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Figure 1.1: Growth Costs with Single and Combined Drugs. Top panel shows a heat 
map of E. Coli cells grown in concentration space of chloramphenicol and salicylate drug 
combinations, indicating suppressive interaction. Bottom panel shows dosage response 
curves of cells grown in the presence of single and combination drugs. Magenta and blue 
boxes show growth response to individual drugs, chloramphenicol and salicylate, 
respectively, and black box demonstrates growth response to salicylate combined with a 
constant 1.5ug/mL chloramphenicol. Growth in the absence of drug is normalized to 1. 
(Adapted from Wood et al. 2012)  
 
Figure 1.2: Drug Interactions Defined by Shape of Constant Contours of Growth. 
Cartoon depiction of three classes of drug interaction plots, demonstrating synergistic, 
additive and antagonistic, from left to right. Color represents per capita growth rate as a 
function of two drug concentrations space. White line highlights a particular contour, here 
selected at 25% inhibition.  
 
Figure 1.3: Geometric Argument Predicting Accelerated Growth Adaptation for 
Synergistic Combinations. Contours of constant growth in the space of two drug 
concentrations, indicating synergistic (left) and antagonistic (right) interactions. Dotted 
contour lines represent the same selection pressure in both synergistic and antagonistic 
interactions, and pink dots indicate the dosage combination used to evolve resistant mutants. 
Within this framework mutations are represented by effective changes in drug concentration 
(arrows). The arrows associated with each dot (pink and cyan) depict the effects of an 
identical mutation in both synergistic and antagonistic combinations. The bar plot at the 
center depicts the increased growth rate change (adaptation) in a synergistic interaction 
(pink bar) compared to an antagonistic (cyan bar) interaction.  
 
Figure 1.4: Resistance to One Drug Can Lead to Collateral Sensitivity or Resistance 
with Another Drug. Cartoon depiction of collateral effects between two drugs, where 
resistance to one drug (Drug 1) is associated with collateral-sensitivity (green line) or cross-
resistance (yellow line) to a second drug (Drug 2). 
 
Figure 1.5: A Generalized Framework for Resistance Evolution Accounting for Both 
Drug Interaction and Collateral Effects Based on Rescaling of Effective Drug 
Concentration. Contours of constant growth in the space of two drug concentrations, 
indicating synergistic (left) and antagonistic (right) interactions. Dotted contour lines 
represent the same selection pressure in both synergistic and antagonistic interactions, and 
pink dots indicate the dosage combination used to evolve resistant mutants. Within this 
framework mutations are represented by effective changes in drug concentration (arrows).  
Different arrows represent resistance to drug 2 only (blue arrows), resistance to both drugs 
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(collateral resistance, yellow arrow), or resistance to one drug and increased sensitivity to 
the other (green arrows).  The effect of a given mutation on growth will depend on both the 
magnitude of the rescaling (in each direction) as well as the interaction between drugs (the 
shape of the isobole contours).  
 
Figure 1.6: Measurement of Evolutionary Growth Rates and Resistance 
Characterization to Each Drug for a Single Mutant on a Drug Combination Surface. a. 
Cartoon depiction of antagonistic interaction with colors representing per capita growth rate 
as a function of two drug concentrations  and white line highlighting a particular contour, 
here selected at 30% inhibition. Four white dots correspond to mutants selected along the 
white contour line with four different conditions, two single drug conditions (Drug 1 and 
Drug 2) and two combination drug conditions. Pink arrow indicates evolution of mutants in 
one of the four conditions over 3 days with N=24 mutants per condition, in 96 well plates. 
Mutants are diluted 1:100 per well (see methods for details). b. Growth rate (g) is estimated 
each day by fitting OD time series to a simple exponential function. c. Growth rate 
adaptation over multiple days is given by the slope of the best-fit line through the growth 
evolution data. d. Dose response curves were measured in triplicate for each population to 
estimate each drug’s IC50, the half-maximal inhibitory concentration. The curve is fit to a 
hill function, where K is the concentration of drug at which 50% growth inhibition is 
obtained (IC50).  
 
Figure 2.1: Ceftriaxone and Ampicillin Combination Gives Rise to Synergistic 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as 
a function of two drug concentrations space. Four dots correspond to mutants selected with 
the same selective pressure at ~30% inhibition of growth with four different drug 
conditions. The first condition (in red) corresponds to [CRO] = 48.51ug/mL and [AMP]=0, 
the second condition (in magenta) corresponds to [CRO] = 2.59ug/mL, and 
[AMP]=0.051ug/m, the third condition (in cyan) corresponds to [CRO] = 1.29ug/mL,  and 
[AMP]=0.102ug/mL, and the fourth condition (in blue) correspond to [CRO] = 0,  and 
[AMP]=0.431ug/mL. Each condition is evolved over 4 days with N=24 mutants per 
condition, in 96 well plates. b. Smoothed version of interaction. See methods for smoothing 
details. Note that in both plots, the red point actually lies far above the axis, at the point 
where ceftriaxone inhibition first reaches approximately 70%.  For visualization purposes, 
however, we have zoomed in on the primary region of interest but keep the red point as a 
reminder of the CRO-only point. Colors from blue to yellow represent growth rates.  
 
Figure 2.2: Growth Curves of Day 1 and Day 4 for All Mutants Indicate Resistance at 
a Glance. Optical density time series measured in liquid cultures of E. faecalis on the first 
(blue) and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three 
rows) corresponding to the four different conditions in Figure 2.1.  Rows 1-3: 
([CRO],[AMP])=(48.51, 0) (red axes); Rows 4-6: ([CRO],[AMP])=(2.59, 0.051) (magenta 
axes); Rows 7-9: ([CRO],[AMP])=(1.29, 0.102) (cyan axes); Rows 9-12: 
([CRO],[AMP])=(0, 0.43) (blue axes). All concentrations are given in micrograms per mL. 
 
Figure 2.3: Growth Rate Adaptation Over 4 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 4 consecutive days of laboratory evolution. 
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Rows 1-3: ([CRO],[AMP])=(48.51, 0) (red axes); Rows 4-6: ([CRO],[AMP])=(2.59, 0.051) 
(magenta axes); Rows 7-9: ([CRO],[AMP])=(1.29, 0.102) (cyan axes); Rows 9-12: 
([CRO],[AMP])=(0, 0.43) (blue axes). All concentrations are given in micrograms per mL. 
Adaptation rate for each mutant is given by the slope of the best-fit (least-squares) trend line 
through the relative growth rate time series.  
 
Figure 2.4: Synergistic Combinations of Ceftriaxone and Ampicillin Leads to Faster 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) 
over 4 days of evolution, in each of the 4 conditions: condition 1 [CRO] = 48.51ug/mL, and 
[AMP]=0 (red point in Figure 2.1), condition 2 [CRO] = 1.29ug/mL, and 
[AMP]=0.102ug/mL (cyan point in Figure 2.1), condition 3 [CRO] = 2.59ug/mL, and 
[AMP]=0.051ug/mL (magenta point in Figure 2.1), and condition 4 [CRO] = 0, and 
[AMP]=0.431ug/mL (blue point in Figure 2.1). Small points represent individual mutants.  
Large circles are means taken across all mutants in a given condition (N=24 mutants). b. 
Growth adaptation rate for each condition; the units of adaptation are growth rate/day, 
where growth rate is measured in units such that the ancestral strains grow at a rate of 1 in 
the absence of drug. As an example, an adaptation rate of 0.25 means it takes, on average, 4 
days of adaption for the strains to fully adapt to the drug (i.e. to reach the drug-free growth 
rate of ancestral cells). Small points correspond to individual mutants; large points represent 
the mean of all mutants in a given condition. 
 
Figure 2.5: Mutants Across All Conditions Exhibit Strong Ceftriaxone Resistance and 
Moderate Ampicillin Resistance. a. Resistance to ceftriaxone (CRO, top panels) and 
ampicillin (AMP, bottom panels) over time for populations evolved under 4 
conditions: condition 1 [CRO] = 48.51ug/mL, and [AMP]=0 (red point in Figure 2.1), 
condition 2 [CRO] = 1.29ug/mL, and [AMP]=0.102ug/mL (cyan point in Figure 2.1), 
condition 3 [CRO] = 2.59ug/mL, and [AMP]=0.051ug/mL (magenta point in Figure 2.1), 
and condition 4 [CRO] = 0, and [AMP]=0.431ug/mL (blue point in Figure 2.1). Resistance 
to each drug is defined as the log2 scaled ratio of IC50 values between mutant and wild-type 
(ancestral) cells, with positive values indicating increased resistance and negative values 
increased sensitivity. Small points correspond to individual mutants, while large points are 
the population mean across mutants (N=6 mutants). b. Two-dimensional representation of 
joint drug resistance at each day of the laboratory evolution.  Each point corresponds to a 
single mutant, with time moving from left (Day 1) to right (Day 4).  
 
Figure 2.6: Rescaling of Drug Concentrations Point to Cross-Resistance and 
Accelerated Resistance Adaptation of Ceftriaxone-Ampicillin Combination. Smoothed 
drug interaction plot of ceftriaxone-ampicillin combination with arrows indicating rescaling 
of drug concentrations of each condition after 4 days of evolution. Adjusted growth of 
mutants from each condition shown in inset. Original concentration of four conditions: 
Condition 1: ([CRO],[AMP])=(48.51, 0) (red); Condition 2: ([CRO],[AMP])=(2.59, 0.051) 
(magenta); Condition 3: ([CRO],[AMP])=(1.29, 0.102) (cyan); Condition 4: 
([CRO],[AMP])=(0, 0.43) (blue). Colors from blue to yellow represent growth rates.  
 
Figure 3.1: Ampicillin and Streptomycin Combination Gives Rise to Antagonistic 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as 
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a function of two drug concentrations space. Four dots correspond to mutants selected with 
the same selective pressure at ~30% inhibition of growth with four different drug 
conditions. The first condition (in red) corresponds to [AMP] = 0.32ug/mL and [STR]=0, 
the second condition  (in magenta) corresponds to [AMP] = 0.321ug/mL, and 
[STR]=1000ug/m, the third condition (in cyan) corresponds to [AMP] = 0.192ug/mL, and 
[STR]=1800ug/mL, and the fourth condition (in blue) correspond to [AMP] = 0, and 
[STR]=1800ug/mL. Each condition is evolved over 4 days with N=24 mutants per 
condition, in 96 well plates. b. Smoothed version of interaction. Colors from blue to yellow 
represent growth rates. See methods for smoothing details.  
 
Figure 3.2: Growth Curves of Day 1 and Day 3 for All Mutants Indicate Resistance at 
a Glance. Optical density time series measured in liquid cultures of E. faecalis on the first 
(blue) and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three 
rows) corresponding to the four different conditions in Figure 3.1.  Rows 1-3: 
(AMP],[STR])=(0.320, 0) (red axes); Rows 4-6: ([AMP],[STR])=(0.321, 1000) (magenta 
axes); Rows 7-9: ([AMP],[STR])=(0.192, 1800) (cyan axes); Rows 9-12: 
([AMP],[STR])=(0, 1800) (blue axes). All concentrations are given in micrograms per mL.  
 
Figure 3.3: Growth Rate Adaptation Over 3 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 3 consecutive days of laboratory evolution. 
Rows 1-3: (AMP],[STR])=(0.320, 0) (red axes); Rows 4-6: ([AMP],[STR])=(0.321, 1000) 
(magenta axes); Rows 7-9: ([AMP],[STR])=(0.192, 1800) (cyan axes); Rows 9-12: 
([AMP],[STR])=(0, 1800) (blue axes). Adaptation rate for each mutant is given by the slope 
of the best-fit (least-squares) trend line through the relative growth rate time series. All 
concentrations are given in micrograms per mL.  
 
Figure 3.4: Combinations of Ampicillin and Streptomycin Leads to Slower Evolution 
of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) over 3 days 
of evolution, in each of the 4 conditions: condition 1 [AMP] = 0.321ug/mL,  and [STR]=0 
(red point in Figure 3.1), condition 2 [AMP] = 0.321ug/mL,  and [STR]=1000ug/mL (cyan 
point in Figure 3.1), condition 3 [AMP] = 0.192ug/mL, and [STR]=1800ug/mL (magenta 
point in Figure 3.1), and condition 4 [AMP] = 0,  and [STR]=1800ug/mL (blue point in 
Figure 3.1). Small points represent individual mutants.  Large circles are means taken across 
all mutants in a given condition (N=24 mutants). b. Growth adaptation rate for each 
condition; the units of adaptation are growth rate/day, where growth rate is measured in 
units such that the ancestral strains grow at a rate of 1 in the absence of drug. As an 
example, an adaptation rate of 0.25 means it takes, on average, 3 days of adaption for the 
strains to fully adapt to the drug (i.e. to reach the drug-free growth rate of ancestral cells). 
Small points correspond to individual mutants; large points represent the mean of all 
mutants in a given condition.  
 
Figure 3.5: Resistance of Mutants to Ampicillin Decreases with Streptomycin 
Dominant Combination. a. Resistance to ampicillin (AMP) over time for populations 
evolved under 4 conditions: condition 1 [AMP] = 0.321ug/mL,  and [STR]=0 (red point in 
Figure 3.1), condition 2 [AMP] = 0.321ug/mL,  and [STR]=1000ug/mL (cyan point in 
Figure 3.1), condition 3 [AMP] = 0.192ug/mL, and [STR]=1800ug/mL (magenta point in 
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Figure 3.1), and condition 4 [AMP] = 0,  and [STR]=1800ug/mL (blue point in Figure 3.1). 
Small points represent individual mutants.  Large circles are means taken across all mutants 
in a given condition (N=24 mutants). b. Two-dimensional representation of joint drug 
resistance at each day of the laboratory evolution.  Each point corresponds to a single 
mutant, with time moving from left (Day 1) to right (Day 3).  
 
Figure 4.1: Ceftriaxone and Ciprofloxacin Combination Gives Rise to Antagonistic 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as 
a function of two drug concentrations space. Four dots correspond to mutants selected with 
the same selective pressure at ~30% inhibition of growth with four different drug 
conditions. The first condition (in red) correspond to [CRO] = 48.51ug/mL, and [CIP]=0, 
the second condition (in cyan) correspond to [CRO] = 6.93ug/mL, and [CIP]=0.342ug/mL, 
the third condition (in magenta) correspond to [CRO] = 34.65ug/mL, and 
[CIP]=0.214ug/mL, and the fourth condition (in blue) correspond to [CRO] = 0, and 
[CIP]=0.4633ug/mL. Each condition is evolved over 4 days with N=24 mutants per 
condition, in 96 well plates. b. Smoothed version of interaction. Colors from blue to yellow 
represent growth rates. See methods for smoothing details.  
 
Figure 4.2: Growth Curves of Day 1 and Day 4 for All Mutants Indicate Resistance at 
a Glance. Optical density time series measured in liquid cultures of E. faecalis on the first 
(blue) and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three 
rows) corresponding to the four different conditions in Figure 4.1.  Rows 1-3: 
([CRO],[CIP])=(48.51, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(6.93, 0.342) (magenta 
axes); Rows 7-9: ([CRO],[CIP])=(34.65, 0.214) (cyan axes); Rows 9-12: ([CRO],[CIP])=(0, 
0.4633) (blue axes). All concentrations are given in micrograms per mL.  
 
Figure 4.3: Growth Rate Adaptation Over 4 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 4 consecutive days of laboratory evolution. 
Rows 1-3: ([CRO],[CIP])=(48.51, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(6.93, 0.342) 
(magenta axes); Rows 7-9: ([CRO],[CIP])=(34.65, 0.214) (cyan axes); Rows 9-12: 
([CRO],[CIP])=(0, 0.4633) (blue axes). Adaptation rate for each mutant is given by the 
slope of the best-fit (least-squares) trend line through the relative growth rate time series. 
All concentrations are given in micrograms per mL.  
 
Figure 4.4: Antagonistic Combinations of Ceftriaxone and Ciprofloxacin Leads to 
Slower Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth 
rate) over 4 days of evolution, in each of the 4 conditions: condition 1 [CRO] = 
48.51ug/mL,  and [CIP]=0 (red point in Figure 4.1), condition 2 [CRO] = 6.93ug/mL,  and 
[CIP]=0.342ug/mL (cyan point in Figure 4.1), condition 3 [CRO] = 34.65ug/mL, and 
[CIP]=0.214ug/mL (magenta point in Figure 4.1), and condition 4 [CRO] = 0,  and 
[CIP]=0.4633ug/mL (blue point in Figure 4.1). Small points represent individual mutants.  
Large circles are means taken across all mutants in a given condition (N=24 mutants). b. 
Growth adaptation rate for each condition; the units of adaptation are growth rate/day, 
where growth rate is measured in units such that the ancestral strains grow at a rate of 1 in 
the absence of drug. As an example, an adaptation rate of 0.25 means it takes, on average, 4 
days of adaption for the strains to fully adapt to the drug (i.e. to reach the drug-free growth 
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rate of ancestral cells). Small points correspond to individual mutants; large points represent 
the mean of all mutants in a given condition.  
 
Figure 4.5: Single Drug Conditions Tend Toward Collateral Sensitivity and 
Combinations Tend Toward Cross-Resistance a. Resistance to ceftriaxone (CRO, top 
panels) and ciprofloxacin (CIP, bottom panels) over time for populations evolved under 4 
conditions: condition 1 [CRO] = 48.51ug/mL,  and [CIP]=0 (red point in Figure 4.1), 
condition 2 [CRO] = 6.93ug/mL,  and [CIP]=0.342ug/mL (cyan point in Figure 4.1), 
condition 3 [CRO] = 34.65ug/mL, and [CIP]=0.214ug/mL (magenta point in Figure 4.1), 
and condition 4 [CRO] = 0,  and [CIP]=0.4633ug/mL (blue point in Figure 4.1). Resistance 
to each drug is defined as the log2 scaled ratio of IC50 values between mutant and wild-type 
(ancestral) cells, with positive values indicating increased resistance and negative values 
increased sensitivity. Small points correspond to individual mutants, while large points are 
the population mean across mutants (N=6 mutants). b. Two-dimensional representation of 
joint drug resistance at each day of the laboratory evolution.  Each point corresponds to a 
single mutant, with time moving from left (Day 1) to right (Day 3).  
 
Figure 4.6: Combination Drugs Evolve to Find Most Optimal Rescaling Compared to 
Single Drug. The red and blue arrows represent the rescaling seen (on average) in mutants 
selected from the blue (CIP: 2.9X; CRO: 0.7X) and red conditions (CIP: 0.9X; CRO: 
11.8X), respectively. The magenta (or cyan, depending on the panel) arrow is the average 
rescaling of the mutants selected from the magenta (CIP: 1.3X; CRO: 11.8X) or cyan 
condition (CIP: 1.9X; CRO: 4.5X). Colors from blue to yellow represent growth rates.  
 

Figure 5.1: Ceftriaxone and Ciprofloxacin Combination Gives Rise to Additive 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as 
a function of two drug concentrations space. Four dots correspond to mutants selected with 
the same selective pressure at ~30% inhibition of growth with four different drug 
conditions. The first condition (in red) correspond to [CRO] = 2200ug/mL, and [CIP]=0, the 
second condition (in cyan) correspond to [CRO] = 1400ug/mL, and [CIP]=0.296ug/mL, the 
third condition (in magenta) correspond to [CRO] = 600ug/mL, and [CIP]=0.395ug/mL, and 
the fourth condition (in blue) correspond to [CRO] = 0, and [CIP]=0.593ug/mL. Each 
condition is evolved over 3 days with N=24 mutants per condition, in 96 well plates. b. 
Smoothed version of interaction. See methods for smoothing details. Note that in both plots, 
the red point actually lies far above the axis, at the point where ceftriaxone inhibition first 
reaches approximately 70%.  For visualization purposes, however, we have zoomed in on 
the primary region of interest but keep the red point as a reminder of the CRO-only point. 
Colors from blue to yellow represent growth rates.  
 
Figure 5.2: Growth Curves of Day 1 and Day 3, Most Mutants Indicate Resistance at a 
Glance. Optical density time series measured in liquid cultures of E. faecalis on the first 
(blue) and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three 
rows) corresponding to the four different conditions in Figure 5.1.  Rows 1-3: 
([CRO],[CIP])=(2200, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(1400, 0.296) (magenta 
axes); Rows 7-9: ([CRO],[CIP])=(600, 0.395) (cyan axes); Rows 9-12: ([CRO],[CIP])=(0, 
0.593) (blue axes). All concentrations are given in micrograms per mL.  
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Figure 5.3: Growth Rate Adaptation Over 3 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 3 consecutive days of laboratory evolution. 
Rows 1-3: ([CRO],[CIP])=(2200, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(1400, 0.296) 
(magenta axes); Rows 7-9: ([CRO],[CIP])=(600, 0.395) (cyan axes); Rows 9-12: 
([CRO],[CIP])=(0, 0.593) (blue axes). Adaptation rate for each mutant is given by the slope 
of the best-fit (least-squares) trend line through the relative growth rate time series. All 
concentrations are given in micrograms per mL.  
 
Figure 5.4: Additive Combinations of Ceftriaxone and Ciprofloxacin Leads to Variable 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) 
over 4 days of evolution, in each of the 4 conditions: condition 1 [CRO] = 2200ug/mL, and 
[CIP]=0 (red point in Figure 5.1), condition 2 [CRO] = 1400ug/mL,  and [CIP]=0.296ug/mL 
(cyan point in Figure 5.1), condition 3 [CRO] = 600ug/mL, and [CIP]=0.395ug/mL 
(magenta point in Figure 5.1), and condition 4 [CRO] = 0,  and [CIP]=0.593ug/mL (blue 
point in Figure 5.1). Small points represent individual mutants.  Large circles are means 
taken across all mutants in a given condition (N=24 mutants). b. Growth adaptation rate for 
each condition; the units of adaptation are growth rate/day, where growth rate is measured 
in units such that the ancestral strains grow at a rate of 1 in the absence of drug. As an 
example, an adaptation rate of 0.25 means it takes, on average, 3 days of adaption for the 
strains to fully adapt to the drug (i.e. to reach the drug-free growth rate of ancestral cells). 
Small points correspond to individual mutants; large points represent the mean of all 
mutants in a given condition.  
 
Figure 5.5: Single and Combination Drugs Exhibit Both Collateral Sensitivity and 
Cross-Resistance Effects a. Resistance to ceftriaxone (CRO, top panels) and ciprofloxacin 
(CIP, bottom panels) over time for populations evolved under 4 conditions: condition 1 
[CRO] = 2200ug/mL, and [CIP]=0 (red point in Figure 5.1), condition 2 [CRO] = 
1400ug/mL, and [CIP]=0.296ug/mL (cyan point in Figure 5.1), condition 3 [CRO] = 
600ug/mL, and [CIP]=0.395ug/mL (magenta point in Figure 5.1), and condition 4 [CRO] = 
0,  and [CIP]=0.593ug/mL (blue point in Figure 5.1). Small points represent individual 
mutants. Resistance to each drug is defined as the log2 scaled ratio of IC50 values between 
mutant and wild-type (Ceft Mutant) cells, with positive values indicating increased 
resistance and negative values increased sensitivity. Small points correspond to individual 
mutants, while large points are the population mean across mutants (N=6 mutants). b. Two-
dimensional representation of joint drug resistance after three days of the laboratory 
evolution. Each point corresponds to a single mutant.  
 
Figure 6.1: Ciprofloxacin and Tigecycline Combination Gives Rise to Suppressive 
Interaction in E. faecalis. a. Interaction with colors representing per capita growth rate as a 
function of two drug concentrations space. Eleven dots correspond to mutants selected with 
the same selective pressure at ~30% inhibition of growth with eleven different drug 
conditions. The first condition (in red) correspond to [CIP] = 0.214ug/mL, and [TIG]=0, the 
second condition (in light red) correspond to [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, 
the third condition (rose) correspond to [CIP] = 0.321ug/mL, and [TIG]=0.009ug/mL, the 
fourth condition (in warm rose) correspond to [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, 
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fifth condition (purple) corresponds to [CIP]=0.357ug/mL and [TIG]=0.018ug/mL, sixth 
condition (in navy) corresponds to [CIP]=0.357ug/mL and [TIG]=0.027ug/mL, seventh 
condition (sky blue) corresponds to [CIP]=0.428ug/mL and [TIG]=0.027ug/mL, eight 
condition (light blue) corresponds to [CIP]=0.357ug/mL and [TIG]=0.036ug/mL, ninth 
condition (warm sky blue) corresponds to [CIP]=0.214ug/mL and [TIG]=0.041ug/mL, tenth 
condition (warm blue) corresponds to [CIP]=0.071ug/mL and [TIG]=0.045ug/mL, eleventh 
condition (blue) corresponds to [CIP]=0ug/mL and [TIG]=0.047ug/mL condition is evolved 
over 3 days with N=24 mutants per condition, in 96 well plates. Refer to table 5.1 for color 
references b. Smoothed version of interaction. Colors from blue to yellow represent growth 
rates. See methods for smoothing details.  
 
Figure 6.2: Growth Curves of Day 1 and Day 3 for All Mutants Indicate Resistance at 
a Glance. Optical density time series measured in liquid cultures of E. faecalis on the first 
(blue) and last (red) day of laboratory evolution. Plots are arranged in 11 groups of 8 
corresponding to the 11 different conditions in Figure 6.1: row 1: [CIP] = 0.214ug/mL, and 
[TIG]=0, row 2: [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, row 3: [CIP] = 0.321ug/mL, 
and [TIG]=0.009ug/mL, row 4: [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, row 5: 
[CIP]=0.357ug/mL and [TIG]=0.018ug/mL, row 6: [CIP]=0.357ug/mL and 
[TIG]=0.027ug/mL, row 7: [CIP]=0.428ug/mL and [TIG]=0.027ug/mL, row 8: 
[CIP]=0.357ug/mL and [TIG]=0.036ug/mL, row 9: [CIP]=0.214ug/mL and 
[TIG]=0.041ug/mL, row 10: [CIP]=0.071ug/mL and [TIG]=0.045ug/mL, row 11: 
[CIP]=0ug/mL and [TIG]=0.047ug/mL condition is evolved over 3 days with N=8 mutants 
per condition, in 96 well plates. Refer to table 5.1 for color references. 
 
Figure 6.3: Growth Rate Adaptation Over 3 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 4 consecutive days of laboratory evolution. 
row 1: [CIP] = 0.214ug/mL, and [TIG]=0, row 2: [CIP] = 0.071ug/mL, and 
[TIG]=0.045ug/mL, row 3: [CIP] = 0.321ug/mL, and [TIG]=0.009ug/mL, row 4: [CIP] = 
0.285ug/mL, and [TIG]=0.013ug/mL, row 5: [CIP]=0.357ug/mL and [TIG]=0.018ug/mL, 
row 6: [CIP]=0.357ug/mL and [TIG]=0.027ug/mL, row 7: [CIP]=0.428ug/mL and 
[TIG]=0.027ug/mL, row 8: [CIP]=0.357ug/mL and [TIG]=0.036ug/mL, row 9: 
[CIP]=0.214ug/mL and [TIG]=0.041ug/mL, row 10:  [CIP]=0.071ug/mL and 
[TIG]=0.045ug/mL, row 11: [CIP]=0ug/mL and [TIG]=0.047ug/mL condition is evolved 
over 3 days with N=8 mutants per condition, in 96 well plates. Adaptation rate for each 
mutant is given by the slope of the best-fit (least-squares) trend line through the relative 
growth rate time series. Refer to table 6.1 for color references.  
 
Figure 6.4: Combination of Ciprofloxacin and Tigecycline Leads to Drastically Slower 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) 
over 3 days of evolution, in each of the 11 conditions: condition 1: [CIP] = 0.214ug/mL, and 
[TIG]=0, condition 2: [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, condition 3: [CIP] = 
0.321ug/mL, and [TIG]=0.009ug/mL, condition 4: [CIP] = 0.285ug/mL, and 
[TIG]=0.013ug/mL, condition 5: [CIP]=0.357ug/mL and [TIG]=0.018ug/mL, condition 6: 
[CIP]=0.357ug/mL and [TIG]=0.027ug/mL, condition 7: [CIP]=0.428ug/mL and 
[TIG]=0.027ug/mL, condition 8: [CIP]=0.357ug/mL and [TIG]=0.036ug/mL, condition 9: 
[CIP]=0.214ug/mL and [TIG]=0.041ug/mL, condition 10: [CIP]=0.071ug/mL and 
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[TIG]=0.045ug/mL, condition 11: [CIP]=0ug/mL and [TIG]=0.047ug/mL. Refer to table 6.1 
for color references. b. Growth adaptation rate for each condition; the units of adaptation are 
growth rate/day, where growth rate is measured in units such that the ancestral strains grow 
at a rate of 1 in the absence of drug. As an example, an adaptation rate of 0.25 means it 
takes, on average, 3 days of adaption for the strains to fully adapt to the drug (i.e. to reach 
the drug-free growth rate of ancestral cells). Small points correspond to individual mutants; 
large points represent the mean of all mutants in a given condition.  
 
Figure 6.5: Resistance to Ciprofloxacin Tends Towards Low-Level Collateral 
Sensitivity at High Concentrations of Tigecycline With No Collateral Effects in 
Tigecycline. Resistance to ceftriaxone (CIP, left panel) and tigecycline (TIG, right panel) as 
a function of tigecycline concentration for populations evolved under 11 conditions: 
condition 1: [CIP] = 0.214ug/mL, and [TIG]=0, condition 2: [CIP] = 0.071ug/mL, and 
[TIG]=0.045ug/mL, condition 3: [CIP] = 0.321ug/mL, and [TIG]=0.009ug/mL, condition 4: 
[CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, condition 5: [CIP]=0.357ug/mL and 
[TIG]=0.018ug/mL, condition 6: [CIP]=0.357ug/mL and [TIG]=0.027ug/mL, condition 7: 
[CIP]=0.428ug/mL and [TIG]=0.027ug/mL, condition 8: [CIP]=0.357ug/mL and 
[TIG]=0.036ug/mL, condition 9: [CIP]=0.214ug/mL and [TIG]=0.041ug/mL, condition 10: 
[CIP]=0.071ug/mL and [TIG]=0.045ug/mL, condition 11: [CIP]=0ug/mL and 
[TIG]=0.047ug/mL. Refer to table 6.1 for color references.  
 
Figure 6.6: Rescaling CIP Results in Drastic Decline of Growth at Higher TIG. Isobole 
plot of TIG-CIP combination with arrows from red to blue which corresponding to the 3X 
rescaling of CIP concentration of each condition (colored dot) after evolution. Inset on the 
top right corner illustrates growth after rescaling of CIP as a function of increasing TIG 
concentration.  
 
Figure 8.1: Growth Rate Measurement. Time series of OD (A600 ) vs. time. Solid line is 
fitting to exponential function. Dashed lines show region of exponential growth. Growth 
rate is given by the slope of the line.  
 
Figure 8.2: IC50 Measurement. Cartoon depiction of a normal dosage response curve 
obtained to characterize mutant resistance to each drug. The curve is fit to a hill function, 
where K is the concentration of drug at which 50% growth inhibition is obtained (IC50). 
The average IC50 of three replicates for each mutant provided its resistance to each drug 
(left panel). Example fitted growth curve from actual data of WT cells (right panel).  
 

 

 
 
 
 
72 
 

 

 

 
 
 
 
 
 

74 
 
 
 
 
 
75 
 
 
 
84 

 

 
 

86 



 xviii 

Abstract 

 
Antibiotic resistance is a growing threat to public health, as modern medicine relies 

heavily on effective drugs for combatting bacterial infections. The emergence of multi-drug 

resistant pathogens combined with the sluggish pace of drug discovery underscore the need for 

new treatment strategies that balance short-term drug efficacy with long-term evolutionary 

considerations.  Drug combinations are one potential solution to minimize or reverse antibiotic 

resistance, but multi-drug treatments are difficult to systematically design because drugs 

frequently interact, strengthening or weakening the overall effect of a drug cocktail in 

counterintuitive ways. Recent studies suggest that drug interactions can have a significant impact 

on the evolution of resistance, though predicting evolution in multi-drug environments remains a 

challenge, in part because resistance to one drug is often correlated with altered sensitivity to 

other drugs.  

Drug combinations are particularly important for successful treatment of E. faecalis, an 

opportunistic pathogen that contributes to multiple human infections, including endocarditis, 

bacteremia, urinary tract infections, and medical device infections. While numerous synergistic 

drug combinations for E. faecalis have been identified—and several are commonly used in 

clinical practice—much less is known about how these combinations impact the rate of 

resistance evolution. In this work, we use high-throughput laboratory evolution experiments to 

quantify adaptation in growth rate and drug resistance of E. faecalis exposed to clinically 

relevant drug combinations exhibiting different classes of interactions, ranging from synergistic 



 xix 

to suppressive. We identify a wide range of evolutionary behavior, including both increased and 

decreased rates of adaptation, depending on the specific interplay between drug interaction and 

collateral drug sensitivity. To disentangle these effects, we generalized previous quantitative 

models based on drug concentration rescaling to account for collateral sensitivity between drugs.  

Our results highlight trade-offs between drug interactions and collateral effects during the 

evolution of multi-drug resistance and, more specifically, emphasize unappreciated evolutionary 

benefits of particular drug pairs in targeting aminoglycoside-resistant enterococcus. Overall, the 

results represent a quantitative case study in the evolution of multidrug resistance in an 

opportunistic human pathogen and provide a general framework for evaluating and predicting 

resistance evolution in multi-stress environments.   
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Chapter 1: Introduction 

 

The word antibiotic literally means ‘opposing life’, a reference to the drugs’ powerful 

impact on the survival of microbes, many of which cause life-threatening infections in humans. 

The discovery of antibiotics was a watershed moment in modern medicine, and one that has 

saved countless lives and reduced suffering for people around the world. The study of antibiotics 

has also generated significant advances in the fields of chemical biology, genetics and cell 

physiology (Davies and Davies 2010), leading to the discovery of other therapeutics, including 

antiviral, antitumor, or anticancer agents, whose utility has sometimes matched or even exceeded 

that of antibiotics (Demain and Sanchez 2009).  

Unfortunately, microbes have a remarkable ability to adapt to antibiotics, and the 

evolution of drug resistance has been recognized as a serious challenge since the earliest days of  

antibiotic research (Abraham et al. 1941). Due to the rise of drug-resistant bacteria, some early-

stage antibiotics are now almost completely ineffective as therapeutic agents (CDC 2013), and 

resistance is taking an increasingly large toll on public health. Recent figures have shown that 

resistance evolution takes 23,000 lives in the United States and 25,000 lives in Europe on an 

yearly basis (CDC 2013; WHO 2014a).  

 

1.1 Antibiotic Resistance   

Antibiotic resistance threatens to usher in a “post-antibiotic” era, leading experts to warn 

of an impending large scale “reversal to all of modern medicine” (Michael Baym, Stone, and 
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Kishony 2016). Effective antibiotics are central to successful treatment of many human diseases, 

as chronic bacterial infections can be associated with conditions ranging from viral infections, 

such as human immune deficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus 

(HCV), to human cancers, particularly when treatments involve immunotherapies (Chernish and 

Aaron 2003; Gupta et al. 2012; Tana, Michele M., Ghany 2013; Pawlotsky 2011; Zumla et al. 

2012; Holohan et al. 2013; Bozic et al. 2013; Moreno-Gamez et al. 2015).   

In 2016, the CDC listed antibiotic resistance at the top of its list of public health threats 

facing the nation (Becker’s Clinical Leadership & Infection Control 2016). The discovery of new 

antibiotics, along with modification of existing antibiotics, have so far prevented widespread 

failure of antibiotic therapy; however the recent rapid rise in resistance appears to be a tipping 

point, and the pace of new developments is insufficient to counter the rapidly growing resistance 

threat (Neu 1992; Golan et al. 2012; Davies and Davies 2010; Hede 2014; Laxminarayan 2014). 

In response to this threat, significant national and international efforts have been devoted to 

discovering new drugs, particularly by the United States and European Union (Donadio et al. 

2010; Boucher et al. 2013; Cooper and Shlaes 2011; Lewis 2013). Despite these efforts, 

however, the discovery of new drugs has been excruciatingly slow, and resistance remains an 

evolutionary reality even for new drugs (Davies and Davies 2010; Hede 2014).   

The slow pace of drug discovery and the rapid rise of resistance underscore the need for 

new strategies that prolong the efficacy of current drugs (McClure and Day 2014; Bush et al. 

2011). The last decade, in particular, has seen an increased focus on understanding and 

systematically designing evolutionarily sound strategies that balance short-term drug efficacy 

with long-term potential to develop resistance (M Baym, Stone, and Kishony 2016). Despite the 

promise of this approach, the molecular and physiological diversity of microbes—along with the 
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stochastic nature of evolution—make it difficult to extract general features of successful 

therapies, even in simplified in vitro scenarios. 

1.2 Drug Combinations to Slow Resistance 

Bacteria develop resistance to antibiotics by acquiring spontaneous mutations that, for 

example, decrease binding of the drug to its target or up-regulate expression of native defense 

systems—such as efflux pumps or enzymes—to reduce the effective concentration of drug. 

(Blair et al. 2011; Wright 2011; A C Palmer and Kishony 2014). These genetic changes confer a 

fitness advantage to the mutant cells, allowing them to outcompete sensitive cells and eventually 

dominate the population. One promising strategy for slowing resistance is combination therapy, 

wherein multiple drugs are deployed at the same time to enhance the effect of treatment while 

forcing the cells to simultaneously solve potentially conflicting evolutionary challenges (M 

Baym, Stone, and Kishony 2016; Adam C. Palmer and Kishony 2013). In fact, combination 

therapy has been endorsed by the World Health Organization (WHO) as a first-line of treatment 

against a number of major diseases, including HIV, malaria, and tuberculosis (World Health 

Organisation 2013; World Health Organization (WHO) 2015; WHO 2014b). 

Combinations therapies have multiple advantages over single-drug therapies. First, 

simultaneous resistance to two drugs often requires two independent genetic events, each of 

which, on its own, occurs with low probability.  In addition, drug combinations can sometimes 

be used to restore the efficacy of a particular drug, essentially reversing the impact of previously 

acquired resistance mechanisms.  For example, ampicillin and an aminoglycoside are often used 

in combination to combat infections due to enterococcus (Murray 2018; Kak and Chow 2002; 

Sahm et al. 1989). Aminoglycosides exhibit poor intracellular penetration in many enterococcus 

isolates, yet by adding ampicillin—a cell well degrading antibiotic—intracellular penetration of 
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aminoglycosides is effectively increased, thereby enhancing aminoglycoside activity and 

yielding a powerful combined effect (Murray 2018; Kristich, Rice, and Arias 2014; Miller, 

Munita, and Arias 2014). On the other hand, these combined effects are often counterintuitive 

and unexpected, making it difficult to systematically design multidrug cocktails.  

1.3 Drug Interactions Are Complex And The Underlying Mechanisms Are Not Always 

Known 

The difficulty in designing multi-drug therapies arises because drugs in a combination 

can ‘interact’, leading to behavior that is not easily predicted based on the individual effects of 

the drugs. Consider, as a simple example, the effects of salicylate (an analgesic) and 

chloramphenicol (an antibiotic that inhibits protein synthesis (Cohen et al. 1993; Berlanga and 

Viñas 2000)) on the per capita growth of liquid cultures of E. coli.  Figure 1.1 shows a heat map 

of per capita growth rate in the 2D space of drug concentrations (data modified from Wood et al. 

2012).  Increasing the concentration of either drug, in isolation, leads to a monotonic decrease in 

the growth rate of the population (Figure 1.1, bottom panels; blue and pink box outline). On the 

other hand, consider what happens when salicylate is added to cells initially exposed to 1.5 

ug/mL of chloramphenicol (Figure 1.1, black box).  In this regime, adding low concentrations of 

salicylate—up to approximately 0.5 mM—will actually increase the population growth, despite 

the fact that the drug inhibits growth when administered on its own.  This type of drug 

interaction, a strong type of antagonisms known as suppression, indicates that the joint effect of 

the combination is significantly lower than one would anticipate based on single drug effects.  

Stated simply, the addition of an otherwise inhibitory drug (salicylate) can actually promote 

growth in the presence of chloramphenicol.   
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Figure 1.1: Growth Costs with Single and Combined Drugs. Top panel shows a heat map of 
E. Coli cells grown in concentration space of chloramphenicol and salicylate drug combinations, 
indicating suppressive interaction. Bottom panel shows dosage response curves of cells grown in 
the presence of single and combination drugs. Magenta and blue boxes show growth response to 
individual drugs, chloramphenicol and salicylate, respectively, and black box demonstrates 
growth response to salicylate combined with a constant 1.5ug/mL chloramphenicol. Growth in 
the absence of drug is normalized to 1. (Adapted from Wood et al. 2012) 
 

This combination represents a relatively rare example where the mechanism of drug 

interaction is largely understood (Wood et al. 2014). Salicylate is a membrane permeating weak 

acid and, more importantly, is a known inducer of the multiple antibiotic resistant (MAR) 

regulon, which up-regulates the expression of multidrug efflux-pumps that expel from the cell a 

number of toxic small molecules, including chloramphenicol (Cohen et al. 1993; Wood et al. 

2014). Salicylate alone inhibits cell growth, in part due to metabolic costs associated with 
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unnecessary expression of efflux pumps.  On the other hand, it can also provide enormous 

benefit to the cell in the presence of high levels of a drug, like chloramphenicol, that can be 

rendered ineffective by the efflux pumps. Loosely speaking, the beneficial effects of added 

efflux more than compensate for the fitness costs of salicylate exposure. Note that like many 

drug interactions, the combined effect is not due to direct chemical interactions between the 

drugs, but arises instead because one drug modifies bacterial physiology in a way that alters the 

impact of the other drug.     

Drug interactions are classified into three main types: synergistic, additive and 

antagonistic (Figure 1.2) (LOEWE 1953; Greco, Bravo, and Parsons 1995; P. J. Yeh et al. 2009; 

Michel et al. 2008). These interactions signify whether the combined effects of the drugs are, 

respectively, greater than, equal to, or less than what is expected based on their individual effects 

(Keith, Borisy, and Stockwell 2005; LOEWE 1953).  The definition of an interaction requires the 

establishment of a “null model”—that is, a careful definition of what is “expected” when non-

interacting drugs are combined.  Multiple null models exist in the literature (Greco, Bravo, and 

Parsons 1995), some phenomenological and some based on molecular level models in simplified 

enzyme systems. In this thesis, we adopt the Loewe definition of drug interactions (Figure 1.2), 

which—we will see—is convenient because it allows one to link drug interactions to changes in 

growth adaptation rate in evolving bacterial lineages.  

According to the Loewe paradigm, drug interactions are characterized by the shape of 

contours of constant population growth in drug concentration space. Contours of constant 

growth, also known as isoboles, are perfectly linear when the drugs combine additively (i.e. 

without interacting).  The intuition behind this null model comes from a simple thought 

experiment.  Consider taking one drug and dividing into two volumes.  If we treat each volume 
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as a separate drug, we would expect to see linear isoboles for this artificial “combination”, and 

since a drug should not interact with itself, combinations exhibiting linear isoboles are defined as 

additive (non-interacting).  More specifically, the effect of 1 unit of drug 1 is the same as 1 unit 

of drug 2, or ½ unit of each drug, or ¾ unit of drug 1 combined with ¼ unit of drug 2, etc.  On 

the other hand, a drug combination would be considered synergistic if the contours of constant 

growth appear concave (up), as the drugs mutually strengthen one another and exhibit combined 

efficacy at considerably reduced doses (Figure 1.2, left panel).  Similarly, convex (concave 

down) contours of growth indicate antagonism, where the drugs counteract one another (Figure 

1.2, right panel).  A particularly strong version of antagonism, called suppression, occurs when 

the marginal effects of a second drug are not only weaker than expected, but actually reverse the 

effects of the first drug (e.g. Figure 1.1). 

Figure 1.2: Drug Interactions Defined by Shape of Constant Contours of Growth. Cartoon 
depiction of three classes of drug interaction plots, demonstrating synergistic, additive and 
antagonistic, from left to right. Color represents per capita growth rate as a function of two drug 
concentrations space. White line highlights a particular contour, here selected at 25% inhibition.  
 

 

From a clinical perspective, synergistic interactions have long been considered the goal 

of therapy, while antagonistic interactions have been traditionally avoided due to lower efficacy 

(Greco, Bravo, and Parsons 1995; Pillai S. K., Moellering R. C., Jr. 2005). However, a 
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groundbreaking collection of recent studies have challenged this conventional wisdom by 

demonstrating that synergistic interactions have a potentially serious drawback:  they may 

accelerate the evolution of resistance (R Chait, Craney, and Kishony 2007; Hegreness et al. 

2008; Michel et al. 2008; Michael Baym, Stone, and Kishony 2016; Barbosa et al. 2018).  

Similarly, antagonistic and suppressive drug interactions can slow or even reverse the evolution 

of resistance (R Chait, Craney, and Kishony 2007; Hegreness et al. 2008).  These seminal results 

indicate that drug interactions underlie a natural trade-off between short-term efficacy and long-

term evolutionary stability.   

1.4 Drug Interactions Modulate Evolution of Resistance  

The connection between the rate of resistance evolution and drug interaction arises 

because many mutations decrease the “effective” concentration of the drug (R Chait, Craney, and 

Kishony 2007; Wood et al. 2014).  In some cases, such as enzyme-mediated drug degradation or 

drug efflux, this reduction in effective concentration corresponds to a true decrease in 

intracellular drug concentration; in other cases—such as the modification of a drug’s molecular 

target to reduce binding affinity—the intracellular concentration may remain unchanged but the 

functional concentration is reduced.  Mathematically, these and other mutations approximately 

correspond to a rescaling of drug concentration, with resistant mutants experiencing a lower 

effective drug concentration than their wild-type counterparts.  In the presence of only one drug, 

the effect of this rescaling is simple:  the growth rate of resistant cells increases relative to that of 

their drug sensitive ancestors.  However, when mutations occur in the presence of more than one 

drug, the fitness effects of these mutations—specifically, the resulting change in growth rate due 

to concentration rescaling—depends not merely on the magnitude of the concentration rescaling, 

but also on the shape of the multi-drug landscape (Chait, Craney, and Kishony 2007; Hegreness 
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et al. 2008). In other words, translating changes in effective drug concentration into growth 

effects depends on the specific shapes of the growth rate contours, which directly define the drug 

interaction.   

Using this approach, one can quantitatively predict the rate of evolution by imagining 

evolutionary trajectories on “isobole” plots, which show contours of constant growth in the 2d 

space of drug concentrations (R Chait, Craney, and Kishony 2007; Hegreness et al. 2008). For 

instance, Figure 1.3 shows schematic examples of synergistic (left) and antagonistic (right) drug 

interactions. Consider a thought experiment where one takes a single population of drug sensitive 

cells, divides it into two vials, and exposes one vial to the synergistic combination and one to the 

antagonistic combination. In both cases, the drug concentrations (cyan and magenta dots) are 

chosen so that 1) the concentration of drug 1 is the same in both cases, and 2) the concentration 

of the second drug ensures an identical level of inhibition in both experiments.  Both populations 

are then allowed to evolve for several days, and the rate of growth adaptation is measured as the 

cells become increasingly resistant to drug 1.  

If the mutations underlying growth adaptation change the effective concentration of drug 

1, the mutant experiences an effective drug concentration corresponding to a different point in 

drug concentration space, as indicated by the vertical arrows. Even if the rescaling of drug 1 

concentration is identical—for example, the concentration of drug 1 is effectively reduced by 50 

percent in both cases—the increase in growth for the population grown in the synergistic 

combination will be considerably larger, as the arrow crosses more growth contours. In general, 

the density of contour lines (i.e. the steepness of the growth surface) depends strongly on the 

drug interaction type.  Synergistic plots have more densely packed contours, so reducing the 

concentration of drug 1 by a given amount will yield a bigger growth effect than in antagonistic 
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plots, leading to more rapid growth adaptation (Figure 1.3, middle panel). This framework—

originally introduced by the Kishony group (P. Yeh, Tschumi, and Kishony 2006; Remy Chait, 

Craney, and Kishony 2007) and applied to E. coli—is powerful because it links evolutionary 

behavior of resistant mutants to growth measurements (specifically, two-drug response surfaces) 

made in ancestral populations that have not yet developed resistance.  

The rescaling approach has also been extended to link drug interaction surfaces of drug 

sensitive and drug resistant populations, potentially simplifying the design of evolution-proof 

drug combinations (Wood et al. 2014). Nevertheless, applications to date have focused primarily 

on simplified, proof-of-principle experiments dominated by evolutionary trajectories largely 

driven by resistance to a single drug. It is not clear whether this approach could be successfully 

applied to more complex evolutionary scenarios where, for example, mutants exhibit pervasive 

correlations between resistance levels to different drugs.  

Figure 1.3: Geometric Argument Predicting Accelerated Growth Adaptation for 
Synergistic Combinations. Contours of constant growth in the space of two drug 
concentrations, indicating synergistic (left) and antagonistic (right) interactions. Dotted contour 
lines represent the same selection pressure in both synergistic and antagonistic interactions, and 
pink dots indicate the dosage combination used to evolve resistant mutants. Within this 
framework mutations are represented by effective changes in drug concentration (arrows). The 
arrows associated with each dot (pink and cyan) depict the effects of an identical mutation in 
both synergistic and antagonistic combinations. The bar plot at the center depicts the increased 
growth rate change (adaptation) in a synergistic interaction (pink bar) compared to an 
antagonistic (cyan bar) interaction.  
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1.5 Resistance To One Drug Can Lead To Collateral Changes In Sensitivity To Other 

Drugs   

The evolutionary argument for drug combinations says that it should be more difficult to 

simultaneously evolve resistance to multiple agents because such multidrug resistance likely 

requires multiple genetic events. However, recent studies complicate this narrative by 

demonstrating widespread occurrence of so-called collateral effects, where a mutation conferring 

resistance to one drug may simultaneously confer increased resistance (cross-resistance) or 

increased sensitivity (collateral sensitivity) to other drugs (Figure 1.4) (S Kim, Lieberman, and 

Kishony 2014; C Munck et al. 2014; Barbosa et al. 2018; Imamovic and Sommer 2013; Lázár et 

al. 2013). Collateral effects were initially observed in the 1950s by Szybalski and Bryson 

(SZYBALSKI and BRYSON 1952), though until recent systematic studies in E. coli and S. 

aureus (Dragosits et al. 2013; Imamovic and Sommer 2013), the prospect of using collateral 

effects to fine-tune therapies has been largely overlooked. 

Negative cross-resistance (collateral sensitivity) has been of particular interest in the field 

because of its potential to slow down or even reverse resistance evolution (Rodriguez De 

Evgrafov et al. 2015; Oz et al. 2014; Lázár et al. 2013, 2014; C Munck et al. 2014). While 

systematic understanding of collateral sensitivity is far from complete, the approach has proven 

promising in laboratory and even clinical settings (Imamovic et al. 2018) as it opens up the 

possibility of judiciously choosing drug cycles to steer evolution away from high-level 

resistance. Recent work in E. coli has demonstrated cycling between drugs exhibiting mutual 

collateral sensitivity can slow drug resistance in laboratory populations (Imamovic and Sommer 

2013, (C Munck et al. 2014)). 
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Figure 1.4: Resistance to One Drug Can Lead to Collateral Sensitivity or Resistance with 
Another Drug. Cartoon depiction of collateral effects between two drugs, where resistance to 
one drug (Drug 1) is associated with collateral-sensitivity (green line) or cross-resistance (yellow 
line) to a second drug (Drug 2).  
 

Other works have investigated alternating drugs to constrain resistance evolution in 

Staphylococcus aureus, and have also concluded an overall advantage to utilizing collateral-

sensitivity effects to minimizing resistance evolution (Seungsoo Kim, Lieberman, and Kishony 

2014). Collateral-sensitivity strategies have also been studied in cancer drug therapy and proven 

useful when drug cycling or drug holidays strategies are applied (Dhawan et al. 2017). Despite 

this promise, there are numerous unresolved challenges of designing candidate therapies based 

on collateral sensitivity, including the presence of high-levels of heterogeneity (Barbosa et al. 

2017; Dhawan et al. 2017) and non-repeatability (Nichol et al. 2017). Overall, these studies 

underscore the notion that unforeseen correlations between the fitness effects of a mutation in 
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different environments significantly complicate the prediction of evolutionary outcomes. On the 

other hand, they also provide an additional evolutionary knob that can be potentially tuned to 

limit resistance. These factors are important to take into consideration when aiming to design 

successful treatment strategies with combinations of drugs. 

1.6  Collateral Sensitivity in Multi-Drug Environments 

As discussed in section 1.4, drug interactions have been shown to either speed up or slow 

down resistance evolution when drugs are used simultaneously (Chait, Craney, and Kishony 

2007; Michel et al. 2008; Hegreness et al. 2008). On the other hand, collateral resistance and 

sensitivity can shape evolution when multiple drugs are used in sequence (Section 1.5).  

However, much less is known about how these two modulatory effects—drug interactions and 

collateral sensitivity—combine to influence evolution of resistance in multi-drug environments. 

The first studies on drug interactions and resistance suggested that evolutionary acceleration was 

primarily due to drug synergy (Michel et al. 2008). Recent studies, by contrast, suggest that 

collateral effects may dominate (Yeh et al. 2009; Rodriguez De Evgrafov et al. 2015; Imamovic 

and Sommer 2013; C Munck et al. 2014; Barbosa et al. 2018). For instance, one group used 

evolution and genome analysis to identify mutations that drive resistance levels in drug 

combinations, allowing the prediction of collateral-sensitive or resistance between drug 

components. E. coli cells were engineered with mutations selecting for collateral-sensitivity and 

demonstrated suppression of sensitive cells and limiting resistance evolution (Christian Munck et 

al. 2014). Another recent study based on large scale laboratory evolution found that synergistic 

combinations can lead to population extinction while evolved collateral sensitivity between 2 

drugs has the potential to reduce adaptation (Barbosa et al. 2018). In general, though, it seems 
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that drug interactions and collateral effects may be intertwined in a complex manner that gives 

rise to variable results.  

One explanation for this variability could be that the effects are organism- and condition-

specific. The work to date has focused on a limited number of species, including E. coli, S. 

aureus, and—very recently—P. aeruginosa (Hegreness et al. 2008; C Munck et al. 2014; S Kim, 

Lieberman, and Kishony 2014; Barbosa et al. 2018). Studies on a wider range of species—

particularly other pathogenic species—are therefore needed.  It may also be true that both 

collateral effects and drug interactions have the potential to dominate evolutionary trajectories, 

depending on specific situations or environments. The challenge, then, is to disentangle these 

effects to better understand which effect dominates and in what situations.  

In this work, we use quantitative experiments on microbial populations to investigate the 

evolution of antibiotic resistance in an opportunistic pathogen—E. faecalis—during adaption to a 

number of clinically relevant drug combinations. To interpret our results, we extend previous 

arguments based on drug concentration rescaling (Chait, Craney, and Kishony 2007; Michel et 

al. 2008; Hegreness et al. 2008) to incorporate a range of collateral effects observed 

experimentally, including both cross resistance and collateral sensitivity (Figure 1.5).  We show 

that these rescaling arguments accurately predict qualitative features of the observed 

experimental trajectories—including a number of unappreciated evolutionary features of 

common drug combinations. The power of this approach lies in making evolutionary predictions 

without detailed knowledge about molecular mechanisms of resistance or drug interactions, 

which can be particularly hard to elucidate for drug combinations.  
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Figure 1.5: A Generalized Framework for Resistance Evolution Accounting for Both Drug 
Interaction and Collateral Effects Based on Rescaling of Effective Drug Concentration. 
Contours of constant growth in the space of two drug concentrations, indicating synergistic (left) 
and antagonistic (right) interactions. Dotted contour lines represent the same selection pressure 
in both synergistic and antagonistic interactions, and pink dots indicate the dosage combination 
used to evolve resistant mutants. Within this framework mutations are represented by effective 
changes in drug concentration (arrows).  Different arrows represent resistance to drug 2 only 
(blue arrows), resistance to both drugs (collateral resistance, yellow arrow), or resistance to one 
drug and increased sensitivity to the other (green arrows).  The effect of a given mutation on 
growth will depend on both the magnitude of the rescaling (in each direction) as well as the 
interaction between drugs (the shape of the isobole contours). 
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1.7 Enterococcus: An Opportunistic Pathogen Often Requiring Drug Combinations 

 The study of enterococcus began in the late 19th century with Thiercelin, MacCallum and 

Hastings, the latter two of whom provided the first detailed description of a lethal case of 

enterococcal endocarditis (Gilmore et al. 2014; Maccallum and Hastings 1899). From its earliest 

descriptions, enterococcus has been known as commensal opportunist. Since the application of 

multi-drug therapy over 50 years ago, multi-drug resistant enterococci have been a leading cause 

of nosocomial infection worldwide (Werner et al. 2008; Prabaker and Weinstein 2011). 

Enterococci are normally found in the gastro intestinal tract of humans and animals, where they 

make up less than 1% of the adult microflora (Mundt 1963; Sghir et al. 2000). The precise 

mechanism of how enterococci colonize the GI is not known, but in the hospital environment 

after patients have taken antibiotics, enterococci take advantage of the disrupted microbiota of 

the gut (Ubeda et al. 2010).  

Among the enterococci E. faecalis is the species most abundantly found in humans and 

accounts for the most disease (Malani, Kauffman, and Zervos 2002). Furthermore, 90-95% of 

clinical isolates of enterococcus since the 1990s are E. faecalis (Huycke, Sahm, and Gilmore 

1998). E. faecalis can cause life-threatening infections when found in hospital environments and 

is a leading source for urinary tract infection, bacteremia, wound infection and endocarditis 

(Malani, Kauffman, and Zervos 2002). Its ability to acquire resistance against most antibiotics 

and survive in deleterious conditions has made it a challenging pathogen to restrain (Kak and 

Chow 2002). Vancomycin resistant enterococcus (VRE) represent a particularly difficult 

challenge, and they have been found in many non-human reservoirs in Europe (Werner et al. 

2008). In the US VRE is less likely to be found in non-human reservoirs due to banning of an 

antimicrobial used as a growth hormone (Avoparcin), but VRE is still found in US hospitals 
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(Hammerum 2012; Aarestrup, Butaye, and Witte 2002). Antibiotic resistant enterococci can also 

be found in food particular in meat, diary and even some probiotics (Giraffa 2002). Overall, 

antibiotic resistance in enterococcus is quite prevalent in hospital environments, animals and 

food, making humans more susceptible to acquiring resistant strains of the microbe.  

Because of widespread multidrug resistance, drug combinations have been used for 

decades treat enterococci infections. Most commonly, beta lactams are combined with an 

aminoglycoside (e.g. streptomycin), yielding a strong synergistic combination (Miller, Munita, 

and Arias 2014). The success of early synergistic combinations drove the search for new 

cocktails, particularly those driven by drug synergy. Despite the identification of several potent 

drug pairs, relatively little is known about the evolutionary consequences of these combinations, 

particularly in regards to the rates of resistance. Thus, there is an urgent need to better understand 

how enterococci adapt in multidrug environments and whether that adaptation is dominated by 

drug interactions, collateral effects, or some combination of both. 

 

1.8 Approach:  Quantitative, High-Throughput Laboratory Evolution 

To address these questions, we perform lab evolution on E. faecalis bacteria in the 

presence of clinically relevant drug combinations over multiple days. To identify a representative 

set of drug combinations, we began by measuring the per capita growth rate of vancomycin 

resistant E. faecalis (strain V583) in liquid cultures exposed to a wide range of drug pairs over 

many dosage combinations. After selecting drugs pairs spanning multiple interaction types 

(Figure 1.6; simulated data), we measured the longer-term growth response to multi-drug 

exposure in dozens of replicate populations using optical density time series acquired with an 

automated microplate reader and stacker (Enspire). Evolution is expected to depend heavily on 

the level of growth inhibition in the initial cultures, which sets the selection pressure favoring 



 18 

resistant mutants. To control for selection pressure, we chose four dosage combinations for each 

drug pair—two corresponding to single drug treatments and two to drug combinations—that lie 

along a contour of constant growth (white line and four dots in Figure 1.6a). Because inhibition 

is constant across the four conditions, any differences between resistance adaptation should 

reflect drug concentration differences. 

For each population, cells were inoculated into media and drug on day 1 and diluted daily 

into fresh media and drugs (Figure 1.6a, bottom panel). Growth was measured throughout the 

evolution experiment by taking the optical density (OD) using an automated plate reader and 

stacker. To quantify growth rate adaption, we estimated the per capita growth rate for each OD 

time series using nonlinear least squares fitting to an exponential function (Figure 1.6b) (see 

Methods for more details). To further quantify these trends, we estimated the rate of growth 

adaptation for each population over the number of days of evolution (Figure 1.6c).   
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Figure 1.6: Measurement of Evolutionary Growth Rates and Resistance Characterization 
to Each Drug for a Single Mutant on a Drug Combination Surface. a. Cartoon depiction of 
antagonistic interaction with colors representing per capita growth rate as a function of two drug 
concentrations  and white line highlighting a particular contour, here selected at 30% inhibition. 
Four white dots correspond to mutants selected along the white contour line with four different 
conditions, two single drug conditions (Drug 1 and Drug 2) and two combination drug 
conditions. Pink arrow indicates evolution of mutants in one of the four conditions over 3 days 
with N=24 mutants per condition, in 96 well plates. Mutants are diluted 1:100 per well (see 
methods for details). b. Growth rate (g) is estimated each day by fitting OD time series to a 
simple exponential function. c. Growth rate adaptation over multiple days is given by the slope 
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of the best-fit line through the growth evolution data. d. Dose response curves were measured in 
triplicate for each population to estimate each drug’s IC50, the half-maximal inhibitory 
concentration. The curve is fit to a hill function, where K is the concentration of drug at which 
50% growth inhibition is obtained (IC50).  

 

The growth rate adaption observed in the presence of drugs is likely driven by a 

population’s ability to survive higher concentrations of one or both drugs. To quantify this 

increased resistance, we selected 6 populations for each condition and directly measured the half-

maximal inhibitory concentration (IC50) of each drug (Figure 1.6d). Overall, this approach 

provides quantitative measures of both growth adaption and increased drug resistance for 

hundreds of microbial populations exposed to a wide range of drug combinations and drug doses, 

all at similar levels of inhibition  

 

1.9 Antibiotics Used In This Work 

Ampicillin  

Ampicillin is from the beta-lactam family of antibiotics and its main mechanism of action 

is inhibition of the bacterial cell wall, which it accomplishes by serving as a suicide substrate and 

binding to penicillin-binding proteins (PBPs) resulting in the inhibition of the final 

transpeptidation step of peptidoglycan synthesis in bacterial cell wall. This results in continuous 

activity of cell wall autolytic enzymes while cell wall assembly is arrested, causing the bacteria 

to lyse (Kristich, Rice, and Arias 2014; Murray 2018). Enterococci are able to resist ampicillin 

through the saturating production of low-affinity class B penicillin-binding protein 5 (Pbp5), 

thereby blocking ampicillin activity (Arbeloa et al. 2004; Kristich, Rice, and Arias 2014). 

Ampicillin is still among the mostly commonly used treatments for enterococcus infections, 

particularly in E. faecalis.       
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Ceftriaxone 

Ceftriaxone was discovered in the 1980s and is derived from the beta-lactam family of 

antibiotics, which targets the inhibition of the bacterial cell wall by binding to penicillin-binding 

proteins (PBPs) inhibiting transpeptidation and arresting cell wall assembly (Landau et al. 1999; 

Arbeloa et al. 2004). Unlike ampicillin resistance, which must be acquired, resistance to 

ceftriaxone is intrinsic in many enterococci. As consequence, ceftriaxone is often ineffective as a 

single-drug treatment (Arbeloa et al. 2004; Kristich, Rice, and Arias 2014). However, several 

works have shown ceftriaxone plus ampicillin to be an effective synergistic treatment strategy 

against E. faecalis, particularly in isolates with high-level aminoglycoside resistance (Gavaldà et 

al. 2003, 2007; Fernández-Hidalgo et al. 2013; Pericas et al. 2014).  

 

Streptomycin 

An aminoglycoside antibiotic, streptomycin binds the 16S rRNA of the 30S ribosomal 

subunit thereby interfering with protein synthesis (Kristich, Rice, and Arias 2014). In general 

enterococci demonstrate low level intrinsic aminoglycoside resistance which is attributed to 

weak uptake of the drug by cells (Aslangul et al. 2006). Due to poor penetration of 

aminoglycosides, traditional therapies of enterococci (e.g. endocarditis) combine 

aminoglycosides with a cell wall inhibiting antibiotic, which results in a synergistic effect (Kak 

et al. 2000; Murray 2018). However, enterococci are increasingly exhibiting high-level resistance 

to aminoglycosides, thus disabling the expected synergistic effect of the combination therapy 

(Kak et al. 2000; Kristich, Rice, and Arias 2014). This high-level resistance is mostly acquired 

due to the presence of aminoglycosides-modifying enzymes (Kak et al. 2000). In the case of E. 
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faecalis treatment when synergism is still possible between an aminoglycoside and a cell-wall 

inhibitor, streptomycin is most commonly used combination with ampicillin (Murray 2018). 

Even in the case of high-level aminoglycoside resistance, the streptomycin and ampicillin 

combination remains a potential therapeutic option (Fernández-Hidalgo et al. 2013).  

 

Tigecycline 

Tigecycline is a relatively new drug from the glycylcycline class of antibiotics, which 

targets the 30S subunit of the ribosome and in turn inhibits protein synthesis. Tigecycline has 

been shown through in vitro studies to have activity against both gram-negative and gram-

positive bacterial species, including enterococci (Murray 2018; Miller, Munita, and Arias 2014). 

Thus, far there are no reports of Tigecycline resistance in E. faecalis, and its mechanism of 

resistance is unknown (Miller, Munita, and Arias 2014). Tigecycline has been used clinically for 

E faecalis infections such as in skin structure infections and intra-abdominal infections. 

Combination therapy with tigecycline and distamycin, a DNA synthesis inhibitor, against 

vancomycin resistant enterococci (VRE) has also proven to be an effective treatment strategy 

(Miller, Munita, and Arias 2014; Murray 2018).  

 

Ciprofloxacin 

A member of the quinolone class of antibiotics, ciprofloxacin is known to inhibit 

enzymes such as the DNA gyrase and topoisomerase IV which are responsible for relaxation of 

DNA supercoils necessary for transcription and replication before cell division (Miller, Munita, 

and Arias 2014). Resistance to quinolone in enterococci often occurs through mutations in genes 

that encode for DNA gyrase and topoisomerase IV, resulting in inefficient binding of the 
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antibiotic to the enzymes. (Miller, Munita, and Arias 2014; Arsène and Leclercq 2007). Another 

mechanism responsible for quinolone resistance is pumping of antibiotics out of the cell via 

multidrug-resistant efflux pumps (MDRs) (Miller, Munita, and Arias 2014). In particular, one 

study has found 34 MDRs in the V583 strain of E. faecalis, with two pumps specific to 

promoting quinolone resistance (Davis et al. 2001). Successful combination of ciprofloxacin and 

a beta-lactam (ampicillin) was demonstrated in the treatment of human endocarditis infection 

with high-level gentamicin resistance in E. faecalis (Tripodi et al. 1998).   

 

A Brief Note on Terminology 

Throughout this work, we (somewhat loosely) refer to populations undergoing laboratory 

evolution in the presence of antibiotics as “mutants”, though it should be noted that the 

populations could contain heterogeneous mixtures of genotypes. We use the term “mutant” only 

to indicate that a particular population has been grown in the presence of the drugs.  For 

example, we may refer to populations exposed to drugs for 2 days (one full day of growth 

followed by dilution into fresh media/drug and then a second day of growth) as “day 2 mutants”, 

though we do not mean to imply that these are (necessarily) isogenic populations isolated from a 

single colony. 
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Chapter 2: Synergistic Interaction – Ceftriaxone plus Ampicillin 

2.1 Introduction  

Ampicillin (AMP) is commonly used in treatment of enterococcus infections, particularly 

in E. faecalis isolates, which remain frequently susceptible to beta lactams (Kristich, Rice, and 

Arias 2014; Murray 2018).  On the other hand, enterococci frequently exhibit increased 

resistance to ceftriaxone (CRO), a newer beta lactam, making it ineffective in treatment therapies 

(Arbeloa et al. 2004; Kristich, Rice, and Arias 2014). Despite the limited utility of ceftriaxone 

alone, it can be combined with ampicillin to yield an effective synergistic treatment strategy 

against E. faecalis.  This combination remains a particularly viable option for E. faecalis 

harboring high-level aminoglycoside resistance, which thwarts first line combination therapies 

(Gavaldà et al. 2003, 2007; Fernández-Hidalgo et al. 2013; Pericas et al. 2014). Ceftriaxone and 

ampicillin have been particularly effective in treatment of endocarditis infections in the clinical 

setting (Fernández-Hidalgo et al. 2013). The strong synergy of the combination make it attractive 

as a treatment option, and the molecular mechanisms of resistance to each drug are increasingly 

understood. Unfortunately, little is known about how E. faecalis evolve resistance when the 

drugs are combined.  In this chapter, we measure evolutionary adaptation to ceftriaxone and 

ampicillin alone and in combination using laboratory evolution experiments spanning several 

days.  Our results reveal strong correlations between phenotypic resistance to ampicillin and 

ceftriaxone across multiple conditions.  More importantly, we find accelerated growth adaption 

when the drugs are combined, highlighting an unappreciated drawback to combined ampicillin-

ceftriaxone therapy for E faecalis.     
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2.2 Ceftriaxone and Ampicillin Combination Gives Rise to Synergistic Interaction in E. 

faecalis 

To investigate evolution in ceftriaxone-ampicillin combinations, we first measured the 

per capita growth rate of E. faecalis strain V583 in liquid cultures exposed to a large range of 

drug doses.  Note that strain V83 exhibits high level aminoglycoside resistance, typical of 

isolates that may benefit from ceftriaxone-ampicillin combination therapy (Gavaldà et al. 2003, 

2007; Fernández-Hidalgo et al. 2013; Pericas et al. 2014). As expected, we observed a strongly 

synergistic interaction between the two drugs, as indicated by the convex contours of the growth 

isoboles (Figure 2.1a; raw data; 2.1b smoothed data).  

To understand why the combination is considered synergistic, consider the growth in the 

presence of 5ug/mL of ceftriaxone and 0.2ug/mL of ampicillin in Figure 2.1a.  At those 

concentrations, the drugs alone have little to no inhibitory effect.  On the other hand, the 

combination entirely eliminates growth. This drastic shift in growth demonstrates a clearly 

strong synergism in this combination.  While the mechanism of drug synergy is not completely 

understood, both drugs are cell wall inhibitors and may mutually benefit each other by targeting 

the same mechanism (Fernández-Hidalgo et al. 2013; Gavaldà et al. 2007, 2003).  

Next, we set out to measure the longer-term growth response to this drug pair.  Evolution 

is expected to depend heavily on the level of growth inhibition in the initial cultures, which sets 

the selection pressure favoring resistant mutants. To control for initial inhibition, we chose four 

dosage combinations—two corresponding to single drug treatments and two to drug 

combinations—that lie along a contour where growth is approximately 30% of the native (drug 

free) growth (Figure 2.1). Thus, each condition was selected based on a particular drug 
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concentration corresponding to 70% growth inhibition.  Because inhibition is constant across the 

four conditions, any differences between resistance adaptation should reflect drug concentration 

differences. 

 

Figure 2.1: Ceftriaxone and Ampicillin Combination Gives Rise to Synergistic Interaction 
in E. faecalis.  a. Interaction with colors representing per capita growth rate as a function of two 
drug concentrations space. Four dots correspond to mutants selected with the same selective 
pressure at ~30% inhibition of growth with four different drug conditions. The first condition (in 
red) corresponds to [CRO] = 48.51ug/mL and [AMP]=0, the second condition (in magenta) 
corresponds to [CRO] = 2.59ug/mL, and [AMP]=0.051ug/m, the third condition (in cyan) 
corresponds to [CRO] = 1.29ug/mL,  and [AMP]=0.102ug/mL, and the fourth condition (in blue) 
correspond to [CRO] = 0,  and [AMP]=0.431ug/mL. Each condition is evolved over 4 days with 
N=24 mutants per condition, in 96 well plates. b. Smoothed version of interaction. See methods 
for smoothing details. Note that in both plots, the red point actually lies far above the axis, at the 
point where ceftriaxone inhibition first reaches approximately 70%.  For visualization purposes, 
however, we have zoomed in on the primary region of interest but keep the red point as a 
reminder of the CRO-only point. Colors from blue to yellow represent growth rates. 
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2.3 Mutants Evolve in the Presence of Ceftriaxone and Ampicillin Combination  

To perform the evolution, we evolved twenty-four (24) replicate populations of E. 

faecalis at each of the four conditions for a total of 4 days. Approximately 107 cells were 

inoculated into 200 uL of BHI each drug condition on day 1, and each day the populations were 

diluted by 100X into fresh media and drugs. Growth was measured throughout the evolution 

experiment by taking optical density (OD) (A600) readings every 25 mins using an automated 

plate reader and stacker. The first day (blue) and last day OD (red) growth curves are shown in 

Figure 2.2.  It is clear that, for the majority of the populations, growth had significantly increased 

by the last day of evolution, consistent with evolved resistance to one or more drugs. 

Figure 2.2: Growth Curves of Day 1 and Day 4 for All Mutants Indicate Resistance at a 
Glance. Optical density time series measured in liquid cultures of E. faecalis on the first (blue) 
and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three rows) 
corresponding to the four different conditions in Figure 2.1.  Rows 1-3: ([CRO],[AMP])=(48.51, 
0) (red axes); Rows 4-6: ([CRO],[AMP])=(2.59, 0.051) (magenta axes); Rows 7-9: 
([CRO],[AMP])=(1.29, 0.102) (cyan axes); Rows 9-12: ([CRO],[AMP])=(0, 0.43) (blue axes). 
All concentrations are given in micrograms per mL. 
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2.4 Ceftriaxone and Ampicillin Combinations Accelerate Growth Adaptation  

To quantify adaption, we estimated the per capita growth rate for each OD times series 

using nonlinear least squares fitting to an exponential function (Methods). As expected, we can 

see in Figure 2.3 that the growth of each population is similarly inhibited on day one—consistent 

with the choice of dosage conditions providing constant inhibition levels. On the other hand, the 

growth rate varies considerably after Day 1, with mutants in each condition responding 

differently. Some populations exhibit a very fast adaption and approach wild-type drug-free 

levels within one day, while others increase slowly or not at all. 

Figure 2.3: Growth Rate Adaptation Over 4 days of Evolution for All Mutants. Per capita 
growth rate of E. faecalis cultures over 4 consecutive days of laboratory evolution. Rows 1-3: 
([CRO],[AMP])=(48.51, 0) (red axes); Rows 4-6: ([CRO],[AMP])=(2.59, 0.051) (magenta axes); 
Rows 7-9: ([CRO],[AMP])=(1.29, 0.102) (cyan axes); Rows 9-12: ([CRO],[AMP])=(0, 0.43) 
(blue axes). All concentrations are given in micrograms per mL. Adaptation rate for each mutant 
is given by the slope of the best-fit (least-squares) trend line through the relative growth rate time 
series. 
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To visualize these trends, we separated the populations by condition and plotted the 

growth rate over time for each population (Figure 2.4, top panel; small points) as well as the 

mean growth rate across all mutants in a given condition (Figure 2.4, top panel; small points). 

First, consider the cases where the drugs are used alone.  Adaptation to CRO only (left panel, 

red) is initially rapid followed by gradual increase on days 3 and 4, while adaption to AMP (right 

panel, blue) rises more slowly, with almost no adaption by day 2.  Interestingly, however, 

adaption in both conditions containing two drugs (middle panels, magenta and cyan) rises rapidly 

and steadily all four days and, on average, reaches a higher final growth rate that populations 

exposed to single drug conditions.   

To further quantify these trends, we estimated the rate of growth adaptation r—defined as 

the slope of the best-fit trend line through the relative growth rate time series—for each 

population (Figure 2.4, bottom panel).  On average, growth rate adaptation is significantly faster 

for the drug combinations (magenta and cyan) than for the individual drugs (red and blue) 

(student t-test, p<0.001 for all pair combinations between 2-drug and 1-drug conditions).  The 

fact that growth adaption is accelerated in the presence of two drugs is provocative because it 

highlights an otherwise unappreciated drawback of CRO-AMP combination therapy: despite 

short-term efficacy at low drug doses, the combination facilitates rapid adaptation after only a 

few days. 

 

 
 
 
 
 
 
 
 



 30 

 
 

 

 
Figure 2.4: Synergistic Combinations of Ceftriaxone and Ampicillin Leads to Faster 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) over 4 
days of evolution, in each of the 4 conditions: condition 1 [CRO] = 48.51ug/mL, and [AMP]=0 
(red point in Figure 2.1), condition 2 [CRO] = 1.29ug/mL, and [AMP]=0.102ug/mL (cyan point 
in Figure 2.1), condition 3 [CRO] = 2.59ug/mL, and [AMP]=0.051ug/mL (magenta point in 
Figure 2.1), and condition 4 [CRO] = 0, and [AMP]=0.431ug/mL (blue point in Figure 2.1). 
Small points represent individual mutants.  Large circles are means taken across all mutants in a 
given condition (N=24 mutants). b. Growth adaptation rate for each condition; the units of 
adaptation are growth rate/day, where growth rate is measured in units such that the ancestral 
strains grow at a rate of 1 in the absence of drug. As an example, an adaptation rate of 0.25 
means it takes, on average, 4 days of adaption for the strains to fully adapt to the drug (i.e. to 
reach the drug-free growth rate of ancestral cells). Small points correspond to individual mutants; 
large points represent the mean of all mutants in a given condition. 
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2.5 Cross-resistance Found in Both Drugs, with Stronger Ceftriaxone Resistance and 

Weaker Ampicillin Resistance 

Growth rate adaption indicates the population’s ability to survive higher concentrations 

of one or both drugs. To better understand these dynamics, as discussed in the introduction, we 

selected 6 populations for each condition and directly measured the half-maximal inhibitory 

concentration (IC50) of each drug.  Specifically, we diluted a sample of each population (in 

technical replicates of 8) into fresh media containing a range of AMP (or CRO) concentrations. 

After 12 hours, we measured the optical density (OD) and generated a dose response curve for 

each drug and each population. For each dose response curve, we estimated the half maximal 

inhibitory concentration (IC50) using nonlinear least squares fitting to a logistic binding function 

(see Methods for representative IC50 curve). We then quantify the resistance level to each drug 

using Rdrug = log2(IC50,drug/IC50,WT), where IC50,drug is the population’s IC50 to the drug and IC50,WT 

is the IC50 of the wild type (ancestral) strain to the same drug. Positive values of Rdrug indicate 

increased resistance, while negative values indicate increased sensitivity (relative to ancestral 

strain). 
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Figure 2.5: Mutants Across All Conditions Exhibit Strong Ceftriaxone Resistance and 
Moderate Ampicillin Resistance. a. Resistance to ceftriaxone (CRO, top panels) and ampicillin 
(AMP, bottom panels) over time for populations evolved under 4 conditions: condition 1 [CRO] 
= 48.51ug/mL, and [AMP]=0 (red point in Figure 2.1), condition 2 [CRO] = 1.29ug/mL, and 
[AMP]=0.102ug/mL (cyan point in Figure 2.1), condition 3 [CRO] = 2.59ug/mL, and 
[AMP]=0.051ug/mL (magenta point in Figure 2.1), and condition 4 [CRO] = 0, and 
[AMP]=0.431ug/mL (blue point in Figure 2.1). Resistance to each drug is defined as the log2 
scaled ratio of IC50 values between mutant and wild-type (ancestral) cells, with positive values 
indicating increased resistance and negative values increased sensitivity. Small points correspond 
to individual mutants, while large points are the population mean across mutants (N=6 mutants). 
b. Two-dimensional representation of joint drug resistance at each day of the laboratory 
evolution.  Each point corresponds to a single mutant, with time moving from left (Day 1) to 
right (Day 4).  
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Interestingly, we find that the populations quickly find high-level resistance to 

ceftriaxone (Figure 2.5a, top panel) and slightly lower-level resistance to ampicillin (Figure 2.5a, 

bottom panel), regardless of the condition. Indeed, all populations show increased resistance to 

both drugs, a fact that is perhaps not surprising given the drugs’ similar mechanisms of action. 

However, what is surprising is that the level of resistance in all four conditions is the same even 

though different conditions correspond to considerably different concentrations and exhibit 

different rates of growth adaptation. One might naively expect the cells to evolve to higher 

resistance levels with higher concentrations of drug.  

To reconcile these apparently contradictory results, we assume that the effect of a 

mutation is to rescale the effective drug concentration, so that the mutant "experiences" a 

different concentration than the wild-type (see Section 1.4). With this assumption, we can use the 

drug interaction surface measured in drug sensitive cells (Figure 2.1) to estimate how a particular 

mutation--which corresponds to a specific rescaling-- would impact growth at each condition. In 

Figure 2.6, we use the exact same rescaling at all conditions and try to understand why the 

effects (growth) are different.  

Our IC50 results indicated that on average, AMP increases resistance by 2.5X and CRO 

by 11.9X in day 4 mutants.  Hence, we rescale the concentration of AMP by 2.5 and the 

concentration of CRP by 11.9 for each condition (Figure 2.6, arrows). Despite the fact that the 

same rescaling is used for each condition, Figure 2.6 indicates that the final growth rate is 

expected to differ in a condition-dependent manner. Most notably, the rescaling results in higher 

growth for conditions containing both drugs (magenta and cyan) than for single drug conditions, 

consistent with the trends observed experimentally (Figure 2.4b).  
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Figure 2.6: Rescaling of Drug Concentrations Point to Cross-Resistance and Accelerated 
Resistance Adaptation of Ceftriaxone-Ampicillin Combination. Smoothed drug interaction 
plot of ceftriaxone-ampicillin combination with arrows indicating rescaling of drug 
concentrations of each condition after 4 days of evolution. Adjusted growth of mutants from 
each condition shown in inset. Original concentration of four conditions: Condition 1: 
([CRO],[AMP])=(48.51, 0) (red); Condition 2: ([CRO],[AMP])=(2.59, 0.051) (magenta); 
Condition 3: ([CRO],[AMP])=(1.29, 0.102) (cyan); Condition 4: ([CRO],[AMP])=(0, 0.43) 
(blue). Colors from blue to yellow represent growth rates. 

 

2.6 Conclusion 

Combination therapy with ampicillin and ceftriaxone is a potentially powerful clinical 

option for treating E. faecalis infections, in part because strong synergy between the drugs allows 

for potent inhibitory action at relatively low doses. Using large-scale laboratory evolution 

experiments, we quantified in vitro adaptation to different dosage combinations spanning several 

days.  Our results reveal accelerated growth adaption when the drugs are combined, underscoring 

an underappreciated limitation to treatments based on this combination.  Despite significant 
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differences in the adaptation rates between populations exposed to single drugs and drug 

combinations, we found strong correlations between phenotypic resistance to ampicillin and 

ceftriaxone, regardless of the selecting condition.  These results suggest that a common genetic 

mechanism may underlie adaptation in all conditions.  Our results are intriguing because they 

illustrate how growth rate adaption may depend dramatically on drug dosage, even when levels 

of phenotypic resistance (IC50’s)—and perhaps, genetic mechanisms of resistance—show 

remarkably similar dynamics. In the long term, our results may lay the groundwork for improved 

combination therapies based on trade-offs between inhibitory potential and evolutionary 

adaptation. 
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Chapter 3: Antagonistic Interaction – Ampicillin plus Streptomycin 

3.1 Introduction  

Streptomycin is rarely used in a single-drug therapy for enterococcus due to poor 

intracellular penetration of aminoglycosides. However, despite this limitation, therapies 

combining an aminoglycoside with a cell wall inhibiting antibiotic can be strongly synergistic 

and are commonly used for treating drug resistant strains (Kak et al. 2000; Murray 2018). In 

particular, the ampicillin and streptomycin combination has been a first line of treatment for 

infections (endocarditis) in E. faecalis (Murray 2018; Kristich, Rice, and Arias 2014). However, 

enterococci isolates are increasingly exhibiting high-level resistance to aminoglycosides, which 

has been shown to reduce the synergistic effect of the combination therapy (Kak et al. 2000; 

Kristich, Rice, and Arias 2014; Fernández-Hidalgo et al. 2013). In general, aminoglycoside 

resistance is a growing problem, but little is known about how high-level aminoglycoside 

resistant E. faecalis cells adapt to combination therapies.   

In this chapter, we evolve dozens of replicate populations to ampicillin and streptomycin 

alone and in combination over several days. Our results indicate that the streptomycin-ampicillin 

combination is antagonistic in strains (V583) exhibiting high-level aminoglycoside resistance.  

More importantly, using the drugs in combination results in significantly slowed growth 

adaptation, indicating that aminoglycoside + beta lactam combinations may remain feasible even 

for strains with high-level aminoglycoside resistance. Furthermore, IC50 measurements 

demonstrate drugs alone lead to evolutionary “solutions” that result in competition between 

cross-resistance and collateral sensitivity. Thus, competing solutions result in lower adaptation 
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rates for the combination. While synergy is typically considered the underlying reason for short-

term efficacy in aminoglycoside-sensitive cells, our results suggest that the antagonism observed 

in aminoglycoside-resistant cells may render the therapies stable against adaptation on longer 

timescales.  

3.2 Ampicillin and Streptomycin Combination Gives Rise to Antagonistic Interaction 

To better understand evolution in ampicillin-streptomycin combinations, we first 

measured the per capita growth rate (as in chapter 2) of E. faecalis strain V583 in liquid cultures 

exposed to a large range of drug doses. Note that strain V583 exhibits high level aminoglycoside 

resistance (Gavaldà et al. 2003, 2007; Fernández-Hidalgo et al. 2013; Pericas et al. 2014). We 

expected a synergistic interaction however to our surprise, we observed an antagonistic 

interaction between the two drugs, as indicated by the concave (down) contours of the growth 

isoboles (Figure 3.1a; raw data; 3.1b smoothed data).  
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Figure 3.1: Ampicillin and Streptomycin Combination Gives Rise to Antagonistic 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as a 
function of two drug concentrations space. Four dots correspond to mutants selected with the 
same selective pressure at ~30% inhibition of growth with four different drug conditions. The 
first condition (in red) corresponds to [AMP] = 0.32ug/mL and [STR]=0, the second 
condition (in magenta) corresponds to [AMP] = 0.321ug/mL, and [STR]=1000ug/m, the third 
condition (in cyan) corresponds to [AMP] = 0.192ug/mL, and [STR]=1800ug/mL, and the 
fourth condition (in blue) correspond to [AMP] = 0, and [STR]=1800ug/mL. Each condition 
is evolved over 4 days with N=24 mutants per condition, in 96 well plates. b. Smoothed 
version of interaction. Colors from blue to yellow represent growth rates. See methods for 
smoothing details.  
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Given that the contour lines of this interaction are bowed out similar to the cartoon 

example of an antagonistic interaction in Figure 1.2 of Chapter 1, we can conclude an 

antagonistic interaction. While the mechanism of antagonistic interactions is not completely 

understood, the high-level resistance of the V583 strain to streptomycin may contribute to the 

shift from the normal synergistic interaction of the combination (Aslangul et al. 2006; Gavaldà et 

al. 2003). 

After identifying the combination’s inhibitory effects over a wide range of doses, we set 

out to measure the evolutionary adaptation to this drug pair over a longer period. As in previous 

chapters, we controlled for potential differences in selection pressure by choosing four dosage 

combinations (two corresponding to single drug treatments and two to drug combinations) that 

lie along a contour of constant inhibition (Figure 3.1).  

3.3 Mutants Evolve in the presence of Ampicillin and Streptomycin Combination 

We performed lab evolution, as described in Chapter 2, by evolving twenty-four (24) 

replicate populations of E. faecalis at each of the four conditions for a total of 3 days. The first 

day (blue) and last day OD (red) growth curves are shown in Figure 3.2.  It is evident from these 

plots that growth of single drugs (red and blue axes) conditions were significantly increased by 

the last day of evolution, consistent with evolved resistance to one or more drugs, while growth 

in combination (magenta and cyan axes) seem to be much slower.  
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Figure 3.2: Growth Curves of Day 1 and Day 3 for All Mutants Indicate Resistance at a 
Glance. Optical density time series measured in liquid cultures of E. faecalis on the first (blue) 
and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three rows) 
corresponding to the four different conditions in Figure 3.1.  Rows 1-3: (AMP],[STR])=(0.320, 
0) (red axes); Rows 4-6: ([AMP],[STR])=(0.321, 1000) (magenta axes); Rows 7-9: 
([AMP],[STR])=(0.192, 1800) (cyan axes); Rows 9-12: ([AMP],[STR])=(0, 1800) (blue axes). 
All concentrations are given in micrograms per mL. 
 

3.4 Combinations of Ampicillin and Streptomycin Leads to Slower Evolution of Resistance 

To measure growth rate adaption over all 3 days, we estimated the per capita growth rate 

for each OD times series using nonlinear least squares fitting to an exponential function (see 

Methods). We can see in Figure 3.3 that the growth of each population is similarly inhibited on 

day one, as expected—consistent with our choice of dosage conditions providing constant 

inhibition levels. Meanwhile, the growth rate varies considerably after Day 1, with mutants in 

each condition responding differently. Similar to previous growth rate plots (Figures 2.3), some 
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populations exhibit fast adaption and approach wild-type drug-free levels within one day, while 

others increase slowly or not at all. 

 

We can better interpret these trends by separating the populations by condition and 

plotting the growth rate over time for each population (Figure 3.4a; small points) as well as the 

mean growth rate across all mutants in a given condition (Figure 3.4a; large points). Adaptation 

to AMP only (left panel, red) is gradual, with biggest step increase by day 3, while adaption to 

Figure 3.3: Growth Rate Adaptation Over 3 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 3 consecutive days of laboratory evolution. 
Rows 1-3: (AMP],[STR])=(0.320, 0) (red axes); Rows 4-6: ([AMP],[STR])=(0.321, 1000) 
(magenta axes); Rows 7-9: ([AMP],[STR])=(0.192, 1800) (cyan axes); Rows 9-12: 
([AMP],[STR])=(0, 1800) (blue axes). Adaptation rate for each mutant is given by the slope 
of the best-fit (least-squares) trend line through the relative growth rate time series. All 
concentrations are given in micrograms per mL. 
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STR alone (right panel, blue) increases rapidly by day 2 but plateaus, or even slightly decreases 

(on average), at day 3. Interestingly, however, adaption in both conditions containing two drugs 

(middle panels, magenta and cyan) is much slower, with both exhibiting low level growth on day 

2 and slightly decreased growth on day 3. To better understand these trends, we estimated the 

rate of growth adaptation for each population (Figure 3.4b).  On average, growth rate adaptation 

is significantly slower for the drug combinations (magenta and cyan) than for the individual 

drugs (red and blue) (student t-test, p<0.001 for all pair combinations between 2-drug and 1-drug 

conditions).  
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Figure 3.4: Combinations of Ampicillin and Streptomycin Leads to Slower Evolution of 
Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) over 3 days of 
evolution, in each of the 4 conditions: condition 1 [AMP] = 0.321ug/mL,  and [STR]=0 (red 
point in Figure 3.1), condition 2 [AMP] = 0.321ug/mL,  and [STR]=1000ug/mL (cyan point 
in Figure 3.1), condition 3 [AMP] = 0.192ug/mL, and [STR]=1800ug/mL (magenta point in 
Figure 3.1), and condition 4 [AMP] = 0,  and [STR]=1800ug/mL (blue point in Figure 3.1). 
Small points represent individual mutants.  Large circles are means taken across all mutants in 
a given condition (N=24 mutants). b. Growth adaptation rate for each condition; the units of 
adaptation are growth rate/day, where growth rate is measured in units such that the ancestral 
strains grow at a rate of 1 in the absence of drug. As an example, an adaptation rate of 0.25 
means it takes, on average, 3 days of adaption for the strains to fully adapt to the drug (i.e. to 
reach the drug-free growth rate of ancestral cells). Small points correspond to individual 
mutants; large points represent the mean of all mutants in a given condition. 
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3.5 Characterizing Resistance Levels of Selected Mutants to Individual Drugs  

To further dissect the growth rate adaption observed and understand the population’s 

slower growth adaptation in higher concentrations of both drugs, we measured resistance (IC50) 

to each drug across all conditions. Similar to previous experiments we selected 6 populations for 

each condition and directly measured the half-maximal inhibitory concentration (IC50) of each 

drug. Our results indicate that mutants evolved to drugs alone exhibited resistance to the 

selecting drug but, at day 3, show little to no collateral effects to the second drug (Figure 3.5a, 

red and blue plot). When the drugs are used in combination, cross-resistance is observed in both 

conditions, albeit at different levels (Figure 3.5a, magenta and cyan plot). In particular, resistance 

is lower to the drug used at the lower concentration in each mixture, indicating that resistance is 

driven by the more dominant drug in each of the two combinations. For example, in condition 2 

(Figure 3.5a, magenta plot) we observe increased resistance to AMP and slightly lower 

resistance to STR. Similarly, condition 3 (Figure 3.5a, cyan plot) leads to increased resistance to 

STR and much lower resistance to AMP.  Because collateral effects are relatively weak in this 

example, the decrease in adaptation rate when the drugs are used in combination must arise 

primarily from the drug interaction.  As an example, compare the day 3 results between 

conditions 1 (red) and 2 (magenta).  While the resistance levels to both drugs are virtually 

identical on day 3 (see top row, leftmost two panels of Figure 3.5a), the growth is significantly 

higher in ampicillin only (Figure 3.4a, leftmost two panels).  The selecting concentration of 

ampicillin is approximately equal in the two conditions—because of the antagonism between 

drugs, the addition of STR in condition 2 yields no additional inhibition. But despite the lack of 

inhibitory effect, the addition of STR dramatically slows adaptation of growth, revealing an 

evolutionary advantage of the antagonistic interaction. 
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Figure 3.5: Resistance of Mutants to Ampicillin Decreases with Streptomycin Dominant 
Combination. a. Resistance to ampicillin (AMP) over time for populations evolved under 4 
conditions: condition 1 [AMP] = 0.321ug/mL,  and [STR]=0 (red point in Figure 3.1), 
condition 2 [AMP] = 0.321ug/mL,  and [STR]=1000ug/mL (cyan point in Figure 3.1), 
condition 3 [AMP] = 0.192ug/mL, and [STR]=1800ug/mL (magenta point in Figure 3.1), and 
condition 4 [AMP] = 0,  and [STR]=1800ug/mL (blue point in Figure 3.1). Small points 
represent individual mutants.  Large circles are means taken across all mutants in a given 
condition (N=24 mutants). b. Two-dimensional representation of joint drug resistance at each 
day of the laboratory evolution.  Each point corresponds to a single mutant, with time moving 
from left (Day 1) to right (Day 3). 
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3.6 Conclusion 

Combination therapy with ampicillin and streptomycin is a potentially powerful clinical 

option for treating E. faecalis infections, in part because strong synergy between the drugs allows 

for potent inhibitory action at relatively low doses. However, this synergistic effect is often 

thwarted in the presence in E. faecalis cells with high-level aminoglycoside resistance, making 

this combination less likely to be utilized in clinical settings. Using large-scale laboratory 

evolution experiments, we quantified in vitro adaptation to different dosage combinations 

spanning several days. Our results reveal slower growth adaption when the drugs are combined, 

underscoring an underappreciated evolutionary advantage to this combination when the synergy 

has been eliminated. Slowed adaptation appears to be driven by the antagonistic interaction 

between the drugs, as IC50 results indicate weak levels of cross-resistance and collateral 

sensitivity. Overall, these results suggest that aminoglycoside + beta lactam combinations may 

be viable options even for strains with high-level aminoglycoside resistance, where the resulting 

antagonism has the unexpected benefit of stabilizing the combination against adaptation.  
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Chapter 4: Antagonistic Interaction 2 – Ceftriaxone plus Ciprofloxacin 

4.1 Introduction  

Ciprofloxacin is a member of the quinolone class of antibiotics, and resistance to 

quinolone in enterococci often occurs through target modifying mutations or multidrug efflux. 

(Miller, Munita, and Arias 2014; Arsène and Leclercq 2007;.Miller, Munita, and Arias 2014). 

While not used alone in the treatment of enterococci, ciprofloxacin combined with a beta-lactam 

has been successful in the treatment of human endocarditis infection with high-level 

aminoglycoside resistance in E. faecalis (Tripodi et al. 1998). In this chapter, we investigate 

evolution of E. faecalis exposed to combinations of ciprofloxacin and ceftriaxone, a beta lactam 

that—like ciprofloxacin—is not typically used in single-drug therapies (Arbeloa et al. 2004; 

Kristich, Rice, and Arias 2014). We show the combination to be antagonistic, making it an 

unlikely a priori choice for clinical treatment.  However, our results indicate dramatically slowed 

growth adaption when the drugs are combined, highlighting an unappreciated advantage in 

antagonistic interactions in clinical therapy for E faecalis.  Furthermore, we show that resistance 

to single drug treatments results in collateral sensitivity to the other drug, an effect that—along 

with the antagonistic interaction—leads to slowed evolutionary adaptation to the combination.  

4.2 Ceftriaxone and Ciprofloxacin Combination Gives Rise to Antagonistic Interaction in 

E. faecalis 

Evolution in ceftriaxone-ciprofloxacin combinations was measured using E. faecalis 

strain V583 in liquid cultures was exposed to a large range of drug doses.  We observed an 
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antagonistic interaction between the two drugs, as indicated by the concave contours of the 

growth isoboles (Figure 4.1a, raw data; 4.1b smoothed data). To understand why the 

combination is considered antagonistic, consider the growth in the presence of 25ug/mL of 

ceftriaxone and 0.15ug/mL of ciprofloxacin in Figure 4.1a. At such concentration, the drugs 

alone have a ~50-70% inhibition effect. However, when the drugs are combined, the result is an 

approximately 70% inhibition effect—that is, the combination does not inhibit growth much 

more than one of the drugs alone. 

 

Figure 4.1: Ceftriaxone and Ciprofloxacin Combination Gives Rise to Antagonistic 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as a 
function of two drug concentrations space. Four dots correspond to mutants selected with the 
same selective pressure at ~30% inhibition of growth with four different drug conditions. The 
first condition (in red) correspond to [CRO] = 48.51ug/mL, and [CIP]=0, the second condition 
(in cyan) correspond to [CRO] = 6.93ug/mL, and [CIP]=0.342ug/mL, the third condition (in 
magenta) correspond to [CRO] = 34.65ug/mL, and [CIP]=0.214ug/mL, and the fourth condition 
(in blue) correspond to [CRO] = 0, and [CIP]=0.4633ug/mL. Each condition is evolved over 4 
days with N=24 mutants per condition, in 96 well plates. b. Smoothed version of interaction. 
Colors from blue to yellow represent growth rates. See methods for smoothing details.  
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After measuring the drug interaction, we selected four dosage combinations for longer-

term evolution. We chose four dosage combinations—two corresponding to single drug 

treatments and two to drug combinations—to lie along a contour where growth is approximately 

30% of the native (drug free) growth (Figure 4.1). Keeping initial inhibition levels constant 

across all four conditions allowed us to interpret any differences in resistance adaptation as a 

reflection of drug concentration differences.  

Figure 4.2: Growth Curves of Day 1 and Day 4 for All Mutants Indicate Resistance at a 
Glance. Optical density time series measured in liquid cultures of E. faecalis on the first (blue) 
and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three rows) 
corresponding to the four different conditions in Figure 4.1.  Rows 1-3: ([CRO],[CIP])=(48.51, 
0) (red axes); Rows 4-6: ([CRO],[CIP])=(6.93, 0.342) (magenta axes); Rows 7-9: 
([CRO],[CIP])=(34.65, 0.214) (cyan axes); Rows 9-12: ([CRO],[CIP])=(0, 0.4633) (blue axes). 
All concentrations are given in micrograms per mL. 
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4.3 Mutants Evolve in the Presence of Ceftriaxone and Ciprofloxacin Combination 

We evolved twenty-four (24) replicate populations of E. faecalis at each of the four 

conditions for a total of 4 days. The first day (blue) and last day OD (red) growth curves are 

shown in Figure 4.2. We observe that the population of cells in one of the single drug conditions 

(blue) has a faster overall growth by day 4 followed by a higher growth towards the end of the 

day by the second single drug condition (red), while both combination conditions (magenta and 

cyan) were slowest. In general, most of the population in this drug pair demonstrated growth 

adaptation, albeit at different levels depending on condition.  

 

4.4 Combinations of Ceftriaxone and Ciprofloxacin Leads to Slower Rate of Growth 

Adaptation 

To further quantify growth rate adaption, we fit each OD time series to an exponential 

function (see Methods) to estimate the per capita growth rate at each curve. In Figure 4.3 we can 

see that the growth of each population is similarly inhibited on day one—consistent with the 

choice of dosage conditions providing constant inhibition levels. By contrast, the growth rate 

varies after Day 1, with mutants in each condition responding differently. Some populations 

indicate a very rapid adaption and approach wild-type drug-free levels within one day, while 

others increase slowly or not at all.  

To further understand these dynamic, we separated the populations by condition and 

plotted the growth rate over time for each population (Figure 4.4a; small points) as well as the 

mean growth rate across all mutants in a given condition (Figure 4.4b; large points). First, 

consider the cases where the drugs are used alone. Adaptation to CRO only (left panel, red) is 

initially fast followed by gradual increase on days 3 and 4, while adaption to CIP only (right 
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panel, blue) rapidly increases after day 1 and plateaus by day 3 and 4. By contrast, the adaption 

in both conditions containing the drugs together (middle panels, magenta and cyan) is much 

slower, with both exhibiting substantial growth only at day 4 of the evolution.  

 

Figure 4.3: Growth Rate Adaptation Over 4 days of Evolution for All Mutants. Per capita 
growth rate of E. faecalis cultures over 4 consecutive days of laboratory evolution. Rows 1-3: 
([CRO],[CIP])=(48.51, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(6.93, 0.342) (magenta axes); 
Rows 7-9: ([CRO],[CIP])=(34.65, 0.214) (cyan axes); Rows 9-12: ([CRO],[CIP])=(0, 0.4633) 
(blue axes). Adaptation rate for each mutant is given by the slope of the best-fit (least-squares) 
trend line through the relative growth rate time series. All concentrations are given in 
micrograms per mL. 

 

To quantify these trends, as described in Chapter 2, we estimated the rate of growth 

adaptation r— defined as the slope of the best-fit trend line through the relative growth rate time 
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blue) (student t-test, p<0.001 for all pair combinations between 2-drug and 1-drug conditions). A 

slower growth adaption in the presence of two drugs is interesting because it highlights a highly 

unappreciated advantage of CRO-CIP combination therapy: even at higher dosage of drugs, the 

combination facilitates slower adaptation after four days of evolution. 

 
Figure 4.4: Antagonistic Combinations of Ceftriaxone and Ciprofloxacin Leads to Slower 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) over 4 
days of evolution, in each of the 4 conditions: condition 1 [CRO] = 48.51ug/mL,  and [CIP]=0 
(red point in Figure 4.1), condition 2 [CRO] = 6.93ug/mL,  and [CIP]=0.342ug/mL (cyan point 
in Figure 4.1), condition 3 [CRO] = 34.65ug/mL, and [CIP]=0.214ug/mL (magenta point in 
Figure 4.1), and condition 4 [CRO] = 0,  and [CIP]=0.4633ug/mL (blue point in Figure 4.1). 
Small points represent individual mutants.  Large circles are means taken across all mutants in a 
given condition (N=24 mutants). b. Growth adaptation rate for each condition; the units of 
adaptation are growth rate/day, where growth rate is measured in units such that the ancestral 
strains grow at a rate of 1 in the absence of drug. As an example, an adaptation rate of 0.25 
means it takes, on average, 4 days of adaption for the strains to fully adapt to the drug (i.e. to 
reach the drug-free growth rate of ancestral cells). Small points correspond to individual mutants; 
large points represent the mean of all mutants in a given condition. 
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4.5 Individual Drugs Tend toward Collateral Sensitivity and Combinations Tend Toward 

Cross-Resistance 

The slower growth rate adaptation observed for conditions with both drugs may be due to 

the populations’ weakened ability to survive in the presence of both drugs. To investigate these 

dynamics, we select 6 populations for each condition and directly measured the half-maximal 

inhibitory concentration (IC50) of each drug.  These results demonstrate that mutants evolved to a 

single drug alone quickly become resistant to that drug, as expected. Surprisingly, however, they 

exhibit increased sensitivity to the second drug (Figure 4.5a, red and blue plot).  

Resistance in the drug combination is quite different.  When evolved in either of the 

conditions involving both drugs, the populations exhibit collateral resistance, with a higher 

relative resistance to CRO than CIP in both combinations, (Figure 4.5a, magenta and cyan plot). 

Although resistance to CIP in the case of the third condition (cyan) is quite variable across 

biological replicates, the general trend is in the direction of higher resistance. We also notice that 

mutants from the combination condition converge in the first quadrant of a drug-drug resistance 

plot by day 3, signifying cross resistance, while individual drags converge close to quadrant 2 

and 4, where there is more collateral sensitivity to ciprofloxacin and ceftriaxone (Figure 4.5b). 

Interestingly, these results suggest that the populations are, on average, finding different 

evolutionary solutions to each dosage combination, with high-level resistance to each drug 

associated with a collateral sensitivity that makes it an untenable solution in the presence of both 

drugs.  
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Figure 4.5: Single Drug Conditions Tend Toward Collateral Sensitivity and Combinations 
Tend Toward Cross-Resistance a. Resistance to ceftriaxone (CRO, top panels) and 
ciprofloxacin (CIP, bottom panels) over time for populations evolved under 4 
conditions: condition 1 [CRO] = 48.51ug/mL,  and [CIP]=0 (red point in Figure 4.1), condition 2 
[CRO] = 6.93ug/mL,  and [CIP]=0.342ug/mL (cyan point in Figure 4.1), condition 3 [CRO] = 
34.65ug/mL, and [CIP]=0.214ug/mL (magenta point in Figure 4.1), and condition 4 [CRO] = 0,  
and [CIP]=0.4633ug/mL (blue point in Figure 4.1). Resistance to each drug is defined as the log2 
scaled ratio of IC50 values between mutant and wild-type (ancestral) cells, with positive values 
indicating increased resistance and negative values increased sensitivity. Small points correspond 
to individual mutants, while large points are the population mean across mutants (N=6 mutants). 
b. Two-dimensional representation of joint drug resistance at each day of the laboratory 
evolution.  Each point corresponds to a single mutant, with time moving from left (Day 1) to 
right (Day 3).  
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To understand these trade-offs, we again assume that the effect of a mutation is to rescale 

the effective concentration of each drug (see Section 1.4 for more details). For each condition 

involving both drugs (magenta and cyan, Figure 4.6), we compared the rescaling of drug 

concentrations observed in that condition to the rescaling observed in each of the drugs alone 

(blue and red). In each case, the rescaling observed in mutants exposed to CRO alone (blue) or 

CIP alone (red) would produce suboptimal growth when compared to the rescaling observed at 

that particular condition (magenta or cyan arrows). The sub-optimality of the single-drug 

“solutions”—each of which shows high-level resistance to one drug—arises from a combination 

of an antagonistic interaction and the collateral sensitivity to the other drug. 

Figure 4.6: Combination Drugs Evolve to Find Most Optimal Rescaling Compared to 
Single Drug. The red and blue arrows represent the rescaling seen (on average) in mutants 
selected from the blue (CIP: 2.9X; CRO: 0.7X) and red conditions (CIP: 0.9X; CRO: 11.8X), 
respectively. The magenta (or cyan, depending on the panel) arrow is the average rescaling of the 
mutants selected from the magenta (CIP: 1.3X; CRO: 11.8X) or cyan condition (CIP: 1.9X; 
CRO: 4.5X). Colors from blue to yellow represent growth rates.   
   

4.6 Conclusion 

Treating enterococcus infections with high-level aminoglycoside resistance is an ongoing 

and serious clinical challenge. One potential option involves combining ciprofloxacin with a beta 
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lactam, a multi-drug therapy with demonstrated efficacy against E. faecalis endocarditis (Tripodi 

et al. 1998). While past studies have used ampicillin, rather than ceftriaxone, as the beat lactam 

in the combination, the results of this chapter motivate continued investigation of ceftriaxone in 

combination therapies—specifically with fluoroquinolones—despite its ineffectiveness as a solo 

agent. Such combinations would potentially require high doses of one or both drugs, yet our 

results point to several potential evolutionary advantages of the combination.  First, high level 

resistance to each drug can be associated with collateral sensitivity to the other drug, potentially 

slowing the evolutionary adaptation in combination treatments.  In addition, the drugs interact 

antagonistically, reducing their inhibitory effects (at a given concentration) upon initial treatment 

but potentially slowing adaption due to the convexity of the 2-drug growth surface. Our results 

are intriguing because they illustrate how both growth rate adaption and phenotypic resistance 

(IC50’s) may depend dramatically on drug dosage, even when inhibition level is unchanged. In 

the long run, we hope these results encourage further investigation of antagonistic combinations, 

in general, and combinations of beta lactams and fluoroquinolones, more specifically, to 

optimize trade-offs between inhibitory potential and evolutionary adaptation in therapies 

targeting enterococci. 
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Chapter 5: Additive Interaction – Ceftriaxone plus Ciprofloxacin 

5.1 Introduction  

To better understand the affects of evolution at longer time scales, we performed 

laboratory evolution starting from an E. faecalis strain that had previously been selected by 

increasing concentrations of ceftriaxone over approximately 30 generations. This strain, which 

we refer to as a high-level ceftriaxone resistant (HLCER) mutant, was then evolved in 

combinations of ceftriaxone and ciprofloxacin that all provide the same initial level of inhibition. 

Although high-level resistance to ampicillin, a beta-lactam like ceftriaxone, has been reported in 

literature, little is known regarding HLCER (Fontana et al. 1994). By combining ceftriaxone with 

ciprofloxacin we can directly compare our analysis with previous results of this combination 

(Chapter 4) of ancestral (drug-free wild-type) E. faecalis cells. Firstly, we show an additive drug 

interaction with this combination, a slight shift from the previously observed (weak) antagonistic 

interaction. Secondly, after three days of evolution, we observed slow and fast adaptation rates to 

ceftriaxone and ciprofloxacin alone, respectively, while the combination indicated adaptation 

rates in between the two extremes. Finally, our IC50 results shed light on the variable adaptation 

rates by indicating strong effects of collateral sensitivity and cross resistance. These results 

suggest that collateral effects may perhaps have a larger role to play in deriving resistance 

evolution at longer evolutionary timescales.  
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5.2 Ceftriaxone and Ciprofloxacin Combination Gives Rise to Additive Interaction in E. 

faecalis 

 Growth of E. faecalis strain V583 in liquid cultures was measured with a large range of 

doses of ceftriaxone-ciprofloxacin combinations. We observed an additive interaction between 

the two drugs, as indicated by the flat contour of the growth isoboles (Figure 5.1a, raw data; 5.1b 

smoothed data). To understand why the combination is considered additive, consider the growth 

in the presence of 800ug/mL of ceftriaxone and 0.2ug/mL of ciprofloxacin in Figure 5.1a. This 

point is at approximately 50% of minimum inhibitory concentration of the drugs alone. 

Meanwhile the drugs in combination indicate an ~50% inhibition effect, thus clearly indicating 

an additive interaction, where the combined effect is neither stronger nor weaker.  
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Figure 5.1: Ceftriaxone and Ciprofloxacin Combination Gives Rise to Additive 
Interaction in E. faecalis.  a. Interaction with colors representing per capita growth rate as a 
function of two drug concentrations space. Four dots correspond to mutants selected with the 
same selective pressure at ~30% inhibition of growth with four different drug conditions. The 
first condition (in red) correspond to [CRO] = 2200ug/mL, and [CIP]=0, the second condition 
(in cyan) correspond to [CRO] = 1400ug/mL, and [CIP]=0.296ug/mL, the third condition (in 
magenta) correspond to [CRO] = 600ug/mL, and [CIP]=0.395ug/mL, and the fourth condition 
(in blue) correspond to [CRO] = 0, and [CIP]=0.593ug/mL. Each condition is evolved over 3 
days with N=24 mutants per condition, in 96 well plates. b. Smoothed version of interaction. 
See methods for smoothing details. Note that in both plots, the red point actually lies far 
above the axis, at the point where ceftriaxone inhibition first reaches approximately 70%.  For 
visualization purposes, however, we have zoomed in on the primary region of interest but 
keep the red point as a reminder of the CRO-only point. Colors from blue to yellow represent 
growth rates. 
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With the drug interaction measured, we then selected four dosage combinations just as in 

chapter 4 that provide equal levels of initial inhibition. The four dosage combinations—two 

corresponding to single drug treatments and two to drug combinations—lie along a contour 

where growth is approximately 30% of the native (drug free) growth (Figure 5.1). Keeping initial 

inhibition levels constant across all four conditions allowed us to interpret any differences in 

resistance adaptation as a reflection of drug concentration differences.  
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Figure 5.2: Growth Curves of Day 1 and Day 3, Most Mutants Indicate Resistance at a 
Glance. Optical density time series measured in liquid cultures of E. faecalis on the first 
(blue) and last (red) day of laboratory evolution. Plots are arranged in 4 groups of 24 (three 
rows) corresponding to the four different conditions in Figure 5.1.  Rows 1-3: 
([CRO],[CIP])=(2200, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(1400, 0.296) (magenta axes); 
Rows 7-9: ([CRO],[CIP])=(600, 0.395) (cyan axes); Rows 9-12: ([CRO],[CIP])=(0, 0.593) 
(blue axes). All concentrations are given in micrograms per mL. 
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5.3 Mutants Evolve in the Presence of Ceftriaxone and Ciprofloxacin Combination 

Twenty-four (24) replicate populations of E. faecalis at each of the four conditions was 

evolved for a total of 3 days. The first day (blue) and last day OD (red) growth curves are shown 

in Figure 5.2. We observe that the population of cells in one of the single drug and combination 

condition (blue and magenta, respectively) have a faster overall growth by day 3, while the 

second single drug and combination condition  (red and cyan) were slowest. In general, most of 

the population in this drug pair demonstrated growth adaptation, albeit at different levels 

depending on condition.  
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Figure 5.3: Growth Rate Adaptation Over 3 days of Evolution for All Mutants. Per 
capita growth rate of E. faecalis cultures over 3 consecutive days of laboratory evolution. 
Rows 1-3: ([CRO],[CIP])=(2200, 0) (red axes); Rows 4-6: ([CRO],[CIP])=(1400, 0.296) 
(magenta axes); Rows 7-9: ([CRO],[CIP])=(600, 0.395) (cyan axes); Rows 9-12: 
([CRO],[CIP])=(0, 0.593) (blue axes). Adaptation rate for each mutant is given by the slope of 
the best-fit (least-squares) trend line through the relative growth rate time series. All 
concentrations are given in micrograms per mL. 
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5.4 Combinations of Ceftriaxone and Ciprofloxacin Leads to Variable Evolution of 

Resistance in E. faecalis. 

Growth rate adaptation was quantified by fitting each OD time series to an exponential 

function (see Methods) to estimate the per capita growth rate at each curve. Similar to chapter 4 

the growth of each population is inhibited on day one—consistent with constant inhibition levels 

provided by dosage condition selections. The growth rate after Day 1 varies, with mutants in 

each condition responding differently. Some of the populations exhibit fast adaptation and 

approach wild-type drug-free levels within two days, while others increase slowly or not at all.  

As in previous chapters, we separated the populations by condition and plotted the 

growth rate over time for each population (Figure 5.4a; small points) as well as the mean growth 

rate across all mutants in a given condition (Figure 5.4b; large points). First, consider the cases 

where the drugs are used alone. Adaptation to CRO only (Figure 5.4a, left panel, red) is very 

slow with little to no adaptation, while adaption to CIP only (Figure 5.4a, right panel, blue) 

rapidly increases after day 2. The adaptation in condition 2 containing the drugs together (Figure 

5.4a, middle-left panel, magenta) is faster then condition 3 (Figure 5.4a, middle-right panel, 

cyan), which shows no adaptation.  

To further quantify these trends, as described in Chapter 2-4, we estimated the rate of 

growth adaptation by finding the slope of the line—for each population over the three days of 

adaptation (Figure 5.4b). Growth rate adaptation is significantly slower, on average, for CRO 

and CIP+CRO conditions (red and cyan) than for CIP and CRO+CIP conditions (blue and 

magenta) (student t-test, p<0.001 for all pair combinations between 2-drug and 1-drug 

conditions). These opposing trends indicate interplay due to resistance in the two drugs, which 

can only be further characterized by understanding collateral effects.  
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Figure 5.4: Additive Combinations of Ceftriaxone and Ciprofloxacin Leads to Variable 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) 
over 4 days of evolution, in each of the 4 conditions: condition 1 [CRO] = 2200ug/mL, and 
[CIP]=0 (red point in Figure 5.1), condition 2 [CRO] = 1400ug/mL,  and [CIP]=0.296ug/mL 
(cyan point in Figure 5.1), condition 3 [CRO] = 600ug/mL, and [CIP]=0.395ug/mL (magenta 
point in Figure 5.1), and condition 4 [CRO] = 0,  and [CIP]=0.593ug/mL (blue point in Figure 
5.1). Small points represent individual mutants.  Large circles are means taken across all 
mutants in a given condition (N=24 mutants). b. Growth adaptation rate for each condition; 
the units of adaptation are growth rate/day, where growth rate is measured in units such that 
the ancestral strains grow at a rate of 1 in the absence of drug. As an example, an adaptation 
rate of 0.25 means it takes, on average, 3 days of adaption for the strains to fully adapt to the 
drug (i.e. to reach the drug-free growth rate of ancestral cells). Small points correspond to 
individual mutants; large points represent the mean of all mutants in a given condition. 
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5.5 Single and Combination Drugs Exhibit Both Collateral Sensitivity and Cross-

Resistance Effects 

The trends observed in the growth rate adaptations across the four conditions indicate 

trade-offs between resistance levels to the two drugs that result in variable outcomes in 

combination. To investigate these dynamics, as in chapter 2-4 we selected 6 populations for each 

condition and directly measured the half-maximal inhibitory concentration (IC50) of each drug.  

These results demonstrate that mutants evolved to CRO alone show low level resistance to both 

drugs (Figure 5.5a). Meanwhile, mutants evolved to CIP alone quickly become resistant to that 

drug (Figure 5.5a, bottom panel), but exhibit increased sensitivity to the second drug (Figure 

5.5a, top panel). 

Furthermore, evolution in condition 2 leads to little resistance to CRO (Figure 5.5a, top 

panel) but increased resistance to CIP (Figure 5.5a, bottom panel). On the other hand, evolution 

in condition 3 leads to sensitivity to CRO (Figure 5.5a, top panel), but resistance to CIP (Figure 

5.5a, CIP panel). These results make the significant role of cross-resistance and collateral 

sensitivity evident and clarify our evolution where adaptation is faster in condition 2 and much 

slower in condition 3 (Figure 5.4b, magenta and cyan). In particular, due to weak cross-

resistance shown by CRO, the strong collateral sensitivity exhibited by CIP to CRO is 

responsible for driving adaptation in the combination to be much slower.   

There is also a clear spread of mutants across the different conditions that are between 

quadrant 2 and 3 signifying cross resistance and collateral sensitivity to ciprofloxacin and 

ceftriaxone (Figure 5.5b). Intriguingly, these results suggest that while populations adapted to 

ceftriaxone might have run out of solutions, in the presence of ciprofloxacin the adaptation to 

those mutants can be slowed to a halt.  
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Figure 5.5: Single and Combination Drugs Exhibit Both Collateral Sensitivity and 
Cross-Resistance Effects a. Resistance to ceftriaxone (CRO, top panels) and ciprofloxacin 
(CIP, bottom panels) over time for populations evolved under 4 conditions: condition 1 
[CRO] = 2200ug/mL, and [CIP]=0 (red point in Figure 5.1), condition 2 [CRO] = 1400ug/mL, 
and [CIP]=0.296ug/mL (cyan point in Figure 5.1), condition 3 [CRO] = 600ug/mL, and 
[CIP]=0.395ug/mL (magenta point in Figure 5.1), and condition 4 [CRO] = 0,  and 
[CIP]=0.593ug/mL (blue point in Figure 5.1). Small points represent individual mutants. 
Resistance to each drug is defined as the log2 scaled ratio of IC50 values between mutant and 
wild-type (Ceft Mutant) cells, with positive values indicating increased resistance and 
negative values increased sensitivity. Small points correspond to individual mutants, while 
large points are the population mean across mutants (N=6 mutants). b. Two-dimensional 
representation of joint drug resistance after three days of the laboratory evolution. Each point 
corresponds to a single mutant.  
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5.6 Conclusion 

 To better understand the dynamics of drug combinations against mutants evolved at 

longer-timescales we chose to apply our experimental methods to a mutant with high-level 

ceftriaxone resistance (HLCER) after four days. Although the presences of these specific 

mutants in enterococci have not been identified in the clinic, they serve as an example for testing 

the power of combination therapy and understanding the phenotypic outcomes to be expected. 

An additive drug interaction was determined for HLER mutants grown in the combination of 

ceftriaxone and ciprofloxacin, which is a shift from ancestral interaction results being 

antagonistic. These results are consistent with previous studies that show drug interactions can 

change following the acquisition of resistance (Wood et al. 2014; C Munck et al. 2014) and they 

represent a notable limitation to the current approach. Specifically, the change in the drug 

interaction on longer timescales (in this case, roughly 30 generations) indicates that the growth 

response surface measured in ancestral cells can only be used for interpreting evolution on 

shorter timescales. Furthermore, because the interaction is essentially additive in the initial ceft-

resistant strain, variation in adaptation rate is primarily attributable to collateral effects between 

the two drugs.  Overall, these findings represent one example where drug interaction changes as 

evolution progresses, leading to evolutionary dynamics dominated by collateral effects. 
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Chapter 6: Suppressive Interaction – Ciprofloxacin plus Tigecycline 

6.1 Introduction  

Tigecycline is a new antibiotic and there are no reports of its resistance in E. faecalis 

(Miller, Munita, and Arias 2014). It has been used in clinic at low minimum inhibitory 

concentrations (MIC) against infections, which include E. faecalis, such as in skin structure 

infections and intra-abdominal infections. Combination therapy with tigecycline and daptomycin 

a DNA synthesis inhibitor, against vancomycin resistant enterococci (VRE) has proven to be an 

effective treatment strategy (Miller, Munita, and Arias 2014; Murray 2018). Thus, in this 

combination of ciprofloxacin, a DNA synthesis inhibitor, and tigecycline we are testing two 

classes of antibiotics with clinical relevance for treatment of E. faecalis. While the ciprofloxacin-

tigecycline combination has not itself been applied in clinic, combinations between these drug 

classes have been used (O’Driscoll and Crank 2015).  

In this chapter, we measure evolutionary adaptation to the ciprofloxacin-tigecycline alone 

and in combination using laboratory evolution experiments spanning several days. Our results 

reveal that resistance to ciprofloxacin inclines towards low-level collateral sensitivity passed a 

critical concentration of tigecycline with no collateral effects in tigecycline. More importantly, 

we find drastically slower growth adaption passed the same critical concentration of tigecycline 

with ciprofloxacin, highlighting a significant feature of suppressive interactions.   
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Figure 6.1: Ciprofloxacin and Tigecycline Combination Gives Rise to Suppressive 
Interaction in E. faecalis. a. Interaction with colors representing per capita growth rate as a 
function of two drug concentrations space. Eleven dots correspond to mutants selected with the 
same selective pressure at ~30% inhibition of growth with eleven different drug conditions. The 
first condition (in red) correspond to [CIP] = 0.214ug/mL, and [TIG]=0, the second condition (in 
light red) correspond to [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, the third condition (rose) 
correspond to [CIP] = 0.321ug/mL, and [TIG]=0.009ug/mL, the fourth condition (in warm rose) 
correspond to [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, fifth condition (purple) corresponds 
to [CIP]=0.357ug/mL and [TIG]=0.018ug/mL, sixth condition (in navy) corresponds to 
[CIP]=0.357ug/mL and [TIG]=0.027ug/mL, seventh condition (sky blue) corresponds to 
[CIP]=0.428ug/mL and [TIG]=0.027ug/mL, eight condition (light blue) corresponds to 
[CIP]=0.357ug/mL and [TIG]=0.036ug/mL, ninth condition (warm sky blue) corresponds to 
[CIP]=0.214ug/mL and [TIG]=0.041ug/mL, tenth condition (warm blue) corresponds to 
[CIP]=0.071ug/mL and [TIG]=0.045ug/mL, eleventh condition (blue) corresponds to 
[CIP]=0ug/mL and [TIG]=0.047ug/mL condition is evolved over 3 days with N=24 mutants per 
condition, in 96 well plates. Refer to table 6.1 for color references b. Smoothed version of 
interaction. Colors from blue to yellow represent growth rates. See methods for smoothing 
details. 
 

6.2 Ciprofloxacin and Tigecycline Combination Gives Rise to Suppressive Interaction in E. 

faecalis.    

To investigate evolution in ciprofloxacin-tigecycline combinations, we first measured the 

per capita growth rate of E. faecalis strain V583 in liquid cultures exposed to a large range of 

drug doses. We observed a strongly antagonistic (suppressive) interaction between the two drugs, 
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as indicated by the concave contours of the growth isoboles (Figure 6.1a; raw data; 6.1b 

smoothed data).  

 

Condition Cipro Tige 
 1 0.214 0 		

2 0.25 0.0045 		
3 0.321 0.009 		
4 0.285 0.013 		
5 0.357 0.018 		
6 0.357 0.027 		
7 0.428 0.027 		
8 0.357 0.036 		
9 0.214 0.041 		
10 0.071 0.045 		
11 0 0.047 		

 
Table 6.1: Eleven conditions corresponding to particular concentrations of ciprofloxacin and 
tigecycline and their associated colors in Figure 6.1. 
 
 

To understand why the combination is suppressive, consider what happens when TIG is 

added to cells initially exposed to 0.2 ug/mL of CIP (Figure 6.1a).  In this regime, adding low 

concentrations of TIG—up to approximately 0.02ug/mL—will actually increase the population 

growth, despite the fact that CIP inhibits growth when administered on its own. This type of drug 

interaction, indicates that the joint effect of the combination is significantly lower than one 

would anticipate based on single drug effects.  Stated simply, the addition of an otherwise 

inhibitory drug TIG can actually promote growth in the presence of high concentrations of CIP.   

Next, we set out to measure the longer-term growth response to this drug pair.  Evolution 

is expected to depend heavily on the level of growth inhibition in the initial cultures, which sets 

the selection pressure favoring resistant mutants. To control for initial inhibition, we chose  

eleven dosage combinations—two corresponding to single drug treatments and nine to drug 
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combinations—that lie along a contour where growth is approximately 30% of the native (drug 

free) growth (Figure 6.1). Because inhibition is constant across the four conditions, any 

differences between resistance adaptation should reflect drug concentration differences.  

6.3 Mutants Evolve in the Presence of Ciprofloxacin and Tigecycline Combination 

To perform the evolution, we evolved eight (8) replicate populations of E. faecalis at 

each of the eleven conditions for a total of 3 days. Similar to Chapter 2 we inoculated cells into 

media with each drug condition on Day 1, and each day following the populations were diluted 

into fresh media and drugs. After each inoculation, we measured the growth over time. In Figure 

6.2 we illustrate growth curves for the first day (blue) and last day OD (red). Evidently, the 

growth of single drugs (red and blue) conditions were significantly increased by the last day of 

evolution, while growth in combinations seem to vary across the range of conditions. 
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Figure 6.2: Growth Curves of Day 1 and Day 3 for All Mutants Indicate Resistance at a 
Glance. Optical density time series measured in liquid cultures of E. faecalis on the first (blue) 
and last (red) day of laboratory evolution. Plots are arranged in 11 groups of 8 corresponding to 
the 11 different conditions in Figure 6.1: row 1: [CIP] = 0.214ug/mL, and [TIG]=0, row 2: [CIP] 
= 0.071ug/mL, and [TIG]=0.045ug/mL, row 3: [CIP] = 0.321ug/mL, and [TIG]=0.009ug/mL, 
row 4: [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, row 5: [CIP]=0.357ug/mL and 
[TIG]=0.018ug/mL, row 6: [CIP]=0.357ug/mL and [TIG]=0.027ug/mL, row 7: 
[CIP]=0.428ug/mL and [TIG]=0.027ug/mL, row 8: [CIP]=0.357ug/mL and [TIG]=0.036ug/mL, 
row 9: [CIP]=0.214ug/mL and [TIG]=0.041ug/mL, row 10: [CIP]=0.071ug/mL and 
[TIG]=0.045ug/mL, row 11: [CIP]=0ug/mL and [TIG]=0.047ug/mL condition is evolved over 3 
days with N=8 mutants per condition, in 96 well plates. Refer to table 6.1 for color references.  

 

6.4 Combination of Ciprofloxacin and Tigecycline Leads to Drastically Slower Rate of 
Growth Adaptation 

 

Growth rate adaption was quantified just as in Chapter 2, by estimating the per capita 

growth rate for each OD times series using nonlinear least squares fitting to an exponential 
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function (see Methods). As predicted, in Figure 6.3 we can see that the growth of each 

population is inhibited the same on Day 1, this is in line with our choices of dosage conditions 

providing constant inhibition levels. Meanwhile, the growth rates are highly variable after Day 1, 

just as in previous growth rate curves (Chapters 2-5). 

Figure 6.3: Growth Rate Adaptation Over 3 days of Evolution for All Mutants. Per capita 
growth rate of E. faecalis cultures over 4 consecutive days of laboratory evolution. row 1: [CIP] 
= 0.214ug/mL, and [TIG]=0, row 2: [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, row 3: [CIP] 
= 0.321ug/mL, and [TIG]=0.009ug/mL, row 4: [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, 
row 5: [CIP]=0.357ug/mL and [TIG]=0.018ug/mL, row 6: [CIP]=0.357ug/mL and 
[TIG]=0.027ug/mL, row 7: [CIP]=0.428ug/mL and [TIG]=0.027ug/mL, row 8: 
[CIP]=0.357ug/mL and [TIG]=0.036ug/mL, row 9: [CIP]=0.214ug/mL and [TIG]=0.041ug/mL, 
row 10: [CIP]=0.071ug/mL and [TIG]=0.045ug/mL, row 11: [CIP]=0ug/mL and 
[TIG]=0.047ug/mL condition is evolved over 3 days with N=8 mutants per condition, in 96 well 
plates. Adaptation rate for each mutant is given by the slope of the best-fit (least-squares) trend 
line through the relative growth rate time series. Refer to table 6.1 for color references. 
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The dynamics of the population were further analyzed by plotting the growth rate over 

time for each population (Figure 6.4a; small points) as well as the mean growth rate across all 

mutants in a given condition (Figure 6.4a; large points). First, consider the cases where the drugs 

are used alone. Adaptation to CIP only (to left panel, red) is initially rapid followed by gradual 

increase on days 2 and 3, while adaption to TIG (bottom right panel, blue) shows only minimal 

change in growth.  

Interestingly, however, adaption to conditions containing two drugs slowly decreases to 

minimal growth, with day 2 decreasing first and then day 3 after, going through the spectrum of 

conditions from the first condition (CIP only, red) to the eleventh condition (TIG only, blue). To 

further quantify these trends, we estimated the rate of growth adaptation for each population 

(Figure 6.4b), as in previous chapters.  On average, we notice a marked and sudden decrease in 

growth adaptation as a function of tigecycline concentration, with adaption being minimal after a 

critical concentration (0.02ug/mL-0.04ug/mL) of tigecycline (red and blue).  

 

 

 

 

 

 



 72 

 
 

Figure 6.4: Combination of Ciprofloxacin and Tigecycline Leads to Drastically Slower 
Evolution of Resistance in E. faecalis. a. Adaptation time series (per capita growth rate) over 3 
days of evolution, in each of the 11 conditions: condition 1: [CIP] = 0.214ug/mL, and [TIG]=0, 
condition 2: [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, condition 3: [CIP] = 0.321ug/mL, and 
[TIG]=0.009ug/mL, condition 4: [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, condition 5: 
[CIP]=0.357ug/mL and [TIG]=0.018ug/mL, condition 6: [CIP]=0.357ug/mL and 
[TIG]=0.027ug/mL, condition 7: [CIP]=0.428ug/mL and [TIG]=0.027ug/mL, condition 8: 
[CIP]=0.357ug/mL and [TIG]=0.036ug/mL, condition 9: [CIP]=0.214ug/mL and 
[TIG]=0.041ug/mL, condition 10: [CIP]=0.071ug/mL and [TIG]=0.045ug/mL, condition 11: 
[CIP]=0ug/mL and [TIG]=0.047ug/mL. Refer to table 6.1 for color references. b. Growth 
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adaptation rate for each condition; the units of adaptation are growth rate/day, where growth rate 
is measured in units such that the ancestral strains grow at a rate of 1 in the absence of drug. As 
an example, an adaptation rate of 0.25 means it takes, on average, 3 days of adaption for the 
strains to fully adapt to the drug (i.e. to reach the drug-free growth rate of ancestral cells). Small 
points correspond to individual mutants; large points represent the mean of all mutants in a given 
condition. 
 
 

6.5 Resistance to Ciprofloxacin Tends Towards Low-Level Collateral Sensitivity at High 

Concentrations of Tigecycline With No Collateral Effects in Tigecycline 

To understand these dynamics, we selected 6 populations for each condition and 

measured the half-maximal inhibitory concentration (IC50) of each drug. Interestingly, these 

results indicate that as we step through the combination conditions, from low to high tigecycline, 

we notice a drastic shift down in ciprofloxacin resistance at a critical concentration (0.02ug/mL-

0.04ug/mL) of tigecycline (Figure 6.5, left panel), while tigecycline resistance is essentially 

unchanged (Figure 6.5, right panel). In particular, it seems that resistance is mostly driven by 

drug interaction at lower concentrations of tigecycline but a shift at a critical concentration of 

tigecycline leads to low-level sensitivity. Thus, what occurs before and after the critical 

concentration (0.02ug/mL-0.04ug/mL) suggests a phenotypic change that completely alters 

ciprofloxacin resistance.  
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Figure 6.5: Resistance to Ciprofloxacin Tends Towards Low-Level Collateral Sensitivity at 
High Concentrations of Tigecycline With No Collateral Effects in Tigecycline. Resistance to 
ceftriaxone (CIP, left panel) and tigecycline (TIG, right panel) as a function of tigecycline 
concentration for populations evolved under 11 conditions: condition 1: [CIP] = 0.214ug/mL, 
and [TIG]=0, condition 2: [CIP] = 0.071ug/mL, and [TIG]=0.045ug/mL, condition 3: [CIP] = 
0.321ug/mL, and [TIG]=0.009ug/mL, condition 4: [CIP] = 0.285ug/mL, and [TIG]=0.013ug/mL, 
condition 5: [CIP]=0.357ug/mL and [TIG]=0.018ug/mL, condition 6: [CIP]=0.357ug/mL and 
[TIG]=0.027ug/mL, condition 7: [CIP]=0.428ug/mL and [TIG]=0.027ug/mL, condition 8: 
[CIP]=0.357ug/mL and [TIG]=0.036ug/mL, condition 9: [CIP]=0.214ug/mL and 
[TIG]=0.041ug/mL, condition 10: [CIP]=0.071ug/mL and [TIG]=0.045ug/mL, condition 11: 
[CIP]=0ug/mL and [TIG]=0.047ug/mL. Refer to table 6.1 for color references. 

 

The adaptation behavior can be understood by again considering the effects of rescaled 

drug concentrations on the two-drug growth surface.  Figure 6.6 illustrates the expected growth 

effect at each condition due to a 3X reduction in CIP, similar to what is observed in populations 

selected by CIP only. The results indicate that growth drastically decreases as TIG concentration 

increases, becoming zero at the critical TIG concentration. Consistent with our experiments, this 

analysis shows that the growth benefit of CIP rescaling is eliminated at higher TIG 

concentrations, as the growth rate isoboles become almost vertical, minimizing any effect of CIP 
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rescaling.  As a result, adding TIG to a CIP therapy can potentially stall resistance evolution, 

even when the concentration of CIP has not changed. 

 

Figure 6.6: Rescaling CIP Results in Drastic Decline of Growth at Higher TIG. Isobole plot 
of TIG-CIP combination with arrows from red to blue which corresponding to the 3X rescaling 
of CIP concentration of each condition (colored dot) after evolution. Inset on the top right corner 
illustrates growth after rescaling of CIP as a function of increasing TIG concentration.  
 
 

6.6 Conclusion 

 
Although combination therapy with ciprofloxacin and tigecycline has not been shown 

directly in clinic, combinations with drugs from similar classes have been shown as a clinical 

option for treating E. faecalis infections. We find that TIG-CIP combinations are strongly 

suppressive, which conventional wisdom says would be sub-optimal to clinical use. However, 

our results reveal that growth adaption and ciprofloxacin resistance can be entirely eliminated by 

adding a sufficiently high concentration of tigecycline. This result is unexpected because it 
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suggests that suppressive interactions—which would typically be ignored in clinical therapies—

can have a strong evolutionary advantage, similar to results in E. coli (R Chait, Craney, and 

Kishony 2007).  In addition, our findings suggest that tigecycline may be an important 

component of combination therapies, not merely because resistance to tigecycline is rare, but 

also because its suppressive effects can potentially stall resistance to DNA synthesis inhibitors. 
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Chapter 7: Conclusion 

In this work, we investigated the impact of drug interaction and collateral effects on 

evolutionary adaptation in multidrug resistant E. faecalis. E. faecalis is an opportunistic 

pathogen that contributes to multiple human infections, including endocarditis, bacteremia, 

urinary tract infections, and medical device infections. Numerous synergistic drug combinations 

for E. faecalis have been identified—and several are commonly used in clinical practice as the 

first-line of care. However, the evolution of resistance arising in these combinations is not well-

understood, as the combined effects of drug interactions and collateral sensitivity can be difficult 

to disentangle. We therefore had two main goals:  1) to investigate clinically relevant drug 

combinations through high-throughput laboratory evolution, and 2) to provide a new case study 

that addresses an outstanding question in the field: whether collateral effects or drug interactions 

drive the rate of resistance adaptation. Our results indicate that both effects can play important 

roles, depending on the drug pair and the exact dosages.  Furthermore, our work extends 

previous arguments based on geometric rescaling of drug concentrations to provide a simple 

template for predicting adaptation when both drug interactions and collateral effects are present. 
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Table 7.1: Summary of adaptation and collateral responses from all drug interactions examined 
in this study. 
 

Our experiments quantified the rate of growth adaptation and drug resistance of E. 

faecalis exposed to clinically relevant drug combinations exhibiting four different classes of 

interactions, which included synergistic, additive, antagonistic and suppressive (Table 7.1). By 

keeping selective pressure constant at the onset of evolution among all of the tested drug 

interactions we were able to clearly identify the impact of drug concentrations on the evolution 

of resistance. We identified a wide range of evolutionary behavior, including both increased and 

decreased rates of adaptation, depending on the specific interplay between drug interaction and 

collateral drug sensitivity (Table 7.1).  

To further understand the dynamics leading to these effects we generalized previous 

quantitative models based on drug concentration rescaling to account for collateral sensitivity 

between drugs. Our results stress trade-offs between drug interactions and collateral effects 

Drug Combo Drug Interaction Adaptation Response Collateral Response 

CRO+AMP Synergistic 2 drug adaptation > 1 drug Cross-Resistance 

AMP+STR Antagonistic 1 2 drug adaptation < 1 drug 

Drug alone: collateral 
sensitivity 

Drugs Together: weak cross-
resistance 

CRO+CIP Antagonistic 2 2 drug adaptation < 1 drug 

Drug alone: collateral 
sensitivity 

Drugs Together: cross-
resistance 

CRO+CIP Additive 2 drug adaptation ~ 1 drug 

Drug alone and together show 
cross-resistance and collateral 

sensitivity. 
 

CIP+TIG Suppressive 
2 drug adaptation << 1 

drug 

Collateral effect from one 
adapted drug and no effect 

from second 
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during the evolution of multi-drug resistance and, more specifically, emphasize unrecognized 

evolutionary benefits of particular drug pairs in targeting aminoglycoside-resistant enterococcus. 

Most notably, our results demonstrate slowed growth adaptation in antagonistic combinations, 

with the strongest antagonistic (suppressive) combination leading to completely halted 

adaptation. Although higher concentrations of drugs may carry more risk in terms of potential 

exposure to drugs alone, faster adaptation to synergistic combinations as seen in these in vitro 

laboratory experiments are potentially as risky.  

While we hope these studies will motivate continued work, both in vitro and in clinic, we 

would like to point out several limitations to our study. First, our goal was not to investigate the 

specific molecular mechanisms involved in drug adaption, but instead to provide a quantitative 

picture of resistance evolution that does not require extensive molecular-level knowledge, which 

many times is not available. However, the richness of the observed phenotypes points to complex 

and potentially interesting genetic changes that can be partially resolved with modern sequencing 

technologies. For example, cross-resistance observed between ceftriaxone and ampicillin could 

arise due to mutations leading to saturating production of penicillin-binding protein 5 (Pbp5), 

which is a common binding protein for both drugs and a known mechanism of resistance to 

ampicillin in enterococci, thus indicating a single mutation capable of resisting both drugs and 

leading to cross-resistance (Arbeloa et al. 2004; Kristich, Rice, and Arias 2014). We can also 

speculate that the collateral sensitivity seen between ceftriaxone and ciprofloxacin could be due 

to mutations which up regulate the production of multi-drug efflux pumps (MDRs), a known 

mechanism of resistance found in Enterococci against ciprofloxacin  (Miller, Munita, and Arias 

2014; Davis et al. 2001) , which could conceivably alter ceftriaxone resistance in counterintuitive 

ways. Perhaps most importantly, our results are based on in vitro laboratory experiments, which 
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provide a well-controlled but potentially artificial environment for evolutionary selection.  While 

in vitro studies form the basis for many pharmacological regimens, the ultimate success or 

failure of new therapies must be evaluated using in vivo model systems and, ultimately, 

controlled clinical trials.  

Our future work will hope to build on these results in several important ways. Firstly, 

computer automated bioreactors allow for the application of more complex—and perhaps 

clinically relevant—drug dosing schedules, which may more accurately capture evolutionary 

pressures driving drug resistance (Karslake et al. 2016; Toprak et al. 2013). By applying more 

evolutionarily informed strategies of drug combinations based on methods developed in this 

work, it might be possible to mimic realistic drug dosing schedules and determine optimal dosing 

of drug combinations. Secondly, it is well known that in physiological conditions, multiple 

bacterial species may coexist in a given habitat; it would be interesting to extend the current 

approach to include increasingly complex, multispecies bacterial communities. Thirdly, 

microbial growth often occurs not in planktonic populations, but instead in surface-associated 

biofilms, where spatial heterogeneity and complex community dynamics can dramatically alter 

the response to antibiotics.  In E. faecalis, for example, sub-inhibitory doses of cell wall 

inhibitors may actually promote biofilm growth (Yu, Hallinen, and Wood 2018). Adaptation to 

combination therapies may also differ between biofilm and planktonic communities, and 

approaches similar to those used in this thesis may help unravel evolutionary impacts of drug 

interactions and collateral effects in this unique context (Stewart and William Costerton 2001). 

Finally, our results reveal that simple rescaling arguments—similar to those originally introduced 

in (Remy Chait, Craney, and Kishony 2007)—can be used to understand many features of 

evolution in two-drug environments. Extending and formalizing these qualitative findings using 
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mathematical models—where evolutionary dynamics on faster timescales correspond to drug 

rescaling in pairwise interaction landscapes, while the landscape itself changes on slower 

timescales—is an exciting avenue for future work that is likely to provide both general insight as 

well as specific, experimentally testable predictions for how resistance evolves in multi-drug 

environments.  

Antibiotic resistance is a growing threat to public health, as modern medicine relies 

heavily on effective drugs for combatting bacterial infections. With more multi-drug resistance 

pathogens being discovered every day and the slow pace of discovery of new drugs to counter 

act pathogens, we are in the midst of a growing medical crisis, the impact of which was only 

recently recognized by the international community. Drug combinations are one potential 

approach to combat antibiotic resistance, but as this study demonstrates, evolution in multidrug 

environments is a complex process that will require continued investigation. Overall, our results 

represent a quantitative case study in the evolution of multidrug resistance in an opportunistic 

human pathogen, highlight both potential limitations and unappreciated evolutionary benefits of 

commonly used drug combinations, and provide a general framework for evaluating and 

predicting resistance evolution in multi-stress environments.   
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Chapter 8: Materials and Methods 

 

8.1 Bacterial strains and media  

In these studies, I used the Enterococcus faecalis V583 and OG1RF bacterial species. 

The V583 strain of E. faecalis was isolated from blood culture of patients from Barnes Hospital, 

St. Louis in 1987 whilst undergoing antimicrobial susceptibility profiling (Sahm et al. 1989). The 

OG1RF strain is a rifampicin and fusidic acid resistant derivative of OG1, which is human oral 

isolate (Gold, Jordan, and van Houte 1975; Oliver, Brown, and Clewell 1977; Dunny, Brown, 

and Clewell 1978). The V583 strain was used for all interaction and subsequent evolution 

experiments and the OG1RF strain was used initially for interaction experiments.  

The E. faecalis bacteria was inoculated from a single colony grown in brain heart 

infusion (BHI) medium containing 1.5% (w/v) bacteriological agar. BHI media was prepared 

using Millipore water and sterilized with autoclaving at 1210 C for 15 minutes. E. faecalis 

bacterial strains were grown overnight in the presence of BHI medium in a 370 C incubator with 

no shaking. Bacterial stocks were prepared for long term storage by mixing overnight cultures 

with sterilized 30% glycerol solution.  

Antibiotics utilized in these studies (Table 8.1) were prepared using sterilized Millipore 

water, diluted and aliquoted into single use micro-centrifuge tubes and stored in either -200 C or -

800 C for 3-6 months. All drugs and media were purchased from Dot Scientific, Sigma-Aldrich 

or Fisher Scientific unless indicated otherwise.  
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Antibiotic Inhibition Mechanism Abbreviation 

Ampicillin Cell wall synthesis AMP 

Ceftriaxone Cell wall synthesis CRO 

Ciprofloxacin DNA synthesis CIP 

Tigecycline Ribosomal 30S subunit TIG 

Streptomycin Ribosomal 30S subunit STR 

Table 8.1: List of antibiotics used in this thesis.  

8.2 Measuring growth curves of Enterococcus faecalis  

Overnight cultures of E. faecalis V583 bacteria were initially diluted 1:4 in fresh BHI 

medium and further diluted 1:100 in 96-well plates making a final 400x dilution. Dosage 

response curves were determined by introducing bacteria to 8 or 12-point increasing drug 

concentration gradient. Measurement of growth was accomplished by utilizing an EnSpire 

Multimode Plate Reader set to measure optical density (OD) at 600 nm wavelength (A600) every 

25 minutes for 12-14 hours at 300 C. Controls included measurement of drug-free wild-type cells 

and BHI medium as a blank.  

From the time series of A600, we determined growth rates by fitting the early exponential 

phase portion of curves (0.01 < A600 <0.1) to an exponential function (MATLAB 7.6.0 curve 

fitting toolbox, Mathworks). We normalized growth rates in the presence of single drugs (gi) or 

multiple drugs (gij) by the growth rate of cells in the absence of drugs. An example growth curve 

is shown in Figure 8.1. Standard Error of the fitted growth parameter is used to estimate 

uncertainty in growth rates. 
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Figure 8.1: Growth Rate Measurement. Time series of OD (A600 ) vs. time. Solid line is fitting 
to exponential function. Dashed lines show region of exponential growth. Growth rate is given 
by the slope of the line.  
 

8.3 Selecting drug pairs to obtain complete interaction contour curvature  

Drug interaction in E. faecalis has not been adequately studied before, thus we were required to 

obtain drug pairs in this model system that could serve to mimic the different drug interaction 

types (synergistic, antagonistic, additive and suppressive). Several combinations of drug pairs 

and corresponding drug ranges for each pair was tested in V583 and OG1RF strains to achieve 

complete interaction contour curvature. We began with a wide dynamic range of drug 

concentrations for each pair and decreased and further tuned the concentration levels to achieve 

complete curvature. Synergistic and suppressive combinations proved most difficult as the 

contour curvatures were either hidden in lower drug concentrations as in the case synergistic 

interactions or farther beyond the inhibition ranges of drug concentration as in the case of 

suppressive interactions. Drug interactions plots were smoothed using the cubic smoothing spline 

2 Supporting Text

2.1 Example Growth Curve

An example growth curve is shown in Figure S1.
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Figure S1: Growth Rate Measurement. Time series of A600 vs. time. Solid line,
fit to exponential function. Dashed lines, region of exponential growth. Growth
rate is given by the slope of the line.

2.2 Statistical Framework for Drug Combinations

The ultimate goal of our analysis is to establish a predictive relationship be-
tween the effects of small drug combinations (1- or 2-drug combinations) and
the effects of larger multi-drug combinations. Because mechanistic models for
large intracellular networks are often not tractable, we introduce a statistical
framework which, by construction, associates drug interactions to correlations
between stochastic variables. The model offers one way of establishing testable
predictions by first mapping experimental measurements to moments of a joint
probability distribution. The problem is then reduced to estimating the un-
known distribution, which can be achieved using statistical techniques, such
as entropy maximization, or (in principle) by incorporating other assumptions
about the underlying physical system.

Specifically, we assume that interactions between N drugs can be modeled
as correlations between N continuous stochastic variables, Xi, (i = 1...N), such
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function built into MATLab. In the end, we were able to obtain all of the different interaction 

types in the V583 strain with the following pairs:  

 Drug Pair Interaction Type  
1 Ampicillin and Ceftriaxone  Synergistic  
2 Ceftriaxone and Ciprofloxacin  Additive/Antagonistic 
3 Ampicillin and Streptomycin  Antagonistic  
4 Ciprofloxacin and Tigecycline  Suppressive  

Table 8.2: List of drug pairs and corresponding interactions found in E. faecalis V583 cells.  

8.4 Enterococcus faecalis evolution assay  

To perform evolution with a constant selection pressure 96-well plates were prepared 

with drug concentrations pre-determined based on drug interaction results. Accordingly, single 

and combination drugs were added to BHI media in 96-well plates. Based on the number of days 

of evolution with 1 plate per day, 3-4 plates were prepared and frozen in -200 C. The overnight 

culture of E. faecalis V583 was diluted 1:4 initially. After thawing 96-well evolution plates, 2µL 

of culture was inoculated into 200µL of solution (Drug and BHI) in each well, resulting in 400x 

diluted culture in the presence of drug. Plate tops were sealed with BIO-RAD Microseal ‘A’ film 

to minimize evaporation and prevent cross contamination. The plates were then taken to the 

EnSpire Multimode Plate Reader to measure growth over 18-24 hours at 300 C as discussed 

above. At the end of Day 1, the day’s plate was diluted 1:100 into the next day (Day 2) and 

grown again in the same way. 

Day 1 plates were stored by add 30% sterilized glycerol and freezing in -200 C/-800 C. 

This process was repeated for the rest of the 3-4 days of evolution until all growth measurements 

were completed. Growth data was transferred out of the EnSpire module for further analysis. 

Growth rate is determined by fitting growth data into a simple exponential function and 

calculating its slope. Growth adaptation rate for each condition over 3-4 days of evolution is 
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determined by finding the slope of the best-fit trend line through the relative growth rate time 

series. All experiments were performed inside a ThermoFisher 1300 Series A2 safety cabinet to 

achieve ample sterile conditions.  

8.5 Measuring IC50 of Enterococcus faecalis mutants  

In order to determine resistance and sensitivity of mutants to each drug, experiments were 

performed to estimate the IC50 of each drug by inoculating mutants into a drug gradient of 8-

points of increasing drug concentration (Figure 8.2). Initially, 96-well plates were prepared with 

set drug concentrations diluted with BHI medium consisting of a total volume of 200 µL per 

well. Selected mutants were grown from a frozen stock by swabbing and inserting into 1mL BHI 

medium and grown overnight at 370 C. After inoculation mutants were grown in 370 C for 20 

hours and taken to the EnSpire Multimodal Plate Reader for final optical density (OD) 

measurement at 600nm.  

Figure 8.2: IC50 Measurement. Cartoon depiction of a normal dosage response curve obtained 
to characterize mutant resistance to each drug. The curve is fit to a hill function, where K is the 
concentration of drug at which 50% growth inhibition is obtained (IC50). The average IC50 of 
three replicates for each mutant provided its resistance to each drug (left panel). Example fitted 
growth curve from actual data of WT cells (right panel).   
 

Drug 1 

g 
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OD measurements of E. faecalis mutants in the presence of drug were normalized to wild-type 

drug-free E. faecalis V583 cells. The dosage response curve of each mutant to each drug was fit 

to a Hill function 𝑓 𝑥 = (1/1 + (𝑥/𝐾)*) using nonlinear least squares fitting, where K is the 

half-maximal inhibitory concentration (IC50) and h is a Hill-coefficient defining the steepness of 

the dose-response. To determine resistance and sensitivity we define 𝜀 as log2 of mutant IC50 

normalized by the IC50 of wild-type drug free cells, wherein 𝜀 greater than zero indicated 

increased resistance and 𝜀 less than zero indicated increased sensitivity to one drug.  

𝜀 = 	 𝑙𝑜𝑔0
𝐼𝐶34 𝑀𝑢𝑡
𝐼𝐶34 𝑊𝑇
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