
Outlier Detection for Mixed Model with

Application to RNA-Seq Data

by

Tzu-Ying Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2018

Doctoral Committee:

Associate Professor Hui Jiang, Chair
Professor Jack Kalbfleisch
Associate Professor Srijan Sen
Professor Peter X.K. Song
Professor Ji Zhu

Tzu-Ying Liu

ltzuying@umich.edu

ORCID iD: 0000-0001-7533-4134

c©Tzu-Ying Liu 2018

ACKNOWLEDGEMENTS

I would like to thank my program advisor, Professor Hui Jiang and my committee

members, Professor Srijan Sen of the Department of Psychiatry and Molecular and

Behavioral Neuroscience Institute, Professor Ji Zhu of the Department of Statistics,

Professor Peter Song and Professor Jack Kalbfleisch of Department of Biostatistics,

for their exceedingly insightful comments that improved my research.

I also would like to express my gratitude to the two anonymous reviewers and the

associate editor of The Journal of Computational and Graphical Statistics for their

suggestions on my first project, especially for the image restoration application and

the extension to high-dimension settings. I am very grateful to our collaborators,

Dr. Marcin Cieslik, and Professor Arul Chinnaiyan; they provided me with helpful

suggestions and encouragement. Finally, I would like to thank the funding investiga-

tor, Professor Alex Tsodikov. The research was supported by NIH Prostate SPORE

grant 5P50CA186786.

i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . i

LIST OF FIGURES . iv

LIST OF TABLES . vii

ABSTRACT. viii

CHAPTER

I. Introduction . 1

II. Minimizing Sum of Truncated Convex Functions 4

2.1 Introduction . 4
2.2 Applications . 6

2.2.1 Outlier detection in linear models 6
2.2.2 Convex shape placement . 9
2.2.3 Signal and image restoration . 10

2.3 Methods . 11
2.3.1 Notations . 12
2.3.2 The general algorithm . 13
2.3.3 Implementation in low-dimensional settings 14
2.3.4 Extension to high-dimensional settings 16
2.3.5 Time complexity analysis . 17

2.4 Experiments . 19
2.4.1 Outlier detection in simple linear regression 19
2.4.2 Sum of truncated quadratic functions 20
2.4.3 Convex shape placement . 23
2.4.4 Signal and image restoration . 23

2.5 Discussion . 27

III. Integrating Poly(A) Capture and Exome Capture RNA-Seq Data 29

3.1 Introduction . 29
3.2 The Data . 33
3.3 Evidence of differences between the two types of measurements 35
3.4 Converting capture sequencing measurements to Poly(A) measurements . . . 37

3.4.1 Notation . 39
3.4.2 Comparing prediction by genewise simple regression and mixed

effect model . 39
3.5 Results . 40
3.6 Discussion . 43

ii

3.7 Appendix for Chapter 3 . 45

IV. Outlier Detection for Mixed Model . 47

4.1 Extending mixed effect model for detecting individual outliers and outlying
random effects . 47

4.2 Estimation Scheme . 49
4.3 Estimate the outliers and predict the random effects by Penalized Maximum

Likelihood Estimation . 51
4.3.1 Separation of the objective function by incorporating the predictors

of the random effects . 53
4.3.2 Transform the objective function into a sum of truncated quadratic

functions . 55
4.3.3 Summary of estimating ∆ and δ . 59

4.4 Determine λO and λG . 60
4.4.1 Variance of the conditional residuals and predicted random effects 61
4.4.2 Determine the cutoffs for conditional residuals and predicted ran-

dom effects . 62
4.5 Dilation factor . 65
4.6 Simulation Study . 67
4.7 Application to RNA-Seq data . 70
4.8 Discussion . 73

V. Discussion . 75

APPENDIX. 77
A1 Appendix for Chapter II . 77

A1.1 Application on detecting differential gene expression with `0-penalized
models . 77

A1.2 Algorithms described in Section 2.3 79
A1.3 The Θ-IPOD algorithm for robust linear regression 81
A1.4 The difference of convex (DC) functions algorithm 81
A1.5 The iterative marginal optimization (IMO) algorithm for signal and

image restoration . 82
A1.6 Proofs . 83
A1.7 Supplementary figures and tables 87

BIBLIOGRAPHY. 90

iii

LIST OF FIGURES

Figure

2.1 The sum of two truncated quadratic functions f1 + f2 (in black), where f1(x) =
min{4x2 + 1, 3} (in blue) and f2(x) = min{2(x− 1)2 + 2, 4} (in red). 6

2.2 The corresponding Ci’s of three convex functions f1, f2, f3 define on R2, where
Ci = {x : fi(x) ≤ 0}. The boundaries of {Ci}3i=1 partition R2 into eight disjoint
pieces {Aj}8j=1. 13

2.3 Comparison of different methods for outlier detection in simple linear regression.
The figures show the mean percents of masking (top) and swamping (bottom) for
different leverages of outliers: L = 0 (left) and L = 20 (right) and different percents
of outliers (O%) for all the methods using 100 simulated replicates. The standard
errors of the means are shown as error bars. When estimating the regression coef-
ficients and identifying the outliers, we assume that the σ2 is known and is 1. In
other words, we estimate only β and γ in (2.2). When implementing MM, LTS
and GY estimators, the fact that σ2 is known is not exploited because we use pack-
aged functions for these methods, which assume σ2 to be unknown and have no
arguments for specifying σ2. 21

2.4 Contour plots of randomly generated sum of truncated quadratic functions in R2.
Global minima are marked with the plus sign. 23

2.5 Comparison of different algorithms for minimizing the sum of 50 randomly gen-
erated truncated quardratic funstions in 2-D. The figure shows the mean success
rates (in percents) for all the methods using 100 simulated replicates for different
complexities of the functions (C). The standard errors of the means are shown as
error bars. 24

2.6 Simulated random signal (left) and restored signal (right) are shown in solid lines.
The underlying true signal are shown in dashed lines. 25

2.7 Restoration of synthetic and real images. For each row, from left to right: original
image, image with Gaussian noise added, image restored using Gaussian smoothing
with a 5× 5 kernel and image restored using proposed algorithm. 27

3.1 mRNA isolation, adopted from [21]. In the process of RNA-seq library preparation,
RNAs are first isolated from tissue samples using commercial kits. Then mRNAs
are isolated from total RNAs by annealing to oligo-dT beads. rRNAs and tRNAs
are washed away before mRNAs are released from the beads. 31

3.2 RNA-seq workflow, adopted from [27]. The purified mRNAs are first fragmented
into smaller pieces and reverse-transcribed to complementary DNAs (cDNAs). Af-
ter formation of one strand of cDNA, the mRNA strand is removed and replaced
by another strand of cDNA to generate a double-stranded cDNAs. Each end of the
double-stranded DNA is then repaired, adenylated and ligated by adaptor before
being enriched by polymerase chain reaction (PCR). Once a library has passed the
quality control, it can be sent to various sequencing platforms and generate read
counts data. 32

iv

3.3 Distribution of the RINs of 363 poly(A) libraries. Of the 363 CaptureSeq libraries,
357 had exactly the same RINs as their poly(A) counterparts. The other 6 Cap-
tureSeq libraries had a difference from the poly(A) measurements as -2.7, -1.5,
-1.1, -0.6, 0.1, and 0.7. The RINs range from 2.5 from 10 with a mean of 8.6 and
a median of 9.2. The 1st and the 3rd quartiles are 8.1 and 9.6. 34

3.4 Cluster analysis on the paired CaptureSeq and Poly(A) log2(CPM) measurements
from 25 prostate cancer patients. Each row represent a gene and each column
represent either a library of CaptureSeq (columns with purple tags on the top) or
Poly(A) (columns with orange tags on the top) measurements. The genes are the
top 50 most varied genes across the 50 libraries. We used the Euclidean distance
and the complete method of Hierarchical clustering on the genes. 36

3.5 Box plots of the number of significant genes in each experiment comparing two
groups of randomly drawn subjects . 38

3.6 Prediction by the mixed model and genewise fixed effect models on libraries with
RIN ≥ 7: correlation of predicted and actual poly(A) log2-CPMs across all genes
and all samples, based on 30 replicates for each sample size. 41

3.7 Prediction by the mixed model and genewise fixed effect models on libraries with
RIN ≥ 7: RMSE of predicted and actual poly(A) log2-CPMs across all genes and
all samples, based on 30 replicates for each sample size. 41

3.8 Cluster analysis on the paired predicted Poly(A) measurements based on cap-
ture sequencing measurements and true Poly(A) log2(CPM) measurements from
25 prostate cancer patients. Each row represents a gene, and each column rep-
resent either a predicted Poly(A) library (columns with purple tags on the top)
or true Poly(A) (columns with orange tags on the top) measurements. The genes
are the top 50 most varied genes across the 50 libraries. We used the Euclidean
distance and the complete method of Hierarchical clustering on the genes. The
clustering is now by subject, which is suggested by the neighboring of same subject
identification numbers. 42

3.9 Distribution of the gene-wise ordinary least squares (OLS) estimates by having
the paired the Exome Capture RNA-Seq measurements regressed on the Poly(A)
Capture RNA-Seq measurements. The arrows indicate identified causes for some
of the gene-specific random effects to be outliers of the assumed bivariate normal
distribution. 44

3.10 Examples of genes whose OLS estimates lie in the right lower quadrant of in Fig-
ure 3.9. The smaller clusters of observations shared the same sample identifiers
across multiple genes, which suggests the existence of batch effects. 44

3.11 The distribution of and the correlations between the total length of exons in a
gene, the proportion of the bases in the exons that are either ”G” or ”C”, and the
proportion of the length that is covered by the first generation probes of CaptureSeq
designed by our collaborative biotech company, the intercepts, the slopes and the
residual standard error of the genewise simple regressions by regressing Poly(A)
log2(CPM) measurements on CaptureSeq log2(CPM) measurements. 45

3.12 Distributions of the Exome Capture RNA-Seq and the Poly(A) Capture RNA-Seq
measurements. The first row shows the distribution of mean log2 count per million
(CPM) for each gene. The second row displays the inverse relationship between
the variance of log2CPM and the mean raw count. The third row illustrates the
libraries sizes for all samples, which are measured by both Exome Capture and
Poly(A) Capture methods. 46

4.1 Estimation scheme of the proposed method. 51

v

4.2 Illustration of outlier detection for a mixed effect by the proposed method in real
RNA-Seq data. There are paired Poly(A) and Capture RNA-Seq measurements
for 18,000 genes from 100 subjects. We use a mixed model to the predict Poly(A)
measurements based on a single predictor, the Capture RNA-Seq measurements
with gene-specific random intercepts and slopes. Because the outlying gene-specific
effects will be estimated as zeros in the proposed method, we use estimated coef-
ficients from the simple regression in to demonstrate the relative positions of the
detected outlying random effects (red) and normal random effects (black). 70

4.3 The scatter plot of Capture and Poly(A) RNA-Seq measurements from one of the
undetected outlying genes whose OLS estimates lies in the right upper quadrant in
Figure 4.2. The gene-specific OLS estimates the standard error to be 1.1 while the
common standard error assumed by the proposed method across all genes is 0.46.
There are also unequal variances among observations within a gene. 71

4.4 The scatter plot of Capture and Poly(A) RNA-Seq measurements from one of the
undetected outlying genes whose OLS estimates lies in the left upper quadrant in
Figure 4.2. The gene-specific OLS estimates the standard error to be 0.72 while
the common standard error assumed by the proposed method across all genes is
0.46. There are also unequal variances among observations within a gene. 72

4.5 The scatter plot of Capture and Poly(A) RNA-Seq measurements from one of
the detected genes whose OLS estimates are not outlying. The gene-specific OLS
estimates the standard error to be 1.9 while the common standard error assumed
by the proposed method across all genes is 0.46. There are also unequal variances
among observations within a gene. 72

A1 Placement of different convex shapes to cover the maximum number of points uni-
formly sampled from the unit square. 87

A2 Restoration of images. For each row, from left to right: original image, image with
Gaussian noise added, image restored using Gaussian smoothing with a 5×5 kernel
and image restored using proposed algorithm. 87

vi

LIST OF TABLES

Table

2.1 Comparison of different algorithms for signal restoration. The table shows the mean
success rates (in percents), relative losses, root mean square errors (RMSE), as well
as running times (in seconds) for all the methods using 100 simulated replicates.
The standard errors of the means are given in parentheses. 26

3.1 Origins of cancer tissues of the 372 patients. 33
3.2 Nonzero coefficients of the penalized regression for classifying samples

from the two technologies. We tuned the Elastic Net regression model using a
sequence of α (from 0 to 1, with a step of 0.1), which determined the proportion of
quadratic and L1 norm in the penalty term, and 10-fold cross-validation to choose
λ. We trained the model on 272 pairs of measurements and then tested the model
on the other 100 pairs. The misclassification rate on the test set is 0.005.
. 37

3.3 Differential expression experiments of randomly drawn subjects. Num-
ber of genes found to be significantly differentially expressed for more than 50 times
in a total of 1000 experiments. 37

4.1 Summary of the estimates with corresponding outlyingness 60
4.2 Outlier detection for small data sets composed of 20 genes, each with10 paired

measurements. The results are based on the medians of the 100 replicates. For the
proposed method, the ideal masking (false negative) rate is 0 and the swamping
(false positive) rate should be close to the user-defined threshold α, which is 5% in
the simulation setting. 68

4.3 Outlier detection for data sets composed of 2000 genes, each with10 paired mea-
surements. The results are based on the medians of the 100 replicates. For the
proposed method, the ideal masking (false negative) rate is 0 and the swamping
(false positive) rate should be close to the user-defined threshold α, which is 5% in
the simulation setting. 69

4.4 Parameter estimation by the naive method and the proposed method based on
data sets composed of 20 genes, each with 10 paired measurements. The results
are based on the medians of the 100 replicates. 69

4.5 Parameter estimation by the naive method and the proposed method based data
sets composed of 2000 genes, each with 10 paired measurements. The results are
based on the medians of the 100 replicates. 69

A1 Comparison of different methods for outlier detection in simple linear regression.
The table shows the leverages of outliers (L), percents of outliers (O%) and mean
percents of masking and swamping for all the methods using 100 simulated repli-
cates. The standard errors of the means are given in parentheses. 88

A2 Stopping criteria of the simulation studies in Sections 2.4.2 and 2.4.4 88
A3 Comparison of different algorithms for global optimization of the sum of 50 ran-

domly generated truncated quadratic functions in 2-D. The table shows the com-
plexities of the functions (C) as well as mean success rates (in percents) and running
times (in seconds) for all the methods using 100 simulated replicates. The standard
errors of the means are given in parentheses. 89

vii

ABSTRACT

Extracting messenger RNA (mRNA) molecules using oligo-dT probes targeting

on the Poly(A) tail is common in RNA-sequencing (RNA-seq) experiments. This

approach, however, is limited when the specimen is profoundly degraded or formalin-

fixed such that either the majority of mRNAs have lost their Poly(A) tails or the

oligo-dT probes do not anneal with the formalin-altered adenines. For this prob-

lem, a new protocol called capture RNA sequencing was developed using probes for

target sequences, which gives unbiased estimates of RNA abundance even when the

specimens are degraded. However, despite the effectiveness of capture sequencing,

mRNA purification by the traditional Poly(A) protocol still underlies most refer-

ence libraries. A bridging mechanism that makes the two types of measurements

comparable is needed for data integration and efficient use of information.

In the first project, we developed an optimization algorithm that was later applied

to outlier detection in a linear mixed model for data integration. In particular, we

minimized the sum of truncated convex functions, which is often encountered in mod-

els with L0 penalty. The solution is exact in one-dimensional and two-dimensional

spaces. For higher-dimensional problems, we applied the algorithm in a coordinate

descent fashion. Although the global optimality is compromised, this approach gen-

erates local solutions with much higher efficiency.

In the second project, we investigated the differences between Poly(A) libraries

and capture sequencing libraries. We showed that without conversion, directly merg-

ing the two types of measurements lead to biases in subsequent analyses. A practical

solution was to use a linear mixed model to predict one type of measurements based

viii

on the other. The predicted values based on this approach have high correlations,

low errors and high efficiency compared with those based on the fixed model. More-

over, the procedure eliminates false positive findings and biases introduced by the

technology differences between the two measurements.

In the third project, we noted outlying observations and outlying random ef-

fects when fitting the mixed model. As they lead to the discovery of dysfunctional

probes and batch effects, we developed an algorithm that screened for the outliers

and provided a robust estimation. Specifically, we modified the mean-shift model

with variable selection using L0 penalties, which was first introduced by Gannaz

(2007), McCann and Welsch (2007) and She and Owen (2012). By incorporating the

optimization method proposed in the first project, the algorithm became scalable

and yielded exact solutions for low-dimensional problems. In particular, under the

assumption of normality, there existed analytic expressions for the penalty parame-

ters. In simulation studies, we showed that the proposed algorithm attained reliable

outlier detection, delivered robust estimation and achieved efficient computation.

ix

CHAPTER I

Introduction

The first project was motivated by a problem of minimizing a sum of truncated

quadratic functions, which is often encountered in regression models with L0 penal-

ties. In the process solving the problem, we found that the algorithm can be applied

to a more general problem of minimizing the sum of truncated convex functions. The

merit of this general algorithm is that the solution is exact. However, the drawback

is that the algorithm is hard to implement for problems with higher dimensions and

when the functions are not quadratic. In this project, we demonstrate the accuracy

of the algorithm in solving low dimensional sum of truncated quadratic functions.

For higher dimensional problems, we resort to coordinate descent algorithm and

iteratively minimize one-dimensional problems one at a time. Despite the loss of

global optimality, we found this approach very efficient comparing to other global

optimization algorithms.

The second project was motivated by a collaborative project where we need to in-

tegrate two types of RNA-seq measurements. The first type of measurements, which

is called Poly(A) capture, are based on mRNAs purified by oligo-dT probes targeting

on the Poly(A) tails. This purification methods, however, is limited when the speci-

men is profoundly degraded or formalin-fixed. A newer type of measurements, called

1

2

capture RNA sequencing, is developed to overcome these difficulties. Despite the

effectiveness of this newer protocol, most reference libraries in major databases are

still based on the Poly(A) RNA-Seq measurements, and it is costly to reproduce the

reference libraries for Capture RNA-Seq measurements. In this project, we examine

whether there are differences between these two types of measurements. In particu-

lar, we demonstrated that there are potential biases and false positive findings in the

analyses if we combine the two types of data without conversion. To bridge these two

types of measurement, we needed to build a model that converts measurements for

more than 18,000 genes with a minimal number of samples. It turned out that heed-

ing the hierarchical structure in the data by using the mixed model rewards excellent

efficiency in parameter estimation and high accuracy in prediction of gene-specific

coefficients.

The third project evolved as we found outliers of the mixed model in the second

project. There are two levels of outliers: outlying gene-specific effects that do not

conform to the assumed multivariate normal distribution and outlying observations

with residuals that do not fit the univariate normal distribution. Further investiga-

tion revealed that these outlying effects were caused by various technical issues, such

as dysfunctional probes, batch effects or genes associated with histone mRNA and

mitochondrial mRNA. As identifying the underlying technical issue help improve the

technology and accuracy of the measurements, we set off to develop a robust mixed

model that detect these outliers.

We applied the idea of the mean-shift variable by [17] and [33] to the mixed

model, creating a mean-shift variable for each gene-specific effect and also a mean-

shift variable for each observation. As the model is over-parameterized, we adopt the

sparse estimation using L0 penalty proposed by [45]. The primary challenge is that

3

the objective function is not convex and hard to optimize. Under the assumption

of independent observations, we were able to transform the objective function into a

sum of truncated function and apply the optimization algorithm that we proposed

in the first project. Also, the objective function is separable by groups, and thus

the optimization can run in parallel. We compare the performance of the proposed

method with a naive approach of combining robust regression and robust estimation

for multivariate normal distribution in simulation studies. The results showed the

proposed method effectively detected the outliers and delivered estimates close to

the real values.

CHAPTER II

Minimizing Sum of Truncated Convex Functions

In this chapter, we study a class of problems where the sum of truncated convex

functions is minimized. In statistical applications, they are commonly encountered

when `0-penalized models are fitted and usually lead to NP-Hard non-convex op-

timization problems. We propose a general algorithm for the global minimizer in

low-dimensional settings. We also extend the algorithm to high-dimensional prob-

lems, where an approximate solution can be found efficiently. We compare our pro-

posed algorithm with other existing algorithms in simulation studies and show its

utility in edge-preserving image restoration on real data. This chapter is based on

the following publication: ”Minimizing sum of truncated convex functions and its

applications”, published in the Journal of Computational and Graphical Statistics.

2.1 Introduction

Regularization methods in statistical modeling have gain popularity in many

fields, including variable selection, outlier detection, and signal processing. Recent

studies [46, 45] have shown that models with non-convex penalties possess superior

performance compared with those with convex penalties. While the latter in general

can be obtained with ease by virtue of many well-developed methods for convex op-

timization [5], there are limited options in terms of global solutions for non-convex

4

5

optimization, which are more and more commonly encountered in modern statistics

and engineering. Current approaches often rely on convex relaxation [6], local solu-

tions by iterative algorithms [16] or trading time for global optimality with stochastic

search [53].

In this paper, we study a special class of non-convex optimization problems, for

which the objective function can be written as a sum of truncated convex functions.

That is,

(2.1) x = arg min
x

n∑
i=1

min{fi(x), λi},

where fi : Rd → R, i = 1, . . . , n, are convex functions and the truncated levels

λi ∈ R, i = 1, . . . , n, are constants. Due to the truncation of fi(·) at λi, the objective

function is often non-convex. See Figure 2.1 for an example.

While in general, such problems are NP-Hard (see Section 2.3 for formal results),

we show that for some fi(·) there is a polynomial-time algorithm for the global

minimizer in low-dimensional settings. The idea is simple: When the objective

function is piecewise convex (e.g., see Figure 2.1), we can partition the domain so

that the objective function becomes convex when restricted to each piece. This

way, we can find the global minimizer by enumerating all the pieces, minimizing the

objective function on each piece, and taking the minimum among all local minima.

The rest of the paper is organized as follows. In Section 2.2, we demonstrate the

utility of our algorithm in several applications where the objective function can be

transformed into a sum of truncated convex functions. In Section 2.3, we lay out the

general algorithm for the global solution and its implementation in low-dimensional

settings. As we will see in the complexity analysis, the running time grows expo-

nentially with the number of dimensions. We, therefore, make a compromised but

6

−2 −1 0 1 2 3

0
2

4
6

8
x

f

f1 + f2
f1
f2

Figure 2.1: The sum of two truncated quadratic functions f1 + f2 (in black), where f1(x) =
min{4x2 + 1, 3} (in blue) and f2(x) = min{2(x− 1)2 + 2, 4} (in red).

efficient extension of the algorithm in high-dimensional settings. In Section 2.4, we

compare our proposed algorithm with existing methods in simulation studies and

apply our proposed algorithm to real-life image restoration problems. Discussions

are given in Section 2.5.

2.2 Applications

2.2.1 Outlier detection in linear models

The task of outlier detection in linear regression can be formulated as a problem of

variable selection. As in [17] and [33], given n observations and p covariates, we can

add n additional parameters {γi}ni=1 denoting the amount by which the observations

are outlying. That is,

(2.2) yi = xTi β + γi + εi, i = 1, . . . , n,

where yi ∈ R,xi ∈ Rp, i = 1, . . . , n, are the observations, β ∈ Rp, γi ∈ R, i = 1, . . . , n,

are the parameters of interest, and {εi}ni=1 are i.i.d. N(0, σ2). Since there are n + p

parameters but only n observations, the model is non-identifiable. [17] used an `1

penalty in the objective function to force sparsity in γ such that yi is considered

7

an outlier if γi 6= 0 and an observation conforming to the assumed distribution if

γi = 0. [33] treated (2.2) as a variable selection problem and applied the Least Angle

Regression. Similar idea for outlier detection has also been used for robust Lasso

regression [36, 26], Poisson regression [22], logistic regression [47], clustering [49, 18],

as well as a large class of regression and classification problems intoduced in [29].

[45] took into consideration the issues of masking and swamping when there are

multiple outliers in the data. By definition, masking refers to the situation when a

true outlier is not detected because of other outliers. Swamping, on the other hand,

refers to the situation when an observation conforming to the assumed distribution is

considered outlying under the influence of true outliers. They pointed out that using

the `0 penalty instead of the `1 penalty in the objective function could resolve both

issues. Assuming σ is known, adding an `0 penalty to the negative log-likelihood

function for model (2.2), the objective function becomes

(2.3) f(β,γ) =
n∑
i=1

(yi − xTi β − γi)2 + λ
n∑
i=1

1(γi 6= 0),

where λ is a tuning parameter and 1(·) is the indicator function. It can be shown that

this problem can be solved by minimizing a sum of truncated quadratic functions.

Proposition 2.1. Minimizing (2.3) in β and γ jointly is equivalent to minimizing the

following sum of truncated quadratic functions in β

g(β) =
n∑
i=1

min{(yi − xTi β)2, λ}.

This result is consistent with the proposition by [45] that the estimate β̂ from

minimizing (2.3) is an M -estimate associated with the skipped-mean loss. Since

the objective function is non-convex, [45] proposed an iterative hard thresholding

algorithm named Θ-IPOD (iterative procedure for outlier detection) to minimize it.

8

Similar to other iterative procedures, Θ-IPOD only guarantees local solutions. A

simulation study comparing our proposed algorithm with Θ-IPOD and several other

robust linear regression algorithms are presented in Section 2.4.1. We implement the

Θ-IPOD algorithm in R (see Supplementary Algorithm 5 for details).

Furthermore, Proposition 2.1 can be extended to the class of generalized linear

models (GLMs). Suppose that Yi ∈ R, i = 1, . . . , n, follow a distribution in the

exponential family,

f(Yi = yi|θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
,

where θi is the canonical parameter and φ is the dispersion parameter (assumed

known here). For a GLM with canonical link function g, θi = g(µi) = xTi β + γi, the

`0-penalized negative log-likelihood function is

(2.4) f(β,γ) =
n∑
i=1

{b(xTi β + γi)− (xTi β + γi)yi}+ λ
n∑
i=1

1(γi 6= 0).

It can be shown that minimizing (2.4) is equivalent to minimizing a sum of truncated

convex functions.

Proposition 2.2. Minimizing (2.4) in β and γ jointly is equivalent to minimizing the

following function in β

g(β) =
n∑
i=1

min{b(xTi β)− (xTi β)yi, λ
∗
i },

where λ∗i = b(g(yi)) − g(yi)yi + λ, i = 1, . . . , n, are constants. Since b is convex [1],

the above is a sum of truncated convex function.

Example 2.3. Suppose that {Yi}ni=1 follow Poisson distributions with mean {µi}ni=1,

respectively, and that g(µi) = log µi = xTi β + γi, where γi = 0 if yi conforms to the

assumed distribution and γi 6= 0 if yi is an outlier. The `0-penalized negative log-

9

likelihood function is

(2.5) f(β,γ) =
n∑
i=1

{
exT

i β+γi − (xTi β + γi)yi

}
+ λ

n∑
i=1

1(γi 6= 0).

According to Proposition 2.2, minimizing (2.5) is equivalent to minimizing the fol-

lowing function

g(β) =
n∑
i=1

min{exT
i β − (xTi β)yi, λ

∗
i }, where λ∗i = λ− yi log yi + yi,

which is a sum of truncated convex functions.

2.2.2 Convex shape placement

Given a convex shape S ⊂ Rd, and n points pi ∈ Rd, i = 1, . . . , n, each associated

with weight wi > 0, the problem of finding a translation of S such that the total

weight of the points contained in S is maximized has applications in the placement of

facilities or resources such as radio stations, power plants or satellites [34]. For some

simple shapes (e.g., circles or polygons) in low-dimensional settings, this problem

has been well studied [7, 3].

We show that this problem can be solved by minimizing a sum of truncated convex

functions. Without loss of generality, let S0 ⊂ Rd denote the region covered by S

when it is placed at the origin. Here the location of S can be defined as the location

of its centroid. For each point pi, let Si ⊂ Rd be the set of locations for placing S

such that it covers pi. It is easy to see that Si = {x : pi−x ∈ S0} = {pi−y : y ∈ S0},

and that the shape of Si is simply a mirror image of S0 and therefore it is also convex.

Furthermore, define convex function fi : Rd → R as

fi(x) =

 −wi if x ∈ Si,

∞ otherwise.

10

Then the optimal placement of S can be found by minimizing the sum of truncated

convex functions
∑n

i=1 min{fi(x), λi} as in (2.1) where λi = 0, i = 1, . . . , n.

Some examples of this application are given in Section 2.4.3.

2.2.3 Signal and image restoration

Signal restoration aims to recover the original signal from observations corrupted

by noise. Suppose that the observed data y are generated from the original data x

following the model [41]:

y = Hx + ε

where H is a matrix performing some linear transformation on the data (e.g., smooth-

ing) and ε is the vector the measurement errors, often modeled as additive white

Gaussian noise (AWGN). The goal is to estimate (a.k.a. restore or reconstruct) x

from observed y and a known H. When both x and y are (vectorized) images, the

problem is called image restoration.

During this restoration process, one often wants to preserve the edges in the

original signal, if there were any. One popular approach is to minimize the following

regularized objective function (a.k.a. energy function [38]):

x̂ = arg min
x

L(Hx− y) + αp(x)

where L(Hx − y) is the loss function, usually taken as the negative log-likelihood

function (e.g., ||Hx − y||2 in case of Gaussian noise), p(x) is a penalty function to

introduce the prior that one wishes to enforce on the original data x, and α is a tuning

parameter. Many penalty functions have been studied in the literature. While convex

penalty functions are generally easier to optimize, non-convex penalty functions can

lead to better restoration quality [39]. In particular, the truncated quadratic penalty

has been found to be quite effective [37, 41]. For instance, to promote both sharp

11

edges and smooth regions in the estimated x̂, a truncated quadratic penalty on the

differences between neighboring data points can be used:

p(x) =
∑

i,j∈I,i∈D(j)

min{(xi − xj)2, λ},

where I is the index set of all the data points (or pixels), and i ∈ D(j) means

that data points (or pixels) i and j are neighbors of each other. Together with this

penalty function, the energy function L(Hx− y) + αp(x) with the loss function for

Gaussian noise is in the form of a sum of truncated quadratic functions, where the

loss function L(Hx−y) = ||Hx−y||2 can be regarded as a sum of quadratic functions

truncated at infinity. A simulation study comparing our proposed algorithm with

other algorithms for signal restoration and an application of our proposed algorithm

to image restoration on real data are presented in Section 2.4.4.

2.3 Methods

First, the general problem of minimizing a sum of truncated convex functions is

in the class of NP-Hard. This can be shown by reducing the 3-satisfiability (3-SAT)

problem [10, 25], an NP-complete problem, to the problem of minimizing a sum of

truncated convex functions.

Proposition 2.4. The 3-SAT problem can be reduced to the problem of minimizing

a sum of truncated convex functions.

Consequently, a universal algorithm for solving the general problem of minimiz-

ing a sum of truncated convex functions with polynomial running time is unlikely

to exist [35]. However, when partitioning the search space such that the objective

function is convex when restricted on each region and enumerating all the regions is

feasible, a polynomial time algorithm does exist (note that here we consider obser-

12

vations as the input and hold dimensionality of the search space constant). Next,

We show that it is, in fact, the case for some commonly used convex functions in

low-dimensional settings.

2.3.1 Notations

Given n convex functions fi : Rd → R, i = 1, . . . , n, and constants λi ∈ R,

i = 1, . . . , n, we want to find x ∈ Rd such that the following sum is minimized at x

(2.6) f(x) =
n∑
i=1

min{fi(x), λi}.

Without loss of generality, we further assume λi = 0 for all i, since minimizing (2.6)

is equivalent to minimizing

g(x) =
n∑
i=1

min{gi(x), 0}+
n∑
i=1

λi.

where gi : Rd → R is defined as gi(x) = fi(x)−λi, which is also convex. Furthermore,

we define Ci ⊂ Rd as the convex region on which fi is less than or equal to zero,

Ci := {x : fi(x) ≤ 0},

and we define ∂Ci := {x : fi(x) = 0}, the boundary of Ci, as the truncation boundary

of fi. Then, {∂Ci}ni=1, the truncation boundaries of all the fi’s, partition the domain

Rd into disjoint pieces A1, . . . , Am such that

Aj ∩ Ak = ∅, ∀j 6= k and ∪mj=1 Aj = Rd,

where Aj is defined as

Aj = (∩
k∈Ij

Ck) ∩ (∩
l /∈Ij

Cc
l), Ij ⊂ {1, . . . , n}, j = 1, . . . ,m,

13

Figure 2.2: The corresponding Ci’s of three convex functions f1, f2, f3 define on R2, where Ci =
{x : fi(x) ≤ 0}. The boundaries of {Ci}3i=1 partition R2 into eight disjoint pieces {Aj}8j=1.

where Ij is the index set for a subset of {f1, . . . , fn} such that given any x ∈ Aj,

fk(x) ≤ 0 for all k ∈ Ij and fk(x) > 0 for all k /∈ Ij. An example of partitioning R2

into disjoint pieces A1, . . . , Am is shown in Figure 2.2. The algorithms to find and

traverse through all Aj’s while constructing the corresponding Ij’s will be described

in Sections 2.3.2 and 2.3.3.

2.3.2 The general algorithm

Our goal is to find the local minimum on each region Aj in the partition and take

the minimum of all local minima as the global solution. That is,

min
x

n∑
i=1

min{fi(x), 0} = min
j

min
x∈Aj

∑
k∈Ij

fk(x).

To minimize f(x) when restricted to Aj, we need to find the index set Ij, and

minimize
∑

k∈Ij fk(x) subject to x ∈ Aj, which leads to a series of constrained opti-

mization problems. Although the objective function
∑

k∈Ij fk(x) is a sum of convex

functions and therefore is also convex, the domain Aj can be a non-convex set. For

instance, except for A3, all other Aj’s in Figure 2.2 are non-convex sets. Solving such

constrained optimization problems can be very challenging. Fortunately, the follow-

14

ing proposition shows that it is safe to ignore the constraint x ∈ Aj when minimizing∑
k∈Ij fk(x), and consequently, we only need to solve a series of unconstrained convex

optimization problems, which is much easier.

Proposition 2.5. Using the notations defined in Section 2.3.1, we have

min
x

n∑
i=1

min{fi(x), 0} = min
j

min
x

∑
k∈Ij

fk(x)

Based on Proposition 2.5, a general framework for minimizing (2.6) is to enumerate

all the regions {Aj}mj=1 and solve a unconstrained convex optimization problem for

each region. See Supplementary Algorithm 1 for details.

2.3.3 Implementation in low-dimensional settings

The implementation of the general algorithm described above depends on both

the class of functions {fi}ni=1 and the dimension d. When d = 1, each Ci is an interval

on the real line and the boundary of Ci, ∂Ci, is composed of the two end-points of Ci,

which are the locations where fi crosses zero. Without loss of generality, assuming

that the 2n end-points of {Ci}ni=1 are all distinct, we can then order them sequentially

along the real line which partitions R into m = 2n + 1 fragments {Aj}mj=1. We can

then go through them one by one sequentially and in the same time keep track of

functions entering and leaving the set of untruncated functions on each fragment Aj.

The detailed procedure for finding the global minimizer of f(x) in 1-D is described

in Supplementary Algorithm 2.

When d = 2, each Ci is a convex region on R2, and its boundary ∂Ci is a curve.

One way to enumerate all the Aj’s is to travel along each ∂Ci, and record the in-

tersection points of ∂Ci and ∂Ck for k 6= i. We then use these intersection points

to keep track of functions entering and leaving the set of untruncated functions on

each Aj. The detailed procedure for finding the global minimizer of f(x) in 2-D is

15

described in Supplementary Algorithm 3.

Using the notations in Section 2.3.1 and the example in Figure 2.2 as an illustra-

tion, we start from an arbitrary point x11 on ∂C1. On one side we have the region

A1, on which there is only one untruncated function (I1 = {1}). On the other side

we have A8, on which every function is truncated (I8 = ∅). Traveling clockwise,

we come across ∂C3. At this point, we add f3, which gives the sets of untruncated

functions on A2 (I2 = {1, 3}) and A7 (I7 = {3}). Similarly, we obtain I3 = {1, 2, 3}

and I5 = {2, 3} when we come across ∂C2. When we come acoss ∂C3 for the second

time, we remove f3 from the set of untruncated function and obtain I4 = {1, 2} and

I6 = {2}. By repeating the process for all Ci’s, we enumerate the set of untruncated

functions on all Aj’s.

What remains to be supplied in the 1-D algorithm are methods to find the end-

points of any given Ci, and to minimize the sum of a subset of untruncated functions.

Similarly, for the 2-D algorithm, we need ways to find the intersection points of any

given ∂Ci and ∂Ck, and to minimize the sum of a subset of untruncated functions.

The implementation of these steps depends on the class of functions that we are

dealing with. For some function classes, solutions for these steps are either straight-

forward or already well-studied. For instance, for quadratic functions, finding the

end-points (in 1-D) or finding the intersections (in 2-D) requires solving quadratic

equations, for which closed-form solutions exist. Minimizing the sum of a subset of

quadratic functions can also be solved in closed-form. For convex shape placement

problem described in Section 2.2.2, published algorithms exist for these steps for com-

monly encountered convex shapes such as circles or convex polygons [12]. For more

general convex functions (e.g., those described in Section 2.2.1 for GLMs), iterative

algorithms (e.g., gradient descent or the Newton-Raphson method for differential

16

convex functions; bisection for non-differentiable univariate convex functions) can

be used for these steps.

2.3.4 Extension to high-dimensional settings

In three or higher dimensions, our algorithm can be implemented by following

the same idea of tracking all the intersection points as in the 2-D case. Essentially,

each boundary ∂Ci is a d− 1 dimensional surface and enumerating all the Aj’s can

be achieved by traversing through all the pieces on each ∂Ci that are formed by its

intersections with all other ∂Ck’s, which is, in turn, a d − 1 dimensional problem.

For instance, when d = 3, we need to find all the intersection curves of ∂Ci and

∂Ck (both of which are surfaces) for i 6= k, and traverse along each intersection

curve while keep tracking all other surfaces ∂Cj, j 6= i 6= k, it crosses. Apparently,

this algorithm becomes increasingly complicated and inefficient for larger d, which

renders it impractical.

Here, we propose a compromised but efficient extension of our proposed algorithm

to high-dimensional settings. The price we pay is to give up the global minimizer,

which is a sensible choice as Proposition (2.4) has shown that the general problem

is NP-Hard. In particular, we propose to solve for an approximate solution using a

cyclic coordinate descent algorithm, where we optimize one parameter a time while

keeping all other parameters fixed, and cycle through all the parameters until con-

verge. When restricting to only one parameter, the objective function is simply a

sum of truncated convex functions in 1D. Therefore, we can use our 1-D algorithm

to solve this subproblem in each iteration. This single-coordinate update algorithm,

however, only guarantees the convergence of the sequence of objective function val-

ues evaluated. It does not guarantee to converge to a local minimizer. That is, f(xi)

converges to inff(xi) but we need more conditions to guarantee the convergence of

17

xi. See Supplementary Algorithm 4 for details. We will evaluate the performance of

this algorithm using both simulated and real data experiments in Section 2.4.4.

2.3.5 Time complexity analysis

For time complexity analysis of our proposed algorithms, in low-dimensional set-

tings, we can regard the dimension d as a constant. That is, any univariate function

of d can be considered as O(1).

For the 1-D algorithm, finding the 2n end-points takes O(nS) time, where S is the

time for finding the two endpoints of a given function. Ordering the 2n end-points

takes O(n log n) time. Traversing through all the end-points takes O(nT) time, where

T is the time for minimizing the sum of a subset of untruncated functions. Similarly,

for the 2-D algorithm, finding all the intersection points takes O(n2S) time, where S

is the time for finding all the intersection points of any two given functions. Sorting

all the intersection points along all the boundaries {∂Ci}ni=1 takes O(n2K log(nK))

time, where K is the maximum number of intersection points any two boundaries

∂Ci and ∂Cj can have. Traversing through all the intersection points takes O(n2KT)

time.

First, we show that K = O(1) for a large class of truncated convex functions. That

is, given any two truncated convex functions in the class, the maximum number of

intersection points their boundaries can have is bounded by a constant.

Definition 2.6. For any positive integer k ∈ Z+, a class of curves C in R2 is said to

be k-intersecting if and only if for any two distinct curves in C, the number of their

intersection points is at most k.

Definition 2.7. A class of truncated functions in R2 is said to be k-intersecting if

and only if the set of their truncation boundaries is k-intersecting.

18

Example 2.8. The class of truncated quadratic functions in R2 with positive definite

Hessian matrices is k-intersecting with k = 4. This is easy to see given the facts that

the truncation boundary of a quadratic function in R2 with positive definite Hessian

matrix is an ellipse, and two distinct ellipses can have at most four intersection

points.

In fact, according to Bézout’s theorem, the number of intersection points of two

distinct plane algebraic curves is at most equal to the product of the degrees of the

corresponding polynomials. Therefore, a class F of truncated bivariate polynomials

is k2-intersecting if for any function f ∈ F its untruncated version is a polynomial

of degree at most k.

While S and T depend on the class of functions that we are dealing with, for some

function classes, we have S = O(1) and T = O(1). That is, they both take constant

time.

Example 2.9. For quadratic functions with positive definite Hessian matrices, T =

O(1). This is easy to see given the following three facts:

1. Given n quadratic functions fi = 1
2
xTAix + bTi x + ci, i = 1, . . . , n, their sum

is
∑

i fi(x) = 1
2
xTAx + bTx + c, where A =

∑
i Ai,b =

∑
i bi, and c =

∑
i ci,

which is also a quadratic function.

2. To update the sum of quadratic functions when adding a new function to the

sum or removing an existing function from the sum, we only need to update

A,b and c, which takes O(1) time (it is in fact O(d2) time but can be simplified

as O(1) time since we consider d as a constant in low-dimensional settings).

3. The minimizer of any quadratic function 1
2
xTAx+bTx+c with positive definite

Hessian matrix is −A−1b, which takes O(1) time to compute (it is in fact O(d3)

19

time but can be simplified as O(1) time since we consider d as a constant in

low-dimensional settings).

Furthermore, S = O(1), since all the intersection points (up to four of them) of any

two given ellipses can be found using closed-form formulas [43].

Putting Examples 2.8 and 2.9 together, we know that the running time of the 1-

D algorithm for sum of truncated quadratic functions with positive definite Hessian

matrix is O(n log n), and the running time of the 2-D Algorithm for sum of truncated

quadratic functions with positive definite Hessian matrix is O(n2 log n). The time

complexity analysis for other class of functions can be conducted similarly.

In high-dimensional settings, however, the running time of the general algorithm

will be at least O(nd log n), where d is the dimension. In another word, the running

time grows exponentially as the dimension increases, which is typical for NP-Hard

problems. It is easy to see that the running time of the cyclic coordinate descent algo-

rithm is O(kdn log n), where k is the number iterations to converge, and O(dn log n)

is the time for each round of d one-dimensional updates.

2.4 Experiments

2.4.1 Outlier detection in simple linear regression

We simulate data for outlier detection in simple linear regression as described in

Section 2.2.1 and compare the performance of our proposed method with the Θ-IPOD

algorithm [45] and three other robust estimation methods: MM-estimator [51], least

trimmed squares (LTS) [44] and [19] one-step procedure (denoted as GY). Our goal

is to estimate the regression coefficients and identify the outliers with σ assumed to

be known and set to be 1. In other words, we estimate only β and γ in (2.2). Given

n observations and k outliers, let X = [1n, (x1, . . . ,xn)T], β = (β0, β1)T = (1, 2)T ,

20

and L be a parameter controlling the leverage of the outliers. When L > 0, xi

is drawn from uniform(L,L + 1) for i = 1, . . . , k, and from uniform(−15, 15) for

i = k + 1, . . . , n. γ = (γ1, . . . , γn)T represents deviations from the means, and each

γi is drawn from exponential(0.1)+3 for i = 1, . . . , k, and γi = 0 for i = k+1, . . . , n.

Based on a popular choice for
√
λ as 2.5σ̂ [45, 48, 32], we set

√
λ as 2.5.

We simulate 100 independent data sets, each with 100 observations (i.e., n = 100).

The results are shown in Figure 2.3 and Supplementary Table A1. The performance

of each method is evaluated by the masking probability and the swamping probability

under two scenarios: (i) No L applied (denotes as L = 0), that is, xi is drawn from

uniform(−15, 15) for i = 1, . . . , n, and (ii) L = 20. Masking probability, as in [45],

is defined as the proportion of undetected true outliers among all outliers. Swamping

probability, on the other hand, is the fraction of normal observations recognized as

outliers. When implementing MM, LTS and GY estimators, the fact that σ2 is known

is not exploited because we use packaged functions for these methods, which assume

σ2 to be unknown and have no arguments for specifying σ2.

2.4.2 Sum of truncated quadratic functions

We simulate sum of truncated quadratic functions with positive definite Hessian

matrix in R2 and compare the performance of the proposed algorithm with several

other competing algorithms including a global search algorithm (the DIRECT al-

gorithm) [24] and a branch-and-bound global optimization algorithm (StoGO) [31]

both implemented in R package nloptr, a generalized simulating annealing algorithm

(SA) implemented in R package GenSA [50], a particle swarm optimization algorithm

(PSO) implemented in R package hydroPSO [52], as well as the difference of convex

functions (DC) algorithm [2] which has been used to solve problems with truncated

convex functions [46, 8]. We implement the DC algorithm in R (see Supplementary

21

Figure 2.3: Comparison of different methods for outlier detection in simple linear regression. The
figures show the mean percents of masking (top) and swamping (bottom) for different leverages of
outliers: L = 0 (left) and L = 20 (right) and different percents of outliers (O%) for all the methods
using 100 simulated replicates. The standard errors of the means are shown as error bars. When
estimating the regression coefficients and identifying the outliers, we assume that the σ2 is known
and is 1. In other words, we estimate only β and γ in (2.2). When implementing MM, LTS and
GY estimators, the fact that σ2 is known is not exploited because we use packaged functions for
these methods, which assume σ2 to be unknown and have no arguments for specifying σ2.

22

Section A1.4 for details).

Following [20], we compare the performance of all the algorithms in terms of their

effectiveness in finding the global minimum. We measure effectiveness by the success

rate, where a success for a given algorithm in a given run is defined as having the

estimated minimum no greater than any other algorithms by 10−5. This tolerance

value is allowed to accommodate numerical precision issues. We set a maximum

number of 104 function evaluations, a maximum number of 104 iterations and a

convergence tolerance level of 10−8 for all competing algorithms whenever possible.

See Supplementary Table A2 for details.

We randomly generate truncated quadratic functions in R2 with varying degrees

of complexity. Specifically, given a quadratic function with a positive definite Hessian

matrix in R2 truncated at zero, the truncation boundary is an ellipse. Let a and

b be the lengths of the two axes of the ellipse, u and v be the x and y coordinates

of the center of the ellipse, θ be the angle between the long axis of the ellipse and

the x-axis, and −z be the lowest value of the function. For simplicity, we use a

single tuning parameter C to control the complexity of the objective function. The

larger the C, the more local minima the objective function will have. Examples of

objective functions with different values of C are given in Figure 2.4. In particular,

we randomly sample θ from uniform(0, π), a from uniform(0.01, 0.5)/C, b from

uniform(0.01, 0.5), u and v from uniform(0, 1) and z from uniform(−10,−1). We

simulate three scenarios where C is 1, 5, and 10, respectively, and we compute

the coefficients of the corresponding quadratic functions based on the above six

parameters. For each value of C, we simulate 100 independent data sets each with

50 random quadratic functions (i.e., n = 50) truncated at λ = 0.

The performance of the proposed algorithm and other competing algorithms are

23

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 C = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 C = 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 C = 10

Figure 2.4: Contour plots of randomly generated sum of truncated quadratic functions in R2.
Global minima are marked with the plus sign.

shown in Figure 2.5 and Supplementary Table A3. We can see that our proposed

algorithm has a success rate of 100% regardless of the value of C, as it guarantees

to find the global minimizer. For all other competing algorithms, their success rates

decline when C increases.

2.4.3 Convex shape placement

Following Section 2.2.2, we randomly sample 30 points (i.e., n = 30) uniformly

from the [0, 1]× [0, 1] unit square, and use our proposed algorithm to find a location

to place S such that it covers the maximum number of points. To demonstrate the

generality of our proposed algorithm, we consider three shapes here: circle, square

and hexagon. The results are shown in Supplementary Figure A1.

2.4.4 Signal and image restoration

Following Section 2.2.3, we simulate 1-D signal with additive Gaussian noise, and

compare the performance of the proposed algorithm with several other algorithms

including DIRECT, StoGO, SA, PSO (See Section 2.4.2 for more details of these

algorithms) and a recently published iterative marginal optimization (IMO) algo-

rithm [41], which was specifically designed for signal and image restoration. We

implement the IMO algorithm in R (see Supplementary Section A1.5 for details).

24

2 4 6 8 10

0
20

40
60

80
10

0

C

P
er

ce
nt

 s
uc

ce
ss

● ●

●

● DIRECT
StoGO
SA
PSO
DC
Proposed

Figure 2.5: Comparison of different algorithms for minimizing the sum of 50 randomly generated
truncated quardratic funstions in 2-D. The figure shows the mean success rates (in percents) for
all the methods using 100 simulated replicates for different complexities of the functions (C). The
standard errors of the means are shown as error bars.

The DC algorithm turns out to be numerically equivalent to the IMO algorithm, but

much slower. Therefore, we did not include the DC algorithm in the comparison and

simply named the IMO algorithm as IMO/DC.

The data are simulated by adding random Gaussian noise sampled i.i.d. from

N(0, 1) to an underlying true signal. Each data set contains 100 data points equally

spaced on the interval [0, 1]. The true signal is design to be piece-wise smooth with

different pieces being constant, linear, quadratic or sine waves (see Figure 2.6). All

the algorithms are used to restore the signal by minimizing the following objective

function,

ŷ = arg min
ŷ

d∑
i=1

(ŷi − yi)2 + w

d−1∑
i=1

min{(ŷi − ŷi+1)2, λ},

where d = 100, yi and ŷi, i = 1, . . . , d, are the observed and restored values at data

25

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

x

y

Figure 2.6: Simulated random signal (left) and restored signal (right) are shown in solid lines. The
underlying true signal are shown in dashed lines.

point i, respectively. That is, we are solving the sum of 199 truncated quadratic

functions (99 of them are truncated at λ, and the remaining 100 of them are trun-

cated at infinity) in a 100-dimensional parameter space. The tuning parameters are

empirically set as w = 4 and λ = 9, respectively.

We measure the performance of these algorithms using four different metrics:

1. Success rate, which is defined in Section 2.4.2. Note a success here only means

that a given algorithm has found the best solution among all algorithms, which

may or may not be the global minimizer.

2. Relative loss, which is defined as |f(ŷ) − f(y∗)|/|f(y∗)|, where ŷ and y∗ are

the solution found by a given algorithm and the best solution found by all

algorithms, respectively.

3. Root mean square error (RMSE), which is defined as
√
d−1

∑d
i=1(ŷi − ỹi)2,

where ŷ and ỹ are the solution found by a given algorithm and the underlying

true signal, respectively.

4. Running time, measured in seconds.

26

Table 2.1: Comparison of different algorithms for signal restoration. The table shows the mean
success rates (in percents), relative losses, root mean square errors (RMSE), as well as running
times (in seconds) for all the methods using 100 simulated replicates. The standard errors of the
means are given in parentheses.

DIRECT StoGO SA PSO IMO/DC Proposed
Success rate 0.0 (0.0) 8.0 (2.7) 52.0 (5.0) 0.0 (0.0) 28.0 (4.5) 84.0 (3.7)
Relative loss 0.08 (0.00) 0.05 (0.02) 0.04 (0.01) 0.17 (0.01) 0.10 (0.01) 0.01 (0.00)

RMSE 0.66 (0.01) 0.56 (0.01) 0.59 (0.01) 0.63 (0.01) 0.56 (0.01) 0.55 (0.01)
Time 0.40 (0.00) 61.29 (0.27) 0.31 (0.00) 12.39 (0.13) 1.50 (0.07) 0.04 (0.00)

The performance of the proposed algorithm and other competing algorithms are

summarized in Table 2.1. In general, the proposed algorithm outperforms all other

methods in terms of success rate, relative loss, and RMSE. It is also significantly

faster than all other algorithms.

Finally, we apply the proposed algorithm for image restoration. Both synthetic

and real images are used for this experiment (see Figure 2.7 and Supplementary Fig-

ure A2). All images are resized to 256× 256, converted to gray scale and normalized

to have pixel intensity levels in [0, 1]. Independent Gaussian noise sampled from

N(µ = 0, σ2 = 0.01) is added to each pixel, and the proposed algorithm is used to

restore the original image via minimizing the following objective function,

ẑ = arg min
ẑ

∑
i∈I

(ẑi − zi)2 + w
∑

i,j∈I,i∈D(j)

min{(ẑi − ẑj)2, λ},

where zi and ẑi, i ∈ I, are the observed and restored intensity values at pixel i,

respectively, i ∈ D(j) means that pixels i and j are neighbors of each other, and

the tuning parameters are empirically set as w = 2 and λ = 0.02, respectively.

From Figure 2.7 and Supplementary Figure A2, we see that compared with Gaussian

smoothing, the proposed algorithm can restore the smoothness in the image while

maintaining the sharp edges. Even though this problem has a dimension of d =

256 × 256 = 65, 536 and the number of truncated quadratic functions is n = 256 ×

256 + 2× 256× 255 = 196, 096, it only takes about 10 seconds for our algorithm to

27

Figure 2.7: Restoration of synthetic and real images. For each row, from left to right: original
image, image with Gaussian noise added, image restored using Gaussian smoothing with a 5 × 5
kernel and image restored using proposed algorithm.

converge.

2.5 Discussion

We know that summing convex functions together still gives us a convex function.

Although simply truncating the function at a given level does not seem to add much

complexity to a convex function, the sum of truncated convex functions is not neces-

sarily convex, which makes this class very powerful and flexible in modeling various

kinds of problems, as illustrated in several examples given in Section 2.2. Figure 2.4

further demonstrates the diverse landscape that can be achieved by a sum of trun-

cated quadratic functions. This flexibility is supported by Proposition 2.4, which

implies that any problem in the class of NP can be reduced to the minimization of

a sum of truncated convex functions. A potential future work is to approximate a

given non-convex function by a sum of truncated quadratic functions and then use

our proposed algorithm to minimize it.

28

In the cyclic coordinate descent algorithm, instead of performing a univariate

update in each round, we can also perform a bivariate update in each round using

the 2-D algorithm (i.e., using a block coordinate descent algorithm), which may help

increase the chance of finding the global minimizer, at the cost of more intensive

computation.

Besides the applications described in this paper, minimizing a sum of truncated

convex functions also has many other applications, such as detecting differential gene

expression [23] (See Supplementary Section A1.1) and personalized dose finding [8].

This paper demonstrates that the proposed algorithm can be quite efficient when the

truncation boundaries of the class of convex functions are simple shapes such as an

ellipse and convex polygon, which cover the cases of truncated quadratic functions

and truncated `1 penalty (TLP [46]). Although these functions are seemingly limited,

their applications are abundant, and we have shown only a few selected examples in

this paper. In our future work, we will investigate the application of our proposed

algorithm to other classes of convex functions.

R programs for reproducing the results in this paper are available at http:

//www-personal.umich.edu/~jianghui/stcf/ [42]. We used Rcpp package that

substantially decreased the run time of our algorithm [15, 14, 4]. We used the al-

gorithm created by David Eberly (2015) to find intersections of ellipses in our 2D

algorithm [13].

http://www-personal.umich.edu/~jianghui/stcf/
http://www-personal.umich.edu/~jianghui/stcf/

CHAPTER III

Integrating Poly(A) Capture and Exome Capture RNA-Seq
Data

This chapter is motivated by a project for which we need to predict one type of

RNA-seq measurements from another so that data from different types of measure-

ments can be combined into one analysis. An initial attempt is to use gene-wise

regressions. However, as there are more than 18,000 genes, this approach leads to a

large number of parameters. Also, it would take at least 30 subjects to build a simple

regression while 5 to 10 subjects is the desired sample size. In this chapter, we explain

the differences between the two types of RNA-seq measurements and demonstrate

potential biases when the differences are not eliminated before combining the data.

Then we show that by using a linear mixed model, we not only reduce the technical

differences between the two types of measurements but also improve the efficiency of

the prediction. Finally, we described the discovery of outliers when fitting the data

to a mixed model, which leads to the third project: outlier detection for the linear

mixed model.

3.1 Introduction

Measuring the amount of messenger RNA (mRNA) molecules provides proxies for

gene expression levels. A common way to extract mRNA molecules is to use oligo-dT

29

30

probes targeting on the Poly(A) tails, which distinguishes mRNAs from other types of

RNA molecules (Figure 3.1). This approach, however, is limited when the specimen

is profoundly degraded or formalin-fixed. When the samples are degraded, mRNA

molecules could lose the Poly(A) tails. On the other hand, when the specimens are

formalin fixed, the adenines of the Poly(A) tails are altered such that the oligo-dT

probes no longer anneal well.

A new protocol called capture RNA sequencing was developed to overcome these

difficulties: instead of oligo-dT molecules, the probes are made of short sequences

designed for targeted genes. [9] showed that RNAseq measurements (Figure 3.2)based

on this new protocol leads to more accurate measurements when the specimens are

degraded.

Despite the effectiveness of capture sequencing for degraded or formalin-fixed

samples, most RNA-seq reference libraries in major databases are based on samples

process by the traditional Poly(A) protocol. However, we will show that there are

differences between RNA-seq measurements from these two types protocols and di-

rectly combining these two types of libraries in analyses could introduce technical

biases. Therefore, for studies requiring comparison with reference libraries, it would

be costly to re-build these reference libraries based on capture sequencing protocol.

In this chapter, we demonstrate the differences between poly(A) libraries and

CaptureSeq libraries. Then we show that the Poly(A) measurements can be pre-

dicted from the CaptureSeq measurements efficiently using the linear mixed model.

With the prediction model, we can eliminate technology biases and combine the cap-

ture sequencing measurements from degraded or formalin-fixed samples and Poly(A)

based measurements from most reference libraries for efficient data use.

31

Figure 3.1: mRNA isolation, adopted from [21]. In the process of RNA-seq library preparation,
RNAs are first isolated from tissue samples using commercial kits. Then mRNAs are isolated from
total RNAs by annealing to oligo-dT beads. rRNAs and tRNAs are washed away before mRNAs
are released from the beads.

32

Figure 3.2: RNA-seq workflow, adopted from [27]. The purified mRNAs are first fragmented into
smaller pieces and reverse-transcribed to complementary DNAs (cDNAs). After formation of one
strand of cDNA, the mRNA strand is removed and replaced by another strand of cDNA to generate
a double-stranded cDNAs. Each end of the double-stranded DNA is then repaired, adenylated and
ligated by adaptor before being enriched by polymerase chain reaction (PCR). Once a library has
passed the quality control, it can be sent to various sequencing platforms and generate read counts
data.

33

Table 3.1: Origins of cancer tissues of the 372 patients.

Tissue origins and Number of patients
Breast 67 Prostate 64 Sarcomatoid 42

Unknown 24 Skin 20 Gall Bladder 19
Lung 18 Bladder 14 Esophagus 14
Ovary 11 Pancrease 10 Colon 9
Oral 9 Other 8 Stomach 7

Parotid Gland 7 Adrenal Gland 7 Brain 6
Kidney 5 Liver 5 Testis 3
Thymus 2 Thyroid Gland 1

3.2 The Data

We received paired capture sequencing and Poly(A) RNA-seq read counts data

from 372 cancer samples. There are a total of 23 types of cancers: prostate cancer

and breast cancer account for 17 percents and 18 percents of the patients (Table 3.1).

Of the 372 samples, 366 of them were frozen; two of them were refrigerated, and 4

were fresh. For each sample, a capture sequencing library and a poly(A) library were

prepared. As the sample tissues were obtained by core needle biopsy, there were

various degrees of tissue degradation. , and the RNA integrity numbers (RINs) of

all 372 pairs of libraries were recorded except for 9 libraries. Figure 3.3 shows the

distribution of the RINs. In general, a RIN ≥ 7 is considered sufficient and it is often

preferred to have a RIN ≥ 8 [11].

For 18236 genes out of the 18955 genes, we were able to obtain information on

gene lengths, lengths of sequences overlapping with those of probes, GC contents

by matching Ensembl gene id in the Genome Reference Consortium Human genome

build 38 (GRCh38) (Appendix, Figure 3.11). For subsequent analyses, we normalize

the read data by counts per million (CPM) and take the base two logarithms.

34

Figure 3.3: Distribution of the RINs of 363 poly(A) libraries. Of the 363 CaptureSeq libraries, 357
had exactly the same RINs as their poly(A) counterparts. The other 6 CaptureSeq libraries had
a difference from the poly(A) measurements as -2.7, -1.5, -1.1, -0.6, 0.1, and 0.7. The RINs range
from 2.5 from 10 with a mean of 8.6 and a median of 9.2. The 1st and the 3rd quartiles are 8.1 and
9.6.

35

3.3 Evidence of differences between the two types of measurements

To investigate the differences in measurements between the poly(A) and capture

sequencing libraries, we performed cluster analyses on the poly(A) and capture se-

quencing log2CPM for patients with prostate cancers based on the top 50 most varied

genes across the 50 libraries. The result, as shown in Figure 3.4, suggested that the

mixed measurements clustered more by protocols than by individuals.

To see if there are specific genes that cause the clustering by different protocols,

we used Elastic Net logistic regression to regress the two measurement types on the

log2(CPM) measurements of all genes and found four genes with non-zero coefficients

(Table 3.2). The classification error rate on the testing was 0.005. Gene ontology

(GO) analysis for the four genes using David 6.7 found one keyword: ”UBl conjuga-

tion” with a p-value of 0.03 after Benjamini-Hochberg adjustment (FDR). We also

performed differential expression analysis on the two types of measurements using

DESeq2 and found 14608 significant genes among a total of 18236 genes with ad-

justed p-value < 0.05, which suggests diffuse differences between these two types of

measurements.

Finally, to confirm that without correction, the differences in measurements based

on these two types of protocol would introduce biases and false positive findings, we

randomly draw 25 patients’ poly(A) log2CPM measurements out of 50 prostate can-

cer patients and compare the gene expression of these 25 patients with the remaining

25 patients using the function ”limma trend”. We perform such experiment for 1000

times and record: 1. the number of significant genes in each experiment (summarized

in Figure 3.5), and 2. the number of genes found to be significantly differentially

expressed in more than 50 experiments (summarized in Table 3.3) out of the 1000

experiments. We repeat the same comparison between 25 randomly drawn Poly(A)

36

F
ig

u
re

3.
4:

C
lu

st
er

an
al

y
si

s
on

th
e

p
ai

re
d

C
ap

tu
re

S
eq

a
n

d
P

o
ly

(A
)

lo
g
2
(C

P
M

)
m

ea
su

re
m

en
ts

fr
o
m

2
5

p
ro

st
a
te

ca
n

ce
r

p
a
ti

en
ts

.
E

a
ch

ro
w

re
p

re
se

n
t

a
ge

n
e

an
d

ea
ch

co
lu

m
n

re
p

re
se

n
t

ei
th

er
a

li
b

ra
ry

o
f

C
a
p

tu
re

S
eq

(
co

lu
m

n
s

w
it

h
p

u
rp

le
ta

g
s

o
n

th
e

to
p

)
o
r

P
o
ly

(A
)

(c
o
lu

m
n

s
w

it
h

o
ra

n
g
e

ta
g
s

o
n

th
e

to
p

)
m

ea
su

re
m

en
ts

.
T

h
e

ge
n

es
ar

e
th

e
to

p
50

m
o
st

va
ri

ed
g
en

es
a
cr

o
ss

th
e

5
0

li
b

ra
ri

es
.

W
e

u
se

d
th

e
E

u
cl

id
ea

n
d

is
ta

n
ce

a
n

d
th

e
co

m
p

le
te

m
et

h
o
d

o
f

H
ie

ra
rc

h
ic

al
cl

u
st

er
in

g
on

th
e

ge
n

es
.

37

Table 3.2: Nonzero coefficients of the penalized regression for classifying samples from
the two technologies. We tuned the Elastic Net regression model using a sequence of α (from 0
to 1, with a step of 0.1), which determined the proportion of quadratic and L1 norm in the penalty
term, and 10-fold cross-validation to choose λ. We trained the model on 272 pairs of measurements
and then tested the model on the other 100 pairs. The misclassification rate on the test set is 0.005.

Coefficient / Gene Name Coefficient Value
Intercept 0.17948

ENSG00000120948 0.00017
ENSG00000115760 -0.00091
ENSG00000165119 0.00048
ENSG00000197714 -0.00042

Table 3.3: Differential expression experiments of randomly drawn subjects. Number of
genes found to be significantly differentially expressed for more than 50 times in a total of 1000
experiments.

Poly(A) v.s.
Poly(A)

Poly(A) v.s.
capture sequencing

Poly(A) v.s.
predicted Poly(A)

0 830 0

measurements and their paired capture sequencing measurements. The results sug-

gest that without correction, we can have on average more than 600 falsely positive

genes in each experiment and that there are about 830 genes tend to be erroneously

recognized.

3.4 Converting capture sequencing measurements to Poly(A) measure-
ments

As there are various differences between the two types of measurements, using

these two types of measures as if they were based on the same purification protocol

could introduce biases. One solution is to convert one type of measurement to the

other before combining these two types of measures into the analyses. There are

several factors assumed to influence the conversion, including the degree of RNA

degradation, gene length, GC content, and the length of overlapping sequence be-

tween the gene and the probe. However, when these factors were incorporated, the

prediction accuracy was not better. This is possibly caused by measurement errors in

38

Figure 3.5: Box plots of the number of significant genes in each experiment comparing two groups
of randomly drawn subjects

39

the covariates. For example, RINs with values below 7 do not correlate well with true

RNA degradation levels. In addition, in practice, researchers only perform analyses

on Poly(A) RNA-Seq samples when the RINs are greater than 7 for quality control.

Finally, the simplest model with only capture sequencing measurements as covariates

provides a high correlation between the actual and predicted values. Therefore, we

use only samples with RIN greater than 7 and single covariate to capture sequencing

measurements in the subsequent discussion.

3.4.1 Notation

We denote the two types of measurements as the following:

Ygi : poly(A) log2(CPM)gi

Xgi : capture sequencing log2(CPM)gi

g: index for genes, g=1,...,m

i: index of subjects, i=1,...,ng

3.4.2 Comparing prediction by genewise simple regression and mixed effect model

With only the capture sequencing measurements as the covariate, the gene-wise

simple regression model that convert the capture sequencing measurements to poly(A)

measurements is:

(3.1) Ygi = β0g + β1gXgi + εgi

where εig is the measurement error ∼ N(0, σ2). Adopting this approach, we will

have 2m+ 1 parameters to be estimated. On the other hand, we could also assume

a common distribution of the gene-wise coefficients using the mixed model:

40

(3.2) Ygi = (β0 + b0g) + (β1 + b1g)Xgi + εgi

where β0, β1 are the fixed effects; b0g and b1g are the gene-specific random effects

with (b0g, b1g)
T following the bivariate normal distribution (0,Σ) and εig is the mea-

surement error following N(0, σ2). In this case, the number of parameters is reduced

from 2m+ 1 to 6 .

3.5 Results

We compare the correlation, and the root mean squared errors (RMSEs) between

true Poly(A) measurements and predicted Poly(A) measurements using both the

simple regression and the mixed model. We also plot the correlation and RMSEs

against different sample sizes to reflect the level of efficiency. The results are summa-

rized in Figure 3.6 and Figure 3.7, which show that the linear mixed model maintains

high accuracy in the predicted values even when the sample size per gene is small,

while ordinary least squares requires at least 10 subjects per gene to achieve similar

accuracy and stabilize after there are more than 30 subjects per gene.

As it is not clear whether high correlations and low RMSEs translate to low biases

in actual analyses, we further perform clustering on the true and predicted Poly(A)

measurements. The result is shown in Figure 3.8. As opposed to Figure 3.4, which

group by protocol, now the grouping of the columns is by subject, suggesting the

elimination of differences caused by different purification protocols.

Lastly, we examine whether the correction using the linear mixed model elimi-

nates false positive findings in differential expression analysis. Again, we randomly

draw Poly(A) measurements from 25 out 50 prostate cancer patients and compare

these measurements with their predicated Poly(A) measurements. The results are

41

●

●

●

●

●
● ● ● ●

●
●

● ●
● ●

● ● ●

0.89

0.91

0.93

0.95

0.97

0.99

20 40 60

sample_size

co
rr

el
at

io
n

method
●

●

correlation by OLS
correlation by mixed model

Figure 3.6: Prediction by the mixed model and genewise fixed effect
models on libraries with RIN ≥ 7: correlation of predicted and actual
poly(A) log2-CPMs across all genes and all samples, based on 30
replicates for each sample size.

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●
● ● ●

0.50

0.75

1.00

1.25

20 40 60

sample_size

R
M

S
E method

●

●

RMSE by OLS
RMSE by mixed model

Figure 3.7: Prediction by the mixed model and genewise
fixed effect models on libraries with RIN ≥ 7: RMSE of
predicted and actual poly(A) log2-CPMs across all genes
and all samples, based on 30 replicates for each sample size.

42

F
ig

u
re

3.
8:

C
lu

st
er

an
al

y
si

s
on

th
e

p
ai

re
d

p
re

d
ic

te
d

P
o
ly

(A
)

m
ea

su
re

m
en

ts
b

a
se

d
o
n

ca
p

tu
re

se
q
u

en
ci

n
g

m
ea

su
re

m
en

ts
a
n

d
tr

u
e

P
o
ly

(A
)

lo
g
2
(C

P
M

)
m

ea
su

re
m

en
ts

fr
om

25
p

ro
st

at
e

ca
n

ce
r

p
at

ie
n
ts

.
E

a
ch

ro
w

re
p
re

se
n
ts

a
g
en

e,
a
n

d
ea

ch
co

lu
m

n
re

p
re

se
n
t

ei
th

er
a

p
re

d
ic

te
d

P
o
ly

(A
)

li
b

ra
ry

(
co

lu
m

n
s

w
it

h
p

u
rp

le
ta

gs
on

th
e

to
p

)
or

tr
u

e
P

ol
y
(A

)
(c

o
lu

m
n

s
w

it
h

o
ra

n
g
e

ta
g
s

o
n

th
e

to
p

)
m

ea
su

re
m

en
ts

.
T

h
e

g
en

es
a
re

th
e

to
p

5
0

m
o
st

va
ri

ed
g
en

es
ac

ro
ss

th
e

50
li

b
ra

ri
es

.
W

e
u

se
d

th
e

E
u

cl
id

ea
n

d
is

ta
n

ce
a
n

d
th

e
co

m
p

le
te

m
et

h
o
d

o
f

H
ie

ra
rc

h
ic

a
l

cl
u

st
er

in
g

o
n

th
e

g
en

es
.

T
h

e
cl

u
st

er
in

g
is

n
ow

b
y

su
b

je
ct

,
w

h
ic

h
is

su
gg

es
te

d
b
y

th
e

n
ei

gh
b

or
in

g
o
f

sa
m

e
su

b
je

ct
id

en
ti

fi
ca

ti
o
n

n
u

m
b

er
s.

43

also summarized in Figure 3.5 and Table 3.3 and numbers of false positive find-

ings is reduced to those based on comparing similar patients with the same types of

measurements.

3.6 Discussion

In this project, we first demonstrate that there are systemic differences in RNA-

seq measurements based on different purification protocols and in order to avoid

false positive finding and biases in analyses, it is necessary to make a conversion

before combining these types of measurements. Secondly, although the transformed

RNA-seq measurement log2CPM has its variance inversely proportional to the mean

expression level [28], which is also shown in our data (Appendix, Figure 3.12), we

found that the linear mixed model is effective and efficient in making the conversion

and eliminate the technical differences between the two types of measurements.

However, when examining the coefficients of the gene-wise regressions, we found

that quite a few of them do not conform to the assumed normal distribution, which

is demonstrated in Figure 3.9. Besides, when examining the observations for a gene

whose gene-wise coefficients are outlying, we also noted outliers in individual re-

gression as shown in Figure 3.10. These outliers, either on the coefficient level or

observation level, were later found to be caused by various technical issues such

as dysfunction probes, batch effects, and erroneously including histone mRNA and

mitochondrial mRNA. For the accuracy of the analyses, these outliers should be iden-

tified and the underlying causes should be corrected if possible. Therefore, in the

next project, we develop an outlier detection algorithm that gives a robust estimation

for the linear mixed model.

44

Figure 3.9: Distribution of the gene-wise ordinary least squares (OLS) estimates by having the
paired the Exome Capture RNA-Seq measurements regressed on the Poly(A) Capture RNA-Seq
measurements. The arrows indicate identified causes for some of the gene-specific random effects
to be outliers of the assumed bivariate normal distribution.

Figure 3.10: Examples of genes whose OLS estimates lie in the right lower quadrant of in Figure 3.9.
The smaller clusters of observations shared the same sample identifiers across multiple genes, which
suggests the existence of batch effects.

45

3.7 Appendix for Chapter 3

Figure 3.11: The distribution of and the correlations between the total length of exons in a gene,
the proportion of the bases in the exons that are either ”G” or ”C”, and the proportion of the length
that is covered by the first generation probes of CaptureSeq designed by our collaborative biotech
company, the intercepts, the slopes and the residual standard error of the genewise simple regressions
by regressing Poly(A) log2(CPM) measurements on CaptureSeq log2(CPM) measurements.

46

Figure 3.12: Distributions of the Exome Capture RNA-Seq and the Poly(A) Capture RNA-Seq
measurements. The first row shows the distribution of mean log2 count per million (CPM) for each
gene. The second row displays the inverse relationship between the variance of log2CPM and the
mean raw count. The third row illustrates the libraries sizes for all samples, which are measured
by both Exome Capture and Poly(A) Capture methods.

CHAPTER IV

Outlier Detection for Mixed Model

4.1 Extending mixed effect model for detecting individual outliers and
outlying random effects

She and Owen (2011) transformed the problem of outlier detection to variable

selection in linear regression by using the mean shift model by Gannaz (2006) and

McCann and Welsch (2007), which introduces a variable representing the amount

deviating from the predicted mean for each observation, and selecting the outliers

by using L0 penalty on nonzero variables. Their approach showed reduced masking

and swamping probabilities compared to other robust regression methods, includ-

ing the MM-estimator, Gervini-Yohai’s fully efficient one-step procedure (2002), the

compound estimator S1S and least trimmed squares (LTS) (Rousseeuw and Leroy

1987). In the first project, we showed that improved optimization would improve the

performance of the model and further reduce the masking and swamping rate of the

analysis. In this project, we combine the merits of She and Owen’s approach and

our proposed optimization to solve the outlier detection problem in a linear mixed

model.

There are two levels of outliers in a linear mixed model: outliers of individual

observation and outliers of the random effects. Let g denote the index for groups,

g=1,...,m and i denote the index for observations in each group, i=1,...,ng. For each

47

48

observation ygi, we create a variable δgi to represent the amount of deviation from

the predicted mean. In other words, if ygi conforms to the distribution specified by

the model, then δgi = 0; otherwise, δgi 6= 0. Also, for each (q × 1) vector of random

effects bg, we create a (q × 1) vector ∆g to represent the amount of deviation from

the predicted random effect. That is, we will have ∆g 6= 0 if bg is an outlier for

distribution of the random effects and ∆g = 0 if bg is not outlying. This set up then

gives us a mean shift model in the linear mixed effects context:

(4.1) yg = Xgβ+Zg(bg + ∆g) + δg + εg, g = 1, ...,m

(4.2) For each observation ygi,


δgi = 0, if ygi is a conformer

δgi 6= 0, if ygi is an outlier.

(4.3) For each random effect bg + ∆g,


∆g = 0, if bg + ∆g is a conformer

∆g 6= 0, if bg + ∆g is an outlier.

We follow the notation in Nobre and Singer (2007): yg is a (ng × 1) vector of

responses, β is a (p× 1) vector of fixed effects, Xg and Zg are (ng × p) and (ng × q)

covariate matrices for the fixed effects and the random effects, respectively. δg =

(δg1, ...δgng)T . εg is a (ng×1) vector of measurement errors. In this paper, we assume

that b1, ..., bm are independent and identically distributed following Nq(0, σ
2G) and

εg follows Nng(0, σ2Rg). bg and εg are independent. G and Rg are positive definite

matrices with dimensions (q × q) and ng × ng, respectively.

49

To facilitate derivation, we re-write (4.1) as the following:

(4.4) y = Xβ+Z(b+ ∆) + δ+ ε

Let n =
∑m

g=1 ng, then in the above expression, y, δ and ε are (n×1) vectors with

y = (yT1 , ..., y
T
m)T , δ = (δT1 , ..., δ

T
m)T , and ε = (εT1 , ..., ε

T
m)T . X is a (n×p) matrix

with X = (XT
1 , ...,X

T
m)T . b and ∆ are (qm × 1) vectors with b = (bT1 , ..., b

T
m)T

and ∆ = (∆T
1 , ...,∆

T
m)T . Finally, Z is a (n× qm) matrix, which is the direct sum

of all the Zg’s, denoted as Z =
⊕m

g=1Zg. In other words, Z is a block diagonal

matrix with the blocks as the Zg’s.

4.2 Estimation Scheme

In the above model, the parameters are the fixed effect β, deviations of the random

effects from the specified distributions ∆, deviations of individual observations, δ, the

covariance matrix for the distribution of the random effects σ2G , and measurement

error variation σ2Rg, g = 1, ...,m. As there are N elements in δ and qm elements

in ∆, the model is over-parameterized. We use a Penalized Maximum Likelihood

Estimation to force sparsity of the nonzero outlier variables. As precise identification

of outliers requires precise specification of the variances and vice versa, the algorithm

uses group-wise robust regressions to form initial estimates of the variances. Because

of a large number of parameters in b,∆, and δ, we set the estimation into two parts:

one part for b,∆ and δ, where we separate the parameters by groups and estimate

them by a parallel algorithm. The other part is for parameters shared by all groups

of observations, which are the fixed effects β, the random effect variances σ2G and

error variances σ2Rg. We iterate between these two parts until convergence, which

is similar to the block-coordinate descent method. The following steps outline the

scheme for model estimation:

50

1. Set a thresholding probability α for outlier detection such that when an obser-

vation has a probability less than α of coming from the estimated distribution, it will

be identified as an outlier. Therefore, α will also be the false positive (swamping)

rate of outlier detection.

2. Use group-wise robust regressions to form initial estimates of the random

effects bg and σ2Rg, g = 1, ...,m. In particular, we use the R function ”lmRob” from

the package ”robust”. The function generates initial regression estimates through

S-estimation and then produces the final estimates by MM estimates. The error

standard deviation common for all groups is estimated by the median of the residuals

from group-wise robust regressions.

3. Based on the initial estimates of the random effects, we construct initial esti-

mates of the covariance matrix σ2G and the center of the random effects β with a

robust multivariate method. In particular, we use the R function ”covRob” from the

package ”robust” to estimate the location and scale of the multivariate distribution

of the random effects.

4. Estimate ∆ and δ by using Penalized Maximum Likelihood. None-zero ∆ and

δ indicate the outlying random effects and observations.

5. Estimate the fixed effects β, the random effect variances σ2G and error vari-

ances σ2Rg using the ’lme4: Linear Mixed-Effects Models using ”Eigen” and S4’

package based on the non-outlying data. As these filtered observations follow trun-

cated normal distribution, the variances obtained from ’lme4’ have to be multiplied

by dilation factors to yield the true variances. The dilation factor will be derived

later.

6. Repeat step 4 and 5 until the estimates of β, σ,G, and Rg converge.

The estimation scheme is illustrated in Figure 4.1. For simplicity, we assume that

51

Figure 4.1: Estimation scheme of the proposed method.

the observations within a group (gene) are independent and have equal variances

(Rg = Ing) in subsequent sections.

4.3 Estimate the outliers and predict the random effects by Penalized
Maximum Likelihood Estimation

Based on the model in (4.4), we havey
b

 =

Xβ+Z∆ + δ

0

+

Z I

I 0


b
ε


and b

ε

 ∼ Nqm+n(

0qm

0n

 ,
 σ2D 0qm×n

0n×qm σ2Σε,

)

In the above expression D = Im⊗G and Σε = ⊕mg=1Rg, where ⊗ is the Kronecker

52

product of matrices. In other words, D is a block diagonal matrix with each block

being G.

The joint distribution of y and b therefore is

(4.5)

y
b

 ∼ Nn+qm(

Xβ+Z∆ + δ

0qm

 , σ2

ZDZT + Σε ZD

DZT D

)

If we write (ZDZT +Σε) as Σy, we have the -2 log-likelihood of the observations

as:

(4.6) −2 log f(y) = log |2πσ2Σy|+(y−Xβ−Z∆−δ)TΣ−1
y (y−Xβ−Z∆−δ)/σ2

Because the model is overparameterized, we penalize the nonzero elements of ∆

and δ to make the estimation feasible. The reason that we use L0 penalties instead

of the L1 penalties is because the former gives lower masking and swamping rates

compared with the latter [45]. The penalized log-likelihood function then becomes:

−2 log f(y) = log |2πσ2Σy|+ (y−Xβ−Z∆ − δ)TΣ−1
y (y−Xβ−Z∆ − δ)/σ2+

λO‖δ‖0 + λG
∑
g

1∆g 6=0

(4.7)

The primary challenge to minimize (4.7) is that it is non-convex. However, we

will show that if the objective function can be separated by the groups defined in

the mixed model and be transformed to a sum of truncated quadratic functions,

then we can apply the optimization method proposed in the second chapter. In the

next section, we explain how we separated and transformed the objective function

53

by incorporating the random effect predictors into the penalized likelihood function.

4.3.1 Separation of the objective function by incorporating the predictors of the
random effects

According to (4.5) and the conditional distribution of multivariate normal vec-

tors, the best unbiased linear predictors (BLUPs) for the random effects, E(b | y),

(denoted as b̃), is:

(4.8) b̃ ≡ E(b | y) = DZTΣ−1
y (y−Xβ−Z∆ − δ)

Note that

Zb̃ = ZDZTΣ−1
y (y−Xβ−Z∆ − δ)

= (Σy −Σε)Σ
−1
y (y−Xβ−Z∆ − δ)

We thus have

y−Xβ−Z(b̃+ ∆) − δ = ΣεΣ
−1
y (y−Xβ−Z∆ − δ)

Therefore,

[y−Xβ−Z(b̃+ ∆) − δ]TΣ−1
ε [y−Xβ−Z(b̃+ ∆) − δ]

= [y−Xβ−Z(b̃+ ∆) − δ]TΣ−1
y (y−Xβ−Z∆ − δ)

= (y−Xβ−Z∆ − δ)TΣ−1
y (y−Xβ−Z∆ − δ) − (Zb̃)TΣ−1

y (y−Xβ−Z∆ − δ)

= (y−Xβ−Z∆ − δ)TΣ−1
y (y−Xβ−Z∆ − δ)− b̃TD−1b̃

The penalized likelihood in (4.7) therefore can be expressed in terms of the pa-

rameters and the predictor of the random effects.

−2 log f(y) = log |2πσ2Σy|+ [y−Xβ−Z(b̃+ ∆) − δ]TΣ−1
ε [y−Xβ−Z(b̃+ ∆) − δ]/σ2+

b̃TD−1b̃/σ2 + λO‖δ‖0 + λG
∑
g

1∆g 6=0

(4.9)

54

Because ∆, δ and b̃ (which is a function of ∆ and δ) are collection of gene-specific

parameters (∆g, δg and b̃g), we separate the parameters into two parts: separable

parameters ∆, δ and b̃ and other parameters shared by all groups, which are the fixed

effect β,D,Σε and σ. Then we iteratively estimate these two groups of parameters

in a coordinate descent fashion. That is, we estimate ∆, δ and the random effect

predictor b̃ while holding β,D,Σε and σ as constants and then vice versa. The

benefit of doing so is that we can estimate the group-specific parameters in parallel

and reduce computation time linearly.

Therefore when we estimate ∆, δ and b̃, the first term in (4.9) can be dropped.

Further, as D and Σε are block diagonal matrices, the objective function can be

separated into independent groups:

f(b̃, δ,∆) =
∑
g

{
[yg −Xgβ −Zg(b̃g + ∆g)− δg]TR−1

g [yg −Xgβ −Zg(b̃g + ∆g)− δg]/σ2+

λO‖δg‖0 + b̃TgG
−1b̃g/σ

2 + λG1∆g 6=0

}
≡
∑
g

fg

(4.10)

Optimizing (4.10) (with D,Σε and β treated as fixed) is the same as optimiz-

ing (4.7) first and then compute b̃ based on the penalized maximum likelihood esti-

mates of ∆ and δ. This is because the predicted random effect b̃ is a function of ∆

and δ, and that using similar argument as the invariance of MLE, the
ˆ̃
b based on the

penalized maximum likelihood estimates ∆̂ and δ̂ is also the penalized maximum

likelihood estimate.

Definition 4.1. Induced penalized likelihood function Let Q be the penalized

55

likelihood function of θ. Given a value η, define the induced penalized likelihood

function Q∗ as

Q∗(η|x) = sup
{θ:τ(θ)=η}

Q(θ|x)

Proposition 4.2. If θ̂ is the penalized MLE of θ, then for any function τ(θ), the

penalized MLE of τ(θ) is τ(θ̂).

Proof.

Q∗(η̂|x) = sup
η
Q∗(η|x) = sup

η
sup

{θ:τ(θ)=η}
Q(θ|x) = sup

θ
Q(θ|x) = Q(θ̂|x)

Meanwhile,

Q(θ̂|x) = sup
{θ:τ(θ)=τ(θ̂)}

Q(θ|x)

= Q∗(τ(θ̂)|x), by the definition of the induced penalized likelihood function.

4.3.2 Transform the objective function into a sum of truncated quadratic functions

Since the objective function is separable, we optimize (4.10) in parallel based

on each group of observations and focus on the following function in subsequent

discussion:

fg(b̃g, δg,∆g) =[yg −Xgβ −Zg(b̃g + ∆g)− δg]TR−1
g [yg −Xgβ −Zg(b̃g + ∆g)− δg]/σ2+

λO‖δg‖0 + b̃TgG
−1b̃g/σ

2 + λG1∆g 6=0

(4.11)

56

4.3.2.1 Estimate ∆g, b̃g and δg

If ∆g 6= 0 then fg is minimized at ˆ̃bg = 0 and

min fg = min
∆g,δg

[yg −Xgβ −Zg∆g − δg]TR−1
g [yg −Xgβ −Zg∆g − δg]/σ2 + λO‖δg‖0 + λG

≡ min
tg,δg

hg−robust(tg, δg) + λG,where

hg−robust(tg, δg) = [yg −Xgβ −Zgtg − δg]TR−1
g [yg −Xgβ −Zgtg − δg]/σ2 + λO‖δg‖0

If ∆g = 0 then

min fg = min
b̃g,δg

[yg −Xgβ −Zgb̃g − δg]TR−1
g [yg −Xgβ −Zgb̃g − δg]/σ2 + λO‖δg‖0 + b̃TgG

−1b̃g/σ
2

≡ min
tg,δg

hg−robustMix(tg, δg),where

hg−robustMix(tg, δg) = [yg −Xgβ −Zgtg − δg]TR−1
g [yg −Xgβ −Zgtg − δg]/σ2+

λO‖δg‖0 + tTgG
−1tg/σ

2

Then the penalized MLE for b̃g,∆g and δg are:

(4.12)

(ˆ̃bg, ∆̂g, δ̂g) =


(0, t̂g−robust, δ̂g−robust), if minhg−robustMix −minhg−robust ≥ λG

(t̂g−robustMix,0, δ̂g−robustMix), otherwise

where 
(t̂g−robust, δ̂g−robust) = arg minhg−robust(tg, δg)

(t̂g−robustMix, δ̂g−robustMix) = arg minhg−robustMix(tg, δg)

t̂g−robust can be viewed as estimates from gene-wise robust regression using M-

estimation and δ̂g−robust is the vector indicating outlying observations (δ̂gi = 0 for

non-outliers). On the other hand, t̂g−robustMix can be viewed as moderated gene-wise

robust regression because of the distribution assumed among all the random effects.

57

In another words, t̂g−robustMix is shrunk toward 0. When comparing the Mahalanobis

distances between t̂g−robustMix and t̂g−robust (results not shown here), the former is

always greater than the latter.

With respect to optimizing the two functions, hg−robust and hg−robustMix are non-

convex because of the L0 penalties. Although they are in general hard to solve, if we

assume that the observations in each group are independent, i.e., Rg is a diagonal

matrix with the diagonal elements as rg1, ..., rgng , the objective functions can be

further reduced to a sum of truncated quadratic functions, which is shown in the

next section.

4.3.2.2 Transform hg to sum of truncated convex functions

When Rg is diagonal, hg−robust and hg−robustMix can be further separated by each

observation:
hg−robust(tg, δg) =

∑
i

[(ygi −Xgiβ −Zgitg − δgi)2/σ2rgi + λO‖δgi‖0]

hg−robustMix(tg, δg) =
∑
i

[(ygi −Xgiβ −Zgitg − δgi)2/σ2rgi + λO‖δgi‖0] + tTgG
−1tg/σ

2

If δgj = 0, then

hg−robust = [(ygj −Xgjβ −Zgjtg)2/σ2rgj]+∑
i 6=j

[(ygi −Xgiβ −Zgitg − δgi)2/σ2rgi + λO‖δgi‖0]

hg−robustMix = [(ygj −Xgjβ −Zgjtg)2/σ2rgj]+∑
i 6=j

[(ygi −Xgiβ −Zgit− δgi)2/σ2rgi + λO‖δgi‖0 + tTgG
−1tg/σ

2]

If δgj 6= 0, then both hg−robust and hg−robustMix are minimized when δ̂gj = ygj −

58

Xgjβ −Zgjtg and
hg−robust = λO +

∑
i 6=j

[(ygi −Xgiβ −Zgitg − δgi)2/σ2rgi + λO‖δgi‖0]

hg−robustMix = λO +
∑
i 6=j

[(ygi −Xgiβ −Zgitg − δgi)2/σ2rgi + λO‖δgi‖0 + tTgG
−1tg/σ

2]

Therefore, the penalized maximum likelihood estimate for the δgi−robust and δgi−robustMix

are:

(4.13) δ̂gi−robust =


0, if [ygi −Xgiβ−Zgi(t̂g−robust)]

2/σ2rgi < λO

ygi −Xgiβ−Zgi(t̂g−robust), otherwise

(4.14) δ̂gi−robustMix =


0, if [ygi −Xgiβ−Zgi(t̂g−robustMix)]2/σ2rgi < λO

ygi −Xgiβ−Zgi(t̂g−robustMix), otherwise

With (4.13) and (4.14), we can re-write hg−robust and hg−robustMix as:

(4.15)
hg−robust(tg) =

∑
i

min{(ygi −Xgiβ −Zgitg)2/σ2rgi, λO}

hg−robustMix(tg) =
∑
i

min{(ygi −Xgiβ −Zgitg)2/σ2rgi, λO}+ tTgG
−1tg/σ

2

The above derivation showed that δ̂gi−robust and δ̂gi−robustMix are functions of

tg−robust and tg−robustMix, and hg−robust and hg−robustMix can be further reduced

to functions of tg−robust and tg−robustMix. In addition, since both functions are

sums of truncated quadratic functions (tTgG
−1tg can be seen as being truncated at

infinity), they can be solved by the algorithm proposed in [30].

59

4.3.3 Summary of estimating ∆ and δ

In summary, with independent observations in each group, the original objective

function as in (4.7) can be broken down to m parallel optimization problems, one for

each group. For each group of observations, we first solve:

(4.16)

t̂g−robust = arg min hg−robust = arg min
tg

∑
i

min{(ygi −Xgiβ −Zgitg)2/σ2rgi, λO}

t̂g−robustMix = arg min hg−robustMix = arg min
tg

∑
i

min{(ygi −Xgiβ −Zgitg)2/σ2rgi, λO}+

tTgG
−1tg/σ

2

and then we have

(4.17)

(ˆ̃bg, ∆̂g, δ̂g) =


(0, t̂g−robust, δ̂g−robust), if minhg−robustMix −minhg−robust ≥ λG

(t̂g−robustMix,0, δ̂g−robustMix), otherwise

where

(4.18) δ̂gi−robust =


0, if [ygi −Xgiβ−Zgi(t̂g−robust)]

2/σ2rgi < λO

ygi −Xgiβ−Zgi(t̂g−robust), otherwise

(4.19) δ̂gi−robustMix =


0, if [ygi −Xgiβ−Zgi(t̂g−robustMix)]2/σ2rgi < λO

ygi −Xgiβ−Zgi(t̂g−robustMix), otherwise

If we define the conditional residual as egi = ygi−Xgiβ̂−Zgi(ˆ̃bg+∆g), then for an

outlying observation, the estimated outlying quantity, δ̂gi, will pick up the error term

and be equivalent to the estimated conditional residual, êgi = ygi−Xgiβ̂−Zgi(ˆ̃bg+

60

Non-outlying observations Outlying observations

Non-outlying effect

ˆ̃bg = t̂g−robustMix

∆̂g = 0

δ̂gi = 0

ˆ̃bg = t̂g−robustMix

∆̂g = 0

δ̂gi = δ̂gi−robustMix = êgi

Outlying effect

ˆ̃bg = 0

∆̂g = t̂g−robust

δ̂gi = 0

ˆ̃bg = 0

∆̂g = t̂g−robust

δ̂gi = δ̂gi−robust = êgi

Table 4.1: Summary of the estimates with corresponding outlyingness

∆̂g). We summarize the estimates with corresponding outlyingness in table (4.1).

4.4 Determine λO and λG

The tuning parameter λO and λG, in general, cannot be determined readily by

cross-validation procedures. For example, when an observation has a significant pre-

diction error, it could be caused by either biased parameter estimates or that the

observation itself is an outlier [45]. Consider again the estimates resulted from the

penalized MLE in (4.18) and (4.19). We can see that finding the λO is equivalent

to finding suitable cutoffs to define outlying observations. The criteria in (4.18)

and (4.19) use conditional residuals to select outliers, and we will show that this is

similar to determining the cutoffs based on the estimated distribution of the condi-

tional residuals [40].

For λG, we resort to the estimated distribution of the predicted random effects and

use the Mahalanobis distances of these effects to form a one-dimensional criterion

to detect outlying effects. In the following sections, we first define the conditional

residual, the empirical BLUP and their distribution under the proposed model (4.4).

Then we show that we could use these two distributions to define cutoffs for outliers.

61

4.4.1 Variance of the conditional residuals and predicted random effects

Based on the proposed model in (4.4), we have

cov(y) = σ2(ZDZT + Σε) = σ2Σy

Let H be the Cholesky decomposition of Σy such that HHT = Σy, then

H−1(y − Z∆− δ) = H−1Xβ +H−1Zb+H−1ε.

Also, since

cov(H−1y) = H−1σ2Σy(H
−1)T = σ2IN ,

the best linear unbiased estimator for β is therefore

β̂ = [(H−1X)TH−1X]−1(H−1X)TH−1(y − Z∆− δ)

= (XTΣ−1
y X)−1XTΣ−1

y (y − Z∆− δ)

= T (y − Z∆− δ)

where we define T = (XTΣ−1
y X)−1XTΣ−1

y , following the settings in [40].

For the empirical BLUP of b, because we don’t have closed-form solutions for ∆̂

and δ̂, we treat ∆ and δ as known in the process of driving the variance-covariance

matrix for b and then plug in ∆̂ and δ̂ to the variance-covariance matrix formula for

b. The drawback of this approach is that we will underestimate the variation of b

since we don’t take into account the fact that ∆̂ and δ̂ are estimated. However, if ∆̂

and δ̂ are close to the true values, the estimation for the variance-covariance matrix

for b can be very close to the truth. The empirical BLUP is defined as:

62

ˆ̃b = DZTΣ−1
y (y −Xβ̂ − Z∆− δ)

= DZTΣ−1
y [y − Z∆− δ −XT (y − Z∆− δ)]

= DZTΣ−1
y (I −XT)(y − Z∆− δ)

= DZTQ(y − Z∆− δ)

where we define Q = Σ−1
y (I −XT), also following [40].

For the conditional residual, we also treat ∆ as known and define it as:

e = y −Xβ̂ − Z(ˆ̃b+ ∆)

= y − Z∆− δ −XT (y − Z∆− δ)− ZDZTQ(y − Z∆− δ) + δ

= (ΣyQ− ZDZTQ)(y − Z∆− δ) + δ

= ΣεQ(y − Z∆− δ) + δ

Note that Q is a symmetric matrix (QT = Q) and that XT is a projection matrix

((XT)2 = XT). Therefore, I −XT is also a projection matrix. These lead to

var(e) = ΣεQ(σ2Σy)QΣε

= σ2ΣεQΣε

4.4.2 Determine the cutoffs for conditional residuals and predicted random effects

Based on the previous derivation, the conditional residuals have a normal dis-

tribution with mean 0 and estimated variance as v̂ar(e)=σ̂2Σ̂εQ̂Σ̂ε, where Q̂ =

Σ̂y

−1
(I −XT̂) and T̂ = (XT Σ̂y

−1
X)−1XT Σ̂y

−1
. Let pgi denote the diagonal element

of the matrix Σ̂εQ̂Σ̂ε then σ̂2pgi is the estimated variance of the conditional residual

63

of the observation gi. The estimated standardized conditional residual therefore is:

e∗gi =
êgi

σ̂
√
pgi

where êgi = ygi −Xgiβ̂ − Zgi(ˆ̃bg + ∆̂g). A cutoff for an outlying observation can be

defined as

(4.20) |e∗gi| > Zα.

α is an user-defined probability that an observation conforming to the specified dis-

tribution having its standardized conditional residual falling beyond the cutoff Zα,

which is a quantile of the normal distribution under normality assumption. Expand-

ing (4.20), we will have a criterium for outlying observations similar to that based

on the penalized maximum likelihood in (4.18) and (4.19):

ê2
gi = [ygi −Xgiβ̂ − Zgi(ˆ̃bg + ∆̂g)]

2

=


[ygi −Xgiβ̂ − Zgit̂g−robustMix]

2 > χ2
α,1σ̂

2pgi, if the random effect is not outlying.

[ygi −Xgiβ̂ − Zgit̂g−robust]2 > χ2
α,1σ̂

2pgi, if the random effect is outlying.

If we define wgi = pgi/rgi and let λO = χ2
α,1 then the above can be written as

ê2
gi =


[ygi −Xgiβ̂ − Zgit̂g−robustMix]

2/σ̂2rgi > wgiλO, if the random effect is not outlying.

[ygi −Xgiβ̂ − Zgit̂g−robust]2/σ̂2rgi > wgiλO, if the random effect is outlying.

The loss function of individual observations:

min{(conditional residual)2/σ2, λOwgi}

*wgiσ
2 =variance of conditional residual

64

We can see that the above criterium leads to a penalized regression model with a

weighted penalty term, λO
∑

g

∑
iwgi‖δgi‖0 = λO〈w, ‖δ‖0〉.

For outlying random effects, we resort to the estimated distribution of the random

effects, which has a multivariable normal distribution with a mean 0 and an estimated

variance Ĝ. Since the random effects can have more than one dimension, an one-

dimensional cutoff for the outlying predicted random effects can be defined by the

Mahalanobis distances:

(4.21) Mg = t̂Tg−robustMix(σ̂2Ĝg)
−1t̂g−robustMix > χ2

q,α,

where Gg is the gth diagonal block of G, q is the dimension of the random effects,

and α is an user-defined probability. It describes the tolerated chance of a random

effect conforming to the specified distribution having its Mahalanobis distance go

beyond the cutoff. In other words, it is the tolerated false positive rate for outlier

detection. We further define

kg = minhg−robustMix −minhg−robust −Mg.

kg can be viewed as the increased sum of truncated squared standardized condi-

tional residuals when we use the moderated, shrunk robust regression estimates

based on hg−robustMix instead of that based on hg−robust. Because estimates based

on hg−robustMix are ”predicated” random effects rather than true group-specific re-

gression coefficients, artificially generated outliers due to the increased conditional

residual from moderated coefficients are not desirable. In particular, we don’t want

the percentage of outliers generated from moderated estimates to go beyond the

threshold α that the user defines, which is also the false positive rate. Therefore, a

65

practical criterium for kg can be set as:

kg < (χ2
α,1 − χ2

0.5,1) ∗ α ∗ ng,

where χ2
α,1 − χ2

0.5,1 approximates the amount of increased squared standardized

residual when a typical observation become outlying. The above leads to a practical

setting for λG as χ2
α,q + (χ2

α,1 − χ2
0.5,1) ∗ α ∗ ng

In summary, the search for analytic expressions of λO and λG based on the esti-

mated distribution of conditional residuals and random effects gives rise to a penal-

ized regression model with weighted penalties as the following:

−2 log f(y) = log |2πσ2Σy|+ (y−Xβ−Z∆ − δ)TΣ−1
y (y−Xβ−Z∆ − δ)/σ2+

λO〈w, ‖δ‖0〉+ λG
∑
g

1∆g 6=0

(4.22)

where Σy = (ZDZT + Σε)

λO = χ2
α,1

λG = χ2
α,q + (χ2

α,1 − χ2
0.5,1) ∗ α ∗ ng

α: an user-defined probability allowing a conformer being identified as an outlier.

It is the false positive rate of outlier detection.

w: a vector of weights such that σ2w are variances of conditional residuals for y.

4.5 Dilation factor

The random effect variance σ2G and the error variance σ2 obtained through the

R package ”lme4” are based on the filtered observations with the detected outliers

removed, which follow a truncated normal distribution. We found that the actual

66

variance is, in fact, the variance of the truncated data multiplied by a constant.

Proposition 4.3. Suppose thatX1, X2, ..., Xn ∼ Nq(0,Σ). Let Σ∗ = cov(X|XTΣ−1X ≤

k), the conditional covariance based on truncated data. Then it can be shown that

Σ∗ = aΣ,where a is a scalar.

In particular, when q = 2,

a =
2− (k + 2) exp(−k/2)

2α

where α = P (zT z ≤ k), z ∼ Np(0, Ip)

Proof. Let ΓΓT be the Cholesky decomposition of Σ such that Σ = ΓΓT . Then we

have

Σ−1 = (ΓΓT)−1 = (ΓT)−1Γ−1

Let z = Γ−1X, then z ∼ Np(0, Ip) and X = Γz. In addition,

XTΣ−1X = XT (Γ−1)TΓ−1X = zT z

Therefore,

Σ∗ = cov(X|XTΣ−1X ≤ k)

= cov(Γz|zT z ≤ k)

= E[ΓzzTΓT |zT z ≤ k] + E[Γz|zT z ≤ k]E[Γz|zT z ≤ k]T

= ΓE[zzT |zT z ≤ k]ΓT

Let α = P (zT z ≤ k), A = {z : zT z ≤ k} and f be the density of z then

E[zzt|zT z ≤ k] =

∫
A

zzT
f(z)

α
dz,

Using the polar coordinate, we set z = (rcosθ, rsinθ), then

67

zzT = r2

 cos2θ sinθcosθ

sinθcosθ sin2θ

 = r2M(θ)

f(z) = f(r, θ) = r exp(−0.5r2)/2π

E[zzT |zT z ≤ k] =
1

α

∫ √k
0

∫ 2π

0

r2M(θ)f(r, θ)dθdr

=
2− (k + 2) exp(−k/2)

2α
I2

4.6 Simulation Study

There are two simulating scenarios: the first one mimics our problem for which

there are limited observations for each gene, but the number of genes is large. We

generated simulated datasets with ten paired samples for each gene and 2000 genes

for each replicate. In the second scenario, we also created ten paired samples for

each gene but had only 20 genes for each replicate. In both situations, there are 20

percents of outlying measurements for each gene and 20 percents of outlying genes.

The outlier detection threshold variable α is set to be 0.05, which is equivalent

to an allowance of the swamping (false positive) rate of 0.05, for both individual

measurements and genes.

In the generated data sets, the fixed intercept is 0, and the fixed slope is 1.

The random intercepts follow a normal distribution with mean 0 and variance 3;

the random slopes follow a normal distribution with mean 0 and variance 1. The

covariance between the random intercepts and random slopes is -1.2. The errors

follow the normal distribution with mean 0 and standard deviation 1. The single

independent variable has a uniform distribution between -15 and 15.

For outlying data, each random effect was generated from one of the equally likely

68

Masking rate (%) Swamping rate (%) Run time
(minutes)observation random effect observation random effect

naive 0.0000 0.0000 1.2500 6.2500 0.0013

proposed 0.0000 0.0000 3.1250 0.0000
0.0798

(using 6 CPUs)

Table 4.2: Outlier detection for small data sets composed of 20 genes, each with10 paired measure-
ments. The results are based on the medians of the 100 replicates. For the proposed method, the
ideal masking (false negative) rate is 0 and the swamping (false positive) rate should be close to
the user-defined threshold α, which is 5% in the simulation setting.

distributions: (1) bivariate normal distribution with mean (10,8), variances (5,2) and

covariance 1.2; (2) two independent exponential distributions: (exp(0.3)+7, exp(0.5)-

4); (3) two independent exponential distributions: (exp(0.3)-10, exp(0.5)-6); (4) two

independent exponential distributions: (exp(0.3)-12, exp(0.5)+15). The individual

outliers within each group have the covariate X generated from uniform(10, 20) and

an additional deviation term δ generated from exp(0.3)+10 such that these outliers

would have large influences.

We compared the performance of the proposed method with a naive method that:

1. Detects outlying observations by gene-wise robust regression using the R func-

tion ”lmRob” from the package ”robust”. The function generates initial estimates

through S-estimation and then produces the final estimates by MM estimates. The

error standard deviation common for all genes is estimated by the median of the

residuals from gene-wise robust regressions.

2. Detects outlying random effects and provide estimates the location and scale

of the multivariate distribution of the random effects using the R function ”covRob”

from the package ”robust”.

For each scenario we generate 100 replicates and the results are listed in Table 4.2

and Table 4.4.

69

Masking rate (%) Swamping rate (%) Run time
(minutes)observation random effect observation random effect

naive 0.5750 0.2500 1.1312 6.4375 0.0852

proposed 0.2250 0.0000 4.4062 4.7500
3.5925

(using 6 CPUs)

Table 4.3: Outlier detection for data sets composed of 2000 genes, each with10 paired measurements.
The results are based on the medians of the 100 replicates. For the proposed method, the ideal
masking (false negative) rate is 0 and the swamping (false positive) rate should be close to the
user-defined threshold α, which is 5% in the simulation setting.

Fixed effect
Random effect

variance-covariance matrix Error S.D.
Intercept Slope Σ11 Σ12 Σ22

True Value 0 1 3 -1.2 1 1
Naive -0.0183 1.0184 4.0732 -1.4709 1.2740 1.4205

Proposed -0.0615 1.0374 3.1556 -1.0603 1.0020 1.1443

Table 4.4: Parameter estimation by the naive method and the proposed method based on data sets
composed of 20 genes, each with 10 paired measurements. The results are based on the medians of
the 100 replicates. .

Fixed effect
Random effect

variance-covariance matrix Error S.D.
Intercept Slope Σ11 Σ12 Σ22

True Value 0 1 3 -1.2 1 1
naive 0.0143 0.9998 4.4315 -1.6779 1.4218 1.4321

Proposed 0.0007 1.0019 2.9926 -1.2101 1.0144 1.1190

Table 4.5: Parameter estimation by the naive method and the proposed method based data sets
composed of 2000 genes, each with 10 paired measurements. The results are based on the medians
of the 100 replicates. .

70

Figure 4.2: Illustration of outlier detection for a mixed effect by the proposed method in real
RNA-Seq data. There are paired Poly(A) and Capture RNA-Seq measurements for 18,000 genes
from 100 subjects. We use a mixed model to the predict Poly(A) measurements based on a single
predictor, the Capture RNA-Seq measurements with gene-specific random intercepts and slopes.
Because the outlying gene-specific effects will be estimated as zeros in the proposed method, we
use estimated coefficients from the simple regression in to demonstrate the relative positions of the
detected outlying random effects (red) and normal random effects (black).

4.7 Application to RNA-Seq data

We apply the proposed algorithm to the RNA-seq data with 100 subjects and

18,000 genes. Because the most critical variable, RNA integrity number (RIN), cor-

relates poorly with the level of RNA degradation at low RINs. We only use the

Capture RNA-Seq measurements as the predictor of the Poly(A) RNA-Seq measure-

ments. Each gene is a group in the proposed robust mixed effect model and has its

random intercept and random slope. The result is illustrated in Figure 4.2 with the

detected outlying genes marked in red color.

A considerable number of random effects in the right upper quadrant, left upper

quadrant and the lower center portions of the figure do not conform to the specified

bivariate normal distribution but are not detected as outliers. We examine some

71

Figure 4.3: The scatter plot of Capture and Poly(A) RNA-Seq measurements from one of the
undetected outlying genes whose OLS estimates lies in the right upper quadrant in Figure 4.2.
The gene-specific OLS estimates the standard error to be 1.1 while the common standard error
assumed by the proposed method across all genes is 0.46. There are also unequal variances among
observations within a gene.

of these genes with undetected outlying effects, such as those on the right upper

quadrant as in Figure 4.3, which have relatively larger slopes. We find that a lot

of the observations with high variance are identified as outliers (circled by yellow

color), and therefore the estimate for the gene-specific random effect is based on a

cluster of observations with low variance, which is close to the population and thus

the gene is not identified despite the overall aberrant pattern. This is because the

proposed method assumes a common error variance across different genes and also

constant variance for all observations within a gene. Take the illustrated gene as

an example, the gene-specific OLS estimates the standard error to be 1.1 while the

common standard error assumed by the proposed method across all genes is 0.46.

Figure 4.4 and Figure 4.5 illustrate another example of outlying genes not being

72

Figure 4.4: The scatter plot of Capture and Poly(A) RNA-Seq measurements from one of the
undetected outlying genes whose OLS estimates lies in the left upper quadrant in Figure 4.2.
The gene-specific OLS estimates the standard error to be 0.72 while the common standard error
assumed by the proposed method across all genes is 0.46. There are also unequal variances among
observations within a gene.

Figure 4.5: The scatter plot of Capture and Poly(A) RNA-Seq measurements from one of the
detected genes whose OLS estimates are not outlying. The gene-specific OLS estimates the standard
error to be 1.9 while the common standard error assumed by the proposed method across all genes
is 0.46. There are also unequal variances among observations within a gene.

73

detected (false negative) and an example of identified genes whose OLS estimates

are not outlying (false positive). For these genes, their gene-specific error variances

are greater the assumed common error variance across all genes. Besides, there are

unequal variances among the observations within the gene.

4.8 Discussion

Tuning the parameters λO and λG is in general difficult, as large prediction errors

could be due to biased estimates or the observation being outlying. However, we

found that under the assumption of normal distribution, setting λO = χ2
α,1 and

λG = χ2
α,q + (χ2

α,1 − χ2
0.5,1) ∗ α ∗ ng gives satisfactory results, especially when the

separation between outliers and normal data is clear.

Because the objection function for the penalized MLE is non-convex, the opti-

mization of the proposed method is also in general difficult. We used a specialized

algorithm to minimize the sum of truncated quadratic functions. This algorithm

provides exact solutions for low-dimensional problems and generates a fast local so-

lution for high-dimensional problems. Also, we were able to separate the objection

function by groups of observations. Therefore the computation can run in parallel,

and the runtime can be reduced linearly.

Regarding the robust estimation of the parameters, we find the proposed method

more accurate than the naive method when the number of observations within a

group and the number of groups is small. However, we expect that as the number

of observations and the number of groups grows larger, the precision of the naive

method will improve with the required computing resources remaining minimal.

Finally, the drawback of the proposed algorithm is that we assume a common

error variance across all groups and a constant error variance among observations

74

within a group. This leads to false positives and false negatives for outlier detection

when these assumptions do not hold, as illustrated in the real RNA-Seq data. The

potential future extension includes theoretical properties of the estimation scheme

and incorporating group-specific variances and unequal variances among observations

within a group into the proposed method.

CHAPTER V

Discussion

The mean-shift model with sparse estimation with L0 penalty is a versatile tool for

outlier detection and robust estimation in the regression [45] and linear mixed model.

We also demonstrated that the problem of parameter tuning could be regarded as

finding the threshold for defining the outliers under the specified distribution. How-

ever, accuracy for such algorithms depends on accuracy in the estimation of the error

variances and covariances of the random effects. As illustrated in the application to

real RNA-Seq data, when the assumption about the variances such as homoscedas-

ticity in a group or a common error variance shared by all groups, are not met, there

could be considerable false negatives and false positives.

In the proposed robust mixed model, we estimated the outliers and variances in

two iterative steps: we first identify the outliers using a penalized objective function

and then estimated the error variance and random effect covariance based on the

filtered dataset, which has the detected outliers removed. We repeated the two steps

until the fixed effects, the error variance and the covariance converged. This iterative

approach generated effective and efficient estimation in simulation studies. However,

we have not fully understood its theoretical properties, including convergence, con-

sistency and statistical efficiency.

75

76

Potential future work includes studying the theoretical properties of this iterative

estimation scheme and incorporating group-specific variances and mechanisms for

heteroscedasticity in the outlier detection model.

Appendix

A1 Appendix for Chapter II

A1.1 Application on detecting differential gene expression with `0-penalized models

The idea of using the `0 penalty for variable selection can also be applied to the

detection of differentially expressed genes from RNA sequencing data. The problem

is discussed in detail in [23], and we briefly summarize the approach here. Given

S experimental groups each with ns biological samples, we would like to compare

the expression levels of m genes measured in the samples. Let µsi be the mean

expression level of gene i (on the log-scale) in group s, dsj be the scaling factor (e.g.,

sequencing depth or library size on the log-scale) for sample j in group s, and σ2
i

be the variance of expression level of gene i (on the log-scale). Assuming a linear

model on the observed data xsij ∼ N(µsi + dsj, σ
2
i), the problem is to identify genes

that are differentially expressed across the groups. To do so, assuming {σi}mi=1 are

known, reparametrizing µsi as µi = µ1i, γsi = µsi−µ1i, s = 1, . . . , S, the `0-penalized

negative log-likelihood function of the model is

(5.1) f(µ, γ, d) =
m∑
i=1

1

2σ2
i

S∑
s=1

ns∑
j=1

(xsij − µi − γsi − dsj)2 +
m∑
i=1

αi1(
S∑
s=1

|γsi| > 0)

77

78

Where {αi}mi=1 are tuning parameters. It is shown in [23] that (5.1) can be solved as

follows

d′sj = (
∑m

i=1(xsij − xsi1)/σ2
i)/(

∑m
i=1 1/σ2

i), s = 1, . . . , S

µ′si = (1/ns)
∑ns

j=1(xsij − d′sj), s = 1, . . . , S

d1 = 0

d2, . . . , dS = arg min
d2,...,dS

m∑
i=1

min (g(d2, . . . , dS), αi)

where g(d2, . . . , dS) =
1

2σ2
i


S∑
s=1

ns(µ
′
si − ds)2 − 1

n

[
S∑
s=1

(ns(µ
′
si − ds))

]2


dsj = ds + d′sj, s = 1, . . . , S

γsi =

 0 if g(d2, . . . , dS) < αi

µ′si − µ′1i − ds otherswise

µi =

 (1/n)
∑S

s=1 ns(µ
′
si − ds) if g(d2, . . . , dS) < αi

µ′1i otherwise

where the only computationally intensive step is to minimize a sum of truncated

quadratic functions in d2, . . . , dS

d2, . . . , dS = arg min
d2,...,dS

m∑
i=1

min{g(d2, . . . , dS), αi}.

Methods for choosing {αi}mi=1 and for estimating {σ2
i }mi=1, as well as experiments on

simulated and real data, are given in [23].

79

A1.2 Algorithms described in Section 2.3

Algorithm 1 A general algorithm for minimizing (2.6).

procedure algorithm.general(f1, . . . , fn)
for i = 1 : n do

Find region Ci such that fi(x) ≤ 0 on Ci.
end for
Find all the pieces {Aj}mj=1 in the partition of Rd formed by {Ci}ni=1.
s← 0.
for j = 1 : m do

Find the set of functions {fk}k∈Ij that are not truncated on Aj .

s← min{s,min
x

∑
k∈Ij

fk(x)}.

end for
return s.

end procedure

Algorithm 2 An algorithm for minimizing (2.6) in 1-D.

procedure algorithm.1d(f1, . . . , fn)
for i = 1 : n do

Find the interval Ci = [li, ri] ⊂ R such that fi(x) ≤ 0 on Ci.
end for
Order all the 2n end-points of {Ci}ni=1 along the real line as p1 < · · · < p2n.
s← 0, I ← ∅.
for j = 1 : 2n do

if pj is the left end-point of an interval Ck then
Add k to set I.

else if pj is the right end-point of an interval Ck then
Remove k from set I.

end if
s← min{s,min

x

∑
k∈I

fk(x)}.

end for
return s.

end procedure

80

Algorithm 3 An algorithm for minimizing (2.6) in 2-D.

procedure algorithm.2d(f1, . . . , fn)
for i = 1 : n do

Find Ci ⊂ R2 such that fi(x) ≤ 0 on Ci.
Find ∂Ci, the boundary Ci.

end for
s← 0.
for i = 1 : n do

Find all the intersection points of ∂Ci and ∂Ck, k 6= i.
Sort all the intersection points along ∂Ci clockwise as p1, . . . ,pni .
Find a point p between p1 and pni

on ∂Ci.
I ← {k : p ∈ Ck}, J ← I \ {i}.
for j = 1 : ni do

if pj is the intersection point of ∂Ci and ∂Ck and k ∈ I then
Remove k from sets I and J .

else if pj is the intersection point of ∂Ci and ∂Ck and k 6∈ I then
Add k to sets I and J .

end if
s← min{s,min

x

∑
k∈I

fk(x),min
x

∑
k∈J

fk(x)}.

end for
end for
return s.

end procedure

Algorithm 4 A cyclic coordinate descent algorithm for minimizing (2.6) in high-dimensional set-
tings.

procedure algorithm.high-d(f1, . . . , fn)
Initialize x as x0.
while true do

for j = 1 : d do
Fix all xk, k 6= j, minimize the objective function as a univariate function of xj using

Algorithm 2.
end for
if the change in x since the last iteration is less than a given tolerance level then

return x.
end if

end while
end procedure

81

A1.3 The Θ-IPOD algorithm for robust linear regression

Algorithm 5 The Θ-IPOD algorithm for robust linear regression, adapted from Algorithm 2 in [45].

procedure Θ-IPOD(X ∈ Rn×p,y ∈ Rn,λ > 0 ∈ Rn,γ(0) ∈ Rp, and threshold operator Θ(·; ·)
which is taken as the hard-threshold operator Θh(·; ·) in our paper)
γ ← γ(0),H← X(XTX)−1XT , r← y −Hy.
while true do
γ ← Θh(Hγ + r;

√
λ).

if the change in γ since the last iteration is less than a given tolerance level then
return γ̂ ← γ and β̂ ← (XTX)−1XT (y − γ̂).

end if
end while

end procedure

A1.4 The difference of convex (DC) functions algorithm

Following [2], we rewrite our objective function for sum of truncated quadratic

functions

f(x) =
n∑
i=1

min

(
1

2
xTAix + xTbi + ci, λi

)
as f(x) = f1(x)− f2(x), where

f1(x) =
n∑
i=1

1

2
xTAix + xTbi + ci

is a quadratic function, and

f2(x) =
n∑
i=1

(
1

2
xTAix + xTbi + ci − λi

)
+

.

Then, the DC algorithm iteratively minimizes a convex majorization of f(·) by re-

placing f2(·) with its linear approximation at xk, until converge. That is,

xk+1 = arg min
x

{
f1(x)− [∇f2(xk)]T (x− xk)

}
,

where ∇f2(xk) is the gradient of f2(x) evaluated at xk, and we have

∇f2(xk) =
n∑
i=1

1

(
1

2
xTAix + xTbi + ci > λi

)
(Aix

k + bi).

82

Therefore,

xk+1 = arg min
x

n∑
i=1

1

2
xTAix + xTbi + ci−

n∑
i=1

1

(
1

2
xTAix + xTbi + ci > λi

)
(Aix

k + bi)
T (x− xk)

for which we only need to minimize a quadratic function, and the solution exists in

closed-form.

A1.5 The iterative marginal optimization (IMO) algorithm for signal and image
restoration

Following [41], we rewrite our objective function

f(x) =
d∑
i=1

(xi − yi)2 + w
n∑
i=1

min{xi − xi+1)2, λ}.

as

f(x) = ||Hx− y||2 + w
n∑
i=1

min{(φTi x)2, λ},

where n = d − 1,H = In is an identity matrix, Φ = (φ1, . . . ,φn)T ∈ Rn×d with

φi,i = −1, φi,i+1 = 1 and otherwise φi,j = 0 for all i and j. We then minimize

f(x) using the following iterative algorithm proposed in [41], where Θh(·; ·) is the

hard-threshold operator.

Algorithm 6 The iterative marginal optimization (IMO) algorithm for signal and image restora-
tion, Adapted from Algorithm 1 in [41].

procedure Threshold(y ∈ Rd,Φ ∈ Rn×d,λ > 0 ∈ Rn)
x← y.
while true do

b← Φx.
a← Θh(b;

√
λ).

z← wΦTa.
x← (HTH + wΦTΦ)−1(HTy + z).
if the change in x since the last iteration is less than a given tolerance level then

return x.
end if

end while
end procedure

83

A1.6 Proofs

Proof of Proposition 2.1.

To minimize (2.3),

f(β,γ) =
n∑
i=1

(yi − xTi β − γi)2 + λ
n∑
i=1

1(γi 6= 0),

notice that the minimization with respect to γ can be performed componentwise.

For each γi, if γi = 0, we have

(5.2)

f(β, γ1, . . . , γi = 0, . . . , γn) =
∑
j 6=i

{
(yj − xTi β − γj)2 + λ1(γj 6= 0)

}
+ (yi − xTi β)2.

On the other hand, if γi 6= 0, we have

f(β, γ1, . . . , γi 6= 0, . . . , γn) =
∑
j 6=i

{
(yj − xTi β − γj)2 + λ1(γj 6= 0)

}
+(yi−xTi β−γi)2+λ,

which is minimized at γi = yi − xTi β, that is,

(5.3) f(β, γ1, . . . , γi = yi−xTi β, . . . , γn) =
∑
j 6=i

{
(yj − xTi β − γj)2 + λ1(γj 6= 0)

}
+λ.

Comparing (5.2) with (5.3), it is easy to see that we should choose γi = 0 if (yi −

xTi β)2 < λ and γi = yi − xTi β othersise. Plugging the value of γi into (2.3), we have

f(β,γ) =
n∑
i=1

[
(yi − xTi β)21{(yi − xTi β)2 < λ}+ λ1{(yi − xTi β)2 ≥ λ}

]
=

n∑
i=1

min{(yi − xTi β)2, λ}

which is the objective function g(β) in Proposition 2.1.

Proof of Proposition 2.2.

84

Similar to the proof of Proposition 2.1, for the objective function in (2.4), if γi = 0,

the i-th summand becomes b(xTi β)−(xTi β)yi. Otherwise, if γi 6= 0, the i-th summand

becomes b(xTi β + γi)− (xTi β + γi)yi + λ, which is minimized when

yi =
∂b(xTi β + γi)

∂γi
= g−1(xTi β + γi)⇒ xTi β + γi = g(yi)

which makes the i-th summand become λ∗ := b(g(yi)) − g(yi)yi + λ. The objective

function can then be rewritten as:

n∑
i=1

min{b(xTi β)− (xTi β)yi, λ
∗}

which completes the proof.

Proof of Proposition 2.4.

Let b1, . . . , bn be n Boolean variables, i.e., each bk only takes one of two possible

values: TRUE or FALSE. For a 3-SAT problem P , suppose its formula is

f(b1, . . . , bn) = c1 ∧ · · · ∧ cm,

where ∧ is the logical OR operator, and {ci}mi=1 are the clauses1 of P with

ci = (li1 ∨ li2 ∨ li3),

where ∨ is the logical AND operator, and {lij}mi=1, j ∈ {1, 2, 3}, are literals of P .

Each literal lij is either a variable bk for which lij is called a positive literal, or the

negation of a variable ¬bk for which lij is called a negative literal. Without loss

of generality, suppose that each clause consists of exactly three literals, and that

the three literals in each clause correspond to three distinct variables. The 3-SAT

problem P concerns about the satisfiability of f(b1, . . . , bn), i.e., whether there exists

1A clause is a disjunction of literals or a single literal. In a 3-SAT problem each clause has exactly three literals.

85

a possible assignment of values of b1, . . . , bn such that f(b1, . . . , bn) = TRUE.

We reduce the 3-SAT problem P to the minimization of a sum of truncated

convex functions g(x) : Rn → R as follows. Let x = (x1, . . . , xn) ∈ Rn with each

xk corresponds to a bk such that bk = TRUE if and only if xk > 0. For each clause

ci = (li1 ∨ li2 ∨ li3) of P , define a sum of seven truncated convex functions

gi(x) =
7∑
t=1

min(git(x), 1)

where

git(x) =

 0 if x ∈ Sit1 ∩ Sit2 ∩ Sit3

∞ otherwise

where Sitj is one of the two half-spaces defined by xk > 0 and xk ≤ 0, respectively,

where xk is the variable corresponding to lij, that is, lij = bk or lij = ¬bk. We choose

Sitj as the half-space defined by xk > 0 if and only if (b(j, t)− 1
2
) has the same sign

as lij, where b(j, t) is the j-th digit (from left to right) of t when t ∈ {1, . . . , 7} is

represented as three binary digits. For instance, for a clause ci = (b1 ∨ ¬b2 ∨ b3), we

have

gi1(x) =

 0 if x1 ≤ 0, x2 > 0, x3 > 0

∞ otherwise

and

gi7(x) =

 0 if x1 > 0, x2 ≤ 0, x3 > 0

∞ otherwise

Since all the half-spaces, as well as their intersections, are convex sets, all the

git(x)’s are convex functions. Furthermore, since the regions in which git(x) = 0, t ∈

{1, . . . , 7}, are disjoint, it is easy to verify that gi(x) can only take one of two possible

86

values

gi(x) =

 6 if ci is satisfied by the assigned values of b1, . . . , bn

7 otherwise

where we choose bk = TRUE if and only if xk > 0. The reduction is then completed

by noticing that the 3-SAT problem P is satisfiable if and only if the minimum value

of the function g(x) =
∑m

i=1 gi(x) is 6m, and that it is easy to see that the reduction

can be done in polynomial time.

Proof of Proposition 2.5.

On one hand, we have

(5.4) min
x

n∑
i=1

min{fi(x), 0} = min
j

min
x∈Aj

∑
k∈Ij

fk(x) ≥ min
j

min
x

∑
k∈Ij

fk(x),

On the other hand, we have

(5.5)

min
j

min
x

∑
k∈Ij

fk(x) ≥ min
j

min
x

∑
k∈Ij

min{fk(x), 0}

≥ min
j

min
x

n∑
i=1

min{fi(x), 0}

= min
x

n∑
i=1

min{fi(x), 0}

Putting (5.4) and (5.5) together, we have

min
x

n∑
i=1

min{fi(x), 0} = min
j

min
x

∑
k∈Ij

fk(x).

87

A1.7 Supplementary figures and tables

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A1: Placement of different convex shapes to cover the maximum number of points uniformly
sampled from the unit square.

Figure A2: Restoration of images. For each row, from left to right: original image, image with
Gaussian noise added, image restored using Gaussian smoothing with a 5 × 5 kernel and image
restored using proposed algorithm.

88

Table A1: Comparison of different methods for outlier detection in simple linear regression. The
table shows the leverages of outliers (L), percents of outliers (O%) and mean percents of masking
and swamping for all the methods using 100 simulated replicates. The standard errors of the means
are given in parentheses.

Masking
L O% MM LTS GY IPOD Proposed
0 5 0.6 (0.3) 0.6 (0.3) 1.0 (0.4) 0.6 (0.3) 0.8 (0.4)
0 10 2.3 (0.5) 2.1 (0.5) 2.4 (0.5) 2.0 (0.5) 2.0 (0.5)
0 20 1.8 (0.3) 1.8 (0.3) 1.9 (0.3) 1.5 (0.3) 1.4 (0.3)
0 30 3.1 (0.3) 2.6 (0.3) 3.2 (0.3) 2.3 (0.3) 2.3 (0.3)
0 45 11.1 (0.5) 4.8 (0.3) 9.8 (0.4) 2.5 (0.3) 2.5 (0.3)
0 60 33.2 (0.5) 24.3 (0.5) 33.0 (0.5) 34.4 (0.7) 2.8 (0.4)
20 5 2.0 (0.6) 2.4 (0.7) 2.0 (0.6) 1.8 (0.6) 1.8 (0.6)
20 10 3.1 (0.6) 2.8 (0.6) 3.1 (0.6) 2.7 (0.5) 2.8 (0.5)
20 20 4.8 (0.7) 2.8 (0.4) 3.7 (0.5) 3.2 (0.5) 2.8 (0.4)
20 30 14.1 (1.0) 5.7 (0.6) 8.9 (0.7) 5.5 (0.7) 3.9 (0.4)
20 45 34.5 (0.7) 13.8 (0.8) 29.6 (0.9) 18.0 (1.4) 7.5 (0.9)
20 60 34.0 (0.7) 36.1 (0.5) 34.9 (0.6) 35.0 (0.5) 24.1 (1.3)

Swamping
L O% MM LTS GY IPOD Proposed
0 5 1.0 (0.1) 1.4 (0.1) 1.0 (0.1) 1.1 (0.1) 1.0 (0.1)
0 10 1.1 (0.1) 1.2 (0.1) 1.1 (0.1) 1.2 (0.1) 1.2 (0.1)
0 20 1.3 (0.1) 1.3 (0.1) 1.3 (0.1) 1.4 (0.1) 1.3 (0.1)
0 30 1.3 (0.1) 1.3 (0.1) 1.5 (0.2) 1.4 (0.1) 1.3 (0.2)
0 45 19.0 (1.1) 2.9 (0.3) 15.1 (0.8) 1.4 (0.1) 1.3 (0.1)
0 60 96.1 (0.6) 73.2 (1.4) 95.5 (0.6) 90.5 (1.8) 2.0 (0.6)
20 5 1.5 (0.1) 1.8 (0.1) 1.4 (0.1) 1.5 (0.1) 1.5 (0.1)
20 10 1.1 (0.1) 1.3 (0.1) 1.1 (0.1) 1.2 (0.1) 1.3 (0.1)
20 20 1.2 (0.1) 1.1 (0.1) 1.1 (0.1) 1.1 (0.1) 1.1 (0.1)
20 30 4.0 (0.4) 1.6 (0.2) 1.9 (0.2) 1.6 (0.1) 1.4 (0.1)
20 45 30.2 (0.8) 4.5 (0.3) 20.7 (0.7) 8.6 (0.9) 2.4 (0.3)
20 60 44.9 (0.9) 34.8 (0.9) 42.8 (0.9) 33.0 (1.3) 13.5 (1.1)

Table A2: Stopping criteria of the simulation studies in Sections 2.4.2 and 2.4.4

Maximal number
of function
evaluations

Maximal number
of iterations

Tolerance
Maximal steps when

no improvement
in the estimate

DIRECT 104 - 10−8 -
StoGO 104 - 10−8 -

SA 104 104 - 106

PSO 104 104 10−8 -
IMO/DC 104 10−8 -

Proposed (high-D) 104 10−8 -

89

Table A3: Comparison of different algorithms for global optimization of the sum of 50 randomly
generated truncated quadratic functions in 2-D. The table shows the complexities of the functions
(C) as well as mean success rates (in percents) and running times (in seconds) for all the methods
using 100 simulated replicates. The standard errors of the means are given in parentheses.

Success Rate
C DIRECT StoGO SA PSO DC Proposed
1 100.0 (0.0) 86.0 (3.5) 98.0 (1.4) 99.0 (1.0) 27.0 (4.5) 100.0 (0.0)
5 99.0 (1.0) 74.0 (4.4) 97.0 (1.7) 93.0 (2.6) 9.0 (2.9) 100.0 (0.0)
10 88.0 (3.3) 57.0 (5.0) 85.0 (3.6) 72.0 (4.5) 1.0 (1.0) 100.0 (0.0)

Running Time
C DIRECT StoGO SA PSO DC Proposed
1 0.45 (0.01) 2.76 (0.02) 0.40 (0.00) 2.29 (0.05) 0.50 (0.03) 3.07 (0.03)
5 0.42 (0.01) 2.62 (0.07) 0.39 (0.00) 2.66 (0.08) 2.95 (0.29) 2.62 (0.03)
10 0.44 (0.05) 2.41 (0.02) 0.37 (0.00) 2.82 (0.12) 8.04 (0.71) 2.35 (0.03)

Bibliography

[1] Arvind Agarwal and Hal Daumé III. Generative kernels for exponential families.

In AISTATS, pages 85–92, 2011.

[2] Le Thi Hoai An and Pham Dinh Tao. Solving a class of linearly constrained

indefinite quadratic problems by dc algorithms. Journal of global optimization,

11(3):253–285, 1997.

[3] Gill Barequet, Matthew Dickerson, and Petru Pau. Translating a convex polygon

to contain a maximum number of points. Computational Geometry, 8(4):167–

179, 1997.

[4] Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra

using the RcppEigen package. Journal of Statistical Software, 52(5):1–24, 2013.

[5] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[6] Emmanuel J Candès and Terence Tao. The power of convex relaxation:

Near-optimal matrix completion. Information Theory, IEEE Transactions on,

56(5):2053–2080, 2010.

[7] Bernard Marie Chazelle and Der-Tsai Lee. On a circle placement problem.

Computing, 36(1-2):1–16, 1986.

90

91

[8] Guanhua Chen, Donglin Zeng, and Michael R Kosorok. Personalized dose finding

using outcome weighted learning. Journal of the American Statistical Associa-

tion, 111(516):1509–1521, 2016.

[9] Marcin Cieslik et al. The use of exome capture rna-seq for highly degraded rna

with application to clinical cancer sequencing. Genome Research, 2015.

[10] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing, pages 151–158.

ACM, 1971.

[11] Chao Cui et al. Infectious disease modeling and innate immune function in

zebrafish embryos. Methods in Cell Biology, 105:273–308, 2011.

[12] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong

Schwarzkopf. Computational geometry. In Computational geometry, pages 1–17.

Springer, 2000.

[13] D. Eberly. Intersection of ellipses, 2000. https://www.geometrictools.com/

Documentation/IntersectionOfEllipses.pdf, Last Modified: 06/23/2015.

[14] Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New

York, 2013. ISBN 978-1-4614-6867-7.

[15] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integra-

tion. Journal of Statistical Software, 40(8):1–18, 2011.

[16] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American statistical Association,

96(456):1348–1360, 2001.

https://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf
https://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf

92

[17] Irène Gannaz. Robust estimation and wavelet thresholding in partially linear

models. Statistics and Computing, 17(4):293–310, 2007.

[18] Alexandros Georgogiannis. Robust k-means: a theoretical revisit. In Advances

in Neural Information Processing Systems, pages 2883–2891, 2016.

[19] Daniel Gervini and Victor J Yohai. A class of robust and fully efficient regression

estimators. Annals of Statistics, pages 583–616, 2002.

[20] Eligius MT Hendrix, G Boglárka, et al. Introduction to nonlinear and global

optimization. Springer New York, 2010.

[21] Guifeng Jiang and D. Jed Harrison. mrna isolation in a microfluidic device for

eventual integration of cdna library construction. The Analyst, 125, 2000.

[22] Hui Jiang and Julia Salzman. A penalized likelihood approach for robust esti-

mation of isoform expression. Statistics and Its Interface, 8:437–445, 2015.

[23] Hui Jiang and Tianyu Zhan. Unit-free and robust detection of differential ex-

pression from rna-seq data. Statistics in Biosciences 9 (1), 178-199, 2017.

[24] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian op-

timization without the lipschitz constant. Journal of Optimization Theory and

Applications, 79(1):157–181, 1993.

[25] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[26] Shota Katayama and Hironori Fujisawa. Sparse and robust linear regres-

sion: An optimization algorithm and its statistical properties. arXiv preprint

arXiv:1505.05257, 2015.

[27] Eija Korpelainen et al. RNA-seq Data Analysis. CRC Press, 2015.

93

[28] Charity W Law et al. voom: precision weights unlock linear model analysis tools

for rna-seq read counts. Genome Biology, 2014.

[29] Yoonkyung Lee, Steven N MacEachern, and Yoonsuh Jung. Regularization of

case-specific parameters for robustness and efficiency. Statistical Science, pages

350–372, 2012.

[30] Tzu-Ying Liu and Hui Jiang. Minimizing sum of truncated convex functions

and its applications. Journal of Computational and Graphical Statistics, 2018.

[31] Kaj Madsen and Serguei Zertchaninov. A new branch-and-bound method for

global optimization. IMM, Department of Mathematical Modelling, Technical

Universityof Denmark, 1998.

[32] RARD Maronna, Douglas Martin, and Victor Yohai. Robust statistics. John

Wiley & Sons, Chichester. ISBN, 2006.

[33] Lauren McCann and Roy E Welsch. Robust variable selection using least angle

regression and elemental set sampling. Computational Statistics & Data Analy-

sis, 52(1):249–257, 2007.

[34] Abraham Mehrez and Alan Stulman. The maximal covering location prob-

lem with facility placement on the entire plane. Journal of Regional Science,

22(3):361–365, 1982.

[35] R Garey Michael and S Johnson David. Computers and intractability: a guide

to the theory of np-completeness. WH Free. Co., San Fr, 1979.

[36] Nasser M Nasrabadi, Trac D Tran, and Nam Nguyen. Robust lasso with missing

and grossly corrupted observations. In Advances in Neural Information Process-

ing Systems, pages 1881–1889, 2011.

94

[37] Mila Nikolova. Thresholding implied by truncated quadratic regularization.

IEEE Transactions on Signal Processing, 48(12):3437–3450, 2000.

[38] Mila Nikolova. Energy minimization methods. In Handbook of mathematical

methods in imaging, pages 139–185. Springer, 2011.

[39] Mila Nikolova, Michael K Ng, and Chi-Pan Tam. Fast nonconvex nonsmooth

minimization methods for image restoration and reconstruction. IEEE Trans-

actions on Image Processing, 19(12):3073–3088, 2010.

[40] Juvencio Santos. Nobre and Julio da Motta Singer. Residual analysis for linear

mixed models. Biometrical Journal, 2007.

[41] Javier Portilla, Antonio Tristán-Vega, and Ivan W Selesnick. Efficient and robust

image restoration using multiple-feature l2-relaxed sparse analysis priors. IEEE

Transactions on Image Processing, 24(12):5046–5059, 2015.

[42] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2017.

[43] Jürgen Richter-Gebert. Perspectives on projective geometry: A guided tour

through real and complex geometry. Springer Science & Business Media, 2011.

[44] Peter J Rosseeuw and Annick M Leroy. Robust regression and outlier detection.

Wiley Series in Probability and Mathematical Statistics, New York: Wiley, 1,

1987.

[45] Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized

regression. Journal of the American Statistical Association, 2012.

[46] Xiaotong Shen, Wei Pan, and Yunzhang Zhu. Likelihood-based selection and

95

sharp parameter estimation. Journal of the American Statistical Association,

107(497):223–232, 2012.

[47] Julie Tibshirani and Christopher D Manning. Robust logistic regression using

shift parameters. In ACL (2), pages 124–129, 2014.

[48] Rand R Wilcox. Robust testing procedures. Encyclopedia of Statistics in Be-

havioral Science, 2005.

[49] Daniela M Witten. Penalized unsupervised learning with outliers. Statistics and

its Interface, 6(2):211, 2013.

[50] Yang Xiang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. Generalized

simulated annealing for global optimization: the gensa package. R Journal,

5(1):13–28, 2013.

[51] Victor J Yohai. High breakdown-point and high efficiency robust estimates for

regression. The Annals of Statistics, pages 642–656, 1987.

[52] Mauricio Zambrano-Bigiarini and Rodrigo Rojas. A model-independent particle

swarm optimisation software for model calibration. Environmental Modelling &

Software, 43:5–25, 2013.

[53] Anatoly Zhigljavsky and Antanas Žilinskas. Stochastic global optimization, vol-

ume 9. Springer Science & Business Media, 2007.

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	
	Introduction
	Minimizing Sum of Truncated Convex Functions
	Introduction
	Applications
	Outlier detection in linear models
	Convex shape placement
	Signal and image restoration

	Methods
	Notations
	The general algorithm
	Implementation in low-dimensional settings
	Extension to high-dimensional settings
	Time complexity analysis

	Experiments
	Outlier detection in simple linear regression
	Sum of truncated quadratic functions
	Convex shape placement
	Signal and image restoration

	Discussion

	Integrating Poly(A) Capture and Exome Capture RNA-Seq Data
	Introduction
	The Data
	Evidence of differences between the two types of measurements
	Converting capture sequencing measurements to Poly(A) measurements
	Notation
	 Comparing prediction by genewise simple regression and mixed effect model

	Results
	Discussion
	Appendix for Chapter 3

	Outlier Detection for Mixed Model
	Extending mixed effect model for detecting individual outliers and outlying random effects
	Estimation Scheme
	Estimate the outliers and predict the random effects by Penalized Maximum Likelihood Estimation
	Separation of the objective function by incorporating the predictors of the random effects
	Transform the objective function into a sum of truncated quadratic functions
	 Estimate g, g and g
	Transform hg to sum of truncated convex functions

	Summary of estimating and

	Determine O and G
	Variance of the conditional residuals and predicted random effects
	Determine the cutoffs for conditional residuals and predicted random effects

	Dilation factor
	Simulation Study
	Application to RNA-Seq data
	Discussion

	Discussion
	
	Appendix for Chapter II
	Application on detecting differential gene expression with 0-penalized models
	Algorithms described in Section 2.3
	The -IPOD algorithm for robust linear regression
	The difference of convex (DC) functions algorithm
	The iterative marginal optimization (IMO) algorithm for signal and image restoration
	Proofs
	Supplementary figures and tables

	

