buses (w/o 

batteries) 

Battery 

packs 

Plug-in 

chargers 

Onboard 

wireless 

chargers 

Offboard 

wireless 

chargers 

Charger 

installation 

Electricity 

(day) 

Electricity 

(night) 
Diesel 

Maintenance - 

facility & 

infrastructure 

Maintenance 

- propulsion 

Total annual 

costs 
Plug-in system 

0 1.00 33,500,000 15,351,375 536,000 0 0 67,000 0 0 0 0 0 49,454,375 49,454,375 

1 0.97 0 0 0 0 0 0 0 836,885 0 100,000 352,638 1,244,714 50,699,089 

2 0.93 0 0 0 0 0 0 0 853,623 0 100,000 352,638 1,217,056 51,916,144 

3 0.90 0 0 0 0 0 0 0 870,695 0 100,000 352,638 1,190,118 53,106,262 

4 0.87 0 0 0 0 0 0 0 888,109 0 100,000 352,638 1,163,879 54,270,141 

5 0.84 0 0 0 0 0 0 0 905,871 0 100,000 352,638 1,138,319 55,408,460 

6 0.81 0 0 0 0 0 0 0 923,989 0 100,000 352,638 1,113,417 56,521,877 

7 0.78 0 0 0 0 0 0 0 942,468 0 100,000 352,638 1,089,154 57,611,031 

8 0.75 0 7,219,023 0 0 0 0 0 961,318 0 100,000 352,638 6,505,529 64,116,560 

9 0.73 0 0 0 0 0 0 0 980,544 0 100,000 352,638 1,042,470 65,159,030 

10 0.70 0 0 0 0 0 0 0 1,000,155 0 100,000 352,638 1,020,014 66,179,045 

11 0.68 0 0 0 0 0 0 0 1,020,158 0 100,000 352,638 998,126 67,177,171 

12 0.65 33,500,000 0 0 0 0 0 0 1,040,561 0 100,000 352,638 22,891,096 90,068,267 

13 0.63 0 0 0 0 0 0 0 1,061,373 0 100,000 352,638 955,987 91,024,254 

14 0.61 0 0 0 0 0 0 0 1,082,600 0 100,000 352,638 935,706 91,959,960 

15 0.59 0 0 0 0 0 0 0 1,104,252 0 100,000 352,638 915,929 92,875,888 

16 0.57 0 3,394,764 0 0 0 0 0 1,126,337 0 100,000 352,638 2,824,405 95,700,293 

17 0.55 0 0 0 0 0 0 0 1,148,864 0 100,000 352,638 877,832 96,578,125 

18 0.53 0 0 0 0 0 0 0 1,171,841 0 100,000 352,638 859,486 97,437,611 

19 0.51 0 0 0 0 0 0 0 1,195,278 0 100,000 352,638 841,588 98,279,199 

20 0.49 0 0 0 0 0 0 0 1,219,183 0 100,000 352,638 824,128 99,103,328 

21 0.48 0 0 0 0 0 0 0 1,243,567 0 100,000 352,638 807,093 99,910,421 

22 0.46 0 0 0 0 0 0 0 1,268,438 0 100,000 352,638 790,470 100,700,891 

23 0.44 0 0 0 0 0 0 0 1,293,807 0 100,000 352,638 774,249 101,475,140 

24 0.43 0 0 0 0 0 0 0 1,319,683 0 100,000 352,638 758,418 102,233,558 

Note: Total annual costs and cumulative costs were discounted to 2014 U.S. dollar. 

 

Table 3.7 Life cycle cost calculation: wireless charging all-electric bus system (unit: U.S. $) 
  Capital Costs Operation Costs Total Cumulative 

Year 
Discount 

Factor 

Buses (w/o 

batteries) 

Battery 

packs 

Plug-in 

chargers 

Onboard 

wireless 

chargers 

Offboard 

wireless 

chargers 

Charger 

installation 

Electricity 

(day) 

Electricity 

(night) 
Diesel 

Maintenance - 

facility & 

infrastructure 

Maintenance 

- propulsion 
Total annual costs 

Wireless 

system 

0 1.00 33,500,000 6,109,847 0 335,000 2,140,000 4,280,000 0 0 0 0 0  46,364,847   46,364,847  

1 0.97 0 0 0 0 0 0 482,563 352,520 0 100,000  352,638  1,242,974   47,607,820  

2 0.93 0 0 0 0 0 0 492,214 359,570 0 100,000  352,638  1,215,343   48,823,163  

3 0.90 0 0 0 0 0 0 502,058 366,762 0 100,000  352,638  1,188,431   50,011,594  

4 0.87 0 0 0 0 0 0 512,099 374,097 0 100,000  352,638  1,162,219   51,173,813  

5 0.84 0 0 0 0 0 0 522,341 381,579 0 100,000  352,638  1,136,684   52,310,497  

6 0.81 0 0 0 0 0 0 532,788 389,210 0 100,000  352,638  1,111,807   53,422,304  

7 0.78 0 0 0 0 0 0 543,444 396,995 0 100,000  352,638  1,087,569   54,509,873  

8 0.75 0 2,873,171 0 0 0 0 554,313 404,934 0 100,000  352,638  3,229,078   57,738,951  

9 0.73 0 0 0 0 0 0 565,399 413,033 0 100,000  352,638  1,040,934   58,779,885  

10 0.70 0 0 0 0 0 0 576,707 421,294 0 100,000  352,638  1,018,502   59,798,387  

11 0.68 0 0 0 0 0 0 588,241 429,720 0 100,000  352,638  996,637   60,795,024  

12 0.65 33,500,000 0 0 0 0 0 600,006 438,314 0 100,000  352,638  22,889,630   83,684,654  

13 0.63 0 0 0 0 0 0 612,006 447,080 0 100,000  352,638  954,544   84,639,198  

14 0.61 0 0 0 0 0 0 624,246 456,022 0 100,000  352,638  934,284   85,573,482  

15 0.59 0 0 0 0 0 0 636,731 465,142 0 100,000  352,638  914,530   86,488,012  

16 0.57 0 1,351,116 0 0 0 0 649,466 474,445 0 100,000  352,638  1,662,514   88,150,526  

17 0.55 0 0 0 0 0 0 662,455 483,934 0 100,000  352,638  876,476   89,027,002  

18 0.53 0 0 0 0 0 0 675,704 493,613 0 100,000  352,638  858,150   89,885,152  

19 0.51 0 0 0 0 0 0 689,218 503,485 0 100,000  352,638  840,274   90,725,426  

20 0.49 0 0 0 0 0 0 703,003 513,555 0 100,000  352,638  822,834   91,548,260  

21 0.48 0 0 0 0 0 0 717,063 523,826 0 100,000  352,638  805,819   92,354,078  

22 0.46 0 0 0 0 0 0 731,404 534,302 0 100,000  352,638  789,216   93,143,294  

23 0.44 0 0 0 0 0 0 746,032 544,988 0 100,000  352,638  773,014   93,916,308  

24 0.43 0 0 0 0 0 0 760,953 555,888 0 100,000  352,638  757,201   94,673,509  

Note: Total annual costs and cumulative costs were discounted to 2014 U.S. dollar.  
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Table 3.8 Life cycle cost calculation: conventional diesel bus system (unit: U.S. $) 
  Capital Costs Operation Costs Total Cumulative 

Year 
Discount 

Factor 

Buses (w/o 

batteries) 

Battery 

packs 

Plug-in 

chargers 

Onboard 

wireless 

chargers 

Offboard 

wireless 

chargers 

Charger 

installation 

Electricity 

(day) 

Electricity 

(night) 
Diesel 

Maintenance - 

facility & 

infrastructure 

Maintenance 

- propulsion 

Total annual 

costs 

Conventional 

system 

0 1.00 30,504,966 0 0 0 0 0 0 0 0 0 0 30,504,966 30,504,966 

1 0.97 0 0 0 0 0 0 0 0 1,922,354 114,746 362,234 2,315,959 32,820,925 

2 0.93 0 0 0 0 0 0 0 0 2,034,619 114,746 362,234 2,340,080 35,161,005 

3 0.90 0 0 0 0 0 0 0 0 2,153,441 114,746 362,234 2,365,625 37,526,630 

4 0.87 0 0 0 0 0 0 0 0 2,279,202 114,746 362,234 2,392,593 39,919,222 

5 0.84 0 0 0 0 0 0 0 0 2,412,307 114,746 362,234 2,420,984 42,340,206 

6 0.81 0 0 0 0 0 0 0 0 2,553,186 114,746 362,234 2,450,800 44,791,006 

7 0.78 0 0 0 0 0 0 0 0 2,702,292 114,746 362,234 2,482,043 47,273,049 

8 0.75 0 0 0 0 0 0 0 0 2,860,106 114,746 362,234 2,514,718 49,787,767 

9 0.73 0 0 0 0 0 0 0 0 3,027,136 114,746 362,234 2,548,829 52,336,595 

10 0.70 0 0 0 0 0 0 0 0 3,203,921 114,746 362,234 2,584,381 54,920,976 

11 0.68 0 0 0 0 0 0 0 0 3,391,030 114,746 362,234 2,621,381 57,542,357 

12 0.65 30,504,966 0 0 0 0 0 0 0 3,589,066 114,746 362,234 22,614,918 80,157,276 

13 0.63 0 0 0 0 0 0 0 0 3,798,668 114,746 362,234 2,699,759 82,857,035 

14 0.61 0 0 0 0 0 0 0 0 4,020,510 114,746 362,234 2,741,155 85,598,190 

15 0.59 0 0 0 0 0 0 0 0 4,255,308 114,746 362,234 2,784,035 88,382,225 

16 0.57 0 0 0 0 0 0 0 0 4,503,818 114,746 362,234 2,828,413 91,210,637 

17 0.55 0 0 0 0 0 0 0 0 4,766,841 114,746 362,234 2,874,299 94,084,936 

18 0.53 0 0 0 0 0 0 0 0 5,045,224 114,746 362,234 2,921,708 97,006,644 

19 0.51 0 0 0 0 0 0 0 0 5,339,865 114,746 362,234 2,970,654 99,977,298 

20 0.49 0 0 0 0 0 0 0 0 5,651,713 114,746 362,234 3,021,153 102,998,451 

21 0.48 0 0 0 0 0 0 0 0 5,981,773 114,746 362,234 3,073,221 106,071,672 

22 0.46 0 0 0 0 0 0 0 0 6,331,109 114,746 362,234 3,126,875 109,198,548 

23 0.44 0 0 0 0 0 0 0 0 6,700,846 114,746 362,234 3,182,134 112,380,682 

24 0.43 0 0 0 0 0 0 0 0 7,092,175 114,746 362,234 3,239,017 115,619,699 

Note: Total annual costs and cumulative costs were discounted to 2014 U.S. dollar. 

 

 

Table 3.9 Life cycle cost calculation: diesel hybrid bus system (unit: U.S. $) 
  Capital Costs Operation Costs Total Cumulative 

Year 
Discount 

Factor 

Buses (w/o 

batteries) 

Battery 

packs 

Plug-in 

chargers 

Onboard 

wireless 

chargers 

Offboard 

wireless 

chargers 

Charger 

installation 

Electricity 

(day) 

Electricity 

(night) 
Diesel 

Maintenance - 

facility & 

infrastructure 

Maintenance 

- propulsion 

Total annual 

costs 
Hybrid system 

0 1.00 41,256,121 2,345,000 0 0 0 0 0 0 0 0 0 43,601,121 43,601,121 

1 0.97 0 0 0 0 0 0 0 0 1,559,646 97,159 352,638 1,939,616 45,540,737 

2 0.93 0 0 0 0 0 0 0 0 1,650,729 97,159 352,638 1,957,080 47,497,817 

3 0.90 0 0 0 0 0 0 0 0 1,747,131 97,159 352,638 1,975,771 49,473,588 

4 0.87 0 0 0 0 0 0 0 0 1,849,164 97,159 352,638 1,995,687 51,469,275 

5 0.84 0 0 0 0 0 0 0 0 1,957,155 97,159 352,638 2,016,827 53,486,102 

6 0.81 0 0 0 0 0 0 0 0 2,071,453 97,159 352,638 2,039,188 55,525,291 

7 0.78 0 0 0 0 0 0 0 0 2,192,426 97,159 352,638 2,062,771 57,588,062 

8 0.75 0 1,102,742 0 0 0 0 0 0 2,320,463 97,159 352,638 2,918,567 60,506,629 

9 0.73 0 0 0 0 0 0 0 0 2,455,979 97,159 352,638 2,113,607 62,620,236 

10 0.70 0 0 0 0 0 0 0 0 2,599,408 97,159 352,638 2,140,864 64,761,100 

11 0.68 0 0 0 0 0 0 0 0 2,751,213 97,159 352,638 2,169,350 66,930,450 

12 0.65 41,256,121 0 0 0 0 0 0 0 2,911,884 97,159 352,638 29,187,111 96,117,561 

13 0.63 0 0 0 0 0 0 0 0 3,081,938 97,159 352,638 2,230,033 98,347,594 

14 0.61 0 0 0 0 0 0 0 0 3,261,923 97,159 352,638 2,262,240 100,609,834 

15 0.59 0 0 0 0 0 0 0 0 3,452,419 97,159 352,638 2,295,699 102,905,533 

16 0.57 0 518,567 0 0 0 0 0 0 3,654,041 97,159 352,638 2,624,895 105,530,428 

17 0.55 0 0 0 0 0 0 0 0 3,867,437 97,159 352,638 2,366,408 107,896,836 

18 0.53 0 0 0 0 0 0 0 0 4,093,295 97,159 352,638 2,403,676 110,300,512 

19 0.51 0 0 0 0 0 0 0 0 4,332,343 97,159 352,638 2,442,232 112,742,744 

20 0.49 0 0 0 0 0 0 0 0 4,585,352 97,159 352,638 2,482,088 115,224,833 

21 0.48 0 0 0 0 0 0 0 0 4,853,137 97,159 352,638 2,523,256 117,748,089 

22 0.46 0 0 0 0 0 0 0 0 5,136,560 97,159 352,638 2,565,748 120,313,837 

23 0.44 0 0 0 0 0 0 0 0 5,436,535 97,159 352,638 2,609,579 122,923,416 

24 0.43 0 0 0 0 0 0 0 0 5,754,029 97,159 352,638 2,654,761 125,578,177 

Note: Total annual costs and cumulative costs were discounted to 2014 U.S. dollar.  



 

67 

 

Uncertainty Analysis and Monte Carlo Simulation 

The probability distributions of major parameters for the Monte Carlo simulation are 

summarized in Table 3.10 and the result is shown in Figure 3.7. The low and high values of each 

parameter are based on literature data when available otherwise estimates based on our best 

judgement were used. 

 

Table 3.10 Triangular probability distributions of major parameters for the Monte Carlo simulation (2014 U.S. $) 

Parameter Unit Low Most Likely High References and Notes 

Unit price of battery pack $/kWh 300 500 700 [30-32] 

Energy - electricity rate - Michigan - day $/kWh 0.0773 0.1137 0.1511 
[33] 

Range and mean of all sectors in Michigan 

Energy - electricity rate - Michigan - night $/kWh 0.0773 0.1137 0.1511 
[33] 

Range and mean of all sectors in Michigan 

Procurement - all-electric bus (w/o 

battery) 

$/bus (no 

battery) 
450,000 500,000 550,000 [39]  

Procurement - onboard wireless charger 

(60 kW) 
$/ea 3,000 5,000 7,000 [17] 

Procurement - off-board wireless charger 

(60 kW) 
$/ea 3,000 5,000 7,000 [17] 

Installation of plug-in charger $/ea 500 1,000 1,500 Assumption 

Installation of off-board wireless charger $/ea 5,000 10,000 15,000 [17] 

Maintenance of plug-in charger $/year/fleet 50,000 100,000 150,000 Assumption 

Maintenance of off-board wireless charger $/year/fleet 50,000 100,000 150,000 Assumption 

Discount rate percent 1.60% 3.60% 5.60% [34] 

Annual inflation rate - lithium-ion battery percent -10.00% -9.00% -7.50% [32, 35, 36]  

Annual inflation rate of diesel price percent 4.70% 5.80% 7.00% [37, 38]  

Wireless charging efficiency percent 80% 85% 90% [5, 21-23] 

Lightweighting correlation percent 4.00% 4.50% 5.00% 

Assumption on percentage of  battery-to-wheel 

energy consumption reduction per 10% bus mass 

reduction 

Time of wireless charging per downtown 

charging station 
hour 0.009 0.01 0.011 Assumption 

Time of wireless charging per transit 

center 
hour 0.09 0.1 0.11 Assumption 

Note: a negative inflation rate means the price is actually deflating. 
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Figure 3.7 Uncertainties analysis of plug-in all-electric, wireless all-electric, conventional diesel 

and diesel hybrid bus systems (Monte Carlo simulation results with 20,000 trials). Top whisker is 

the maximum, higher box bound is the third quartile, the line within the box is the median, lower 

box bound is the first quartile, bottom whisker is the minimum 
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4 CHAPTER 4  

Wireless charger deployment for an electric bus network: A multi-objective 

life cycle optimization 

 

Abstract 

Deploying large-scale wireless charging infrastructure at bus stops to charge electric transit 

buses when loading and unloading passengers requires significant capital investment and brings 

environmental and energy burdens due to charger production and deployment. Optimal siting of 

wireless charging bus stops is key to reducing these burdens and enhancing the sustainability 

performance of a wireless charging bus fleet. This chapter presents a novel multi-objective 

optimization model framework based on life cycle assessment (LCA) for siting wireless chargers 

in a multi-route electric bus system. Compared to previous studies, this multi-objective 

optimization framework evaluates not only the minimization of system-level costs, but also newly 

incorporates the objectives of minimizing life cycle greenhouse gas (GHG) emissions and energy 

consumption during the entire lifetime of a wireless charging bus system. The LCA-based 

optimization framework is more comprehensive than previous studies in that it encompasses not 

only the burdens associated with wireless charging infrastructure deployment, but also the benefits 

of electric bus battery downsizing and use-phase vehicle energy consumption reduction due to 

vehicle lightweighting, which are directly related to charger siting. The impact of charger siting at 

bus stops with different route utility and bus dwell time on battery life is also considered. To 

demonstrate the model application, the route information of the University of Michigan bus routes 

is used as a case study. Results from the baseline scenario show that the optimal siting strategies 

can help reduce life cycle costs, GHG, and energy by up to 13%, 8%, and 8%, respectively, 

compared to extreme cases of “no charger at any bus stop” and “chargers at every stop”. Further 

sensitivity analyses indicate that the optimization results are sensitive to the initial battery unit 
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price ($/kWh), charging power rate (kW), charging infrastructure costs, and battery life estimation 

methods.  

 

4.1 Introduction 

The large-scale penetration of electric vehicles (EVs) is an important strategy to mitigate 

the greenhouse gas (GHG) emissions, environmental impacts as well as energy consumption [1] 

of the transportation sector that is responsible for 27% of U.S. GHG emissions [2] and 28% of 

total U.S. energy use [3]. However, there are critical challenges that slow down the penetration 

and limit the potential for sustainability performance of EVs, stemming from: (1) the lack of 

accessibility and convenience of charging stations limiting the range of EVs that leads to range 

anxiety; and (2) the high upfront cost of EVs limiting the economic performance mainly because 

of the expensive and large onboard rechargeable battery [4]. Wireless power transfer (WPT) for 

EVs, more commonly known as the wireless charging technology [4], is an emerging charging 

method alternative to plug-in charging for EVs and can eliminate the two aforementioned 

bottlenecks of EVs. The electric energy is transferred wirelessly through an air gap from the 

transmitter coils embedded on the ground to the receiver coils installed on the bottom of vehicles 

via an electromagnetic field. Deploying wireless charging infrastructure at bus stops, traffic 

intersections, congestion areas as well as highways enables convenient and widespread charging 

accessibility [5] without the need to plug in for charging, and also enables significant downsizing 

(1/3–1/5 of original weight) of the heavy and expensive onboard EV battery because of multiple 

“opportunity charges” en route while the vehicle still fulfills the range requirements [6]. Battery 

downsizing has significant implications for lightweighting the vehicle and improving fuel 

economy [6] so as to reduce the cost of purchasing and driving an EV. Based on the charging mode, 

wireless charging can be classified as stationary charging, i.e., charging while the vehicle is not 

moving, and dynamic charging, i.e., charging when the vehicle is moving on the roadway. Transit 

buses, for example, can be wirelessly charged when picking up or dropping off passengers at bus 

stops in stationary status. Currently, there are several wireless charging electric bus routes under 

test in different countries and the grid-to-battery energy transfer efficiency is typically higher than 

80% [4], which shows electric buses as a promising application of wireless charging technology. 
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Although WPT has the potential to enhance the sustainability performance of EVs by 

downsizing the battery and lightweighting the vehicle, the large-scale deployment of wireless 

charging infrastructure poses critical sustainability trade-offs in terms of economic, environmental, 

and energy burdens. Therefore, a comprehensive assessment framework is needed to evaluate the 

sustainability performance of WPT EV systems. Life cycle assessment (LCA) and life cycle cost 

analysis (LCCA) have been widely used to evaluate the environmental impacts, energy use, and 

economic performance of a product or system, which encompasses not only the use-phase burdens, 

but also the upfront production and manufacturing stages and end-of-life burdens. Authors of this 

study have previously applied LCA and LCCA to compare the life cycle energy consumption, 

GHG emissions, and costs of a wireless charging electric bus system with a plug-in charging 

electric bus system, using the bus routes in Ann Arbor, Michigan in the U.S. as a case study [6, 7]. 

A wireless charging electric bus system was found to have comparable life cycle burdens (costs, 

GHG, and energy) as an electric bus system using plug-in charging, because the additional burdens 

from the larger-scale wireless charging infrastructure compared to plug-in charging can be 

canceled out by the benefits of smaller batteries and vehicle lightweighting. Note that this 

conclusion is obtained when the deployment of wireless charging infrastructure at existing bus 

stations is not yet optimized, so this conclusion may be conservative and may underestimate the 

benefits of wireless charging. An optimal (or near-optimal) deployment and allocation of wireless 

charging infrastructure at existing bus stops would be expected to further reduce the life cycle 

burdens of a wireless charging electric bus system and enhance its sustainability performance. 

Therefore, this study aims to investigate the reductions of life cycle burdens (costs, GHG, 

and energy) when optimally siting wireless charging infrastructure at existing bus stops and 

compare these with extreme cases of “no charger at any bus stop” and “chargers at every stop”, by 

using a multi-objective (costs, GHG, and energy) life cycle optimization (LCO) framework. This 

optimization problem is a subset of facility location optimization problems. Optimization is a 

common tool used by researchers to explore the siting of public charging infrastructure for electric 

vehicles [8, 9]. Several researchers have optimized the siting of wireless charging stations for a 

single electric bus route [10, 11], but they lacked a comprehensive life cycle scope and only 

evaluated the economics of a single bus route, not incorporating other sustainability metrics, such 

as emissions and energy consumption and not considering the utility of a charging station and route 

overlapping if used in a network of routes. Systematic assessment and optimization utilizing a life 
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cycle framework is required to effectively evaluate and understand the trade-offs between the 

economic, environmental, and energy burdens of large-scale WPT infrastructure deployment and 

the benefits of battery downsizing and fuel economy improvement. 

To the best of the authors’ knowledge, this is the first study to optimize the deployment of 

wireless charging infrastructure for a network of bus routes based on a multi-objective life cycle 

framework. The novel contribution of this work compared to previous studies is threefold: 

 This multi-objective optimization framework evaluates not only the minimization of 

system-level costs, but also newly incorporates and minimizes the two key sustainability 

indicators of life cycle GHG emissions and energy consumption that are often evaluated in 

sustainability analysis of emerging technologies [6, 12]. 

 The LCA-based optimization framework is more comprehensive than previous studies in 

that it encompasses not only the burdens associated with wireless charging infrastructure 

deployment, but also the benefits of electric bus battery downsizing and use-phase vehicle 

energy consumption reduction due to vehicle lightweighting, which are directly related to 

charger siting. 

 The multi-route setting enables evaluation of the impact of charger siting at bus stops with 

different route utility and bus dwell time on battery life. To exhibit the application of this 

model framework, the route information of the University of Michigan transit bus system 

(also known as the Blue Buses) is used as a case study. 

This multi-objective LCO model is developed to inform research, development, and 

deployment of wireless charging technologies. The model formulas in the method section and the 

different scenario analyses in the discussion section will inform the adaptation of this model 

framework to other real-world scenarios in different cities with different characteristics of bus 

system size and vehicle miles traveled. 

The rest of chapter is organized as follows. Section 4.2 describes methods of constructing 

the optimization model framework. Section 4.3 presents first the optimization results when solving 

for each objective individually, then the multi-objective results. Section 4.4 discusses the results 

based on several sensitivity, uncertainty, and scenario analyses. Finally key conclusions and 

takeaways are summarized in Section 4.5. 
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4.2 Methods 

4.2.1 Overview of the optimization model 

A multi-objective optimization model based on life cycle metrics is established to inform 

decision makers to strategically deploy wireless charging infrastructure at bus stations, based on 

the existing route network of the Blue Bus system at the University of Michigan as an example of 

model application. The model aims to solve for the minimal life cycle impacts in terms of costs, 

GHG emissions, and energy use, by selecting the best bus stations from 83 candidate stops shared 

by seven different bus routes with a total of 29 buses. The dwell time data from a four-day 

operation (2015-09-29 to 2015-10-02) were collected and provided by the University of Michigan 

Parking and Transportation Services, and the average dwell time of each route at each stop is used 

for this model. To better simulate and evaluate the application of wireless charging in bus systems, 

the buses in this system are all assumed to be pure electric vehicles instead of the hybrid electric 

or pure diesel buses currently operating in the system. These all-electric buses are assumed to be 

charged during picking up or dropping off passengers at the bus stops equipped with wireless 

chargers when their speed is zero, i.e., stationary charging. The bus schedules and dwell time at 

stops are assumed to remain unchanged regardless of the wireless charging availability. 

As shown in Figure 4.1, a life cycle framework is established for transit agencies to 

compute the economic, environmental, and energy burdens of WPT infrastructure deployment and 

operation of a transit system of electric buses in a 24 year scope that is assumed to be equivalent 

of charging infrastructure life and twice the standard twelve-year life of a transit bus [7, 13, 14]. 

The burdens from wireless charging infrastructure, battery production and replacement, and use 

phase electricity consumption are aggregated to compute life cycle costs, GHG emissions, and 

energy use. There are 83 binary decision variables with values of either 1 or 0, indicating 

respectively either “deploy” or “not deploy” wireless charging infrastructure at each of the 83 

candidate stops. The decision space has a total of 283 possible combinations of solutions, which 

is too large to conduct a complete search on all combinations of the decision variables. Therefore, 

genetic algorithm (GA) [15], an adaptive heuristic search algorithm based on the evolutionary 

ideas of natural selection and genetics, is employed. Once the charger deployment is fixed in each 

optimization iteration, the daily state of charge (SOC) patterns of each route are obtained. Then 
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the batteries for each route are right-sized to accommodate the SOC patterns so that the peak SOC 

never exceeds 95% and valley SOC never drops below 15%, which leaves room for extra travel 

demand and future capacity fade due to aging. The initial SOC at the start of daily operation is 

assumed to be 90%. Based on the SOC pattern, the battery life of each bus route is estimated using 

the rainflow algorithm [11, 16] (description will be provided in a later section). With the right-

sized battery (kWh) and estimated battery life (years), the burdens of battery production and 

replacements in the 24-year scope can be quantified. The electricity consumption during bus 

operation is calculated by adding up the small amounts of charges at charging stations; and the 

electricity consumption during night hours when parked at the bus depot is computed from the 

difference between the end-of-day SOC and the next-day initial SOC of 90%. Therefore, the 

burdens from electricity use can be quantified. Finally, by summing up the burdens from 

infrastructure, batteries, and electricity, the total life cycle burdens are obtained. The end-of-life 

stage and the burdens from production and purchase of the bus itself (without battery) are constant 

and therefore excluded in the optimization model. The time value of money, i.e., the inflation and 

discount of costs of battery and electricity [7], is also considered when calculating life cycle costs.  

 

 

Figure 4.1 Overview of the multi-objective life cycle optimization model. GHG = greenhouse gas 

 

4.2.2 Details of the optimization model 

4.2.2.1 System equations 

Eq. 4.1 − Eq. 4.8 specify the objective function, constraints, and key derivations of the 

optimization model, and Table 4.1 details the definitions of each variable or parameter. The model 
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features the following characteristics, which will be detailed in the following sections: (1) Charger 

deployment in a nested bus route network; (2) Battery life and degradation; and (3) Temporal 

variation of the electric grid. Detailed descriptions of equations are provided in later sections.  

Table 4.1 Definitions of variables and parameters 
Symbol Definition References 

F Objective function, which can be life cycle costs (U.S. $), greenhouse 

gas emissions (kg CO2-eq), or energy consumption (MJ) 

/ 

1  Coefficient of burden for the fixed portion of 100 kW off-board 

wireless charging infrastructure, can be $15,000/unit, 6,040 kg 

CO2-eq/unit, or 101,600 MJ/unit 

[6, 7, 10]  

2  Coefficient of burden for the variable portion of 100 kW off-board 

wireless charging infrastructure, can be $1,200/unit, 1,510 kg CO2-

eq/unit, or 25,400 MJ/unit 

[6, 7, 10] 

3  Coefficient of burden for the 100 kW onboard wireless charger, can be 

$5,000/unit,  1,717 kg CO2-eq/unit, or 29,500 MJ/unit 

[6, 7, 10] 

4,t  Coefficient of burden for the battery unit burden at year t, which can 

be $500/kWh (initially), 39 kg CO2-eq/kWh (same for each year), 

or 577 MJ/kWh (same for each year) 

[6, 7]  

5  Average coefficient of burden for electricity use during bus operation, 

which can be $0.15/kWh, 0.7576 kg CO2/kWh, or 9.71 MJ/kWh 

[17-19] 

6  Average coefficient of burden for electricity use when parked at depot 

at night, which can be $0.08/kWh, 0.7636 kg CO2/kWh, or 9.81 

MJ/kWh 

[17-19] 

t A particular year, t = 0,1,2,…,24 / 

τ Dwell time at a particular stop (minutes), τ ≥ 0 / 

i The stop ID number, where i = 1,2,…,83 / 

s Vector of decision variables, ( ) {0,1}i s where 0 = not deploy 

wireless chargers at stop i; 1 = deploy 

/ 

v Vector of number of power transmitters (i.e., the variable part of off-

board charging infrastructure) at each stop, ( ) {0,1,2}i v  

/ 

r The ID number of bus route, r = 1,2,…,7 / 

onWCn  Number of onboard wireless chargers, which is equal to the number of 

buses, 
onWC 29n   

/ 

bsnum   Number of bus stops (83) / 

rtsnum   Number of bus routes (7) / 

BatCap Vector of battery capacity for each route (kWh) / 

BatRep Matrix of battery replacement for each route r at each year t, 

( , ) {0,1}r t BatRep  where 1 = replace; 0 = not replace 

/ 

operationE  The total electricity charged during bus operation (measured at grid, 

kWh) 

/ 

depotE  The total electricity charged when parked at depot at night (measured 

at grid, kWh) 

/ 

T Matrix of dwell time (minutes) at each stop i for each route r / 

k The count of bus stops a particular bus encounters during a daily 

operation  

/ 
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ke  Cumulative daily electricity demand (kWh) for each route r until stop 

k for battery sizing purpose, and 0 0e  

/ 

e  Vector of cumulative daily electricity demand (kWh) / 

baseECR  The base energy consumption rate (ECR) of an all-electric bus (2 

kWh/mile ≈ 1.24 kWh/km) 

[20] 

ECR'  The adjusted energy consumption rate (kWh/mile) for each route r by 

considering the lightweighting effects  

/ 

kd  The distance (miles) between stop k and stop k+1 for each route r / 

c  The wireless charging efficiency (grid-to-battery) = 85% [4, 6] 

b,t  The battery round-trip efficiency at particular year t, which fades over 

time from 90% to 72% 

[21, 22]  

P The charger power rate (100 kW) [10] 

initialSOC  The initial state of charge (SOC) at the start of day, initial 0.9SOC   / 

lbSOC  The minimum SOC threshold (lower bound), lb 0.15SOC   / 

ubSOC  The maximum SOC threshold (upper bound), ub 0.95SOC   / 

kSOC  State of charge (SOC) at stop k for each route r, 

0 initial 0.9SOC SOC   

/ 

baseBatWgt  The base battery weight (2,492 kg) of an all-electric bus [12, 20] 

baseBusWgt  The base bus weight (15,000 kg) [20] 

  Battery specific energy (0.13 kWh/kg) [12] 

adjR  Ridership weight (kg) adjustment for each route r (the deviation from 

base ridership) 

/ 

  Lightweighting correlation (4.5% energy reduction per 10% electric 

bus mass reduction) 

[6] 

Note: 1 mile ≈ 1.609 km. 

 

Heuristic algorithms are appropriate for solving this discrete optimization problem with a 

large decision space of 283 possible solutions. GA [15] in Matlab is employed to solve this 

optimization problem with discrete integer decision variables. Note that because GA is a heuristic 

algorithm, there is no guarantee that the final solution is the global optimum. Therefore, the 

following efforts are taken to increase the chances of converging closer to the global optimum: (1) 

using a strict and adaptive stop criterion, so that the algorithm runs until the average relative change 

in the fitness function value over consecutive generations is less than or equal to the user-defined 

function tolerance (1e−18) that is much stricter than the Matlab default; (2) setting the maximum 

number of generations/iterations at a very high value (e.g., greater than 1e5) so that a premature 

stop (i.e., reaching the maximum number of iterations before the algorithm converges) is prevented; 
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and (3) solving the problem with 100 different initial conditions based on a random uniform 

distribution. Thus, with these efforts, a near-optimal solution is obtained, which is deemed 

adequate for the purposes of this work in terms of demonstrating the utility of the developed 

framework. Hence, in this study, the term “optimum” or “optimal” refers to “near-global-optimum” 

or “near-global-optimal”. The typical time needed to reach convergence is one to two hours, which 

is reasonable for a transit agency at the planning stage when deciding at which bus stops to deploy 

wireless chargers. 

 

Objective function: 

The objective function Eq. 4.1 summarizes burdens from off-board and onboard wireless 

chargers, batteries, and electricity use during bus operation and night. By using the corresponding 

coefficients for cost, GHG, or energy, this equation can calculate the life cycle costs, GHG, or 

energy. 

bs bs rts24

1 2 3 onWC 4, 5 operation 6 depot

1 1 0 1

min ( ) ( ) ( ) ( , )
num num num

t

i i t r

F i i n r r t E E     
   

        s v BatCap BatRep  

(Eq. 4.1) 

Constraints or key definitions: 

Eq. 4.2 defines a matrix of dwell time (minutes) at each stop i for each route r.  

bs rts( , ) where 1,2,..., ; 1,2,..., ; 0i r i num r num    T                           (Eq. 4.2) 

Eq. 4.3 defines the binary decision variable vector, where 0 means “not deploy wireless 

chargers at stop i” and 1 means “deploy”.  

bs( ) {0,1} where 1,2,...,i i num s   (Decision variables)                               (Eq. 4.3)  

Eq. 4.4 defines the vector of number of power transmitters at each bus stop.  

0 if ( )=0                                                                                                             

( ) 2 if stop is shared by at least two routes and any one dwells at least 0.5 minute

1 otherwise

i

i i

s

v

                                                                                                           






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(Eq. 4.4)  

Eq. 4.5 calculates the cumulative daily electricity demand (kWh) for each route r until stop 

k for battery sizing purpose.  

base c b,

1

base

0

( ) ( ) ( ) if charger available          
( ) 60

( ) ( )                       if charger not available    

where  0

k k t

k

k k

r ECR r P
r

r ECR r


 




 

 
 



e d
e

e d

e

  (Eq. 4.5)  

Eq. 4.6 calculates battery capacity for each route in kWh.  

0 initial lb( ) max{(max( ( )) ) / ( ), 25 kWh}r r SOC SOC  BatCap e e      (Eq. 4.6)  

Eq. 4.7 calculates the adjusted energy consumption rate (kWh/mile) for each route r by 

considering the lightweighting effects of battery downsizing.  

base adj

base

base

( ) / ( )
( ) 1

BatWgt r r
r ECR

BusWgt




  
    

 

BatCap R
ECR'       (Eq. 4.7)  

Eq. 4.8 calculates the battery state of charge (SOC) at stop k for each route r. 

c b,

1 ub1

ub

0 initial

( )
( ) ( ) 60( ) if ( )( )

( ) ( )

otherwise                                                                        

where 0.9

t
k

k kk

P
r r

r r SOCr
r r

SOC

SOC SOC


 




    



 

ECR' d
SOC SOCSOC

BatCap BatCap   (Eq. 4.8)  

4.2.2.2 Charger deployment in a nested bus route network 

The bus system under evaluation is a network of bus routes nested together, with some bus 

stops shared by two or more routes and some exclusively used by a single route. Different from 

optimizing a single route which only requires the model to consider the dwell time at each stop, 

optimizing a network of routes requires the model to characterize the effect of sharing a stop by 

multiple routes and the utility of a charging station. As shown in Eq. 4.2, an 83 × 7 matrix T of 

dwell time in minutes at each stop (83 stops) for each route (seven routes) is established. If a stop 

is selected for deploying charging infrastructure, its stop identification (ID) number will be 

matched with the stop ID in matrix T so that it would be able to calculate the charged electric 
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energy for all the routes sharing that stop. The names of the seven routes are: (1) Bursley-Baits; 

(2) Commuter North & South; (3) Northwood; (4) Diag-to-Diag Express; (5) Northwood Express; 

(6) Oxford Shuttle; and (7) Wall Street. 

The off-board wireless charger is calculated separately as a fixed part and a variable part. 

The fixed part is mainly composed of the inverter and grid connection. The burden from this part 

is fixed regardless of the length of the power transmitter (i.e., the variable part). The burden from 

the variable part is proportional to the length of the power transmitter. The fixed burden of charging 

infrastructure in the entire system is determined by the total number of charging stations, i.e.,

83

1

( )
i

i


 s . On the other hand, the variable length at a particular stop is determined by Eq. 4.4 based 

on the dwell time at the stop and number of buses sharing that stop. The variable burden of 

charging infrastructure in the entire system is determined by the total units of variable parts, i.e., 

83

1

( )
i

i


v . 

 

4.2.2.3 Battery life and degradation 

Batteries for each route are sized by Eq. 4.5 and Eq. 4.6. First, the cumulative daily battery 

energy demand for each route is calculated using Eq. 4.5. Battery capacity is calculated using Eq. 

4.6 so that the battery has enough room to accommodate the energy demand and leaves extra 

capacity for future capacity fade and unexpected usage. A minimum battery capacity of 25 kWh 

is assumed in order to ensure bus operation even if the calculated capacity could be less than 25 

kWh. The battery chemistry is assumed to be lithium-ion in this study. 

After the battery capacity for each route is determined, the actual average energy 

consumption rate ECR’ (kWh/mile) for each route is calculated using Eq. 4.7. This equation first 

computes the percentage of vehicle weight reduction due to battery downsizing from the base 

vehicle and then the change in energy consumption rate is correlated with the change in vehicle 

weight by the lightweighting correlation   [6]. The energy consumption rate is also adjusted for 

the average ridership difference among different routes. Therefore, the lightweighting benefit of 

energy consumption rate reduction due to battery downsizing is modeled. 
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The daily SOC curve for each route can be obtained by using Eq. 4.8 after the battery 

capacity and actual average energy consumption rate are determined. A rule of not exceeding 95% 

SOC is applied so that the battery is never overcharged. The battery is also never over-drained 

because the batteries have been sized to accommodate the maximum energy demand and have 

extra capacity. 

Battery degradation and life can be estimated by models based on either experimental data 

or analytical approaches, which characterize the effects of ambient temperature, state of charge 

profile, and/or depth of charge or discharge [23]. Models with different characteristics serve 

different research needs with considerations of estimation precision, simplicity for implementation, 

and computation time. In this study, the battery life is estimated using the rainflow algorithm [11, 

16] for its simplicity to incorporate battery degradation into life cycle analysis by counting multiple 

full and half cycles of charge/discharge in the daily SOC curves. The correlation equation of 

theoretical cycle life (Cycles) and depth of discharge (DoD) of a lithium-ion battery is based on 

[24] and shown in Eq. 4.9. This is also called the fatigue model, where the working DoD of 

different full and half cycles is translated to cumulated battery fatigue as an indicator for battery 

retirement. For details of this battery life estimation method, please refer to [11, 16]. Among 

different battery chemistries (e.g., lead-acid, nickel metal hydride, and lithium-ion), lithium ion 

battery is one of the most common battery chemistries for EVs. If a different battery chemistry is 

to be used, then replace it with the corresponding regression equation describing the non-linear 

curve of cycle life vs. depth of discharge of that particular battery chemistry. 

                                      
( 1/0.6844)( /145.71)Cycles DoD                                         (Eq. 4.9) 

As the battery ages, the round-trip efficiency is assumed to drop linearly from 90% to 72% 

[21, 22]. 

 

4.2.2.4 Temporal variation of the electric grid 

To more precisely estimate the use phase electricity costs, emissions, and energy 

consumption of electricity use, the optimization model also considers the temporal variations of 

the electricity price ($/kWh) and emissions (kg CO2/kWh), and energy consumption (MJ/kWh) 
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intensities of electricity generation. The variations are mainly due to the dispatch of different 

power plants to meet the varying demand during a day. The annual average temporal variations of 

CO2 and energy intensities of the electricity generation of the Great Lakes/Mid-Atlantic region are 

calculated and shown in Figure 4.2 using the AVoided Emissions and geneRation Tool (AVERT 

model) by the U.S. Environmental Protection Agency (EPA) [19]. There are distinct differences 

in the CO2 and energy intensities between the bus operation hours (i.e., 6 AM–10 PM) and 

overnight hours parked at depot (i.e., 11 PM–6 AM). Therefore, the temporal variations are 

generalized into two categories: operation and depot hours, and average intensities are assumed 

for each category, as indicated by  5  and 6  in Eq. 4.1. The electricity prices for each category 

are based on the U.S. Energy Information Administration (EIA) electricity price of the 

transportation sector in Michigan and calculated using the ratio of on-peak and off-peak electricity 

prices offered by the DTE Energy [17, 18]. The specific values of the intensity coefficients of  5  

and 6    are provided in Table 4.1. 

 

Figure 4.2 Annual average temporal variations of carbon dioxide and energy intensities of the 

electric grid of the Great Lakes/Mid-Atlantic region in the AVoided Emissions and geneRation 

Tool (AVERT model) [19] 

 

4.3 Results 

4.3.1 Single-objective optimization results 
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The optimization model is first solved for each objective separately. The respective values 

of objective function, total stops selected, battery capacity, and battery life at optima are 

summarized in Table 4.2 for each single objective of life cycle costs, GHG emissions, or energy 

consumption. The breakdown of life cycle burdens for each objective is illustrated in Figure 4.3. 

The selected bus stops at the optimal life cycle costs as an example are mapped in Figure 4.4. The 

SOC curves for each route at life cycle cost optima can be found in the Appendix. 

Table 4.2 Single-objective optimization results 
 Cost GHG Energy 

Objective function ($, kg CO2-eq, or MJ)       9,644,967  45,182,578 582,657,784 

Number of stops selected out of 83 stops 42 55 52 

Battery capacity (kWh) Route 1 68 68 68 

Route 2 84 74 76 

Route 3 105 100 100 

Route 4 57 48 48 

Route 5 85 56 67 

Route 6 25 25 25 

Route 7 79 65 65 

Battery life (years) Route 1 6.6 6.6 6.6 

Route 2 6.5 6.5 6.5 

Route 3 6.6 6.6 6.5 

Route 4 7.3 6.9 6.9 

Route 5 7.8 6.8 7.3 

Route 6 8.6 9.9 9.9 

Route 7 6.8 6.8 6.8 

Note: GHG = greenhouse gases. 

 

 
Figure 4.3 Breakdown of optimal life cycle burdens for the single objective of life cycle costs, 

greenhouse gas (GHG) emissions, and energy consumption 
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Figure 4.4 Optimal stations to deploy wireless charging infrastructure at the minimal life cycle 

costs 

 

4.3.2 Multi-objective optimization results 

Multi-objective optimizations are conducted for the paired objectives of (1) life cycle costs 

and GHG emissions and (2) life cycle costs and energy. Note that life cycle GHG and energy 

objectives are not paired and the three objectives are not solved together because GHG and energy 

objectives are similar according to Figure 4.3. The corresponding objective values at different 

numbers of selected stops, trade-off zones of the two objectives, and the respective Pareto frontiers 

(i.e., alternative illustrations of the trade-off zones) are shown in Figure 4.5. The trade-off zone is 

defined as the range of number of selected stops between the optimum of one objective and the 

optimum of the other objective. For example, the cost and GHG objectives reveal the same 

monotonic patterns when the number of selected stops is below 42 and over 55. However, the cost 

objective trades off with the GHG objective when the number of selected stops is between 42 and 

55. The Pareto frontier also illustrates such a trade-off and is obtained by weighting the two 

objectives that are normalized against their own optimal objective function values. Similarly, the 

cost and energy objectives have a trade-off zone between 42 and 52 stops. The majority of the 

stops selected for these objectives are the same, i.e., most of these selected stops are always 

selected regardless of which objective. At the optimal life cycle costs, the life cycle burdens of 

GHG and energy are close to their respective optima. The changes in the values of life cycle 
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objectives in these trade-off zones are smaller than 1%. These weak trade-offs among these 

objectives indicate that when siting the chargers for the minimal life cycle costs, planners would 

also achieve the approximate life cycle GHG and energy minima. 

 

 
Figure 4.5 Multi-objective optimization: (a) Cost and GHG objectives; (b) Pareto frontier of cost 

and GHG objectives; (c) Cost and energy objectives; (d) Pareto frontier of cost and energy 

objectives. The trend lines for the objectives are polynomial approximations. The Pareto lines are 

illustrations of the frontiers. The red circles indicate the extreme values in the Pareto frontiers. 

GHG = greenhouse gases 

 

Results show that the optimal siting strategies of wireless charging infrastructure at 

selected bus stops can help reduce life cycle costs, GHG emissions, and energy by up to 13%, 8%, 

and 8%, respectively, compared to non-optimal cases. Neither the case of “no wireless charging 

stations at all” nor the case of “wireless chargers at every bus stop” would be optimal because the 
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battery capacity can be large and expensive when there is no wireless charging stations at all and 

there is a trade-off of battery life and wireless charging infrastructure burden when there are 

chargers at every bus stop. 

The temporal variation of the electric grid plays an important role in trading off the cost 

objective and two other objectives. With more bus stops selected to deploy wireless charging 

infrastructure, a higher percentage of electricity is charged during bus operation hours when the 

electricity is more expensive due to peak hours but cleaner due to the dispatch of cleaner energy 

sources and thus a lower proportion of electricity is charged at night at the depot when the 

electricity is cheaper but more polluting because of the baseload coal or other pollution-intensive 

and energy-intensive power plants. Therefore, the optimal number of charging stations tends to be 

greater for the GHG and energy objectives than for the cost objective. 

 

4.4 Discussion 

4.4.1 Sensitivity analyses 

The optimization results can be sensitive to the changes in initial battery unit price ($/kWh), 

charging power rate (kW), and charging infrastructure cost ($/unit of on-board, fixed off-board, or 

variable off-board portion of the wireless charger). To evaluate the sensitivity, these parameter 

values are varied based on their probable ranges with the objective of minimizing life cycle costs, 

and the corresponding values of objective functions, number of stops selected, fleet-average 

battery capacity, and fleet-average battery life are plotted in Figure 4.6. 
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Figure 4.6 Sensitivity analyses of (a) initial battery unit price ($/kWh), (b) power rate of 

charging (kW), and (c) charging infrastructure costs. The base cases are highlighted by gray 

shaded areas. GHG = greenhouse gases 

 

If the initial battery unit price varies from $100 to 1000/kWh, there is a tendency to size 

the battery smaller, which requires more charging stations so that the battery never runs out during 

operation with a compromise of battery life. The results are consistent with the sensitivity analysis 
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reported in [25] which optimized the online electric vehicle (OLEV) in Korea and also showed the 

trade-off between the battery capacity and charging infrastructure. 

If the charging power rate varies from 20 to 200 kW, it means a faster charging rate so that 

more electricity can be charged at charging stops for the same period of time, which allows for a 

smaller number of charging stations and correspondingly smaller battery capacity but shorter 

battery life. The objective values dip first and then slightly increase or flatten because a higher 

power rate also scales up the charging infrastructure burdens, which cancels out some of the 

benefits brought by a higher power rate. 

Due to the uncertainty of charging infrastructure costs at the current stage of wireless 

charging implementation, a sensitivity analysis is conducted. If the infrastructure costs vary from 

0.25 to 2.5 times relative to its base assumed values, the number of charging stations selected 

decreases from 58 to 19 stops, the battery capacity increases, and battery life increases. 

The temporal variability of the electric grid in terms of carbon and energy intensities would 

result in a trade-off of the cost objective with the GHG and energy objectives because of the 

difference in fuel profiles and energy demand between night hours and daily bus operation hours. 

The sensitivity of the trade-off zones with respect to the temporal variation in the carbon and 

energy intensities of the electric grid between night hours and daily bus operation hours is shown 

in Figure 4.7. If the grid is cleaner and less energy intensive during bus operation hours due to 

more renewable energy penetration compared to night hours, the optimal numbers of charging 

stations for the GHG and energy objectives tend to increase so that more electricity can be charged 

when the grid is clean and energy efficient instead of during nighttime when the electricity is 

usually composed of carbon intensive and inefficient fuel sources. Therefore, the trade-off zone 

increases with the increase in the ratio of grid intensities between night and day. The results 

indicate that when the temporal variation is large and the grid is much cleaner and more energy 

efficient in the daytime than the nighttime, an almost full coverage of wireless charging 

infrastructure would be favorable in terms of carbon emissions and energy consumption. 
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Figure 4.7 Sensitivity of the trade-off zones with respect to the temporal variation in the carbon 

and energy intensities of the electric grid between night hours and daily bus operation hours. The 

base case is shown in (a) and (b). The ratio of grid intensities between night and day is increased 

to 1.01 (c, d), 1.025 (e, f), and 1.25 (g, h) times than the base case. The trend lines are 

polynomial approximations of the scattered dots. GHG = greenhouse gases 
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Another sensitivity analysis is conducted on the method of battery life estimation. In the 

base case, the rainflow counting algorithm [11, 16] has been implemented to estimate battery life, 

which can well quantify the battery fatigue from the multiple small charge and discharge cycles 

due to wireless charging throughout the daily operation. To evaluate the effect of battery life 

estimation method on the optimization results, a battery energy-processed model of the LiFePO4 

battery chemistry based on lab experiment [26] is implemented here for a sensitivity analysis. In 

this method, a battery is assumed to be retired when each cell (3.63 Wh) in this battery has 

processed 34.3 kWh of electricity (at a threshold of 80% usable nameplate capacity left at end of 

life), or retired at the end of bus life, whichever comes earlier. 

Results indicate that the optimal number of stops selected would be 35, 59, and 57 for the 

life cycle cost, GHG, and energy objectives, respectively (as a reference, the optimal number of 

stops selected is 42, 55, and 52 in the base case, respectively). This means the minimal life cycle 

costs would be achieved with fewer number of charging stops and the minimal life cycle GHG and 

energy are achieved with slightly more charging stops, but most of the stops selected in the base 

case remain selected in spite of a different battery life estimation method. As a result, the trade-off 

zones for the two pairs of objectives become slightly larger. Detailed results can be found in the 

Appendix. 

 

4.4.2 Uncertainty analysis 

A bus stop is selected to deploy wireless charging infrastructure based on the duration of 

each bus stopping at that stop (i.e., the dwell time) and how frequent and intensive the bus station 

is used and shared (i.e., the utility). Therefore, the siting of charging stations can be sensitive to 

the bus dwell time at each bus stop. For the base case, the four-day average dwell time data for 

each bus stop is used. In this uncertainty analysis, the dwell time at each stop is randomly assigned 

from a normal distribution with a standard deviation of 20% based on its original four-day average 

value. 

The first part of the uncertainty analysis investigates the effect of dwell time uncertainty 

on the number of selected bus stops. Life cycle cost objective is used as an example. When the bus 
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dwell time is normally distributed, the number of selected stops varies from 32 to 46 with a median 

of 38 stops, which is less than the 42 stops selected for the base case. This means that if some bus 

stops that are originally selected are assigned a shorter dwell time, these stops will not be selected, 

and those under-utilized stops that are originally not selected will still remain unselected even 

though they are assigned a longer dwell time. 

The second part of the uncertainty analysis investigates the effect of dwell time uncertainty 

on the objective function values and battery metrics with the fixed bus station siting (42 stops are 

selected when the life cycle cost is minimized in the base case). The variabilities of objective 

function values and fleet-average battery capacity and life with respect to the randomly and 

normally distributed bus dwell time data are shown in Figure 4.8. The life cycle cost objective 

values reveal more uncertainty than the life cycle GHG and energy objectives, and the fleet-

average battery capacity shows greater uncertainty than the fleet-average battery life. According 

to Figure 4.3, a greater proportion of burden is from the batteries for the life cycle cost objective 

than the GHG and energy objectives, which would explain why the life cycle cost objective values 

reveal a greater uncertainty. 

 

 
Figure 4.8 Uncertainty analysis of bus dwell time: (a) life cycle cost, greenhouse gas (GHG), and 

energy objectives; (b) fleet-average battery capacity and life. The output values of the 

uncertainty analysis are normalized against their respective median values so that the boxplots 

show the minimum, first quartile, median, third quartile, maximum, and outlier values of 50 

iterations on the same scale 

 

4.4.3 Scenario analysis 
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4.4.3.1 Social cost of carbon 

The U.S. EPA established a mechanism to evaluate the carbon emissions using the social 

cost of carbon (SCC) [27]. By monetizing the carbon emissions, the two objectives of life cycle 

costs and GHG emissions in the optimization model can be unified into a single grand objective 

function, as shown in Eq. 4.10, 

G cost GHG

1 t

1000 kg
F F F SCC                                               (Eq. 4.10) 

where GF  is the grand objective function ($), costF  is the objective function of life cycle costs 

($), GHGF is the objective function of life cycle GHG emissions (kg), SCC  is the social cost of 

carbon ($/metric tonne CO2). Similar to the calculation of life cycle costs, the life cycle GHG 

emissions include not only the emissions of charger production, but also the use-phase emissions 

from electricity use. 

Therefore, the external impact of carbon emissions can be internalized and expressed in 

the same unit of dollars when optimizing the siting of charging stations. A scenario analysis is 

conducted to investigate the effect of different valuations of SCC on the charging station selection 

and battery sizing, as shown in Figure 4.9. With an increase in the SCC, the optimal number of 

selected stops to deploy wireless charging infrastructure tends to grow and then saturates at 51 

stops selected, compared to the 55 stops selected when considering GHG only as shown previously 

in Table 4.2. Accordingly, the fleet-average battery capacity tends to decrease because more 

charging stations become available. The results indicate that there would be more coverage of 

wireless charging infrastructure when more emphasis is put on the social cost of carbon emissions. 
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Figure 4.9 Scenario analysis of the social cost of carbon 

 

4.4.3.2 Utility of bus stations 

A large city with decentralized routes versus a compact city with routes overlapping with 

one another would have different optimal deployment scenarios of wireless charging infrastructure 

because of different levels of overlapping routes which can be characterized by the utility rate of 

bus stations, defined as the average number of routes per bus stop. In the base case, the utility of 

bus stations is 1.62 routes per stop. In this scenario analysis, the utility is increased to 1.75 routes 

per stop by imposing some stops in proximity to be combined into a single stop so that the bus 

system provides the similar service with fewer total bus stops. The optimization shows that with a 

higher utility of bus stations, fewer optimal charging stops are required (36, 48, and 45 stops 

selected compared to 42, 55, and 52 stops for the base case for the cost, GHG, and energy 

objectives, respectively) and a lower fraction of total burden comes from the charging 

infrastructure (12.8%, 1.5%, and 1.8% compared to the base case 13.6%, 1.6%, and 2.0% for the 

cost, GHG, and energy objectives, respectively). Therefore, the design of a more compact bus 

system with high utility of bus stations would help reduce the relative burdens of charging 

infrastructure, and a more geographically distributed bus system with low utility of bus stations 
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would have a higher proportion of burdens from the charging infrastructure. Detailed optimization 

results of this scenario analysis can be found in the Appendix. 

 

4.5 Conclusions 

In this study, a multi-objective life cycle optimization model framework is established to 

guide research, development, and deployment of wireless charging technologies by characterizing 

the trade-offs of large-scale wireless charging infrastructure deployment versus the battery 

downsizing and vehicle lightweighting benefits, and develop strategies to inform decision makers 

regarding the optimal siting scenarios of wireless charging infrastructure for an electric bus system. 

The utility of model framework is demonstrated by a case study using the route information of the 

existing bus route network at the University of Michigan, Ann Arbor. Results from the baseline 

scenario show that the optimal siting strategies of wireless charging infrastructure at selected bus 

stops can help reduce life cycle costs, GHG emissions, and energy by up to 13%, 8%, and 8%, 

respectively, compared to the non-optimal extreme cases. The extreme cases of “no wireless 

charging stations at all” and “wireless chargers at every bus stop” have higher impacts because the 

battery capacity can be large and expensive when there is no wireless charging stations at all and 

there is a trade-off of battery life and wireless charging infrastructure burden when there are 

chargers at every bus stop. There is no significant conflict among the three sustainability objectives 

so that a near-optimal deployment of wireless charging stations can achieve the three sustainability 

objectives almost simultaneously. For example, when planners optimally site the charging stations 

for the purpose of minimizing life cycle costs, they would almost achieve the minimal life cycle 

GHG emissions and energy consumption as well. 

Further sensitivity and scenario analyses indicate that the conclusions are sensitive to the 

following parameters, assumptions, or calculations: (1) the initial battery unit price, (2) charging 

power rate, (3) charging infrastructure costs, (4) battery life calculation, (5) dwell time at bus stops, 

(6) social cost of carbon, and (7) variability of the electric grid in terms of prices, emissions, and 

energy inputs. Key observations include: 
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 With the objective of minimizing life cycle costs, fewer charging stops would be deployed 

if initial battery unit price is cheaper, charging power rate is higher, charging infrastructure 

costs are higher, or battery aging is slower. 

 Bus dwell time plays an important role in determining whether or not to deploy the wireless 

charging infrastructure at certain bus stops. 

 There would be more coverage of wireless charging infrastructure when more emphasis is 

put on the social cost of carbon emissions. 

 The temporal variability of the electric grid in terms of carbon and energy intensities would 

also greatly trade off the cost objective with the GHG and energy objectives because of the 

difference in fuel profiles and energy demand between night hours and daily bus operation 

hours. An almost full coverage of wireless charging infrastructure at every bus stop would 

be favorable in terms of carbon emissions and energy consumption if the local electric grid 

is much cleaner and more energy efficient in the daytime than the nighttime. 

This optimization model framework can be extended and adapted in different bus system 

settings by customizing route data (dwell time, route schedule, and bus stop information, etc.) to 

aid decision marking and strategic deployment of wireless charging technology in current or 

prospective electric bus projects around the globe. Bus systems in cities with more overlapping 

routes and shared bus stops (i.e., the utility of bus stops is high) than the Ann Arbor Blue Bus 

system would expect a lower fraction of burdens from the charging infrastructure to achieve the 

same level of wireless charging service. On the other hand, cities with a low charging station utility 

would expect a higher proportion of burdens from the charging infrastructure. The adaptation and 

application of this optimization model framework can enhance the sustainability performance of 

electric transit systems and facilitate the penetration of electrified mobility. 
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Appendix B  Supporting information for Chapter 4 

State of charge (SOC) curves for each route 

The state of charge curves for each route at minimal life cycle costs are shown below.  

 

Figure 4.10 State of charge (SOC) curves for each route at life cycle cost optima. Note: 1 mile ≈ 

1.609 km 

 

Scenario analysis: Utility of bus stations 

The base case results are shown in the main body of this chapter. Here are the results of 

the scenario analysis on the utility of bus stations. The single-objective optimization results when 

the utility of bus stations is increased to 1.75 routes per bus stop (the base case is 1.62 routes per 

bus stop) are shown below. 
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Table 4.3 Single-objective optimization results for a scenario of increased utility of bus stations 
 Cost GHG Energy 

Objective function ($, kg CO2-eq, or MJ) 9,548,967 45,190,957 582,541,344 

Number of stops selected out of 83 stops 36 48 45 

Battery capacity (kWh) Route 1 68 68 68 

 Route 2 84 74 76 

 Route 3 105 100 100 

 Route 4 57 48 48 

 Route 5 85 56 67 

 Route 6 25 25 25 

 Route 7 79 79 79 

Battery life (years) Route 1 6.6 6.6 6.6 

 Route 2 6.5 6.5 6.5 

 Route 3 6.6 6.5 6.5 

 Route 4 7.3 6.9 6.9 

 Route 5 7.8 6.8 7.3 

 Route 6 8.6 9.9 9.9 

 Route 7 6.8 6.8 6.8 
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Figure 4.11 Breakdown of optimal life cycle burdens for the single objective of life cycle costs, 

greenhouse gas (GHG) emissions, and energy consumption for a scenario of increased utility of 

bus stations 

 

Battery life sensitivity 

The optimization results when using the energy-processed method for estimating battery 

life are shown in the table and figures below. 
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Table 4.4 Single-objective optimization results (when using the energy-processed method for 

estimating battery life) 
 Cost GHG Energy 

Objective function ($, kg CO2-eq, or MJ) 9,270,706 45,049,855 580,926,259 

Number of stops selected out of 83 stops 35 59 57 

Battery capacity (kWh) Route 1 68 44 47 

 Route 2 98 60 60 

 Route 3 168 100 100 

 Route 4 57 46 46 

 Route 5 85 54 54 

 Route 6 29 25 25 

 Route 7 97 65 88 

Battery life (years) Route 1 10.6 6.8 7.3 

 Route 2 10.6 6.6 6.6 

 Route 3 11.2 6.8 6.8 

 Route 4 12.0 10.7 10.7 

 Route 5 12.0 9.6 9.6 

 Route 6 12.0 12.0 12.0 

 Route 7 10.6 7.2 9.8 

 

 
Figure 4.12 Breakdown of optimal life cycle burdens for the single objective of life cycle costs, 

greenhouse gas (GHG) emissions, and energy consumption (when using the energy-processed 

method for estimating battery life) 
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Figure 4.13 Multi-objective optimization (when using the energy-processed method for 

estimating battery life): (a) Cost and GHG objectives; (b) Cost and energy objectives. The trend 

lines for the objectives are polynomial approximations 
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5 CHAPTER 5  

Life cycle assessment and tempo-spatial optimization of deploying dynamic 

wireless charging technology for electric cars 

 

 

 

Abstract 

Dynamic wireless power transfer (DWPT), or dynamic wireless charging technology, 

enables charging-while-driving and offers opportunities for eliminating range anxiety, stimulating 

market penetration of electric vehicles (EVs), and enhancing the sustainability performance of 

electrified transportation. However, the deployment of wireless charging lanes on highways and 

urban road networks can be costly and resource-intensive. A life cycle assessment (LCA) is 

conducted to compare the sustainability performance of DWPT applied in a network of highways 

and urban roads for charging electric passenger cars. The assessment compares DWPT to 

stationary wireless charging and to conventional plug-in charging using a case study of Washtenaw 

County in Michigan, USA over 20 years. The LCA is based on three key sustainability metrics: 

costs, greenhouse gas (GHG) emissions, and energy burdens, encompassing not only the use-phase 

burdens from electricity and fuel, but also the upfront deployment burdens of DWPT infrastructure. 

A genetic algorithm is applied to optimize the rollout of DWPT infrastructure both spatially and 

temporally in order to minimize life cycle costs, GHG, and energy burdens: (1) spatial optimization 

selects road segments to deploy DWPT considering traffic volume, speed, and pavement 

remaining service life (RSL); (2) temporal optimization determines in which year to deploy DWPT 

on a particular road segment considering EV market share growth as a function of DWPT coverage 

rate, future DWPT cost reduction, and charging efficiency improvement. Results indicate that 

optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces life 

cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables downsizing 
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of the EV battery capacity by up to 48%, compared to the non-DWPT scenarios. Roadside solar 

panels and storage batteries are essential to significantly reduce life cycle energy and GHG burdens 

but bring additional costs. Breakeven analysis indicates a breakeven year for solar charging 

benefits to pay back the DWPT infrastructure burdens can be less than 20 years for GHG and 

energy burdens but longer than 20 years for costs. A monetization of carbon emissions of at least 

$250 per metric tonne of CO2 is required to shift the optimal “pro-cost” deployment to the optimal 

“pro-GHG” deployment. A roadway segment with volume greater than about 26,000 vehicle 

counts per day, speed slower than 55 miles per hour (1 mile ≈ 1.609 km), and pavement RSL 

shorter than 3 years should be given a high priority for early-stage DWPT deployment. 

  

5.1 Introduction 

This chapter evaluates the economic, environmental, and energy performance of wireless 

charging EVs and wireless charging infrastructure systems from a life cycle assessment (LCA) 

perspective. LCA provides a holistic view of technology deployment, encompassing not only the 

use-phase energy use, but also the burdens of infrastructure and equipment deployment necessary 

for the system. A broad LCA scope is important to objectively evaluate the emerging technology 

because wireless charging technology has trade-offs between infrastructure deployment burdens 

and use-phase benefits. This study establishes LCA models and creates scenarios to understand 

under what conditions or scenarios wireless-charging-based transportation systems could have 

better life cycle performance compared to plug-in charging systems in terms of costs, GHG, and 

energy.  

A highlight of this LCA study is that the deployment of DWPT infrastructure is optimized 

both spatially and temporally. This study features not only the spatial optimization of DWPT 

charging lanes studied in literature [1, 2] showing that optimized deployment on key highways and 

urban roadways can electrify the majority of vehicle miles traveled (VMT) in a region, but also 

has a unique temporal optimization component for the gradual rollout of the DWPT infrastructure, 

which is usually overlooked in the literature. This optimization analysis aims to understand how 

to deploy DWPT considering spatial and temporal variations with objectives of minimizing life 

cycle costs, GHG, and energy:  
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 Spatial optimization component. This study studied the spatial optimization of DWPT 

charging lanes on highways and urban roadways, i.e., which road segments are selected for 

charging lane deployment. Three major characteristics or parameters of the roadway 

segments are considered: (1) traffic volume; (2) vehicle speed; and (3) remaining service 

life (RSL) of pavement, which quantitatively reflects the pavement condition. In general, 

a road segment with high volume, low speed, and poor condition is preferred for initial 

deployment as it will generate a high electrified VMT which means a high utilization rate 

of the deployed infrastructure, and also will reduce the burdens of charging lane 

deployment as it is more likely to deploy at the same time of scheduled pavement 

reconstruction and rehabilitation work.  

 Temporal optimization component. This study also focuses on the temporal optimization 

of DWPT infrastructure rollout, i.e., in which year to deploy wireless charging lanes at 

each road segment. There are four major considerations: (1) EV sales; (2) costs of wireless 

charging infrastructure and battery; (3) wireless charging efficiency; and (4) battery 

downsizing. In general, DWPT deployment is good for boosting EV sales [3] more than 

business-as-usual so that the benefits of EVs can be realized sooner and it is also good for 

downsizing the battery and lightweighting the vehicle [4]. In contrast, later deployment is 

good when considering that DWPT and battery costs would both be cheaper and charging 

efficiency would be higher due to mass production and technology improvement. 

The novel contribution of this chapter is the combined spatial and temporal optimization 

utilizing the holistic LCA scope to evaluate the performance of wireless charging under different 

scenarios and to provide guidance for DWPT deployment. The spatial optimization of selecting 

roadway segments considers traffic volume, speed, and pavement condition, and the temporal 

optimization of “when to deploy” considers cost reduction, technical improvement of wireless 

charging technology in the future, and EV market share growth as a function of DWPT coverage 

rate. To the best of authors’ knowledge, it is also the first study using real-world traffic counts data 

for each segment of highways and urban roads [5] to evaluate life cycle performance of wireless 

charging technology deployment. The model is demonstrated using a case study of arterial roads 

in Washtenaw County in Michigan, USA.  
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5.2 Methods 

5.2.1 Overview of system and scenarios 

LCA has been conducted to evaluate the life cycle costs, GHG, and energy of a 

transportation system within a bounded geographical region, e.g., a county, over a period of 20 

years, including infrastructure deployment and vehicle operation. Twenty years is assumed based 

on the expected lifetime of both DWPT infrastructure and pavement [6]. The characteristics of the 

transportation system are defined as follows. 

Functional unit and system boundary. The total VMT associated with arterial roads within 

a bounded geographical region serves as the functional unit of this LCA. Therefore, calculations 

and results of costs, GHG, and energy of infrastructure, chargers, battery, and electricity burdens 

are all based on the total VMT. Other types of VMT, including the VMT associated with non-

arterial (including rural roads) and the VMT outside the geographical boundary, are not 

incorporated. 

Vehicles. The vehicles in this transportation system are passenger cars. Trucks are excluded. 

In terms of powertrain, the vehicles are composed of the conventional internal combustion engine 

vehicles which run on gasoline (referred to as “gasoline/ICE vehicles” in this study) and fully 

electric vehicles (EVs) which run on electricity charged from the electricity grid and/or roadside 

solar panels deployed along the roads. Hybrid vehicles, including PHEVs, are not incorporated for 

model simplicity. The share of EVs within all vehicles varies by year as a function of the coverage 

rate of DWPT on the roadways. The battery and charging equipment are the major differences 

between ICE vehicles and EVs in terms of cost, GHG, and energy burdens at materials production 

and manufacturing stages. Therefore, the EV battery and charging equipment are incorporated, but 

the vehicle body of ICE vehicles and EVs is assumed to have comparable burdens thus excluded 

in the system, based on previous LCA of vehicles [4, 7]. As one of the main battery chemistries 

considered for EV applications, the LiFePO4 battery is chosen as the battery chemistry for this 

study. EVs are assumed to be equipped with on-board wireless charging pads, enabling wireless 

charging as long as they are on DWPT-enabled lanes. Although there are variations in energy 

efficiencies at different speed levels of EVs and ICE vehicles, constant fuel economies are assumed 

in this study for highway and city driving respectively for each type of vehicle, which are adequate 
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to capture the system-level performance of the entire vehicle population given the purpose of this 

study.  

Roadways. Arterial roads, including interstate highways and major urban roadways, are 

potential candidates for DWPT deployment, given their high capacity and utilization. The 

definition of arterial roads varies from country to country, or even state to state and city to city, so 

it depends on each specific case study. Although rural roads take up 60% of total roadway miles 

in the U.S., the VMT on rural roads are only 14%, compared to 86% for interstate and urban 

roadways [2]. The arterial roads are segmented to facilitate the modeling of LCA and optimization. 

Highways are segmented based on entry and exit; urban roadways are segmented based on traffic 

intersections. The coverage rate of DWPT deployment is defined as the lane-miles of roadways 

with DWPT versus the total lane-miles in the region.  

Charging infrastructure. The DWPT infrastructure includes the electric grid power 

delivery infrastructure (feeder & connecting wires), WPT electronics (inverters, transformers, and 

coils), and roadway retrofitting (pavement), as shown in Figure 5.1. 
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Figure 5.1  Schematic of dynamic wireless charging infrastructure. The figure is adapted based 

on a previous study [8] 

 

A case study of Washtenaw County in Michigan is conducted based on the definition of 

the transportation system described above. The following arterial roads are segmented: I-94 East, 

I-94 West, US-23 North, US-23 South, M-14 East, M-14 West, US-12 East, US-12 West, M-52 

North, M-52 South, I-94BL/M-17 East, and I-94BL/M-17 West. These roads are representative of 

highways and urban roads with varying speed limits from 25 to 70 miles per hour (1 mile ≈ 1.609 

km). The traffic volume throughout 24 hours of a day is based on the traffic count data from Traffic 

Monitoring Information System (TMIS) by Michigan Department of Transportation (MDOT) [5]. 

This 24-hour resolution instead of a daily average volume helps determine the GHG emissions and 

energy of wireless charging because the electricity grid has varying emission and energy intensities 

throughout the day due to different dispatch of power plants to meet the varying power demand. 

The GHG (kg CO2-eq/kWh) and energy (MJ/kWh) intensity values varying throughout the day 
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are obtained from the AVoided Emissions and geneRation Tool (AVERT) developed by U.S. 

Environmental Protection Agency (EPA) [9]. The traffic speed is based on the speed limit of each 

roadway segment. The remaining service life (RSL) data are obtained from the Pavement 

Management System by MDOT [10].  

Based on the definition of the transportation system, a total of eleven scenarios are created 

in order to provide a life cycle comparison of DWPT versus SWPT and plug-in charging 

technology, as defined in Table 5.1. Scenarios vary by whether or not they have the following 

components: (1) Plug-in charging (PC) at home/public parking; (2) stationary wireless power 

transfer at home/public parking (SWPT-H/P); (3) stationary wireless power transfer at traffic lights 

(SWPT-Lights); (4) dynamic wireless power transfer (DWPT) on arterial roads; (5) roadside solar 

panels and storage batteries (denoted as “Solar”); (6) EV sales boosted by DWPT deployment 

(denoted as “EV sales boost”), otherwise it is business-as-usual with the base projection of EV 

market growth; (7) Grid & fuel: whether it is using the electricity grid and fuel from Michigan (MI) 

or California (CA). For the scenarios with DWPT, the DWPT deployment is optimized both 

spatially and temporally, which is described in detail in Section 5.2.2. For the scenarios with 

roadside solar panels and storage batteries as electricity sources for charging EVs moving on the 

roadway, the calculation of solar panel size and roadside storage battery capacity is given in the 

Appendix. The scenarios denoted with “CA” evaluate what if the system defined in Washtenaw 

County uses the cleaner and less energy-intensive electricity as in the California grid instead of 

the Michigan grid, and uses the lower transportation electricity price and the higher gasoline price 

in California instead of Michigan. 
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Table 5.1 Description of scenarios 

Scenario number and name PC 
SWPT-

H/P 

SWPT-

Lights 
DWPT Solar 

EV 

sales 

boost 

Grid & 

fuel 

1. PC ✓ - - - - - MI 

2. SWPT-H/P - ✓ - - - - MI 

3. SWPT-H/P + SWPT-Lights - ✓ ✓ - - - MI 

4. SWPT-H/P + DWPT - ✓ - ✓ - ✓ MI 

5. SWPT-H/P + DWPT + SWPT-Lights - ✓ ✓ ✓ - ✓ MI 

6. SWPT-H/P + DWPT + Solar - ✓ - ✓ ✓ ✓ MI 

7. SWPT-H/P + DWPT + SWPT-Lights + Solar - ✓ ✓ ✓ ✓ ✓ MI 

8. SWPT-H/P + DWPT + SWPT-Lights + CA - ✓ ✓ ✓ - ✓ CA 

9. SWPT-H/P + DWPT + Solar + CA - ✓ - ✓ ✓ ✓ CA 

10. SWPT-H/P + DWPT + SWPT-Lights + Solar + CA - ✓ ✓ ✓ ✓ ✓ CA 

11. SWPT-H/P + DWPT + SWPT-Lights + Base EV Growth - ✓ ✓ ✓ - - MI 

Notes: “✓” = “There is”; “-” = “There is not”; PC = plug-in charging; SWPT-H/P = stationary wireless 

power transfer at home/public parking; SWPT-Lights = stationary wireless power transfer at traffic lights; 

DWPT = dynamic wireless power transfer; Solar = roadside solar panels and storage batteries; EV = electric 

vehicle; MI = Michigan electricity grid and fuel; CA = California electricity grid and fuel 

 

The GHG and energy burdens of wireless charging infrastructure are based on the life cycle 

inventory (LCI) analysis conducted by the authors [4]. The metric of GHG emissions is used to 

evaluate environmental performance in this study. Other emissions, such as criteria air pollutants 

of SOx and NOx, can also be studied in future work based on the LCI. The detailed LCI, including 

GHG emissions, criteria air pollutants, and energy of deployment of one lane-mile of DWPT, can 

be found in the Appendix.  

5.2.2 Life cycle optimization of DWPT deployment 

The DWPT deployment is optimized both spatially and temporally for each of the scenarios 

with DWPT as described in Section 5.2.1. In this section, a summary of the optimization problem 

is provided, including the optimization objectives, decision variables, solving method, constraints, 

and highlighted novelty. Details of the model formulation, including the equations and parameters, 

are in the Appendix. 

Objectives. The optimization problem is formulated and solved respectively for the 

following three distinct objectives: (1) minimize life cycle costs on a present-value basis; (2) 

minimize life cycle GHG emissions; and (3) minimize life cycle energy. The optimization aims to 

minimize the life cycle burden (costs, GHG, or energy) in a 20-year period for the transportation 

system defined in Section 5.2.1, by selecting where (i.e., at which segment of roadway) and when 

(i.e., in which year) to deploy the wireless charging infrastructure.  The objective function F  is 
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defined as below, which is the sum of life cycle burdens from eleven components s

( 1,2,...,11s  ), including DWPT and SWPT infrastructure, solar infrastructure, EV batteries, and 

use-phase energy consumption, etc. The life cycle burden F  can be life cycle cost (U.S. $), GHG 

(kg CO2-eq), or energy (MJ) burdens, depending on the objective currently under evaluation. 

Details can be found in the Appendix. 

11

1

s

s

F 


                                                                 (Eq. 5.1) 

Decision variable and solving method.  The decision variable is a vector in which each 

element represents a road segment and has a value from 1 to 20 indicating the year of deployment 

for each road segment or a value of 0 if a road segment is not selected for wireless charger 

deployment in any year within the 20-year period. The decision variable vector is solely composed 

of integers so the optimization problem is an integer programming problem. A heuristic genetic 

algorithm (GA) solver [11] is used to find a near-optimal solution for the model, because of the 

nonlinearity and complexity (e.g., the temporal variations of EV market share in response to 

DWPT deployment) and large decision space (i.e., deciding which year during the 20 years to 

deploy DWPT for each of 154 segments of roadways) of this discrete optimization model. GA is 

not guaranteed to find a global optimal solution because the algorithm is heuristic, but the near-

optimal solutions obtained by GA are adequate for the purpose of this study as it aims to 

demonstrate the utility of the model framework, illustrate the tradeoffs and interactions between 

model elements, and compare and identify the scenarios under which wireless charging can help 

reduce life cycle costs, GHG, and energy. Therefore, the term “optimal” refers to “near-optimal” 

in this study. The objective F  is a function of the decision variable vector X  defined below 

(details can be found in the Appendix), indicating the year of deployment of DWPT 

( 1, 2, 3, ..., 20jx  ) or no deployment in any year ( 0jx  ) for each road segment j. 

 | 0,1, 2, 3, ..., 20 1,2,...,154j jx x j    X                                (Eq. 5.2) 

Constraints. The constraints of this optimization problem include the following: (1) Each 

element in the decision variable vector has to be an integer ranging from 0 to 20; (2) To limit the 

length of DWPT lanes deployed per year, the total annual expense for deploying DWPT on 



 

113 

 

selected road segments should not exceed a pre-defined budget allocated to the DWPT deployment 

from the transportation administrative agency, which is assumed to be $30 million per year for the 

base scenario to pay for road retrofitting work that is directly related to DWPT deployment, DWPT 

electronics, and connecting to the electricity grid including labor costs. This estimated budget level 

is based on one-to-one match of the current Michigan Department of Transportation (MDOT) 

average budget for road repair work [12]. The budget level is varied in a sensitivity analysis in 

order to show its effect on DWPT deployment. The constraint is defined as below, limiting the 

annual deployment of DWPT infrastructure i  (U.S. $) within the annual budget ic  (U.S. $) for 

year i. Details can be found in the Appendix. 

i ic   for {1,2,..., 20}i                                                      (Eq. 5.3) 

A highlight of this charging infrastructure optimization problem is that it not only optimizes 

the spatial deployment as many other spatial-only optimization studies [1, 13-16], but also has a 

temporal component for deciding which year to roll out DWPT lane for each road segment 

considering the year-by-year variations of various model parameters. The tempo-spatial 

optimization characteristics are described below: 

Spatial variations. The decision variable vector specifies which segments of roadways are 

selected for DWPT deployment if its value is non-zero (i.e., 1 to 20). In order to determine whether 

or not to deploy DWPT, it is necessary to differentiate the road segments based on these three 

metrics: (1) traffic volume; (2) vehicle speed; and (3) remaining service life (RSL) of pavement, 

which quantitatively reflects the pavement condition. In general, deploying DWPT lanes on road 

segments with a high traffic volume means a great number of VMT can be electrified. The more 

VMT is electrified by clean electric energy, the more cost, GHG, and energy benefits arise. 

Similarly, if two road segments have similar traffic volumes but one has a lower average vehicle 

speed than the other, then the lower-speed road segment is preferred because it can charge more 

electricity to the vehicle in a fixed distance. Lastly, the RSL of pavement is also affecting the 

decision of where to deploy DWPT. For example, if a road segment has a short RSL of 2 years, it 

means this segment is in poor pavement condition that requires road repair soon. If the DWPT 

deployment happens to be the same year of the scheduled road repair work, then there will be some 

credits because some of the deployment costs and pavement material burdens can be saved as the 
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DWPT deployment is in conjunction with the road repair. For another example, however, if the 

DWPT deployment happens earlier than the scheduled road repair, then there will be a penalty 

proportional to pavement burden because a “good” road will be replaced earlier than its service 

life.   

Temporal variations. The decision variable vector also indicates the year of deployment if 

a road segment is selected for DWPT deployment. There are four major considerations: (1) EV 

sales; (2) costs of wireless charging infrastructure and battery; (3) wireless charging efficiency, 

and (4) battery downsizing and battery life. Details of each temporal variation are given below.  

(1) EV sales. Based on the Market Acceptance of Advanced Automotive Technologies 

(MA3T) model developed by Oak Ridge National Laboratory (ORNL) [3], the EV sales share in 

a given year is boosted as a function of the coverage percentage of DWPT infrastructure on 

roadways. The generalized boost function can be found in the Appendix. In each iteration of 

optimization, given a specified decision variable, the model is able to calculate the EV sales share 

growth from year 1 to year 20 based on the functional relationship to the DWPT coverage rate, 

and then translate the sales share of EVs to the total cumulative share of EVs in all vehicles in 

operation in any given year by considering the average lifetime of a vehicle (eleven years) [17]. 

Therefore, the more DWPT coverage, the more ICE vehicles will be replaced by EVs. Two 

additional related assumptions are stated as follows. (a) Only one lane in each direction is assumed 

to be renovated as DWPT lanes. When the EV market share is high and a large amount of EVs are 

crowded on the DWPT lanes, if an EV cannot get the charge at a particular road segment due to 

congestion in the charging lane, it is assumed to get equivalent charges elsewhere (e.g., other 

DWPT segments). Also smart regulation of EVs and autonomous vehicular technology can help 

prevent this issue by allowing EVs with urgent charging demand (i.e., low state of charge) to 

charge first. (b) Only DWPT, not SWPT at traffic lights, would be able to boost EV sales. Although 

SWPT at traffic lights is assumed to be gradually rolling out following a linear growth pattern 

from 0% to 25% of total traffic intersections in the region, the scale of SWPT infrastructure is 

much smaller compared to DWPT and is usually condensed in urban areas (e.g., downtown). 

Therefore, SWPT at traffic lights alone is assumed to have negligible impact on relaxing the range 

anxiety and not sufficient to boost EV market share growth.  
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(2) Costs of wireless charging infrastructure and battery. The cost of DWPT deployment 

at year 1 is assumed to be $2.5 million per lane-mile (1 mile ≈ 1.609 km) [8, 18, 19]. The future 

cost of DWPT is assumed to follow a learning curve with a learning rate of 20%, which means the 

cost of DWPT decreases by 20% for every doubling of cumulative production or deployment. It 

is assumed to be similar to the cost reduction of solar panels because their major components are 

electronics [20]. Therefore the cost of DWPT is assumed to decrease from $2.5 million/lane-mile 

in year 1 to about $1 million/lane-mile in year 20. SWPT is assumed to follow the same learning 

rate based on its market prices [21, 22]. The EV lithium-ion battery cost is assumed to be 

$500/kWh in year 1 and decrease by 4.4% per year and reach $213/kWh at year 20 based on market 

projections [23]. Additionally, the roadside storage battery is assumed to follow the same cost 

reduction curve as the EV battery.   

(3) Wireless charging efficiency. The grid-to-battery wireless charging efficiency is 

currently around 85% to 90% for SWPT and 72% to 83% for DWPT, as compared to 90% for 

plug-in charging [18]. Despite that there can be misalignment of charging pads which would 

further lower the charging efficiency, a 75% dynamic wireless charging efficiency in year 1 is used 

and this efficiency is assumed to increase by 0.5% per year and reach 84.5% in year 20, assuming 

autonomous vehicles in the future can help vehicle alignment to achieve good efficiency and 

technical advancements in wireless charger design and control can also help improve the charging 

efficiency. The electricity charged is calculated by multiplying wireless charging efficiency, 

battery efficiency, charging power rate (kW), and charging time (hours).  

(4) Battery downsizing and battery life. The average battery capacity of the entire EV 

population in a given year is expected to decrease as a function of DWPT coverage increase, 

because EVs with wireless charging availability will depend less and less on the large onboard 

battery to store sufficient electricity for daily travel. A downsized battery can lead to a lightweight 

vehicle thus improve the fuel economy of the vehicle. The relationship of wireless charger 

deployment, battery downsizing, and fuel economy improvement was defined by the authors 

previously [4]. Given a downsized battery and reduced energy demand, the corresponding battery 

life is estimated using the experiment-based energy-processed model [24], which specifies the 

cumulative energy processed of each cell in a battery pack at retirement when 20% of battery 

nameplate capacity is lost. Even though each cell in a downsized battery processes more electricity 
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thus degrades faster according to the energy processed model, the use-phase lightweighting 

benefits of battery downsizing may offset some or all of the additional battery burdens resulting 

from compromised battery life. Details can also be found in the Appendix. 

Therefore, in general, DWPT deployment is expected to boost EV sales more than 

business-as-usual so that the environmental and energy benefits brought by the EVs can be realized 

sooner. Also, with more DWPT coverage, the average battery capacity is expected to be smaller 

to travel a required distance and a smaller battery would be able to lightweight the vehicle and 

improve fuel economy [4]. However, later deployment has benefits when considering that DWPT 

and battery costs would both be lower and charging efficiency would be higher due to mass 

production and technology improvement. 

 

5.3 Results 

5.3.1 Life cycle costs, GHG emissions, and energy results of different scenarios 

The LCA results comparing different scenarios of EV charging, as previously defined in 

Table 5.1, are presented in this section. The life cycle burdens in terms of costs, GHG emissions, 

and energy are shown in Figure 5.2.  The corresponding optimal DWPT coverage growth curves 

for each scenario with DWPT, along with their battery downsizing, are shown in Figure 5.3. 
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Figure 5.2 Comparison of eleven scenarios: (a) life cycle costs (in 2017 present-value dollars); 

(b) life cycle greenhouse gas emissions; and (c) life cycle energy. Note: on-WC = on-board 

wireless charger installed on the vehicle 
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Figure 5.3 Optimized deployment coverage growth for each scenario with dynamic wireless 

charging infrastructure, as well as the corresponding battery downsizing trends. Note: GHG = 

greenhouse gases; and DWPT = dynamic wireless power transfer 

 

By observing these scenario results and comparing the scenarios with DWPT (scenarios #4 

to #11) to the scenarios without DWPT (scenario #1 to #3), the following observations can be 

made: 

(1) Deployment of DWPT infrastructure reduces life cycle GHG emissions and energy by 

up to 9.0% and 6.8%, respectively, compared to the non-DWPT scenarios under either or both of 

the following conditions: (a) solar panels and storage batteries are present as electricity sources for 

EV charging along roadways; (b) the regional electricity grid has low carbon and energy intensities, 



 

119 

 

e.g., the California grid (0.477 kg CO2/kWh and 8.353 MJ/kWh on average) is lower than the 

Michigan grid (0.759 kg CO2/kWh and 9.739 MJ/kWh on average) [9]. Note that the GHG and 

energy graphs share similar patterns as GHG emissions are usually proportional to energy 

consumption [4]. 

(2) Deployment of DWPT infrastructure would not reduce life cycle costs, especially when 

solar panels and storage batteries are present along roadways as electricity sources for EV charging. 

Despite the fact that the availability of solar energy as an electricity source for charging moving 

EVs on roadways can reduce life cycle GHG emissions and energy burdens, the infrastructure 

costs from the solar panels and storage batteries would bring additional costs to the already 

expensive DWPT infrastructure. The California scenarios have higher life cycle costs mainly 

because of the higher gasoline prices in California than in Michigan [25, 26]. 

(3) The larger-scale early deployment of DWPT is observed for GHG and energy 

objectives relative to the cost objective, which triggers faster growth of EV market penetration.  

Therefore, when prioritizing GHG and energy as the main design objectives, earlier and more 

aggressive deployment is generally preferable; when prioritizing costs, later deployment is desired. 

Note that in Figure 5.3 (b) and (c) the aggressive deployment scenarios are capped by the annual 

budget that limits the total lane-miles of DWPT infrastructure deployed per year. By relaxing the 

annual budget constraint, slightly more aggressive deployment would be expected. The sensitivity 

analysis on annual budget constraint is discussed in Section 5.4.1. 

(4) Roadside solar panels and storage batteries are essential for significantly reducing life 

cycle GHG and energy burdens. The scenarios with availability of roadside solar energy as a source 

for charging moving EVs on roadways (scenarios #6, #7, #9, and #10) reveal significant reduction 

in life cycle GHG and energy burdens. Therefore, it is recommended to deploy roadside solar 

energy equipment together with DWPT when the design objective is prioritizing life cycle GHG 

emissions and energy burdens, however, this will increase infrastructure costs. 

 (5) Earlier and more aggressive deployment is preferred for states or regions with cleaner 

electricity than Michigan, e.g., California. As seen from Figure 5.3 (a) – (c), the scenarios assuming 

California grid and fuel instead of Michigan tend to have earlier and more aggressive deployment 

so that the benefits of cleaner electricity and lower transportation electricity price can be realized 

sooner by more EVs.  
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 (6) Electrification of up to about 3% of total roadway lane-miles in the region by 

deployment of DWPT would significantly help downsize the EV onboard battery capacity by 21% 

to 48% as compared to the battery capacity of 40 kWh for the plug-in charging scenario. The 

downsizing of the EV battery can also help lightweight the vehicle and slightly improve the fuel 

economy, i.e., the energy consumption rate slightly decreases from 0.312 kWh/mile to 0.297 

kWh/mile (1 mile ≈ 1.609 km). Because battery downsizing significantly reduces the number of 

cells in a battery pack while the energy consumption of EVs reduces only slightly, each cell in a 

downsized battery pack will take on more burden and process (i.e., charge and discharge) more 

electricity than the original battery so that the fleet-wide theoretical battery life would be shorter, 

based on the estimation of battery life using the energy-processed model [24]. However, the 

majority of theoretical battery life modeled in the eleven scenarios during the time period is still 

expected to exceed the vehicle life of eleven years due to the long cycle life of a LiFePO4 battery. 

These batteries are assumed to retire at the same time as vehicle retirement, so the actual battery 

life is capped and counted as eleven years in this LCA study (for those batteries with shorter 

theoretical life than vehicle life in certain scenarios, partial burdens from replaced battery cells are 

also counted). The curves for changes in energy consumption rate of EVs and theoretical battery 

life can be found in the Appendix. 

(7) Deployment of SWPT at traffic lights has negligible impacts on the life cycle costs, 

GHG emissions, and energy burdens. Deployment of SWPT at traffic lights has the benefit of 

further downsizing the battery because of more en-route charging time, but the additional burdens 

from the SWPT infrastructure itself would offset the benefit, resulting in almost unchanged life 

cycle burdens. 

(8) The cost of GHG mitigation is $556 per tonne of mitigated GHG, by comparing costs 

and GHG emissions of scenario #2 and scenario #6 at minimal life cycle GHG emissions. It means 

an extra $556 is needed to pay for each tonne of GHG mitigated compared to the non-DWPT 

scenario. This carbon mitigation cost is much higher than the current social cost of carbon (SCC) 

varying from $11 to $212 per metric tonne of CO2 estimated by an interagency study reported by 

the U.S. Environmental Protection Agency (EPA) [27], which means a stronger policy is needed 

to incentivize the DWPT deployment. It also means technology innovation is needed to reduce 

DWPT deployment costs. More discussion of SCC is provided in the Discussion Section.  
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(9) The DWPT infrastructure deployment and maintenance take up 2.3%-4.2%, 3.2%-8.4%, 

and 4.1%-10.0% of life cycle costs, GHG, and energy, respectively, depending on the scenarios.  

 

5.3.2 Deployment strategies for DWPT 

Deployment of DWPT infrastructure is a long-term, logistics-demanding, and resource-

intensive process. Therefore, it is useful to prioritize candidate roadway segments and develop 

smart deployment strategies to allocate the limited annual budget to the highest priority candidates 

each year.  

The optimization model informs decision makers on the recommended year to deploy a 

certain type of roadway segment based on the VMT, speed, and RSL of the segment for each 

objective of life cycle costs, GHG, or energy. It is observed that road segments with high VMT, 

low speed, and short RSL tend to be deployed with DWPT in early stages. The recommended 

years of DWPT deployment for each type of road segments based on the observed deployment 

rule are provided in Figure 5.4. The numbers in the figure indicate the average of deployment years 

for all segments in the respective categories. From a temporal point of view, the optimal 

deployment years for the life cycle cost objective are generally later than the life cycle GHG and 

energy objectives. From the spatial point of view, the results follow the rule that higher VMT, 

lower speed, and shorter RSL are preferable conditions for initial deployment of DWPT 

infrastructure. Deploying DWPT on road segments with high VMT means that a high percentage 

of miles traveled by EVs can be electrified. A lower speed also means more electricity can be 

charged to the EVs because it takes longer for the EVs to travel the same distance so that the 

charging time is extended. It is also wise to prioritize those segments with short RSL of pavement 

because these segments may need repair or reconstruction soon so that the DWPT deployment and 

routine road repair work can be conducted concurrently. Picking those segments with long RSL 

first during initial deployment is discouraged as it means tearing up relatively good condition roads 

earlier than their design service life. In this optimization model, a proportional penalty of costs, 

GHG, or energy based on pavement burden is applied if a segment is renovated for DWPT 

deployment earlier than its RSL. 
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Figure 5.4 Recommended years to deploy DWPT on roadway segments based on the VMT, 

speed, and RSL of the segment for each objective of life cycle costs, GHG, or energy. The 

numbers in the figure indicate the average of deployment years for all segments in the respective 

categories. The three categories (low/short, medium, and high/long) of VMT, speed, and RSL of 

pavement are based on the 33% and 67% quantile statistics of the traffic counts data. The 33% 

and 67% quantiles for daily VMT are 12,746 and 48,322 vehicle miles traveled (equivalent to 

average daily volume of 6,971 and 26,429), for speed 55 and 70 miles per hour, and for RSL 3 

and 6 years, respectively. The early, mid-term, and late/no deployment corresponds to 1-7 years, 

7-13 years, and 13-20 years, respectively. GHG = greenhouse gas emissions; DWPT = dynamic 

wireless power transfer; VMT = vehicle miles traveled; RSL = remaining service life; and 1 mile 

≈ 1.609 km. 

 

Figure 5.5 shows the maps of optimal deployment of DWPT for objectives of minimizing 

life cycle costs, GHG, and energy. Generally, the deployment is later for the cost objective than 

for the GHG and energy objectives. 
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Figure 5.5 Optimal deployment of dynamic wireless charging infrastructure on arterial roads in 

Washtenaw County, Michigan, USA, with respect to each objective of minimizing life cycle 

costs, greenhouse gas (GHG) emissions, and energy burdens 

 

5.4 Discussion 

5.4.1 Breakeven and financial analyses 

Return on investment. On one hand, the investment of DWPT infrastructure by 

transportation agencies is expensive and resource-intensive. On the other hand, there is societal 

payback from the revenues and emission and energy savings from the solar electricity charged 

when EVs are driving along DWPT-enabled roadways. Figure 5.6 shows the breakeven analysis 

of the life cycle costs, GHG, and energy burdens, using an example of the optimal deployment 

strategy for the scenario #6 at the minimized life cycle GHG emissions. The breakeven year or 

payback time is defined as the time required for the operational savings or revenues of charging 

EVs on DWPT lanes to repay the burdens of DWPT infrastructure. As shown in the base case, the 

net GHG and energy savings would break even at approximately year 19 and year 20, respectively, 

but the net profit of the money flow remains negative during the entire 20-year period. This finding 

of late cost breakeven time is consistent with a previous study that projected a cost breakeven in 

around 30 years [19]. Although the cost payback time is longer than 20 years, once paid back, the 

revenues generated from the operation of DWPT-EVs can be reinvested to expand the DWPT 
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infrastructure to generate more revenues and GHG and energy savings. The sensitivity of 

infrastructure burdens is also illustrated. A 50% reduction of infrastructure burdens would 

accelerate the breakeven, shortening the breakeven period to about 13 years and 15 years in terms 

of GHG and energy, respectively. The profit of the money flow still remains negative though the 

breakeven is expected to be earlier than the base case. A 50% increase of infrastructure burdens 

would delay the breakeven longer than the 20-year period, regardless of cost, GHG, or energy. 

 
Figure 5.6 Breakeven analyses: (a) money flow; (b) greenhouse gases (GHG); and (c) energy. 

Compared to the base case, the optimistic case and the pessimistic case assume 50% and 150% 

of base infrastructure burdens (cost, GHG, or energy), respectively. The money flow is in 2017 

present-value dollars 

 

Sensitivity on annual budget constraint. To evaluate the effect of the annual budget 

constraint on the optimal DWPT deployment and coverage growth and EV market share increase, 

a sensitivity analysis is conducted using an example of scenario #6 at minimal life cycle GHG 

emissions, as shown in Figure 5.7. The annual budget in the base case is $30 million/year. On one 

hand, an annual budget lower than $15 million/year is found to significantly decelerate DWPT 

coverage and EV market share growth. On the other hand, an annual budget beyond $30 

million/year would not significantly change the curves of DWPT coverage and EV market share 

growth, which means an annual budget of $30 million/year is already sufficient. 
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Figure 5.7 Sensitivity analysis of annual budget for deployment of dynamic wireless charging 

infrastructure. The annual budget in the base case is $30 million/year. Note: DWPT = dynamic 

wireless power transfer; and EV = electric vehicles 

 

Social cost of carbon. In previous sections, the optimization problem in this study is solved 

separately for the objectives of life cycle costs and GHG emissions. Due to the high cost of DWPT 

deployment and the benefit of GHG savings in the use phase, the DWPT coverage growth at 

minimal life cycle costs is much slower than that at minimal life cycle GHG emissions. A social 

cost of carbon (SCC) [27] can be used to monetize the carbon emissions which would act as a 

policy to incentivize the DWPT deployment. Therefore, the two objectives of life cycle costs ($) 

and GHG emissions (kg CO2-eq) can be unified in a single objective function with the same unit 

of U.S. dollar by using SCC ($/tonne of CO2), as shown in Eq. 5.4, where F is the grand objective 

function ($), LCC is life cycle costs ($), LCGHG is life cycle GHG emissions (in tonne CO2-eq), 

and SCC is social cost of carbon ($/tonne of CO2). For simplification of the problem, SCC is 

assumed to monetize all GHG emissions (CO2-eq), including carbon dioxide, methane, and nitrous 

oxide. As shown in Figure 5.8, with the increase of SCC from U.S. $50 to $1000 per metric tonne 

of CO2, the DWPT deployment and EV market share curves are asymptotically close to the curves 

that minimize life cycle GHG emissions only. It is noteworthy that the carbon price required to 

transition from the “pro-cost” deployment to the “pro-GHG” deployment is at least $250 per metric 

tonne of CO2 beyond which the deployment and EV market share curves start to lean towards 

GHG only curves. This “tipping-point” SCC is higher than the current level of SCC, which varies 

from $11 to $212 per metric tonne of CO2 as estimated by an interagency study reported by the 

U.S. Environmental Protection Agency (EPA) [27]. This finding is consistent with the cost of 
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GHG mitigation of $556 per tonne of mitigated GHG reported in the Results Section. In order to 

reduce the GHG mitigation cost, it is recommended that future DWPT research and development 

should focus on the following aspects: (1) technical improvements to achieve a better wireless 

charging efficiency would help make the system more efficient thus more GHG can be mitigated 

per dollar of investment; (2) a better charging efficiency can also be achieved by the autonomous 

driving technology, which would help EVs keep aligned with DWPT energy supply units in the 

pavement and offset the deviation made by a human driver; (3) policy instruments, such as 

incentives and tax credits for wireless charging infrastructure and equipment, would lower the high 

investment costs.   

F LCC LCGHG SCC                                                      (Eq. 5.4)  

 

 
Figure 5.8 Effect of social cost of carbon (SCC) on the dynamic wireless charging infrastructure 

deployment and electric vehicle (EV) market share. The unit of SCC is U.S. dollars per metric 

tonne of CO2. Note: DWPT = dynamic wireless power transfer; and GHG = greenhouse gases 

 

5.4.2 Infrastructure improvements and management 

Smart regulation to reduce congestion. DWPT performance can be enhanced by smart 

regulation of vehicle congestion. When EV market share is high but DWPT lanes are limited, there 

could be an imbalance of electricity supply and charging demand, resulting in traffic congestion 

on DWPT lanes. Both technology and economic mechanisms can be used to eliminate this concern 

so that it is sound to assume that if an EV cannot get the charge at a particular DWPT road segment 

due to congestion in the charging lane, then it can get equivalent charges elsewhere (e.g., on other 
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DWPT segments). For example, a smart regulation and intelligent vehicle-to-infrastructure 

communications can help find the best locations of DWPT lanes to charge the EVs based on their 

battery state of charge (SOC). EVs with lower SOC are given priority to charge first and EVs with 

higher SOC will charge later at other DWPT segments or SWPT stations. An electricity pricing 

mechanism that sets different prices of electricity charged to the EVs on different DWPT lanes 

based on the real-time congestion level can affect drivers’ decisions on route choices so as to help 

regulate and decentralize congestion. Autonomous driving technology can also help maximize the 

utilization of DWPT by platooning, i.e., the gaps between EVs can be small, so that all EVs can 

still get the charge even if the market share of DWPT EVs is high.  

Diversify DWPT charging power levels. In this study, 30 kW is assumed to be the power 

transfer level of DWPT. Technology improvement could increase the power rate level, e.g., to 60 

kW. A high charging power is desirable for highways and a low power level would be sufficient 

for urban roads.  The pros and cons of this diversification of power rate include: (1) Pro: a higher 

power rate would further reduce the range anxiety of EV customers and thus would boost the EV 

market share to a higher level [3]; (2) Pro: more electricity can be charged on a DWPT lane with 

higher power rate so that more revenue and GHG and energy benefits of clean solar electricity can 

be obtained, which accelerate the payback time; (3) Con: a higher power rate would require scaling 

up of infrastructure thus bringing additional infrastructure investment costs, which decelerate the 

payback time; and (4) Con: a higher power rate would also require more rigorous safety measures 

including electromagnetic shielding. 

Asset management. The DWPT deployment can be coordinated with the normal scheduled 

pavement reconstruction, rehabilitation, and other repair work. Incentives should be given to 

encourage the concurrent DWPT deployment and road repair. Also, a proportional penalty of costs, 

GHG, or energy based on pavement burden should be applied if a good-condition pavement is torn 

up for DWPT deployment earlier than its service life.  

End-of-life (EoL) management of DWPT infrastructure. A reusable and modular design of 

DWPT infrastructure embedded in pavement can help facilitate disassembly and recycling of 

metals and electronics. For example, although the proportion of life cycle GHG burdens from 

copper wires of wireless charging infrastructure is less than 1% based on the LCI results of this 

study, the metal after DWPT infrastructure retirement still has economic value. Therefore, 
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recycling of reusable parts may offset some cost and environmental burdens of the initial 

infrastructure deployment and enhance the life cycle performance of DWPT. Given the uncertainty 

of which parts would be recycled after DWPT infrastructure retirement, the EoL stage is excluded 

in this LCA, but it is worth investigating the recycling benefits once sufficient data become 

available. 

Electricity grid management. When there is no DWPT, EVs are typically charged 

overnight at home during the off-peak load of the electricity grid. However, when there is DWPT 

availability, some of the charging demand would be shifted from home at night to daytime. The 

additional load on the electricity grid from DWPT during daytime is both a challenge and an 

opportunity for enhancing the sustainability of wireless charging technology. On one hand, 

increase in charging demand would bring pressure on the electricity peak load because the traffic 

volume peak hours usually coincide with electricity peak load.  On the other hand, the additional 

charging demand can be met by the clean renewable energy that is dispatched usually for marginal 

demand. In this case, the life cycle GHG and energy would be more accurately estimated using the 

marginal grid factors [28] characterizing marginal renewable energy than the average emission 

and energy intensity factors of all energy sources in the electricity grid, which can be an interesting 

topic to be explored in future work. 

 

5.5 Conclusions 

In this study, a life cycle assessment and optimization model is developed to evaluate and 

compare the life cycle costs, GHG emissions, and energy burdens of different deployment 

scenarios over a 20-year period, including the plug-in charging scenario, SWPT scenarios for 

charging at home/public parking and/or traffic lights, and DWPT scenarios with or without 

roadside solar electricity supply and with different regional electricity grid and fuel. The 

optimization of DWPT deployment encompasses two dimensions: (1) a spatial dimension, i.e., 

where to deploy DWPT, considering the VMT, speed, and RSL of each roadway segment; and (2) 

a temporal dimension, i.e., when to deploy DWPT, considering the EV market share boosted by 

DWPT and future cost reduction and efficiency improvement of DWPT. Based on a case study of 

arterial roads in Washtenaw County in Michigan, policy recommendations and optimal 

deployment strategies are provided. 
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Results indicate that compared to the non-DWPT scenarios, deployment of DWPT 

infrastructure has potential to reduce life cycle GHG emissions and energy by up to 9.0% and 6.8%, 

respectively, under either or both of the following conditions: (a) solar panels and storage batteries 

are present as electricity sources for EV charging; and (b) the regional electricity grid has low 

carbon and energy intensities, e.g., the California grid. However, deployment of DWPT 

infrastructure would not reduce life cycle costs, especially when solar panels and storage batteries 

are present as electricity sources for EV charging. Therefore, the larger-scale early and more 

aggressive deployment of DWPT is observed for GHG and energy objectives than for the cost 

objective, which triggers faster growth of EV market penetration. Electrification of up to about 3% 

of total roadway lane-miles in the region by deployment of DWPT would significantly help 

downsize the EV onboard battery capacity by 21% to 48% as compared to the battery capacity of 

40 kWh for the plug-in charging scenario. Breakeven analysis indicates that a breakeven year for 

solar charging benefits to pay back the DWPT infrastructure burdens can be less than 20 years for 

GHG and energy burdens but longer than 20 years for costs. This finding of late cost breakeven 

time is consistent with a previous study that projected a cost breakeven in around 30 years [19]. 

Although life cycle costs of DWPT systems are high and the cost payback time is longer than the 

study period of 20 years, once paid back, the revenues generated from the operation of DWPT-

EVs can be considerable. These can be reinvested to expand the DWPT infrastructure.  

Based on the results, the following new insights about DWPT deployment are provided for 

decision making:  

 If minimizing life cycle GHG or energy is prioritized as the main design objective, earlier 

deployment is generally preferable; if life cycle cost is prioritized, later deployment is 

desired. A monetization of carbon emissions of at least $250 per metric tonne of CO2 is 

needed to shift the “pro-cost” deployment to the “pro-GHG” deployment.  

 A roadway segment with high volume (greater than about 26,000 vehicle counts per day), 

low speed (slower than 55 miles per hour), and short RSL (shorter than 3 years) should be 

given a high priority for early-stage DWPT deployment.  

 Solar panels and storage batteries are essential for significantly reducing life cycle GHG 

and energy burdens, so they are recommended to be deployed together with DWPT when 
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the design objective is prioritizing life cycle GHG emissions and energy burdens, with a 

precaution that they bring additional infrastructure costs. 

 Deployment of DWPT in regions with a clean electricity grid, e.g., California, would yield 

more GHG and energy savings, so earlier and more aggressive deployment is preferred for 

states or regions with cleaner electricity than Michigan. 

Technology innovations and smart regulation and management can help overcome the challenges 

and enhance the performance of DWPT. For example, autonomous driving technology can help 

guarantee the maximum possible charging efficiency by aligning the EVs with DWPT lanes 

perfectly. Smart regulation through vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) 

technologies can also eliminate the concern of vehicle congestion on DWPT lanes. Diversification 

of DWPT charging power rate based on different roadway types, pavement asset management, and 

end-of-life management can also potentially enhance the life cycle performance of DWPT EV 

systems. 
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Appendix C  Supporting information for Chapter 5 

Life cycle inventory of dynamic wireless power transfer infrastructure 

Introduction. A life cycle inventory (LCI) of dynamic wireless power transfer (DWPT) 

infrastructure for charging electric vehicles has been established and summarized. This section 

summarizes the LCI of infrastructure for dynamic wireless charging which encompasses the 

material production and infrastructure manufacturing life cycle stages.  

Schematic. The diagram of the DWPT infrastructure is shown in Figure 5.9. The LCI 

encompasses the burdens from the electric grid power delivery infrastructure (feeder & connecting 

wires), WPT electronics (inverters, transformers, and coils), and roadway retrofitting (pavement). 

Data sources. The LCI data of electronic components and other materials are based on the 

database available in SimaPro (e.g., EcoInvent, U.S. LCI, etc.). The DWPT power rate is 30 kW. 

The coil transmitter component is scaled up and adapted from the stationary wireless charger 

modeled in the authors’ previous work [4] based on a 6 kW wireless charger developed by 

Professor Chris Mi’s lab at the University of Michigan-Dearborn (now at San Diego State 

University). Other components of DWPT, including underground feeder, connecting wires, 

inverters, transformers, and pavement, are modeled as shown in Table 5.2. 

 
Figure 5.9 Schematic of dynamic wireless charging infrastructure. The figure is adapted based on 

a previous study [8]. 



 

132 

 

 

Detailed components and their quantities per lane-mile of dynamic wireless charging 

infrastructure are summarized in Table 5.2. The element-wise burdens of each component are 

summarized in Table 5.3. Multiplying the values in Table 5.2 with those in Table 5.3 can obtain 

the total burdens of components per lane-mile. The system is designed such that the power rate 

capacity of the DWPT infrastructure would be sufficient to accommodate high penetration of 

electric vehicles traveling on the road at a high market share. 

Table 5.2 Summary of components of dynamic wireless charging infrastructure per lane-mile 

Component 

name 

Quantity 

per lane-

mile 

Unit Source name in SimaPro Note 

Underground 

feeder 
1 mile 

Transmission network, electricity, 

high voltage/CH/I U 
25 kV 

Connecting 

wires 
1440 meters 

Cable, three-conductor cable, at 

plant/GLO U 
0.6 kV 

Inverters 12 pieces 
Inverter, 500kW, at plant/RER/I 

U 
500 kW each 

Transformers 12 pieces 
Power, distribution, and specialty 

transformers 
U.S. $5000 each 

Coil 

transmitters 
2476 pieces 

Based on the previously modeled 

stationary wireless charger 

[4] 

Scale up from 6 kW to 30 kW; 
 

Coil dimensions: 0.4 m × 0.3 m 

Pavement 15973 kg Bitumen, at refinery/kg/US 

Asphalt volume per transmit 

coil (0.005376 m3) × number of 

coils per lane-mile (2476) × 

asphalt density (1200 kg/m3) 

Note: 1 mile ≈ 1.609 km. 
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Table 5.3 Life cycle inventory burdens of key components 

 Underground 

feeder 

Connecting 

wire 
Inverter Transformer 

Coil 

transmitter 
Pavement 

Basis for Inventory mile meter piece piece 6 kW piece kg 

Metric Unit Value 

CO2-eq kg 6.93E+04 2.50E+00 1.28E+04 6.06E+03 4.53E+02 5.43E-01 

VOC g 1.16E+02 3.21E-03 3.86E+01 1.39E+04 2.86E+00 1.22E-01 

CO g 7.58E+05 1.06E+01 4.72E+04 5.92E+04 8.57E+02 1.44E+01 

NOx kg 1.35E+02 1.35E-02 2.66E+01 1.48E+01 1.17E+00 3.14E-03 

PM10 mg 1.14E+08 1.04E+04 9.25E+06 3.23E+06 3.02E+05 7.22E+01 

PM2.5 g 3.72E+04 5.62E+00 8.14E+03 1.86E+03 1.75E+02 0.00E+00 

SOx kg 2.43E+02 5.63E-02 6.45E+01 1.33E+01 1.98E+00 4.64E-03 

SO2 kg 2.43E+02 5.63E-02 6.45E+01 1.33E+01 1.94E+00 1.79E-03 

CH4 g 1.35E+05 9.93E+00 2.31E+04 1.95E+04 7.62E+02 4.71E+00 

CO2 kg 6.01E+04 2.27E+00 1.24E+04 5.39E+03 4.28E+02 4.04E-01 

CO2 Biogenic kg 9.90E+02 4.83E-02 2.37E+02 0.00E+00 1.13E+01 2.57E-03 

N2O g 1.28E+03 1.27E-01 5.11E+02 1.58E+02 1.39E+01 2.73E-03 

CF4 mg 8.87E+05 6.40E-01 8.43E+03 0.00E+00 6.43E+02 0.00E+00 

C2F6 mg 9.86E+04 7.16E-02 9.62E+02 0.00E+00 2.14E+02 0.00E+00 

SF6 mg 9.62E+02 6.64E-02 5.81E+02 0.00E+00 6.84E+02 0.00E+00 

HFC-134a mg 2.05E+03 6.99E-02 2.95E+02 0.00E+00 1.64E+01 0.00E+00 

NO2 g 0.00E+00 0.00E+00 0.00E+00 1.48E+04 1.60E+01 0.00E+00 

Total Energy MJ 1.08E+06 6.84E+01 2.31E+05 7.81E+04 7.62E+03 5.35E+01 

Fossil Fuel MJ 7.99E+05 5.69E+01 1.82E+05 7.81E+04 5.19E+03 5.35E+01 

Crude Oil MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.96E+01 0.00E+00 

Coal Fuel MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.50E+01 0.00E+00 

Natural Gas Fuel MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.78E+01 0.00E+00 

Water_Cooling m3 1.09E+03 5.35E-02 2.46E+02 0.00E+00 9.36E+00 0.00E+00 

Note: 1 mile ≈ 1.609 km. 

 

The fractional breakdown of LCI of dynamic wireless charging infrastructure per lane-mile 

is shown in Figure 5.10. And the detailed absolute values of life cycle inventory are summarized 

in Table 5.4. 

Results indicate that coil transmitters dominate most of the metrics mainly due to the 

electronics, while transformers take up a large portion of VOC and NO2. Note that this section 

summarizes the LCI of infrastructure for dynamic wireless charging, and not the use-phase 

electricity demand by electric vehicles and end-of-life impacts. 
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Figure 5.10 Fractional breakdown of life cycle inventory results of dynamic wireless charging 

infrastructure for different metrics 

 

Table 5.4 Life cycle inventory of dynamic wireless charging infrastructure per lane-mile of roadway 

Metric Unit Feeder 
Connecting 

wires 
Inverters Transformers 

Coil 

transmitters 
Pavement Total 

GHG-100 (CO2-eq) kg 6.93E+04 3.60E+03 1.54E+05 7.27E+04 5.61E+06 8.67E+03 5.92E+06 

VOC g 1.16E+02 4.62E+00 4.63E+02 1.67E+05 3.54E+04 1.96E+03 2.05E+05 

CO g 7.58E+05 1.52E+04 5.66E+05 7.11E+05 1.06E+07 2.30E+05 1.29E+07 

NOx kg 1.35E+02 1.94E+01 3.19E+02 1.77E+02 1.45E+04 5.02E+01 1.52E+04 

PM10 mg 1.14E+08 1.49E+07 1.11E+08 3.87E+07 3.74E+09 1.15E+06 4.02E+09 

PM2.5 g 3.72E+04 8.09E+03 9.77E+04 2.23E+04 2.17E+06 0.00E+00 2.33E+06 

SOx kg 2.43E+02 8.11E+01 7.74E+02 1.60E+02 2.45E+04 7.42E+01 2.58E+04 

SO2 kg 2.43E+02 8.11E+01 7.74E+02 1.60E+02 2.40E+04 2.86E+01 2.53E+04 

CH4 g 1.35E+05 1.43E+04 2.77E+05 2.34E+05 9.43E+06 7.53E+04 1.02E+07 

CO2 kg 6.01E+04 3.27E+03 1.48E+05 6.47E+04 5.30E+06 6.45E+03 5.58E+06 

CO2 Biogenic kg 9.90E+02 6.95E+01 2.84E+03 0.00E+00 1.40E+05 4.10E+01 1.44E+05 

N2O g 1.28E+03 1.83E+02 6.14E+03 1.89E+03 1.72E+05 4.35E+01 1.81E+05 

CF4 mg 8.87E+05 9.21E+02 1.01E+05 0.00E+00 7.96E+06 0.00E+00 8.95E+06 

C2F6 mg 9.86E+04 1.03E+02 1.15E+04 0.00E+00 2.65E+06 0.00E+00 2.76E+06 

SF6 mg 9.62E+02 9.56E+01 6.97E+03 0.00E+00 8.46E+06 0.00E+00 8.47E+06 

HFC-134a mg 2.05E+03 1.01E+02 3.54E+03 0.00E+00 2.03E+05 0.00E+00 2.09E+05 

NO2 g 0.00E+00 0.00E+00 0.00E+00 1.77E+05 1.97E+05 0.00E+00 3.75E+05 

Total Energy MJ 1.08E+06 9.85E+04 2.77E+06 9.37E+05 9.43E+07 8.55E+05 1.00E+08 

Fossil Fuel MJ 7.99E+05 8.19E+04 2.19E+06 9.37E+05 6.43E+07 8.55E+05 6.92E+07 

Crude Oil MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.42E+05 0.00E+00 2.42E+05 

Coal Fuel MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.09E+05 0.00E+00 3.09E+05 

Natural Gas Fuel MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.68E+05 0.00E+00 4.68E+05 

Water_Cooling m3 1.09E+03 7.70E+01 2.95E+03 0.00E+00 1.16E+05 0.00E+00 1.20E+05 

Note: 1 mile ≈ 1.609 km. 

 

Optimization model and parameters 
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Table 5.5 Definitions of variables and parameters 
Symbol Definition Reference(s) 

F   

Objective function value of optimization (i.e., life cycle burden),  which 

can be life cycle costs (U.S. $), GHG (kg CO2-eq), or energy (MJ) when 

conducting optimization for each objective 

/ 

s   
A component of life cycle burden, as detailed in “Derivations”, 

1,2,...,11s    

/ 

i   Year index, 1,2,..., 20i  , representing each year of the 20-year period / 

j   
Road segment index, 1,2,...,154j  , representing 154 segments of 

arterial roads in Washtenaw County, Michigan 

/ 

k   Index for each hour of a day, 1,2,..., 24k    / 

i   
Annual expense (calculated) on DWPT deployment in a particular year 

i  (U.S. $) 

/ 

ic   Annual budget constraint (U.S. $) [12] 

s   

Coefficients to convert quantities to life cycle burdens, 1,2,...,11s   

for every life cycle component. Example: A coefficient in the unit of kg 

CO2-eq/kWh is able to convert the quantity of use-phase electricity 

(kWh) to the life cycle burden in the unit of kg CO2-eq. Please refer to 

“Derivations” for details. 

[9, 29, 30]  

ijx   

An element in the decision variable matrix X , representing the DWPT 

deployment status of a road segment. If the segment j is or has been 

deployed with DWPT in or before year i , then 1ijx  ; otherwise 

0ijx   

/ 

ijx  

An element in the matrix X  that is converted from the decision 

variable matrix X . It represents the action of deployment of a road 

segment. If the segment j is deployed with DWPT exactly in year i , 

then 1ijx  ; otherwise 0ijx   

/ 

jx  

An element in the matrix X that is converted from the decision variable 

matrix X . It represents the year of deployment of DWPT for a road 

segment ( 1, 2, 3, ..., 20jx  ) or no deployment in any year ( 0jx  ) 

/ 

jl   The length of a road segment j  (miles) measured on map [31] 

ijr   
Road repair indicator: If a road segment j  is scheduled to be repaired 

in year i , then 1ijr  ; otherwise 0ijr   

[10] 

jR   The year of scheduled road repair for road segment j   [10] 

ri
  Coefficient for road repair burden per lane-mile in a particular year / 

ijp   
Penalty term if a road segment is renovated for DWPT deployment 

earlier than the scheduled road repair 

/ 

i   
The burden (cost, GHG, or energy) of building one lane-mile of entire 

pavement in year i   

[6] 

m   
Proportion of annual maintenance burden relative to the DWPT 

deployment burden, which is assumed to be 2% (
m 0.02  ) 

/ 
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L   

Life of a component in the unit of miles. 
XL  where X can be:  

‑ 
EVL        = 160,000 miles    (electric vehicle)                                 

‑ 
onWCL     = 

EVL                    (on-board wireless charger) 

‑ 
PCL        = 

EVL                    (plug-in charger) 

‑ 
SWPTHPL   = 

EVL                    (SWPT at home/public parking) 

‑ bati
L       modeled           (fleet-average battery life in year i ) 

[24, 30]  

Y   

Life of a component in the unit of years. 
XY  where X can be: 

‑ pavementY   = 20 years          (pavement) 

‑ 
DWPTY     = 20 years          (DWPT) 

‑ 
SWPTLY    = 20 years         (SWPT-Lights) 

‑ 
EVY        = 11 years          (electric vehicle) 

‑ 
solarY        = 28 years          (solar panels) 

[6, 17, 32] 

EVi
VMT  Vehicle miles traveled in year i  of all electric vehicles on the road 

segments 

[5] 

intN  Number of traffic intersections electrified each year / 

intl  Length of SWPT at each traffic intersection (all directions combined) 

(assumed to be 0.2 lane-miles per intersection) 

/ 

cumi
BatCap  

The weighted average of battery capacity of all EVs in operation in the 

current year i   

/ 

iBatCap  The average battery capacity of newly sold EVs in year i   / 

cellE  
Life-time energy processed (kWh) per cell at 80% capacity threshold; 

cellE  = 34.342 kWh 

[24] 

i  Energy-processed per cell per year for a typical EV in year i   / 

demandi
E  Daily energy demand of a typical EV in year i   

/ 

chargedi
E  Daily energy charged wirelessly of a typical EV in year i   

/ 

  
Window of state of charge (SOC), which is assumed to be 40% (  = 

0.40) 

/ 

area  Area (m2) of solar panels per lane-mile / 

  
Maximum power demand (kW) for solar panels from EVs driving on 

the DWPT infrastructure per lane-mile 

/ 

  
Solar insolation flux: 4.2 kWh/m2/day (Detroit, MI); 5.4 kWh/m2/day 

(San Francisco, CA) 

[33] 

module  Solar module efficiency = 16% [32] 

ij  

Replacement schedule of roadside battery for solar energy storage. If 

replaced at road segment j  in year i , ij  = 1; if replaced but the 

remaining years in the 20-year study period is less than the solar battery 

life, then 0 1ij   proportionally; otherwise ij = 0. 

/ 

bcap  Capacity of solar energy storage battery (kWh) per lane-mile / 

night  
Average number of hours without solar insolation, which is assumed to 

be 12 hours 

/ 
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  
Adjustment factor for converting peak load charging demand to off-

peak demand, which is assumed to be 0.25 

/ 

bat  Battery charge/discharge efficiency = 90% [4] 

ijk  
Vehicle miles traveled of EVs on road segment j during the k-th hour of 

the day (k = 1,2,…,24) in year i   

[5] 

DWij
e  Electricity charged wirelessly on DWPT per mile (kWh/mile)  / 

SWLij
e  Electricity charged from SWPT at traffic light, which is allocated in one-

mile of EV travel on the road segments (kWh/mile) 

/ 

ijHPe  Electricity charged from SWPT at home/public parking, which is 

allocated in one-mile of EV travel on the road segments (kWh/mile) 

/ 

CVij
VMT  

Vehicle miles traveled of all conventional gasoline vehicles on road 

segment j  in year i   

[5] 

i  Average fuel economy of conventional gasoline vehicles in year i  

(miles/gallon) 

[17] 

Note: 1 mile ≈ 1.609 km; GHG = greenhouse gases; DWPT = dynamic wireless power transfer; 

SWPT = stationary wireless power transfer; and EV = electric vehicle. 

 

Objective function:  

The objective function is the sum of life cycle burdens from different components, 

including DWPT and SWPT infrastructure, solar infrastructure, EV batteries, and use-phase 

energy consumption, etc., as specified in “Derivations”. 

11

1

s

s

F 


                                                                (Eq. 5.5)  

Side note 1: The life cycle burden F can be life cycle cost, GHG, or energy burdens, depending 

on the objective currently under evaluation, by simply multiplying the corresponding coefficient 

s  to convert quantities to life cycle burdens.  

Side note 2: For the life cycle cost analysis, a discount rate of 3% in nominal terms (or 0.5% in 

real terms) is applied to discount future costs back to the present value [34]. All costs are reported 

in present-value dollars. 

Decision variables: 

Binary decision variable matrix is defined as follows, indicating whether a roadway 

segment is a DWPT lane or not in a particular year. 
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 | 0,1 1,2,..., 20; 1,2,...,154ij ijx x i j   X     “Status”                        (Eq. 5.6)  

Side note 1: To facilitate calculation, X  is also converted and equivalent to the following form to 

indicate the action of deployment in a particular year for each segment.  

 | 0,1 1,2,..., 20; 1,2,...,154ij ijx x i j     X     “Deploy”                      (Eq. 5.7)  

Side note 2: When coded in Matlab, X  is in the following equivalent form, indicating the year of 

deployment of DWPT ( 1, 2, 3, ..., 20jx  ) or no deployment in any year ( 0jx  ): 

 | 0,1, 2, 3, ..., 20 1,2,...,154j jx x j    X                              (Eq. 5.8)  

Constraint: 

The constraint limits the annual deployment of DWPT infrastructure within the annual 

budget. Eq. 5.10 determines the annual deployment costs of DWPT infrastructure by calculating 

the total costs of lane-miles of DWPT infrastructure deployed in a year (
154

1

1
i ij j

j

x l


 ) and 

considering the case that if the DWPT infrastructure is concurrently deployed along with the 

regular pavement construction work, then the pavement burdens (
154

r

1
iij ij j

j

x r l 


 ) are credited. 

i ic   for {1,2,..., 20}i                                                   (Eq. 5.9)  

where 
154

1 r

1

( )
i ii ij j ij ij j

j

x l x r l  


                                              (Eq. 5.10)  

Derivations: 

The calculations of components of life cycle burdens are summarized below. In the 

equations, s  ( 1,2,...,11s  ) represents the coefficients (e.g., kg CO2-eq/kWh for component 10 

electricity, s = 10) to convert quantities (e.g., kWh) to life cycle burdens (e.g., kg CO2-eq) for each 

component (e.g., electricity), while ri
 ( 1,2,..., 20i  ) indicates the coefficient for road repair 

burden per lane-mile in a particular year i.  
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Component 1: Dynamic wireless power transfer (DWPT) - infrastructure 

20 154

1 1 r

1 1 DWPT

20 1
( ( ) )

i iij j ij ij j ij

i j

i
x l x r l p

Y
  

 

 
                                     (Eq. 5.11)   

where 
pavement

max{ , 0}j

ij ij j i

R i
p x l

Y



                                            (Eq. 5.12)   

Side note:  

Life of a new pavement is assumed to be 20 years [6]. The burden is allocated to the rest of years 

in the 20-year study period by multiplying
DWPT

20 1i

Y

 
. 

The model assumes deployment of DWPT at the beginning of each year. The last deployment is 

at the beginning of the 20th year. All the deployment and operational burdens before and during 

the 20th year are counted, but the burdens during the 21st year and beyond are not counted.  

The life of DWPT infrastructure is assumed to be 20 years. If DWPT is deployed at the beginning 

of the 1st year, then the full burden (costs, GHG, or energy) of DWPT infrastructure is counted in 

the life cycle analysis. But for the DWPT deployed after the 1st year, partial burden (costs, GHG, 

or energy) is counted. For example, if DWPT is deployed at the 11th year, only half of the original 

burden is counted because it can theoretically serve from the 11th to 30th year but we only count 

the 11th to 20th year in this study. For another example, if the DWPT is deployed at the beginning 

of the 20th year, then only 1/20 of the original DWPT infrastructure burden is counted. 

 

Component 2: Dynamic wireless power transfer (DWPT) - maintenance 

20 154

2 2

1 1
i ij j

i j

x l 
 

                                                          (Eq. 5.13)  

where 2 1 mi i
                                                        (Eq. 5.14)   

Component 3: Onboard wireless chargers (on-WC) 
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20
3

3 EV

1 onWC

i

i

i

VMT
L






                                                  (Eq. 5.15)   

Component 4: Plug-in chargers (PC) 

20
4

4 EV

1 PC

i

i

i

VMT
L






                                                      (Eq. 5.16)   

Component 5: Stationary wireless power transfer at home/public parking (SWPT-H/P) 

20
5

5 EV

1 SWPTHP

i

i

i

VMT
L






                                                  (Eq. 5.17)  

Component 6: Stationary wireless power transfer at traffic lights (SWPT-Lights) 

20

6 6 int int

1 SWPTL

20 1
i

i

i
N l

Y
 



 
                                                   (Eq. 5.18)   

Component 7: Battery (electric vehicle) 

20
7

7 cum EV

1 bat

i

i i

i
i

BatCap VMT
L






                                            (Eq. 5.19)   

where 

cell
EV

bat EV

EV

min{ , }

i

i

E
Y

L L
Y


                                           (Eq. 5.20)   

Side note 1: demand chargedi i

i

E E
BatCap




  is converted to cumi

BatCap  by taking the weighted 

average of battery capacity of all EVs in operation in the current year. The electricity charged 

includes the dynamic charging and charging at traffic lights, which is calculated by multiplying 

charging efficiency, battery efficiency, power rate (30 kW) and the time spent on charging in the 

unit of hour. 

Side note 2: The energy consumption rate (ECR) of EVs will decrease by 0.6% accordingly per 

1% of vehicle weight reduction due to battery downsizing [35, 36]. This lightweighting correlation 

is used for calculating ECR (kWh/mile) of electric vehicles. For example, a 10% reduction in 
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vehicle weight due to battery downsizing would reduce the ECR by 6%. The new ECR is obtained 

by multiplying the original ECR and (100% - ECR reduction percentage). 

Component 8: Solar panels 

20 154

8 8 area

1 1 solar

20 1
i ij j

i j

i
x l

Y
  

 

 
                                              (Eq. 5.21)   

where 
area

module





                                                     (Eq. 5.22)   

Component 9: Battery (solar) 

20 154

9 9 bcap

1 1
i ij j

i j

l   
 

                                                    (Eq. 5.23)   

where 
night

bcap

bat

 



                                                      (Eq. 5.24)   

Eq. 5.24 estimates the capacity of solar energy storage battery (kWh) per lane-mile. The 

battery is used to charge electric vehicles when there is no solar insolation (e.g., nighttime), which 

is sized by considering the off-peak electricity demand and battery efficiency. 

 

Component 10: Electricity 

20 154 24

10 10 DW SWL

1 1 1

( ( ))
ik ij ij ijijk HP

i j k

e e e  
  

                              (Eq. 5.25)   

Side note: Electricity charged from the electric grid in this model is calculated by multiplying 

power rate (30 kW) and the time spent on charging in the unit of hour. 

Component 11: Gasoline 

20 154
CV

11 11

1 1

ij

i

i j i

VMT
 

 

                                            (Eq. 5.26)   

Other model details: 
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The learning curve of DWPT is shown in Figure 5.11. The future cost of DWPT is assumed 

to follow a learning curve with a learning rate of 20%, which means the cost of DWPT decreases 

by 20% for every doubling of cumulative production or deployment. It is assumed to be similar to 

the cost reduction of solar panels because their major components are electronics [20]. 

 
Figure 5.11 Learning curve of dynamic wireless power transfer (DWPT) infrastructure. 

 

The extra EV sales boosted by increasing deployment of DWPT infrastructure compared 

to business-as-usual case is shown in Figure 5.12. The business-as-usual case assumes EV sales 

share increases from 2% in 2020 to 24% in 2050 [3]. The share of EVs in all vehicles currently in 

operation in a given year is calculated by taking the weighted average of past EV sales share within 

the last eleven years (= average vehicle life) [17]. 
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Figure 5.12 Extra sales share of electric vehicles (EV) boosted by increasing deployment of 

dynamic wireless power transfer (DWPT) infrastructure 

 

Supplementary results 

Temporal change in average energy consumption rate of all electric vehicles in operation 

is shown in Figure 5.13. 
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Figure 5.13 Temporal change in average energy consumption rate of all electric vehicles in 

operation. Note: GHG = greenhouse gases 

Temporal change in theoretical battery life of all electric vehicles in operation is shown in 

Figure 5.14. 
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Figure 5.14 Temporal change in theoretical battery life of all electric vehicles in operation. Note: 

GHG = greenhouse gases 
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6 CHAPTER 6  

Enhancing sustainability of electrified mobility: Synergies of Wireless 

charging technology and Shared Autonomous Battery Electric Vehicles 

(W+SABEV) 

 

 

Abstract 

Emerging technologies play important roles in shaping future mobility systems and 

impacting their sustainability performance. This study applies a sustainability-based and life cycle 

framework to demonstrate and evaluate the synergies of the following four emerging technologies 

both qualitatively and quantitatively: (1) wireless charging technology; (2) shared mobility 

services technology; (3) autonomous driving technology; and (4) battery electric vehicle (BEV) 

technology. A wireless charging and shared autonomous battery electric vehicle (W+SABEV) 

system is modeled. First, a qualitative analysis assesses the pros and cons of the emerging 

W+SABEV system vs. the conventional plug-in charging BEV system, adhering to the principles 

of sustainable mobility, and highlights the impacts and dynamics of the disruptive technologies on 

the key parameters that define sustainable mobility.  Second, a quantitative analysis presents the 

synergies of the four technologies by modeling a W+SABEV system and demonstrates that a 

conjunction of the four technologies can shorten the payback time of greenhouse gas (GHG) 

emission burdens in terms of infrastructure and vehicles. Policy recommendations are provided 

based on the results. 

 

6.1 Introduction 

A new era in transportation revolution is marked by recent dramatic transportation modal 

shifts, research and development (R&D) of clean vehicles and emerging technologies, and design 
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of sustainable mobility systems. The trend is driven by three defining components: (a) a shared 

vehicle economy; (b) connected and automated vehicles (CAVs); and (c) vehicle electrification 

[1]. Each component offers a distinct set of benefits, poses a complex range of challenges, would 

fundamentally reshape vehicle and mobility systems, and ultimately enables a more sustainable 

means of moving people. To ensure a sustainable transition in transportation services, the diffusion 

of these three disruptive technologies requires a fundamental shift in our infrastructure in terms of 

the electric grid, road systems, and the way in which vehicles are fueled or charged [2].  

Charging time, vehicle range, and availability of conventional plug-in charging 

infrastructure have long been cited as barriers to electric vehicle (EV) adoption [3]. Therefore, 

revolution of charging infrastructure and charging ways is a keystone in shaping future sustainable 

transportation and impacting EV adoption and performance of both private and public fleets.  

Recent breakthroughs in the field of wireless power transfer (WPT) have made the prospects of 

charging EVs wirelessly increasingly viable [3-7]. Without the use of wires, WPT describes the 

transfer of electricity across an electromagnetic field and uses magnetic resonance induction to 

transfer electricity from charging pads embedded within the ground to a pad installed on the 

vehicle. Under laboratory conditions, WPT can charge at an efficiency close to 90%, providing a 

similar charging power as the conventional plug-in method [3]. Compared to plug-in, wireless 

charging offers greater flexibility in its application, allowing vehicles to charge in stationary mode 

(i.e., when parked in garage or public parking spaces) or dynamic mode (i.e., in-route charging 

when vehicles are moving on roadways). Despite its current limited availability, many original 

equipment manufacturers (OEMs) of automobiles, such as Kia, BMW, Mercedes Benz, Nissan, 

Chevy, and Tesla, have already begun integrating wireless charging capability into EV design. 

Other companies, such as Plugless and Qualcomm, offer wireless charging pads that will be 

compatible with various vehicle models [3, 8]. 

Advances in wireless charging technology are perhaps the missing key to unlock the future 

of mobility systems. In addition to convenience and increased charging availability, WPT offers 

opportunities for downsizing the expensive and heavy EV onboard battery that enables vehicle 

lightweighting so as to improve EV fuel economy [9]. Despite a growing body of literature 

dedicated to R&D of each emerging technology respectively, little work explores the synergistic 
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relationship between charging infrastructure and vehicle technologies in enhancing fleet 

performance and sustainable mobility, which poses a research gap as shown in Figure 6.1.  

 
Figure 6.1 Research gap in evaluating charging infrastructure and vehicle technologies 

 

The study in this chapter applies sustainability-based and life cycle framework to evaluate 

and demonstrate the synergies of the following four emerging technologies both qualitatively and 

quantitatively: 

 Wireless charging technology 

 Shared mobility services technology 

 Autonomous driving technology 

 Battery electric vehicle (BEV) technology 

A wireless charging and shared autonomous battery electric vehicle (W+SABEV) system 

is modeled. First, a qualitative analysis assesses the pros and cons of the emerging W+SABEV 

system vs. the conventional plug-in charging BEV system, adhering to the principles of sustainable 

mobility, and highlights the impacts and dynamics of the disruptive technologies on the key 

parameters that define sustainable mobility.  Second, a quantitative analysis presents the synergies 

of the four technologies by modeling a W+SABEV system and demonstrates that a conjunction of 

the four technologies can shorten the payback time of greenhouse gas (GHG) emission burdens in 

terms of infrastructure and vehicles.  
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6.2 Qualitative analysis 

6.2.1 Method 

A qualitative analysis is conducted based on a combination of literature review and 

assessment of vehicle technologies.  

This study derives a life cycle-based framework to evaluate the sustainable mobility of 

proposed mobility systems based on the principles of green engineering [10]. We consider the in-

use and upfront burdens for the cost, energy, and emissions of mobility systems, adopting a 

systems-level approach. Our framework serves as a general guideline to assess proposed mobility 

systems and technologies, highlighting notable trends that correspond to sustainable performance. 

Charging infrastructure utilization, vehicle utilization, and vehicle ownership are three trends that 

ultimately drive the sustainable performance of vehicle transportation [11]. 

The vehicle technologies and mode choices are predicted to shift dramatically [12]. A more 

in-depth summary of each mobility trend is provided as follows. 

Shared mobility services. Market reports indicate that vehicle ownership will begin to 

decline [13, 14]. Shared vehicle fleets increase the utilization of a given vehicle, as private cars are 

estimated to be unused (parked) a majority of the time; the increase in vehicle utilization offers 

opportunities to enhance both sustainability and mobility [15]. Shared fleets can increase mobility 

for non-vehicle owners or populations no longer capable of driving. From a sustainability objective, 

the reduction of on-road vehicles in conjunction with their increased utilization will lead to 

significant reductions in emissions, energy demands, and system-wide costs. It is worth noting that 

shared mobility services should complement, not compete against, existing transportation systems. 

The prospect of shared fleets is promising, but the transition away from private vehicle ownership 

will be gradual and likely limited in non-urban environments. 

Vehicle autonomy and connectivity. Connected and automated vehicles (CAV) 

technology allows for the real-time optimization of routes and charging decision-making.  While 

only partial vehicle automation is currently commercially available, full scale driverless vehicles 

are predicted to hit the market within the next five to 20 years [16]. CAV technology enhances 
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mobility through the optimization of traffic flow, demand forecasting, and increase in mobility for 

users that cannot drive, to name a few. From a sustainability perspective, CAV technology has the 

potential to reduce emissions through platooning, more efficient driving, and the optimization of 

charging time and location [3]. Research has also shown, however, that CAV technology may lead 

to an increase in VMT and decrease in vehicle fuel efficiency due to the increase in weight from 

the CAV technology [17]. Nonetheless, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communication technologies allows for the data-drive, real-time operation of vehicles.  

Powertrain technology. Currently, there are internal combustion engine vehicles (ICEVs), 

with hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric vehicles (BEV) 

representing the remaining mix. Bloomberg New Energy Finance anticipates that EVs will 

constitute 55% of new sales and represent 33% of the global fleet by 2040 [18]. Battery electric 

vehicles offer the greatest opportunity to reduce greenhouse emissions, where a vehicle’s relative 

impact is dependent on electricity grid emissions [19]. The emissions reduction between BEV and 

petroleum-based vehicle systems will only increase as renewable energy resources displace fossil 

fuel-based power generation.  

Therefore, the shift towards shared mobility, vehicle autonomy, and electrified 

transportation are requisites for a future of sustainable mobility.  

 

6.2.2 Results 

6.2.2.1 Synergies of wireless charging and shared autonomous battery electric vehicles 

Our qualitative analysis shows that charging infrastructure decision making requires that 

the synergies between vehicle technologies be explicitly considered. The advantages and 

disadvantages of each technology are summarized in Figure 6.2. 
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Figure 6.2 Advantages and disadvantages of vehicle technologies that distinguish synergies of a 

wireless charging and shared autonomous battery electric vehicle (W+SABEV) fleet 

 

By integrating wireless charging technology instead of the conventional plug-in charging 

technology to charge electric vehicles, the pros of each technology can be enhanced, and some of 

cons of each technology can be eliminated. The key synergies are summarized as follows. 

Synergies between wireless charging and shared mobility services technologies. On-

road wireless charging can extend the operation time of shared fleets by recharging the battery 

incrementally, reducing the time and distance a vehicle must dedicate to maintain a minimum 

battery range. The spatial flexibility wireless charging provides aligns with the dynamic operations 

that shared fleets offer, highlighting the larger shift away from centralized vehicle infrastructure. 

Despite limited research that models shared autonomous fleets with respect to various charging 

scenarios, initial research indicates that wireless charging reduces both labor costs and non-



 

155 

 

passenger vehicle miles traveled (VMT), making shared, electric fleets financially competitive 

compared to shared internal combustion engine (ICE) fleets [2].   

Synergies between wireless charging and autonomous driving technologies. The 

benefits of both technologies are realized when deployed in conjunction. Wireless charging 

supports the full automation of vehicles as they can charge without the need of human intervention. 

Wireless charging also allows autonomous vehicles to strategically charge not only in parked 

spaces, but also at traffic lights and along the road when dynamic charging is considered. Vehicle 

autonomy is needed to realize the benefits of wireless charging for a variety of reasons. From a 

technical standpoint, an autonomous vehicle will maximize the charging efficiency by perfectly 

aligning the wireless charging pads. An autonomous vehicle offers communication between both 

vehicles and infrastructure. It can select optimal times and locations for charging by smart routing. 

An autonomous vehicle can also park itself and charge itself without any human intervention, 

reducing the amount of charging stations needed when vehicles are not in use. Research on SABEV 

systems has concluded that wireless charging increases operational efficiency, as vehicles can 

incrementally charge themselves throughout service [1, 2]. 

Synergies between wireless charging and BEV technologies. Although the large-scale 

wireless charging infrastructure poses significant deployment burdens, it offers opportunities to 

downsize the expensive and heavy BEV battery by recharging it incrementally to still satisfy the 

desired vehicle range. Such trade-offs are most evident when modeling the relationship between 

vehicle battery size and charging station placement. With respect to fixed bus routes, my previous 

study has shown that wireless charging for buses allows batteries to be 27% – 44% the size of a 

plug-in charged battery. This battery downsizing would result in lightweighting the vehicle and 

improving the fuel economy [9]. Wireless charging also offers spatial flexibility for charging 

infrastructure deployment, because it can be built on existing roads or parking spaces, without the 

need of procuring new lots to build plug-in charging stations. This would address the challenges 

of spatially constrained cities to supply adequate charging infrastructure.   

 

6.2.2.2 System dynamics and key parameters for sustainability 
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Having shown the potential of wireless charging technology to enhance the sustainable 

mobility of SABEV systems, this study shifts the focus to the dynamics of critical parameters, 

trade-offs, and constraints which define such systems. The system dynamics driven by the 

disruptive technologies are shown in Figure 6.3. It is assumed that the system seeks to serve a fixed 

passenger travel demand in a given day. By penetrating the disruptive technologies into the system, 

there will be changes driven by that penetration, as highlighted in the figure. The results are a 

combination of both positive and negative feedbacks demonstrating the interconnected complexity 

of passenger travel demand, vehicle design, and infrastructure needs. Wireless charging can: ① 

reduce the battery capacity due to more in-route charging time and charger utility improvement by 

optimal siting of charging infrastructure; ② reduce range anxiety due to more charging 

availability, therefore stimulating EV market share growth [20]. As such, wireless charging serves 

as the necessary catalyst to spark adoption trends and improve sustainable mobility; and ③ 

increase the production burden and weight of vehicles due to the add-on equipment of onboard 

wireless charger. Shared mobility can increase the ridership which results in extra distance 

detoured to pick up and drop off the additional passengers and add-on vehicle weight from the 

additional passengers, but it would reduce the fleet size required to serve the same amount of 

passenger travel. Autonomous driving technology would: ① reduce trip distance and improve fuel 

economy by smart routing; ② improve vehicle range and service time because of continuous 

operation of driverless vehicles as compared to a human-driving vehicle operation that may be 

interrupted by the driver’s need to rest after a few hours of driving; ③ improve the wireless 

charging efficiency by aligning the onboard charging pads perfectly with the off-board charging 

pads by precisely detecting the location of the wireless charging transmitter coils on the ground; 

④ increase the production burdens, weight, and air drag of the vehicles due to the add-on 

equipment of autonomous technology (e.g., lidar and computing systems); and ⑤ reduce the 

vehicle weight due to no need of driver.  
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Figure 6.3 System dynamics driven by the disruptive technologies 

 

6.3 Quantitative analysis 

6.3.1 Method 

A life cycle model is developed to evaluate the synergistic effect of the four emerging 

technologies on the payback time of greenhouse gas (GHG) emissions of infrastructure and vehicle 

burdens, by comparing a W+SABEV system (System #1) vs. a plug-in charging BEV system 

(System #2) serving the same number of 12,500 passengers on a daily basis.  

The GHG payback time is defined as the time when the additional burdens resulting from 

System #1 is equal to the cumulative savings of System #1, as compared to System #2. The 

additional burdens include: (1) wireless charging infrastructure; (2) additional weight of 

passengers; and (3) autonomous vehicle device. The additional savings include: (1) fleet size 

reduction; (2) battery downsizing; (3) no driver weight; and (4) use-phase electricity savings. The 

emission factors of these burdens and savings are obtained from the literature [9, 17, 21, 22]. 

Key parameters of System #1 are varied to illustrate their impacts on the GHG payback 

time, number of vehicles needed and average battery capacity of EVs, as shown in Table 6.1. The 
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variation range of each key parameter is based on empirical estimate. Wireless charging utility 

factor is defined as the average percentage of time that a W+SABEV spends on charging relative 

to the entire trip duration, namely the probability that a W+SABEV encounters an available 

charging facility in route. Smart routing factor is defined as the ratio of the trip distance after and 

before autonomous driving technology is employed. 

Table 6.1 Model setup for system comparison 

Key parameters 
System #1 

W+SABEV 

System #2 

Plug-in Charging BEV 

Wireless charging utility factor 5% – 25% N/A 

Average ridership per EV 1.5 passengers – 2.25 passengers 1.5 passengers 

DWPT efficiency 65% – 80% N/A 

Vehicle range per EV per day 120 miles – 180 miles 120 miles 

Smart routing factor 1.00 – 0.85 1.00 

 

6.3.2 Results 

The impacts on GHG payback time, fleet size, and average battery capacity from individual 

technology as well as all technologies in conjunction are shown in Figure 6.4. The results indicate 

that deploying all of those technologies in conjunction would significantly decrease the GHG 

payback time, number of vehicles, and battery capacity. Individual technology alone would not 

achieve such a great reduction. 
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Figure 6.4 Effect of each technology on the payback time, fleet size, and battery capacity 

 

Further analysis demonstrating the impact of wireless charging utility factor on the GHG 

payback time by evaluating an average W+SABEV fleet, as shown in Figure 6.5. Compared to a 

plug-in charging BEV system, a W+SABEV system with wireless charging utility factor <= 5% 

will pay back GHG emission burdens of additional infrastructure deployment beyond 10 years; 

and a W+SABEV system with wireless charging utility factor >= 19% will pay back GHG 

emission burdens of additional infrastructure deployment within 5 years. The presented 

sustainability framework suggests that a high utilization of a given system is a fundamental 

requisite for its overall sustainability. Within the context of transportation systems, this implies 

that vehicle operation time and range should be maximized and charging infrastructure should be 

fully utilized through optimal deployment. This principle of utility maximization is essential so 

that the upfront burdens can be offset by in-use savings. 
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Figure 6.5 Effect of wireless charging utility factor on the payback time 

 

6.4 Conclusions 

The current body of literature focuses on the analysis of interactions between transportation 

systems and emerging technologies. While it is vital to develop each emerging technology and 

improve its individual performance, it is equally important to recognize and assess the synergistic 

effects of the following emerging technologies and the interconnection between vehicle and 

infrastructure: 

 Wireless charging technology 

 Shared mobility services technology 

 Autonomous driving technology 

 Battery electric vehicle technology 

Through both qualitative and quantitative analyses and a parametric model of a W+SABEV 

fleet, the synergistic effects of the four technologies are demonstrated in enhancing sustainability 

of future transportation and reducing payback of upfront GHG emission burdens from 
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infrastructure and vehicles. Results indicate that based on the status quo of technology 

development using 2018 data, compared to a plug-in charging BEV system: 

 A W+SABEV system with wireless charging utility factor <= 5% will pay back GHG 

emission burdens of additional infrastructure deployment beyond 10 years; 

 A W+SABEV system with wireless charging utility factor >= 19% will pay back GHG 

emission burdens of additional infrastructure deployment within 5 years. 
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7 CHAPTER 7  

Conclusions 

 

The economic, environmental, and energy performance of wireless charging technology in 

enhancing sustainable mobility is evaluated by developing an integrated LCA-LCC model 

framework and optimized through LCO techniques on siting or rolling out wireless charging 

infrastructure. 

The LCA-LCC and LCO model framework is applied to evaluate the following 

transportation systems: (1) transit bus systems (Chapters 3 and 4); (2) passenger car systems 

(Chapter 5); and (3) a shared automated battery electric vehicle system (Chapter 6). The developed 

LCA-LCC and LCO framework lays a foundation for future work to evaluate and optimize similar 

emerging technologies for sustainable transportation. 

Overall, wireless charging is applicable to stationary wireless charging transit bus systems 

and can achieve comparable life cycle costs, greenhouse gases (GHG), and energy vs. plug-in 

charging systems. Optimal siting of wireless charging bus stations would enhance performance 

and reduce life cycle costs, GHG, and energy by up to 13%, 8%, and 8%, respectively. Deployment 

of dynamic wireless charging infrastructure for passenger cars is much more challenging and 

requires alignment of the following to enhance environmental, energy, and economic performance: 

(1) strategies considering both spatial and temporal heterogeneity are needed for optimal 

deployment, including high traffic volume, low speed, poor pavement conditions, high charging 

efficiency, and low infrastructure costs; (2) clean electricity sources such as solar energy; and (3) 

high penetration of electric vehicles in the market. A case study of Washtenaw County indicates 

that optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces 

life cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables 

downsizing of the EV battery capacity by up to 48% compared to the non-DWPT scenarios and 

boosts EV market penetration to around 50% of all vehicles. 
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It is also highlighted that wireless charging technology has strong synergies with 

autonomous driving technology. The application of wireless charging technology in a shared 

automated battery electric vehicle system is promising in significantly reducing GHG payback 

time of charging infrastructure.  

The detailed conclusions from each section are summarized in the following sections.  

 

7.1 Opportunities and challenges for wireless charging technology to enhance sustainable 

mobility (Chapter 2) 

From the sustainability perspective, WPT EVs have the trade-off of large infrastructure 

deployment versus the benefits of battery downsizing and vehicle lightweighting. WPT technology 

offers the possibilities for better energy performance, lower environmental impacts, lower life 

cycle cost, and more convenience and operational safety benefits compared to wired EVs and 

conventional internal combustion engine vehicles (ICEVs).  

In order to realize these possibilities of WPT EVs, the following research gaps need to be 

filled:  

 Optimization of large scale charging infrastructure deployment and battery capacity with a 

consideration of battery life for both public transit and passenger car applications;  

 Policies that coordinate the growth and development of WPT technology with other 

emerging EV technologies, such as connected and automated vehicles (CAVs); and  

 Electricity grid management that balances the demand and supply of electricity for both 

static and moving vehicles. 

Connected and automated vehicles (CAVs) would provide strong synergy and accelerate 

the adoption of WPT technology by leveraging capabilities (such as charging alignment precision) 

to improve driving performance and energy efficiency. WPT technology also offers more 

connectivity with the electric grid through V2G and G2V bidirectional power transfer, enabling 

EVs to become mobile energy storage devices to help regulate the grid by storing excess generation 

from uncontrolled renewables. 
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7.2 Integrated life cycle assessment and life cycle cost model for comparing plug-in versus 

wireless charging for an electric bus system (Chapter 3) 

A case study of Ann Arbor transit bus systems indicates that despite a higher initial 

infrastructure investment for off-board wireless chargers deployed across the service region, the 

wireless charging bus system has the lowest LCC of US$0.99 per bus-kilometer compared to plug-

in charging and also conventional pure diesel and hybrid bus systems and has the potential to 

reduce use-phase carbon emissions attributable to the lightweighting benefits of on-board battery 

downsizing compared to plug-in charging. 

 

7.3 A multi-objective life cycle optimization model of wireless charger deployment for an 

electric bus network (Chapter 4) 

There is no significant conflict among the cost, GHG, and energy objectives so that a near-

optimal deployment of wireless charging stations can achieve all three objectives almost 

simultaneously. For example, when planners optimally site the charging stations for the purpose 

of minimizing life cycle costs, they would almost achieve the minimal life cycle GHG emissions 

and energy consumption as well. 

Based on the case study of the University of Michigan bus routes, the optimal siting 

strategies can help reduce life cycle costs, GHG, and energy by up to 13%, 8%, and 8%, 

respectively, compared to extreme cases of “no charger at any bus stop” and “chargers at every 

stop”. 

 

7.4 Life cycle assessment and tempo-spatial optimization of deploying dynamic wireless 

charging technology for electric cars (Chapter 5) 

In this study, a life cycle assessment and optimization model was developed to evaluate 

and compare the life cycle costs, GHG emissions, and energy burdens of different deployment 

scenarios over a 20-year period, including the plug-in charging scenario, SWPT scenarios for 

charging at home/public parking and/or traffic lights, and DWPT scenarios with or without 

roadside solar electricity supply and with different regional electricity grid and fuel. 
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Results indicate that optimal DWPT rollout reduces life cycle GHG & energy by up to 9% 

and 7% respectively, and roadside solar panels are essential to reduce DWPT life cycle energy and 

GHG. GHG and energy burdens can break even within 20 years, but costs beyond 20 years. 

Based on the results, the following new insights about DWPT deployment are provided for 

decision making: 

 If minimizing life cycle GHG or energy is prioritized as the main design objective, earlier 

deployment is generally preferable; if life cycle cost is prioritized, later deployment is 

desired. A monetization of carbon emissions of at least $250 per metric tonne of CO2 is 

needed to shift the “pro-cost” deployment to the “pro-GHG” deployment. 

 Based on a case study of Washtenaw County in Michigan, a roadway segment with high 

volume (greater than about 26,000 vehicle counts per day), low speed (slower than 55 miles 

per hour), and short RSL (shorter than 3 years) should be given a high priority for early-

stage DWPT deployment. 

 Solar panels and storage batteries are essential for significantly reducing life cycle GHG 

and energy burdens, so they are recommended to be deployed together with DWPT when 

the design objective is prioritizing life cycle GHG emissions and energy burdens, with a 

precaution that they bring additional infrastructure costs. 

 Deployment of DWPT in regions with a clean electricity grid, e.g., California, would yield 

more GHG and energy savings, so earlier and more aggressive deployment is preferred for 

states or regions with cleaner electricity than Michigan. 

 

7.5 Synergies of Wireless charging technology and Shared Autonomous Battery Electric 

Vehicles (W+SABEV) (Chapter 6) 

A parametric model is developed to explore the synergies of the following four emerging 

technologies that have been demonstrated to have potential in enhancing sustainable mobility of a 

fleet of wireless charging shared autonomous battery electric vehicles (W+SABEV). Technologies 

evaluated through life cycle modeling and simulation include: 

 Wireless charging technology 

 Shared mobility services (e.g., Uber and Lyft) 



 

168 

 

 Autonomous driving technology 

 Battery electric vehicles 

Results indicate that based on the status quo of technology performance using 2018 data, 

compared to a plug-in charging BEV system: 

 A W+SABEV system with wireless charging utility factor <= 5% will pay back GHG 

emission burdens of additional infrastructure deployment beyond 10 years; 

 A W+SABEV system with wireless charging utility factor >= 19% will pay back GHG 

emission burdens of additional infrastructure deployment within 5 years. 

 

7.6 Recommendations for future research 

Agent-based modeling. In Chapter 6, a deterministic life cycle model is developed to 

evaluate the synergistic effect of four emerging technologies (i.e., wireless charging technology, 

shared mobility technology, autonomous driving technology, and battery electric vehicle 

technology) to enhance sustainable mobility. The deterministic model is capable of characterizing 

the key parameters of the system, including vehicle miles traveled, average fuel economy, battery 

downsizing, etc. However, in the real world, there is stochastic effect from passenger travel 

demand and actual traffic congestion. Therefore, an agent-based modeling (ABM) approach would 

be useful to characterize the real-world stochasticity. Further examination of the W+SABEV 

system by using ABM can inform decision making in terms of optimizing the layout of wireless 

charging infrastructure to better serve the passenger travel demand within a region by shared 

mobility services. An ABM would also help investigate and provide more insights on the effect of 

randomness of passenger travel demand (e.g., origin, destination, and trip distance) on the 

reliability of the W+SABEV system. In addition, agent based modeling approach can also 

incorporate the convenience benefits of stationary wireless charging at home or at work which 

eliminates the hassle of plugging in. Charging convenience can be quantitatively characterized by 

the monetary value of saved time. Finally, a policy analysis on the real-time pricing mechanisms 

can be conducted to examine the impact of different prices of electricity according to supply and 

demand on the vehicles’ decisions on route choices so as to help regulate and decentralize 

congestion on wireless charging lanes. 
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Other criteria pollutants. In this dissertation, while different environmental criteria 

pollutants, such as NOx, SOx, of wireless charging infrastructure are examined in the life cycle 

inventory analysis, the main focus of this dissertation is on the GHG emissions indicator because 

it is widely used as a sustainability indicator of transportation systems and vehicles. Future 

research can delve deeper into the environmental impacts of wireless charging technology using 

different sustainability indicators, such as ozone depletion, acidification, and water scarcity, etc.  

End-of-life (EoL) management. A reusable and modular design of DWPT infrastructure 

embedded in pavement can help facilitate disassembly and recycling of metals and electronics. For 

example, although the proportion of life cycle GHG burdens from copper wires of wireless 

charging infrastructure is less than 1% based on the LCI results of this study, the metal after DWPT 

infrastructure retirement still has economic value. Therefore, recycling of reusable parts may offset 

some cost and environmental burdens of the initial infrastructure deployment and enhance the life 

cycle performance of WPT. Given the uncertainty of which parts would be recycled after WPT 

infrastructure retirement, the EoL stage is excluded in this study, but the recycling opportunities 

should be investigated once sufficient data become available. 

Bi-directional wireless charging. Bi-directional wireless charging, which allows for both 

vehicle-to-grid (V2G) and grid-to-vehicle (G2V) interactions, offers more opportunities for 

wireless charging technology to enhance sustainable mobility compared to G2V transmission only. 

Through V2G, the extra electricity charged by the EVs can be sold back to the electric grid when 

the electricity demand is high. By feeding back the extra electricity in the EV battery, EV owners 

will be able to gain financial benefits as well as environmental credits (if the extra electricity is 

from a clean energy source, e.g., solar). Bi-directional wireless charging facilitates the V2G 

process by allowing EV owners to feed back the extra electricity while they are driving or idling 

at traffic lights, as compared to traditional plug-in charging. Therefore, it is worth investigating 

the implications of wireless V2G technology on the sustainability performance of electric vehicle 

systems, conduct policy analysis on leveraging the electricity price to incentivize the payback of 

clean electricity, and examine the role of bi-directional wireless charging technology in this new 

arena.  

Model extrapolation. The current results are obtained based on case studies of Ann Arbor 

bus systems and Washtenaw County roadway systems. Although sensitivity analyses have been 



 

170 

 

conducted in this work to explore the spatial heterogeneity, it is recommended that future work 

explores other regions with different travel demand, traffic flow patterns, urban layouts, dominant 

modes of transportation, and emission intensities of the electric grid to develop more general 

conclusions and provide further insights.   

 


