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Abstract 

 

G protein-coupled receptors (GPCR) constitute one of the largest family of transmembrane 

proteins that have been implicated in a multitude of diseases, including cancer and diabetes, and 

have been an important target in drug deve lopment. While experiment-based high-throughput 

screening for the unearthing of novel chemical compounds remains the de facto standard for drug 

discovery, virtual screening has been gaining acceptance as an important complementary method 

due to its high speed and low cost, which instead employs computers.  

 

This dissertation is aimed at the development of virtual screening algorithms as applied to GPCR’s, 

in addition to the construction of GPCR-related databases (GPCR-EXP, GLASS). MAGELLAN 

is a ligand-based virtual screening algorithm that makes inferences about what a GPCR would 

potentially bind based on sequence- and structure-based alignments. Building on top of this work, 

a sequential virtual screening pipeline combining MAGELLAN with AutoDock Vina was 

constructed for the discovery of novel, bifunctional opioids with mu opioid receptor (MOR) 

agonist and delta opioid receptor (DOR) antagonist activity.  

 

In the process of developing the virtual screening algorithms, two GPCR-related databases were 

constructed to provide necessary data for the study. GPCR-EXP is a database of experimentally-

validated and predicted GPCR structures. Important features include semi-manual curation of data, 

weekly updates, a user-friendly web interface, and high-resolution structure models with GPCR-

I-TASSER, which many of the other GPCR-related databases lack. Additionally, GLASS database 

was developed in response to the absence of databases dedicated to GPCR experimental data. As 

a result, pharmacological data was pooled and integrated into a single source, resulting in over 

500,000 unique GPCR-ligand associations; this made it the most comprehensive database of its 

kind thus far, providing the community with an accessible web interface, freely-available data, and 

ligands ready for docking.  
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MAGELLAN utilized pharmacological data from GLASS to infer from the ligands of sequence- 

and structure-based homologues what a target GPCR would bind. It was tested on two public 

virtual screening databases (DUD-E and GPCR-Bench) and achieved an average EF of 9.75 and 

13.70, respectively, which compared favorably with AutoDock Vina (1.48/3.16), DOCK 6 

(2.12/3.47), and PoLi (2.2). Lastly, case studies with the mu opioid and motilin receptors 

demonstrated its applicability to virtual screening in general, as well as GPCR de-orphanization. 

Subsequently, MAGELLAN was combined with AutoDock Vina into a novel, sequential virtual 

screen pipeline against both MOR and DOR to compensate for the weaknesses of each algorithm. 

Retrospective virtual screens against both MAGELLAN and AutoDock Vina were established for 

both receptors, and both methods were reported to have over-random discrimination between 

actives and decoys using the GPCR-Bench dataset.  

 

In conclusion, structure (GPCR-EXP) and pharmacological data (GLASS) databases were 

constructed to provide users with a comprehensive source of GPCR data. Moreover, GLASS made 

it possible for MAGELLAN to be developed, providing it a rich source of experimental data. In 

return, this resulted in greater performance than competing algorithms. Lastly, a prospective 

sequential virtual screening pipeline was established for the discovery of novel bifunctional 

opioids, in which the models for both methods were validated to perform well. In future studies, 

cAMP and β-arrestin assays will be run on a subset of compounds from a prospective virtual screen 

in the hopes of discovering a novel opioid with reduced tolerance and withdrawal.  
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CHAPTER 1.  

Introduction to Chemoinformatics and Bioinformatics 

 

1. Brief Overview 

In research today, the modern scientist will likely at some point of their career encounter chemical 

or biological problems when manual analysis of their data is impractical due to its large size.  

Situations such as these require the usage of computational methods in order to make it possible 

to sift through data. However, this has typically required some knowledge of programming in the 

past, which can unfortunately be a steep learning curve. Fortunately, many web servers are 

available nowadays to provide an accessible interface to an algorithm of interest for the scientist 

lacking experience in computational methods. As a result, computational methods for life science 

have seen an explosion in usage in the scientific community 

 

Chemoinformatics is the application of computers in solving chemical problems, where a major 

application is in the in silico design of drugs. Within this field, cheminformatics is a specialized 

discipline that aims for efficiently working with enormous amounts of chemical data. For example, 

chemical similarity can be calculated between a reference compound and a virtual compound 

library in order to very quickly find chemically-similar compounds, as opposed to manually 

checking by eye.  Whereas cheminformatics works with chemical data, bioinformatics was 

developed to address biological problems on a large scale. For example, the alignment of DNA or 

protein sequences have historically been done manually, but with the introduction of sequence 

alignment algorithms decades ago, a reference sequence can be aligned with a database of 

sequences in a blink of an eye.  

 

Throughout this chapter, I will cover various aspects of chemoinformatics and bioinformatics, 

including computer representations of chemical compounds and proteins, chemical and biological 

databases, general bioinformatics, and virtual screening. Focus will be spent on concepts used in 
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the following chapters. Additionally, background information for G protein-coupled receptors 

(GPCR) will be presented. Finally, I will end with a segue into their role in my dissertation.  

 

 

2. Computer Representation of Chemical Compounds and Proteins 

Chemical compounds and proteins can be represented by a computer in a multitude of ways. Some 

formats are highly descriptive (i.e. PDB file format), while others are abstracted for fast 

calculations (i.e. molecular fingerprints). There are a dizzyingly large number of formats available, 

many frustratingly developed for proprietary purposes by companies, adding to the increasing lack 

of a standard. In this section, I will describe all of those used within this dissertation.  

 

2.1 PDB File Format 

Most researchers in biochemistry will be fairly acquainted with the PDB file format, since it has 

been primarily used to describe the three-dimensional structure of proteins, DNA, and RNA. This 

file format was first conceived in 1976 as a means to help researchers exchange protein coordinates 

through a database.1 Not surprisingly, its format has been revised and updated numerous times 

over the years. Essentially, a PDB file is a text file that contains various information about the 

Figure 1.1 – Representative Portion of PDB File. The portions with the ‘Record Name’ of ATOM helps software 

understand the identity and location of atoms and therefore help correctly process relevant information from the file. The 

amino acids, Glycine (GLY) in position 85 and asparagine (ASN) in position 86, from this structure are shown. 
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structure provided in specified ranges of columns. The file contains a variety of data, ranging from 

resolution and method used to solved structure to atomic coordinate specifications.  

 

One of the most important pieces of information within the PDB file is the ‘ATOM’ record name. 

An example is shown in Figure 1.1 that depicts the coordinates for two representative amino acids 

from a PDB structure. Each line depicts a single atom in the structure. For example, the first line 

corresponds to the backbone nitrogen of Gly-85. Furthermore, the atomic coordinates of this atom 

(-2.211, 29.344, -42.463) are given so that whichever algorithm or molecular visualization 

software is used can correctly process this representation.  

 

2.2 Line Notation 

Line notation allows for the representation of a chemical compound using a string of ASCII 

characters. Despite looking rather odd to the untrained eye, they are completely human readable, 

and someone familiar with the format would be able to interconvert between it and the 

corresponding 2D chemical structure. Nowadays, these are primarily used for chemical database 

searching. The Simplified Molecular-Input Line-Entry System (SMILES) and International 

Chemical Identifier (InChI) formats are currently the most widely used.  

 

SMILES strings were initially conceived in the 1980s as a means to make chemical compounds 

machine readable. Figure 1.2 shows the typical format of a SMILES string. Each letter represents 

an organic atom (B, C, N, O, P, S, F, Cl, Br, or I), and aromaticity is denoted with alternating equal 

signs (i.e. pyridine moiety: C4=CC=CC=N4). Additionally, rings are classified by including an 

opening and closing number (i.e. thiophene moiety: C1=C(SC=C1)). Single bonds are usually 

implicit, while double and triple bonds are represented as ‘=’ and ‘#’, respectively. The use of 

parentheses indicates branching, and stereochemistry is specified at chiral centers with ‘@’. 

SMiles ARbitrary Target Specification (SMARTS) strings were developed by the Daylight 

Chemical Information Systems as a robust extension of the SMILES string that provided expanded 

functionality, such as the ability to filter a compound database by substructure. However, one of 

the biggest drawbacks of this format is that there is no standard way in which to generate the 

SMILES string.2 This can complicate database searching, especially when a compound of interest 

cannot be found due to this problem.  
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InChI strings were developed in 2005 by the International Union of Pure and Applied Chemistry 

(IUPAC) in response to the inconsistencies produced by SMILES strings.3 Additionally, they were 

able to express more information than SMILES strings. An example is shown for oliceridine in 

Figure 1.2. All InChI strings start with ‘InChI=’, followed by the version number and an ‘S’, which 

corresponds to its standardization. Subsequently, there are six layers of information; the first layer 

is the most important and gives the chemical formula, atomic connections, and hydrogen atoms, 

while the others focus on other chemical aspects such as charge, stereochemistry, and isotopes. 

Also, it should be noted that the InChI format is conspicuously more difficult to read than SMILES. 

As seen from Figure 1.2, InChI strings can be long and unwieldy, so a shorter version was also 

developed as a companion to the original. Known as InChI keys, they are 27-character hashed 

versions of InChI strings that allow for extremely fast chemical database searches due to their 

reduced length. Nevertheless, a previous study has demonstrated that a single duplicate for the first 

14 characters could theoretically occur 0.014% of the time in a database of 100 million 

compounds.4 Given that most chemical databases have well below this number of chemical 

compounds, it can be assumed that a duplication will likely not occur. A drawback of using the 

InChI key is that it cannot be converted back to its respective InChI string, thus these two 

descriptors always need to be paired.  

 

 

2.3 Molecular Fingerprints 

Molecular fingerprints provide an abstraction of the chemical features of compounds into binary 

vectors. All have a fixed length for purposes of comparison and can be used to calculate chemical 

similarity mind-bogglingly fast. Though efficient, they likely have the least specific information 

Figure 1.2 – SMILES and InChI Strings for Oliceridine. MarvinSketch was used for drawing and displaying the chemical 

structures, MarvinSketch 18.10.0, 2018, ChemAxon (http://www.chemaxon.com). 
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packed into its form. Over the years, various developments have aimed to squeeze as much 

information into a small space as possible. 

 

Substructure key-based fingerprints consist of a predefined set of substructures, and the number of 

possible bits is defined by their number. One of the most commonly-used fingerprints of this type 

is Molecular ACCess System (MACCS), first developed by MDL Information Systems (formerly 

Molecular Design Limited) in 1979. Interestingly, they were initially intended for use in database 

searching as opposed to virtual screening,5 which is the common method it is used for today. They 

come in two different flavors: one with 960 substructures, and the other with 166 of the most 

interesting substructures with corresponding SMARTS strings for drug discovery.5 Not 

surprisingly, the latter is far more popular in usage. The principle in which these work is that each 

position in the fingerprint corresponds to a substructure. If the compound has the substructure in 

its chemical structure, then the bit will be set to ‘1’. Else, it would be set to ‘0’. A drawback to 

using these types of fingerprints is that they are usually relatively sparse in content, in that they 

will have mostly zeros, as typical molecules will have very few of the substructures.   

 

Path-based fingerprints are constructed by analyzing every possible fragment in a molecule of a 

given linear path length, then hashing them all to produce the fingerprint. An example is given in 

Figure 1.3 for oliceridine, using a path length of 3. Occasionally, bit collisions occur when the 

same bit is assigned to two different fragments. However, this is not a common occurrence and 

can be reduced by increasing the fingerprint length. The Daylight fingerprint, developed by 

Daylight Chemical Information Systems (hence the namesake), is the most used out of all of these 

and typically consists of 1,028 bits.  

 

Circular fingerprints are very similar to path-based fingerprints in that they are hashed from a 

collection of molecular fragments. However, their method of fragment analysis is not based on 

fragments generated in a linear path, but rather, the chemical environment centered around each 

atom within a certain radius. An example for oliceridine is given in Figure 1.4, where a radius of 

2 was used. Here, fragments are generated by moving a certain radius away from a starting atom 

up until a diameter of 4, resulting in 3 fragments for the specified starting atom. The ECFP4 
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fingerprint is the industry standard, and not surprisingly, it has been shown to be among the best 

performing fingerprints in a recent benchmark that ranked diverse structures by similarity.6   

 

 

2.4 Chemical Table Files 

Another strategy for storing chemical information in a text file is chemical table file family of file 

formats. Originally developed by MDL Information Systems starting in the late 1970’s,7 they have 

become one of the most widely-used file formats, having been adopted by a vast majority of 

computational chemistry software. Of those in the family, I will focus upon the Structure-Data File 

(SDF) format. An example for monosodium glutamate is shown in Figure 1.5. In brief, the file 

Figure 1.3 – Hypothetical 10-bit Path-Based Fingerprint for Oliceridine. A fingerprint with a path length of 3 was used in 

this example. Only fragments found from a single starting atom (green circle) are shown. The path lengths of the fragments 

(0, 1, 2, 3) are numbered in bold. The asterisks (*) denote where there are bit collisions. MarvinSketch was used for 

drawing and displaying the chemical structures, MarvinSketch 18.10.0, 2018, ChemAxon (http://www.chemaxon.com). 

Figure 1.4 – Hypothetical 10-bit Circular Fingerprint for Oliceridine. A fingerprint with a radius of 2 was used in this 

example. Only fragments found from a single starting atom (innermost green circle) and onwards are shown. The diameters 

of the fragments (0, 2, 4) are numbered in bold. MarvinSketch was used for drawing and displaying the chemical structures, 

MarvinSketch 18.10.0, 2018, ChemAxon (http://www.chemaxon.com). 
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starts with three lines of a header block, which is mandatory but can be left empty if desired. This 

is followed by a counts line, which consists of specifications such as number of atoms, number of 

bonds, and so forth. The atoms block provides information about the coordinates and identity of 

the atom, while the bond block describes the connectivity between atoms. 2D coordinates are 

shown in the example, but 3D coordinates are also commonly used. The properties block denotes 

any existing charges or isotopes, as well as ending the molecular description. Up until this point, 

the file is essentially in Molfile format. Thus, SDF is different in that the subsequent associated 

data allow the inclusion of miscellaneous information not allowed in the main form, such as 

Figure 1.5 – Example SDF Format for Monosodium Glutamate.  
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IUPAC name and database identifiers. The tag for the data type is included inside angle brackets 

(‘<’, ‘>’), and the relevant data is placed on the line immediately following it.  

 

Originating from the now-defunct Tripos, the Mol2 format has achieved a similar level of 

popularity and usage as the SDF format. An example of this format for benzene is given in Figure 

1.6. Various aspects are almost identical to the SDF format, where various blocks are designated 

for counts, atom, and bond information, though with different column formatting. Moreover, each 

block is recognized starting with a record type indicator (i.e. @<TRIPOS>ATOM), followed by 

the corresponding data. Apart from these main record type indicators, there exists many others not 

available in SDF format, such as substructures and rotatable bonds.  

 

 

2.5 FASTA File Format 

As a ubiquitous format for proteins, the FASTA file format is a text file containing a head followed 

by the primary structure. On an interesting note, its namesake stems from a legacy sequence 

alignment software of the same name.8 An example for the mouse mu opioid receptor is given in 

Figure 1.7. The first line always begins with an angle bracket, ‘>’, followed with a personalized 

Figure 1.6 – Example Mol2 File Format for Benzene.  
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description of the protein of interest. In the following lines, the primary structure is shown, starting 

from the N-terminus. Though not required, there are typically 80 characters per line; this is because 

old terminals back in the 1980’s were only able to display this much text per line. 

 

 

3. Chemical and Biological Databases 

As the amount of data available to the scientific community increased over time, there became a 

distinct need to catalogue and organize it so that it could be easily accessible. Truly, gone are the 

days of hours-long expeditions to the library in search of publications that may or may not have 

been helpful to the question at hand. Amazingly, there now exist public databases that index data 

anywhere from the primary structures of proteins to various experimental values of ligands for a 

given receptor. To list and survey them would be out of the scope of this section, so I will briefly 

mention some of the more important databases used for the current dissertation.  

 

UniProt is the de facto standard source of information for proteins.9 This database originated from 

the merging of data from European Bioinformatics Institute (EBI), Swiss Institute of 

Bioinformatics (SIB), and Protein Information Resource (PIR) into an entity known as the UniProt 

consortium. The most commonly-used portion of the database is referred to as UniProt 

Knowledgebase (UniProtKB), which is subdivided into Swiss-Prot and TrEMBL. The former 

collection of data is manually annotated and reviewed by scientists for their respective proteins, 

while the latter refers to those that are computationally annotated from genomic data. Not 

surprisingly, TrEMBL contains a far larger quantity of data than Swiss-Prot. Within Swiss-Prot, a 

multitude of information about a protein of interest is available, such as primary structure, post-

translational modifications, function, subcellular localization, and known protein-protein 

interactions.  

 

Figure 1.7 – Example FASTA File Format for Mouse Mu Opioid Receptor.  
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The Protein Data Bank (PDB) is the single largest repository for protein, DNA, and RNA structures 

solved by structural biologists.10 It began as a united effort in the 1970’s to provide the scientific 

community with protein structures coded into punch cards.1 As the Internet came into fruition, it 

became possible to move the data onto an online platform for a higher throughput distribution. 

Thus, the first web-server for browsing the PDB was developed at Brookhaven National 

Laboratory in 1996.11 With the explosion of solved structures starting in the 1980’s, this resource 

became increasingly invaluable to life science researchers around the world.  

 

Chemical databases vary greatly in their content, providing anywhere from pure chemical data to 

experimental data for ligands and proteins. However, the base content of these databases is always 

chemical in nature. First released in 2009, ChEMBL is arguably the most massive database for 

molecules with drug-like properties and biological activity.12 As of the latest release (ChEMBL 

24.1), the database contain 1,828,820 unique compounds corresponding to 12,091 targets and 

15,207,914 activities from 69,861 publications, all manually annotated. A similar database 

founded over a decade earlier at University of California at San Diego is BindingDB,13 which also 

contain a large number of manually-curated affinity data. However, it has less of a focus on 

membrane receptors than ChEMBL and more strongly emphasizes enzymes targets.14 DrugBank 

is a chemical database whose topic of interest is information on drugs and their corresponding 

targets.15 Another interesting database of note is Psychoactive Drug Screening Program’s (PDSP) 

Ki database,16 which houses a sizeable number of experimental affinities. A large portion of their 

data is dedicated to G protein-coupled receptors (GPCR). Also, the International Union of Basic 

and Clinical PHARmacology’s (IUPHAR) Guide to Pharmacology is a chemical database that 

deals primarily with popular pharmacological targets, such as GPCR’s and ion channels.17 It is 

manually curated by experts, and only ligands that have been well characterized are included. In 

contrast, ChEMBL, BindingDB, and PDSP Ki are looser in their criteria for inclusion, where the 

binding mode or mechanism are largely unknown for most ligands. Lastly, PubChem is a pure 

chemical database maintained by the National Center for Biotechnology Information (NCBI),18 

containing approximately 93.9 million chemical compounds. Additionally, they have a gargantuan 

collection of bioactivity data from about 1.25 million high-throughput screening campaigns, each 

with several million values.  
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One of the most interesting aspects of chemical and biological databases is their interconnectivity 

to one another. In each chemical database, chemical compounds have a unique ID for identification 

purposes. For example, the ID for morphine in DrugBank is DB00295, while that for the same 

compound in ChEMBL is CHEMBL70. In many of the large databases, cross-references are 

provided so that other databases can be accessed for the same compound. Alternatively, ID 

mapping files are sometimes provided to facilitate the mapping between databases. Another 

important feature of most chemical databases is the utilization of chemical line notation, such as 

SMILES and InChI, for substructure or chemical similarity searching. Alternatively, the user can 

typically draw the molecule into a web applet, which would get translated into chemical line 

notation, as well. Finally, the data from these databases are all downloadable, which form the basis 

of the data used in many areas of chemoinformatics and bioinformatics research.  

 

4. Concepts in Bioinformatics 

The field of bioinformatics is concerned mainly with working on biological problems with 

computers when infeasible with manual human ability. The necessity for computers in biological 

problems first began when the first protein and nucleic acid sequences were acquired. One can 

only imagine the difficulties and tedium of having to compare multiple sequences by eye, thus 

having an algorithm compute the alignments proved to be the best tool for the task. From there, 

the field blossomed beyond sequences into the prediction of macromolecular structure of proteins, 

analysis of the regulation of gene and protein expression, and understanding of networks 

concerning protein interactions. Certainly, bioinformatics has grown into an important discipline 

in its own right and to cover it in its entirety would warrant a textbook. However, basic concepts 

used in this dissertation will be covered in this section as follows. 

 

4.1 Sequence Alignment 

Before the advent of sequence alignment algorithms, pioneering work in the analysis of the 

substitution of amino acids in the primary structure of proteins was performed by Margaret 

Dayhoff in 1978, which led to the development of the Point Accepted Mutation (PAM) matrix.19 

The premise of this was to check for the frequency of amino acid substitutions observed in nature 

among closely-related homologues. Phylogenetic trees were manually constructed for each of 71 

families of proteins with at least 85% sequence identity. For each branch in the phylogenetic trees, 
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the number of mismatched amino acids and their identity were recorded. For all 20 amino acids, 

the propensity for one residue to mutate to another was evaluated, which led to a 20 x 20 frequency 

table. The values from this table were ultimately transformed into a log odds values and became 

what is known as a substitution matrix. Another attempt was made in redefining the substitution 

matrix by Jorja and Steven Henikoff in 1992, which resulted in the BLOcks SUbstitution Matrix  

(BLOSUM) matrix.20 While Dayhoff’s PAM matrix was based on sequences with high global 

similarity, the BLOSUM matrix was derived on blocks that consists of un-gapped regions of 

aligned primary structures. Similar to PAM, the propensities for the substitution of one residue for 

another were calculated and converted into log odds ratio. Because of how they were designed, 

each matrix has their own set of strengths. The PAM matrix is better for tracking the evolutionary 

origin of proteins, while the BLOSUM matrix is great for finding conserved domains.21 

 

A seminal publication from Needleman and Wunsch in 1970 presented an algorithm for the 

alignment of amino acid sequences using dynamic programming. What this algorithm aims to find 

is an optimal alignment based on the global similarity of two given sequences. A matrix m x n is 

constructed, where m and n are the lengths of the first and secondary sequences, respectively. Each 

position in the matrix is scored by either insertion of a gap (up or left) or an alignment (diagonal). 

The former typically consists of a gap opening or gap extension penalty, depending on the current 

direction, while the alignment score will be taken from a scoring matrix, such as PAM or 

BLOSUM. The highest of the three sub-scores will be taken, and the direction will be recorded. 

After all possible paths have been computed, the algorithm backtracks starting from the last aligned 

residues for both sequences. The path with the highest scores is taken and stops when the first 

aligned residues are reached. The Smith-Waterman algorithm is a variation of the Needleman-

Wunsch algorithm in that it performs a local sequence alignment as opposed to global. Here, 

negative scores are set to zero, while the traceback starts instead on the cell with the highest score 

and ends when zero is reached. As a result, this is how local alignment is made possible. 

Additionally, the Gotoh extension to the Needleman-Wunsch algorithm allowed for the favoring 

of long consecutive gaps, as opposed to a collection of short gaps, with the introduction of the 

affine gap penalty.22 Though sequence alignment with dynamic programming is thorough and can 

yield optimal sequence alignments, its application to large databases with millions of sequences 

results in long computation times due to its need to compute every possibility in the alignment. 
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Thus, heuristic methods (i.e. something not optimal but sufficient for reaching the end goal) were 

developed to speed things up by orders of magnitude. 

 

Basic Local Alignment Search Tool (BLAST) is a landmark heuristic sequence alignment 

algorithm developed in 1990 by various scientists at NCBI.23 In brief, the reference sequence is 

broken down into k-letter words. Words matching a sequence in the database are then scored based 

on how well they match, then the high-scoring words are retained. If there is an exact match 

between a high-scoring word and the sequence, then this serves as a seed for an un-gapped 

alignment. If the alignment scores above a threshold value, then it is considered a match. Using 

this method, a large database of sequences can be aligned with a reference sequence in a short 

amount of time. A variant of BLAST called Position-Specific Iterative Basic Local Alignment 

Search Tool (PSI-BLAST) was developed in 1997 again at NCBI, which included some of the 

same scientists from the original version.24 This algorithm made it possible to discover distant 

relationships between proteins. It operated by first running BLAST on a reference sequence against 

a sequence database. Any proteins sequences found that are above a threshold are retained and 

used to construct a Position-Specific Scoring Matrix (PSSM); this is a L x 20 scoring matrix based 

on the amino acid conservation information for each residue of the reference sequence for each of 

the 20 amino acid residues among the aligned sequences. From the second iteration onwards, the 

PSSM is used for scoring, and any new protein sequences found above a threshold are retained for 

the re-generation of the PSSM. This is typically repeated 3 times or until convergence. Overall, 

both BLAST and PSI-BLAST have revolutionized bioinformatics, providing an efficient tool for 

the analysis of a large amount of sequence data. 

 

In contrast with pairwise sequence alignment methods such as BLAST, multiple sequence 

alignment methods operate by comparing a set of homologous protein sequences, such as GPCR’s, 

and can thus reveal conserved motifs or residues. Importantly, it should be noted that an all-

against-all comparison is made, where every sequence is aligned to each other for the optimal 

alignment. Motifs have been found using multiple sequence alignment, such as GCM motif for 

DNA-binding activity.25 Clustal Omega is one of the best algorithms freely available today for this 

purpose, being able to efficiently, accurately align hundreds of thousands of sequences in only a 

few hours.26 
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4.2 Structure Alignment 

There exist numerous metrics for the evaluation of the superposition of two distinct structures. 

Root-Mean-Square Deviation (RMSD) is frequently-used to measure the average distance between 

the atoms of two superposed protein structures, given as follows: 

 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑((𝑣𝑖,𝑥 − 𝑤𝑖,𝑥)

2
+ (𝑣𝑖,𝑦 − 𝑤𝑖,𝑦)

2
+ (𝑣𝑖,𝑧 − 𝑤𝑖,𝑧)2)

𝑛

𝑖=1

 

 

where there are n points corresponding to proteins v and w in three dimensions, x, y, and z. During 

the structure alignment, this value is minimized to represent the best superposition in three-

dimensional space. For many applications, RMSD is usually sufficient for general structural 

comparison. However, deficiencies in this metric arise when local errors in structure affect the 

overall score. For example, two proteins with a similar fold may visually superpose well, but the 

RMSD may be very high due to equal weight on all pairwise alignments. Furthermore, 

comparisons between large proteins will result in higher RMSD values, which can be misleading. 

As a result, the Template Modeling (TM)-score was developed by Yang Zhang in 2004, originally 

for the assessment of protein structure template quality in threading.27 The equation is shown as 

follows: 

 

𝑇𝑀 − 𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑥 [
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𝐿𝑎𝑙𝑖𝑔𝑛𝑒𝑑

𝑖

] 

 

where Ltarget and Laligned are respectively the lengths of the target protein and aligned region, di is 

the distance between the ith pair of residues, and 𝑑𝑜(𝐿𝑡𝑎𝑟𝑔𝑒𝑡) = 1.24√𝐿𝑡𝑎𝑟𝑔𝑒𝑡 − 15
3 − 1.8 is a 

distance scale for normalization. During a structure alignment, this value is maximized; the range 

of the score is between 0 and 1, with 1 being a perfect match. A TM-score above 0.5 denotes that 

the pair of proteins likely belong to the same fold.28 
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Structure has been previously shown to be more conserved than sequence.29 Though it is well-

known that homologous proteins can be found by sequence alignment, this is not always the case 

for proteins with distant homologues with the same fold, due to low sequence identity. Thus, TM-

align was written as a means to generate accurate, fast structural alignments for different proteins.30 

In brief, initial alignments are first made based on features such as secondary structure, where they 

are used to generate the first superposition. Subsequently, the first rotation is made based on these 

initial alignments. This process is iterated until the TM-score is maximized. 

 

 

 

4.3 Structure Prediction 

Structural bioinformatics is a branch of bioinformatics concerned with the analysis and prediction 

of macromolecular structure. Despite the explosion in availability of protein structures (Figure 1.8), 

the majority of proteins within the human proteome (~20,000) have yet to be solved. Thus, 

computational models are typically generated for when the experimental structure does not exist. 

Three families of structure prediction exist for proteins: 1.) ab initio modeling, 2.) comparative or 

homology modeling, and 3.) threading or fold recognition. Ab initio methods seek to build protein 

Figure 1.8 – PDB Structure Statistics for Proteins. Data was acquired from the PDB web server: 

https://www.rcsb.org/stats/growth/protein in August 2018. 

https://www.rcsb.org/stats/growth/protein
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structure models from scratch. Some groups have approached this problem with physics-based 

approaches, such as molecular dynamics simulations. For instance, one study utilized replica-

exchange molecular dynamics simulations on a set of 9 small proteins from the PDB;31 8 of the 9 

structures folded correctly, though the experiment took about 6 months to run. Other strategies 

include using reduced models with only the peptide backbone and side chain centers of mass in 

folding simulations. Algorithms such as QUARK32 and ROSETTA33 are able to produce 

reasonable models, but unfortunately, the resolution of the structures are usually not high enough 

for in-depth analysis. Additionally, typically only small proteins can be folded, due to the high 

computational costs. Comparative modeling methods, such as MODELLER,34 operate under the 

notion that sequence similarity implies structural similarity.35 Homologous proteins with solved 

structures are as used as input for modeling, and when they are below 30% sequence identity, the 

accuracy of the models takes a hit and may end up with an entirely different fold.36 Therefore, the 

usage of this methodology is limited in many cases, when a good homologue with a solved 

structure is not available. In response to this, fold recognition methods aim to overcome this 

drawback by selecting templates for modeling through fold-level homology. This is made possible 

by the prediction that that there is a limited number of folds found in nature.37 Furthermore, it is 

likely that a correct fold will be selected a majority of the time, as there are already approximately 

1,300 folds currently known. Numerous algorithms have been developed in the same vein, such as 

HHpred,38 Phyre,39 and MUSTER.40  

 

Iterative Threading ASSEmbly Refinement (I-TASSER)41-43 is a composite protein structure 

prediction algorithm that begins with secondary structure prediction, fold recognition, and replica-

exchange Monte Carlo simulations. All that is required as input is the primary structure of the 

protein of interest. Following the first simulation, centroids are selected from the clustering of 

structural decoys, then subjected to a second round of folding simulations. After the decoys are 

clustered again, the lowest-energy structures are selected for refinement through the optimization 

of hydrogen bond networks. I-TASSER has been consistently ranked as the top method in Critical 

Assessment of Structure Prediction (CASP), an international benchmark for structure prediction 

algorithms, and has also generated structure models for hundreds of thousands of proteins 

submitted by researchers worldwide. A variant of this algorithm is GPCR-I-TASSER,44 which was 

specifically designed to predict the structure of GPCR’s. When no suitable template is found, the 
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transmembrane domain undergoes ab initio folding. Experimental restraints from GPCR-RD45 

guide the folding simulations, while a membrane repulsive potential keeps non-TM domains from 

being inserted into the virtual cell membrane.  

 

4.3 Function Prediction 

Another problem in bioinformatics is the assignment of biological function to an uncharacterized 

protein with a known sequence. This can be accomplished in a variety of ways, including inference 

from sequence and structure. One algorithm, COFACTOR46-47, combines sequence, structure, and 

protein-protein interaction into a consensus prediction for Gene Ontology (GO) terms48, which is 

standardized vocabulary for the annotation of proteins. Another algorithm, COnsensus ApproaCH 

(COACH)49, utilizes experimental protein-ligand structure data from BioLiP50 to predict the 

binding site of the query protein. In essence, it is a meta-algorithm that employs other state-of-the-

art binding site prediction software, such as COFACTOR46, FINDSITE,51 and ConCavity.52 

Additionally, TM-STE and S-SITE, respectively employing structure- and sequence-based 

methods for the detection of binding pockets, were developed specifically for COACH. Altogether, 

the top-scoring predictions from each algorithm are fed into a previously-trained support vector 

machine model, producing a final consensus prediction. Continuous Automated Model EvaluatiOn 

(CAMEO), similar to CASP, is a community-wide effort to benchmark the accuracy of protein 

structure prediction servers. It also contains a section dedicated to ligand binding site predictions 

in proteins, in which COACH consistently performs better than its competitors.  

 

5. Concepts in Chemoinformatics 

Similar to bioinformatics, chemoinformatics is concerned with the analysis and processing of large 

amounts of data, though affiliated with chemistry. In this section, various concepts in 

chemoinformatics will be introduced to provide a glimpse into the processing of chemical data 

with computers. 

 

5.1 Chemical Similarity 

Molecular fingerprints, as described previously in the chapter, are most often used in the 

calculation of chemical similarity. As a brief refresher, they are composed of a fixed-length string 

of bits; the presence of ‘1’ in a position denotes the presence of a chemical fragment, while ‘0’ 
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denotes its absence. The simplicity of this form allows for the possibility of dreadfully fast 

calculations. A multitude of similarity metrics are available, but the Tanimoto coefficient has 

proven to be among the best and therefore has been most in use.53 The equation is shown as follows: 

 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑐

𝑎 + 𝑏 − 𝑐
 

 

where a is the number of bits in the first molecule, b is the number of bits in the second molecule, 

and c is the number of shared bits between the two molecules. A visual representation for 

calculation of the Tanimoto coefficient is given in Figure 1.9 for hypothetical 10-bit fingerprints. 

Only the same type of molecular fingerprint can be compared among molecules and mixing 

different types will lead to erroneous results.  

 

 

5.2 Cluster Analysis 

In many chemoinformatic applications, it is often necessary to group the data by some quantitative 

means for classification purposes. This is known as cluster analysis or clustering. Frequently-

occurring chemotypes can be revealed this way and thus provide insight into a collection of 

chemical compounds. In many of the applications throughout this work, various clustering 

algorithms were employed to isolate groups of chemically-similar compounds. 

 

The Taylor-Butina algorithm54-55 is a non-hierarchical, unsupervised clustering method. For every 

chemical compound in a set, the chemical similarity is calculated using the corresponding 

Figure 1.9 – Sample Tanimoto Coefficient Calculation. Hypothetical 10-bit fingerprints are given for molecules A and B. 

2 bits are shared between the two molecules, while molecules A and B respectively have 4 and 6 bits in their form. The 

Tanimoto coefficient (TC) is calculated to be 0.25, which means that there is 25% similarity between the two molecules. 
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molecular fingerprints. Neighbors are acquired based on a similarity threshold, which is user 

defined, and become members of the cluster if they meet the threshold. Subsequently, the 

compounds (centroids) are sorted in descending order based on the number of members they have. 

Starting from the centroid with the largest number of neighbors, an exclusion sphere is set that 

flags the members of the cluster, disallowing them from becoming a centroid or a member of 

another cluster. Chemical compounds with no neighbors are referred to as singletons, as they bear 

no chemical similarity with any other in the set. Moreover, every cluster is guaranteed to have a 

neighbor at least the similarity cutoff of the centroid.  

 

LibMCS from Chemaxon is a hierarchical clustering algorithm rooted in chemical substructure. 

Though the algorithm is proprietary, the method is straightforward, and a description is provided 

by the company website.56 First, chemical compounds are decomposed to chemical graphs, and 

clusters are formed where the compounds share the same substructure. This process is then 

repeated for further levels of clustering for each cluster until a single common substructure is 

acquired or until a size threshold for a substructure is reached. This ultimately results in a 

dendrogram, such as that shown in Figure 1.10. Indeed, this is a powerful method that can be used 

Figure 1.10 – Clustering with LibMCS. Three levels of clustering are shown, with the starting chemical compounds being 

at the first level (bottom). MarvinSketch was used for drawing and displaying the chemical structures, MarvinSketch 

18.10.0, 2018, ChemAxon (http://www.chemaxon.com). 
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to group sets of chemical compounds with the same substructure and is useful because they likely 

have similar bioactivities. Furthermore, there is a greater level of user specification as to which 

clusters at which level to analyze, as opposed to a single clustering output generated from methods 

like the Taylor-Butina algorithm. Overall, there is no best clustering method, and it all boils down 

to which one is suitable for the question at hand.  

 

5.3 Molecular Docking 

Though not technically a chemoinformatic technique, the abundant results from docking-based 

virtual screens are regularly subjected to processing with chemoinformatics. Molecular docking is 

a method used in computational chemistry to predict how a ligand binds with a receptor through 

scoring functions. Prior knowledge of the binding site is typically required in order to specify the 

area to be examined. Protocols for most docking programs start with adding hydrogens and partial 

charges to both the receptor and the compounds. This is then followed by the docking algorithm 

doing a conformational search of the most favorable ligand pose, which is evaluated with a scoring 

function at each step. Subsequently, the top poses are generated for the user, who can then visually 

check with a molecular viewer. Additionally, the final scores for each model are also given. 

 

There have been dozens of docking software developed over the years, and each has approached 

docking in a different way. Some of the major differences between these are: 1.) the search 

algorithm, 2.) scoring function, and 3.) flexibility of ligand or receptor. Among the top methods 

employed for conformational searches are the Lamarckian genetic algorithm (AutoDock57), 

genetic algorithm (GOLD58), local search global optimizer (AutoDock Vina59), ant colony 

optimization, (PLANTS60), anchor-and-grow (DOCK 661), and exhaustive search (Glide62-63). 

Though these strategies differ greatly in their search algorithms, their basic premise remains the 

same; that is, they aim to achieve the most favorable ligand pose. To do so, a scoring function must 

be calculated at each step of conformational sampling to evaluate the pose. Many of the ones used 

currently are physics-based force fields that approximate the binding energy of the ligand pose in 

the binding site. For example, the scoring function from DOCK 6 simply uses van der Waals and 

electrostatics terms for computational efficiency.64 Various others take other physical terms into 

account, such as hydrogen bonding, desolvation, and hydrophobic contributions.58 Additionally, 

there exist empirical scoring functions, which estimate the binding energy using a set of weighted 
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energy terms, and knowledge-based scoring functions, which utilize energy potentials derived 

from experimentally-solved structures.65-66 Finally, there is the option of how to treat the receptor 

and ligand during docking. Most software packages make the receptor rigid because of the 

computational rigor involved in sampling the receptor conformation. However, some given an 

option to make certain side chains of the receptor flexible, such as AutoDock Vina59 and GOLD.58 

Schrödinger has an induced-fit docking protocol that allows for both ligand flexibility and 

conformational changes in the binding site, though its application to virtual screening of a large 

number of compounds is limited due to its computational intensity. Most of the earliest docking 

methods, such as the original DOCK,67 treated the ligand as a rigid body in order to find molecules 

with shape complementarity to the binding site. Nevertheless, this methodology is limited by the 

conformation of the molecule being docked, whereas vastly different conformations could be 

observed in reality. Therefore, multiple conformers would have to be generated for docking, 

making shape matching methods, such as ROCS from Open Eye Software, a far more attractive 

option. Modern docking algorithms all treat the ligand as flexible, allowing for it to find its most 

optimal pose in the binding pocket of a receptor.  

 

5.4 Virtual Library and Benchmark Design 

It is important that the contents of a virtual library meet the criteria for what a virtual screen is 

aiming. To screen a library of completely random compounds would not be sense in a drug 

discovery setting, as a clear majority would likely not fit the mold of what a typical drug would be 

like. Thus, a virtual library must be fashioned around a certain set of properties corresponding to 

a research question. As a prime example for this concept, ZINC database68 is a database of 

commercially-available compounds available for virtual screening. Multiple subsets of data have 

been pre-compiled, where the chemical compounds have been selected using various property 

filters. For example, the drug-like subset is filtered by Lipinski’s rule of five, which evaluates a 

compound based on a set of chemical and physical properties;69 in order to be druglike, it must 

have: 1.) no more than 5 hydrogen bond donors, 2.) no more than 10 hydrogen bond acceptors, 3.) 

molecular weight of between 150 and 500 Daltons, and 4.) an octanol-water partition coefficient 

of not greater than 5. In another subset, the compounds are filtered based on rules defined by 

Teague et al for lead-like compounds,70 where they pass if they are: 1.) between 250 and 350 

Daltons in molecular weight, 2.) an octanol-water partition coefficient of no greater than 3.5, and 
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3.) no more than 7 rotatable bonds. In another study involving the serotonin receptor, ZINC 

database was filtered for compounds containing one or more aliphatic nitrogens, a characteristic 

feature found in most serotonin receptor ligands.71 The design of these types of focused virtual 

libraries is required for the success of a virtual screen in an experimental setting. 

 

 

In chemoinformatics, benchmarks datasets are used to provide a gold standard for the comparison 

of the performance of algorithms. The premise involves testing the ability an algorithm in 

distinguishing known active compounds from among a sea of decoy molecules. The Directory of 

Useful Decoys (DUD)72 and its successor, DUD-Enhanced (DUD-E),73 will be used as examples 

for successful design with docking benchmarks. For every receptor, the original study that 

developed DUD generated 33 decoys per active compound that were chemically similar but 

topologically different. However, a few drawbacks were found for this method. First, several 

chemotypes were overrepresented in many data sets.74 Second, some of the sets had a very low 

number of active ligands, indicating the need for more.73 Last, it was observed that the net formal 

charge of was imbalanced between the actives and decoys.75 Thus, DUD-E was designed to 

address all of these issues from the first variant. Actives were now drawn through ChEMBL 

database in bulk and filtered by bioactivity, solving the deficiency in active compounds for some 

sets. Furthermore, more attention was drawn to balancing out charged compounds between actives 

and decoys. Most importantly, overrepresentations of certain chemotypes was eiminated by the 

clustering of Bemis-Murcko frameworks.76 An example of a decomposition into a Bemis-Murcko 

Figure 1.11 – Decomposition of Oliceridine into a Bemis-Murcko Framework. First, all non-carbon atoms are converted 

to carbon, and aromaticity and stereochemistry are removed. Then, all side chains not linking to another ring are removed. 

MarvinSketch was used for drawing and displaying the chemical structures, MarvinSketch 18.10.0, 2018, ChemAxon 

(http://www.chemaxon.com). 
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framework is given in Figure 1.11. Actives having the same framework were clustered together, 

and based on a set of rules, a certain number were chosen from each cluster so that there were 

between 100 and 600 for each set.  

 

5.5 Virtual Screening 

High throughput screening is an essential methodology in the pharmaceutical industry for the 

screening of chemical libraries for hits against a drug target. Due to its being costly, time-intensive, 

and laborious, virtual screening (or in silico screening) has emerged as a complementary strategy 

to reduce the chemical search space and to prioritize hits for experimental validation. Virtual 

screens can typically be categorized as ligand based and structure based, depending on what 

algorithm is used; the former utilizes pure chemical information in its search process, whereas the 

latter uses structural information to determine how well a compound would bind. As with any 

method, there are advantages and disadvantages to each. Ligand-based methods, such as chemical 

similarity, are computationally inexpensive and can screen millions of compounds within a short 

time but have the drawback of being biased towards the known ligands used to build the model. 

Conversely, structure-based methods, such as molecular docking, inherently have no bias, but they 

are extremely computationally expensive. A trend in recent years has culminated in the 

combination of these methods to address their respective shortcomings.77  

 

Validation of virtual screening methods can be categorized as retrospective or prospective. In 

retrospective methods, the screening is usually performed where a certain amount of known active 

compounds and inactive compounds or decoys are all scored and ranked. The goal here is to try 

and get as many active compounds into the top-ranking portion of the list as possible. A typical 

metric for evaluation is the enrichment factor of the top 1%, given as follows: 

 

 

where 𝑁𝑎𝑐𝑡 and 𝑁𝑡𝑜𝑡 are the total numbers of the active and all compounds, respectively. 𝑁𝑎𝑐𝑡
1% 

and 𝑁𝑠𝑒𝑙𝑒𝑐𝑡
1%  are, respectively, the numbers of active ligands and the number of all candidates in 

𝐸𝐹1% =

𝑁𝑎𝑐𝑡
1%

𝑁𝑠𝑒𝑙𝑒𝑐𝑡
1% 

𝑁𝑎𝑐𝑡
𝑁𝑡𝑜𝑡
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the top 1% of the ranked database. An illustration of different results achievable in a 

retrospective virtual screen is given in Figure 1.12.  

 

 

A drawback of retrospective virtual screens is that no real results will have been produced that 

officially translate to biology. They are usually run to benchmark algorithms or to validate the 

virtual screening model before choosing compounds for experimental validation, and hence, they 

are useful in that regard. However, a model will always just be a model, and the only practical way 

to verify whether a virtual screen resulted in a prediction of any merit would be to test the 

compounds in the lab. They are usually chosen based on various criteria, such as manual inspection 

of the ligand-receptor complex for key interactions or chemical diversity. The usual metric for 

success is the hit rate, which is the percent of selected compounds that were considered active. 

This is not the greatest measure used, as the selection can be very subjective. Moreover, there is a 

risk of underreporting inactive compounds to boost the hit rate. Nevertheless, it remains an 

unwritten standard in the field to list hit rates as a measure of how successful the virtual screen 

was. 

 

 

Figure 1.12 – Illustration of Enrichment Factors from Retrospective Virtual Screens. Assume that there 10 total 

compounds at the top 1% of the ranked database (dark gray), 1,000 compounds overall (dark gray + light gray), and 100 

total active compounds. Each active compound is represented as a yellow bar in the top 1%. (I.) In this example, no actives 

were retrieved, thus the algorithm would be considered performing worse than random. (II.) Only 1 out of the 100 actives 

were acquired, so this would be considered random. (III.) In this scenario, 10 actives were found in the top 1%, performing 

greater than random. 
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6. G Protein-Coupled Receptors 

G protein-coupled receptors (GPCR) have been an important target in drug discovery, as they 

represent the target for almost a third of all drugs on the market. Marked by their distinctive seven-

pass transmembrane domain, the GPCR superfamily astoundingly accounts for almost 5% of the 

human proteome. Consequently, the function of each member varies widely from pain modulation 

to vision. In this section, I will provide a brief overview of the biology of GPCR’s, as well as 

applications of computer-aided drug design. 

 

6.1 Family Organization 

Originally, GPCR’s were observed to contain members sharing very little sequence similarity with 

others, hinting at the existence of distinct families (a.k.a. classes) within the superfamily.78 Further 

on down, phylogenetic analysis of GPCR primary structures with PSI-BLAST proposed a division 

into the following families:79 

• Class A – Rhodopsin-like 

• Class B – Secretin-receptor Family 

• Class C – Metabotropic Glutamate / Pheromone 

• Class D – Fungal Mating Pheromone Receptors 

• Class E – Cyclic AMP Receptors 

• Class F – Frizzled / Smoothened 

Alternative classifications include the GRAFS system (Glutamate, Rhodopsin, Adhesion, Frizzled, 

Secretin), which separated out the adhesion receptors from Class B.80 Of these, the Class A 

GPCR’s by far outnumber the other families. Additionally, it was later stratified into 19 subgroups 

following phylogenetic analysis.81 One of these subgroups, the olfactory receptors, comprise a 

whopping 390 members out of 719 Class A receptors. Class D and E GPCR’s are usually excluded 

from vertebrate-based studies, as they are of fungal and slime mold origin, respectively. Type 2 

taste receptors, which have been linked to detecting bitterness, have been distantly linked with 

Class A GPCR’s; they are also sometimes separated out into their own group.82 Clearly, the 

classification of GPCR’s has been an arduous task that has taken decades to come to fruition, and 

thankfully there now stands a relatively clear-cut organizational system. 
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With such a large number of GPCR’s, there will undoubtedly be members that have had not been 

study as rigorously. These are referred to as orphan receptors, having no known endogenous ligand 

or function. According to IUPHAR,17 there are currently 87 Class A GPCR’s, 8 Class C GPCR’s, 

and 26 adhesion GPCR’s that are still not well understood. The process of de-orphanisation is 

aimed at elucidating the pharmacology of these receptors in order to shed some new light on 

potentially medically-relevant conditions. Since the 1980’s, there have been dozens of success 

stories in the de-orphanisation of GPCR’s,83 and it is only a matter of time before the function and 

endogenous ligands of all members are revealed. 

 

6.2 Structure and Physiological Roles 

All members of the GPCR superfamily share the characteristic seven-transmembrane domain that 

winds through the plasma membrane in a serpentine fashion. Additionally, they contain an N-

terminal domain, C-terminal tail, 3 extracellular loops, and 3 intracellular loops. Not surprisingly, 

the most conserved regions lie in the transmembrane domains, where the original classification 

has been shown to be approximately replicated using only the transmembrane domains.84 

Moreover, this is the classical site where ligand binding occurs for many Class A receptors and 

was also replicated for this family using only the binding site residues in a previous study.85 

Interestingly, the barrel-like fold of the TM domain is highly conserved and observed in all solved 

structures (Figure 1.13B). The N-terminal domain is oriented to face the extracellular matrix and 

participates in ligand binding, while the C-terminal faces the cytosol and is involved with the 

association with downstream effector proteins (Figure 1.13A). 

 

Since 2000, the number of solved GPCR structures in all families has skyrocketed, revealing a 

wealth of information about how they function through their structure. Both active- and inactive-

state structures have been produced, with the former kind bound with either heterotrimeric G 

protein complexes or β-arrestin. Many of the structures have ligands bound, though a smaller set 

contain allosteric modulators. Truly, the history of GPCR structural biology is a fascinating topic, 

and thus, a comprehensive review of this will be given in Chapter 2. Lastly, details of receptor 

activation  with respect to structure will not be discussed, as it is beyond the scope of the 

dissertation, though a good review of this topic exists by Katrich et al.86 
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GPCR’s are involved in a wide range of physiological roles in higher vertebrates and likely arose 

through multiple gene duplication events.87 The duplicates would have had little evolutionary 

pressure, allowing them the freedom to mutate and develop new functions. This has resulted in 

roles as far flung as olfaction to light perception. Besides being involved in various senses, they 

have also played roles in fight-or-flight response and pain modulation. However, many GPCR’s 

have important signaling pathways that could lead to diseases when dysregulated by mutations.88 

For example, activating mutations in the thyroid-stimulating hormone receptor have been shown 

to cause thyroid carcinoma,89 while inactivating mutations in the same receptor were associated 

with hypothyroidism.90 Other diseases, such as addiction, have been shown to be caused by the 

kind of ligand be used. In the case of the mu opioid receptor, an unwanted signaling pathway is 

activated enough to the point where the development of addiction can develop.91 No matter the 

cause of the disease, the development of therapeutic compounds targeting GPCR’s has remained 

an important part of drug development in order to combat suffering. 

 

 

Figure 1.13 – Structure of Mouse Mu Opioid Receptor. The structure was taken and modified from the structure with 

PDB ID: 5C1M.  (A.) A side view is shown to emphasize the cellular localization of the GPCR. (B.) A top-down view 

from the perspective of the extracellular matrix is shown to emphasize the conserved, barrel-like topology. 
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6.3 Application of Computer-Aided Drug Design  

To date, there exist a plethora of prospective virtual screening campaigns applied to GPCR’s. 

Some interesting studies have included the discovery of: 1.) a biased agonist for the mu opioid 

receptor,92 2.) selective agonists for the serotonin 1B receptor over the serotonin 2B receptor,71 

and 3.) antagonists for the C-X-C chemokine receptor 4.93 Though there have been numerous 

computational studies claiming to have found the next greatest potential drug, the question bugging 

countless experimentalist scientists remains: Does computer-aided drug design actually produce 

compounds that make it to clinical trials? The answer would be a resounding ‘yes’.  

 

In 2006, a group from Predix Pharmaceuticals (now known as Epix Pharmaceuticals) ran a 

docking-based virtual screen on a homology model of serotonin 1A receptor that resulted in a 

potent, selective agonist.94 The reporting came as the drug candidate, Naluzotan, was in a phase 

III clinical trial, though ultimately, it failed to perform better than the placebo and was 

discontinued.95 In another study from Heptares Therapeutics, a novel adenosine A2A receptor 

antagonist was discovered through a docking-based virtual screen on homology models, called 

AZD4635.96 It is currently in phase I clinical trials. These are but a fraction of success stories 

stemming from computer-aided drug design, but this is proof enough that the field has undoubtedly 

been advancing to produce viable results.  

 

7. Goal of Dissertation 

In the following two chapters, I introduce two GPCR-related databases in which I developed. The 

first to be introduced is GPCR-EXP, a semi-manually curated database for experimentally-solved 

and predicted GPCR structures, which was created in response to other resources being slow to 

update and not user friendly. Next, GLASS database was constructed, which processes and unifies 

GPCR experimental data from various other pharmacological and biological databases. To date, it 

is the largest database of its kind and was made to fill in the gaps of other similar databases that 

have ceased updates.  

 

The latter two work-related chapters delve deeper into algorithm development using 

bioinformatics and chemoinformatics, as well as its application. In the 4th chapter, I discuss the 

development of MAGELLAN, which is a ligand-based virtual screening algorithm that 
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incorporates sequence and structure information, and data from GLASS database was heavily 

involved in its usage. Its purpose was primarily to aid in the de-orphanisation of GPCR’s, but it 

could also be used as for general ligand-based virtual screening. Finally, the 5th chapter builds on 

the work from MAGELLAN by coupling it with a docking-based virtual screen. The goal of this 

work was to discover novel bifunctional compounds that act as agonists towards the mu opioid 

receptor and as an antagonist towards the delta opioid receptor, which would potentially lead to a 

safer opioid with reduced tolerance and withdrawal.  
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CHAPTER 2.  

GPCR-EXP: A Semi-Manually Curated Database for Experimentally-Solved 

and Predicted GPCR Structures 

 

1. Introduction 

G protein-coupled receptors (GPCR) constitute one of the largest family of transmembrane 

proteins and have been implicated in a multitude of human diseases, such as cancer and diabetes.1 

With the rapid rise and availability of GPCR structures within the past decade, structure-based 

drug design has become a prominent area in drug development utilizing structure to facilitate the 

optimization of known compounds or to provide a means for virtual screening.  

 

The centralized resource that houses all three-dimensional structural data for biological 

macromolecules is the Protein Data Bank (PDB).2 As such, all GPCR structures are submitted and 

stored in this database, so that the scientific community can effortlessly access this data. However, 

there is no easy way to survey the breadth of GPCR structures within the confines of PDB, and 

thus, researchers have to rely upon manually sifting through the scientific literature to identify 

which structures have been solved. This process can be cumbersome and ineffective, and hence a 

database consolidating all aspects of GPCR structural data would be extremely useful in this 

regard. 

 

To our knowledge, there is only one resource, GPCRdb,3 which focuses on experimental GPCR 

structures. Some of the difficulties in establishing such databases are: 1) precise curation of the 

data, 2) timely updates, and 3) usability of the web interface. As GPCR structures are increasingly 

being released at a higher rate, the time in between database updates can greatly affect the 

availability of new data to the scientific community. Furthermore, purely manual methods of data 

acquisition can lead to inaccuracies and take a long time to curate, while an inefficient database 
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interface with endless options can lead to utter frustration in perusing the information in need. As 

a result, the need for a GPCR structure database addressing such needs is of utmost importance.  

 

Despite the recent renaissance in GPCR structural biology, 1,029 out of 1.076 human GPCR genes 

do not yet have an experimental structure. Therefore, apart from experimental GPCR structures, 

the prediction of GPCR structures holds equal importance. In particular, as many efforts in drug 

discovery utilize structure for drug design, computational methods have been developed to predict 

the protein structure for those targets without a solved structure. Many web servers, such as 

GPCRM,4 GoMoDo,5 and GPCR-ModSim,6 and databases, including GPCR-SSFE7 and GPCRdb3 

rely upon homology modeling with MODELLER8 for generating their structure models. While 

this method works well for targets that have close relatives with known structures, it can be less 

effective when applied to targets with no good homologous structure templates. As a majority of 

human GPCR proteins share less than 30% sequence identity to any experimentally determined 

GPCR structures, a robust structure prediction program capable of modeling distantly or non-

homologous GPCR structures is required. GPCR-I-TASSER is our in-house method that utilizes 

the LOMETS9 meta-threading approach to find templates, from which structure fragments and 

distance restraints are extracted to guide structure assembly simulation. Our method performed 

well in the GPCRDock2010 competition, in which our models were among the most accurate for 

the transmembrane (TM) domains for both the C-X-C chemokine 4 and dopamine D3 receptors; 

this was significant because we achieved the most accurate structure for the former target, which 

was considered very difficult.10 This indicates the ability of GPCR-I-TASSER to produce accurate 

structure models for use in various avenues of drug discovery. 

 

In the present study, we have developed GPCR-EXP, a semi-manually curated database for 

experimentally-solved and predicted GPCR structures. Experimental data is scraped and processed 

from the PDB, producing a comprehensive, accurate collection of protein and ligand data. An 

important feature of the update pipeline for keeping the GPCR data current is the manual curation 

of ligand data, which is crosschecked with PubMed.  Additionally, structure models are generated 

for over 1,000 GPCRs from the human genome, followed by binding site prediction. All data are 

freely downloadable and browsable in a convenient database interface. Weekly updates to GPCR-

EXP’s experimentally-validated GPCR structures will ensure that the GPCR community gets the 
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latest structures on a consistent basis. Lastly, we present a brief analysis of trends in GPCR 

structural biology using the experimental data in GPCR-EXP. 

 

 

 

 

2. Methods 

GPCR-EXP contains data for both experimentally-solved and predicted structures of GPCRs. Data 

for the former are primarily extracted from PDB, while high-resolution structure models and 

binding site predictions are generated for the latter with GPCR-I-TASSER11 and COACH12-13, 

respectively. The pipeline for the acquisition and processing of data for GPCR-EXP is illustrated 

in Figure 2.1.  

 

2.1 Processing Data for Experimental Structures 

The entire data acquisition and processing pipeline was written in Perl, while additional custom 

Python scripts were used for 2D chemical image generation. 

 

Figure 2.1 - GPCR-EXP Pipeline for Data Processing.  
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2.1.1 General Experiment Data 

UniProt IDs are programmatically acquired from ‘7tmrlist.txt’ in UniProt 

(https://www.uniprot.org/docs/7tmrlist.txt), which are then queried against the RESTful API from 

PDB.2, 14 Subsequently, a list of PDB IDs mapped from the UniProt IDs are returned and used to 

scrape data and download PDB structures. 

 

Using the list of PDB IDs, comma-separated value (CSV) report files are scraped from the 

RESTful API from PDB using their ‘Custom Report Web Services’, corresponding to ‘Structure 

Summary Report’, ‘Sequence Report’, ‘Ligand Report’, and ‘Citation Report’. All relevant data, 

such as chain IDs and ligands, from these files are used in the following data processing steps, in 

addition to forming the basis for the compilation of a summary tab-separated values (TSV) file of 

all processed data in one of the final steps. 

 

2.1.2 PDB Structures 

The original PDB structures are downloaded from PDB using their PDB ID. GPCR structures with 

full TM domains are filtered for using the following criteria: 1) they are greater than 150 residues, 

and 2) the full TM domain has at least 80% sequence identity with the corresponding reference 

TM domain from UniProt. With respect to the latter condition, the reference TM domain sequences 

are combined and treated as a single sequence, which is then aligned with the GPCR sequence 

parsed from the PDB file. GPCR structures that have been solved with only the extracellular 

domain or portions of the transmembrane domain are filtered out and included as a separate 

download; for the purposes of this study, these will be referred to as ‘GPCR fragments’.  

 

All GPCR structures with full length TM domains are then processed to isolate a single chain 

representing only the GPCR, removing any fusion (e.g. lysozyme) or associated (e.g. G protein) 

proteins. If the PDB structure has multiple GPCR chains, the chain ID of the GPCR with the 

alphabetically-lowest letter is designated and used for the rest of the pipeline. For purposes of 

viewability, the isolated GPCR structures are structurally aligned with a reference structure using 

TM-align in order to position the GPCR with a side view of the TM domain where the N-terminal 

domain faces up. Moreover, PNG files of the aligned GPCRs are generated using MolScript 15 for 

use as thumbnail images on the web page. 

https://www.uniprot.org/docs/7tmrlist.txt
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Data about fusion and associated proteins are extracted from the ‘Sequence Report’ CSV files on 

the basis of being a non-GPCR protein within the PDB structure. Numerous associated proteins 

are observed to be peptide ligands and typically appeared as a distinct chain in the PDB structure. 

An associated protein is classified as a peptide ligand if there are fewer than 50 residues. 

Interestingly, the largest peptide that we observe is Exendin-P5 (PDB: 6B3J), which contains 40 

residues. All peptides are kept as ligands alongside small molecules, which will be discussed in 

the following section.  

 

 

2.1.3 Ligand Data 

Small molecules are parsed from the ‘Ligand Report’ CSV files. As commonly seen, there is an 

abundance of non-ligand molecules alongside the actual ligand or ligands. Consequently, this 

makes programmatic acquisition of the ligand difficult. To address this problem, we designate 

ligands through manual inspection of the corresponding publication through PubMed. Figure 2.2A 

shows an example case with the platelet-activating receptor (PDB: 5ZKQ). Here, the ligand was 

determined to be the inverse agonist ABT-491 (Figure 2B). Molecules ignored included a 

Figure 2.2 - Ligands for Platelet-Activating Receptor (PDB: 5ZKQ). (A) The structure includes four ligands (ABT-491, 

(2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate, zinc, and sulfate). The former two are shown in black. (B) ABT-491 is 

the ligand, which acts as an inverse-agonist, while (C) (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate is a lipid that assists 

in membrane protein crystallography. MarvinSketch was used for drawing and displaying the chemical structures, 

MarvinSketch 18.10.0, 2018, ChemAxon (http://www.chemaxon.com). 
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detergent used in membrane protein crystallization, (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-

enoate (Figure 2.2C), as well as the ions, zinc and sulfate.  

 

We initially compiled a list of non-ligand molecules following a comprehensive survey of PDB 

structures of GPCRs and incorporated them into a filter. This allowed us to streamline the process 

of verifying ligands while updating the database. If a new molecule appears in an update that the 

database has yet encountered, then it is manually checked and designated as a ligand or added to 

the filter if it is a non-ligand. Over the course of developing the update pipeline, we observed that 

the current filter is sufficient for most of the new GPCR structures coming out recently, indicating 

reoccurrence of common, non-ligand molecules. 

 

PNG images of 2D chemical structures are generated for each ligand through RDKit using their 

respective InChI strings.16 Additionally, both small-molecule and peptide ligands were extracted 

from the original PDB structures as PDB files. Also, it should be noted that allosteric modulators 

were included alongside ligands that bound in the orthosteric site. 

 

2.1.4 GPCR Structure Superposition 

Many GPCRs have multiple PDB structures bound with different ligands or in different activation 

states. For example, the 5-hydroxytryptamine receptor 1B has four PDB structures (PDB: 6G79, 

5V54, 4IAQ, 4IAR) as of the time of preparation of the manuscript. For each GPCR, one structure 

is chosen as the reference, while the others are aligned to it using TM-align.17 All small molecule 

and peptide ligands are included in this step, as well.  

 

2.2 Generating Predicted Structures and Binding Sites 

UniProt IDs for 825 human GPCRs were programmatically acquired from ‘7tmrlist.txt’ in UniProt, 

while 251 additional entries were obtained from TrEMBL. In total, we modelled 1,076 human 

GPCRs in this study, with 703, 49, 22, 11, 44, and 247 from class A, B, C, F, other, and TrEMBL, 

respectively.  

 

The full-length sequence of the human GPCRs were modelled using GPCR-I-TASSER, which 

operates by reassembling structural fragments from threading through replica-exchange Monte 
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Carlo simulations.11 There were a number of GPCRs that had very long sequences. In fact, there 

were 22 GPCRs that had over 1,000 residues, which consisted of a mixture of Class B and C 

GPCRs with gigantic extracellular domains. Though GPCR-I-TASER can model proteins over 

1,000 residues, the models with more than 650 residues are poorly modeled with incompact 

transmembrane helix packing, due to poor template coverage and insufficient conformation 

sampling for long proteins. Thus, for those GPCRs with over 650 residues, we truncated the N- 

and C-termini so that there would be at most 30 residues extending from either side of the TM 

domain. The top 5 models were selected for use in the database. 

 

COACH12-13 is an algorithm developed to detect ligand binding residues through composite 

sequence-profile and structure comparisons and was thus used to predict the binding site for the 

top model from GPCR-I-TASSER. 

 

2.3 Web Server Construction 

The web server was constructed on top of a MySQL database. The server side was coded with a 

combination of Python CGI scripting and PHP, while the client side was controlled with 

JavaScript. NGL Viewer was used to display all protein structures,18 and Plotly facilitated the 

visual display of graphs for database statistics. Lastly, the jQuery plugin, tablesorter 

(https://plugins.jquery.com/tablesorter/), was used to generate the data tables. 

 

3. Results 

3.1 Brief Analysis of GPCR-EXP 

As of the time of writing, GPCR-EXP contains 271 unique, experimental GPCR structures. A total 

of eight species is represented in this set, ranging from common species such as Homo sapiens and 

Mus musculus to more uncommon ones, such as human cytomegalovirus (strain AD169). 

Additionally, there are 52 unique types of GPCRs that have been solved independent of species, 

such as the mu opioid receptor. We also modelled the structures of 1,076 human GPCRs, as well 

as predicted their binding sites. 

 

Analysis of the experimental data of the GPCR structures reveals fascinating trends in structural 

biology. As has been frequently observed in recent years, the rate of release of GPCR structures 
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has been steadily increasing (Figure 2.3). In particular, the number of structures solved in the 

current year (as of July 27, 2018) is 42, as compared to 46 in 2017. Being only halfway through 

the year, it is very likely that the amount of releases in this year will dwarf the previous. One 

interesting observation is that no GPCR structures were solved in 2009. Up until then, the only 

available GPCRs were rhodopsin, β1 and β2 adrenergic receptors, and A2A adenosine receptor; 

the chemokine CXCR4 receptor was the first new GPCR to be released in 2010 after the drought 

of 2009. With the current overrepresentation of rhodopsin (50 structures), β1 and β2 adrenergic 

receptors (39 structures), and A2A adenosine receptor (45 structures) among all the GPCR 

structures, it is likely that they are easier to crystallize or have a better-established protocol than 

the others.  

 

 

 

Starting from 2000, all of the GPCRs initially solved were Class A GPCRs. This is not a surprising, 

as they constitute the majority of members in the superfamily. However, it took until 2013 for the 

first Class B and F GPCRs to finally be solved,19-21 while it took until the following year to finally 

get a solved structure for Class C GPCRs (Figure 2.4A).22-23 For each year up until 2017, non-

Class A GPCRs have constituted at most only ~10% of all structures per year. Regardless, their 

proportion has grown in recent years, and their prevalence is expected to increase due to their 

medical relevance. Another interesting facet of GPCR structural biology was the inclusion of 

Figure 2.3 - Cumulative Number of Experimentally-Solved GPCR Structures Over Time. The first GPCR structure ever 

solved was in 2000. Since then, structures have been released at higher rates in recent years, likely due to advances in the 

field. Note that no structures were solved in 2009. 
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fusion proteins to facilitate the formation of crystal contacts in crystallography. Starting in 2007, 

Cherezov et al was the first study to engineer a chimeric GPCR construct, where the third 

intracellular loop was replaced with lysozyme.24 In 2012, researchers started using soluble 

apocytochome b562 (i.e. bRIL), and this has steadily grown in popularity, having largely replaced 

lysozyme in recent years (Figure 2.4B). Meanwhile, other fusion proteins (rubredoxin, flavodoxin, 

and GlgA glycogen synthase) have also been used to lesser extents.  

 

 

Another aspect we examined was structural resolution and number of point mutations used with 

GPCR constructs. The resolution of the structure of bovine rhodopsin, the first GPCR to have its 

structure solved by X-ray crystallography, was 2.8 Å.25 This was quite the milestone at the time, 

though its relative abundance and stability probably greatly facilitated crystallization. With all the 

advances of GPCR structural biology, one would think that the resolution would improve overall, 

even slightly, through time. Though this is true only for some cases, the overall trend has remained 

approximately the same on average up until now (Figure 2.5A). It is noted though, while Cryo-

EM structures tend to have lower resolution in general, the 9 structures currently solved by this 

method have not contributed greatly to diminishing the average. In fact, the resolution of the 

structures range from 3.3 – 4.5 Å, which is quite an achievement given the technique’s earlier 

limitations in resolution.26 Starting in 2007, the number of GPCR structures solved with stabilizing 

point mutations has on average grown over the years (Figure 2.5B). This is likely due to its 

necessity because of challenges in the crystallography of certain GPCRs, as other unexplored 

Figure 2.4 - Percentage of Structures per GPCR Classes or Fusion Proteins by Year. (A) Starting in 2000, only structures for 

Class A GPCRs were solved until 2013, when the first structures of Class B and F GPCRs were unveiled. (B) In 2007, fusion 

proteins were added to GPCR constructs in order to increase crystallographic contacts. A popular choice was lysozyme 

initially, but soluble cytochrome b562 quickly became a recent favorite. Note that no structures were solved in 2009. 
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targets are being addressed. An extreme example of this would be the neurotensin receptor 1 (PDB: 

4BV0/4BWB), of which two structures had greater than 20 point mutations resulting from directed 

evolution.27 Regardless, the trend appears to be target dependent, as numerous GPCR structures 

have also recently been solved without any mutations. 

 

 

3.2 Browsing GPCR-EXP 

GPCR-EXP was developed to provide the user with an intuitive web interface for browsing GPCR 

structural data, which is divided into experimentally-solved structures and predicted structures. 

We designed the database to allow the access of GPCR structure-related data as fluid as possible. 

As opposed to going through numerous menus, pages, and options for one PDB structure, an 

integrated information set can be accessed in GPCR-EXP with minimal hassle. 

 

3.2.1 Experimentally-Solved Structures 

All experimentally-solved GPCR structures are arranged in a sortable table, which includes the 

following data: 1) PDB ID, 2) UniProt ID with species, 3) method used to solve the structure, 4) 

resolution (if applicable), 5) release date, and 6) reference with PubMed ID. The user can browse 

all structures in a single table or by class. The former method is useful for checking the latest 

GPCRs or sorting structures by resolution, while the latter method allows for a more controlled 

browsing experience.  

 

If browsing by class, the structures of each GPCR class are stratified into tables grouped by GPCR 

name. For example, the 5-hydroxytryptamine receptor 2C has two solved structures (Figure 2.6A). 

Figure 2.5 -  Structure Resolution and Number of Mutations by Year. (A) The overall resolution of GPCR structures has 

remained approximately the same, while (B) the overall number of mutations used per structure has increased. 
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By clicking on the GPCR structure thumbnail, users will be directed to a popup page that includes 

further data about the structure, such as mutations, fusion/associated proteins, and ligands. A link 

to our in-house GPCR-ligand database, GLASS,28 provides a more comprehensive set of 

pharmacological data corresponding to the user’s GPCR of interest. Moreover, an embedded 

structure viewer displays the processed structure, along with any applicable crystallographic 

ligands. For convenience, PDB files of the original structure, GPCR-only structure, or ligands can 

also be downloaded with a single click from the table. Additionally, there are GPCR-specific 

services that can be accessed through various popup pages. First, the user can view pre-superposed 

structures of a GPCR of interest by clicking ‘Overlay Structures’ (Figure 2.6B). Second, any small 

molecule or peptide ligands associated with a structure can be seen by clicking on ‘Display 

Ligands’ (Figure 2.6C). Third, users can click ‘Download Structures’, which will lead to a popup 

page allowing the users to customize the structures they wish to download. This feature will be 

Figure 2.6 - Experimentally-Solved GPCR Structures on GPCR-EXP. The 5-hydroxytryptamine receptor 2C is used here as 

an example. (A) Structural data is shown in a sortable table. (B) Clicking on ‘Overlay Structures’ will allow the user to view 

superposed structures, while (C) clicking on ‘Display Ligands’ will pull up and display any associated crystallographic ligands. 
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important for users interested in examining structures of interest in more details with advanced 

structure visualization software.  

 

 

3.2.2 Predicted Structures 

GPCR-I-TASSER was run to generate structure models for 1,076 GPCRs from the human genome. 

Like the experimentally-solved structures, tables for these structures are also sortable and contain 

the following data: 1) UniProt ID, 2) GPCR name, 3) C-score of the best structure model, 4) 

estimated TM-score, and 5) estimated RMSD. The user can browse all structures in one table or 

by class. If browsing by all structures, two additional columns (family / subfamily) are provided 

for reference. Class A GPCRs are stratified by subfamily, and an example with the acetylcholine 

receptors is given in Figure 2.7A. On the contrary, each of the non-Class A GPCRs are grouped 

into their respective tables because they represent a minority of GPCRs.  

 

Figure 2.7 - Predicted GPCR Structures on GPCR-EXP.  The acetylcholine receptors are used here as an example. (A) 

Structural data is shown in a sortable table. Clicking on ‘GPCR-I-TASSER’ or ‘COACH’ will provide the user with 

detailed information on the predicted structure and predicting binding site, respectively. (A) In the former, the user can 

view models (top-ranked model shown) . (B) In the latter, the user can select and view a predicted binding site of 

interest. The blue surface represents the predicted binding site, while the red surface is a possible binding ligand. 
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Detailed information on a structure model of interest can be accessed by clicking on the ‘GPCR-

I-TASSER’ button. This provides various predictions alongside the structure, such as secondary 

structure, solvent accessibility, normalized B-factor, and local accuracy. The top 10 templates used 

by GPCR-I-TASSER and associated statistics are also given, while the top 5 models are available 

for viewing and download. The top-ranked model is shown for muscarinic acetylcholine receptor 

M1 as an example in Figure 2.7B. Additionally, a visual assessment of the local structure quality 

of the model is given by ResQ,29 an algorithm which makes predictions about residue-level model 

quality and B-factor estimations through the combination of sequence- and structure-based 

profiling. Alongside the structure models, binding site predictions from COACH12-13 based on the 

top-ranked models are also shown, where detailed information can be retrieved by clicking on the 

‘COACH’ button. Here, the predicted binding sites from COACH and each of its component 

methods are displayed along with all related statistics from the prediction. Furthermore, the 

binding pocket can be visually examined from the GPCR on the web interface (Figure 2.7C).  

 

3.3 Downloading GPCR-EXP 

All data compiled and processed from PDB are freely available for download on the web server. 

Bulk downloads include a TSV file of all data pertaining to experimentally-solved GPCR 

structures, as well as a text file containing detailed statistics. Moreover, the following PDB file 

compilations are also available for download: 1) all original PDB files, 2) GPCR structures 

modified to contain single chain, 3) superposed GPCRs along with respective ligands, 4) GPCR 

fragments, and 5) predicted GPCR structures from human genome.  

 

3.4 Maintenance of GPCR-EXP 

The update pipeline for the experimentally-solved GPCRs is almost fully automated, apart from 

the manual inspection of ligands. As such, updating the database is streamlined and requires 

minimal oversight for implementation. As of the time of writing, we are running weekly updates 

for this data. On the other hand, GPCR-I-TASSER and COACH predictions on all GPCRs from 

the human genome are only updated annually due to its high computational cost.  

 

4. Summary 

We have developed a database, GPCR-EXP, which combines data for experimental and predicted 

structures related to GPCRs. Overall, GPCR-EXP contains the following unique features: 
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(1) Semi-manual curation of the data allows for a quick and high-quality update of the database 

content. Most of the updating process is implemented through a custom script, while the 

ligand data is manually cross-examined with the literature using PubMed, in order to avoid 

the inclusion of ions, detergents, and other non-pharmacological ligands.  

(2) Computational models from cutting-edge methods are provided for the GPCRs that do not 

have experimental structure available. In particular, GPCR-I-TASSER creates structural 

models using iterative fragment assembly, which allows reliably modeling on some of the 

distant-homologous protein targets, while COACH generates high-quality binding site 

predictions. 

(3) Given the critical importance of the quality information to the biomedical users, a confidence 

scoring system is given to estimate the global quality of all the predicted GPCR-I-TASSER 

models. Meanwhile, a reliable B-factor modeling method,29 which was validated in the last 

CASP experiment,30 is used to estimate the accuracy of the local structures. These model 

quality annotations are important in better assisting the use of the predicted models for users 

working in the biomedical sciences. 

(4) All experimental PDB structures with a full transmembrane domain have been preprocessed 

to have a single chain. Fusion proteins (such as lysozyme) have been programmatically 

removed as well.  

(5) Experimental structures of the same GPCR have been pre-superposed and are made viewable 

on the web page, as well as downloadable. This feature will be useful for researchers 

interested in studying differences in the binding pocket of different ligand-bound complexes, 

as well as between active and inactive state structures. 

(6) All ligand data have been curated and are viewable on the web page. Additionally, PDB files 

of the crystallographic poses are provided. 

(7) All data are freely available for download. Batch PDB files of all the original structures, 

single chain structures, and superposed structures are provided with the detailed statistics 

and general data. 

(8) GPCR-EXP is updated weekly to account for the increasing frequency of release of new 

GPCR structures. 
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In conclusion, all of these features address the aforementioned issues brought up earlier. With 

semi-manual curation of data, weekly updates are possible because of the programmatic nature of 

process, while human error is significantly cut down. Additionally, the inclusion of a user-friendly 

interface allows researchers to easily access whatever data is desired in an expedient fashion. For 

these reasons, we believe that GPCR-EXP will be an invaluable resource to researchers in drug 

discovery. Interestingly, GPCR-EXP was originally conceived in 2015 and has managed to garner 

mentions in several scientific publications31-36 from biomedical users, despite the manuscript 

describing the database yet to be published. With the latest, more-comprehensive version of our 

database, we are confident to have a lasting impact in GPCR research, and hence in drug discovery 

on the whole. 
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CHAPTER 3.  

GLASS: A Comprehensive Database for Experimentally-Validated  

GPCR-Ligand Associations1 

 

1. Introduction 

G protein-coupled receptors (GPCR) represent one of the largest families of transmembrane 

proteins that bind extracellular molecules and activate intracellular signal transduction pathways, 

which mediate many physiological functions through their interaction with heterotrimeric G 

proteins. Many human diseases, including cancer and diabetes, have been found to be associated 

with the malfunction of the biological roles of GPCRs.2 Currently, approximately 30-50% of drugs 

on the market target GPCRs, making them one of the most attractive membrane receptors for drug 

development.3-4 While experiment-based assays for novel chemical compounds remain the 

standard procedure for drug discovery, in silico screening is gaining increasing acceptance as an 

important complementary method to narrow down the drug searching scope and to guide 

experimental design. Another advantage of the computational approach is due to its high speed 

and low cost, which enables high-throughput and large-scale database screening.5  

 

Both the experimental and computational drug discovery approaches rely on existing GPCR-ligand 

experimental data to provide insight for screening and selecting new drugs. A variety of GPCR-

orientated databases, such as GPCRDB,6 TinyGRAP,7 GPCR-OKB,8 GDD,9 and GPCR-RD,10 

have been developed, which generated important impacts on various molecule-level studies on the 

elucidation of GPCR structure and function. 

 

There are however very few databases that can provide comprehensive resources for GPCR-ligand 

interactions that are essential in assisting GPCR virtual screening studies.11-13 One difficulty in 

                                                           
1 This chapter was adapted from a previously-published work in Bioinformatics, entitled “GLASS: a comprehensive 
database for experimentally validated GPCR-ligand associations” by WKB Chan, H Zhang, J Yang, JR Brender, J Hur, 
A Özgür, and Yang Zhang. WKB Chan and H Zhang shared co-authorship in the study.  
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developing such databases is that the GPCRs can be associated with a large number of ligands in 

various binding affinities, and the GPCR-ligand association data in many chemical libraries are 

often mixed with various false-positives. A collection of GPCR-ligand associations with stringent 

experimental validations and careful human curation is essential to ensure the quality of the 

datasets. Second, with the success of the sequencing and structural genomics projects, the number 

of available GPCR and ligand interactions increase rapidly. But most of the new studies are 

scattered in a wide spread of publications and archives, which makes it difficult to keep the 

databases up to date. For example, GLIDA14 was a useful GPCR-ligand binding database designed 

for chemical genomic drug discovery; but it has ceased updates to its server since October 2010. 

The current GLIDA library contains around 39,000 GPCR-ligand entries, whereas the amount of 

unique GPCR-ligand interactions available in the literature in our estimation is above 500,000. 

The missing of such a substantial amount of new data significantly degrades the usefulness of the 

databases to the experimental and computational drug discovery studies. 

 

In this study, we have developed a new GPCR-ligand association (GLASS) database for use as a 

general platform in assisting GPCR-related drug screening studies. Drawing from multiple primary 

data sources, GLASS focuses on a comprehensive and yet precise collection of the experimentally-

validated GPCR-ligand interactions with strong affinities. All the GPCR-ligand association data 

are manually-curated and made freely-available to the community. 

 

2. Data and Methods 

The GPCR-ligand association data in GLASS consist of two major resources. The first resource 

consists of five primary pharmacological datasets from ChEMBL,15 BindingDB,16 IUPHAR,17 

DrugBank,18 and PDSP,19 which contain various bioactive ligand and protein interaction data. A 

flowchart of the construction of GLASS is depicted in Figure 3.1. 

 

2.1. Database Recombination Pipeline 

A list of all reviewed UniProt IDs pertaining to GPCRs was first collected from UniProtKB.20 Data 

relevant to each GPCR, such as species, gene name, and primary sequence, were simultaneously 

extracted. We used a combination of synonymous GPCR names from IUPHAR and UniProtKB. 
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In the second step, flat line databases were downloaded from the pharmacological databases of 

ChEMBL, BindingDB, IUPHAR, DrugBank, and PDSP. Data entries were filtered only for 

GPCR-related ones using UniProt ID and compiled together. The ligands without chemical 

identifiers were eliminated. Meanwhile, the statistical analysis of the distributions among the Ki, 

Kd, IC50, and EC50 values revealed that the majority (>95%) of the experimental ligand-GPCR 

associations have the activity values below 10 µM. Thus, an activity filter was implemented, i.e. 

the entries with a Ki, Kd, IC50, and EC50 higher than 10 µM were designated as inactive 

compounds, in order to sieve out weak and suspicious GPCR-ligand associations. Once an entry 

passes all criteria, records on the pharmacological data (e.g. ligand activities), the references to the 

original literature of study, and the chemical identifiers such as SMILES or InChI, are collected 

from the original pharmacological databases. Overall, the compiled compound files for both active 

and inactive compounds were generated and included as download for users.  

 

Figure 3.1 - Flowchart for the Construction of GLASS Database. 
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2.2. Architecture of the GLASS Library 

The GLASS database was built using MySQL, while the Internet webpage was augmented with a 

combination of Perl and Python CGI scripts to facilitate the communication of the interfaces with 

the MySQL database. 

For each GPCR-ligand association, relevant chemical information, such as XlogP, molecular 

weight, hydrogen bond acceptor and donor, 2D structure image, synonyms, and IUPAC name, 

were extracted from PubChem using the compound identifier (CID) of each ligand via their 

Chemical Identifier Exchange service. The 3D SDF files were generated from respective canonical 

SMILES strings using Open Babel.21 

 

For the GPCRs from the human genome, the associated conditions and diseases from experiments 

were compiled from TTD22 when available. The 3D structure information is provided for each 

GPCR by cross-linking to the PDB when the experimental structures are available; otherwise, a 

link is provided to the GPCR-HGmod,23 a comprehensive human GPCR structure database with 

all models constructed by the GPCR-I-TASSER algorithm assisted with the mutagenesis 

experimental restraints. A confidence score is provided for each of the GPCR structure models to 

calibrate the quality. An NGL Viewer image is created for each GPCR to allow users to view the 

3D structure of the receptor. 

 

To facilitate comparative interaction studies, GLASS provides an interactive search engine to 

collect homology ligand/compounds through either substructure or chemical similarity. Using the 

JSME molecular editor,24 users are allowed to draw a chemical structure of the compounds, which 

is then converted into a SMILES string. Subsequently, it is transferred to Open Babel for either a 

substructure or similarity search against the indexed ligands. An SDF file is pre-created containing 

all ligand indexes in order to expedite the searching process. For the chemical similarity search, 

users are able to select the Tanimoto coefficient cutoffs. The resultant ligands are returned as 

SMILES strings. Finally, the SMILES strings are used as probes to search against the database in 

order to collect homologous ligands, which are returned as images of the chemical structure and 

their names. Tanimoto coefficients are returned, as well, if the similarity search was selected. 
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3. Results  

3.1 GLASS in Numbers 

As of the time of writing, GLASS contains 994,751 GPCR-ligand entries, collected from multiple 

sources of experiments. Some associations appear more than once in different experiments. After 

removing the redundant entries, there are 549,792 unique associations each containing a species-

specific GPCR paired with an interacting ligand (444,959 unique associations remain if removing 

the redundancy across species and accounting for orthologues). 

 

A total of 3,056 GPCR entries in GLASS were extracted from UniProt,20 where 733 GPCRs have 

at least one ligand associations. The other 2,323 GPCR entries have no ligand associated data in 

the experiment literature as of the present time. Among the GPCR’s with ligand associations, there 

are approximately 750 different types of ligand/compound associations per receptor on average; 

but the median value is only 77 due to the fact that several receptor families have a dominantly 

high number of ligand associations (see below). The total number of unique ligands in GLASS is 

335,040. A summary of the current GLASS database is presented in Table 3.1. 

 

Most of the ligand asso ciations in GLASS are skewed towards the Class-A rhodopsin-like family 

of GPCRs, which makes up approximately 80% of the association data (Figure 3.2). The top four 

receptors in the rhodopsin-like family, all of which have more than 65,000 ligand associations, are 

from serotonin, adenine and adenosine nucleotide, opioid, and dopamine receptors. These 

Figure 3.2 - Distribution of GPCR-Ligand Data in 
GLASS by Family. All values presented as percentage of 
total. Fungal, cyclic AMP, slime mold, OA, and T2R 
receptors, which have insufficient (<10 entries) or no 
data, were excluded from the plot. 
 

Table 3.1 - Summary of GLASS Database 
 

Type of entry Number of entries 
All GPCRs 3,056 
        With ligand association 733 
        Without ligand association 2,323 
Unique ligands 335,040 
        Drug-like ligands 238,027 
All GPCR-ligand associations 994,751 
        Unique associations 549,792 
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Figure 3.3 - Histogram of Ligand Associations with GPCRs in the Class A (Rhodopsin-like) Family. The figure only 

displays the GPCRs with at least one ligand associations. 
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receptors also represent the set of the most popularly studied GPCRs in literature due to their 

importance in pharmaceutical applications and research. A histogram of the ligand associations 

for the entire Class-A family is shown in Figure 3.3. 

 
 

The non-rhodopsin-like families of GPCRs constitute a far lesser proportion of ligand associations. 

Nevertheless, the human glucagon-like peptide 1 receptor from the Class-B secretin family 

contains the most abundant GPCR-ligand associations among all the human GPCRs, containing 

over 100,000 entries. The other non-rhodopsin-like GPCRs with more than 2,000 GPCR-ligand 

Figure 3.4 - Histogram of Ligand Associations with GPCRs in the Class B (Secretin) Family. The figure only displays the 

GPCRs with at least one ligand associations. 
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associations are the metabotropic glutamate group of receptors from the Class-C metabotropic 

glutamate/pheromone family. There are only two members (UniProt ID:  Q88935 and P56726) 

from the Class-F family that have associated experimental data, while little to no GPCR-ligand 

associations are found for the GPCRs from the fungal mating pheromone (Class-D), cyclic AMP 

Figure 3.5 - Histogram of Ligand Associations with GPCRs in the Class C (Metabotropic Glutamate/Pheromone) Family. 

The figure only displays the GPCRs with at least one ligand associations. 

 

Figure 3.6 - Histogram of Ligand Associations with GPCRs in the Class F (Frizzled /Smoothened) Family. The figure only 

displays the GPCRs with at least one ligand associations. 
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(Class-E), slime mold, ocular albinism (OA), and taste receptor (T2R) families. Figures 3.4-3.6 

list the detailed data distributions of ligand associations for Class-B, C, and F families. This highly 

uneven ligand association distribution explains the reason that the median number of ligands per 

receptor is much lower than the average. 

 

 

 

 

3.2 Survey of Experimental Data 

All experimental data related to Kd, Ki, IC50, and EC50, some common experimental measures in 

pharmacology, were collected for analysis and summarized in Figure 3.7. All four of these 

followed an approximately normal distribution when transformed to their negative log form and 

conformed to expectations. Typical cutoffs of 10 µM were used as activity filters for GLASS 

database in creating a filtered chemical subset. However, a cutoff of 20 µM for IC50 and EC50 was 

Figure 3.7 - Activity Distributions of Ligands from GLASS Database. Pharmacological data covered include (A.) Kd, (B.) Ki, 

(C.)  IC50, and (D.) EC50. All experimental values are converted to the negative log form. Thus, pKd = -logKd. The dashed red line 

indicates the activity cutoff used for the creation of ligand sets in MAGELLAN, which was 10 µM for Ki and Kd and 20 µM for 

IC50 and EC50. 
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used in the following chapter with MAGELLAN and will be explained in there. Overall, there was 

only a small reduction in the amount of data after filtration. The most shocking revelation while 

surveying the publicly-available experimental data was the inconsistencies between studies. Many 

experimental values for the same ligand and receptor were found to be over 2 orders of magnitude 

different from one another (Figure 3.8). This is consistent with a previous study on IC50 data from 

ChEMBL.25 The variation is understandable for measures such as EC50 and IC50 because they are 

assay specific and comparable only under certain conditions. However, for constants like Kd and 

Ki, the disagreements are deeply troubling and potentially reflective of the problem of 

irreproducibility in science.  

 

 

 

 

Figure 3.8 - Pairs of Activity Data from GLASS Database. Pharmacological data covered include (A.) Kd, (B.) Ki, (C.)  

IC50, and (D.) EC50. Non-redundant pairs of experimental values are shown between all GPCRs and their ligands. All 

experimental values are converted to the negative log form. Thus, pKd = -logKd. The outer dashed lines represent a 2.5 log 

unit threshold.  
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3.3. Database Features 

The GLASS database is updated every month, and all data are made freely available at: 

http://zhanglab.ccmb.med.umich.edu/ GLASS/. Three features have been developed for searching, 

browsing, or downloading of the GPCR-ligand association data in GLASS, as shown in Figure 

3.8, which are outlined in the following. 

 

3.3.1. Searching GLASS 

An efficient search function is essential to the development of biomedical databases. GLASS 

provides three options on the home page for searching the database based on three types of queries: 

(1) GPCR-based, (2) ligand-based, and (3) GPCR-ligand-based. Users can choose these options 

by selecting the radio button of interest before or after typing the desired input (Figure 3.8).  

 

 

 

Figure 3.8 - A screen shot of the GLASS homepage showing options for searching, browsing, and downloading of database-
related data. 

http://zhanglab.ccmb.med.umich.edu/%20GLASS/
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Using the GPCR-based search, users can search for a GPCR of interest using a variety of inputs, 

including UniProt ID, gene name, or associated medical conditions. Clicking on the ‘Search’ 

button takes the user to a page listing all GPCRs that match the query; clicking and following the 

link of the GPCR of interest will bring the user to a detailed page with GPCR-related information, 

including GPCR name, species, gene name, synonyms, associated diseases, primary sequence and 

its length, atomic structural model, and database identifiers. All ligands that are associated with 

Figure 3.10 - Illustration of the output page for the ligand-
based search on GLASS. The ligand shown is prenalterol, one 
of the associationed ligands for the human β2 adrenergic 
receptor in Figure 5. GPCRs bound with prenalterol are listed 
at the bottom of the page. 

 

Figure 3.9 - Illustration of the output of GPCR-based 
search from GLASS. This example is from the human 
β2 adrenergic receptor, where ligands associated with 
the receptor are listed at the bottom of the page. The 3D 
structure shown was from the PDB entry solved by 
Cherezov et al.1 
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the GPCR are listed at the bottom of the page. Figure 3.9 presents an example of output of the 

GPCR-based search from the human β2 adrenergic receptor. 

 

The ligand-based search requires knowledge of the name, chemical identifier, or PubChem ID of 

the ligand of interest. Clicking on the ‘Search’ button will bring the user to a page of results of all 

ligands matching the query. Clicking and following the link of the ligand of interest will bring up 

a detailed page with the ligand name, molecular formula, IUPAC name, synonyms, physico-

chemical properties, chemical identifiers, database identifiers, 2D chemical structure, and a list of 

GPCR targets with experimental data. An example output involving the ligand, prenalterol, is 

shown in Figure 3.10, where all GPCRs that bind with the ligand are listed at the bottom of the 

page. 

 

Figure 3.11 - Searching GLASS database for ligands using either the substructure similarity (Left Panel) or chemical similarity 
(Right Panel). The users first specify the ligand by importing a MOL or SDF file or draw the molecule into the JSME molecular 
editor. In this example, morphine is the query molecule. By clicking on the ‘Fetch Compounds’ button, the substructure search 
pipeline will look for ligands that have the molecule that the users specified as part of its chemical structure; the chemical 
similarity search pipeline will return all ligands that are at least 70% chemically identical to the query (the cutoff is adjustable). 
While the ligand name and chemical structure are provided for the users in both searches, Tanimoto coefficients are seen only 
with the chemical similarity search. 
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Although the GPCR-ligand association information can be retrieved from the GPCR- and ligand-

based searches, GLASS provides a third GPCR-ligand-based search option if the respective 

GLASS ID of the interaction is known. In the above example, the GLASS ID of the human β2 

adrenergic receptor and prenalterol association is ‘8792’. By searching on ‘8792’, the users will 

be brought to a page containing GPCR and ligand information, as well as experimental binding 

affinity data. In this example, the free energy of binding was reported to be 9.76 kcal/mol from the 

reference with the PubMed ID 24063433. 

 

In addition to the ligand-, GPCR- and ligand-GPCR-based searching options, GLASS provides a 

target-based search for users who wish to locate a particular ligand by either chemical similarity 

or match of substructure (Figure 3.11). Using the JSME chemical editor, the user can manually 

draw a ligand of interest or import a MOL or SDF file. Substructure search queries should be for 

the ligands of sufficient chemical complexity, as it would otherwise match too many ligands and 

result in an unreasonably long search. Searching by chemical similarity, there are options to select 

for a percentage cutoff. Results are returned with respective ligands and 2D chemical structure 

images; Tanimoto coefficients are also provided for similarity searches. All ligands found can be 

downloaded in SDF file format. An example to search homologies of morphine is illustrated in 

Figure 3.10.  

 

 

3.3.2. Browsing GLASS 

A comprehensive list of GPCRs and ligands from GLASS is provided on the home page to enable 

browsing of all entries in bulk. Additionally, the user can also browse all GPCRs as sorted by their 

respective families as designated by UniProt.20 According to this schema, the rhodopsin-like 

family GPCR entries are further divided into the level of sub-families due to the high volume of 

entries, while the rest of the families remain in one level. 

 

3.3.3. Downloading GLASS 

Tables of GPCR, GPCR-ligand, and ligand data are all made available for download in TSV file 

format. A zipped SDF file of all GLASS ligands in 3D format is available and ready for use in 

molecular docking experiments; physicochemical properties and molecular descriptors are 

included within the property tags for the user’s convenience. 
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4. Summary 

We have developed a new database, GLASS, which encompasses a wide breadth of GPCR-related 

pharmacological data, gathered from a multitude of data sources. GLASS contains over ten times 

more ligand and GPCR-ligand interaction data than the leading databases, which makes GLASS 

the most comprehensive and up-to-date GPCR-ligand association repository in the field. It is 

however the novel sets of data collection and feature setting, rather than the sheer amount of data, 

which makes GLASS database unique. 

 

The current structure of GLASS database has been made to retain the majority of GPCR-ligand 

pharmacological data after some definitive filters to rule out false positives; this gives users options 

to choose proper cutoff values for certain experimental parameters, such as binding constants. This 

will avoid any subjective pre-cutoffs that limit user’s flexibility. Certain GPCR-ligand databases, 

such as GLIDA,14 only give a list of ligands with biological activities as opposed to experimental 

parameters. For example, a ligand could be designated as an agonist for a GPCR, but we are left 

unaware of how it came to be as such. The pre-cutoff setting makes it difficult to customize ligand 

datasets by experimental values for analysis. GLASS database was designed to ensure all of its 

extracted data available for user manipulation. The presence of this option means that analyses can 

be performed on individual GPCRs to elucidate their ligand preferences based on various cutoff 

values. 

 

One of the major difficulties in studying GPCR-ligand association stems from the lack of 3D 

structure of the receptors due to the notorious recalcitrance to crystallization.26 Currently, GLASS 

has integrated X-ray crystal structures for numerous GPCRs from the PDB library and predicted 

models by GPCR-I-TASSER for all 1,073 human GPCRs from GPCR-EXP database 

(http://zhanglab.ccmb.med.umich.edu/GPCR-EXP/). In the next step, we are extending GPCR-I-

TASSER to generate atomic structure models for the rest of 2,020 GPCRs from other species. 

Meanwhile, we will extend the cutting-edge ligand binding prediction approaches, including 

COFACTOR27 and COACH28, to deduce the ligand-binding sites of all GPCRs based on the 

GPCR-I-TASSER models. The high-resolution 3D structure and ligand-binding prediction data 

will provide useful insights to the physical landscape of the GPCR-ligand associations. 

 

http://zhanglab.ccmb.med.umich.edu/GPCR-EXP/
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One of the focuses of GLASS is to provide references to various experimental and computational 

virtual screening studies. For instance, an important approach to GPCR virtual screening is to 

collect ligand profiles from homologous ligand-GPCR interactions,13 where the completeness of 

the ligand-GPCR associations in GLASS will be essential to increase the sensitivity and 

recognition power of the ligand profiles. With its comprehensive coverage of datasets and 

consistent updates of data, we expect that GLASS become an important primary GPCR resource 

and impart its usefulness in many other biomedical studies, including in silico GPCR drug 

discovery, GPCR de-orphanization, and functional annotation. 
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CHAPTER 4.  

MAGELLAN: Incorporation of Sequence and Structure Information in a Ligand-Profile 

Based Virtual Screen for Human Class-A G Protein-Coupled Receptors 

 

 

 

1. Introduction 

G protein-coupled receptors (GPCR) are a large superfamily of transmembrane receptors 

responsible for cellular signal transductions. The malfunction of the receptors is the cause of a 

wide array of pathologies, such as cancer and diabetes.1-2 Consequently, GPCRs are among the 

most clinically-studied targets in drug discovery. A detailed analysis of the DrugBank shows that 

23% of the 2,276 FDA-approved drugs on the market, including both small molecules and 

biologics, target GPCRs, while out of other 2,641 drugs that are under some form of clinical trial, 

8% target GPCRs. Overall, GPCRs represent targets of 15% of all drugs that are either approved 

and investigational (Figure 1). 

Figure 4.1 - DrugBank Statistics for GPCRs. Percentage of small molecule and biotech drugs shown for 

GPCR and non-GPCR targets under the groups of (A) approved, (B) investigational, and (C) total drugs.  
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A mainstay in drug development is high-throughput screening (HTS), a technique biochemically 

assaying a pharmacological target against the candidate compounds. However, HTS is usually 

costly and laborious, where various in silico approaches have found useful to assist and 

complement HTS.3 There are two general approaches that are commonly employed in the 

computer-aided drug screening: ligand-based and receptor-based virtual screening. In the former, 

knowledge of what ligands the receptor targets tend to bind is used to develop a model for drug 

screening,4-5 while the latter utilizes structural information of the receptors to predict ligand-

binding affinity, normally through docking.6-7 Although structure-based approaches are typically 

very computationally expensive and can take a long time to run, they can be very useful when the 

structure of the receptor is known, producing results that may be biochemically relevant; on the 

other hand, ligand-based approaches are usually very fast, but they tend to be biased towards 

ligands that are currently known.8 

 

However, both structure and ligand-based approaches require some sort of information, either 

known active ligands or a structure, and this may not be available for a drug target of interest. The 

orphan GPCRs are one such example, many of which lack known endogenous ligands.9 In this 

regard, chemical genomics approaches are often applied to infer ligand binding information, based 

on the assumption that similar receptors bind similar ligands.10 One of the earliest applications of 

the idea was with the algorithm, FINDSITE, which uses ligand information from structurally-

homologous receptors found through fold-recognition in a ligand-based virtual screen.11-12 

Another more-recent algorithm is PoLi, developed by the same lab, which looks for similar protein 

receptors by performing binding pocket structure comparison between the query and targets, 

followed by a ligand-based screening search.5  

 

Though structure is generally considered to be more conserved than sequence in evolution, relying 

solely on structural similarities can result in high false positives in ligand information deduction, 

as receptors of similar structures often bind with different ligands. In particular, experimental 

structures are not always available for many medically-relevant target proteins, where low-

resolution models would have to be generated for the target receptors; this would further impact 

the accuracy and specificity of the structure-based ligand inferences. This is true especially for the 

case of GPCR families, which all have similar global folds but different local structure at the 
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binding sites.13 Moreover, the majority of the structure-based approaches rely on selecting 

homologous proteins and their respective ligand sets from the Protein Data Bank (PDB);14 however, 

pharmacological data are often found in low quantities within the PDB. Currently, there are many 

more proteins with known pharmacological data than those with known structures. The largest 

sources of publicly-available ligand data reside in various manually curated databases, such as 

ChEMBL,15 BindingDB,16 and GLASS (for GPCRs).17 Using the wealth of information from such 

resources should help enhance the accuracy of the ligand-based approaches. 

 

In this study, we present a novel ligand-profile based virtual screening approach, MAGELLAN 

(standing for Michigan G protein-coupled receptor ligand-based virtual screen), specifically 

designed for G protein-coupled receptors. To enhance the reliability and robustness of ligand-

based screening approach, multiple methods, utilizing both structure- and sequence-based 

alignments, are employed for detecting heterogeneous receptor homologies, from which consensus 

ligand profiles are created for the next step of virtual screening. To examine the strength and 

weakness of the pipeline, large-scale tests are performed on 224 representative Class A GPCRs, 

which are carefully controlled with various component and state-of-the-art methods. Here, Class 

A GPCRs were selected as the focus mainly because of their high diversities in structure and 

function and clinical importance in drug discovery. Moreover, the conserved transmembrane 

domains of these receptors make it an ideal case for examining the sequence- and structure-based 

alignment pipelines. An on-line MAGELLAN webserver, together with the virtual screening 

results for all human GPCRs and the filtered ligand sets, are available and downloadable at 

https://zhanglab.ccmb.med.umich.edu/MAGELLAN. 

 

2. Methods 

The virtual screening process of MAGELLAN consists of three distinct stages: 1) GPCR alignment 

and selection, 2) ligand profile construction, and 3) virtual screening. The flowchart of the 

MAGELLAN pipeline is depicted in Figure 2, which starts with a single primary sequence of the 

target (or query) GPCR in FASTA format, where the output consists of a list of predicted ligands 

bound with the target. 

 

https://zhanglab.ccmb.med.umich.edu/MAGELLAN
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2.1 Construction of Ligand-GPCR Association Library 

The central assumption of MAGELLAN is that similar receptors bind similar ligands.10 For this 

purpose, a comprehensive library of GPCR-ligand associations is constructed from the GLASS 

database 17. Here, only experimental values of Ki, Kd, IC50, and EC50 were used. In case that 

multiple experimental values exist for the same GPCR-ligand pair from different studies, the 

Figure 4.2 - MAGELLAN pipeline 
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median was taken as the representative value to avoid outliers. To filter out inactive ligands, a 

common threshold of 10 µM is used for both Ki and Kd values. However, a threshold of 20 µM 

was set for IC50 and EC50, justified by a previous study that found a Ki-IC50 conversion factor of 2 

to be suitable.18 This relatively loose criterion could account for variability in assay conditions, 

inherent in the types of experiments used to determine these values. After filtration, the library 

contains 238,108 GPCR-ligand associations attached with 644 GPCRs.  

 

2.2 Detection of Homologous GPCRs 

The first stage of MAGELLAN is to select homologous GPCRs, in order to construct a predictive 

model for what the target GPCR would potentially bind. Five complementary algorithms, 

including TM-align,19 PPS-Align,20 BLAST,21 PSI-BLAST22 and BindRes, are extended to detect 

analogous GPCRs, where the first two are structure based and the other three are built on sequence 

and sequence-profile comparisons. 

 

In the first GPCR detection pipeline, TM-align19 is used to align the global structures of query to 

template GPCRs. To obtain a structure model of the query GPCR, its query sequence is submitted 

to GPCR-I-TASSER, which was designed to create full-length GPCR structures by reassembling 

the structural fragments from threading through replica-exchange Monte Carlo simulations.23 The 

resulting structure models are then compared against the GPCRs in the pre-compiled GPCR-ligand 

library, where the structures are also generated with GPCR-I-TASSER. The resultant GPCRs 

detected by TM-align are scored by: 

𝑆𝑇𝑀𝑎𝑙𝑖𝑔𝑛 =
2

1 + 𝑒−(0.2T+f(0.4S + 0.3E + 0.2𝐽) + 𝑅)2
− 1                                 (1) 

Here, 𝑇 =
1

𝐿
∑

1

1+(
𝑑𝑖
𝑑0
)
2

𝐿𝑎𝑙𝑖
𝑖  is the TM-score to measure the global structure similarity of the query 

and template models, where 𝐿 is the length of the query sequence, 𝐿𝑎𝑙𝑖 is the number of aligned 

residues by TM-align, 𝑑𝑖 is the distance of ith pair of aligned residues between query and template 

and 𝑑0 = 1.24√𝐿 − 15
3

− 1.8 is the scale factor; 𝑓 = 𝑚/𝑛 is the fraction of the aligned residues 

in the binding pocket (𝑚) normalized by the total number of binding residues (𝑛) on the template; 

𝑆 =
1

𝑛
∑

1

1+(
𝑑𝑖
𝑑0
)
2

𝑛
𝑖=1  accounts for the local structural similarity of the binding pockets between query 
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and template; 𝐸 =
1

𝑛
∑ 𝐵(𝐴𝑖

𝑞 , 𝐴𝑖
𝑡)𝑛

𝑖=1  measures the evolutionary relation between the aligned 

binding residues, where 𝐵(𝐴𝑖
𝑞 , 𝐴𝑖

𝑡)  is the BLOSUM mutation score; 𝐽 =

1

𝑛
∑ (∑ 𝑝𝑖

𝑎 log
𝑝𝑖
𝑎

𝑝𝑖
𝑎+𝑞𝑎

+∑ 𝑞𝑎 log
𝑝𝑖
𝑎

𝑝𝑖
𝑎+𝑞𝑎

 20
𝑎

20
𝑎 )𝑛

𝑖=1  is the average Jensen-Shannon divergence over the 

binding pocket, where 𝑝𝑖
𝑎 is the frequency of amino acid 𝑎 at ith column of multiple sequence 

alignment (MSA) identified by PSI-Blast for the query GPCR and 𝑞𝑎 is the background frequency; 

and R is the residue chemical similarity of the binding site residues, where Figure 4.3 provides an 

illustrative example for how the residue chemical similarity was calculated. 

 

 

Second, PPS-Align is an algorithm recently designed for sequence-order independent structure 

alignments of binding pockets.20 In this pipeline, the GPCR-I-TASSER models of query and 

template GPCRs are submitted to COACH,24 which was designed to detect ligand binding residues 

through composite sequence-profile and structure comparisons. The ligand binding pockets are 

then constructed by clustering the COACH binding-site predictions with the highest confidence 

score, which are finally aligned by PPS-Align for pocket comparisons. The GPCR templates from 

the library are scored by  

Figure 4.3 - Explanation of the Residue Chemical Similarity (RCS) Term. (A) Shown is the binary representation of the 

chemical features of aspartate. Each bit is position dependent and corresponds to one of four chemical features (H-bond donor, 

H-bond acceptor, aromatic, and aliphatic). The anionic oxygen from the carboxyl group (red box) is a H-bond acceptor, thus a 

bit is set in the second position. (B) In this simplified example, the two binding pockets are a binary representation of the 

chemical features of the aligned binding pockets produced from PPS-Align. The RCS calculation is essentially a Tanimoto 

coefficient calculation between the two bit-string representations of the binding pockets, where a is the number of bits in 

Binding Pocket 1, b is the number of bits in Binding Pocket 2, and c is the number of bits shared between the two. Here, the 

two binding pockets have a RCS of 0.2, as shown in the figure. 
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𝑆𝑃𝑃𝑆𝑎𝑙𝑖𝑔𝑛 =
2

1 + 𝑒−(𝑃𝑃𝑆 + 0.25S + 0.25𝐽 + 𝐼𝑏𝑠)
− 1                                 (2) 

where 𝑃𝑃𝑆 in [0,1] is the pocket similarity score returned by PPS-Align, 𝑆 and 𝐽 are the same as 

defined in Eq. (1), and 𝐼𝑏𝑠 is the sequence identity of the binding-site residues in the PPS-align 

aligned region between query and template GPCRs. 

 

In the third BindRes pipeline, we first parse the transmembrane (TM) domains of the query GPCR 

according to the UniProtKB/SwissProt annotation, which are then aligned with the TM domains 

of all template GPCRs in the library using Clustal Omega.25 The template GPCRs are ranked by 

𝑆𝐵𝑖𝑛𝑑𝑅𝑒𝑠 =
2

1 + 𝑒−(𝐼𝑏𝑠+𝑅+0.2𝐽)
− 1                                 (3) 

where 𝐼𝑏𝑠, 𝑅 and 𝐽 are defined similarly as in Eqs. (1-2). The calculations focus solely on the 44 

orthosteric binding site residues on the TM-domains, as specified by Gloriam et al.26 Since these 

orthosteric residues have been labelled in Ballesteros-Weinstein numbering system,27 the identities 

can be conveniently referred through the most conserved residue of each TM domain according to 

the Clustal Omega alignments. 

 

Finally, the BLAST and PSI-BLAST pipelines use the programs from the NCBI BLAST+ software 

suite (V2.2.29). For BLAST, the query GPCR sequence is matched against the GPCR templates, 

which are sorted by descending sequence identity to the query. The same is done for PSI-BLAST 

but with sequence-profile alignment, where the profiles were collected with 4 iterations from the 

non-redundant (NR) sequence database from NCBI under an E-value cutoff of 0.001. The results 

are also ranked by descending sequence identity. 

 

2.3 Ligand Profile Construction and Profile-Based Virtual Screening 

Associated active ligands from the ten top-ranked GPCRs are compiled for each of the five GPCR 

alignment methods. It should be noted that all ligands are originally represented as InChI 

identifiers and keys, and converted into 1,024-bit Morgan fingerprints with a radius of 2 using 

RDKit.28  

 

To capture the most common chemotypes, the resulting ligand collections are clustered with the 

Taylor-Butina algorithm29-30 using the Chemfp Python library,31 where a Tanimoto coefficient (TC) 
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cutoff of 0.8 was used. The 40 largest GPCR clusters are selected for use in the next step of virtual 

screening. If there are fewer than 40 clusters, all of them are used. 

For a given cluster (k), a ligand profile is constructed for the query GPCR, which is represented 

by a 1024 × 𝑁𝑘 matrix, where 𝑁𝑘 is the number of non-redundant ligands in the cluster and each 

ligand has 1024-bit fingerprints taken from the ZINC12 database (Figure 3). A profile-compound 

calculation is performed through the compound library using a profile score of 

𝑃𝑟𝑆𝑘(𝑧) =
1

Nk
∑𝑤𝑖𝑇𝑖,𝑧

𝑁𝑘

𝑖=1

                                 (4) 
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 is the Tanimoto coefficient between the ith ligand and 

the zth compound in the database. Here, 𝑏𝑖
𝑗
 and 𝑏𝑧

𝑗
 are the bits in the ith and the zth compounds, 

respectively. 𝑤𝑖 =
1

𝑀𝑖
∑ 𝑆𝑚(𝑖)
𝑀𝑖
𝑚=1  is the weighting factor for ligand i, where 𝑆𝑚(𝑖) is the scoring 

function of mth alignment method as defined in Eqs. (1-3) and 𝑀𝑖 is the total number of methods 

that identifies the ith ligand (Figure 4.4). 

 

For each cluster (k), each 𝑃𝑟𝑆𝑘(z) is converted into a Z-score, where 𝑍𝑘(𝑧) =
𝑃𝑟𝑆𝑘(z)−𝜇𝑘

𝜎𝑘
, where 

𝜇𝑘 and 𝜎𝑘 are, respectively, the mean and standard deviation of all PrS in the kth cluster. A final 

score for ZINC compound, z, is calculated by taking the maximum PrS among all clusters,  

𝑆(𝑧) = max
𝑘
{𝑍𝑘(𝑧)}                                 (5) 

Here, we note that there are overall 3 free parameters in the MAGELLAN pipeline, including 

number of GPCRs used from the alignments, TC cutoff for clustering, and number of clusters used. 

These parameters have been optimized using an independent dataset of 56 GPCRs that are non-

redundant from the test proteins reported in this study. During the training process, the parameters 

were determined by maximizing the average enrichment factor of virtual screening as defined in 

Eq. (7) below. 
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2.4 Construction of Minimum Spanning Tree by Similarity Ensemble Approach 

To evaluate similarity of GPCR proteins based on their ligand similarity, we construct a minimum 

spanning tree for the targets using the similarity ensemble approach (SEA).32-33 To assess the 

ligand set similarities in a statistically stringent base, we first collect multiple random ligand sets 

with sizes between 10 and 1,000 ligands from the GLASS database, and calculate the TC score 

between the randomly collected ligand pairs. The relation of the TC-score distribution and the size 

of ligand sets follows well with 

{
𝜇 = 𝑘𝑠
𝜎 = 𝑚𝑠𝑟

                                 (6) 

where 𝜇 and 𝜎 are mean and standard deviation of the TC-score distribution, 𝑠 is the product of 

the size of two ligand sets compared, and 𝑘,𝑚 and 𝑟 are parameters to fit (see Figure 4.5). Thus, 

Figure 4.4 - Illustration of the ligand profile that summarizes feature information of all ligands from 

the kth cluster. In the ligand profile, the horizontal axes represent the ligand fingerprint bits, while the 

vertical axes indicate the ligands; each ligand contains a corresponding weight (wi) based on GPCR 

alignment scores. The bottom shows a compound fingerprint from ZINC database which is scored. For 

each ligand in the ligand profile, a Tanimoto coefficient (Ti,z) is calculated against the ZINC compound 

and multiplied with its corresponding weight. The average of these values among the ligand profile is 

the 𝑃𝑟𝑆𝑘(z). 
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the fitting parameters are used to convert any raw TC-score of two ligand sets to a size-independent 

Z-score by 𝑍 = (𝑇𝐶 − 𝜇)/𝜎. 

Here, only the ligand pairs with TC score above a threshold are used in the statistical calculation, 

where a TC threshold of 0.84 is found to be optimal, which has the Z-score distribution follow the 

Gumbel distribution (Figure 4.6). Using the extreme value distribution data, a BLAST-like E-value 

can be calculated for each GPCR pairs. Finally, a minimum spanning tree based on the significance 

of E-value can be calculated using Kruskal’s algorithm,34 with the image generated with 

Cytoscape.35  

 

 

Figure 4.5 - Mean and standard deviation of ligand similarities between random ligand sets from the 

GLASS database versus the product of set sizes. Only the ligand pairs with a Tanimoto coefficient above 

0.84 are calculated and the data follow well the linear and power-law equation shown in Eq. (6). 

Figure 4.6 - Z-score distribution of the random background data from GLASS database. The Tanimoto 

coefficient of 0.84 was found to be the best fit with the Gumbel distribution. 
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2.5 On-line Webserver Construction 

An online web server of MAGELLAN is constructed at 

https://zhanglab.ccmb.med.umich.edu/MAGELLAN/, using Python CGI scripting, complemented 

with MySQL, Javascript, and PHP. The MAGELLAN algorithm implemented on the web server 

is the same as that described in the present study, with the exception that it uses TM-HMM to 

determine the transmembrane domains of the unknown query GPCR.36 The user is able to supply 

optional inputs, such as annotated transmembrane domains, a GPCR structure, or the binding site 

residues, in order to bypass GPCR-I-TASSER and COACH that can reduce the job runtime. All 

ligand and test sets filtered from GLASS database are provided for download for the user. 

Additionally, the top 1% of results from screening the full ZINC database for all human GPCRs 

are pre-generated and made available publicly.  

 

3. Results 

3.1 Comparison of MAGELLAN with Component Methods 

Five different alignment methods have been used in MAGELLAN for GPCR model collection. To 

justify the profile approach, we first examine the performance of MAGELLAN in comparison with 

the individual alignment methods, in which the same procedure is implemented as shown in Figure 

4.2, but only with the GPCR models detected by an individual method.  

 

3.1.1 Testing Dataset Construction and Performance Evaluation 

The test datasets are constructed from a comprehensive list of all 224 Class A GPCRs. For each 

GPCR, the active ligands are collected from GLASS database,17 which are filtered with a stringent 

activity threshold of 1 µM for Ki, Kd, IC50, and EC50 values. In order to increase chemical diversity 

and to even out set sizes, ligands were clustered for each GPCR by their Bemis-Murcko 

frameworks.37 If there were between 100 and 600 frameworks, the highest activity ligand was 

selected from each cluster. If there were fewer than 100 frameworks, the highest activity ligands 

were chosen regardless of their framework until a total of 100 ligands was achieved. If there were 

greater than 600 frameworks, the activity threshold was decreased by a factor of 2 until there were 

fewer than 600 frameworks, wherein the highest activity ligands were selected from each 

framework. As a result, the test set consists of 224 Class A GPCRs, which are associated with in 

total 54,438 active ligands, or on average 258 per GPCRs. 

https://zhanglab.ccmb.med.umich.edu/MAGELLAN/
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To test the methods, the active ligands from each GPCR are mixed with a set of 500,000 randomly-

selected compounds as decoys from the “Clean Drug-Like” subset of the ZINC database. The 

downloaded compounds were in SMILES string format and subsequently converted into Morgan 

fingerprints with RDKit,28 consisting of 1,024-bit fingerprints with a radius of 2. A retrospective 

virtual screen (RVS) experiment is implemented by different methods, where the goal of RVS is 

to prioritize the active ligands using the proposed scoring functions. The performance of RVS can 

be qualitatively measured by the enrichment factor (EF): 

𝐸𝐹𝑥% =

𝑁𝑎𝑐𝑡
x%

𝑁𝑠𝑒𝑙𝑒𝑐𝑡
𝑥% 

𝑁𝑎𝑐𝑡
𝑁𝑡𝑜𝑡
 

                                 (7) 

where 𝑁𝑎𝑐𝑡 and 𝑁𝑡𝑜𝑡 are the total numbers of the active and all compounds in the ligand pool, 

respectively. 𝑁𝑎𝑐𝑡
𝑥%  and 𝑁𝑠𝑒𝑙𝑒𝑐𝑡

𝑥%  are, respectively, the numbers of true positive ligands and the 

number of all candidates in the top 𝑥% of the compounds selected by the RVS methods. A higher 

𝐸𝐹𝑥  indicates a better RVS performance, where 𝐸𝐹𝑥 = 1  means a random selection without 

enrichment. While 𝑥% can be taken as different cutoff (1%, 2%, 5% etc), we focus mainly on 1% 

for the briefness of data presentation. 

 

To rule out the effect from using close homologous targets, a handicap was applied to the selection 

of GPCRs, where any homologous GPCR templates with greater than 30% sequence identity to 

the query, based on the BLAST alignment, were excluded. Without this handicap, only the query 

GPCR is excluded. Meanwhile, to challenge the pipeline, a homologous cutoff has been applied 

in the GPCR-I-TASSER structure modeling and COACH binding prediction, i.e., all structures 

with a sequence identity >30% to the query GPCR sequence are excluded from the threading 

template library no matter if the handicap of binding GPCR is applied. 

 

3.1.2 MAGELLAN Significantly Outperforms Component Pipelines in RVS Experiment 

In Figure 4.7A, we present a scatter plot of the enrichment factors (𝐸𝐹1% ) acquired from 

MAGELLAN, in comparison with that from the five individual pipelines, where a cutoff of 30% 

sequence identity was used for filtering out the close homologous GPCR templates when inferring 

the ligand profiles. It was shown that MAGELLAN achieves a higher enrichment factor than the 

individual pipelines for most of the GPCRs. For example, MAGELLAN outperforms the BindRes 
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pipeline in 130 cases, while BindRes does so in 72 cases. These numbers are 146/52, 115/77, 

121/67, and 129/70 for BLAST, PSI-BLAST, PPS-align, and TM-align pipelines respectively. 

 

 

 

In Table 4.1 (Columns 2 and 3), we also list the average and median 𝐸𝐹1% values for each method, 

which again shows that MAGELLAN achieved a higher enrichment factor than all the individual 

methods. To examine the significance of the difference, a Wilcoxon signed-rank test is calculated 

for each pair of the comparison, where the two-tailed p-value is equal to or below 5 𝑥 10−3 in all 

the cases, which indicates that the differences between MAGELLAN and the individual methods 

are statistically significant.  

 

When comparing the individual methods, TM-Align performed better than the other component 

methods, as evidenced by its higher median 𝐸𝐹1% of 13.76. As structure is more conserved than 

sequence, it is of no surprise that it was able to achieve such a result. However, no single method 

by itself contributed dominantly to MAGELLAN because the p-values between MAGELLAN and 

each of them were significant, signifying the synergistic effect of data fusion. 

 

In Figure 4.7B, we also present the results without using the 30% sequence identity cutoff, but the 

target GPCRs have been excluded from the ligand profile detection process. As expected, the RVS 

Table 4.1 - Summary of RVS results by MAGELLAN and component methods. Data shown are median 

and average (in parentheses) 𝐸𝐹1% values on 224 test Class A GPCRs. P-value is calculated in the 

Wilcoxon signed-rank test between MAGELLAN and the control methods. 

Methods 
With handicap Without handicap 

𝐸𝐹1% p-value 𝐸𝐹1% p-value 

MAGELLAN 14.38 (23.03) -- 62.03 (59.13) -- 

BindRes 10.19 (17.90) 5 x 10-7 56.39 (56.35) 4 x 10-6 

BLAST 7.04 (16.49) 5 x 10-14 53.02 (53.26) 1 x 10-14 

PSI-BLAST 11.83 (20.79) 5 x 10-3 54.31 (54.18) 2 x 10-14 

TM-align 13.76 (20.15) 8 x 10-9 56.92 (56.39) 6 x 10-4 

PPS-Align 10.99 (20.25) 2 x 10-6 56.90 (55.55) 1 x 10-6 
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performance becomes much better when homologous GPCRs are included in the ligand profile 

construction, where many of the points in the figure have been shifted to the upper two quadrants 

in the plots, as compared to Figure 4.7A. Interestingly, the synergistic effect as witnessed with the 

handicap is not as pronounced as without the handicap. As shown in Table 4.1 (Columns 4 and 5), 

the average and median 𝐸𝐹1%  values of MAGELLAN are in general higher than that of the 

individual methods. Nonetheless, MAGELLAN overall achieved better performance than the 

individual component methods. 

 

 

Figure 4.7 - Comparison of MAGELLAN and five component methods in the retrospective virtual screen 
experiment on 224 Class A GPCRs. Results are shown as EF1% either with (A) 30% sequence identity 
cutoff or (B) no cutoff. Each point represents one GPCR. The numbers in each triangle represent the 
number of GPCRs for which the RVS method outperforms the comparison ones. 
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3.1.3 Both Sequence and Structural Alignments Are Essential to MAGELLAN Performance 

To further examine the impact of the individual GPCR alignment methods on MAGELLAN’s 

performance, we counted the highest-performing alignment method type for each GPCR under the 

sequence identity handicap, where the type was denoted as either sequence (BLAST, PSI-BLAST, 

BindRes) or structure based (TM-align, PPS-Align). Among the 224 Class A GPCRs, 89 had a 

structure-based method as their top-scoring method with the highest enrichment factors, while the 

sequence-based method does so in 135 cases. Out of the sequence-based methods, 60 of the cases 

were from PSI-BLAST. Overall, the number of GPCRs was relatively evenly distributed for each 

method, and no method stood out in particular, lending credence to the observation that both 

sequence and structural alignments aid in MAGELLAN’s performance with the sequence identity 

handicap. 

 

We also examined the effect of running MAGELLAN without the sequence identity handicap. Of 

the 224 Class A GPCRs examined, 101 resulted in a sequence-based method as their top-scoring 

method, while 123 were from structure-based methods. This was somewhat surprising, as the TM-

Align method produced 94 of the best cases. However, the scoring function from that component 

was likely able to capture homologous GPCR’s better than with sequence alone. Additionally, the 

contributions from BindRes were not menial, having 47 top-scoring GPCRs. Certainly, each 

method played a role in lending their predictive power to MAGELLAN.  

 

3.2 Benchmark of MAGELLAN with Other Virtual Screening Approaches 

To examine MAGELLAN with other state of the art approaches, we tested the performance in 

control with three widely-used virtual screening programs, including AutoDock Vina,6 DOCK 6,7 

and PoLi.5 The former two are receptor-docking based approaches, where the crystal structures of 

the target GPCRs were used as the input for molecular docking. For AutoDock Vina, all 

compounds were converted from Mol2 to PDBQT format. Additionally, the experimental GPCR 

PDB files were converted into the PDBQT format, whereby hydrogens and partial charges were 

added to all PDBQT files. A 30 x 30 x 30 Å3 search space was defined on the receptor so that it 

centered upon the crystal ligand. Default settings were used for the virtual screen, with compounds 

ranked according to their docking scores. For DOCK 6, all GPCR PDB files were converted to the 



84 
 

Mol2 format, where hydrogens and partial charges were added. Spheres were selected within 5 Å 

of the crystal ligand, while the scoring grid enclosed the spheres with a 5 Å margin. Flexible 

docking was performed with the recommended settings, with compounds ranked according to their 

grid score. Finally, PoLi is a ligand-based virtual screening tool with the probe ligands detected 

by the binding-pocket structural comparisons between query and templates. As the software is not 

available for installation, the data was taken from the benchmark study of the original authors.5 

The benchmark tests of the methods were performed on two separate datasets from DUD-E38 and 

GPCR-Bench.39 

 

3.2.1 Tests on DUD-E Dataset 

DUD-E38 is a widely-used dataset specially designed for virtual screening benchmarks. It contains 

five Class A GPCR proteins, where each protein has on average 224 active ligands from ChEMBL. 

Each active ligand is paired with 50 molecular decoys (with similar chemistry but of different 

topology) drawn from ZINC. While the turkey beta-1 adrenergic receptor (P07700) was included 

in DUD-E, there is no pharmacological data in any of the ligand databases. Thus, the ligand 

clusters from the human orthologue (P08588) were used in its place. To examine the performance, 

we run MAGELLAN and the three control programs in an automated mode against the ligand 

dataset for each GPCR target, with the goal to pick up the active ligands using their scoring 

functions.  

 

 

 

Table 4.2 - RVS results of EF1% on five Class A GPCRs in DUD-E Dataset. Values out and in parentheses are 

the results for MAGELLAN with or without handicap cutoffs. Data for PoLi was taken from Roy et al.5 

Gene UniProt ID MAGELLAN PoLi AutoDock Dock 6 

AA2AR P29274 0.95 (39.03) 1.2 1.42 2.86 

ADRB1 P07700 5.47 (36.11) 2.0 0.66 2.63 

ADRB2 P07550 13.68 (34.75) 2.6 2.69 1.35 

CXCR4 P61073 0 (23.97) 0 0 2.49 

DRD3 P35462 28.65 (39.27) 5.2 2.64 1.26 

Average  9.75 (34.63) 2.2 1.48 2.12 

 



85 
 

In Table 4.2, we list the 𝐸𝐹1%  value of virtual screening for the five GPCRs, calculated by 

MAGELLAN, AutoDock Vina, and DOCK 6, respectively. Additionally, ROC curves are 

presented in Figure S4, and AUC values are given in Table S1. Here, the PoLi data are directly 

taken from Roy et al,5 in which a similar sequence identity cutoff 30% was applied for the 

homologous GPCR filtering. The data show a better performance of MAGELLAN than the three 

control algorithms for four out of the five tested GPCRs, under the sequence identity cutoff of 

30%. In particular, the dopamine receptor D3 (DRD3) performed exceptionally well with 

MAGELLAN, with an 𝐸𝐹1% 19.06, which is more than 3 times higher than that of the control 

methods (i.e., 5.2, 2.64, and 1.26 by Poli, AutoDock and Dock 6, respectively). With a number of 

related GPCRs selected (P25115 / P21728) from the alignments, the contribution of their ligands 

in the clusters was well established, accounting for 9 chemotypes (Figure 4.8A).  

 

 

The 𝐸𝐹1%  of MAGELLAN is 4.59 and 5.83 for the beta-1 adrenergic receptor and beta-2 

adrenergic receptor, respectively, which is moderately higher than the control methods. The main 

reason for the enhanced performance is due to complementary GPCR pipelines exploited in 

MAGELLAN which detected several closely-related GPCRs that bound with similar ligands 

(including P25100 / P18130 / O02824 for ADRB1, and Q01338 / P23944 for ADRB2), despite 

Figure 4.8 - Proportion of Ligands from Related GPCRs in Clusters from MAGELLAN with Handicap for 

(A) Dopamine Receptor D3 (DRD3) and (B) C-X-C chemokine receptor type 4 (CXCR4). The presence of 

chemotypes containing ligands from respective related GPCRs was examined, where one cluster represents 

one chemotype. The influence of related GPCRs resulted in 9 chemotypes for DRD3, while CXCR4 only 

had one. 
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the low sequence identity. The ligand profiles constructed from the closely-related ligands helped 

prioritize the active compound hits. 

 

However, MAGELLAN yielded a low 𝐸𝐹1%  of 0.95 and 0 for the adenosine A2A receptor 

(AA2AR) and the C-X-C chemokine receptor type 4 (CXCR4), respectively, where no closely-

related GPCRs were selected for the former receptor. Consequently, both receptors could be 

rescued when run without the cutoff, in which related subtypes were correctly detected by both the 

structural and sequence-based GPCR alignment methods. The active ligands thus have 

significantly higher scores than that of the inactive ones for these two cases, which resulted in an 

𝐸𝐹1% of 39.15. The C-X-C chemokine receptor type 4 had a few relatives selected (P51682 / 

P51684 / O54814), but despite their presence, their corresponding ligands were only present in 

one out of the top 40 clusters used in MAGELLAN (Figure 4.8B), suggesting the need for 

chemotype diversity of the set of clusters. Moreover, the ligand set sizes for the related GPCRs 

were very small (56, 65, and 34, respectively), lessening their influence overall.  

 

Altogether, these results highlight the importance of the inclusion of homologous templates for 

ligand profile constructions. This phenomenon was observed for all the receptors, in which 𝐸𝐹1% 

was significantly increased by the inclusion of close homologous GPCRs in ligand profile 

construction. In particular, the number of chemotypes and size of ligand sets from related GPCRs 

appeared to play a role in performance. Overall, the average 𝐸𝐹1% is 9.75, which is 4.4 times 

higher than PoLi, and 6.6 and 4.6 times higher than AutoDock and Dock6 respectively. The 𝐸𝐹1% 

value will increase by 3.6 times if homologous GPCRs are included in the profile construction 

process. 

 

In Figure 4.9, we present the receiver operating characteristic curves (ROC) for the retrospective 

virtual screen results by MAGELLAN and the control methods for all targets, where the 

corresponding area under the curve (AUC) values are listed in Table 4.3. It should be noted that 

we were unable to acquire a ROC curve for PoLi, as we did not have access to their data. Overall, 

MAGELLAN achieved slightly higher AUC values with the handicap cutoffs (AUC=0.69) as 

compared to PoLi (AUC=0.58), AutoDock Vina (AUC=0.64), and DOCK 6 (AUC=0.61). Without 

the handicap cutoff, MAGELLAN was able to attain much better performance (AUC=0.92). This 
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suggests that MAGELLAN is able to better correctly select compounds that would potentially bind 

the GPCR of interest as compared to the benchmarked methods. 

 

 

 

 

 

 

 

Figure 4.9 - ROC Curves for Retrospective Virtual Screen Results of MAGELLAN, AutoDock Vina, and 

DOCK 6 with DUD-E Dataset. The following GPCRs were tested: beta-2 adrenergic receptor (ADRB2), 

beta-1 adrenergic receptor (ADRB1), adenosine receptor A2A (AA2AR), dopamine D3 receptor (DRD3), 

and C-X-C chemokine receptor type 4 (CXCR4). 

Table 4.3 - Comparison of receiver operating characteristic (ROC) values by MAGELLAN, PoLi, AutoDock 

Vina, and Dock 6 on 5 Class A GPCRs in DUD-E. Values out and in parentheses are the results for 

MAGELLAN with or without handicap cutoffs. 

Gene Name UniProt ID MAGELLAN PoLi AutoDock Vina Dock 6 

AA2AR P29274 0.63 (0.96) 0.53 0.62 0.71 

ADRB1 P07700 0.58 (0.92) 0.62 0.63 0.64 

ADRB2 P07550 0.81 (0.96) 0.56 0.67 0.66 

CXCR4 P61073 0.56 (0.85) 0.49 0.59 0.57 

DRD3 P35462 0.85 (0.91) 0.70 0.70 0.48 

Average 0.69 (0.92) 0.58 0.64 0.61 
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3.2.2 Tests on GPCR-Bench Dataset 

The second benchmark dataset on which we conducted experiments is GPCR-Bench;39 it contains 

20 Class A GPCRs, where each GPCR has between 100 to 600 active ligands accompanied by 50 

decoys per active ligand. The RVS results on this benchmark are summarized in Table 4.4. 

 

 

 

In total, MAGELLAN performed favorably (average 𝐸𝐹1%  = 13.70) in this benchmark, as 

compared with AutoDock Vina (average 𝐸𝐹1% =3.16) and DOCK 6 (average 𝐸𝐹1% =3.47). 

AutoDock Vina and DOCK 6 achieved the best enrichment for the free fatty acid receptor 1 

(GPR40) with an 𝐸𝐹1%=24.28 and 21.84 respectively. Since all of its active ligands belong to the 

same chemotype,39 the binding pocket of this target does not have as much variation compared 

with other more challenging targets, and thus makes it easier for docking (Figure 4.10). 

Table 4.4 - Summary of EF_(1%) results on 20 Class A GPCRs in GPCR-Bench. Values out and in parentheses 

are the results for MAGELLAN with or without handicap cutoffs. 

Gene UniProt ID MAGELLAN AutoDock Dock6 

GPR40 O14842 22.04 (48.92) 24.28 21.84 

OX2R O43614 7.92 (34.65) 1.82 0 

ADRB2 P07550 24.64 (60.87) 0.20 9.40 

ADRB1 P07700 1.03 (54.36) 0 2.73 

ACM2 P08172 23.00 (36.00) 7.76 7.12 

ACM3 P08483 24.88 (48.26) 2.31 8.97 

S1PR1 P21453 0.50 (51.24) 0.47 0.16 

PAR1 P25116 0.00 (0.00) 13.39 2.00 

5HT1B P28222 16.83 (60.89) 1.54 2.79 

AA2AR P29274 0.48 (34.13) 0 0.64 

OPRD P32300 27.93 (65.77) 3.77 0.75 

HRH1 P35367 21.39 (50.75) 3.28 0.22 

DRD3 P35462 46.27 (60.70) 1.24 1.03 

OPRK P41145 12.94 (47.76) 0.65 0.22 

OPRX P41146 2.99 (24.38) 0.25 2.85 

5HT2B P41595 18.41 (20.40) 0.98 0.98 

OPRM P42866 2.44 (58.54) 0 1.08 

CCR5 P51681 4.06 (23.86) 0.53 4.36 

CXCR4 P61073 4.26 (70.21) 0 0.26 

P2Y12 Q9H244 11.94 (13.43) 0.76 2.03 

Average 13.70 (43.26) 3.16 3.47 
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MAGELLAN attained a comparable enrichment on this target with 𝐸𝐹1% =22.04; if the 

homologous templates are included, however, the performance is significantly improved to 

𝐸𝐹1% =48.92. Additionally, AutoDock Vina achieved decent enrichment with the protease-

activated receptor 1 (PAR1) at 𝐸𝐹1%=13.39, while MAGELLAN resulted in 𝐸𝐹1%=0.00 with a 

handicap. In fact, MAGELLAN detected several protease-activated receptor subtypes (Q63645, 

P55085, Q96RI0), but their respective ligand sets were of a very small size (2, 59, 10, respectively). 

As a result, their related ligands were not present in the top 40 clusters because of the minority of 

binding ligands, which resulted in the reduced performance. While most of the successful 

examples of GPCRs are found to have at least one related subtype that had a sizeable number of 

ligands, the data suggests that the number of ligands in the ligand sets of closely-related members 

is essential to the success of MAGELLAN, in addition to its ability to detect homologous GPCRs. 

 

 

In Figure 4.11, we also present the log receiver operating characteristic curves (ROC) for the 

retrospective virtual screen results by MAGELLAN and the two control methods for all targets, 

where the corresponding Boltzmann-enhanced receiver operating characteristic (BEDROC, α=20) 

values are listed in Table 4.5. Here, as opposed to the conventional receiver operating characteristic 

(ROC), BEDROC has the advantage to better assess early enrichment,40 which is important as 

Figure 4.10 - Top 5 Active Compound Results for Free Fatty Acid Receptor 1 Using AutoDock Vina. Note 

that the binding pocket resides between two of its transmembrane domains, extending from the lipid bilayer 

to the inner cavity of the receptor. As is evident from the structure of the docked ligands, they share an 

obvious chemotype that also extends to the rest of the active set. 
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compounds selected for experimental validation are always chosen from top-ranked candidates. 

Overall, MAGELLAN exhibited a higher average early enrichment both with (BEDROC=0.32) 

and without (BEDROC = 0.68) the handicap cutoffs, as compared to AutoDock Vina 

(BEDROC=0.16) and DOCK 6 (BEDROC=0.14). This suggests again that MAGELLAN has a 

higher propensity to correctly select compounds that would potentially bind the GPCR of interest.  

 

Figure 4.11 - Log ROC Curves for Retrospective Virtual Screen Results of MAGELLAN, AutoDock Vina, and DOCK 6 with 

GPCR-Bench Dataset. The following GPCRs were tested: free fatty acid receptor 1 (GPR40), orexin receptor 2 (OXR2), beta-

2 adrenergic receptor (ADRB2), be ta-1 adrenergic receptor (ADRB1), muscarinic acetylcholine receptor 2 (ACM2), 

muscarinic acetylcholine receptor 3 (ACM3), sphingosine 1-phosphate receptor (S1PR1), proteinase-activated receptor 1 

(PAR1), 5-hydroxytryptamine receptor 1B (5HT1B), adenosine receptor A2A (AA2AR), delta opioid receptor (OPRD), 

histamine H1 receptor (HRH1), dopamine D3 receptor (DRD3), kappa opioid receptor (OPRK), nociception receptor (OPRX), 

5-hydroxytryptamine receptor 2B (5HT2B), mu opioid receptor (OPRM), C-C chemokine receptor type 5 (CCR5), C-X-C 

chemokine receptor type 4 (CXCR4), and purinergic receptor (P2Y12). 
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Table 4.5 - Comparison of Boltzmann-enhanced receiver operating characteristic (BEDROC) values by 

MAGELLAN, AutoDock Vina and Dock 6 on 20 Class A GPCRs in GPCR-Bench. Values out and in parentheses 

are the results for MAGELLAN with or without handicap cutoffs. 

Gene Name UniProt ID MAGELLAN AutoDock Vina Dock 6 

GPR40 O14842 0.46 (0.87) 0.59 0.35 

OX2R O43614 0.26 (0.51) 0.12 0.03 

ADRB2 P07550 0.45 (0.94) 0.17 0.23 

ADRB1 P07700 0.07 (0.92) 0.07 0.23 

ACM2 P08172 0.54 (0.62) 0.11 0.21 

ACM3 P08483 0.49 (0.69) 0.07 0.13 

S1PR1 P21453 0.06 (0.80) 0.22 0.13 

PAR1 P25116 0.06 (0.06) 0.34 0.26 

5HT1B P28222 0.42 (0.92) 0.07 0.02 

AA2AR P29274 0.10 (0.58) 0.29 0.13 

OPRD P32300 0.60 (0.84) 0.08 0.19 

HRH1 P35367 0.43 (0.80) 0.11 0.18 

DRD3 P35462 0.69 (0.83) 0.09 0.07 

OPRK P41145 0.33 (0.75) 0.13 0.08 

OPRX P41146 0.15 (0.46) 0.18 0.04 

5HT2B P41595 0.38 (0.44) 0.16 0.06 

OPRM P42866 0.16 (0.82) 0.12 0.12 

CCR5 P51681 0.20 (0.49) 0.04 0.05 

CXCR4 P61073 0.28 (0.81) 0.06 0.09 

P2Y12 Q9H244 0.33 (0.49) 0.09 0.14 

Average 0.32 (0.68) 0.16 0.14 
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3.3 Case Studies: Using MAGELLAN Prediction for Common Drug Targets and De-

orphanization 

3.3.1 Mu Opioid Receptor 

One of the main purposes of MAGELLAN is to predict compounds that could potentially be 

developed into clinically useful drugs. As an illustration towards this goal, we examined here a 

medically-important target, the mu opioid receptor (UniProt ID: P35372), which is closely 

involved in the reduction of pain. Common drugs in pain reduction include morphine and heroin, 

which are both strong opioid agonists. However, a major side effect of their consumption often 

results in various unwanted side effects, such as nausea, constipation, respiration depression, and 

addiction; as a result, many current research efforts have been trying to develop drugs with the 

analgesic effect while trying to reduce or eliminate the aforementioned maladies.41  

 

From the retrospective virtual screen experiment performed without sequence identity cutoff, a 

high 𝐸𝐹1% of 87.81 was achieved for the human mu opioid receptor. This is not surprising, as 

many opioids are notorious for their promiscuous binding to the opioid family of receptors, which 

also comprise additionally of the kappa opioid, delta opioid, and nociceptin receptors. All GPCR 

alignment methods exploited were able to select at least one of these receptors. Using a similarity 

ensemble approach analysis of the GPCR test sets as described in Methods, we have constructed 

a minimum spanning tree based on the similarity of the test sets identified by MAGELLAN, where 

all the opioid receptors were found pharmacologically related (Figure 4.12, blue nodes). 

 

From these results, it is clear that the application of MAGELLAN to known drug targets, such as 

the mu opioid receptor, can yield accurate virtual screening results. More importantly, a fraction 

of top-ranking results could be used sequentially as a targeted library in a structure-based virtual 

screen campaign, such as docking, in order to address the shortcomings of ligand-based virtual 

screening methods.8 As docking can be computationally expensive, MAGELLAN can thus serve 

as a relatively-quick filtration step of the database of interest. 
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3.3.2 Motilin Receptor  

Apart from drug discovery, MAGELLAN can be extended to GPCR de-orphanization. As orphan 

GPCRs have either no identified endogenous ligand or unknown function, they likely have an 

undiscovered physiological role likely to be intertwined with disease and remain potential 

therapeutic targets in drug discovery. For the purposes of this study, we have chosen to examine a 

former orphan GPCR, the human motilin receptor (UniProt ID: O43193), to illustrate the de-

orphanization process of MAGELLAN. 

 

It is known that the closest-related GPCR to the motilin receptor is the growth hormone 

secretagogue receptor type 1 (also known as ghrelin receptor), with a sequence identity of 51% 

between the human variants. With such a high sequence identity, it was predicted that 

MAGELLAN would be able to enrich for reference compounds. With no sequence identity cutoff, 

an 𝐸𝐹1% of 33.33 was achieved. Every alignment method was able to select multiple orthologues 

of growth hormone secretagogue receptor type 1. An example BindRes alignment between the 

human motilin receptor and pig pig growth hormone secretagogue receptor type 1 is given in 

Figure 4.13, where it is apparent that there is high sequence identity (~70%) between the aligned 

Figure 4.12 - Ligand set similarity map constructed from MAGELLAN predictions on the GPCR test sets. 

Each node corresponds to a GPCR ligand set. The map was created using Kruskal’s algorithm based on E-

values of the ligand sets calculated by the similarity ensemble approach (SEA). 
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binding site residues. Once again using SEA analysis, it was shown that the ligand sets of this 

receptor and the motilin receptor were pharmacologically similar (Figure 4.12, red nodes) and 

likely to have contributed to the high enrichment. It should be noted that there were no ligand sets 

corresponding to any orthologues of the motilin receptor; there was ligand set data for only the 

human variant. Taken together, these data suggest the feasibility for the application of 

MAGELLAN in efforts to deorphanize GPCRs.  

 

 

4. Discussion 

Built on the assumption that similar receptors bind with similar ligands, we have developed a new 

hierarchical, ligand-profile based approach, MAGELLAN, to virtual drug screen targeting Class 

A GPCRs. Starting from amino acid sequence of the target proteins, MAGELLAN first utilizes 

GPCR-I-TASSER23 to generate tertiary structure prediction for the target protein. Next, five 

pipelines of structure, sequence and orthosteric binding-site based alignment methods are extended 

to the detection of homologous and analogous proteins, where all known ligands bound with the 

proteins are clustered for the construction of a set of chemical profiles; these are finally used to 

Figure 4.13 - BindRes Alignment for Human Motilin Receptor. BW refers to the Ballesteros-Weinstein 

numbering scheme for the binding site residues, while the query and target are the human motilin receptor 

(UniProt: O43193) and pig growth hormone secretagogue receptor type 1 (UniProt: Q95254), respectively. 

The colons depict residues that are identical. 
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match through the compound libraries for screening putative ligands and drugs for the target 

receptor. 

 

The method was first tested on a comprehensive set of 224 Class A GPCRs and achieved a median 

enrichment factor 𝐸𝐹1%  of 15.31 after excluding all homologous templates in both structure 

prediction and GPCR template detection processes, which is significantly higher than the pipelines 

using individual GPCR alignment methods. In addition, MAGELLAN was tested on two 

independent benchmark sets from DUD-E38 and GPCR-Bench,39 consisting of 5 and 20 Class A 

GPCRs, and compare favorably with other state-of-the-art docking and ligand-based virtual 

screening approaches, including AutoDock Vina,6 DOCK 6,7 and PoLi.5 Detailed data analysis 

shows that the major advantage of MAGELLAN lies at the utilization of both structure (including 

global and local) and orthosteric binding-site based comparisons for GPCR template detections, 

whereas the ligand profiles constructed from the multiple resources of data fusion help enhance 

the sensitivity and specificity of the virtual screening through the compound databases. 

 

Apart from the favorable benchmark performance, several advances may help future MAGELLAN 

developments. First, MAGELLAN is a ligand-profile based approach utilizing only ligand-GPCR 

associations. This is different from other ligand-oriented approaches, such as PoLi which relies on 

known ligand-protein complex structures from the BioLip.42 Currently, the number of non-

redundant ligand-GPCR associations from GLASS with experimental data is 533,470, which is 

over 7,500 times higher than the number of known, non-redundant ligand-GPCR complexes in 

BioLiP; this is part of the reason for the significant improvement of MAGELLAN over PoLi. The 

gap between the ligand-receptor association and the protein binding structure databases are rapidly 

increasing15-17, 43, which should give additional advantage and potential to the future development 

of the ligand-based methods such as MAGELLAN.  

 

Compared to the docking-based approaches, MAGELLAN has the advantage in utilizing low-

resolution predicted structures, since high-resolution experimental structures are often unavailable 

to many important drug targets. Technically, it is also a benefit to exploit the global fold 

comparison for GPCR template detection because many experimentally--solved structures are in 

unbound apo form, which can significantly impact the accuracy of the docking-based approaches 
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that often have difficulty in modeling the ligand-induced conformational changes. In addition, 

docking a large library of compounds is very computationally expensive and time consuming. As 

experienced in this study, it typically took days to weeks for AutoDock Vina or DOCK 6 to 

complete a docking screen for a single GPCR, depending on the target; conversely, ligand-based 

virtual screening using MAGELLAN only takes about an hour. Nevertheless, docking based 

programs have the advantage to generate 3D model of binding structures that is often useful for 

additional function and drug-based analyses. Meanwhile, we also found that there are several cases 

(such as GPR40 and PAR1) for which the docking-based approach achieve a much higher 

enrichment. Thus, a combination of MAGELLAN with structure-based docking should further 

improve the functionality and accuracy, which is currently under development. 

 

It is important to note that one feature of MAGELLAN is its potential in discovering new ligands 

for orphan GPCRs. Since it is not limited by the PDB and utilizes related GPCRs to infer potential 

ligands, compounds ranked from a screening database by MAGELLAN could be selected and 

experimentally validated with biological assays. Currently, there are 87 Class A, 8 Class C, and 

26 adhesion orphan GPCRs, according to a recent overview,44 meaning that there is much more to 

discover. As illustrated in Figure 7, the motilin receptor, a former orphan Class A GPCR, achieved 

a moderately-high enrichment in a retrospective virtual screen. While this and other examples can 

only be validated with experimental, pharmacological studies in prospective screens, the data 

demonstrated an additional aspect of applications of MAGELLAN to the deorphanization of 

GPCRs. 

 

5. Conclusion 

Overall, we believe that MAGELLAN has surpassed the status quo, given the benchmark results 

against other state-of-the-art virtual screening algorithms. Based on the aforementioned case 

studies, our algorithm is readily applicable to the numerous orphan GPCR’s whose functions and 

endogenous ligands remain to be elucidated. Moreover, it can also be used as a ligand-based virtual 

screening method and would likely prove useful in prospective virtual screening studies where 

information about the receptor is scant. Lastly, a user-friendly web server is provided for 

researchers interested in virtually screening a GPCR of interest against ZINC database. 
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CHAPTER 5.  

Development of a Combined Ligand-  and Structure-Based Virtual Screening Approach 

for the Discovery of Novel Bifunctional μ-Opioid Agonist/δ-Opioid Antagonist Compounds 

 

1. Introduction  

Opioids are a class of molecules commonly used in drugs for regulating pain. Despite their 

effectiveness as pain killers, available opioids commonly result in deleterious side effects, such as 

constipation and respiratory depression.1 Compounded with their addictive nature, the North 

American continent has been experiencing an ever-worsening opioid epidemic, resulting in 

increasing numbers of deaths from drug overdose in recent years. However, opioids still remain 

commonly prescribed for pain relief.  

 

Long-term opioid usage has become more prevalent, but data establishing the efficacy of its long-

term efficacy is scant.2 Additionally, many physicians have begun to refer patients to specialists, 

which are typically neurologists; given the small specialist-to-patient ratio, this could potentially 

delay the management of pain.2 With the long-term use of opioids comes the increased risk of 

addiction and misuse. In 2015 alone, there were reported to be about 2.4 million Americans 

classified as having abused opioids.3 Compounding this is the ever-increasing amount of deaths 

resulting from opioid-related overdoses, increasing from 28,647 in 2014 to 33,091 in 2015.4 With 

the opioid epidemic declared a public health emergency by the president of the United States of 

America in late 2017, it is imperative that safer, more efficacious opioids be developed to address 

the current status in pain management. 

 

The opioid receptors are a family of G protein-coupled receptors (GPCR) responsible for the 

modulation of pain, motor control, and mood. Three subtypes (μ, δ, and κ) are pharmacologically 

mediated by opioids. The μ-opioid receptor (MOR) is the classical target associated with the 

analgesic effect of opioids. Apart from this intended effect, a plethora of side effects, such as 

respiratory depression, nausea, sedation, addiction, and constipation, accompany the use of 
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opioids.1 As a result, the δ-opioid receptor (DOR)5 and κ-opioid receptor (KOR)6 have increasingly 

been seen as potential targets in drug development for novel opioids with reduced side effects.  

 

Historically, there have been numerous efforts to develop an opioid that could exert analgesia 

while reducing or eliminating all associated side effects. In the late 19th century, Bayer marketed 

heroin as a non-addictive alternative to morphine in an effort to combat opioid addiction, though 

years afterwards it was revealed that users were ironically becoming addicts.7 More recent research 

has tended to focus on the phenomenon of biased agonism, whereby a ligand could stabilize the 

conformation of a GPCR so that it preferentially goes through one signal transduction pathway by 

recruiting a heterotrimeric G protein over β-arrestin or vice versa.8 Taking advantage of this, there 

have been several success stories with various GPCRs, especially in the development of opioids 

with reduced side effects; one of the most promising compounds found currently is oliceridine 

(TRV130) from Trevena,9 which is awaiting NDA review at the time of writing. As with 

oliceridine, the vast majority of drug discovery efforts employ high throughput screening in order 

to sift through a gargantuan sea of chemical diversity to find functional compounds. However, this 

process is usually costly, time consuming, and laborious, so thus in silico methods, such as 

molecular docking, can be utilized to reduce the chemical space by screening a virtual compound 

library and selecting only prioritized compounds for pharmacological assays.10  

 

Figure 5.1 – (A.) Compounds that act as a MOR agonist and DOR antagonist can both elicit analgesia and reduce tolerance 

and dependence in animal models. The black and red lines represent agonist and antagonist function, respectively. (B.) 

Compound 14a is a bifunctional peptidomimetic opioid with a tetrahydroquinoline (THQ) scaffold, which is shown in red. 

A. B. 
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There have been a number of computational studies reporting their findings on discovering biased 

agonists for MOR11 and KOR12-13 through in silico methods. While probing the concept of biased 

agonism remains a fertile area of research, an alternate mode to eliciting analgesia with reduced 

side effects has been steadily coming into the spotlight, as well. More specifically, studies have 

shown that co-administration of a MOR agonist and a DOR antagonist produces such a response 

in animal models.14 Moreover, mixed-efficacy (a.k.a. bifunctional) MOR agonist/DOR antagonist 

compounds have been developed by several groups at the University of Michigan and shown to 

bind to both MOR and DOR while only activating MOR (Figure 5.1A).15-16 In particular, the 

synthetic peptidomimetic opioid, compound 14a (Figure 5.1B), was shown to have a very 

promising safety profile.16 Additionally, other groups have concurrently developed bifunctional 

ligands with different scaffolds and similar effects.17-18 Despite the potential of these bifunctional 

opioids as therapeutics, the compounds from these studies were based on traditional opioid 

structures, and thus, novel scaffolds that can potentially be developed into more efficacious, safer 

analgesics remain to be discovered. Importantly, one gap that has yet to be filled in this area of 

research is the application of in silico methods to the discovery of such compounds. 

 

Most virtual screening campaigns performed today, such as the aforementioned virtual screening 

campaigns with biased agonists, tend to focus on a single target and a single screening method, 

but these can provide challenges for the discovery of bifunctional opioids. First, screening methods 

can typically be categorized as ligand based or structure based; the former utilizes pure chemical 

information in its search process, whereas the latter docks and scores compounds into a receptor 

structure. As with any method, there are advantages and disadvantages to each. Ligand-based 

methods are computationally inexpensive and can screen millions of compounds within a short 

time but have the drawback of being biased towards the known ligands used to build the model. 

Conversely, structure-based methods inherently have no bias, but they are extremely 

computationally expensive. A trend in recent years has culminated in the combination of these 

methods to address their respective shortcomings in various studies19 and thus would be 

meaningful to pursue. Second, instead of screening one target, both MOR and DOR would have 

to be screened. A study employing a dual-target virtual screening approach against the serotonin 

1B and 2B as target and anti-target, respectively, found selective agonists, which lends credence 

to this concept.20  



103 
 

 

In the present study, I present a combined ligand-based and structure-based virtual screening 

pipeline for the discovery of novel bifunctional opioids. The druglike subset of ZINC database21 

was screened against MOR and DOR sequentially using MAGELLAN, followed by docking with 

AutoDock Vina.22 Docking results were then post-processed on the basis of rescoring, chemical 

novelty, and co-existence in top-ranked compounds of both MOR and DOR. Compounds selected 

for experimental validation were chosen from a combination of clustering and visual inspection. 

 

2. Methods  

All of the following procedures were performed with custom scripts in Perl and Python under the 

Red Hat Linux operating system. Retrospective virtual screens were run on a local computing 

cluster, while the prospective virtual screens were submitted to the Comet computing resource 

from XSEDE.23 The chemical novelty filter was written in the C programming language. 

 

2.1 Virtual Libraries  

The druglike subset of ZINC12 database21 served as the virtual library, consisting of over 13 

million compounds prefiltered by Lipinski’s rule of five.24 For the ligand-based portion of the 

virtual screen, the database was downloaded as SMILES strings and converted into 1,024-bit 

Morgan fingerprints with a radius of 2 using RDkit.25  For the structure-based portion of the virtual 

screen, the corresponding compounds in MOL2 format were downloaded and converted into 

PDBQT files using relevant Python scripts from AutoDockTools,26  in which hydrogens and partial 

charges were re-added.  

 

Active and decoy sets for MOR and DOR from GPCR-Bench27 were downloaded from the DUD-

E database28 in the MOL2 and SMILES formats. For every active compound, there were 50 decoys 

with similar physicochemical properties but dissimilar 2D topology. Like before, all compounds 

were converted to PDBQT format, with re-added hydrogens and partial charges. Furthermore, all 

SMILES strings were converted into 1,024-bit Morgan fingerprints with a radius of 2 using 

RDkit.25   
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2.2 GPCR Structure Preparation 

The agonist-bound MOR (PDB: 5C1M) and antagonist-bound DOR (PDB: 4EJ4) structures were 

downloaded from Protein Databank in PDB format. These were structures were selected because 

of their activation states, as the goal of the study is to predict bifunctional MOR agonist / DOR 

antagonist compounds. All small molecules and ions were removed from the PDB structures. In 

the original MOR structure, His54 on the N-terminus forms an interaction with the secondary 

amine of the agonist, BU72, though it was found not to be physiologically relevant by 

experiment.29 Therefore, the N-terminus was removed to prevent the occlusion of the rest of the 

binding pocket. Conversely, the DOR structure did not require such a modification. Similar to the 

virtual libraries, the receptor structures were converted to PDBQT format, where hydrogens and 

partial charges were added with relevant Python scripts from AutoDockTools.26 For AutoDock 

Vina,22 16 Å x 16 Å x 16 Å boxes were centered over the binding pockets for each receptor 

according to their crystallographic ligands. 

 

2.3 Retrospective Virtual Screen 

MAGELLAN and AutoDock Vina, respectively, were the ligand- and structure-based algorithms 

used in present virtual screen campaign. In the former algorithm, known ligands from sequentially- 

and structurally-related GPCRs are used to infer what ligands a target GPCR would bind using a 

consensus chemical similarity approach, while in the latter, a compound is docked into the binding 

pocket of a receptor, conformationally sampled for the most optimal pose, and assigned a score. 

Retrospective virtual screening is typically employed to validate the performance of the virtual 

screening method and to gauge how likely it would succeed in the wet lab. To do so, a virtual 

library is spiked with known active ligands, and the algorithm of interest would aim to acquire as 

many active ligands as possible within a set number of top-ranked compounds. Enrichment factors 

are then calculated to provide a quantitative metric of how many fold over random the algorithm 

is operating. The calculation for the enrichment factor for the top 1% of the top-ranked compounds 

is shown as follows:  

 

𝐸𝐹1% =

𝑁𝑎𝑐𝑡
1%

𝑁𝑠𝑒𝑙𝑒𝑐𝑡
1% 

𝑁𝑎𝑐𝑡
𝑁𝑡𝑜𝑡
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where 𝑁𝑎𝑐𝑡 and 𝑁𝑡𝑜𝑡 are the total numbers of the active and all compounds, respectively. 𝑁𝑎𝑐𝑡
1% 

and 𝑁𝑠𝑒𝑙𝑒𝑐𝑡
1%  are, respectively, the numbers of active ligands and the number of all candidates in 

the top 1% of the ranked database.  

 

Receiver operating characteristic (ROC) curves were generated to evaluate how well it was able 

to discriminate between active and decoy compounds. The false positive rate (FPR) and true 

positive rate (TPR) are defined as the percent actives and decoys found, respectively. The scored 

compounds are ranked, then the FPR and TPR are calculated for each compound starting from the 

top-ranked compound and ending at the last one. Additionally, semi-log ROC curves were 

produced to emphasize the results from the top-ranked compounds of the database. This region of 

the database is the pool from which compounds typically get selected for experimental validation. 

An accompanying metric, Boltzmann-enhanced discrimination of the receiver operating 

characteristic (BEDROC), was used that correspondingly measures enrichment at this region.30 An 

α=20 was used in the calculation, where the top 8% of the database accounted for 80% of the 

BEDROC score.31  

 

 

 

Figure 5.2 – Prospective virtual screening pipeline with post-processing. (Left Panel) The main virtual screening portion 

lies within the inverted triangle. Roman numerals indicate the variations in post-processing procedures used. (Right Panel) 

The letters represent the four different post-processing strategies employed, including the number of compounds selected 

for experimental validation. 
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2.4 Prospective Virtual Screen Pipeline 

An illustration of the prospective virtual screen pipeline is shown in the left panel of Figure 5.2. 

First, ~13 million compounds from ZINC12 database were first screened against both MOR and 

DOR with MAGELLAN. The top 1 million resulting ranked compounds from each receptor were 

pooled together into a targeted library, which consisted of ~1.3 million compounds. AutoDock 

Vina was then run against both MOR and DOR using the targeted library, which was carried out 

using 8 CPU cores and an exhaustiveness of 12. Subsequently, 9 docked poses were generated for 

each compound. 

 

Following docking, the compounds underwent various stages of post-processing in order to 

improve the predictive accuracy and to provide a knowledge-based means to select compounds for 

experimental validation. First, the docked poses were rescored with an independent scoring 

function. Using the docking score from a docking program is typically not advised, as it was very 

likely optimized to find the best docking poses but not the best predicted affinities.32 Therefore, 

many studies have increasingly relied upon rescoring or prioritizing docking poses through a 

separate means.33-35 Both the top-scoring compound (top) or all 9 docked poses (top9) were 

rescored with either the knowledge-based scoring function, DSX,36 or the empirical scoring 

function, X-Score.37 In the case of top9, the poses were reranked on the basis of rescoring, and the 

top-scoring compound and its corresponding score was selected. It should be mentioned that X-

Score was chosen over DSX on the basis of retrospective virtual screening performance and will 

be discussed later.  

 

For both rescoring strategies, compounds were then selected for clustering or visual inspection 

(Figure 5.2, right panel). Compounds colocalizing in the top 5,000 ranked compounds for both 

MOR and DOR were selected and used in a chemical novelty filter. Here, each compound was 

compared against a master list of 5,153 MOR- and DOR-associated compounds with at most 10 

μM in Ki, Kd, EC50, or IC50 from GLASS database.38 If a compound was at least 30% similar by 

Tanimoto coefficient to any ligand in the list, then it was discarded. The compounds were then 

subjected to hierarchical substructure clustering using LibMCS, JChemSuite 18.18.0, 2018, 

ChemAxon (http://www.chemaxon.com). The compounds from the lowest-level clusters were 

rescored by taking the average score from MOR and DOR, and the top-scoring from that cluster 

http://www.chemaxon.com/
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was chosen for experimental validation. If there were 10 or more compounds in the cluster, then 

the top one-tenth of the compounds were chosen. Additionally, compounds colocalizing in the top 

20,000 ranked compounds for both MOR and DOR were selected as with the top 5,000 and filtered 

for chemical novelty. PLIP39 was utilized to filter out compounds that had interactions with 

Asp147 of MOR and Asp128 of DOR.11 This was then followed by visual inspection of the 

resulting docked poses using PyMol.  

 

3. Results and Discussion 

3.1 Comparison Between Docked and Experimental Ligand Poses 

As one of the first controls used in docking, reproduction of the experimental pose can provide a 

good initial quality control assessment of the procedure. To do so, the crystallographic ligands 

were stripped from the MOR and DOR structures. Subsequently, they were redocked with 

AutoDock Vina, and the top pose was evaluated. It was shown that pose reproduction with both 

structures produced good overlap between the crystallographic and docked poses, resulting in 

RMSD values with less than 1 Å deviation (Figure 5.3). Typically, RMSD values less than 2 Å 

indicate success in pose reproduction.40 Taken together, this suggests that the docking procedure 

with AutoDock Vina performed adequately with the native ligand.  

 

 

3.2 Model Validation of Ligand- and Structure-Based Methods 

In order to examine and evaluate the ligand-based virtual screening component of the pipeline, 

retrospective virtual screens were run against MOR and DOR using MAGELLAN on the GPCR-

Figure 5.3 – Pose Reproduction of Co-Crystallized Ligands. For both (A) BU72 from MOR and (B) naltrindole from DOR, 

the crystallographic ligands (cyan) are overlain with the top predicted pose (magenta) by AutoDock Vina. Calculated 

RMSDs were 0.7 Å and 0.6 Å, respectively. 

A. B. 

Asp147 

Asp128 

Tyr129 
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Bench dataset. A summary of screening statistics is given in Table 5.1. Overall, both MOR and 

DOR were able to achieve EF1% values greater than 50-fold over random. Its ability to discriminate 

actives over decoys was very favorable (Figure 5.4A). More importantly, high BEDROC values 

(MOR: 0.824 / DOR: 0.842) were indicative of early enrichment in the area of the database where 

researchers would select compounds for experimental validation. Altogether, this suggests that 

MAGELLAN is able to achieve a high level of performance with both MOR and DOR in the 

GPCR-Bench dataset, and thus validate this component in the prospective virtual screening 

pipeline. 

 

 

Figure 5.4 – Performance of MAGELLAN against GPCR-Bench Dataset. (A.) ROC curves are given for both 

MOR and DOR. (B.) Additionally, semi-log ROC curves are shown to emphasize the impact on early enrichment 

in virtual screening. The dashed lines represent random. 

Table 5.1 – Retrospective Virtual Screening Statistics for MAGELLAN 

 EF1% AUC BEDROC (α=20) 

MOR 58.537 0.975 0.824 

DOR 65.766 0.956 0.842 
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Molecular docking with AutoDock Vina was utilized as the structure-based virtual screening 

component of the pipeline. As with MAGELLAN, a retrospective virtual screen was run against 

both MOR and DOR using the GPCR-Bench dataset. A summary of screening statistics is given 

in Table 5.2. Using only the AutoDock Vina scores, enrichment of active compounds was poor for 

both MOR (EF1%=0.000) and DOR (EF1%=3.953). Furthermore, the ability to discriminate active 

compounds over decoys was close to random (Figure 5.5A). To account for this, two strategies 

were employed: 1.) Rescore the top pose from AutoDock Vina (Top), and 2.) Rescore all poses, 

re-rank, then select top pose again (Top9). The scoring function from docking algorithms is 

typically optimized for finding the best pose and is usually not a good substitute for approximation 

of the binding affinities. Additionally, the best pose is not always going to be the pose with the 

highest docking score, as it may be randomly-distributed among all the generated poses when 

ranked by the original docking score.41 It has also been shown that rescoring docked poses with a 

more reliable predictor can result in better correlation between the predicted and experimental 

binding affinities.42 Therefore, DSX and X-Score were utilized for rescoring.  

 

DSX was able to slightly improve enrichment for MOR and DOR using both the Top and Top9 

strategies. Discrimination between active compounds and decoys was also better (Figure 5.5A). 

More striking, however, was the increase in early enrichment (Figure 5.5B); performance with 

DOR saw a slight increase, while that with MOR increased from a BEDROC value of 0.078 to 

0.221 (Top) and 0.201 (Top9). On the other hand, X-Score was able to improve the docking model 

even further than DSX. Enrichment was noticeably increased with this scoring method, where the 

Top9 strategy achieved EF1% of over 10 for both receptors. Discrimination between active 

compounds and decoys was approximately the same for MOR between DSX and X-Score, though 

it improved to a greater extent for DOR (Figure 5.5A). Though early enrichment for MOR 

improved for X-Score as compared to DSX overall, it was extremely noticeable for DOR (Figure 

5.5B). As a result, X-Score was chosen as the rescoring method for the prospective virtual 

screening pipeline.  
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Upon further investigation of the docking scores generated from AutoDock Vina, it was observed 

that few active compounds achieved high ranks for both MOR and DOR (Figure 5.6A). However, 

upon rescoring with X-Score using either the Top (Figure 5.6B) or Top9 (Figure 5.6C) strategies, 

it was apparent that numerous active compounds were able to achieve higher docking scores 

Table 5.2 – Retrospective Virtual Screening Statistics for AutoDock Vina 

 MOR DOR 

 EF1% AUC BEDROC (α=20) EF1% AUC BEDROC (α=20) 

AutoDock Vina 0.000 0.637 0.078 3.953 0.611 0.139 

DSX (Top) 3.239 0.742 0.221 3.765 0.707 0.202 

DSX (Top9) 2.699 0.738 0.201 3.577 0.735 0.228 

X-Score (Top) 7.826 0.750 0.284 8.660 0.812 0.380 

X-Score (Top9) 10.253 0.750 0.283 10.166 0.847 0.424 

 

Figure 5.5 – Performance of Rescoring Docking Poses with GPCR-Bench Dataset. (A.) ROC curves are given for both 

MOR and DOR. (B.) Additionally, semi-log ROC curves are shown to emphasize the impact on early enrichment in 

virtual screening.  



111 
 

overall and relative to decoys. As such, this accounts for the increases seen in enrichment factors 

and AUC values for both receptors (Table 5.2). An interesting observation made from the data was 

that there was a slight dependence of the docking scores on the molecular weight of the compounds. 

This has historically been a common problem with scoring functions because larger molecules will 

likely possess higher scores due to their ability to establish a greater amount of interactions with 

the receptor.43 Unfortunately, this means that the prospective virtual screen will likely have a slight 

bias towards higher-molecular weight compounds. Despite this, these larger compounds are 

equally viable as candidates for experimental validation and were treated as such in the current 

study.  

 

 

Figure 5.6 – Improvement of Docking Results with Rescoring Docked Poses. Docking scores from (A.) AutoDock Vina, 

(B.) X-score using the Top strategy, and (C.) X-score using the Top9 strategy are plotted against the molecular weights 

of the respective active compounds (orange) and decoys (blue). A shift of active compounds against decoys was apparent 

after rescoring, though a slight dependence of docking score on molecular weight was observed. 
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An important observation of the validation procedure is that docking appeared to perform worse 

quantitatively than MAGELLAN in the retrospective virtual screening tests against GPCR-Bench. 

While this is true, it must be reiterated that ligand- (i.e. MAGELLAN) and structure-based 

(AutoDock Vina) methods each have their own sets of advantages and disadvantages. While 

ligand-based methods are fast, they typically contain inherent biases towards known active ligands 

built into its algorithm. In contrast, structure-based methods contain no such biases towards any 

existing ligands whatsoever, though they are extremely computationally intensive. The prospective 

virtual screening pipeline was built in such a fashion that MAGELLAN could speedily reduce the 

chemical space of the virtual library, so that it could provide a targeted library for the more 

computationally-demanding AutoDock Vina. Moreover, docking can produce revelations about 

the conformation of a compound in the binding pocket that chemical similarity cannot. For 

example, a similar compound found by ligand-based virtual screening that has additional chemical 

moieties to known active compounds may not work experimentally, whereupon docking could 

account for this with a structure-based prediction on why it does not fit optimally into the binding 

pocket.  

 

3.3 Evaluation of Prospective Virtual Screen 

As a ligand-based method was used as the first step in the prospective virtual screening pipeline, 

there will be an inherent bias in acquiring compounds chemically-similar to the input in the top-

ranking compounds. However, MAGELLAN does not operate solely with known active ligands 

of just MOR or DOR as inputs, as done with similarity-based virtual screening approaches; rather, 

ligands from homologous GPCRs are also used, potentially extending chemical coverage to opioid 

receptor relatives. Under the notion that similar receptors bind similar ligands,44 it is possible that 

novel opioid chemotypes can be inferred from related GPCRs and found in the top-ranked region 

of the virtual library. This was observed from the virtual screening results, where numerous 

compounds passed a chemical novelty filter in which any compound at least 30% chemically 

similar to any known MOR or DOR ligands were excluded from the study. In fact, at least 35% of 

compounds subjected to the novelty filter passed for each of the post-processing strategies 

employed. Taken together, this suggests that MAGELLAN is able to discover novel chemotypes 

and does not entirely adhere to the classical notion of bias towards known active ligands. 
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Through the post-processing strategies involving manual inspection of the docking poses, 81 and 

67 compounds were chosen through Top and Top9, respectively (Table 5.1). An example of 

selection based on interaction with Asp128 for MOR and Asp147 for DOR is given in Figure 5.7. 

It should be noted that the top 20,000 compounds for both receptors were considered, which is 

beyond the coverage of EF1% metric that accounts for the top ~13,000 top-ranked compounds. 

However, it has been previously described that there is merit in looking further down a list of 

ranked compounds, when using visual inspection as a subjective criterion.27 Using this notion, 

compounds were selected in this fashion to increase the chance of selecting active compounds 

based on classical interactions with the receptor. Additionally, clustering of the top 5,000 

compounds for each receptor was performed and compounds selected from each cluster in order 

to generate a chemically-diverse set of compounds without having to require an inordinate amount 

of funding to experimentally validate. An example for this is shown in Figure 5.8, where 

ZINC02131167 was selected on the basis of its average docking score between MOR and DOR. 

Overall, unique 360 compounds were chosen from four different post-processing strategies (Table 

5.1). Note that many compounds overlapped between the strategies, which explains why the 

numbers add up to greater than 360 in the table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

A final control for the prospective virtual screen was the inclusion of compound 14a (Figure 5.1B) 

in the molecular docking validation. For both Top and Top9 strategies, it was able to achieve ranks 

Figure 5.7 – ZINC Compound Selected by Visual Inspection of Docked Poses. (A.) Two secondary amines from 

ZINC09463337 (olive green) were found to form polar interactions with the one of the oxygens of Asp147 (dashed 

yellow lines) from MOR. (B.) A single secondary amine from ZINC09463337 (magenta) was observed to interact with 

the backbone amine of Asp128 (dashed yellow line) from DOR.  
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of 68 (0.005%) and 31 (0.002%) for MOR, respectively, and 634 (0.058%) and 878 (0.069%) for 

DOR, respectively; this is well within 1% of the ranked database and reflects very high predicted 

binding affinities. Interestingly, neither the Top or Top9 strategies produced interactions between 

the conserved aspartates (MOR: Asp147, DOR: Asp128) and compound 14a (Figure 5.9). 

However, it should be noted that compound 14a is 521 Da, a tad larger than the 500 Da threshold 

from the druglike subset of ZINC. Given the previous observation of a slight dependence of the 

docking score on the molecular weight (Figure 5.6), the use of compound 14a as a positive control 

is called into question. Regardless, the usage of a larger active dataset, such as DUD-E, for model 

validation appears to be more reliable as a control, given the degree of uncertainty exhibited by 

virtual screening methods; the performance of a single compound should not hold sway over an 

entire virtual screening campaign. Though compound 14a performed well in the current pipeline, 

it could potentially have failed with other strategies. Useful information could be gained from the 

inclusion of such a control, but careful consideration should be applied so that erroneous 

conclusions would not be met. 

 

 

Figure 5.8 – Example of Clustering Results for Top9 Strategy. Shown here is the substructure (top) for one cluster that 

represents the four ZINC compounds (bottom). Docking scores are given as the average between MOR and DOR. 

ZINC02131167 selected from this cluster because it had the most favorable score. MarvinSketch was used for drawing 

and displaying the chemical structures, MarvinSketch 18.10.0, 2018, ChemAxon (http://www.chemaxon.com). 
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4. Conclusion 

In the present study, a virtual screening pipeline consisting of sequential ligand- (MAGELLAN) 

and structure-based (AutoDock Vina) methods was developed to predict bifunctional MOR agonist 

/ DOR antagonist compounds. Benchmarking of MAGELLAN in retrospective virtual screening 

using the GPCR-Bench data set confirmed that ligand-based methods work well to retrieve active 

compounds when the known ligands are used in the model. Using the structures of both active 

MOR and inactive DOR, the crystallographic ligands were successfully redocked into the 

respective receptors, resulting in RMSD values of less than 2 Å. Furthermore, it was observed that 

docking with AutoDock Vina and ranking the compounds based on its score resulted in poor 

performance for both MOR and DOR in retrospective virtual screening. However, rescoring 

docking poses with DSX and X-Score comparatively improved performance. Overall, X-Score 

provided better discrimination of active compound over decoy and overall improved enrichment 

compared with DSX and was thus chosen for use in the prospective virtual screening pipeline.  

 

Four post-processing strategies were used to refined the selection of compounds for experimental 

validation, which employed different rescoring strategies (Top and Top9), as well manual 

inspection and substructure clustering. This was done in order to ensure chemical diversity and 

structural insight in the selection procedure. A control bifunctional opioid, compound 14a, was 

spiked into the virtual screen and produced in high-ranking results. Overall, 360 compounds were 

Figure 5.9 – Representative Docked Poses of Compound 14a in MOR and DOR using Top9 Strategy. (A.) For MOR, a 

polar interaction was observed between a secondary amine and the hydroxyl group of Tyr148. (B.) For DOR, interactions 

were seen between the hydroxyl of the 2,6-dimethy tyrosine (Dmt) moiety and the secondary amine of the imidazole 

from His301 and between a secondary amine and the hydroxyl group from Tyr109.  
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found to fit the criteria. While the prospective virtual screening pipeline has been established, its 

success rate cannot be determined unless the compounds are experimentally validated. Thus, 

cAMP and β-arrestin assay will be run on a select subset of compounds to determine whether they 

function as opioids.  

 

Among the insights gained from this study, one of the most important was the fact that docking 

scores appear to be biased towards higher molecular weight compounds in general. As larger 

compounds typically make more interactions, the docking score will reflect as such. To remedy 

this, ligand efficiency measures can be introduced. Further retrospective screens will need to be 

run in order to examine whether this type of post-processing would improve the model.  
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CHAPTER 6.  

Conclusions and Future Directions 

 

1. Conclusions 

Altogether, this dissertation had the goal aiming for the construction of a virtual screening pipeline 

from start to finish. The topic of the first half was on GPCR-related database development, 

resulting in GPCR-EXP (structural data) and GLASS1 (pharmacological data). However, the 

second half was concerned with algorithm and virtual screening pipeline development, producing 

MAGELLAN and the virtual screening pipeline for the discovery of bifunctional opioids. 

 

GPCR-EXP was made in response to the dearth of GPCR experimental structure databases that 

had intuitive interfaces and consistent updating. This is not to say that similar resources, such as 

GPCRdb,2 are not useful; they have their place amongst expert users that can benefit the most from 

their wealth of data. However, the lay user in GPCR structure biology would likely be most 

comfortable with an easy-to-use browsing interface for quick searches, which our database fulfills. 

If anything, GPCR-EXP would be considered a complementary resource. Furthermore, an entire 

roster of predicted GPCR structures of human origin were modelled by GPCR-I-TASSER3 and 

provided on the database web server. Regarding GLASS database, it was originally developed to 

compensate for the now-defunct GLIDA,4 which was a GPCR-ligand database that ceased updates 

in 2010. Pharmacological data was scraped from various external chemical databases and unified 

under one roof. As of the time of writing, GLASS contains over 500,000 unique GPCR-ligand 

associations, as opposed to about 39,000 from GLIDA’s last update; this represents an over 12-

fold increase in data. Both databases should impact the GPCR community for either structure- or 

pharmacology-related needs. In particular, GPCR-EXP has pre-processed structures containing 

only the GPCR, where fusion proteins and other associated proteins (i.e. nanobodies, G proteins, 

etc.) were filtered out; these would be convenient for molecular docking studies, saving the user 

the time in editing the PDB file. Furthermore, superposed structures of the same GPCR would be 

greatly useful in examining structural differences between different activation or ligand-bound 
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states. For ligand-based virtual screens, having a repository of pharmacological data in GLASS 

provides the foundations for algorithm development. Studies that have used this data in their 

pipelines include WDL-RF5 and SwissSimilarity.6  

 

The wealth of information in GLASS database paved the way for the development of 

MAGELLAN, a ligand-based virtual screening algorithm. After numerous revisions and 

refurbishments, the present form of MAGELLAN employs five sequence- and structure-based 

alignment algorithms, which gather related GPCR’s. The corresponding ligand sets from these 

were clustered, where the top clusters were used in a ligand profile. In a large-scale retrospective 

virtual screening test against 224 Glass A GPCRs, MAGELLAN was able to achieve a median 

enrichment factor (EF1%) of 14.38, which is substantially higher than that detected using the 

individual GPCR-alignment methods. Furthermore, MAGELLAN was tested on two public virtual 

screening databases (DUD-E7 and GPCR-Bench8) and achieved an average EF of 9.75 and 13.70, 

respectively, which compares favorably with other state-of-the-art docking- and ligand-based 

methods, including AutoDock Vina9 (1.48/3.16), DOCK 610 (2.12/3.47) and PoLi11 (2.2). A case 

study with the motilin receptor, a former orphan receptor, demonstrated its potential application in 

the de-orphanization of orphan GPCR’s.  

 

In the final portion of the dissertation, a combined virtual screening pipeline was developed, 

utilizing the previous works. Ligand- and structure-based methods each have their own set of 

advantages and disadvantages, and combining these together has been shown in various studies to 

compensate for the shortcomings.12 Thus, a sequential virtual screening pipeline was constructed 

and applied to the discovery of novel bifunctional opioids with mu opioid receptor (MOR) agonist 

and delta opioid receptor (DOR) antagonist activity. Retrospective virtual screens against both 

MAGELLAN and AutoDock Vina were established, and both were reported to have over-random 

discrimination between actives and decoys. In particular, the docking-based screening did not 

perform as well as the ligand-based screening, but this was an expected sacrifice to enable the 

discovery of chemically-novel opioids. Furthermore, rescoring of docking results resulted in 

improved enrichment. Following a variety of post-processing procedures, 360 predicted 

bifunctional opioids were selected for potential experimental validation. 
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2. Future Directions 

2.1 Additional Features for GPCR-EXP 

The current form of the database includes superposed GPCR structures only of the same type. For 

example, all 4 structures for the mu opioid receptor have been structurally aligned. However, 

another feature that would be extremely useful for researchers would be the inclusion of the ability 

to align structures of whichever GPCR in which the user has an interest. This would enable 

convenient, custom access to aligned structures, as opposed to having one type provided. 

Additionally, being able to search for ligands using a molecular editor, such as JSME,13 would be 

helpful for those users interested in GPCR ligands.   

 

2.2 Increasing Data for GLASS 

While massive in scale on its own right, there are additional sources of data that could be 

incorporated into GLASS database in order to bolster its content size. PubChem14 has publicly-

available sets of high throughput screening data from 1.25 million assays covering approximately 

10,000 proteins. There is no doubt that this would be a valuable source of information, but sifting 

through, organizing, and cleaning up the data would be no easy feat. Nevertheless, it would greatly 

be worthwhile exploring this source of data for database integration.  

 

2.3 Screening Orphan Receptors with MAGELLAN 

Many orphan GPCR’s have either no known function or endogenous ligand. In these cases, 

MAGELLAN could be applied to virtually screen chemical databases. A chemically-diverse set 

of top-scoring hits could be tested in the lab to check for receptor activation, which could 

potentially lead to further elucidation on function. Additionally, synthetic ligands that were 

experimentally found to bind to the orphan GPCR could be used as a scaffold for further 

investigation into what endogenous ligand it binds.    

 

2.4 Experimental Validation of Predicted Bifunctional Opioids 

As mentioned throughout, the only way to evaluate a virtual screen is to assay a set number of 

carefully-chosen compounds in the lab, which would be subjected to cAMP and β-arrestin assays. 

The former would measure the extent of receptor activation, while the latter would determine how 

much of the unwanted effector protein is being recruited. Both the mu opioid receptor (MOR) and 
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delta opioid receptor (DOR) would be screened in the hopes to find cAMP production in MOR but 

not DOR. However, inactivity at DOR does not imply antagonist properties. Thus, binding curves 

must be generated with known competitors to establish binding of a compound to both MOR and 

DOR. Collaboration with the Traynor lab is currently underway for the experimental validation of 

a few top-scoring predicted bifunctional opioids. 

 

2.5 Alternative Metrics for Database Ranking in Virtual Screening 

It was observed that there was a slight association of docking score with the molecular weight of 

the compounds during the retrospective virtual screen with the GPCR-Bench dataset. Therefore, 

many of the selected compounds were of higher overall molecular weight. It should be noted that 

they already constrained by Lipinski’s rule of five,15 as no compound was larger than 500 Daltons. 

An alternative way of rescoring compounds is to employ normalization using the ligand efficiency 

(LE) metric.16 A common representation is shown as follows: 

 

𝐿𝐸 =  
𝛥𝐺

# 𝑜𝑓 𝐻𝑒𝑎𝑣𝑦 𝐴𝑡𝑜𝑚𝑠
 

 

A drawback to this calculation is that it does not scale linearly. Thus, modified metrics have been 

developed to account for this, such as fitness quality (FQ).17 The equation is shown as follows: 

 

𝐹𝑄 = 
𝐿𝐸

𝐿𝐸𝑠𝑐𝑎𝑙𝑒𝑑
 

 

where 𝐿𝐸𝑠𝑐𝑎𝑙𝑒𝑑 =  0.0715 +
7.5398

# 𝑜𝑓 𝐻𝑒𝑎𝑣𝑦 𝐴𝑡𝑜𝑚𝑠
+

25.7079

(# 𝑜𝑓 𝐻𝑒𝑎𝑣𝑦 𝐴𝑡𝑜𝑚𝑠)2
+

361.4722

(# 𝑜𝑓 𝐻𝑒𝑎𝑣𝑦 𝐴𝑡𝑜𝑚𝑠)3 
. This 

would be a very useful metric to utilize in order to acquire more compounds with smaller molecular 

weight in the top of the ranked database. 
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