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ABSTRACT

Emerging systems for artificial intelligence (AI) are expected to rely on deep neural

networks (DNNs) to achieve high accuracy for a broad variety of applications, includ-

ing computer vision, robotics, and speech recognition. Due to the rapid growth of

network size and depth, however, DNNs typically result in high computational costs

and introduce considerable power and performance overheads. Dedicated chip ar-

chitectures that implement DNNs with high energy efficiency are essential for adding

intelligence to interactive edge devices, enabling them to complete increasingly sophis-

ticated tasks by extending battery lie. They are also vital for improving performance

in cloud servers that support demanding AI computations.

This dissertation focuses on architectures and circuit technologies for designing

energy-efficient neural network accelerators. First, a deep-learning processor is pre-

sented for achieving ultra-low power operation. Using a heterogeneous architec-

ture that includes a low-power always-on front-end and a selectively-enabled high-

performance back-end, the processor dynamically adjusts computational resources at

runtime to support conditional execution in neural networks and meet performance

targets with increased energy efficiency. Featuring a reconfigurable datapath and

a memory architecture optimized for energy efficiency, the processor supports mul-

tilevel dynamic activation of neural network segments, performing object detection

tasks with 5.3× lower energy consumption in comparison with a static execution base-

line. Fabricated in 40nm CMOS, the processor test-chip dissipates 0.23mW at 5.3 fps.

It demonstrates energy scalability up to 28.6 TOPS/W and can be configured to run

xi



a variety of workloads, including severely power-constrained ones such as always-on

monitoring in mobile applications.

To further improve the energy efficiency of the proposed heterogeneous archi-

tecture, a new charge-recovery logic family, called zero-short-circuit current (ZSCC)

logic, is proposed to decrease the power consumption of the always-on front-end. By

relying on dedicated circuit topologies and a four-phase clocking scheme, ZSCC op-

erates with significantly reduced short-circuit currents, realizing order-of-magnitude

power savings at relatively low clock frequencies (in the order of a few MHz). The

efficiency and applicability of ZSCC is demonstrated through an ANSI S1.11 1/3

octave filter bank chip for binaural hearing aids with two microphones per ear. Fab-

ricated in a 65nm CMOS process, this charge-recovery chip consumes 13.8µW with

a 1.75MHz clock frequency, achieving 9.7× power reduction per input in comparison

with a 40nm monophonic single-input chip that represents the published state of the

art. The ability of ZSCC to further increase the energy efficiency of the heterogeneous

neural network architecture is demonstrated through the design and evaluation of a

ZSCC-based front-end. Simulation results show 17× power reduction compared with

a conventional static CMOS implementation of the same architecture.

xii



CHAPTER I

Introduction

Modern artificial intelligence (AI) systems are transforming the world around us.

AI systems have revolutionized applications such as visual/speech recognition and

natural language processing by providing a convenient way to interact through an

intelligent application on a mobile device. In these applications, computations can

be performed purely on the edge, purely on the cloud, or through a mix of both,

depending on workload. Custom application-specific integrated circuits (ASICs) have

been introduced in datacenters to address the rigid response-time issue in voice search

and achieve lower power than conventional general-purpose processors (CPUs) and

graphics processor units (GPUs) [8]. As indicated in [9], however, low-power chip

designs for AI systems on the edge provide an effective solution for running the entire

system in mixed mode, reducing the queries sent to the Cloud, relieving pressure on

the server side, furhter enhancing performance, and enabling more services.

Deep neural networks (DNNs) have attracted significant attention in recent years,

as processing speech and image inputs require complicated computational models

trained through machine learning. Compared with conventional machine-learning

techniques, which are limited in processing natural data in raw data form and usu-

ally require careful engineering and domain expertise to design a dedicated feature

extractor, deep-learning methods use multiple simple but non-linear modules to com-
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pose transformations for complex models needed to target applications without being

carefully designed by human engineers. Moreover, DNNs have been shown to pro-

vide better accuracy in numerous applications and have now become one of the core

techniques in modern AI systems. However, the advantages of superior accuracy

come at an increased computation cost and raise significant power and performance

issues. Therefore, the efficient execution of DNNs is met with significant challenges

in practice.

A variety of techniques has been investigated for increasing the efficiency of DNN

execution in computing systems. Custom datapaths tailored to different types of

neural network topologies have been proposed. For example, energy-efficient dataflow

for convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

have been presented in [7] and [10], respectively. Numerical quantization is another

common approach used in digital signal processing (DSP) systems and has been also

applied to neural network processors [5,11]. Dedicated mixed-signal circuit design for

neural networks has been proposed to achieve low-power neuromorphic computing

[12]. These approaches are shown to be effective in reducing power consumption, but

they all assume network execution in an ordered sequence and perform static network

optimization. Therefore, they are not applicable in the context of highly-optimized

neural networks whose execution is determined dynamically at runtime.

1.1 Contributions

In this dissertation, we explore two complementary design approaches for design-

ing energy-efficient neural network processors, ranging from architecture to circuit-

level innovation. We first present a new heterogeneous architecture for conditionally-

executing neural networks. This architecture is composed of a dedicated, relatively

slow, always-on front-end processor that continuously monitors the input, and a high-

performance back-end processor that runs in duty-cycled mode to reduce power con-
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sumption while maintaining accuracy and latency requirement. The dynamic ex-

ecution units (DEU) embedded in the proposed design enable the neural network

processor to bypass unnecessary inference paths in DNNs and therefore save power

dynamically.

A prototype test-chip with the proposed heterogeneous architecture has been de-

signed and fabricated in a 40nm CMOS process. Micro-architecture and circuit opti-

mization techniques applied to the test-chip include low-power memory architecture,

dataflow reuse, and fine-grain circuit gating to achieve an energy-efficient operation.

The chip achieves 5.3× lower energy and 0.23mW average power and 1.4% accuracy

loss on the LFW dataset. Using dynamic execution, it demonstrates a competitive

energy scalability of 4.7-28.6 TOPS/W and can therefore support edge devices under

a broad variety of operating conditions.

We further explore the opportunity to reduce power consumption of the always-

on front-end processor in the heterogeneous architecture through innovative circuit

topologies that achieve high energy efficiency at relatively low operating frequen-

cies. For circuitry operating at medium to low clock frequencies, low-voltage design

is a popular design approach [2, 13]. By reducing the supply voltage to the near

or sub-threshold region, energy consumption can be reduced significantly. However,

aggressive voltage scaling design is vulnerable to process, voltage, and temperature

(PVT) variation and causes robustness issues. Moreover, voltage scaling design usu-

ally needs to insert additional buffers to increase driving strength and slew rate for

reducing time conducting short-circuit currents. This becomes a more severe issue for

charge-recovery logic because it relies on smooth transition during charging and dis-

charging to increase energy efficiency. In this thesis, we investigate a new logic family

called zero-short-circuit current (ZSCC) logic to address this issue and boost energy

efficiency. Using a four-phase clocking scheme, ZSCC divides gate operation into

fine-grain stages, providing correct timing to reset outputs signals, while significantly
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reducing short-circuit power.

We have assessed the energy efficiency of ZSCC through the design of a high per-

formance hearing-aid test-chip. Specifically, we have used ZSCC to design a binaural

dual-microphone hearing-aid front-end chip that processes four audio input streams

and complies with the ANSI S1.11 standard. To that end, we have designed a library

consisting of ZSCC library cells in a 65nm CMOS process. We have also developed

a semi-automated design flow for place-and-route with ZSSC. The chip dissipates

13.8µW at 1.75MHz and achieves 9.7× lower power at 1.75MHz compared with a

40nm monophonic chip that represents the published state of the art [14]. It also

demonstrates ZSCC as a digital low-power technique competitive with analog com-

puting [15], while at the same time offering more programmability and lower area

overhead.

To assess the promise of ZSCC to increase the energy efficiency of the proposed

heterogeneous neural network processor architecture, we have used it to design the

front-end of that processor. In circuit-level netlist simulations, the energy consump-

tion of the ZSCC design scales with clock frequency, reducing power down to 81.4µW

at 10MHz. Compared with the static CMOS implementation of the same front-end

architecture, the ZSCC-based design achieves 17× lower power, showing superior

power benefits for neural network computations.

1.2 Thesis Outline

The remainder of this dissertation is organized as follows: In Chapter II, we survey

and give a summary of previous work in the area of energy-efficient neural network

processor design. First, we provide a brief introduction to neural networks. We

then discuss energy-efficient computing techniques, including low-voltage and charge-

recovery design. The chapter concludes with the description of recently-published

neural network architecture optimization techniques.
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In Chapter III, we present a heterogeneous neural network processor for dynamic

neural networks. We first introduce the concept of conditionally-executing DNNs. We

then show how our heterogeneous front-end and back-end processors can efficiently

support DNNs. The processor includes a dynamic execution unit, that dispatches

workload in runtime and enables the dynamic execution of the neural networks. It also

includes a low-power memory architecture for further reducing data movement costs

during neural network computation. The chapter concludes with chip measurement

and evaluation results.

Chapter IV presents the proposed ZSCC logic family. It first describes the oper-

ation of ZSCC logic, focusing on the reduction of short-circuit current through ded-

icated four-phase operation and circuit topologies. It then describes the standard-

cell-like semi-automated design flow for supporting large-scale digital design with

ZSCC, including automatic place-and-route with a four-phase clock distribution. It

also includes a description of ZSCC library cells and a comparison with the tradi-

tional static CMOS standard library cells. A prototype chip designed in ZSCC to

support a high-performance binaural hearing-aid algorithm is also discussed in this

chapter, including the implementation of the ZSCC datapath, silicon measurement

results, and comparisons with state-of-the-art hearing-aid and acoustic-sensing chips.

The chapter concludes by presenting a ZSCC-based implementation for the front-

end of the heterogeneous processor presented in Chapter III, and a comparison with

conventional static CMOS implementation.

Chapter V summarizes the contributions in this dissertation and presents direc-

tions for future research.
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CHAPTER II

Background

In this chapter, we survey prior works in the area of neural network architectures

and energy-efficient design. Specifically, Section 2.1 briefly describes the fundamen-

tals of neural networks. Section 2.2 discusses techniques for energy-efficient digital

design, with a particular focus on low-voltage and charge-recovery design. Section

2.3 presents early work on energy-efficient neural network architectures. Various

optimization techniques and challenges related to neural network computations are

discussed, motivating this dissertation research.

2.1 Neural Networks

Machine learning has entered the mainstream, playing a key role behind technolo-

gies such as recommendations systems on e-commerce websites, personal assistant

systems, and internet search engines. These systems identify objects in images, tran-

scribe speech into text, match new products with user interests, and select relevant

search results. Behind these systems, a class of machine learning techniques called

deep neural networks has emerged as a popular approach.

Neural networks attempt to mimic the intelligence of biological brains by combin-

ing a multitude of simple artificial neurons, each performing a nonlinear function of

a weighted sum of its inputs. These neurons are collected into layers, and cascades
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of such layers form a neural network. In so-called deep neural networks (DNNs),

the number of layers ranges from tens to hundreds. Through these deep cascades,

representations are transformed to a higher and more abstract level, therefore pro-

viding better model-fitting in numerous applications. Deep neural networks operate

in two modes: training (or learning) and inference (or prediction). In training, the

developers choose the number of layers and the type of neurons, and then determine

the weights for the target application. In inference, the trained networks are used to

perform predictions based on the given model.

Among various network topologies, two particular types of DNNs have brought

about breakthroughs in image, video, and text and speech processing. The first type

is convolutional neural networks (CNNs), whose effectiveness has been experimen-

tally demonstrated in the area of computer vision, and which are now widely used for

image and video applications. The other type is recurrent neural networks (RNNs), a

powerful dynamic network architecture that processes sequential data such as speech

or text. In this thesis, we focus primarily on hardware architecture design for convo-

lutional neural networks. However, the circuit technique discussed in Chapter IV can

be also applied to RNN accelerator design.

Convolutional Neural Networks

Convolutional neural networks are designed especially for processing data in the

form of multiple arrays. A common application of CNNs is the processing of RGB

three-channel color images containing three 2D arrays for storing pixel intensity infor-

mation. CNNs have also been used to process audio spectrograms and model spectral

correlations for large vocabulary speech tasks [16]. One key property of CNNs is their

ability to extract local conjunctional information of input signals. CNNs use shared

weights to perform neuromorphic computation through local connections of neighbor-

ing neurons. This computation is repeated through deep layers, cascaded to transform

representations to higher and more abstract levels.
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Convolutional Pooling

C

K

K

Convolutional Pooling

C = number of channels in input feature map

K = width and height of filter plane

F = number of filters per layer

F

Fully-Connected 

Figure 2.1: Deep convolutional neural network.

Figure 2.1 shows a typical CNN architecture structured as a cascade of stages.

Most of these stages are composed of convolutional layers and pooling layers. Con-

volutional layers are composed of feature maps that store the collection of features

generated by previous layers. Each feature in the map is generated by performing

a convolution operation on local patches in the previous layer using a set of weights

called a filter bank. After the features in the patch are combined with the weights

through an inner product operation and the sums are accumulated, the result is

passed to a non-linear function such as a rectified linear unit (ReLU) and stored as

the output of the current convolutional layer.

Figure 2.2 shows an example of a convolution operation in a CNN layer. A three-

channel 7×7×3 input feature map is convolved with the weights of two three-channel

3×3×3 filters F0 and F1. Each 7×7 channel is segmented into nine 3×3 subarrays

that are formed by sweeping the 7×7 array left-to-right top-to-bottom with a stride

of 2, starting from the top-left corner of the array. The convolution Conv[i, j, k] of

a subarray Xi,j[∗, ∗, k] whose top-left corner is at X[i, j, k] with filter F0[∗, ∗, k] is

defined as follows:

Conv[i, j, k] =
∑

u=0,1,2
v=0,1,2

Xi,j[i+ u, j + v, k] · F0[u, v, k] , for k = 0, 1, 2 .

8
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Figure 2.2: Convolution operation with a stride of two.

The element L0[i, j] in the output layer corresponding to F0 is obtained by adding

a bias B0 to the sum of the three convolutions Conv[i, j, k], for k = 0, 1, 2. For

example, in Figure 2.2, the 3×3 subarrays in the top-left corner [0, 0] of each channel
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are indicated in blue. The convolutions of these subarrays with the corresponding

channels of F0 are added to the bias B0 = 1 to obtain the value 2 in the top-left

corner of the layer output L0 corresponding to F0. The remaining eight elements

in L0 are generated by repeating the above procedure for the remaining subarrays

starting at [i, j], where i, j = 0, 2, 4, and [i, j] 6= [0, 0].

The convolutional layers are designed in response to the high correlation of local

feature values. These correlated data can form distinctive motifs for the targeted

object. Moreover, the location of the motif of interest can vary in input data. For

instance, a targeted object could appear in the middle of the input image or at the

corner. So, the same procedure must be applied to find the motif we search for.

Shared filter weights are therefore used during convolution operation for detecting

the features we search for.

Figure 2.1 also shows a pooling layer between consecutive convolutional layers.

A common implementation of pooling layers is to perform down-sampling by finding

the maximum value of a local patch of units in one feature map. Pooling layers

merge similar features into one, thus reducing the dimensions of the representation.

Therefore, some distortion or relative position variation of features would be ignored,

and the same motif is easily detected. The last few layers of a CNN usually consist of

fully-connected (FC) layers. The FC layers perform final classification from assembled

high-level features generated by previous layers.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed for processing sequential inputs

containing context relationships such as speech or language. Due to the strong se-

quential relationship in these data, RNNs process the current input data with an

embedded ”memory” that records what has been seen or heard so far. Figure 2.3

shows a typical recurrent neural network topology and the unfolding of the compu-

tation in time. When new input data is received by a RNN, the network generates
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Figure 2.3: A recurrent neural network and the unfolding in time of the computation
involved in its forward computation [1]. Node s comprises groups of hidden neural
networks with state value st at time t. Matrices U , V and W are parameters of the
network. Input and output are represented using symbol x and o, with the subscripts
representing the time step.

corresponding activation outputs depending on its current value xt and the hidden

state value st. The hidden state st is updated based on the previous hidden state

value st−1 and the current input xt to mimic the memory functionality. Matrices U ,V

and W are parameters used to calculate internal hidden states and output, which are

adjusted through the training phase for fitting the current input task. As a result,

the output st has a relationship between all previous x′t for t′ ≤ t, properly modeling

the sequential information inside data.

2.2 Energy-Efficient Computing

The dynamic power consumption Pdyn of digital circuitry is given by the following

formula.

Pdyn = CeffV
2
DDfclk , (2.1)
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where Ceff is the effective switching capacitance, VDD is the supply voltage, and fclk

is the operating clock frequency. Energy consumption can be calculated as follows:

Edyn = CeffV
2
DD . (2.2)

For several decades now, designers have relied on technology scaling to build smaller

devices and thus reduce effective switching capacitance. In the following two sections,

we discuss two key design techniques for reducing energy consumption further.

2.2.1 Voltage Scaling

One of the most popular techniques for reducing energy (and consequently power)

consumption is to reduce (scale) the supply voltage. From Equation (2.1) and Equa-

tion (2.2), we notice that dynamic power and energy consumption have a quadratic

relation with supply voltage. Therefore, designing a digital system to operate with

low voltage can be an effective solution for reducing its power consumption. For in-

stance, the work in [17] presents an 8-bit processor that operates at a low voltage and

achieves 11nW at VDD = 160mV. The fast Fourier transform (FFT) processor in [2]

reduces power down to 90nW when lowering supply VDD to 180mV.

Figure 2.4 shows energy dissipation at different voltage supply levels for the FFT

processor in [2]. As expected from Equation (2.1), energy dissipation decreases with

supply voltage. However, the decrease stops at 350mV, and energy consumption starts

to increase when supply voltage becomes lower. The unexpected energy increase is

due to the leakage current, which is not considered in Equation (2.2). As supply

voltage decreases, the device turn-on current (Ion) decreases, resulting in reduced

maximum clock frequency and longer cycle time. As cycle time extends, it introduces

considerable leakage energy, which becomes dominant when voltage is scaled down to

very low values.
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Figure 2.4: Energy dissipation as a function of VDD for the 16-b 1024-pt FFT. The
optimal operating point for minimal energy dissipation is at VDD = 350mV [2].

Figure 2.5 shows the degradation of clock frequency of the FFT processor in [2]

when supply VDD is reduced. Voltage scaling has a significant effect on performance.

The degradation becomes more severe when supply voltage is lower than the threshold

voltage, and the device starts driving loads without operating in the saturation region.

2.2.1.1 Operating Region

In the case of mobile or edge devices, electronic systems are usually supplied by a

limited-size battery that can only provide a fixed amount of pre-stored energy. Thus,

designers build the system from the energy consumption point of view instead of

that of power. A minimum-energy operating point should be pursued only after the

performance requirement is met. Typically, for modern static CMOS devices, the
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Figure 2.5: Clock frequency versus VDD for a 16-b 1024-pt FFT [2].

minimum-energy point occurs at a voltage slightly lower than the device threshold

voltage (Vth). When VDD is smaller than Vth, the circuitry is said to operate in the

subthreshold region.

Although subthreshold design can provide significant energy savings, the result-

ing performance degradation limits its applicability. For example, image processors

in modern mobile devices demand tens to hundreds of MHz to meet performance

requirements. Audio processing systems, especially speech recognizers, also need few

to tens of MHz for real-time operation. One solution is to adjust the voltage to

around threshold regime, called near-threshold operation. Researchers have found

that when VDD is in near-threshold regime, circuit delay can decrease by 50-100×

while energy increases by 2×, compared with subthreshold design [18]. Therefore,

near-threshold operation could be a good compromise for energy and performance
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trade-offs as it sacrifices relatively small energy benefits but saves significantly on

performance degradation.

2.2.1.2 Circuit Design

The performance of subthreshold and near-threshold designs is susceptible to pro-

cess, voltage, and temperature (PVT) variations. In low voltage operation, MOSFET

drive current has an exponential dependency on supply voltage VDD, threshold volt-

age Vth, and temperature. Any small variation could deviate circuit operation from

design conditions, thus resulting in additional design challenges.

Researchers have looked into the variation-introduced overhead and have proposed

circuit techniques to overcome it. For example, a PentiumTM class IA-32 processor

design in [19] presents several design techniques to support 280mV to 1.2V operat-

ing range. The processor performs circuit optimization, including variation-aware

pruning on the standard cell library, custom clocked-CMOS flip-flop circuitry, and

contention-free caches using a 10-transistor bitcell. Dedicated clock distribution net-

work incorporating programmable delay buffers in the clock paths has also been

proposed for compensating skew variations in low-voltage operation.

Another circuit technique for addressing the variation issue in near-threshold de-

sign has been presented in [20]. Based on the strong sensitivity of sequential elements

to voltage scaling, this work proposes a new flip-flop design that removes all dynamic

nodes which are susceptible to PVT variations and features contention-free opera-

tion during signal transitions. Single-phase clocking is also used to avoid toggling of

internal inverters, reducing power consumption.

2.2.1.3 Architecture

To compensate for the reduced circuit speed from voltage scaling, researchers

have proposed architectural techniques to reduce performance degradation while at
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the same time achieving low-power operation. Among various proposed techniques,

parallelizing functional units and datapaths is one of the most popular approaches.

By trading off area to add hardware units, clock requirements are reduced, and lower

supply voltage can be used.

In general, parallelism is applied as follows: A central control unit broadcasts the

data to be processed to multiple parallel functional units. The parallel function units

receiving the data can execute tasks with lower supply voltage due to increased tim-

ing slack. The output results of the function units are collected back by the central

control unit after the job assigned is finished. A common implementation of this

scheme is the single-instruction multiple-data (SIMD) architecture. SIMD architec-

ture is widely used in image/video multimedia applications which often apply the

same signal processing procedure on different locations of pixel values. The archi-

tecture contains multiple processing elements (PEs) that use one single instruction

to operate on multiple data at the same time. Due to its high degree of data paral-

lelism, SIMD architecture can meet throughput targets using lower voltage, reducing

energy consumption while still meeting performance requirements. A similar concept

in applied in recent neural network processor designs, as discussed in Section 2.3.

Parallelism can also be applied to increase the energy efficiency of systems consist-

ing of multiple cores. A cluster-based architecture enabling near-threshold-computing-

based parallelism has been proposed in [3]. As shown in Figure 2.6, this architecture

replaces the one cache per core architecture by a cluster design that contains a shared

L1-cache running at a higher speed, serving a number of slow cores (k cores in the ex-

ample diagram) and greatly benefiting from parallelizable workloads. After properly

configuring the multicore system, the parallel architecture compensates performance

loss due to near-threshold operation.

In addition to parallelism, pipelining is another technique that can be used for

low-voltage design. As circuit delay increases with lower supply voltage, dividing a
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(a) (b)

Figure 2.6: (a) Conventional multiprocessor architecture; (b) cluster-based multipro-
cessor architecture [3].

processing module into multiple stages can yield a pipeline design with the original

stage delay, therefore operating at the original clock rate. The authors in [21] illustrate

this idea using an 8-b datapath as an example. They show that after adding an

additional pipeline latch between the adder and the comparator to reduce critical path

delay, power consumption is reduced by 2.56× in comparison with a non-pipelined

version. Aggressive pipelining can further improve energy efficiency compared with

conventional ultra-low voltage pipelining by employing more stages to reduce the

ratio of leakage to dynamic energy and improve performance at the same time [13].

Although pipelining can yield energy and power savings, it also increases overall

latency. Careful evaluation of system aspects is therefore required before deploying

this technique in target applications.

Heterogeneous architectures have the potential to achieve high performance and

high energy efficiency by combining dissimilar co-processors, each running at a volt-
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age and frequency optimized for maximal energy efficiency and performance. The

concept of heterogeneous computing has been around for decades. In [22], authors

proposed the use of two different types of processors in supercomputers to speed up

applications with different characteristics, one for parallelizable tasks and another

one for more sequential tasks. The work in [23] further proposed and analyzed a het-

erogeneous multicore design sharing a single ISA that increases energy efficiency by

2 to 3× without significant performance degradation. ARM’s proposed big.LITTLE

architecture [24] is another representative design, which achieves high performance

and energy efficiency through dynamic voltage and frequency scaling (DVFS) on a

heterogeneous architecture consisting of a high performance out-of-order processor

for compute-intensive tasks and an energy-efficient in-order processor for less inten-

sive, background tasks. As device technology advances, integrating distinct processing

units into the same die to build so-called systems-on-chip (SoC) has become a popular

and common approach for modern low-power mobile operation. Apple’s A series and

Samsung’s Exynos are examples of SoC design integrating a central processing unit, a

graphics processing unit, a video encoder/decoder, and an image signal processor into

a single chip. Through specialized processing units combining power-efficient DVFS

operation, these SoCs can achieve high energy-efficiency, while supporting a variety

of applications and meeting performance requirements at the same time.

2.2.2 Charge Recovery

Charge recovery is another promising technique for energy efficient computing.

A charge-recovery system divides the design into subsystems and performs energy

transfer and reuse between these subsystems. In practical demonstrations of the

technology, electric energy is typically converted into magnetic energy using inductive

elements to recover and reuse charge in subsequent cycles.

Figure 2.7 illustrates and compares the difference between a conventional static
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Figure 2.7: Electrical models of (a) conventional static CMOS and (b) charge-recovery
switching system.

CMOS and a charge-recovery switching system. As shown in Figure 2.7(a), the con-

ventional static MOS relies on a constant voltage supply to charge capacitive loads.

To change logic state from zero to one, the switch implemented by MOS devices is

turned on, resulting in current flowing from the supply to charge up the capacitive

loads to VDD. To toggle the logic state from one to zero, the capacitance is connected

to ground through the MOS switch. The capacitance is then discharged and reset to

zero voltage. The stored energy is dissipated through this charging and discharging

process, and the supply source needs to replenish energy every time a state transition

occurs.

A charge-recovery system is supplied by a time-varying supply source, as shown in

Figure 2.7(b), and operates in a different manner compared with static CMOS. Specif-
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Figure 2.8: Practical implementation of power-clock using an inductor.

ically, during operation the system recovers charge from its computing elements and

transfers it to a storage medium. It then redirects charge back to the computing ele-

ments, timed as appropriate. Therefore, through this operation, a significant portion

of the energy is reused. This time-varying supply source is usually referred to as a

power-clock (PC). The name comes from the dual nature of this clock waveform,

providing charge to internal circuit nodes, while at the same time synchronizing the

computation of the gates.

One possible way for realizing the PC supply is to use an inductive element, as

shown in Figure 2.8(a). An inductor L is used to resonate the capacitance and convert

the energy of its electric field to the magnetic field of the inductor. This resonance

results in a periodic energy transfer between the inductor L and the capacitor C,

generating a sinusoidal voltage waveform across the capacitance. To sustain the

oscillation, an external energy source is needed to compensate the losses introduced
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by resistance R. To that end, a MOS can be inserted to the system, controlled by a

pulse voltage Vpulse. When the Vpulse is high, it turns on the switch and current is being

injected into the inductor for a short period of time each cycle. The self-resonance

frequency Fr of this ideal LC system is given by the equation

Fr =
1

2π

√
1

LC
, (2.3)

where C is the capacitance of the system, and L is its inductance. The system

achieves its highest energy efficiency when operating at Fr. By controlling the pulse

input frequency of Vpulse, we can force the system to run at a target frequency near

Fr

Figure 2.9 shows the difference of the voltage and current waveforms of a conven-

tional static CMOS and a charge-recovery system during operation. In a conventional

switching system, shown in Figure 2.9(a), at the moment its switches toggle, the full

voltage value VDD is seen across the charging and discharging resistive elements. This

full voltage introduces a current spike that results in high energy consumption. The

energy dissipated by the resistor when charging the load from time 0 to T/2 can be

calculated as follows:

Econv =

T
2∫

0

vR iR dt

=

T
2∫

0

(VDD − vC) ic dt

= CL

VDD∫
0

(VDD − vc) dvc

=
CLV

2
DD

2
. (2.4)

The energy dissipated during discharging can be calculated in a similar manner and
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Figure 2.9: (a) Conventional static CMOS switching schematic with voltage and
current plots. (b) Charge-recovery switching schematic with voltage and current
plots.

equals that of charging the load. Note that energy consumption is independent of

charging/discharging time T/2. Therefore, dynamic energy consumption in a conven-

tional static CMOS system is independent of its operating frequency.

A charge-recovery system has a different voltage and current waveform, as shown

in Figure 2.9(b). Due to the gradually changing supply source, the voltage across

the output load follows the supply voltage closely. Voltage drop across the resistance

is therefore limited, preventing the flow of current spikes toward the source. As the

supply oscillates from high to low voltage, current flows from load to source, and

charge is recovered. To a first order, the current iCR flowing toward the load during

the charging process is

iCR = 2
CLVDD

T
. (2.5)
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The energy dissipated by the resistor when charging the load between time 0 and T/2

can be calculated as follows:

ECR =

T
2∫

0

I2CR R dt

=

T
2∫

0

(2
CLVDD

T
)2 R dt

=
2RCL

T
CLV

2
DD . (2.6)

The energy consumed during discharging can be calculated in a similar manner and

equals the energy consumed during charging.

From Equation (2.6) we conclude that the energy consumption of the recovery

system is inversely proportional to the charging/discharging time T/2. Therefore,

unlike conventional static CMOS design, increased energy efficiency can be achieved

by operating the system with a longer clock period. Moreover, when clock period

approaches infinity, dynamic energy consumption asymptotically approaches zero.

Thus, by trading off energy for latency, a charge-recovery system can in principle

achieve very high energy efficiency compared with a conventional static CMOS design.

Several issues arise, however, that have prevented charge-recovery design from

reaching its theoretical asymptotically-zero energy consumption. The first issue is

leakage currents. As operating frequency decreases and transition times become

longer, leakage energy begins to increase. Therefore, total energy consumption achieves

an optimal value at a certain frequency point, after which leakage energy begins to

dominate, canceling the advantages of charge-recovery operation.

The second issue is short circuit currents, which can be more severe than leakage

currents. Short circuit currents typically occur when devices in the circuitry are in

transition. The internal nodes of the circuitry staying near the half of the nominal
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voltage form a conductive path between supply and ground. This path then draws

large amounts of current, increasing energy consumption. This issue is especially

important when circuitry is operating in low-voltage mode with a low clock rate.

As drive strengths degrade due to the lower supply voltage, circuitry remains in

transition for a longer time, and short-circuit current energy becomes considerable.

In traditional static CMOS design, local buffers are inserted to increase slew rate and

exit transition earlier at the cost of adding energy overhead. In recovery design, this

approach cannot be adopted, as slow transitions are essential for achieving energy

efficient operation. In Chapter IV, we present a new logic family, called zero-short-

circuit current (ZSCC) logic, to address these issues. ZSCC uses a dedicated four-

phase clocking scheme and a custom circuit topology to reduce short-circuit currents,

while still greatly benefiting from charge-recovery design.

2.3 Energy-Efficient Neural Network Design

The superior accuracy of DNNs is accompanied by high computational costs due

to the complexity of their training models. For example, AlexNet [25], which in 2012

was the first CNN to win the ImageNet Challenge, requires 61 million weights and

724 million multiply-and-accumulate (MAC) operations to process a single 227×227

input image. VGG-16 [26], which was proposed in 2015 with deeper layers, requires

138 million weights and 15.5G MACs to process a single 224×224 input image. Other

topologies such as GoogLeNet [27] and ResNet [28] also need a large number of MAC

operations. As these popular DNNs try to increase the depth of the network to

provide better accuracy, the fundamental components of the neural layers still consist

of convolution (Conv) and FC layers. These Conv and FC layers contain massive

numbers of MAC operations, which can be highly parallelized.

Numerous hardware architectures have been proposed to support high degree of

parallelism for optimizing throughput and energy, with SIMD architectures attract-
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Figure 2.10: Diagram of a SIMD neural network evaluator for speech recognition [4].

ing considerable attention, as mentioned in Section 2.2.1.3. The diagram in Fig-

ure 2.10 shows the SIMD architecture of a DNN automatic speech recognizer recently

presented in [4]. This recognizer consists of 32 parallel execution units (EUs) and

supports 1024 nodes per layer. Each EU has a dedicated function unit that can exe-

cute MACs and different activation operations (e.g., sigmoid, rectified linear unit) for

neural network computations. Local memories are built for each EU to store interme-

diate results and features during DNN inference. The parallelized architecture leads

to reduced memory bandwidth and clock frequency requirements, and can therefore

operate at a lower voltage to enhance energy efficiency.

Beyond DNN accelerators for audio applications, the SIMD architecture is partic-

ularly suitable for vision applications. The authors in [5] present an energy-efficient

CNN processor that targets low-power and real-time CNN hardware for embedded
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Figure 2.11: High-level architecture of the Envision processor in [5].

applications. As shown in Figure 2.11, a 16x16 2D SIMD MAC array supporting

parallelism across feature and channel dimensions is built into the design. To fur-

ther decrease power consumption, FIFO registers are used at the input of the MAC

arrays to realize data reuse in CNN dataflow. The FIFO registers reuse overlapped

features between convolutional operations and reduce local communication to the

on-chip SRAM to achieve energy-efficient operation.

Another approach to optimize DNN computations is to use spatial architectures.

These architectures are composed of multiple processing elements (PEs) that allow

local communication among them. By controlling the data passing scheme to adapt

to the target application, these architectures form a custom data processing chain to

support energy-efficient data flow and computation. Each PE embeds local memory
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and control logic. A large global buffer connected to DRAM and PE networks passes

data between them and forms a memory hierarchy to save power. In the case of

optimizing DNN computations, the spatial array can configure the PEs to a processing

chain according to the DNN shape and size and form a specialized processing dataflow.

The specialized dataflow does not only enable data parallelism but also reduces energy

consumption related to data movement, which is very beneficial for neural network

systems whose operation is dominated by data processing, transfer, and reuse.

There are mainly three forms of data reuse for DNN computations: convolutional,

feature map, and filter reuse, as summarized in [6]. Figure 2.12(a) shows different data

reuse opportunities in these three conditions. For convolutional reuse, the overlapped

input features between different convolution operations and the filter weights can

be reused, as the same filter window slides on the same input feature map when

performing Conv layer execution. For feature map reuse, both Conv and FC layers

can have independent sets of filter weights that operate on the same input feature

map, resulting in the feature map being reused multiple times before completing the

updating of layer outputs. For filter reuse, the same filter weights are used to perform

operations on different input feature maps which are batched at once in Conv and

FC layers, leading to filter reuse opportunities.

In recent work, the spatial architecture has been exploited to optimize data reuse

opportunities in DNN dataflows, which can be classified into the following taxonomy,

as proposed in [6]:

1. Weight Stationary (WS): This architecture is optimized to reduce the energy

cost of transferring filter weights between the local memory in the PEs and a

global buffer. As shown in Figure 2.12(b), each weight read from a global buffer

is stored into the local memory of PEs for initial setup. Inputs and temporary

partial sums are then passed through the processing chain formed by the PEs

to complete neural network computation. During this process, the filter weights
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Figure 2.12: (a) Data reuse opportunities in DNNs; (b) dataflows for DNNs: Weight
Stationary, Output Stationary and No Local Reuse [6].
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are designed to be kept stationary, which realizes efficient architecture support

for the convolutional and feature map reuse shown in Figure 2.12(a). Related

research work can be found in [29–31].

2. Output Stationary (OS): This architecture is optimized to reduce the energy

cost of transferring temporary partial sums during neural network computation.

As shown in Figure 2.12(b), the partial sums are stored in the local memory of

the PEs during the process. The central control unit instructs the global buffer

to broadcast weights to the PEs and passes features down to the processing chain

formed by the PEs. The partial sums remain stationary until the accumulation

ends. An example of output stationary dataflow is the work presented in [32].

This architecture instructs the global buffer to send filter weights to the PE

array. Input feature maps are also sent out to specific PEs at the same time.

The built-in FIFO registers within each PE then pass these input feature maps

to neighboring PEs horizontally and vertically to transfer feature maps within

the spatial array. The temporary partial sums are kept within the PEs, and

final results are transferred back to global buffer after the accumulation process

is done.

3. No Local Reuse (NLR): This architecture does not contain any local memory

or register file within the PEs. It is used when the design is constrained by

area rather than its energy/power budget or needs to support a very large scale

network. As multiple small local memories or register files are less area efficient

but consume less energy, the NLR design substitutes all small storage elements

for a large global buffer to maximize storage capacity. In the NLR architecture

described in [33], the global buffer is instructed to send filter weights and input

feature maps to the target PE units in need. The temporary partial sums and

final outputs are written back to the global buffer during Conv layer execution.
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Figure 2.13: (a) One-dimensional convolutional reuse within a PE for row stationary
dataflow; (b) grouping PEs into a spatial array for input feature maps, filters, and
partial sums to realize local data passing and reuse [7].

Beyond the WS and OS dataflows, which optimize for filter coefficients or par-

tial sum reuse, researchers have proposed a dataflow called Row Stationary (RS) to

support the three data reuse opportunities: convolutional reuse, feature map reuse,

and filter reuse at the same time [7]. Figure 2.13(a) shows how a single PE in this

work process a 1-D row convolution. The input activations slide by over time while

keeping the filter stationary inside the PE. The PE then performs the corresponding

MAC operations and generates the partial sum for the single row in this example.
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To complete a 2-D convolution, the design stacks the PEs into a spatial array and

accumulates partial sums vertically to produce the row results. Different row results

can be generated by different columns in the spatial array. Moreover, the authors

further propose to interleave or concatenate the data sent to the PEs to compute

the high-dimensional convolution of Conv layer. As shown in Figure 2.13(b), differ-

ent filter coefficients are interleaved, and input feature maps are concatenated to be

supplied to the same PE in a time-multiplexed manner to support multiple channels,

filters, and features in convolution operation. Programmability support and energy

optimization of high-dimensional convolution operation are realized at the same time.

The neural network architectures described in the previous paragraphs achieve

improvements in energy efficiency, but all of them consider optimization of static

neural network graphs, executing all the layers in sequential order during runtime

inference. Moreover, they rely on a large number of FIFO registers in the design for

local data passing and time synchronization during operation. These FIFO structures

have high activity factors and unnecessary transitions, which can be further reduced

through architecture and logic design to save power.

In Chapter III, we present a heterogeneous architecture supporting dynamic execu-

tion of conditional-execution neural networks, which is a type of deep neural network

with dynamic graph topology. In addition to its heterogeneous organization, the pro-

posed architecture relies on a dedicated low-power memory architecture with custom

register files to further reduce energy consumption.
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CHAPTER III

Heterogeneous Architecture for Conditional

Neural Networks

As discussed in the previous two chapters, DNNs are now used in numerous ap-

plications, showing improved accuracy over traditional approaches. This increased

accuracy comes at the cost of high computational loads, however, with associated

power and response time overheads. Such overheads become a critical issue, as AI

deployment migrates from data centers to energy-constrained embedded and mobile

platforms. The exploration of energy-efficient DNN hardware accelerators that can

support always-on operation while meeting stringent performance and power con-

straints has therefore become a particularly active research area.

Recently, researchers have proposed a new class of neural networks that can be

dynamically adjusted during inference to adapt to input data. Specifically, [34] in-

troduces a conditional classifier on the feedforward path to obtain classification early

without completing execution of the entire network. The work in [35] proposes a

methodology for augmenting neural networks using control edges to determine in-

ference paths dynamically. In principle, such conditional execution can be effective

in increasing power efficiency of DNN computations above and beyond what can be

achieved by other techniques such as quantization and pruning. In practice, however,

power savings may be difficult to realize, or they may come at unacceptable perfor-
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mance overheads. Specifically, conditional branches introduce additional latency to

the computation. Moreover, conditional classifiers may yield irregular memory access

patterns, resulting in energy-inefficient memory operation. Processor architectures

for conditionally-executing DNNs have thus remained elusive.

In this chapter, we present a heterogeneous processor that relies on an energy-

efficient front-end and a high-performance back-end to support conditionally-executing

DNNs with high performance and low power consumption through voltage and fre-

quency scaling. A key feature of this processor is a dynamic execution unit that

can be reconfigured dynamically at runtime to optimize performance and power ef-

ficiency. A real-time controller dispatches jobs to the execution unit during runtime

reconfiguration, reducing conditional branch overheads. The data memory architec-

ture supports burst-mode access and fine-grain gating to maximize energy efficiency

under irregular access patterns. Fabricated in a 40nm CMOS process, a test-chip

implementation of the proposed architecture achieves 5.3× higher energy efficiency

than a baseline static execution, with an average power of 0.23mW at 5.3fps for the

LFW face recognition data set and maximum achievable efficiency of 28.6 TOPS/W.

Parts of the work covered in this chapter appear in ESSCIRC 2018 [36].

The remainder of this chapter is organized as follows: Section 3.1 gives back-

ground on conditional deep neural networks. Section 3.2 describes the proposed het-

erogeneous architecture and corresponding hardware mapping for conditional neural

networks. Section 3.3 shows the system architecture. Section 3.4 presents the dy-

namic execution unit, a key feature of our design. Section 3.5 describes our low-power

memory architecture. Section 3.6 describes the implementation of the test-chip, and

Section 3.7 gives results from its experimental evaluation. Section 3.8 summarizes

this chapter.
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3.1 Conditional Deep Neural Networks

A variety of techniques has been proposed for reducing power consumption in DNN

processors. One such relatively simple and effective approach is numerical quantiza-

tion [37]. Early work in this area has focused on configurable hardware that supports

variable bit precision to trade off accuracy for lower power consumption [5] [11]. Bina-

ryNet further quantizes weights and activation to +1 or -1, simplifying multiplication

to XNOR and leveraging mixed-signal circuits to yield highly efficient designs [12].

The work described in [38] leverages the sparsity of neural networks obtained by

network pruning without sacrificing classification accuracy. Zero-valued weights and

activations are skipped, reducing workload and data bandwidth to increase energy

efficiency.

Another research direction for improving computational efficiency by achieving

input-dependent execution during the DNN inference stage is inspired from the fact

that not all input needs the same processing procedure. For example, in an au-

tonomous car system, when a road sign is captured by the camera, the system should

intelligently trigger the traffic sign detection units for processing. Only when a car

appears in front of the camera should the vehicle detection units be awakened. That

is, the system adapts to input conditions and reduces the processing time and energy

consumption by activating only the corresponding portion of the neural network.

Earlier work related to conditional neural network computations can be found

in [34, 39–42]. For example, the work in [39] discussed conditional operation oppor-

tunities for FC networks. A learning policy for FC layers is proposed for training

the network to activate only the corresponding nodes related to current input. The

authors in [41] proposed a type of neural network that could be used for language

modeling. It is composed of network layers consisting of a number of feed-forward

networks as expert units and gating networks. The gating networks can be trained to

select specific expert units at runtime to perform necessary computations for a given
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input.

Another approach recently proposed in [35] explores the notion of conditional

computation for reducing computation costs and processing time. Unlike the work

presented in [39, 41], the authors in [35] propose a methodology to train the control

units used for activating specific sub-networks with flexible network topology. The

locations of the controllers are also unconstrained, unlike in prior work where particu-

lar locations are required to insert them. Moreover, compared with prior works which

require separate learning procedures for control units, the work in [35] proposes an

end-to-end training method and an ability to optimize accuracy-efficiency trade-offs,

showing that the conditional DNNs are applicable to a broad variety of situations.

A high-level view of conditional DNNs is shown in Figure 3.1. Conditional DNNs

are directed acyclic graphs (DAGs) consisting of two type of networks, compute nets

and decision nets. The compute nets are conventional neural networks performing

regular data processing, such as convolution operation, pooling, or FC layer compu-

tation. The decision nets are control units that are augmented between the compute

net stages to adjust the operation of the original DNN. When a decision net executes,

it extracts additional features and calculates scores to determine which compute net

is to be activated in the next stage. For example, as shown on the left hand side of

Figure 3.1, the decision network controls Compute Network 2 and Compute Network

3. One of the networks will be awakened and will execute the task after the decision

network selects the path with the higher score.

The concept can be extended to a more complex topology such as the cascaded

or hierarchical topology shown on the right hand side network of Figure 3.1. Multi-

ple stages of decision nets are inserted between deep compute networks for complex

multi-object recognition tasks. These decision nets help with the inference task by

examining the early features generated in the middle stages, and determining whether

to branch to a small compute subnet or terminate in advance.
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Figure 3.1: Conditional deep neural network.

3.2 Heterogeneous Architecture and Hardware Mapping

The main characteristic of conditional DNNs is that initially a few head compute

nets and decision nets perform coarse classification, pruning unnecessary paths in the

early stages. The remaining layers then perform detailed fine-grain feature extraction

for final classification. The head compute nets and decision nets determine the high-

level runtime pattern of the DNN. Although they are relatively light-weight in terms

of complexity, they must be implemented with high efficiency, as they are always

active.
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controls the inference path after wakeup.

This characteristic makes the conditional DNN suitable to be mapped to a hetero-

geneous architecture as shown in Figure 3.2. A heterogeneous architecture composed

of a relatively low-performance energy-efficient processor and a high-speed power-

demanding processor is shown in Figure 3.2(a). The head compute and decision nets,

both of which consist of Conv or FC layers, are assigned to a low-power front-end.

A high-performance back-end is used for processing fine-grain computationally de-

manding tasks. By running the front-end at low voltage and heavily duty-cycling the

operation of the back-end, the architecture is capable of operating with high energy
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efficiency.

We designed the front-end unit as an always-on subsystem, continuously monitor-

ing the processors input and automatically adjusting the workload of the back-end

at runtime. For instance, in an object recognition scenario, if the targeted object is

absent from view, the front-end executes light workloads and then idles. When an

object of interest appears, it wakes up the back-end to perform the more computa-

tionally intensive tasks for correct recognition, as shown in Figure 3.2(b). Moreover,

after the back-end is awakened, it can execute fine-grain sub-tree inferences for the

cascaded or hierarchical network topology shown in Figure 3.1 on the right hand side.

By using the proposed datapath in the back-end processor as shown in Figure 3.2(c),

the architecture can support a variety of object searching with minimal energy cost.

3.3 System Architecture

Figure 3.3 shows the overall system design for supporting conditional DNNs. The

conditional DNNs are first trained through an off-line software framework. After

network topologies and parameters are fixed at the end of the training phase, a

mapper compiles the DNN structures to proper binary codes given the architecture

implementation specification. The generated codes are sent to an on-chip Host-CPU

to configure and control the operation of the front-end and back-end processors for

processing input data.

Implementation specifics of the proposed heterogeneous processor are shown in

Figure 3.4. The front-end always-on processor contains its own memories and input

image buffers for storing data locally. The total size of the static memory used for

storing/framing continuous input data, weights, and temporary features is 34KB.

The front-end core is embedded with a 3×8 array of single-instruction multiple-data

(SIMD) multiply-accumulate (MAC) units for RGB raw image input processing and

Conv and FC computations. Dedicated ReLU and maxpooling functional units are
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Figure 3.3: System overview for conditional DNN.

also included in the front-end core for thresholding and pooling in DNN operation. A

direct memory interface between front-end and back-end is designed for moving the

processed data directly during runtime inference.

Figure 3.4 also shows the high-performance back-end processor design for accel-

erating compute nets and decision nets. Instead of making dedicated compute net

accelerators and decision net accelerators, which would result in hardware underuti-

lization due to the dynamic nature of the conditional DNNs, we design the back-end

using Conv cores and FC cores that can be configured to implement compute nets,

decision nets, or a mix of both. These cores comprise a finer-grain, dynamic execution

unit (DEU) that is designed to ensure full hardware utilization while providing the

execution flexibility for gaining performance or reducing power by taking advantage

of timing slack. The back-end includes two Conv cores, each with a 16×16 SIMD
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MAC array, and two FC cores, each with a 4×13 SIMD MAC array. A 240KB static

memory is used to store features from the front-end, convolutional kernels, FC layer

weights, and temporary features results. Once the back-end wakes up, it executes the

fine-grain subtree inference shown in Figure 3.1. The configurable dynamic execution

units are therefore designed to efficiently execute compute nets and decision nets at

the same time, supporting a variety of object search modes with minimal energy cost.

To meet application latency requirements (1s in surveillance systems, 30ms for

real-time applications), the front-end and the back-end run at or above 10MHz and
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150 MHz, respectively. An OpenRISC processor serves as the host CPU to control the

operation of the two cores during runtime, sending compiled network configurations

and instructions to the two cores and receiving data from them. It also controls

the direct memory access (DMA) for on-chip data movement. A field-programmable

gate array (FPGA) serves as an external host processor to program the OpenRISC

processor through a UART interface and move image data from an off-chip DRAM

onto the chip.

3.4 Dynamic Execution Unit

A key feature of the proposed processor is the DEU in the back-end, shown in

Figure 3.5. The DEU consists of a main controller, two Conv cores, and two FC

cores. Each core has its own small sub-controller which receives instructions from the

main controller. Dedicated operation codes are designed for these sub-controllers to

support the unique low-power dataflow, which is presented in Section 3.5, including

data movement, flow control, and operation triggering. The Conv core has post-

conv units and pooling engines to execute activation and maxpooling operation after

convolution. Local kernel memories are also embedded inside each FC and Conv core

for storing the filter coefficients needed by conditional DNNs and allow for fast access

during operation.

The DEU is designed to support a variety of workloads to meet dynamic infer-

ence requirements. The conditional DNN configurations are stored in the Host-CPU,

which maps them on the DEU part-by-part in runtime. The Host-CPU monitors the

decision net outputs and dynamically maps the next part on the DEU by selecting an

appropriate number of Conv cores and FC cores, configuring the cores, and setting

the memory address space needed by the cores. Jobs are dispatched through the

main controller and down to the local sub-controllers inside each FC and Conv core

for performing scheduled operations.
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Figure 3.5: Dynamic Execution Unit (DEU) in back-end.

There is flexibility in configuring the DEU. If higher performance is desired, deci-

sion nets and the next compute nets can be both mapped onto the DEU. As shown in

Figure 3.6, the next compute nets are speculatively executed without waiting for the

decision nets’ output, allowing the possibility of lower latency and faster processing

speed. The lower processing latency can also be exploited to lower the supply voltage

for reducing power consumption. When multiple decision nets and/or compute nets

need to be executed, they can be mapped on the DEU in a pipelined fashion: when

one net reaches the FC core, the Conv core is freed up to accommodate the next net.

More importantly, the DEU makes it possible to perform load balancing. While an

FC core is busy, the Conv cores can speculatively execute the next compute net or
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decision net. Load balancing also ensures the full utilization of the hardware to reach

the highest possible efficiency.

3.5 Memory Architecture

To support irregular data access patterns during decision net execution, the back-

end relies on a shared local data memory with 8 banks and 240b-wide I/O for fast data

sharing. A custom-designed register file, called frame station, stores the memory data,

enabling efficient data reuse. Due to their spatial locality, Conv/FC computations

can be performed with notably lower memory bandwidth by reusing data in the

frame station. Each Conv/FC core has a dedicated 1.5KB frame station tailored to

accommodate the data transfer pattern of that core.
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Figure 3.7: Burst-mode memory access.

The data memory and the frame station support burst-mode operation, as shown

in Figure 3.7 for a Conv core. The data used in several consecutive cycles is fetched

from the data memory in a single access, and the data memory is duty-cycled to

save power. Convolution computations are coordinated with frame station operation

through a 6-phase protocol. Each phase depicts a different stage of data memory

access and frame station read/write operations for data caching and transfer, and

MAC array operation. A detailed illustration is given in the following paragraphs,

and corresponding graphs can be found from Figure 3.8 to Figure 3.10.

At the beginning of Phase 1 of a convolution cycle, as shown in Figure 3.8(a),

burst-mode memory access initiates. The local controller inside the convolution core
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begins to send read requests. Features and filter weights are then read from target

banks of shared data memory and filter coefficient memory. In Phase 2, shown in

Figure 3.8(b), the data read from memories are stored into dedicated registers inside

the frame station. The local controller performs proper regrouping upon receiving the

data and updates write-head and write-tail pointers to indicate their storage locations

when writing data into the frame station. At the same time, new read requests are

sent to memories to retrieve data needed in later cycles.

In Phase 3, shown in Figure 3.9(a), after the first group of data is written to the

frame station, the controller begins to select portions of stored data that are ready to

be sent to the MAC array by updating the read-head and read-tail pointers to specify

the range of the output selection. The MAC array then begins to perform computa-

tions needed in convolution operations starting in this phase. In the meantime, the

controller continues to send new read requests and receives new data from a shared

memory.

The data transfer between the memory and the frame station ends when the last

group of data is fetched. As the controller puts memory peripheral circuitry into idle

mode, it continues to adjust read pointer positions to send corresponding operands

to the MAC array every cycle until all data are sent out for processing, as shown in

Figure 3.9(b) (Phase 4) and Figure 3.10(a) (Phase 5).

Phase 6 begins when the last batch of data is received from the frame station, as

shown in Figure 3.10(b). During this phase, the MAC array completes operating on

the remaining data. After all results have been obtained and sent to the designated

location for storage, the convolution cycle ends.

To achieve data parallelism when processing a high-dimensional convolution, the

frame station opens multiple I/O ports that allow high-bandwidth data transfer be-

tween memories and the MAC array, as shown in Figure 3.11. Features and filter

weights read from multiple banks of memory are stored in separate parallel locations
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Figure 3.8: Low-power memory architecture operation. (a) Phase 1: Initial burst-
mode memory access. (b) Phase 2: Continuous memory reading; initial data writing
to the frame station.
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Figure 3.9: Low-power memory architecture operation. (a) Phase 3: Continuous
memory reading; concurrent frame station reading and writing. (b) Phase 4: End of
burst-mode memory access; updating selection range again for sending new operands
to the MAC-array.
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Figure 3.10: Low-power memory architecture operation. (a) Phase 5: Continuous
data outputting from the frame station until the end of the convolution cycle. (b)
Phase 6: Operating on last batch of data received from the frame station and finishing
current convolution cycle.
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Figure 3.11: Data parallelism of each phase. The clock-gated registers are shown in
grey.

in the frame station and are then fetched to selected MAC units inside the MAC

array, as discussed in Section 3.4. The registers and logic that are not involved in the

current operation are further clock-gated to save power.

The proposed memory architecture provides power efficiency benefits through

burst-mode memory access, minimizing the energy cost of data movement during

operation. Compared with a 64b-wide I/O memory with no burst mode, the burst-

mode access reduces power by 29%, reducing the overall power consumption of the

memory cell, word line, and sense amplifier during memory access, and saving power

through duty-cycled operation. Unlike a typical FIFO, which keeps data moving to

feed the compute pipelines, the frame station keeps data stationary to eliminate data

movement costs through read/write head/tail pointers to keep track of the range of

data currently being referenced and processed. In simulation, the frame station saves

54% of dynamic power compared with a FIFO implementation by keeping data sta-

tionary and activating only a portion of its access logic. Through data reuse, the
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frame station reduces memory access by 67% with the smallest convolutional window

(3x3, stride=1). Reductions are even higher when kernel size and overlap increase.

3.6 Chip Implementation

A test-chip implementing the proposed architecture was fabricated in a 40nm

CMOS 1P10M technology. The core occupies 4.84mm2. The chip microphotograph is

shown in Figure 3.12. For the front-end, high Vth standard cells were used to reduce

leakage current. We synthesized the design with 10ns clock period and performed

functionality check in post automated place-and-route (APR) simulation to verify

timing. For the back-end, we synthesized the design at 1.5ns and performed fine-

grain pipelining to meet a more stringent timing constraint. Hybrid Vth cells including

HVT and SVT devices are used during synthesis and APR. To further reduce power,

we used commercial EDA tools to detect logic paths with extra timing slack and to

replace SVT cells along the path with HVT ones.

During physical design, we used dedicated power supplies for front-end, back-end,

and Host CPU. Custom level converter cells were designed and inserted across dif-

ferent voltage domains. To reduce the extra timing overhead in the final APR, we

manually placed memory macros and performed hierarchical place-and-route. Mem-

ory locations were chosen to reduce signal routing length and placement-and-routing

congestion. We first placed and routed the front-end processors individually. We then

instantiated the front-end macro with unplaced logic and memories of the back-end

design to perform second APR level. A third level of APR was performed with the

Host-CPU and routed front-end and back-end macros. With this hierarchical flow,

we resolved hold time issues introduced during the flattened APR process.
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Figure 3.12: Chip micrograph of proposed design.

3.7 Experimental Results

Figure 3.13 shows measured power across a range of operating clock frequencies.

Front-end power is as low as 0.19mW at 0.53V, 11MHz. The back-end achieves a

peak clock rate of 500MHz at 0.9V, consuming 114mW.

To assess energy savings achieved by dynamic execution, we obtained the baseline

power of the test-chip’s back-end with the DEU disabled. We also trained conditional
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(a)

(b)

Figure 3.13: Measured power consumption versus operating frequency for (a) front-
end and (b) back-end processors.
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2.7x

5.3x

0.9720.915

7.1x

4.9x

2.5x

1.4x

0.9130.860

Figure 3.14: Normalized energy consumption versus accuracy for (a) LFW and (b)
CIFAR-10 data sets.

DNNs using reinforcement learning with different rewards, thus obtaining different

sets of weights that yield different decision net outcomes and trade off energy con-

sumption for recognition accuracy. The graphs in Figure 3.14 show efficiency results

of the test-chip on the LFW face dataset and the CIFAR-10 dataset for face and

object recognition. For the LFW data in Figure 3.14(a), energy savings scale with

relatively low loss in accuracy. Energy consumption decreases by 2.7× with 97.2%
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accuracy rate (1.4% loss) when mapping all DNNs to the back-end with the DEU en-

abled for dynamic execution. Energy consumption decreases by 5.3× with the front-

and back-end both activated. Using different sets of weights, the chip operates at var-

ious power/accuracy points. Energy consumption is reduced by 7.1× when accuracy

rate decreases to 91.5%.

Figure 3.14(b) shows the results obtained with the CIFAR-10 dataset. In this

experiment, we trained and tested a conditional DNN using ResNet as the baseline

to show applicability to advanced benchmarks. Energy savings are 2.5× with 91.3%

accuracy, and 4.9× with 86% accuracy using dynamic execution.

Table 3.1 compares our test-chip with previously published designs. Our proces-

sor consumes an average of 0.23mW at 5.3fps on the LFW dataset. Using dynamic

execution, it achieves 2.49 TOPS and demonstrates a competitive energy scalabil-

ity of 4.7-28.6 TOPS/W. By comparison, with the same dataset and accuracy, the

processor with analog-digital front-end face detection and digital back-end face recog-

nition in [43] consumes 0.62mW on average at 1fps. Moreover, the digital front-end

in our chip provides support for different applications and energy scalability under

various conditions. Compared with [5, 11], which combine voltage-frequency scaling

and quantization using optimized configurable hardware, our test-chip achieves higher

energy efficiency without sacrificing bit precision.
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240KB34KB

DVAFSTechnique

Die Area

SRAM Size

HPDE1 UNPU

28nm

4.84mm2 

65nm

Front-End

1.87mm2 

65nm40nm

Peak
 Performance

(TOPS)

Back-End

This Work ISSCC’17
[5]

ISSCC’17
[43]

HHFD(FD) + 
DM-CNNP/

SF-CONV (FR)

ISSCC’18
[11]

27mm2 16mm2 

144KB N/A 256KB

Max
Frequency

200MHz 100MHz 200MHz

Efficiency
(TOPS/W)

Technology

Power 0.23mW 7.5mW 0.62mW 3.2mW

500MHz85MHz

0.408 (4b) 0.072 (16b) 7.372 (1b)2.49 (8b)

4.7-28.6 (8b)
0.53 (16b)

10 (4b)
2.1 (16b)

3.08 (16b)
11.6 (4b)
50.6 (1b)

1Heterogeneous Processor with Dynamic Execution 

Table 3.1: Performance summary and comparison.
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3.8 Conclusion

In this chapter, we presented a heterogeneous low-power processor architecture

that combines a low-power front-end with a high-performance back-end to support

conditionally-executing DNNs. The proposed architecture is compatible with previous

approaches to DNN processor design, such as bit-precision and sparsity optimization,

enabling additional energy savings above and beyond what is achievable by those

approaches. The back-end can be configured in runtime to support the most efficient

execution of dynamic DNNs through speculative execution of compute nets and over-

lapped execution of compute nets and decision nets. To assess the efficiency of the

proposed architecture, we designed and evaluated a test-chip fabricated in a 40nm

process. On the LFW dataset, the test-chip achieves 5.3× lower energy with 0.23mW

average power in comparison with a static execution baseline. With energy efficiency

in the 4.7-28.6 TOPS/W range, it can adjust its operation to support edge devices

under various operating conditions.
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CHAPTER IV

Zero-Short-Circuit-Current Logic for

Heterogeneous Architecture

In the heterogeneous architecture proposed in the previous chapter, the energy

efficiency of the front-end is critical for the energy efficiency of the overall system.

Most of the time the system only turns on the front-end processing block, executing

the back-end in a heavily duty-cycled mode. Therefore, an ultra-low power technique

for front-end implementation can significantly increase the energy efficiency of the

overall system.

Low-power digital design has been a particularly active research topic for sev-

eral decades now. While lots of research efforts target power optimization for the

high-performance end, low-power digital design for moderate to low-performance ap-

plications still presents several challenges. Reducing the supply voltage is one of the

common approaches for low-frequency design. Numerous efforts have explored the

application of low-voltage design techniques to reduce power consumption in digital

signal processors or general-purpose processors. However, aggressive voltage scal-

ing causes robustness issues. As operating frequency is tightly coupled with supply

voltage, voltage scaling design also reduces design choices, often requiring particular

architecture implementations for meeting performance or throughput requirements.

To achieve higher energy efficiency and more reliable operation than what is
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achievable by voltage scaling, we propose an energy-efficient computing technology,

called zero-short-circuit current (ZSCC) logic. The energy efficiency of the proposed

circuit technology is successfully demonstrated in a high performance hearing-aid de-

vice: a binaural dual-microphone hearing-aid chip processing 4 audio input streams

and fabricated in a 65nm CMOS process achieves 9.7× lower power at 1.75MHz

compared with the 40nm monophonic chip that represents the published state of the

art [14]. Parts of the work described in this chapter have appeared in ISSCC 2017 [44].

To demonstrate the effectiveness of ZSCC in further reducing the power consump-

tion of the heterogeneous neural network processor proposed in Chapter III, we have

used ZSCC to implement the front-end of that processor. In netlist simulations, the

ZSCC-based front-end achieves 17× lower power consumption compared with the

static CMOS implementation of the same architecture, showing the superior power

benefits it brings over conventional design for neural network computations.

The remainder of this chapter is organized as follows: Section 4.1 gives background

on charge-recovery logic. Section 4.2 presents the proposed zero-short-circuit-current

logic. Section 4.3 describes the operation of zero-short-circuit-current logic. Sec-

tion 4.4 describes synchronization and four-phase clock generation with ZSCC gates.

Section 4.5 explains the proposed semi-automated design methodology for ZSCC logic.

Section 4.6 presents a hearing-aid design with ZSCC logic. Section 4.7 shows the

custom chip-on-board design and experimental setup. Section 4.8 describes the ex-

perimental results of the hearing-aid chip. Section 4.9 highlights the ZSCC-based

design for the front-end of the heterogeneous processor described in Chapter III and

compares it with static CMOS implementation. Section 4.10 summarizes this chapter.
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4.1 Charge-Recovery Logic

As discussed in Section 2.2.2, charge-recovery design is a compelling alternative

to static CMOS design for low-power VLSI implementation. A variety of charge-

recovery techniques has been proposed and applied to the design of microprocessors

or DSP processors [45–53]. Among these techniques, charge-recovery logic has the

potential to achieve significant energy savings. Unlike resonant-clocked designs which

only recover energy from the clock distribution network and clock-related sequential

elements [51, 54–57], charge-recovery logic relies on a charge-recovery clock signal to

perform logic evaluation and recover charge from the fanouts of logic gates. For

instance, Boost logic in [53] is capable of operating at GHz-level frequencies while

achieving energy recovery rate of 60%.

A variety of circuit topologies has been proposed for charge-recovery logic design,

addressing energy optimization at high and low performance levels. Equation (2.6)

implies that charge-recovery logic has the potential to achieve dramatic savings in

energy efficiency when charging and discharging times are prolonged. In practice,

however, realizing this potential is challenging, as short-circuit currents result in high

power consumption at low frequencies. Figure 4.1 shows the measured energy con-

sumption versus operating frequency of a recently published state-of-the-art charge-

recovery logic, called subthreshold boost logic (SBL), presented in [58,59]. Test results

of SBL chips confirm that energy decreases with operating frequency, as expected from

Equation (2.6). However, at very low clock frequencies, energy consumption increases

sharply due to multiple short-circuit paths during operation. Generally, short-circuit

current is present along three paths: DC supply to ground, power-clock to ground,

and DC supply to power-clock. While different designs have different ratios of energy

loss from these three paths, any one of these paths could easily dominate total en-

ergy consumption at low frequency operation and cause a deviation from theoretical

values.
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Figure 4.1: Measured energy consumption versus operating frequency for SBL FIR
filter.

4.2 Zero-Short-Circuit-Current Logic

To address the issue illustrated in Section 4.1, we propose a new charge-recovery

logic family, called zero-short-circuit current (ZSCC) logic, that eliminates possible

short-circuit current paths and leverages charge recovery to operate with high energy

efficiency at relatively low clock frequencies. The schematic of a ZSCC gate is shown

in Figure 4.2. ZSCC is a dynamic dual-rail logic consisting of a logic stage and a

state holder. The logic stage has differential outputs out and out b. Each output

is connected to a pull-up networks (PUN) and a pull-down network (PDN) with

high-Vth NMOS devices for function evaluation. The state holder is composed of

60



out

StateLogic

in_b

out_b

inin_b

in

Logic

PC

VSS VSS_b

NMOS

PUN

HVT

NMOS

PUN

HVT

NMOS

PDN

HVT

NMOS

PDN

HVT

LVT PMOS

Figure 4.2: Schematic of a ZSCC gate.

a pair of cross-coupled low-Vth PMOS. Both the logic stage and the state holder

are connected to a charge-recovery supply power-clock (PC), which is generated by

inductive elements. Each ZSCC gate works as a small pipeline stage which uses PUN

and PDN as combinational logic to drive the cross-coupled PMOS as the transparent

latch for holding state. To achieve correct operation, the ZSCC datapath is formed by

clocking cascades of ZSCC gates with a four-phase clocking scheme. The operation

of ZSCC gates is explained in detail in Section 4.3.

As ZSCC is a cell design aimed at medium to low-speed applications, the timing

requirements for the ZSCC micro-pipelines can be met relatively easily. We therefore

use high Vth devices for the PUN and PDN function evaluation stages to reduce leakage

current. Unlike static CMOS logic that uses PMOS devices in pull-up networks, the
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PUN of ZSCC is implemented by NMOS devices for providing smooth transition at

the beginning of evaluation, thus obeying adiabatic switching principles. Moreover,

ZSCC is designed to use a single power supply PC for operation. Compared with

static CMOS design, ZSCC does not have a DC power supply, thus avoiding possible

short-circuit current paths between the DC supply and ground or the DC supply and

PC to increase energy efficiency.

4.3 ZSCC Operation

With every cycle, ZSCC operation is divided into four stages: evaluate, hold,

recover, and wait. Figure 4.3 and Figure 4.4 show details of its operation. The

left hand side highlights the parts of the gate that conduct electrical current during

each stage. The right hand side shows voltage waveforms for the two outputs out

and out b with the power-clock overlaid, and current waveforms for vss and vss b.

During evaluation, the first of the four stages, inputs are held stable, as shown in

Figure 4.3(a). One of the output nodes is charged up by PC, initially through the

corresponding pull-up network and eventually to full-rail through the cross-coupled

PMOS devices. The pull-up network limits the voltage drop between the PC node

and the charging output node, thus limiting switching energy by preventing current

spikes during operation, and maintaining a relatively low voltage drop across the

charging NMOS devices.

As PC attains full voltage, ZSCC enters the hold stage, as shown in Figure 4.3(b).

The output nodes are held stable through the PMOS pair, and fanout gates evalu-

ate. At the same time, input signals gradually decrease, and pull-up and pull-down

networks gradually turn off.

When power-clock PC begins to fall, as shown in Figure 4.4(a), the charge at

the output nodes is recovered through PC. The output voltage follows the power-

clock till approximately Vth levels, where the PMOS cannot conduct any longer. To
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(a)

(b)

Figure 4.3: ZSCC operation: (a) Evaluate Stage. (b) Hold Stage.

further increase recovery rates, we use low-Vth PMOS devices for state holder in

implementation.

During the wait stage, the last of the four stages, the PC remains at zero voltage,

as shown in Figure 4.4(b). The inputs to the pull-up and pull-down network gradually

build up, as fanin gates evaluate. Thus, any residual charge at the outputs that has

not been recovered is discharged to ground or PC before the next cycle begins. No

current flows into ground except during the wait stage, as the ZSCC gate is designed
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(a)

(b)

Figure 4.4: ZSCC operation: (a) Recover Stage. (b) Wait Stage.

to reset its output nodes to zero voltage only at this stage and allow current flows

into ground only when PC is low.

As evidenced by the current simulation results shown in Figure 4.3 and Figure 4.4,

no short-circuit current is observed during the four stages of ZSCC operation. Un-

like previous charge-recovery logic families such as SBL [59], that introduce multiple

short-circuit current paths due to interleaving of stages, the four-stage ZSCC op-

eration provides time to reset outputs and prevents complementary output signals
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Figure 4.5: (a) Cascade of ZSCC gates. (b) Four-phase power-clock waveform.

from overlapping. Moreover, ZSCC logic is designed to operate without a DC sup-

ply, thus preventing the possibility of connecting power and ground during operation.

Compared with the charge-recovery logic in [60], ZSCC limits voltage drop between

PC and output nodes through the introduction of the two PUNs, preventing current

spikes during operation and forcing the charging NMOS devices in deep triode region

to function as ideal resistors. As shown in Figure 4.3(a), the output voltage closely

tracks PC during the evaluation stage, consistent with adiabatic design principles

that require only small voltage drops across conducting resistive paths.

4.4 Gate Synchronization and Four-Phase Clock Generation

A four-phase power-clock is used to synchronize ZSCC gates and ensure correct

operation of ZSCC cascades. As shown in Figure 4.5, cascades of ZSCC gates are

formed by clocking the gates using four phases, PC1, PC2, PC1 and PC2, in quadra-

ture. Adjacent gates are supplied by power-clocks with 90 degrees phase difference

to ensure correct timing.

The four-phase power-clock waveforms required by ZSCC can be generated by two
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H-bridge drivers, as shown in Figure 4.6. Each H-bridge generates two 180 degree

out-of-phase power clock signals PC and PC. A reference clock signal is supplied

to a finite-state machine PG that generates four pulses with programmable duty

cycle. These pulses are 90 degrees out-of-phase and are used to drive the two H-

bridge drivers. Each H-bridge driver then produces control signals to pull-up and

pull-down MOS devices that are connected to an inductor to replenish energy losses

when resonating the parasitic capacitance of the clock distribution network and ZSCC

gates. To allow for efficiency optimization, the pull-up and pull-down devices are

implemented through an array of MOS devices that can be selectively turned on for

adjustment at different operating frequencies.

A key benefit of an H-bridge driver is that it reduces the crowbar current of the

LC oscillator. In prior work, a blip clock generator has been used for generating 180

degree out-of-phase clock signals [61]. The work in [62] proposes a quadrature LC

oscillator through coupling of two blip-like LC oscillators. However, these schemes are
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optimized for high speed design such as the resonant-clock latch-based filter design

in [63] or the SBL-based low-density parity-check (LDPC) decoder in [64]. In low-end

applications, however, the cross-coupled MOS devices used to replenish dissipated

energy suffer greatly from short-circuit currents, due to the slow transition of the

signals. Therefore, the external driver approach in H-bridge is more suitable for

generating the four-phase power clock for ZSCC logic. Moreover, since the speed

requirement is not as high as in [63] [64], the self-resonant mode is not necessary

if we can design the clock distribution network properly to reduce clock skew to an

acceptable range.

4.5 Semi-Automated Design Methodology for ZSCC Logic

In modern digital VLSI design, designers typically use a library of static CMOS

cells, called standard-cell library, to map register-transfer level (RTL) design to phys-

ical design. Foundries provide characterized standard cells with timing information,

which is used by commercial electronic design automation (EDA) tools to convert

high-level system specifications to physical layout. This standard-cell design flow

shields the front-end RTL design from back-end physical design considerations and

saves design time by abstracting away lower-level stages of design.

To enable the use of ZSCC logic in large-scale VLSI design, we propose a standard-

cell-like semi-automated design flow. The proposed design flow consists of three key

stages, as in standard-cell design flow: RTL design and netlist synthesis, cell library

physical design, and back-end design. We have successfully applied the proposed flow

for the silicon prototyping of a hearing-aid application in Section 4.6.

4.5.1 RTL Design and Netlist Synthesis

With a target application in mind, an RTL description of the hardware architec-

ture is first generated in the same manner as in a conventional CMOS design flow.
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Figure 4.7: Schematic of a ZSCC Booth selector for generating a partial product.

When the high-level RTL description of the system is finished, a commercial synthesis

tool is used to convert a sub-block of the design to ZSCC pipeline stages. Similar to

the flow in [64], basic standard cells with low logic fanins are used during synthesis

stage. We annotate each basic cell with a unit delay in the synthesis setting. After

specifying the clock period in unit delays, the tool synthesizes the design to meet the

constraint. The logic depth between pipeline stages is therefore equal to maximum

stack height for ZSCC gates. The designer can tune the timing constraints provided

to the synthesis tool to adjust the stack height of ZSCC gates. The stack height is de-

termined by considering overall latency in the system and leakage power at operating

frequency. In the prototype implementation described in Sections 4.6 through 4.8, we

constrained the stack height to be 6, meeting the real-time performance requirements

of the application with minimal leakage current when the design operates at 2MHz.

After synthesis is completed, the pipelined stages are converted to ZSCC logic cells

using the procedure in [65]. To give an example of the converted ZSCC design, a ZSCC

Booth selector used for Booth’s multiplication algorithm is shown in Figure 4.7. The
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Figure 4.8: Layout of ZSCC Booth selector gate.

Booth selector takes zero, two, and negative flags to generate corresponding partial

products during the Booth encoding process.

4.5.2 Cell Library Design

To support an automated place-and-route (APR) flow, a library of ZSCC cells

that are compatible with the commercial APR tool needs to be designed. During

the APR process, the APR tool automatically chooses the location for cell placement

and performs detailed signal routing. In this process, various loading conditions

arise for ZSCC gates with the same logic function. A number of different physical

implementations of ZSCC gates are thus required to support the APR flow. To realize
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ZSCC Standard Cell

Implementation Implementation

Combinational Logic:

28.80µm2 26.64µm2

Flip-Flop: 9.00µm2

Table 4.1: Area comparison for Booth selector.

these implementations, a SPICE simulator is used to choose the transistor width and

length for each ZSCC gate and to ensure correct function at the target frequency and

under the given output loading. For the hearing-aid test-chip described in Sections 4.6

through 4.8, we implemented a ZSCC library consisting of 64 cells with drive strengths

ranging from 10fF to 150fF. For each cell, we performed SPICE simulations to verify

correct operations at different process corners at the 1MHz to 2MHz frequency range.

After circuit topology and transistor width and length are determined, a com-

mercial back-end EDA tool is used for cell layout design. A standard-cell like layout

design is adopted for supporting APR flow. An example cell layout of a ZSCC Booth

selector is shown in Figure 4.8. A metal-1 VSS strip connecting to ground voltage

is distributed on the bottom of the cell layout. As ZSCC has no DC power supply,

bulk supply for body bias of the PMOS pair is routed on the top of the cell. The

cross-coupled PMOS pair could be placed on the left, middle, or right of the cell, as

shown in Figure 4.8, depending on the influence of location on cell area utilization.

To compare with static CMOS design, we synthesize the Booth selector logic with

a standard cell library operating at the same frequency, as shown in Table 4.1. The

ZSCC implementation occupies 28.80µm2, which is only 8% larger than using static

CMOS gates due to the use of NMOS in PUN and the removal of input inversion

buffers between cells. Moreover, ZSCC embeds a PMOS cross-coupled pair inside

70



each cell as a latch element. Flip-flops are therefore eliminated in ZSCC pipeline

stages, introducing further reduction of area and power compared with static CMOS

design.

4.5.3 Back-End Design

To distribute the four clock phases with minimal skew and enable APR flow,

we developed a clock distribution scheme using four interleaved clock meshes. Top-

level metal 9 and 8 are used to implement the meshes and distribute power-clock

signals within the core area. An example of the clock mesh structure can be found in

Figure 4.9, which is the floorplan used to implement the design described in Sections

4.6 through 4.8. Each top-level mesh is connected directly to metal-3 strips to deliver

power-clock signals to local cell area, as shown in Figure 4.10. An automatic script

is developed to run metal-3 power-clock strips along the cell rows, so the power-

clock signals alternate. During placement, each cell is automatically placed in the

row immediately above or below the metal-3 stripe of the corresponding power-clock

phase. The proposed scheme not only allows large-scale APR with ZSCC gates but

also minimizes the local clock interconnect and yield a competitive placement density.

The hearing-aid chip described in Sections 4.6 through 4.8 has been designed using

the proposed back-end implementation methodology, achieving a placement density

of 81.4%. The pitch of the top-level clock distribution network is 14.4µm for metal-8

vertical routing and 28µm for metal-9 horizontal routing. Wire width of the top-level

clock distribution network is 2µm for metal-8 vertical routing and 4µm for metal-9

horizontal routing. A width of 0.1µm is used for local metal-3 PC stripes distributed

on the cell rows.

As illustrated in Section 4.4, to generate the four power-clock signals, two off-

chip inductors and corresponding on-chip H-bridge drivers are used to resonate the

parasitic capacitance of the four-phase clock distribution network and the ZSCC gates.
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Figure 4.9: Top-level floorplan showing four-phase clock mesh.

The H-bridge drivers are placed around the periphery of the clock mesh network. As

shown in Figure 4.9, 4 pairs of on-chip H-bridge drivers are used, placed on the four

sides of the mesh network. Each driver is designed with programmable widths to

support different clock speeds and enable tuning for maximum energy efficiency. The

H-bridges are driven by four pulses in quadrature generated by a finite-state machine

PG running off a reference clock. To allow for energy efficiency tuning, PG can be

programmed to generate pulses with different duty cycles. Symmetric distribution

of the pulses is intended to reduce skew at the H-bridges. For the prototype test-

chip described in Sections 4.6 through 4.8, we designed the H-bridge drivers with

programmable NMOS width ranging from 5.4µm to 37.8µm. A finite-state machine
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inside the PG was implemented to generate pulses with programmable duty cycle

ranging from 2.5% to 25%. Post-layout SPICE simulation was performed to verify

the pulse skew at different H-bridge drivers. Our simulation results show that the

symmetric distribution of the pulses at the H-bridges reduces worst-case skew to

135.6ps, with the drivers and peripheral circuitry operating at 0.6V supply voltage.

4.6 Hearing-Aid Design

To demonstrate the energy saving potential of the ZSCC logic family, we designed

a hearing-aid test-chip using ZSCC logic. Numerous studies for binaural multimicro-
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Figure 4.11: ANSI S1.11 1/3-octave binaural hearing aid: Bands F22 to F39, datapath
block diagram.

phone hearing-aids systems have been proposed recently [66–69]. Binaural hearing

aids assume a wireless link between the two ears to exchange information and signif-

icantly suppress noise interference. Due to the binaural setup, the hearing aids also

preserve interaural time cues used for localizing sounds. However, these features come

at the cost of significantly higher computational and power requirements than mono-

phonic single-microphone systems. With the audio sampling rate at 24KHz range,

the chip clock rate can be around the 1MHz mark and still meet real-time require-

ments. Therefore, these high performance hearing-aid systems are ideal candidates

for low-power implementation through ZSCC design.

The proposed hearing-aid system and datapath design are shown in Figure 4.11.

The binaural chip time-multiplexes 4 inputs (two inputs per ear) onto a datapath

consisting of 4 second-order biquad sections that are cascaded to implement 18 ANSI

S1.11 1/3-octave frequency bands F22 to F39. Inside the datapath, each section uses

local shift registers to record the most recent audio cycle states to avoid pipeline stalls

and run at low-speed.

To illustrate how the filter bank is designed with ZSCC logic, Figure 4.12 shows the

gate-level block diagram of a MAC unit inside each biquad section. The MAC unit is
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Figure 4.12: Detail of multiply-accumulate unit four-phase pipeline implementation.

implemented by merging a hybrid carry-lookahead/carry-select adder with a Booth-

encoded multiplier and takes 9 phases or 2.25 cycles to complete one computation.

The benefit of using four-phase clocking is that it not only helps to achieve zero-

short-circuit-current operation but also reduces system latency, enabling operation at

a lower clock frequency and higher energy-efficiency through charge recovery.

4.7 Chip-On-Board Design and Experimental Setup

To minimize the parasitic resistance and capacitance between the core and off-chip

inductive elements, we have created a chip-on-board (COB) design for our test-chip.

The COB serves as a custom package for the chip and also a daughter board in the

system. A separate mother board has been designed for delivering power and scan

signals to the chip.

Figure 4.13 shows our custom COB design. The bare-die hearing aid is mounted

directly on the center of the board. The two 4.95×3.81mm2 surface-mount inductors

used to resonate the chip are located on the left and right hand side of the chip.
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Figure 4.13: Custom chip-on-board design. The bare die is mounted directly on the
center of the daughter board.

A SubMiniature version A (SMA) connector is installed on the board for feeding a

reference clock to the chip. The routing between power-clock on-chip pins and off-

chip inductors is kept as short as possible to reduce parasitics. Any extra parasitic

resistance or capacitance introduced by conventional packaging is also reduced as

parasitic-sensitive pins are connected directly to the components on the board.

Figure 4.14 shows the experimental evaluation setup. The hearing-aid COB is

connected to the testing motherboard and is controlled and configured by a 96-channel

USB digital I/O device connected to the motherboard. Level converters using Schmitt
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Figure 4.14: Experimental evaluation setup. Reference clock is generated with either
an external pulse generator or an on-chip ring oscillator. Signals are transmitted to
and received from the test-chip via the USB digital I/O device.

triggers are located on the motherboard to convert signals between USB digital I/O

device voltage and chip I/O voltage and to prevent glitches during signal transfer.

A reference clock for the on-chip four-phase pulse generator is generated using the

external pulse generator shown in Figure 4.14 or the on-chip ring oscillator. An

oscilloscope is also used during testing for verifying the operation of the chip.

4.8 Experimental Results

The hearing-aid test-chip was fabricated in a 65nm CMOS process. A die mi-

crophotograph is shown in Figure 4.15. To reduce the parasitic resistance of wire-

bonding and I/O pads, the two off-chip inductors were connected to the die with

three pads per clock phase. A built-in-self-test (BIST) circuit was implemented with

static CMOS logic to verify functionality.

The test-chip has been tested at various clock frequencies. Figure 4.16 shows mea-

77



P
a

d
s
 f

o
r 

P
C

2
 a

n
d

 P
C

2

0.82mm

0.82mm

Hearing Aid CORE

PG

BIST

Scan Chain

H-bridge driver

P
a

d
s
 f

o
r 

P
C

1
 a

n
d

 P
C

1

Figure 4.15: Microphotograph of the ZSCC hearing-aid test-chip in 65nm CMOS.
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Figure 4.16: Measured energy per clock cycle and power versus frequency.

sured energy per clock cycle and power vs. operating frequency for different inductance

values. The graph shows that energy consumption scales with frequency, as expected

from charge-recovery design. At each frequency, the supply to the power-clock H-

bridge driver VDD and its pulse output duty cycle are tuned to yield minimum total

energy. The ANSI S1.11 standard is met at 1.75MHz with 7.87pJ per cycle. Mini-

mum energy consumption is 7.36pJ per cycle at 1.47MHz with supply voltage VDD

= 0.57V and 5% pulse duty cycle. Unlike previous published charge-recovery logic,

no sharp increase in energy consumption from short-circuit currents is observed at

lower clock frequencies. The energy per cycle gradually increases below 1MHz due

to leakage current. Figure 4.17 shows the measured four-phase clock waveform when

the test-chip operates at 1.68MHz with 0.64V voltage swing.

Table 4.2 compares our ZSCC-based test-chip with the state-of-the art hearing-aid
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Figure 4.17: Measured four-phase clock waveform.

chip in [14] and a silicon cochlea for Internet-of-Everything (loE) acoustic detection

tasks in [15]. Compared with the 40nm single-input chip in [14], our 65nm 4-input

chip achieves 9.7× lower power per input/band. Compared with the chip for audio

sensing applications in [15], which greatly benefits from efficient analog approaches,

this charge-recovery low-power digital filter provides superior energy efficiency and

programmable filter coefficients that support the adjustments necessary with hearing

aids.
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Area and power are not normalized for technology scaling. 
1 Time borrow and local boost (TBLB)
2 Asynchronous delta modulation (ADM)

This Work

Technology

Application

65nm

Hearing Aid

Standard ANSI S1.11 1/3 Octave 

Binaural

# Bands  

Yes, 2x2 inputs

18x4

Technique ZSCC 

VLSI’13 [14]

40nm

Hearing Aid

ANSI S1.11 1/3 Octave 

No, 1 input

18 

TBLB1

ISSCC’16 [15]

180nm

Silicon Cochlea for IoE

N/A

Yes, 2x1 inputs

64x2

Analog Filtering + ADM2

Programmability Digital coefficients Digital coefficients Bias current

Area per band (10-3mm2) 9.34

Power Supply (V) 0.57

Power (µW)

Power per input (µW)

13.8

3.45

Power per band (µW) 0.19

5.27

0.36

33.3

33.30

1.85

262

0.5

55

27.50

0.43

Clock Frequency (MHz) / 

Sampling rate (kHz)
1.75 / 24 12 / 24 N/A

Processing Digital Filter Bank Digital Filter Bank
Analog Filter Bank + 

Event coding

Table 4.2: Chip summary and comparison with state-of-the-art designs.
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4.9 ZSCC Neural Network Implementation

To demonstrate the effectiveness of the proposed ZSCC logic family for improv-

ing the energy efficiency of the heterogeneous neural network processor presented in

Chapter III, we have implemented the low-power front-end of the proposed heteroge-

neous processor shown in Section 3.3 with a ZSCC-based 3×8 SIMD MAC array in

a 65nm CMOS process. 8×8 Booth multipliers are designed and used in the SIMD

computation pipeline. Each multiplier takes 4 phases, or 1 cycle, to generate sum and

carry vectors. Hybrid carry-lookahead/carry-select adders accumulate the outputs of

the multipliers. Each hybrid adder also takes 4 phases, or 1 cycle, to generate a result.

To compare the efficiency of the ZSCC-based design with a conventional static

CMOS implementation, we have performed SPICE simulations of the proposed ZSCC

SIMD MAC array. Using the 65nm BSIM model and assuming each gate has 15fF

fanout loading, the MAC array is tested at different frequencies with 0.7V power-clock

voltage swing. Figure 4.18 shows the energy per cycle and power versus operating

frequency of the design. As shown in the graph, the energy per cycle decreases with

frequency of operation, as expected by the charge-recovery nature of the logic.

We also synthesized a standard-cell static CMOS version of the same 2-cycle SIMD

MAC array architecture in the same 65nm technology. As timing requirements in the

7MHz to 11MHz range can be met in a relatively straightforward manner, we used

only high Vth standard cells during synthesis to reduce leakage current. Consistent

with the performance requirements in Section 3.3, both designs are compared at

10MHz clock rate with a 0.7V supply using SPICE simulation. The conventional

CMOS version dissipates 1.4mW, while our ZSCC implementation dissipates 81.4µW,

yielding 17× higher power efficiency. A more accurate simulation number could be

measured after APR and the extraction of parasitic loading from routing. Still, the

order-of-magnitude power improvement observed in pre-layout evaluation suggests

that the ZSCC logic family is a highly promising option for further improving the
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Figure 4.18: Simulated energy per clock cycle and power versus frequency of the
ZSCC SIMD MAC array.

energy efficiency of the heterogeneous neural network accelerator architecture.

4.10 Conclusion

In this chapter, we presented a novel charge-recovery logic family, called ZSCC,

that is suitable for relatively low frequency low-power design and always-on applica-

tions. ZSCC has been designed to dramatically reduce short-circuit currents at low

operating frequencies, leveraging the benefits of charge-recovery principle to achieve

order-of-magnitude power savings. In addition to ZSCC, we presented an associated

standard-cell-like semi-automated design flow for large-scale ZSCC VLSI implemen-

tation.

To demonstrate the effectiveness of the proposed ZSCC logic family, we have
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designed a binaural hearing-aid test-chip complying with the ANSI S1.11 standard

using an automated design flow and a ZSCC cell library of 64 different functions,

each with 2 to 4 different drive strengths, implemented in a 65nm CMOS process. A

four-phase clock mesh is used for power-clock distribution and supported by the APR

flow. Our test results show that the ZSCC-based hearing-aid test-chip outperforms

state-of-the-art low-voltage digital designs by 9.7×.

To assess the effectiveness of ZSCC in improving the energy efficiency of the het-

erogeneous neural network processor described in Chapter III, we have implemented

the processor’s front-end using ZSCC logic. In SPICE simulations of netlists, the

ZSCC design achieves 17× higher energy efficiency than its static CMOS counter-

part. Therefore, the proposed ZSCC logic family has the potential to increase the

overall energy efficiency of the proposed architecture by a significant factor.
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CHAPTER V

Conclusion and Future Research Directions

Machine learning technology is now used in numerous aspects of daily life, and

energy-efficient neural network systems supporting ML applications have become cru-

cial for both the server and the device end. This dissertation explores architectures

and circuits for designing energy-efficient neural network accelerators. In this chap-

ter, we summarize these complementary approaches, presented in Chapters III and

IV. We also include a discussion of promising future research directions.

At the architecture level, this thesis proposes a heterogeneous architecture for

energy-efficient neural networks. The proposed architecture relies on a low-power

always-on front-end and a high-performance selectively-enabled back-end to support

conditionally-executing DNNs with high performance and low power consumption

through voltage and frequency scaling. A key feature of this architecture is a dy-

namic execution unit that can dynamically adjust computational resources at run-

time to meet performance targets with increased energy efficiency. To address energy

inefficiencies resulting from irregular memory access patterns introduced by condi-

tional classifiers, a low-power data memory architecture is introduced to support fast

data sharing and maximize energy efficiency through burst-mode access and fine-grain

gating.

Compared with other low-power neural network accelerator designs, the proposed
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heterogeneous architecture achieves higher energy efficiency using an orthogonal ap-

proach. Specifically, it is compatible with previous approaches for neural network

hardware design, such as custom analog and mixed-signal datapath implementation,

configurable hardware combining bit-quantization and voltage-frequency scaling, and

dedicated datapath for sparsity optimization, yielding additional power savings above

and beyond what is achievable by earlier approaches.

To demonstrate the energy-efficiency of the proposed architecture, a test-chip has

been fabricated in a commercial 40nm CMOS technology. Various sets of weights

that yield different decision outputs are trained to trade off energy consumption for

recognition accuracy. In measurement results, the chip achieves 5.3× lower energy

with 0.23mW average power and 1.4% accuracy loss on the LFW dataset. By condi-

tional execution in an advanced neural network topology, energy savings of 2.5× at

91.3% accuracy and 4.9× at 86% accuracy can be achieved on the CIFAR-10 dataset.

By using dynamic execution, the chip achieves a competitive energy scalability of 4.7-

28.6 TOPS/W which allows adjustment to adapt to various operating points under

power-constrained conditions.

To further improve the energy efficiency of the proposed heterogeneous architec-

ture, we introduce a charge-recovery logic family that significantly reduces short-

circuit current and achieves order of magnitude energy savings at relatively low clock

frequencies. Unlike conventional CMOS logic which relies on reducing voltage supply

to lower energy consumption, this zero-short-circuit current (ZSCC) logic fully bene-

fits from charge-recovery operation to achieve ultra-energy-efficient computation. In

conjunction with the ZSCC circuit topology, an automatic design flow is proposed to

enable large-scale ZSCC-based VLSI design.

To demonstrate the energy efficiency and applicability of ZSCC, we have used

it to design a hearing-aid test-chip that complies with the ANSI S1.11 standard.

Fabricated in a 65nm bulk silicon process, the test-chip shows energy scalability with
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operating frequency, consistent with the theoretical model. It achieves a minimum

energy consumption of 7.36pJ per cycle at 1.47MHz with supply voltage of 0.57V. Our

measurement results show no sharp increase in energy consumption from short-circuit

currents at lower clock frequencies. Compared with a 40nm monophonic single-input

chip that represents the published state of the art, the 65nm test-chip processes 4

input streams at 1.75MHz, achieving 9.7× lower power per input.

To evaluate the effectiveness of ZSCC for neural network accelerator design, we

used it to design the front-end of the proposed heterogeneous deep-learning processor.

In SPICE simulations, the ZSCC-based front-end operates with 17× higher energy

efficiency at 10MHz compared with a conventional static CMOS implementation of

the same architecture.

Our dissertation research points to several interesting questions for further re-

search. In our test-chip implementation of the proposed heterogeneous architecture,

supply voltage and clock frequency are fixed at runtime. An interesting topic for fur-

ther investigation would be the introduction and experimental evaluation of dynamic

voltage-frequency operation into the design to further improve energy efficiency. To

that end, a workload scheduler and power management unit (PMU) could be de-

signed to dynamically adjust the front-end and back-end voltage supplies depending

on the workload or status of an executed path. Whenever the network is about to

branch to a larger network, the scheduler would foresee a potential workload increase,

instructing the PMU to set supply to a higher voltage, and adjusting processor speed

to a higher clock frequency to reduce latency. Conversely, should the network branch

to a small compute subnet, the scheduler would instruct the PMU to reduce volt-

age supply and lower the processor clock frequency to save power. Such a dynamic

power management scheme that tunes supply voltage and clock frequency according

to conditional execution could lead to significant additional increases in the energy

efficiency of the proposed heterogeneous architecture.
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At the circuit level, an interesting research problem is the design of power-clock

generators for ZSCC that do not require two inductors to generate the four-phase

power-clock signals. In a commercial system, discrete inductors introduce additional

costs and challenges with area-constrained PCB board implementations. Therefore,

reducing the number of required inductors from two to one would have significant

practical implications. One possible solution is to design a specialized controller to

connect and disconnect the inductor with proper timing. By clamping the voltage

to high and low for a complementary pair of power-clocks while resonating the other

pair of 90-degrees out-of-phase complementary power-clocks through the inductor

in an alternating manner, it may be possible to generate a four-phase power-clock

using a single off-chip inductor. However, the additional resistance introduced by the

switching MOS and reconnecting operations could reduce overall energy efficiency

greatly. Using a switched-capacitor clock driver for four-phase clock generation could

be an alternative solution to this problem. A switched-capacitor approach has been

explored in [70] for single-phase adiabatic clocking. However, this concept has not

been explored in the context of four-phase clock generation.
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