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Abstract 
 

 
 

Low-grade pilocytic astrocytomas are the most common type of glioma found in children. 

Children with the inherited tumor predisposition syndrome, Neurofibromatosis type 1 (NF1), are 

especially prone to develop optic pathway gliomas (OPGs) primarily involving the anterior visual 

pathway composed of the optic nerve, chiasm and tracts. These tumors usually manifest in patients 

younger than 7 years of age, with the peak incidence between years 4 and 5. Despite the benign 

nature of these tumors, a subset of OPGs will develop and cause vision loss and other endocrine 

problems. Although treatment with non-alkylating chemotherapeutic agents has resulted in 

efficient disease stabilization, their ability to maintain or improve vision remains unclear. Despite 

recent advances in understanding how NF1 regulates neural stem and glial precursor cells in the 

brain, it remains uncertain which cell population(s) is (are) most affected by Nf1 loss in OPGs. In 

addition, there is urgent need to define therapeutic windows to develop effective preventative and 

therapeutic strategies before visual deterioration.   

 

 This thesis focuses on understanding the timing and mechanism(s) of how loss of Nf1 

contributes to the formation of OPG by using a genetically engineered mouse (GEM) model of 

NF1-OPG.  In this model, Nf1 was inactivated in neural stem and progenitor cell populations 

during embryonic development. The resulting mutant pups (Nf1hGFAPCKO) display hyperplastic 

lesions in the prechiasmatic optic nerves that develop into OPGs with high penetrance. A detailed 

analysis of the natural history of OPGs in Nf1hGFAPCKOs yielded several important findings. Nf1 

loss in the developing optic nerve leads to the expansion of an abnormal glial cell population that 

expresses both GFAP and Olig2, and over-activates RAS/MEK/ERK signaling as well as glia 

restricted progenitor cells which, persist throughout gliomagenesis. Importantly, MEKi treatment 

during a critical developmental window (P0.5-P21) is sufficient to prevent the formation of OPG 

in Nf1hGFAPCKO mice and rescue retinal ganglion cells (RGC) loss. Likewise, genetic inactivation 
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of Mek1/2 rescues the formation of OPG and the death of RGCs in a dose-dependent manner. 

Collectively, this study clearly demonstrates that OPGs are a developmental defect with Erk-

dependent glial cell expansion occurring during the early postnatal period (Phase I) followed by 

an immune response, nerve degeneration and Bax-mediated RGC apoptosis (Phase II) and 

identifies a critical period for neuroprotective intervention before irreversible neurological deficits. 

Lastly, we have developed a preclinical model to test for the biological effects of MEK inhibitor-

based preventative therapies, which allows us to screen for the optimal dose and delivery method. 
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Chapter I: Introduction 

 
1.1 Pediatric low-grade gliomas 

 

Brain tumors are the most frequently encountered solid tumors in childhood (Surawicz et al. 

1998; Surawicz et al. 1999). Low-grade gliomas (LGGs) constitute the largest fraction of these 

tumors, accounting for more than 50% of all pediatric central nervous system tumors (Rickert and 

Paulus 2001). They are the leading cause of cancer-related death in children under the age of 14. 

Pediatric LGGs represent a heterogeneous group of tumors and are classified as World Health 

Organization (WHO) grade I or II, low-grade glial neoplasms, based on their morphological 

features and constitutive cell type such as astrocytic, oligodendroglial, mixed oligoastrocytic 

neuronal, or mixed glial-neuronal morphology (Table 1). Although this classification is designed 

to include every tumor, separation between variants is often difficult and even arbitrary, especially 

when the tumors display overlapping histology for multiple categories. Pleomorphic 

xanthoastrocytomas (PXAs) account for one of the rarest histopathological entities of pediatric 

LGGs. They typically arise in the supratentorial regions and are comprised of large pleomorphic 

as well as spindle and lipidized cells in a dense pericellular reticulin network. Pediatric diffuse 

astrocytoma (DA) is an umbrella group comprised of tumors with diffusely infiltrating components 

that rarely undergo malignant transformation and offer better overall prognosis. The group of 

mixed neuro-glial neuroepithelial LGGs is predominantly found in the cortical regions of the 

temporal lobe and is characterized by columns made up of bundles of axons oriented perpendicular 

to the cortical surface and mature, dysplastic ganglion cells in combination with neoplastic glial 

cells. Oligodendrogliomas (ODs) and oligoastrocytomas (OAs) are more commonly found in adult 

population, but are extremely rare in children, representing less than 5% of pediatric LGG. The 

cerebellum is the most prevalent location for LGGs, and cerebellar low-grade gliomas account for 

15% to 25% of all pediatric central nervous system tumors. They are followed by hemispheric 
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(cerebral) gliomas (10% - 15%), gliomas of the deep midline structures (10% - 15%), optic 

pathway gliomas (5%), and brain stem gliomas (2% - 4%) (Freeman, Farmer, and Montes 1998). 

  

Table 1: Different subtypes of pediatric LGGs based on WHO classification 

Astrocytic tumors Grade (WHO) 

Pilocytic astrocytoma (PA) I 

Diffuse astrocytoma (DA) II 

Pilomyxoid astrocytoma (PMA) II 

Pleomorphic xanthoastrocytoma (PXA) II 

Oligodendroglial oligoastrocytic tumors  

Oligodendroglioma (OD) II 

Oligoastrocytoma (OA) II 

Neuronal, mixed neuro-glial neuroepithelial tumors  

Ganglioglioma (GG) I 

Angiocentric glioma (AG) I 

Desmoplastic infantile tumor I 

Dysembryoplastic neuroepithelial tumor (DNT) I 

 

 Pilocytic astrocytomas (PAs) are the most common among pediatric LGGs, accounting for 

85% of these tumors. The term “pilocytic” has been used to describe astrocytoma variants at least 

partially comprised of cells with hair-like, bipolar processes.  PAs are defined by WHO as grade I 

and typically arise in the cerebellum, optic pathway, and brainstem (Ostrom et al. 2014; Pfister 

and Witt 2009). PAs are classically characterized by the presence of Rosenthal fibers, biphasic 

architecture with areas of disaggregated cells or small cysts alternating with more compact regions, 

vascular proliferation, and eosinophilic granular. On magnetic resonance imaging (MRI), PAs 

appear as well-circumscribed tumors, hyper intense on T2 weighted with a large cystic component. 

Pilocytic astrocytomas that involve the optic pathways, optic nerve, and chiasm typically form 

fusiform masses with distinct nuclear pleomorphism. Consistent with their classification as low-

grade glial neoplasms, they have low cell density, contain very few mitotic figures, are often 

indolent or slow-growing and do not undergo malignant transformation. This is in contrast to adult 

low-grade gliomas that have a more aggressive phenotype. They often lack palisading necrosis 
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and pronounced nuclear atypia but harbor large number of microglia. Immunoreactivity for 

proteins associated with glial lineage cells, including glial fibrillary acidic protein (GFAP) and 

oligodendroglial marker Olig2 has been observed in these tumors.  

 

 Unlike the adult population, the majority of pediatric PAs have an excellent prognosis with 

overall 10-year survival reported to be over 90% (Burkhard et al. 2003). However, the prognosis 

is worse for tumors in the hypothalamic/chiasmatic, deep midline, and brain stem regions because 

they have minimal potential for resection and therefore, less favorable progression-free and overall 

survival. Nonetheless, PAs rarely progress to malignancy, with the vast majority, even after 

multiple recurrences, maintaining their WHO grade I designation. In addition to pilocytic 

astrocytomas that develop sporadically (without any known genetic inheritance), these tumors can 

also develop in association with the hereditary tumor predisposition syndrome Neurofibromatosis 

type 1 (NF1). PAs in the NF1 pediatric population display unique features that distinguish them 

from their sporadic counterpart. The cerebellum is the organ of predilection in sporadic PAs, 

whereas those in children with NF1 predominate in the optic pathways (optic nerve, chiasm, tracks, 

and radiations). The differences in brain location impact the presenting signs and symptoms- optic 

pathway PAs are associated with visual impairment and early onset puberty, whereas cerebellum 

and brainstem PAs induce headaches and hydrocephalus.  Importantly, PAs in children with NF1 

tend to arise at earlier ages than those in the sporadic population. 

 

1.2 Molecular genetics of PA 

 

 Comprehensive genomic and genetic studies, using high-throughput genetic sequencing 

and gene expression profiling, performed in recent years have determined a number of mutations 

and genetic alterations associated with pediatric PAs. Besides a relatively normal karyotype, these 

tumors contain few regions of chromosomal loss or gain. The majority of PAs present alterations 

in the RAS/RAF/MEK/ERK pathway, which is responsible for modulating cell growth, 

proliferation, and apoptosis in both normal and tumor cells. The most frequent genetic alterations 

observed in PAs are tandem duplication at 7q34, which produces a fusion between KIAA1549 and 

BRAF genes, leading to the expression of an abnormal fusion transcript KIAA1549-BRAF and loss 

of NF1 gene expression. As many as 60–94% of PAs exhibit the KIAA1549-BRAF fusion, most 
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commonly in those Pas arising in the cerebellum (Bergthold et al. 2014). Expression of this fusion 

protein results in loss of the BRAF auto regulatory domain at the amino-terminus and constitutive 

activation of the RAS-ERK pathway (Jacob et al. 2009). Another gene fusion that also results in 

constitutive activation of the BRAF kinase, FAM131B-BRAF, has been described in PAs (Cin et 

al. 2011). A further seven gene partners for BRAF fusions have been found in small numbers of 

cases (RNF130, CLCN6, MKRN1, GNA11, QKI, FZR1 and MACF1), which have all resulted in 

the loss of the N-terminal regulatory region of the BRAF protein and the retention of the kinase 

domain. These arise by various genetic mechanisms, including deletions and translocations 

(Forshew et al. 2009; Jones et al. 2013; Zhang et al. 2013). Non-fusion mutations of the BRAF 

gene, including the well-known V600E mutation and a number of small insertions which activate 

BRAF kinase signaling, have also been identified in a subset of PA cases (Schindler et al. 2011). 

In addition to BRAF, fusion genes retaining the kinase domain in both NTRK2 (TrkB) and NTRK3 

(TrkC) receptor tyrosine kinases have been described in some LGG histological subtypes (Jones 

et al. 2013). Recently, next-generation sequencing analyses have suggested a role for fibroblast 

growth factor receptor (FGFR) activation as a driver for some supratentorial PAs (Zhang et al. 

2013). One interesting clinical observation is that the various MAPK mutations identified in LGGs 

are not uniformly spread across different tumor anatomical locations. For example, BRAF fusions 

are found readily in LGGs in the cerebellum but are less common in supratentorial locations. On 

the other hand, BRAF V600E and NRTK fusions are more prevalent in tumors located in the brain 

hemispheres. 

 

Patients with NF1 have an increased risk of all gliomas, with PA being the most frequent 

form that occurs in about 15-20% of these patients, particularly on the optic pathway during early 

childhood (Listernick et al. 2007). NF1-associated PAs show complete loss of NF1 expression, 

whereas histologically comparable PAs that arise sporadically in patients without NF1 still 

maintain NF1 gene expression (Kluwe et al. 2001). Likewise, PAs have also been reported in a 

small number of patients with Noonan syndrome, which is characterized by mutations in RAS-

ERK pathway genes, including PTPN11, SOS1, and KRAS (Collins, Jones, and Giannini 2015). 

These new insights regarding the underlying biological processes necessary for tumor growth and 

maintenance will open the door to a more targeted, molecularly based classification approach to 

therapy. 
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1.3 Neurofibromatosis type 1 

 

 Neurofibromatosis type 1 is sometimes referred to as Von Recklinghausen’s disease based 

on the German physician, Friedrich Von Recklinghausen, who identified it in 1882. It is one of the 

most common monoallelic genetic disorders, with sporadic mutations arising in about half of cases 

and affects approximately 1 in 3500 individuals worldwide (Friedman 1999). NF1 displays an 

autosomal dominant pattern of inheritance and is caused by a germline mutation in a single gene 

NF1. Approximately 50% of all documented cases represent de novo mutations, as a result of the 

NF1 gene having a large genomic footprint and an elevated rate of germ cell mutations (estimated 

1 x104 per gamete per generation) (Huson, Harper, and Compston 1988). Beside its complete 

penetrance, the phenotypic expression of the disease is highly variable among afflicted individuals, 

even among family members who may carry the same genetic mutation. The high variability in 

phenotypic expression in NF1 could be due to modifier genes, such as protein-coding sequences, 

microRNA, and long noncoding RNA genes (Pasmant et al. 2012). This hypothesis was supported 

by cohort studies, which have shown that the clinical features tended to be similar in close relatives 

versus distant relatives. The incidence of the disease remains the same regardless of sex or 

ethnicity.  

 

NF1 is characterized by the presence of benign peripheral nerve sheath tumors termed 

neurofibromas, pigmentary changes such as skinfold freckling, café-au-lait macules (CALMs), iris 

hamartomas (Lisch nodules) and gliomas involving the optic pathway (Table 2) (Gutmann et al. 

1997). Optic pathway gliomas are not the only type of LGG that occur in children and adults with 

NF1. The brain stem and other midline structures can harbor low-grade gliomas, but these lesions 

are usually diagnosed later in childhood. Likewise, tumors can occur in corpus callosum and 

cerebral hemispheres often in adolescence or the teenage years. Similar to optic pathway gliomas, 

the natural history of these non-visual pathway tumors is erratic with some tumors growing for 

brief periods of time and then seemingly arresting, while others may become increasingly 

symptomatic over relatively brief periods of time, especially brain stem tumors. In addition to 

central nervous system (CNS) tumors, several types of peripheral nerve sheath tumors can arise in 

NF1 patients. They range from benign neurofibromas, including dermal and plexiform 
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neurofibromas, to malignant peripheral nerve sheath tumors (MPNSTs). In addition to being 

susceptible to PNS and CNS tumors, individuals with NF1 have an increased risk of developing 

leukemia, pheochromocytoma, gastrointestinal stromal tumors, early-onset breast cancer, and 

high-grade malignant glioblastoma (Stiller, Chessells, and Fitchett 1994; Sharif et al. 2007; 

Vlenterie et al. 2013). Between 30%-70% of NF1 children are diagnosed with learning disabilities, 

making it the most significant factor affecting quality of life among those patients (Hyman, Shores, 

and North 2005). Affected individuals are also prone to macrocephaly, seizures, short stature and 

skeletal defects, such as bone malformations and spinal curvature (scoliosis). At the moment, it is 

extremely difficult to predict which child or adult will develop any of these medical problems. 

Lastly, even when clinical abnormalities arise, an accurate prediction of the natural history of any 

particular disease feature is almost impossible because there are few predictors of disease 

progression or response to therapy. 

 

 

Table 2: Onset of NF1 symptoms 

 
 

 
Clinical Features 

Congenital  
(0 - 2 years) 

Preschool years  
(2 - 6 years) 

Late childhood 
& 

Adolescent years  
(6 - 16 years) 

Adulthood  
(16+ years) 

Café-au-lait macules 

Lisch nodules 

Plexiform Neurofibromas 

     Diffuse 

     Nodular or Superficial 

Bony Lesion 

     Tibial dysplasia 

Axillary or inguinal freckling 

Optic pathway glioma 

Learning disabilities 

Dermal neurofibromas 

Scoliosis 

MPNST 
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1.4 Molecular and Genetic characterization of NF1 and neurofibromin 

 

 The NF1 gene is located on chromosome 17q11.2 and spans 350 kilobases (kb) of genomic 

DNA (Marchuk et al. 1991). The gene encodes a 220-250kDA protein called neurofibromin which 

is predominantly expressed in neuronal and glial cells (Daston et al. 1992). Amino acid sequence 

analysis of neurofibromin protein has revealed that it encloses a functional GAP-related domain 

(GRD) that is homologous to members of the GTPase-activating protein (GAP) family (Xu et al. 

1990). The protein neurofibromin is highly conserved within vertebrate species and has over 98% 

homology with the mouse homolog. Similar to other GAP members, neurofibromin is involved in 

precipitating the conversion of active RAS-GTP to its inactive form, RAS-GDP. Therefore, the 

protein functions as a negative regulator of the RAS-mediated signaling pathway, which is 

involved in cell proliferation and transformation, senescence.  

 

 Most of the mutations in NF1 have been identified as loss-of-function mutations. These 

include missense, nonsense, frameshift, and splice site mutations, insertions, deletions, large 

deletions, including NF1 gene and possibly other neighboring genes, and translocations. Although 

patients with NF1 disease begin life with one functional and one mutated NF1 allele, this 

heterozygous state alone is insufficient for tumor formation. Loss of heterozygosity (LOH), or 

‘second-hit’ somatic mutations, through the inactivation of the remaining functional allele, thereby 

causing loss of neurofibromin protein expression, has been reported in a variety of NF1-associated 

tumors, including neurofibromas, malignant peripheral nerve sheath tumors, pheochromocytomas, 

and myeloid tumors (Glover et al. 1991; Xu et al. 1992; Legius et al. 1993; Shannon et al. 1994; 

Colman, Williams, and Wallace 1995; Serra et al. 2000). Based on these findings, the NF1 gene 

has been classified as a tumor suppressor. Moreover, whole genome sequencing of NF1-PAs has 

revealed the presence of neoplastic cells with alterations affecting both NF1 alleles (germline NF1 

gene mutation and somatically acquired NF1 gene mutation)(Gutmann et al. 2013).  

 

 RAS-mediated signaling has two primary effector pathways: (1) the mitogen-activated 

protein kinase/extracellular-signal regulated kinase (MAPK/ERK) and (2) the phosphatidylinositol 

3 kinase (PI3K)/AKT pathway (Cichowski and Jacks 2001). RAS genes, including NRAS, HRAS, 
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and KRAS, form a multigene family encoding guanosine nucleotide bound GTPases. The signaling 

pathway begins with the interaction between a ligand and a cell surface receptor, a receptor 

tyrosine kinase (RTK) (Figure 1). This is followed by activation of RAS by conversion of RAS-

GDP into RAS-GTP. Neurofibromin negatively regulates this step through GTPase-activating 

protein activity by converting the active RAS-GTP to the inactive RAS-GDP. Active RAS 

interacts with many downstream mediators, most importantly by binding to the RAS-binding 

domain of BRAF or Raf-1 proto-oncogene, serine/threonine kinase (RAF1). This leads to homo 

and heterodimerization and activation of RAF, which then activates MEK, a 

serine/tyrosine/threonine kinase, via phosphorylation. Lastly, the extracellular signal-regulated 

kinases (ERK) is phosphorylated and activated. When activated, MEK accelerates progression 

through the cell cycle, leading to cell growth and differentiation. Of note, RAS/ERK pathway 

activation may be involved in cell differentiation and senescence (Jacob et al. 2011). The other 

effector pathway, P13K-AKT signaling pathway, which modulates the activity of the mammalian 

target of rapamycin (mTOR), was also found to be hyperactivated due to NF1 loss (Kaul et al. 

2015). In addition, a recent study has reported that neurofibromin differentially controls neural 

stem cells (NSCs) proliferation and multilineage differentiation through selective use of PI3K-

AKT and RAF/MEK effector arms respectively (Chen, Gianino, and Gutmann 2015). 

 

 



 9 

Figure 1. Overview of the MAPK-ERK signaling pathway.  

Receptor tyrosine kinases (RTKs), when activated by a ligand, promote guanine nucleotide 

exchange to form activated RAS- GTP complex. Thus, a kinase cascade begins through MEK and 

ERK phosphorylation, resulting in the activation of transcription factors that drive genomic 

signature programs such as cell cycle progression, proliferation, survival, and transformation. NF1 

functions as a GTPase activating protein (GAP) which stimulate GTP hydrolysis and formation of 

inactive RAS–GDP. Consequently, neurofibromin suppresses activation of the downstream 

effectors of RAS, negatively regulating the pathway. GDP=guanosine diphosphate. GTP, 

guanosine triphosphate. ERK, extracellular signal-regulated kinase. MEK, MAPK-ERK kinase. 

 

1.5 NF1-associated Optic Pathway Glioma 

 

 Approximately 15% to 20% of NF1 patients develop low-grade gliomas predominantly 

involving the optic pathway (optic pathway glioma, OPG) (Listernick, Charrow, and Gutmann 

1999; Listernick et al. 1997). OPGs behavior and aggressiveness correlate with the tumor site 

within the optic pathway. OPGs located in the hypothalamic region usually display pilomyxoid 

attributes and more aggressive behavior, often resulting in short stature, precocious puberty, 

hydrocephalus with related symptoms such as headaches and vomiting, larger head circumference, 

and learning and behavior deficits (Tihan et al. 1999; Fried et al. 2013). Gliomas that involve the 

optic chiasm will often result in slow visual loss in both eyes as well as swelling of the optic disc 

or atrophy, or bitemporal field deficits, proptosis with or without strabismus, and nystagmus. 

Patients with gliomas of the optic nerve proper tend to display painless optic disc swelling and 

visual loss in only one side and proptosis with or without strabismus. These tumors are usually 

benign and can sometime spontaneously regress (Parsa et al. 2001). In fact, patients with NF1-

associated OPG tend to require less treatment and display a more passive disease progression with 

better clinical outcomes than sporadic OPGs. The mechanisms underlying the growth and 

occasional senescence of NF1-associated OPGs are still unclear. OPGs can be readily detected in 

imaging and present a wide range of neuroradiologic appearances such as enlargement of the 

chiasm, a fusiform shape or have a downward kink in the middle of their orbit.  
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 Although there is lack of clear prognosis features, patient sex, age and tumor location have 

all been associated with an increased risk of clinical progression. It was reported that girls with 

NF1 are more likely to lose vision and require treatment for OPG than boys. In addition, girls with 

OPGs are up to 10 times more likely to experience visual decline than their male counterparts 

(Diggs-Andrews et al. 2014). NF1-OPGs that arise in postchiasmatic optic pathway tend to behave 

more aggressively than those in the optic nerve proper. Lastly, OPGs that develop in children 

younger than 2 years of age or after the age of 8 to 10 tend to be more aggressive than those in 

children between the ages of 2 to 8 (Listernick et al. 2004; Balcer et al. 2001). 

 

1.6 Current NF1-OPG treatment and management 

 

 NF1-OPGs often behave in an unpredictable manner, requiring an increase in routine 

surveillance in all NF1 children. Annual eye exams are recommended for all children less than 10 

years old, and after that every two years until the age of 18. Serial screenings for progressive visual 

loss, complete ophthalmic examinations for visual acuity, visual evoked potentials and magnetic 

resonance imaging (MRI) have all been used as tools to monitor OPG progression in NF1 patients. 

Treatment of diagnosed OPG is based on the radiographic and clinical progression of the tumor 

and still remains controversial due to high variability of the disease course. The major morbidity 

associated with these gliomas is visual loss with 30%-50% of NF1 children with OPG experiencing 

impaired visual acuity. However, the mechanism of visual loss in children with NF1-associated 

OPGs is poorly understood and has not been clearly related to tumor size or extent of the 

involvement of the visual pathway. Some patients with relatively small lesions can lose vision, 

while some with larger growing lesions may have well maintained vision. Many children with 

NF1-associated OPGs do not require treatment, because the tumors are asymptomatic or remain 

static. Even slow growing tumors often do not need to be treated, because they have a specific time 

window of development (usually up to age 7), and past this short window, the tumors may 

spontaneously arrest and on rare occasions even regress. Currently, it is impossible to determine 

which NF1 children have the greatest risk for developing NF1-OPG since baseline MRI is useless 

in predicting clinical outcome.  
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 When treatment is required, it may only be needed for a limited period of time. Because of 

the location on the visual pathway, surgery is rarely a therapeutic option. Likewise, radiation is 

seldom utilized due to concerns of hormone deficits, cerebrovascular disease, secondary malignant 

neoplasms and cognitive impairment, especially in the pediatric population (Sharif et al. 2006; 

Murphy et al. 2015). Chemotherapy is now the front-line adjuvant therapy for children with 

progressive low-grade gliomas. The most common chemotherapeutic agents employed has been 

the combination of carboplatin and vincristine (Ater et al. 2016; Packer et al. 1997). This treatment 

regimen results in minimal long-term complications and achieves tumor stabilization in 80%–90% 

of patients. Although several international collaborative trials have demonstrated the ability of 

carboplatin and vincristine to control tumor growth, over a quarter of treated NF1 children lost 

vision despite stable radiographic studies (Fisher et al. 2012). Therefore, the primary benefit of 

novel intervention may be in improving visual outcome. Recently, several studies have employed 

the RNFL thickness as a useful biomarker of vision loss in children with NF1-OPGs. A reduction 

of the RNFL reflects axonal degeneration of retinal ganglion cells (RGCs), which represent the 

only neuronal population that connects the retina to the brain (Avery et al. 2015; Avery, Mansoor, 

Idrees, Biggs, et al. 2016; Avery, Mansoor, Idrees, Trimboli-Heidler, et al. 2016). Despite their 

success in controlling radiographically defined tumor growth, chemotherapeutic agents are not 

expected to regenerate RGCs or re-establish neuronal circuits.  

 

 Improvement in the understanding of the molecular alterations involved in OPG formation 

has led to molecularly targeted therapies, such as mTOR inhibitors and MEK inhibitors, to be 

incorporated into clinical trials. Inhibitors of the mTOR pathway, including rapamycin and 

RAD001, have been utilized following genetic engineered mouse modeling based research that 

suggested that mTOR hyperactivation was a major component of glioma growth. However, 

blocking mTOR hyperactivation with rapamycin coupled with Tarceva, an EGFR inhibitor, has 

primarily resulted in a static arrest of tumor growth (Yalon et al. 2013). MEK inhibitors are also 

actively being explored in children with NF1-OPGs. Early results from clinical trials are more 

encouraging, and tumor shrinkage was seen more frequently. Inhibiting MEK presents an 

attractive advantage because it represents a convergence point in the RAS/RAF/MEK/ERK 

pathway where a number of upstream signaling pathways can be blocked. Most MEK inhibitors 

are specific and do not inhibit many different protein kinases, although some are more specific 
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than others. The use of these MEK inhibitors, or other biologic agents, must be undertaken with 

careful toxicity monitoring including neurocognitive assessments since the long-term suppression 

of the RAS-MAPK pathway in young children may result in significant developmental issues. The 

most critical challenge for NF1-OPG is to develop preventive or early interventional therapies to 

be delivered before irreversible neurological deficits such as axonal degeneration and RGC loss 

occur (Listernick 2016). In order to achieve this goal, we need a better understanding of the full-

course of NF1-OPG disease pathogenesis from a developmental defect to visual loss. 

 

1.7 Insights from murine models of NF1-OPG 

 

 Due to the paucity of human glioma tissue available for analysis, the neurobiology of NF1-

associated gliomas is only partially understood and has been greatly elucidated by the use of 

genetically engineered mouse (GEM) models. Moreover, there is an increasing need for preclinical 

mouse models that reflect the unique clinical features of NF1-OPG – monogenic disease, early 

window for development, and slow growth – to assess preventative and therapeutic intervention. 

GEM models have been developed which mimic NF1 LGGs and have resulted in important 

insights. Because of the essential role of neurofibromin during tissue development and 

organogenesis, mice harboring homozygous Nf1 mutation (Nf1-/-) are embryonic lethal and die of 

heart failure and cardiac defects (Brannan et al. 1994). Although the early lethality of Nf1-/- mutants 

has hampered the study of Nf1 loss during late developmental stages and adulthood, these mice 

have nonetheless supplied very useful information and materials to help characterize NF1 function 

in cell population involved in NF1-associated tumors. In contrast, mice with a heterozygous 

germline Nf1 mutation (Nf1+/-) are viable and fertile, and fail to develop common and early onset 

features of human NF1 such as neurofibromas and cafe-au-lait spots but are susceptible to the 

development of tumors, such as leukemia and pheochromocytomas and ultimately die by 15 to 18 

months (Jacks et al. 1994).  

 

 Due to the limitation of Nf1 germline homozygous and heterozygous deletion mouse 

models, researchers have developed tissue-specific Nf1 conditional knockout (CKO) mice, which 

allow them to investigate the effect of Nf1 deficiency in a small population of cells. For example, 

Dr. Yuan Zhu generated a GEM model of Nf1-OPG by targeting homozygous Nf1 mutations (Nf1-
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/-) to neural stem and progenitor cell populations during embryonic development using a Cre 

transgenic line under the control of human glial fibrillary acidic protein promoter (hGFAP-cre) 

(Anthony et al. 2004; Malatesta et al. 2003; Wang et al. 2012; Zhuo et al. 2001; Zhu et al. 2005). 

The resulting mutant pups (Nf1hGFAPCKO) exhibited structural brain defects, ataxia, reduced body 

size and poor health. More importantly, the mutants show increased glial progenitor proliferation 

in the brain and develop OPGs in high penetrance with similar histopathological characteristics of 

human NF1-OPGs. The next attempt was led by Dr. David Gutmann, who generated another 

conditional Nf1 mouse strain, using the GFAP-cre* transgene to inactivate Nf1 in neuroglial 

progenitors at around E14 (Bajenaru et al. 2003). In this model, the mice develop low-grade 

gliomas of the optic nerve and chiasm by 3 months of age only when neighboring cells in the tumor 

environment were Nf1 heterozygous (Nf1+/-), not wild-type (Nf1+/+). From these results, the 

researchers concluded that the heterozygosity of the surrounding cells play an important role in 

the tumor development. These tumors were characterized by low proliferative indices, microglial 

infiltration, and robust GFAP expression, and were detectable on MRI (Bajenaru et al. 2005). 

Moreover, these tumors led to subsequent time-dependent sequence of events: optic nerve 

dysfunction, retinal ganglion cell (RGC) loss, retinal nerve fiber layer thinning, and reduced visual 

acuity (Hegedus et al. 2009). These GEM models suggest that optic gliomagenesis requires 

somatic Nf1 inactivation in a population of progenitor cells from specific brain regions during mid 

to late embryogenesis. This partly explains the propensity of gliomas to arise in the optic pathway 

and brainstem of NF1 patients and the predilection for these tumors to arise in young children 

during early childhood.  

 

 Although these GEMs have already yielded some important findings, there are several 

questions that still remain unanswered.  The most promising opportunities for application of mouse 

Nf1 optic glioma models in the future will be: 1- to determine the cell population(s) is(are) most 

affected by Nf1 loss during early optic nerve development; 2- to define the mechanisms underlying 

tumor-associated visual decline; 3- to determine the optimal time to initiate preventive or early 

interventional treatments that can effectively prevent visual deterioration. 
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1.8 Optic nerve development in rodents 

 

 The optic nerve is part of the central nervous system and contain the same glial cell types 

found throughout the central white matter, in addition to the axons of retinal ganglion cells (RGCs). 

The optic nerve connects all RGCs from the retina to their targets in number of central regions 

known as retino-recipient targets, including the suprachiasmatic nuclei, the accessory optic nuclei, 

the pretectal nuclei, the ventral and dorsal lateral geniculate nuclei, the lateral geniculate nucleus 

(LGN) and the superior colliculus (SC), where the majority of RGCs project towards. Formation 

of the vertebrate eye begins with the asymmetrical, bilateral invagination from the anterior portion 

of the neural tube, the neuroepithelium of the ventral diencephalon of the embryonic brain. This, 

in turn, results in the formation of the proximal optic stalk and the distal optic vesicle, which further 

invaginates to create the bilayered optic cup. The inner layer of the optic cup gives rise to the 

neural retina and the retinal pigment epithelium (RPE) develops from the outer layer (between 

E9.5-E11.5 in the mouse) (Mui et al. 2005). Eventually, the optic stalk and the edge of the optic 

cup fuse to form the optic disc or optic nerve head (ONH). Lastly, axons of the RGCs project 

through the optic disc into the optic stalk towards their targets in the brain. This event signals the 

development of the optic nerve and occurs at approximately E15.5 in the mouse. 

 

 The adult optic nerve is comprised of two macroglia cell types: astrocytes and 

oligodendrocytes, which fold around the axons of RGCs and produce myelin and play an essential 

role in the efficiency and velocity of neuron impulse conduction. Microglia, the immunocompetent 

and phagocytic cells in the CNS, represent a small population in the nerve under normal conditions. 

Unlike other glial cells that originate from the ectodermal tissue, microglia are mesodermal in 

origin and are derived from yolk-sac progenitors at E7.5 and populate the brain during early 

development (Aguzzi, Barres, and Bennett 2013). Although astrocytes were initially thought to 

passively support and nurture neurons, numerous studies have shown that they play a role in almost 

all facets of development and function in CNS. Their functions range from maintenance of ionic 

homeostasis and blood-brain barrier to actively regulating neuron-to-neuron communication and 

synaptic plasticity. Furthermore, astrocyte dysfunction has been implicated in ocular pathologies 

such as coloboma, optic nerve dysplasia and glioma resulting in mild vision impairment to 

complete vision loss (Friedlander 2007). Studies with the rat optic nerve culture (Raff et al. 1983; 



 15 

Raff, Abney, and Miller 1984; Miller et al. 1985) coupled with recent advances in genetic 

engineering and fate mapping have allowed for more detailed examination of the lineages of glial 

cells in the optic nerve. These studies have provided evidence of two spatially-restricted glial 

progenitor lineages that locate within the optic nerve at different developing stages (Figure 2). 

 

 

 
 

Figure 2: Anatomically distinct origins of astrocyte and oligodendrocyte lineages during 

optic nerve development in rodents. (See text for details) 

 

 During embryonic stages, neuroepithelial cells from the optic stalk generate Pax2+ 

astrocyte precursor cells (APCs) that differentiate only into astrocytes (Mi and Barres 1999; Small, 

Riddle, and Noble 1987). Pax2 belongs to the Pax protein transcription factor characterized by a 

paired box (a DNA-binding element) and also plays a critical role in eye morphogenesis by 

defining retina-optic nerve boundaries (Schwarz et al. 2000). Specifically, Pax2 has been shown 

to suppress the neuronal fate and promote glial fate of optic nerve neuroepithelial cells (Soukkarieh 

et al. 2007). The peak differentiation period of optic stalk neuroepithelial cells into Pax2+ APCs in 

rats is between E12 to E14 (Kuwabara 1975). This period coincides with the onset of Sonic 

hedgehog (Shh) expression from differentiating RGCs (Dakubo et al. 2003). It was demonstrated 

that RGC axons-derived Shh promotes astrocyte proliferation (Wallace and Raff 1999; Dakubo et 
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al. 2008). By E17, almost all neuroepithelial cells in the rat optic nerve are Pax2+ cells. Pax2+ 

precursors begin to rapidly generate GFAP+ astrocytes by E19. The proximal-distal patterning of 

the optic nerve development is regulated by Shh signaling which suppresses Pax6 while 

simultaneously promoting Pax2 and Vax in optic stalk cells. Transgenic mice lacking Pax2 have 

helped to highlight the critical role of this transcription factor in optic stalk specification. These 

mice display incomplete optic fissure closure, abnormal axonal pathways, hyperpigmentation of 

the optic stalk, and optic nerve glia hypoplasia (Torres, Gomez-Pardo, and Gruss 1996; Macdonald 

et al. 1997). 

 

 Oligodendrocytes, however, are not locally generated in the optic nerve. They are derived 

from oligodendrocyte progenitor cells (OPCs), highly motile cells that migrate into the nerve from 

the chiasm towards the eye beginning at birth and populate the entire nerve (except lamina cribosa) 

by P3 (Small, Riddle, and Noble 1987; Ueda et al. 1999). Multiple lines of evidence have 

demonstrated that optic nerve OPCs mostly originate from the ventral brain, specifically the floor 

of the third ventricle (Small, Riddle, and Noble 1987; Ono et al. 1997; Gao and Miller 2006) and 

the preoptic area (Ono et al. 2017). Unlike other regions of the CNS where OPCs have been 

reported to differentiate into astrocytes in addition to oligodendrocytes (Ono et al. 2008; Tatsumi 

et al. 2008), there may be intrinsic inhibitor factors specifically localized in the optic nerve that 

prevent OPCs from yielding astrocytes.  

 

1.9 Cell of origin for Nf1-OPG 

 

 Individuals with NF1 are born with one functional allele (wild-type) and one mutated allele 

in germline cells (“first-hit”). The most well-known genetic and molecular mechanism for tumor 

development is the biallelic inactivation of NF1 gene, or loss of the remaining wild-type allele 

(“second-hit”) (Gutmann et al. 2013; Lau et al. 2000). It is well documented that NF1-OPGs rarely 

develop in children over 7 years of age (peak incidence between 4 to 5 years) (Packer et al. 2017; 

Listernick 2016). These clinical observations suggest that complete NF1 inactivation must occur 

in a transient neural stem and/or progenitor cell population during a critical time window of early 

nerve development. The high degree of heterogeneity in the clinical manifestations of NF1 disease 

in patients has reinforced the importance of determining the cell of origin of OPG. Previous studies 
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have shown that brain tumors with similar histopathological characteristics possess unique 

molecular features that correlate with their original progenitor cells (Taylor et al. 2005; 

Kalamarides et al. 2011). Furthermore, several labs have demonstrated that some brain cancers are 

initiated and maintained by a population of cells that exhibit stem cell-like characteristics such as 

multipotency and self-renewal (Galli et al. 2004; Hemmati et al. 2003; Singh et al. 2004; Wang et 

al. 2009). These studies have highlighted the importance of determining the cellular origin of OPG, 

which could yield useful information on the molecular basis for the development of the tumor, its 

regulatory mechanisms, changes in genetic profile and allow for improved response to therapeutic 

drugs.  

 

 There are multiple germinal zones in the brain such as the subventricular zone of the lateral 

ventricle (lv-SVZ), the III-VZ and the fourth ventricle and the optic nerve proper that could serve 

as site of origin for tumorigenesis. In principle, at least three cell types could serve as the cell of 

origin of NF1-OPG: 1- multipotent neural stem cells (NSCs), 2- glial-restricted progenitor (GRP) 

cells, and 3- mature dedifferentiated cells. The third option is also the least likely, considering the 

monogenic nature of this disease and the very low risk of malignancy associated with it. One aspect 

of NSCs, which makes them easily susceptible to oncogenic transformation, is their persistent 

proliferative activity during the brain’s lifetime. A growing body of literature has shown that NSCs 

are one of the most susceptible cell types that can give rise to malignant glioma. Indeed, GEMs 

with various combinations of mutations in p53, Pten and Nf1 tumor suppressor genes enable 

embryonic NSCs to develop malignant tumors with high penetrance (Wang et al. 2009; Zheng et 

al. 2008; Kwon et al. 2008). Recent studies provided some evidences to suggest multipotent NSCs 

are the cell of origin of NF1-OPG. The strongest argument comes from a group led Dr. David 

Gutmann (Lee, Gianino, and Gutmann 2012). In a study published in Cancer Cell, they supplied 

four lines of evidence supporting the hypothesis that NSCs within the germinal layer of the third 

ventricular zone (III-VZ) serve as a source or cell of origin for NF1-associated optic nerve glioma. 

First, they showed that cells in the III-VZ at E15.5 express markers for stem and progenitor cells, 

including Sox2, Nestin, BLBP, Ki67, are capable of forming self-renewing neurospheres, and 

undergo multilineage differentiation under culture conditions. Secondly, using microarray data and 

glioma-causing genetic modifications such as p53, Pten or B-raf, they proposed that cells from 

lateral ventricle SVZ (lv-SVZ) and III-VZ in E17.5 brains represent two different stem or 
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progenitor cell populations based on their distinct expression profiles and their differential 

responses in vitro. Thirdly, when Nf1 was inactivated at E9.5 in BLBP-cre; Nf1flox/flox mice, the III-

VZ, but not the lv-SVZ, showed increased numbers of Olig2 and GFAP expressing cells in the P8 

brain and increased proliferation in vitro. Lastly, they claimed that Nf1 deletion at E16.5 using and 

inducible GFAP-creER mouse produced a single viable mutant mouse that developed optic glioma 

at 3 months whereas induction at P1-P3 or P14 did not induce tumors. Taken together, the Gutmann 

group concluded that neural stem/progenitor cells from the proliferating III-VZ during embryonic 

stages give rise to optic gliomas. 

 

 However, there are several major concerns with the conclusion from these findings. The 

definitive evidence demonstrating that E15.5 III-VZ cells are true neural stem cells is still lacking, 

because we do not know whether such cells are neurogenic in vivo or what type(s) of neurons 

would be generated from these putative neural stem cells. Furthermore, it is well documented that 

in vitro culture conditions do not necessarily reflect what happens in vivo.  Secondly, hGFAP-cre 

is expressed in multi-potent neural stem cells and radial glial cells in the dorsal brain. However, 

the cre expression seems to be restricted to glia precursors already committed to the glial lineage 

in the ventral brain, including the III-VZ (Anthony et al. 2004; Malatesta et al. 2003; Zhuo et al. 

2001; Yue et al. 2006). Although the pups induced at P1-P3 failed to develop optic gliomas, this 

could simply be attributed to fewer cells targeted by GFAP-creER, and not necessarily due to late 

induction as the authors suggested. There was also a lack of reporter or lineage-tracing used to 

assess the percentage of recombined cells as well as the phenotype of Nf1-/- cells in these 

postnatally induced mice. However, the most significant caveat for this study was the failure to 

distinguish between the different origins of macroglia in the developing optic nerve. The authors 

incorrectly assumed that stem cells in the III-VZ migrate and differentiate into both 

oligodendrocytes and astrocytes in the optic nerve. As a consequence, the definitive evidence is 

lacking to conclude that neural stem cells from the III-VZ, but not glial-restricted precursors from 

either the brain or the nerve, are the cell of origin of NF1-OPGs. In a follow-up study, the Gutmann 

group generated an additional transgenic mouse, Nf1flox/mut; Prom1-creER by employing tamoxifen 

(TM)-inducible Cre system expressed from the endogenous prominin-1 (CD133) promoter, to 

specifically target Nf1 loss into CD133+ neural stem cells in the brain at E15 (Solga et al. 2017). 

The resulting mutants developed OPGs by 3 months of age, similar to the latency in their GFAP-
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cre* CKO mice. Although these observations suggest that neural stem cells could serve as cell of 

origin of OPGs, current Cre/LoxP conditional knockout system, targeting the stem cells will also 

inevitably target all the progeny derived from stem cells, making it extremely difficult to conclude 

which type(s) of cells (NSC or glia-restricted progenitors) is(are) most susceptible to Nf1 loss. 

 

 Interestingly, the strongest evidence for glia-restricted progenitors as potential cell of 

origin for Nf1-OPGs also comes from Dr. Gutmann’s group. In the same study as above published 

in the journal Oncotarget, they employed a cre transgenic mouse for somatic inactivation of Nf1 

in Olig2+ glial progenitors by E12. They reported that the Nf1flox/mut; Olig2-cre mice develop OPGs 

with a delayed onset of 6 months compared to their conventional model which develop OPGs by 

3 months of age. They concluded that both NSC/progenitors and pre-OPCs can serve as initiating 

cells for OPGs with different latencies for optic gliomagenesis (Solga et al. 2017). Taken together, 

these studies all suggest the embryonic III-VZ as the regional origin for all these OPGs initiating 

cells. It is important to note that when Nf1 mutation is introduced in multi-potent NSCs, it becomes 

extremely difficult to distinguish whether the mutant stem cells or their more restricted progeny 

are more affected. It is well established that biallelic inactivation (or loss of heterozygosity, LOH) 

of the NF1 gene is the rate-limiting step for NF1-OPG formation. However, it remains unclear 

whether the key LOH must occur in NSCs or glia-restricted precursors from either the brain or the 

optic nerve during development to initiate gliomagenesis. Therefore, investigating the role of NF1 

in the different cell lineages in the optic nerve could not only provide insights in the cellular targets 

for NF1 mutation, but also advance our understanding of how NF1 loss in these cells leads to 

tumor formation.  

 

 

1.10 Summary and overall layout of this thesis 

 

 In this thesis, I use both conventional conditional knock-outs (CKOs) and the MADM 

system to study the entire tumorigenic process from early development to adult stage. In Chapter 

II, I demonstrate that Nf1-associated glial abnormalities established during neonatal stages can be 

found throughout tumor development and in late-stage OPGs. I also delineate the timing and 

developmental defects caused by Nf1 loss that result in neurological deficits in late stages. Finally, 
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I provide evidences to support the MEK-Erk pathway as the signaling pathway responsible for 

tumor initiation and maintenance. In Chapter III, I use pharmacological inhibition in the 

Nf1hGFAPCKO mouse model to demonstrate that transient MEK inhibition during a neonatal 

window (P0.5-P21) prevents OPG formation in a dose dependent fashion. In Chapter IV, I discuss 

how my findings advance the field of Nf1-OPGs, the clinical implications of these advances, and 

future directions for the field. 
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Chapter II: Nf1 loss leads to Erk-dependent abnormal glial cell expansion in 

the optic nerve followed by nerve degeneration and RGC loss 
 

2.1 Introduction 

 

Patients with the tumor predisposition syndrome, neurofibromatosis type 1 (NF1) have 

increased risks of developing benign and malignant tumors in the nervous system. Approximately 

15% to 20% of NF1 patients develop low-grade gliomas predominantly involving the optic 

pathway (optic pathway glioma, OPG) and the incidence of high-grade malignant astrocytoma 

development in the brain is increased by more than 5-fold compared to the general population 

(Listernick, Charrow, and Gutmann 1999; Listernick et al. 1997). The major morbidity associated 

with these gliomas is visual loss with 30 to 50% of NF1 children with OPG experiencing impaired 

visual acuity. However, the mechanism of visual loss in children with NF1-OPGs is poorly 

understood and has not been clearly related to tumor size or extent of the involvement of the visual 

pathway. Some patients with relatively small lesions can lose vision, while some with larger 

growing lesions may have well maintained vision. 

 

Individuals with NF1 are born with one functional allele (wild-type) and one mutated allele 

in germline cells (“first-hit”). The heterogeneity in disease manifestation in NF1 patients raises the 

possibility of two distinct genetic mechanisms. The first possibility could be due to 

haploinsufficiency where a single copy of the wild-type gene is insufficient to produce enough 

proteins to perform normal cell functions as opposed to two normal alleles of the gene. In support 

of this possibility, it was reported that a heterozygous null mutation in Nf1 impeded long-term 

potentiation (LTP) and learning by increasing GABA release in the hippocampus (Cui et al. 2008). 

This phenotype was reverse with pharmacological inhibition of the RAS-MEK-ERK signaling 

pathway. Moreover, reduced neurofibromin expression in (Nf1+/-) neural stem cells leads to 

increased stem cell proliferation in vitro (Dasgupta and Gutmann 2005). However, 
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haploinsufficiency alone is unlikely to be the basis for NF1-associated OPGs since Nf1 

heterozygous mice do not develop OPGs. The second possibility is the stochastic loss of the 

remaining wild-type NF1 allele (“second-hit”) in a subset of cells through a genetic event called 

loss of heterozygosity (LOH). As a result, the NF1-deficient cells are unable to produce the protein 

neurofibromin. One unique clinical feature of NF1-OPGs is that they arise in children younger 

than 7 years of age. This clinical observation suggests that the “second-hit” must occur in a 

transient neural stem and/or progenitor cell population during a critical window of early nerve 

development. As a result, NF1 deficiency would be transmitted to all subsequent progeny and alter 

mature cell function. Alternatively, LOH can directly impact neural/stem and progenitor cells by 

affecting their potential to produce mature, differentiated cells. Therefore, we hypothesize that 

there is a therapeutic window to target and eliminate this “putative” precursor cell most susceptible 

to neurofibromin loss and prevent OPG formation.  

  

Due to the diagnosis of NF1-OPGs as pilocytic astrocytomas, it was generally assumed 

that astrocytes or astrocyte precursor cells (APCs) most likely serve as the cell of origin for these 

tumors. Recent studies using GEM models have suggested the III-VZ stem/progenitor cells as 

potential source for OPGs due to their capacity for self-renewal and multilineage differentiation. 

However, it appears that the onset of hGFAP-cre expression does not occur until after the neuronal-

to-glial transition of neural stem cells in the ventral forebrain (E12.5), which occurs much earlier 

than the lateral ventricle zone in the dorsal forebrain (E17.5).  Furthermore, it is well established 

that astrocytes in the optic nerve, unlike brain-derived oligodendrocytes, arise from locally 

generated neuroepithelial cells that produce APCs. These optic nerve-derived APCs only 

differentiate into mature astrocytes in the direction from the eye to the brain. To study optic nerve 

gliomagenesis, our lab generated GEM model by targeting homozygous Nf1 mutations (Nf1-/-) to 

neural stem and progenitor cell populations during embryonic development using a Cre transgenic 

line under the control of human glial fibrillary acidic protein promoter (hGFAP-cre)(Anthony et 

al. 2004; Malatesta et al. 2003; Wang et al. 2012; Zhuo et al. 2001; Zhu et al. 2005). The hGFAP 

promoter drives Cre recombinase expression in the majority of embryonic multipotent progenitors, 

which give rise to cell types such as neurons, oligodendrocytes and astrocytes in the brain. 

Furthermore, the Cre activity persists in developing astrocytes and progenitor cells in the SVZ at 

postnatal stages. Unpublished findings in the lab revealed that cre-mediated recombination does 
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not occur until E15.5 in the ventral brain. In an effort to investigate the role of Nf1 during optic 

nerve development, our lab uncovered two major findings. 1) During neonatal stage, Nf1 loss 

causes transcriptional activation of the basic helix-loop-helix (bHLH) transcription factor Olig2 in 

nerve-derived Pax2+ APCs and the expansion Pax2+Olig2+ cells which later differentiate into 

GFAP+Olig2+ cells. 2) In the embryonic brain, Nf1 inactivation leads to the expansion of 

BLBP+Olig2+ glia-restricted progenitors which migrate in the developing optic nerve. Taken 

together, these findings suggest that Pax2+Olig2+ cells and BLBP+ progenitors represent the 

“putative” precursor cell populations that transiently exist during early optic nerve development 

and are uniquely susceptible to Nf1 loss.  

 

In this study, I establish the chronological sequence of cellular and molecular events that 

underlie optic glioma development following Nf1-associated glial abnormalities in the developing 

optic nerve. Investigation of the GEM Nf1hGFAPCKOs revealed that they display hyperplastic 

lesions in the prechiasmatic optic nerves that were able to develop into OPGs with high penetrance. 

Importantly, the study of late-stage OPGs in Nf1hGFAPCKOs revealed the expansion of an abnormal 

cell population that express both GFAP and Olig2 (GFAP+Olig2+) and over-activate RAS-MEK-

ERK signaling as well as the persistence of glia-restricted progenitor cells. Analysis of the natural 

history of optic glioma formation determined that the abnormal glial cell expansion is established 

during neonatal development in mutant nerves. Using a MADM-based Nf1-OPG model, I 

confirmed that the oligodendrocyte lineage underwent the most dramatic expansion in the tumor. 

Lastly, genetic inactivation of Mek1/2 rescues OPG formation and RGC loss in Nf1-OPG model 

in a dose dependent manner. Collectively, this study clearly demonstrates that OPGs are a 

developmental defect with Erk-dependent glial cell expansion occurring during the early postnatal 

period (Phase I), followed by an immune response, nerve degeneration and Bax-mediated RGC 

apoptosis (Phase II) and identifies a critical period for neuroprotective intervention before 

irreversible neurological deficits.  

 

2.2 Results 

 

2.2.1 Nf1hGFAPCKOs develop OPGs in the prechiasmatic optic nerve characterized by 

increased cellularity, microglia infiltration, nerve degeneration and RGC loss. 
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Our lab previously showed that, in addition to brain structural abnormalities (enlarged 

corpus callosum, cerebellar defects), Nf1hGFAPCKO mice develop OPGs in high penetrance by 2 

months of age (Wang et al. 2012; Kim et al. 2014; Zhu et al. 2005). I decided to analyze the optic 

nerves from Nf1hGFAPCKOs and their littermate controls at 6 months and older in order to 

characterize late-stage tumor in our model. Similar to other Nf1-OPG models, Nf1hGFAPCKOs 

develop OPGs characterized by increase in volume (gross fusiform enlargement) at the distal 

nerve, in an area immediately adjacent to the chiasm (prechiasmatic area) (Figures 3A and 3A’). 

As revealed by Hematoxylin & Eosin (H&E) staining, Nf1hGFAPCKOs show a significant increase 

in nerve diameter at the tumor site, which was supported by concurrent increase in cellularity with 

abnormal clusters of cells and increased cell density (Figures 3B-3E). Consistent with their 

classification as Grade I neoplasms with low proliferative index, late-stage Nf1-OPGs had few 

proliferating cells and the overall proliferative index (less that 1%) was not significantly higher 

than that of control nerves (Figures 3F, 3F’). However, these tumors do not fully recapitulate 

human tumors histopathological features such as Rosenthal fibers and eosinophilic granular 

bodies.  

 

Previous studies have revealed that gliomas are composed of a heterogeneous mixture of 

neoplastic cells (Nf1 mutant cells) and non-neoplastic cells (microglia and endothelial cells). 

Microglia have been shown to play critical role in brain tumor formation and progression by 

releasing pro-inflammatory factors as well as clearing the dead neurons by phagocytosis (Watters, 

Schartner, and Badie 2005). To determine the extent of microglia infiltration in OPGs from our 

GEM models, I performed double-labeling immunofluorescence for Iba1, a 

microglia/macrophage-specific calcium-binding protein, and GFAP in Nf1-OPGs of mice 6 

months and older. The number of microglia was increased two-folds in Nf1-OPGs compared to 

age-matched controls. More importantly, the microglia in the OPGs exhibited bushy or amoeboid 

shape, suggesting they were at an activated status (Figures 4A and 4A’). Unlike normal nerves 

where microglia were evenly distributed, microglia in Nf1-OPGs tended to cluster in areas with 

intense GFAP staining. These findings indicate that Nf1-OPGs are associated with increased 

microglia infiltration, similar to their human counterparts. Interestingly, these microglia didn’t 

express the tdTomato reporter gene, which labels cells that have undergone Cre-mediated 
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recombination. This observation suggested that the increase in microglia in the tumors is non-cell 

autonomous (Figure 4B). To determine whether Nf1-OPGs cause changes in axonal organization, 

I performed neurofilament staining (NF68k) on longitudinal sections of the optic nerve. Optic 

nerves of tumor-bearing mice contain areas completely void of axonal filament as well as areas 

with focal axonal fiber misalignment when compared to well-oriented axonal fiber projections in 

similar regions of control nerves (Figure 4C). In addition, Nf1-OPGs in aged mice display areas 

with severe myelin disruption and loss and the presence of spherical lamellar bodies, a phenotype 

of myelin degeneration (Figure 4D).  

 

The obvious axonal injury observed at the tumor site may be reflective of RGC apoptosis. 

Damage to the optic nerve, composed of the axons of RGCs, can lead to their retrograde death and 

the subsequent loss of vision. To assess whether RGCs are lost in mice with late-stage gliomas, I 

performed retinal whole-mount staining using the RGC marker, Brn3a (Nadal-Nicolas et al. 2009). 

The retinas from control mice showed RGCs labeled with bright puncta throughout the RGC layer, 

with higher cell densities in the central region of the retina, proximal to the optic nerve head (ONH) 

compared to the peripheral (Figure 5A). In contrast, I observed substantial decrease in RGC cell 

density in a sectoral pattern in OPG-bearing mice, with the most obvious loss occurring in areas 

near the ONH (Figure 5A). To examine whether apoptosis contributes to the loss of RGCs 

observed in the retina of Nf1hGFAPCKO mice, I performed terminal deoxynucleotidyl transferase 

deoxyuridine triphosphate nick end labeling (TUNEL) along with RBPMS, a specific marker for 

retinal ganglion cells on retinal cross-sections (Rodriguez, de Sevilla Muller, and Brecha 2014). 

The results confirmed that tumor-bearing mice showed a ~60% decrease in the number of RGCs 

compared to retinas of control mice (Figures 5B and 5B’). Similarly, there was ~11-fold increase 

in TUNEL-positive cell in the ganglion cell layer (GCL) of Nf1hGFAPCKO mice (Figures 5B and 

5B”). Next, I set out to determine whether this apoptosis is cell autonomous (due to Cre activity in 

RGC cells) or non-cell autonomous. The tdTomato reporter expression was examined in the retina 

along with RBPMS. Although there was clear evidence of Cre-mediated recombination in GFAP+ 

astrocytes in the retina, tdTomato expression was not observed in RBPMS+ RGCs in Nf1hGFAPCKO 

retinas (Figure 6C). Taken together, these results indicate that late-stage prechiasmatic Nf1-OPGs 

cause severe nerve damage associated with non-cell autonomous RGC apoptosis. 
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2.2.2 GFAP+Olig2+ cells, that activate RAS-ERK signaling pathway, underwent the biggest 

expansion in late stage OPGs in Nf1hGFAPCKOs. 

 

Given its robust expression in human tumors, GFAP has long been used as the primary 

marker to classify pilocytic astrocytomas. Accordingly, late-stage Nf1-OPGs display a 2-fold 

increase in GFAP+ astrocytes with increasingly thickened processes and a very disorganized 

pattern (Figures 6A and 6B). Several analyses of human pilocytic astrocytomas have revealed that 

they include numerous cells that express Olig2 within the dense fibrillary region of the tumor 

(Mokhtari et al. 2005; Ligon et al. 2004; Reis et al. 2013). Furthermore, Olig2 transcription levels 

were found to be similarly high in both oligodendroglial and astrocytic tumors (Bouvier et al. 

2003). Therefore, I decided to examine Olig2 expression in our Nf1-OPGs. Similar to the astrocytic 

population, I observed an almost 2-fold increase in Olig2+ oligodendrocytes in tumor location 

(Figure 6B’). Recent unpublished findings in our lab have revealed that the transient Pax2+ APC 

population ectopically express Olig2 (Pax2+Olig2+) following Nf1 inactivation in the developing 

nerve. Pax2+Olig2+ cells later differentiate into GFAP+Olig2+ double positive cells. With this 

knowledge, I decided to investigate whether GFAP+Olig2+ double positive cells persist in late-

stage tumors. In contrast to GFAP+Olig2- and GFAP-Olig2+ cells which show only a modest 

increase (less than 2-fold), cells that express both GFAP and Olig2 marker (GFAP+Olig2+) 

underwent the biggest expansion in the tumors (5-fold increase) (Figures 6A’ and 6B”). The 

percentage of Olig2-expressing cells in the population of GFAP+ astrocytes (GFAP+Olig2+) was 

dramatically increased from 17% in controls to 38% in mutants. Similarly, within the Olig2+ cells, 

the percentage of double-positive cells rose from 9% in the control nerves to 21% in mutant OPGs 

(Figures 6B and 6B’). These data suggest that abnormally differentiated GFAP+Olig2+ cells are 

the glia cell population that underwent the biggest expansion in late-stage OPG.  

 

The extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein 

kinases (MAPKs) is one of the major downstream effector pathway activated by RAS through 

indirect phosphorylation. We have previously demonstrated that neurofibromin loss results in 

increased RAS-Erk signaling in the brain and optic nerves of Nf1hGFAPCKOs, as measured by the 

expression of phosphorylated Erk (p-Erk+) (Kim et al. 2014; Zhu et al. 2005). To investigate 

whether the increase in GFAP+Olig2+ cells in late-stage Nf1-OPG is associated with the activation 
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of RAS-MAPK signaling, I performed triple-labeling immunofluorescence staining for p-Erk 

along with GFAP and Olig2. I observed a robust increase (7-fold) in p-Erk+ cells in the tumors 

compared to similar section in control nerves (Figures 7A- 7A’”). In control nerves, the vast 

majority of cells with activated RAS-Erk signaling (82%) belonged to the astrocytic lineage (p-

Erk+GFAP+Olig2-). Remarkably, within p-Erk+ cells in the tumors, Olig2+ population constituted 

the cellular component with the most dramatic increase, either through GFAP+Olig2+ cells (42-

fold) or Olig2+ only cells (15-fold) (Figures 7A”- 7A’”). Importantly, p-Erk+GFAP+Olig2+ triple-

positive cells in controls were rare and showed weak Olig2 expression. In contrast, the majority of 

triple-positive cells in late-stage OPGs showed robust nuclear p-Erk and Olig2 expression (Figure 

7A’). Previous studies have shown that Nf1 loss could also activate the mammalian target of 

rapamycin (mTOR) signaling pathway which also plays an important role in regulating cell 

metabolism, growth, proliferation and survival (Mendoza, Er, and Blenis 2011). To investigate 

whether the mTORC1 signaling pathway was activated in these Nf1-OPGs, I used the expression 

of phosphorylated S6 (p70 ribosomal S6) as a readout for the activation of mTORC1 signaling. 

The number of pS6+ cells was only slightly increased (statistically non-significant) in late-stage 

Nf1-OPGs compared to age-matched control nerves. This observation indicated that mTORC1 

pathway was not activated in these tumors (Figures 7B-7B’). Taken together, these observations 

suggest that Nf1 loss and activation of the RAS-Erk signaling pathway in mutant nerves leads to 

the expansion of a cell population which express markers of both astrocyte and oligodendrocyte 

lineages. 

 

2.2.3 Nf1 inactivation leads to Erk-associated persistence of glial-restricted progenitor cells 

in late-stage OPGs. 

 

Our unpublished data has shown that embryonic Nf1 loss resulted in the expansion of glia-

restricted precursors originating from the brain. Indeed, it was reported that mutant optic nerves 

express glial-restricted progenitor cell markers such as the brain lipid binding protein (BLBP) and 

Pax2 (Zhu et al. 2005). Accordingly, BLBP+ cells were increased approximately 10-fold in mutant 

Nf1-OPGs (Figures 8A-8A”). Unlike the brain where BLBP is typically considered an astrocytic 

precursor, immunolabeling in normal nerves reveal BLBP co-expression in both astrocytic and 

oligodendrocytic lineages (Figures 8A’ and 8A”). Surprisingly, Nf1 inactivation leads to a 
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dramatic increase in glial progenitor specification not only in double-positive GFAP+Olig2+ cells 

(10-fold) but also in Olig2+ only cells (17-fold). This result was strikingly similar to the cellular 

distribution observed within p-Erk+ cells following Nf1 loss. To investigate whether the persistence 

of BLBP+ progenitors in late-stage gliomas was associated with Erk activation, I examined whether 

BLBP+ cells express p-Erk in the gliomas. Since the most specific antibodies for both BLBP and 

p-Erk are raised within the same species (rabbit), I was unable to perform direct co-labeling 

experiments. Fortunately, we have crossed the Nf1hGFAPCKO with a mouse strain that contains a 

transgene encoding the green fluorescent protein (GFP) under the control of the BLBP promoter. 

The GFP reporter was shown to exclusively express in the majority of BLBP-positive glial 

progenitor cells in the brain (Schmid, Yokota, and Anton 2006) and the optic nerve. In contrast to 

normal nerves which showed very little colocalization between p-Erk and BLBP, nearly one third 

of p-Erk+ cells in the gliomas also expressed the BLBP protein (Figure 8B, 8B’).  

 

The results described above suggest that the oligodendrocyte lineage was most severely 

affected in the tumors, either through expression of Olig2 in GFAP+ cells (GFAP+Olig2+) or 

expansion of BLBP+Olig2+ progenitors. Therefore, I set out to investigate how Nf1 inactivation 

also affected the more specific progenitor marker, PDGFRα, which exclusively labels 

oligodendrocyte precursor cells (OPCs). In control nerves, less than 10% of oligodendrocytes were 

OPCs. This percentage was dramatically increased in mutant nerves where 22% of 

oligodendrocytes retained PDGFRα expression (Figure 8C, 8C’). Surprisingly, 14% of OPCs in 

the tumor abnormally express the GFAP marker. These cells were never found in normal nerves 

and represent a de-novo population in Nf1-OPG (Figure 8C, 8C”). Lastly, about 15% of tumor 

OPCs express p-Erk which suggests that Erk signaling plays a role in their maintenance (Figure 

8D, 8D’). Taken together, these data suggest that acute Nf1 inactivation leads to Erk-dependent 

persistence of glial progenitors in late-stage OPGs.  

 

2.2.4 Glial cell expansion in Nf1hGFAPCKO is largely established during neonatal 

development. 

 

Analysis of late-stage OPGs identified the abnormal expansion of double-positive 

GFAP+Olig2+ cells that hyper activate the RAS-Erk pathway and the persistence of glia-restricted 
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progenitors. Next, I investigated the timing and cellular mechanism underlying developmental 

changes that occur in the optic nerve upon biallelic Nf1 loss function that contribute to OPG 

formation. To determine the chronological sequence of events from tumor formation cumulating 

in RGC loss, I chose three developmental time-points: P15, P21 and P60. The peak of myelination 

in murine models occurs around P15. Prior to that time, the optic nerve looks almost transparent 

due to lack of myelination and is very difficult to distinguish from the surrounding tissue, much 

less to dissect. Around the time of weaning (three weeks postnatal, P21), the development of the 

optic nerve is considered complete. At postnatal day 60 (P60), mice have reached maturity and are 

sexually active.  Whole-mount comparison revealed that optic nerve enlargement was not apparent 

in Nf1hGFAPCKOs before P21 (Figure 9A). This observation was confirmed by H&E histological 

analysis which showed significant increase in diameter starting at P21 (Figures 9B and 9B’). 

However, obvious bulging of prechiasmatic nerve was not seen until P60. Surprisingly, increase 

cellularity was established as early as P15, prior to nerve enlargement (Figure 9B”). Based on this 

finding, I investigated whether as a tumor suppressor, Nf1 loss altered the growth potential of optic 

nerve glial cells that could contribute to the hypercellularity observed in mutant nerves at this 

developmental time-point. The proliferation rate was highest at P15 (~10%) but dramatically 

decreased one week later (~1%). However, no significant difference in proliferation was observed 

between controls and mutants at all time-points analyzed (Figure 9C and 9C’). This result suggests 

that the glial cell increase in Nf1hGFAPCKO optic nerves must occur during early postnatal stage. 

 

2.2.5 Aberrant glial specification and activation of RAS-Erk signaling pathway are evident 

at P15 in Nf1hGFAPCKO optic nerves and persist throughout gliomagenesis. 

 

Based on the above findings, I investigated the cellular and molecular mechanism 

underlying the cellular increase in P15 nerves following Nf1 inactivation.  I observed a greater 

than two-fold increase in the number of p-Erk+ cells in Nf1hGFAPCKO optic nerves at 2-weeks old 

(Figures 10A and 10B). Interestingly, the phenotypic alteration in Olig2 expression resulting in 

double-positive GFAP+Olig2+ cells observed in late-stage OPGs can be found as early as P15 in 

mutant nerves. Specifically, GFAP+Olig2+ cells underwent the biggest expansion (10-fold 

increase) between the different glia cellular compartment analyzed at P15 and a majority of them 

were positive for p-Erk, consistent with late-stage tumor described previously (Figures 10C and 
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10C’). In agreement with p-Erk expression pattern in aged control nerves, the overwhelming 

majority of p-Erk+ cells in P15 normal nerves were GFAP+ astrocytes. Expectedly, P15 

Nf1hGFAPCKO nerves showed a robust increase in glia progenitor marker, BLBP, with some co-

expressing markers for both GFAP and Olig2 (Figures 10D). Likewise, immunostaining for Olig2 

and PDGFRa showed significant increase in OPCs in P15 mutant nerves (Figures 10E). 

Furthermore, consistent with the observation that end-stage OPGs had minimal activation of 

mTORC1 signaling pathway, the pS6 expression in mutant optic nerves was also very low, which 

was very similar to control nerves at P15 (Figures 10F).  

 

I next investigated the remaining time-points (P21 and P60) to determine whether there 

was a dynamic change in glial cell specification and number throughout gliomagenesis. At both 

time-points, the number of p-Erk+ cells in mutant nerves remain very high and did not appear to 

fluctuate significantly over time. In contrast, p-Erk+ cells represent a rare population in normal 

nerves during development. In addition, triple-positive cells (p-Erk+GFAP+Olig2+) were found 

consistently in mutant nerves with no obvious change in number or distribution during 

tumorigenesis (Figures 11A). Similarly, the number of BLBP+ progenitors was extremely low in 

control nerves but remained elevated at all time-points analyzed in the mutants and retained their 

expression pattern in the abnormally expanded GFAP+Olig2+ cells (Figures 11B). Furthermore, 

BLBP+ progenitors in P60 mutant nerves also activated the RAS-Erk pathway as evidenced by p-

Erk co-expression (Figures 11C). Although the number of OPCs decrease from P21 to P60 in both 

control and mutant nerves, over time, there were significantly more OPCs in mutants compared to 

controls. These results suggest that Nf1 regulates progenitor cells expression in an Erk-dependent 

fashion during early optic nerve development. Combined with the Ki67 data which clearly shows 

minimal proliferation in mutant nerves after P15, these results support a model of Nf1-OPG as a 

neurodevelopmental disorder where the glia abnormalities described in late-stage OPGs are 

established in mutant nerves during early postnatal development and persist throughout tumor 

development.  

 

2.2.6 The second phase of Nf1-OPG disease progression is characterized by optic nerve 

dysfunction and neuronal loss 
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 Despite a high percentage of NF1-OPG patients (80-90%) achieving tumor stabilization 

following treatment with chemotherapeutic agents, few of them exhibited visual improvement. 

These observations suggest that the irreversible neuronal damage was established at the time 

treatment was initiated. However, it is unknown whether there exists a temporal window for 

therapeutic intervention before neuronal dysfunction. Based on the analysis of control and mutant 

nerves at P15, P21, P60 and late-stage OPGs, we determined that Nf1-related cellular pathogenesis 

is established in the nerve starting at within the first two weeks of postnatal development. I used 

the same samples to determine the timeline for nerve dysfunction relevant to vision loss during the 

gliomagenesis. Increased microglia infiltration is the earliest event observed in mutant nerves at 

P15 (Figures 12A, 12A’). But at this time point, the microglia in both control and mutant nerves 

appear to be in a similar resting, inactive phase. At P21, microglia in mutant optic nerves begin to 

show more amoeboid shape and thickened processes-  an indication of monocyte activation. 

However, this increase in immune cells infiltration was not immediately accompanied by axonal 

damage. Indeed, neurofilament staining did not reveal obvious areas of axonal loss in P21 mutant 

nerves. About forty days later (P60), there were clear signs of nerve damage in the optic nerves of 

P60 Nf1hGFAPCKOs, as evidenced by patterns of misaligned optic nerves fibers and axonal loss 

(Figure 12A). The process of myelination is not completed until the end of optic nerve 

development around P21-P30. At both P15 and P21, I did not observe any significant difference 

in myelination in mutant versus control nerves. Strikingly, there was significant myelin alterations 

in tumor-bearing mice at P60 similar to defects observed in late-stage tumors (Figure 12B). This 

result indicates that the myelination loss observed in the gliomas does not occur as a result of an 

increase number of immature OPCs that are unable to myelinate the axon fibers in mutant nerves, 

but rather is an indication of secondary nerve damage. Consistent with the timeline for axonal 

damage, there was no increase in apoptosis or RGC loss in P21 Nf1hGFAPCKO retinas (Figures 

12C, 12C’). As expected, there was progressive RGC loss in mutant retinas which displayed ~40% 

decrease in the number of RGC relative to normal retinas and culminated to 60% loss in aged 

mutants (Figures 12D and 12E). Collectively, these data demonstrate a specific temporal sequence 

of critical events that underlie OPG formation: abnormal glial expansion occurred first, followed 

by immune infiltration and RGC degeneration.  
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2.2.7 Bax-mediated apoptosis underlies progressive RGC loss in Nf1hGFAPCKO mice 

 

The evolutionary conserved process of apoptotic cell death plays a major role in the 

development of the central nervous system. Using a Bax-/- mouse model that was defective in the 

pro-apoptotic Bax protein, Pequignot et al. reported that the adult mutant retinas showed a thicker 

RGC layer with significantly more neurons that normal retinas. They concluded that Bax protein 

is essential for the modeling of functional vision during normal retinal development (Pequignot et 

al. 2003). To determine whether Bax-mediated apoptosis is the mechanism involved in the 

progressive RGC loss observed in tumor-bearing mice, I decided to cross the Nf1hGFAPCKO mice 

with Bax-/-  mutants. The resulting double-mutants displayed similar phenotypes as Nf1hGFAPCKOs. 

Four months old Bax-/-  single mutants had thicker retinas and double the number of RGCs stacked 

in multiple rows in the GCL compared to age-matched control retinas (Figures 13A and 13A’). 

This finding is consistent with the previous report describing Bax mutant retinal phenotype. 

Strikingly, there was no decrease in the number of RGCs in the double mutant retinas compared 

to Bax mutant. Furthermore, the double mutants presented similar phenotype as Bax mutants such 

as increased RGCs and thicker ganglion cell layer. This finding suggests that retinal cell death was 

prevented in the Bax and Nf1-Bax double mutants.  

 

The absence of RGC loss in the double mutants could be due to these mice not developing 

Nf1-OPGs, thus unrelated to our study. To explore this possibility, I performed whole-mount and 

histological analysis in the prechiasmatic optic nerve of Bax mutants and Nf1-Bax double mutants 

compared to Nf1hGFAPCKOs and controls. Overall, both Bax-/-  single mutants and Nf1-Bax double 

mutants displayed noticeable increase in thickness throughout the length of the optic nerves 

compared to Nf1hGFAPCKOs and controls. However, only the double mutants showed significant 

optic nerve volume enlargement (bulging) in the prechiasmatic area (Figures 13B). Although, 

H&E staining revealed higher cellularity in Bax-/-  single mutants the cellular density was not 

significantly different than control nerves. This result suggests that the increased nerve volume in 

the Bax mutants is contributed by the increase in axon numbers from the excess RGCs in the retina 

and not by an increase in glial cell in the nerve. However, the cellular density in the double mutants 

was statistically similar to Nf1 single mutants, suggesting a local increase in glial cells in that 

region. To determine whether double mutants presented Nf1-OPG nerve damage, I performed 
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immunostaining for microglia, axonal marker and GFAP immunoreactivity. The increase in nerve 

volume in single Bax mutants did not invoke an immune response, axonal damage or increase in 

GFAP+ astrocytes. In contrast, double mutants displayed clear tumor phenotypes such as increase 

microglia infiltration, axonal loss and increased in astrocytes with thicken processes and 

disorganized pattern reminiscent of OPGs in Nf1 mutants (Figures 13C). Collectively, these data 

elucidate that the mechanism of progressive RGC loss in tumor bearing Nf1hGFAPCKOs is 

dependent on Bax-mediated apoptosis. 

 

2.2.8 MADM-based lineage tracing confirms dramatic overexpansion of Olig2+ cells in Nf1-

OPGs 

 

 Our early postnatal study suggests two major phenotypic consequences of Nf1 loss during 

optic nerve development: 1- the ectopic Olig2 expression in Pax2+ transient progenitor cells 

(Pax2+Olig2+) and 2- the expansion of BLBP+Olig2+ cells. Both mechanisms and subsequent late-

stage tumor study hint at the oligodendrocyte lineage as the cellular compartment which is most 

affected by Nf1 inactivation. In order to investigate the cell-type specific function of Nf1 at a single 

cell resolution, I used a MADM-based mouse model under the hGFAP-cre promoter (Zong et al. 

2005). Mosaic analysis with double markers (MADM) is a mouse genetic modeling system that 

allows for the direct comparison of the behavior of siblings wild-type (Green, Nf1+/+) and mutant 

(Red, Nf1-/-) cells that are derived from common stem/progenitors at the population level in their 

native environment (Figure 14A). The MADM mutants were analyzed at P60 and did not display 

any overt mutant phenotype (Nf1 gene is heterozygous). When I analyzed the optic nerves, I found 

a dramatic overexpansion of red mutant cells compared to their green wild-type counterparts 

(Figure 14B). The difference was even more pronounced in the ventral brain, near the III-VZ 

adjacent to the chiasm. Because mutant and wild-type sibling cells come from the same mother 

cell in equal number at the beginning, their distribution should be similar if Nf1 loss does not 

confer a growth advantage to mutant cells. Strikingly, red cells accounted for an astonishing 11% 

of total cells quantified compared to less than 1% for the green cells. The ratio of red to green cells 

number (R/G) enables the quantitative analysis of the extent of mutant cells expansion, whereas a 

R/G ratio of >1 signifies overexpansion or mutant cells growth advantage. The overall R/G ratio 

in P60 MADM nerves was about 8 (Figure 14C). These data corroborate the well-described role 
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of NF1 as a tumor suppressor because Nf1 deficiency confers a clear growth advantage to the 

mutant cells in both the brain and nerves.  

 

Out of 4 MADM mutants analyzed, all display significant enlargement in the prechiasmatic 

optic nerves with concurrent increase in Olig2+ cells and GFAP+ cells in a disorganized pattern 

suggestive of OPG (Figure 14D). To confirm whether MADM mutants develop OPGs, I evaluated 

the nerves for microglia infiltration, a clear sign of tumor presence. Compared to aged-matched 

control nerves, MADM nerves had double the number of Iba1+ cells with most displaying 

amoeboid-like appearance (Figures 14E and 14F). Therefore, I concluded MADM mutants 

develop OPGs with similar timeline as Nf1hGFAPCKOs. Next, I decided to investigate which 

cellular compartment underwent the most extensive expansion in mutant cells at P60. 

Immunostaining for GFAP revealed that a relatively higher number of mutant cells co-stained for 

GFAP (arrows) compared to wild-type cells (arrowhead) (Figure 14G). However, the difference 

did not appear to be overly dramatic, suggesting GFAP+ astrocytes did not gain significant growth 

advantage following NF1 loss. Interestingly, BLBP+ progenitors in MADM nerves were increased 

compared to controls and were overrepresented in the mutant cells (Figure 14H). Of note, BLBP+ 

progenitor specification was disproportionally shifted towards oligodendrocyte lineage in OPGs 

from Nf1hGFAPCKOs. Finally, I investigated the overall distribution of oligodendrocytes in both 

wild-type and mutant cells. In green, wild-type cells, Olig2 accounted only for 31% of the cells. 

This data indicates that hGFAP-cre normally targets few oligodendrocytes and is mainly in the 

astrocytic lineage. However, Olig2+ cells were overexpanded in mutant cells and contributed to a 

whopping 75% in the increased cell number (Figures 14I and 14J). Similarly, the percentage of 

mutant cells in the Olig2 population rose to 33% compare to the 3% of wild-type, green cells in 

the same population (Figure 14K). Collectively, these data substantiate that the oligodendrocyte 

lineage represent the most susceptible lineage that manifest dramatic overexpansion following 

neurofibromin loss. In addition, the fact that MADM mutants were able to develop OPGs with 

similar temporal course and characteristics as conventional Nf1hGFAPCKOs despite the low 

efficiency and sparse labelling (0.1%-1% or lower) afforded by the MADM system, underscores 

the notion that biallelic NF1 inactivation must occur in a progenitor cell during a critical early 

window of optic nerve development. This supports the clinical observation that NF1-OPGs arise 

from children with a peak incidence between 4-5 years and rarely over 7 years of age.  
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2.2.9 Dose-dependent genetic inactivation of Mek1/2 prevents Nf1-OPG formation  

 

 The RAS/MEK/ERK pathway is known to play a critical role in cell proliferation, 

differentiation and function. Genetic modifications in various components of the core pathway 

cause RASopathies, a group of syndromes associated with severe cognitive impairment in humans. 

Recent works from our lab and others have highlighted the importance of this signaling pathway 

in regulating proper cortical and cerebellar development through the use of inhibitors of MEK 

(MEKi) (Wang et al. 2012; Kim et al. 2014; Sanchez-Ortiz et al. 2014). Through genetic 

manipulation of Mek1/2, Li et al. has demonstrated that gliogenesis during cortical development 

is tightly regulated by MEK activity (Li et al. 2012). In my data described previously, I have shown 

that MEK pathway is associated with glial abnormalities (GFAP+Olig2+, BLBP+) in 

Nf1hGFAPCKOs at all time-points analyzed. However, it remains unclear whether MAPK pathway 

activation is the main/sole molecular mechanism responsible for optic gliomagenesis. To answer 

this question, I crossed the Nf1hGFAPCKO mutants with different levels of genetic inactivation of  

Mek1 exon-3 floxed (Mek1fl/fl) and Mek2-/-. While the three-allele deletion of either Mek1 or Mek2 

mutants bred in hGFAP-cre were viable and fertile, complete Mek1/2 deletion (M4: 

Mek1/2hGFAPCKO) resulted in pup mortality around P10. This result suggests that inactivation of 

all four alleles is necessary to achieve complete blockage of the pathway function and that MEK1 

and MEK2 can successfully compensate for each other. To study the function of MEK1/2 in Nf1-

OPG, I generated three groups of Nf1 mutants with various degrees of Mek1/2 allele inactivation. 

The first group, called M1, had a single remaining wild-type allele of Mek1 or Mek2 

(Nf1hGFAPCKO, Mek1fl/fl, Mek2-/+ or Mek1fl/+, Mek2-/-). The second group, M2, had two remaining 

wild-type Mek1/2 alleles (Nf1hGFAPCKO, Mek1fl/+, Mek2-/+; Mek1fl/fl, Mek2+/+; Mek1+/+, Mek2-/-). 

The last group, M3, retained three wild-type Mek1/2 alleles (Nf1hGFAPCKO, Mek1fl/+, Mek+/+ or 

Mek1+/+, Mek2-/+). To study the rescue effect of Mek1/2 inactivation on Nf1-OPG, I performed 

H&E histological analyses and immunostaining on prechiasmatic nerves of all three groups and 

their littermate controls between 4 to 8 months of age, with a minimum of 8 representatives for 

each group. The overwhelming majority of M1 mutants with three alleles Mek1/2 deletion 

displayed normal-looking nerves without gross morphological abnormalities (nerve enlargement) 

on the H&E staining (10 out of 11, 91% rescued). This result was reinforced by assessing markers 
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for tumor phenotype. M1 mutants displayed no sign of axonal damage (NF68K) or increase 

microglia infiltration, indicative of the second phase of OPG progression (Figure 15A). 

Accordingly, phase I glial abnormalities such as increase in Olig2+ and GFAP+ cells, as well as 

the persistence of GFAP+Olig2+ cells and BLBP+ progenitors (data not shown) were completely 

rescued. These observations correlated very well with p-Erk activation in M1 mutants which show 

similar number of p-Erk+ cells as age-matched controls. To my surprise, I noticed a dose-dependent 

rescue in Nf1-OPG corresponding to increasing number of wild-type Mek1/2 alleles. In effect, less 

than half of the M2 mutants (4 out of 9, 44%) were rescued, with a further decrease to 38% (3 out 

of 8) rescued in M3 mutants. The non-rescued M2 and M3 mutants displayed severe OPGs with 

obvious glial abnormalities and nerve damage (Figure 16A). Furthermore, there was a clear 

association between the levels of phosphorylated Erk protein and the degree of rescue where M2 

and M3 mutants with low number of p-Erk+ cells showed near complete rescue of tumor phenotype 

(Figure 15B). Lastly, the phenotype rescue was not limited to the optic nerve. Nf1hGFAPCKOs 

exhibit growth retardation and weight about half as much as littermate controls. This phenotype 

was readily identified in non-rescued M2 and M3 mutants. However, the majority of M1 mutants 

were indistinguishable in appearance and weight from control littermates (Figure 15C). 

Amazingly, rescued M1 mutants were fertile and bred normally, which was rarely observed in 

Nf1hGFAPCKOs.  

 

To determine whether the dose-dependent rescue in the nerve following Mek1/2 genetic 

inactivation translated into neuronal protection in the retina, I examined the GCL of all three 

groups. I observed a complete rescue in RGC loss in M1 mutant, corroborating the observations 

from the optic nerve. There was a distribution observed in M2 and M3 mice where, the rescued 

animals consistently show RGC numbers within the normal range, and the majority tumor-bearing 

animals exhibited extensive RGC loss (Figures 16A and 16B). The same result was observed with 

the analysis of apoptosis. Indeed, the rescued and non-rescued animals in groups M2 and M3 could 

clearly be separated in the graph (Figure 16C). Taken together, these results demonstrated that 

MEK signaling is the major signaling pathway underlying Nf1-OPG formation. Furthermore, these 

results suggest that the pathway must be inactivated to a high enough degree (3 alleles) to achieve 

consistent and significant rescue. 
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2.3 Discussion 

 

 In this chapter, based on two independent genetic systems (conventional CKOs and the 

genetic mosaic system MADM) driven by hGFAP-cre, I identified essential roles of the Nf1 tumor 

suppressor gene in regulating proper glial specification during early optic nerve development. In 

addition, my study broadly defined the two-step mechanism of optic gliomagenesis. Step 1, disease 

initiation: biallelic inactivation of Nf1 during embryonic development results in expansion and 

persistence of glia-restricted progenitors and the generation of abnormally differentiated 

GFAP+Olig2+ cells through Erk-dependent mechanism. Step 2, disease progression: abnormal 

glial expansion leads to immune cell infiltration and activation, followed by axonal damage and 

myelin loss and culminating in Bax-dependent progressive RGC apoptosis.  

 

2.3.1 Nf1 regulates glial fate specification in the optic nerve  

 

The prevalent view of NSCs as the cell of origin for OPGs has been perpetuated by their 

persistent proliferative capacity throughout neurodevelopment and into adulthood. In addition, 

their self-renewal and multilineage differentiation potential renders NSCs uniquely susceptible to 

oncogenic transformation. Indeed, Lee et al. have proposed NSC from the third ventricle zone as 

the cell of origin of NF1-OPG due to their proximity to the optic nerve, their proliferative potential 

and multilineage potential and preferential sensitivity to NF1 loss (Lee, Gianino, and Gutmann 

2012). However, many of the same features are shared by glial-restricted precursors. For example, 

recent studies have revealed that glial progenitors constitute the largest proliferative pool in brain 

of both rodents and humans (Dawson et al. 2003; Geha et al. 2010). Furthermore, it was reported 

that NF1 mutation alone is sufficient to promote OPC proliferation across different species 

(Bennett et al. 2003; Lee et al. 2010). Intriguingly, Lui et al. demonstrated that OPCs, unlike NSCs 

and other brain cell types, are particularly sensitive to NF1 mutations (Liu et al. 2011). Together, 

these studies suggest a pivotal role for NF1 in regulating glial progenitor proliferation in the brain.  

 

The most well-known genetic and molecular mechanism of the disease is the biallelic 

inactivation of NF1 gene. However, the phenotypical consequence of NF1 loss during optic nerve 

development remains elusive. Early postnatal optic nerve studies in our lab have revealed several 
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intriguing findings. Embryonic Nf1 inactivation leads to the expansion of BLBP+Olig2+ 

progenitors from the brain which then migrate into the nerve. In the developing nerve, Nf1 loss 

results in Erk-dependent transcriptional activation of Olig2 in Pax2+ astrocyte precursor cells 

(APCs). Pax2+Olig2+ cells later differentiate into GFAP+Olig2+ cells. Lastly, these data suggest 

that BLBP+Olig2+ progenitors and Pax2+Olig2+ cells represent transient populations during normal 

development and are the most affected by NF1 deficiency. In this study, I extend these findings by 

demonstrating that GFAP+Olig2+ and BLBP+Olig2+ cells are the most expanded cellular 

compartment in late-stage tumors. Furthermore, I established that Nf1-OPGs represent a 

developmental defect with abnormal glial cell expansion occurring during the early postnatal 

period, followed by an immune response, nerve damage and progressive, Bax-dependent RGC 

apoptosis. Moreover, these findings provide a potential therapeutic window to prevent and treat 

visual impairments before irreversible neurological deficits. Using the hGFAP-cre-induced 

MADM labeling system, I demonstrated that Nf1 mutant cells (red) displayed a growth advantage 

over their Nf1 wild-type siblings (green).  Furthermore, this growth advantage was conferred to 

the oligodendrocyte lineage as evidence by the overexpansion of mutant Olig2+ cells (Red+/ 

Olig2+) as well as BLBP+ glial progenitor cells.  Importantly, both the conventional CKO and the 

MADM system fit with the current understanding of NF1-OPG as a neurodevelopmental disorder 

where biallelic NF1 inactivation must occur in a transient, progenitor cell during an early time 

window of CNS development. Accordingly, NF1-OPGs rarely arise in children over 7 years of 

age, with a peak incidence between 4-5 years. 

 

2.3.2 Hyperactive MEK-Erk signaling underlies glial defects in Nf1hGFAPCKOs and offers 

a platform for future clinical studies 

 

 A large body of work has revealed several signaling pathways that are known to regulate 

Olig2 expression in the CNS, such as epidermal growth factor, platelet-derived growth factor 

(PDGF), sonic hedgehog (Shh), canonical Wnt and Notch. Ortega et al. demonstrated, through 

infusion in the lateral ventricle and focal expression in the SVZ using lentiviral expression vector, 

that the signaling protein Wnt3a controls oligodendrogliogenesis from NSCs in the adult mouse 

(Ortega et al. 2013). Similarly, Brunet and colleagues have shown that loss of the protein 

deacetylase, Sirt1, increased OPC proliferation and oligodendrocyte production in the adult brain 
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through upregulation of PDGFRa (Rafalski et al. 2013). Indeed, overexpression of PDGFRa leads 

to an increase in production of Olig2+ cells in the SVZ (Jackson et al. 2006). Of note, MAPK 

pathway is a critical signaling pathway working downstream of PDGFRa. Shh has been shown to 

promote OPC production and Olig2 expression in neocortical progenitors (Lu et al. 2002; Zhou 

and Anderson 2002). Importantly, the regulatory function of Shh depends on Erk signaling 

(Kessaris et al. 2004). In this study, I show that Nf1 regulates glial specification in the developing 

nerve through MEK-ERK signaling. In control nerves, p-Erk activation is limited and restricted to 

the astrocyte lineage. Nf1 loss resulted in the ectopic Olig2 expression in the astrocytic lineage, 

generating GFAP+Olig2+ cells that were enriched in the tumors. In addition, I showed that Nf1 

directly regulates BLBP+Olig2+ progenitor production. Importantly, both processes were 

modulated by MEK-Erk signaling activity as demonstrated by the dose-dependent rescue of glial 

abnormalities by genetic Mek1/2 inactivation. Of note, the rescue of phase I Erk-dependent glial 

defects subsequently prevented phase II microglia infiltration, axonal and myelin degeneration and 

neuronal loss. These observations suggest that the glial abnormalities that occur during neonatal 

stages are both necessary and sufficient to induce neuronal death in the second phase of disease 

pathogenesis. Recently, the use of compounds targeting MEK1 and MEK2, such as MEK 

inhibitors, has shown promising clinical activity in a number of tumor types. In light of the 

availability of these agents, Nf1hGFAPCKO mice can offer an attractive preclinical platform to 

investigate the potential for MEK inhibition in the prevention and treatment of NF1-OPGs.  This 

will be the focus of the following chapter (Chapter III) of my thesis. 
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Figure 3. Nf1hGFAPCKOs develop OPGs in the prechiasmatic optic nerve. 

Whole mount optic nerves from control and Nf1hGFAPCKO mice at 6 months of age or older were 

dissected, fixed in 4% PFA and imaged under the dissection microscope (A). OPGs characterized 

by increase in volume (gross fusiform enlargement) form at the distal nerve, in an area immediately 

adjacent to the chiasm (prechiasmatic area) (A’). Sections from optic nerves of control and Nf1 

mutants were stained with H&E. (B). The total cell number, optic nerve area and optic nerve 

density of controls and mutants were quantified. (C, D, E). Comparison of the proliferation index 

between controls and mutant nerves revealed no significant increase in aged mice (F, F’). Arrows 

point to Ki67+ cells. DAPI labels for nuclei. Asterisks denote statistically significant differences 

(*p < 0.05, ** p < 0.01, *** p < 0.001; paired t-test). All the data are presented as mean ± SEM. 

Scale bars: 1 mm (A) and 50 µm. 
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Figure 4. Late-stage OPG in Nf1hGFAPCKOs is characterized by microglia infiltration and 

nerve damage. 

Sections from optic nerves of control and Nf1hGFAPCKO mice at 6 months of age or older were 

fluorescently labeled by anti-Iba1 (a marker for microglia) and anti-GFAP to show immune cell 

infiltration and activation in tumor (A). Quantification of Iba+ cells show significant increase in 

late-stage OPG (A’). Immunostaining of distal nerve for Iba1 and tdTomato reporter revealed that 

microglia are not a target for cre recombination in Nf1hGFAPCKO mice (arrows, non-recombined 

Iba1+ cells) (B). Neurofilament staining (anti-NF68K) and myelin staining (anti-MBP) highlight 

the axonal and myelin defects in longitudinal sections of the prechiasmatic optic in tumor-bearing 

Nf1 mutants (C, D). All the data are presented as mean ± SEM. Scale bars: 5, 20 µm. 
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Figure 5. Retinal ganglion cell death in Nf1hGFAPCKOs is non-cell autonomous. 

Retinal flat-munts from littermate control and Nf1 mutant retinas were stained for Brn3a to identify 

RGC somata (red dots) (A). Sections of retinas from controls and Nf1 mutants with OPGs were 

doubly labeled by RBPMS (a marker for RGCs) and TUNEL (for apoptosis) (B). The number of 

RGCs (B’) and apoptotic cells in the RGC layer (B”) were quantified for control and mutant mice. 

Inserts show apoptosis in the GCL. Immunostaining of retinas from Nf1hGFAPCKO; tdTomato 

reporter mice demonstrates that recombination occurred in GFAP+ astrocytes, but not in RGCs 

(C). All the data are presented as mean ± SEM. Scale bars: 2, 5 and 20 µm. 
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Figure 6. GFAP+Olig2+ cells underwent the biggest expansion in late-stage OPGs. 

Representative images were taken from sections doubly stained with GFAP and Olig2 of control 

and mutant optic nerves at 6 months or older (A). Arrows point to GFAP+Olig2+ cells (A’). The 

number and percentage of each of the 3 cell populations with different GFAP and Olig2 expression 

were quantified (B, B’). The 3 cellular compartments GFAP+Olig2- cells, GFAP+Olig2+ cells and 

GFAP-Olig2+ cells were plotted as relative fold change (mutant/control) (B”). All the data are 

presented as mean ± SEM. Scale bars: 5 and 20 µm. 

  



 53 

 
 
 
  



 54 

Figure 7. Nf1-deficiency leads to specific p-Erk activation in GFAP+Olig2+ cells and GFAP-

Olig2+ cells.  

Triple labeling p-Erk/Olig2/GFAP staining was performed on prechiasmatic optic nerve sections 

from aged Nf1hGFAPCKO mice and their littermate controls (A). Higher magnification view of the 

images in (A). Arrows indicate p-Erk+/Olig2+/GFAP+ cells. Notice high expression of all 3 

markers in triple-positive cells in the mutant OPGs (A’). Quantification and characterization of p-

Erk+ cells based on their expression of GFAP only (green), both GFAP and Olig2 (yellow), Olig2 

only (red) (A”). Table of distribution of p-Erk+ cells quantified in (A”) demonstrate that triple-

positive cells underwent the most dramatic increase (42-fold) between controls and age-matched 

Nf1hGFAPCKO mice. p-S6 and GFAP double-labeling (B) and quantification (B’) revealed that 

mTORC1 signaling pathway was not significantly activated in late-stage OPGs. Scale bars: 5, 20 

µm. All the data are presented as mean ± SEM. 
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Figure 8. Nf1 loss causes Erk-dependent persistence of glial-restricted progenitor cells in 

late-stage OPGs. 

Triple labeling immunofluorescence with glial progenitor marker BLBP and GFAP and Olig2. 

Arrowheads indicate BLBP+Olig2+ cells and arrows point to triple-positive BLBP+/Olig2+/GFAP+ 

cells (A). Quantification and characterization of BLBP+ cells based on their expression of GFAP 

only (green), both GFAP and Olig2 (yellow), Olig2 only (red) revealed that the Olig2+ population 

had the most dramatic increase, either through GFAP+Olig2+ cells or (10-fold) or Olig2+ only cells 

(17-fold) within BLBP+ cells (A’, A”). Characterization of p-Erk expression in BLBP+ cells tagged 

with the GFP reporter (B). Arrows indicate BLBP+ cells that activate p-Erk. Co-localization 

between p-Erk and GFP-BLBP was rarely detected in controls nerves but nearly 1/3 of p-Erk+ cells 

in the gliomas were BLBP+ progenitors (B’). Triple labeling immunofluorescence with OPC 

marker PDGFRα and GFAP and Olig2. Inserts and arrows indicate triple-positive cells that are 

exclusively found in the mutants (C). Quantification of Olig2+ and PDGFRα+ cells showed a 

greater than 2-fold increase in the percentage of OPCs in the late-stage OPGs (C’). Quantification 

of PDGFRα+ cells revealed a de novo OPC population that abnormally co-express GFAP in 

Nf1hGFAPCKO nerves (C”). Double-labeling for PDGFRα and p-Erk show that 15% of tumor OPCs 

express p-Erk (arrows, PDGFRα+/p-Erk+ cells) (D, D’). All the data are presented as mean ± SEM. 

Scale bars: 20, 50 µm. 

  



 57 

 
 

Figure 9. Expansion of glial cells in optic nerves of Nf1hGFAPCKO mice is largely established 

during neonatal stages. 

Whole-mount images from Nf1hGFAPCKO and control prechiasmatic optic nerves at different ages: 

P15, P21, P60 show evidence of nerve enlargement at P21 (A). Sections from control and mutant 

optic nerves were stained with H&E at the 3 time-points (B) and quantified to illustrate significant 

increase in nerve diameter at P21 and cellularity at P15 in mutant nerves compared to age-matched 

controls (B’, B”). Comparison of the time course of proliferation in optic nerves illustrate that after 

P15, the proliferation levels decrease significantly, though the proliferation rate remains similar 

between control and mutant nerves at all time points. All the data are presented as mean ± SEM. 

Scale bars, 1 mm, 5 and 50 µm. 
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Figure 10. Abnormal glial specification and activation of RAS-Erk signaling pathway in P15 

Nf1hGFAPCKO optic nerves. 

Triple labeling p-Erk/Olig2/GFAP staining was performed on prechiasmatic optic nerve sections 

from P15 Nf1hGFAPCKO mice and their littermate controls (A). Arrows point to triple-positive p-

Erk+/Olig2+/GFAP+ cells. Mutants nerves contain more three times the number of p-Erk+ cells 

compared to controls (B). Quantification and distribution of the 3 cell compartments GFAP+Olig2- 

(green), GFAP-Olig2+ (red) and GFAP+Olig2+ (yellow) cells revealed that GFAP+Olig2+ cells 

displayed the most dramatic increase as early as P15 (C, C’). BLBP+ glial progenitors are 

expanded at P15 and co-localize with abnormal GFAP+Olig2+ cells in the mutant nerves (D). 

Double-labeling PDGFRα and Olig2 staining showed early expansion of OPCs (E). Staining for 

pS6 show no significant overactivation of the signaling pathway in P15 Nf1 mutant nerves (F). All 

the data are presented as mean ± SEM. Scale bars: 5 and 50 µm. 
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Figure 11. Erk activation and glial abnormalities persist throughout gliomagenesis. 

Triple labeling p-Erk/Olig2/GFAP staining was performed on prechiasmatic optic nerve sections 

from P21 and P60 Nf1hGFAPCKO mice and their littermate controls (A). Triple labeling 

immunofluorescence with glial progenitor marker BLBP and GFAP and Olig2 was performed at 

the same time-points (B). p-Erk and BLBP co-labeling at P60 revealed that glial progenitors 

upregulate the MAPK pathway in mutants (C). Staining of the number of prechiasmatic optic nerve 

sections with PDGFRα and Olig2 showed that OPCs decreased from P21 to P60 in both control 

and mutant nerves, but there was a greater number OPCs in mutants compared to controls in both 

time-points (D). Scale bars: 5 and 50 µm. 
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Figure 12. The second phase of Nf1-OPG disease pathogenesis involves optic nerve 

dysfunction and neuronal loss. 

Sections from optic nerves of control and Nf1hGFAPCKO mice at P15, P21 and P60 were 

fluorescently labeled with Iba1, NF68K and GFAP antibodies to study the time-course for optic 

nerve dysfunction (A). Although the increase in microglia infiltration was noticed already at P15 

(A’), they did not adopt an activated morphology with thickened processes until P21 (A). Olig2 

and MBP double-labeling staining at all 3 time-points demonstrate that myelin alteration did not 

become evident until P60 (B). Staining for RBPMS and TUNEL show no increase in apoptosis or 

RGC loss in P21 Nf1hGFAPCKO retinas (C, C’). The number of RBPMS cells in the mutant retinas 

relative to controls was quantified and showed progressive RGC loss over time (D, E). DAPI labels 

for nuclei. All the data are presented as mean ± SEM. Scale bars: 5, 20 and 50 µm. 
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Figure 13. Bax-mediated apoptosis underlies progressive RGC loss in Nf1hGFAPCKO mice. 

Sections of retinas from 4-month old controls and Nf1 mutants (NM), Bax mutants (BM) and Nf1-

Bax double mutants (DM) were doubly labeled by RBPMS and TUNEL (A). The number of RGCs 

in the RGC layer were quantified (A’). Whole mount optic nerves from control and the 3 mutant 

genotypes were dissected and imaged under the dissection microscope, then sections from the optic 

nerves were stained with H&E (B). Both BM and DM displayed noticeable increase in thickness 

throughout the whole length of the optic nerves. The total cell number and optic nerve density of 

controls and all 3 mutants were quantified. (B’, B”). Triple labeling with Iba1, NF68K and GFAP 

show increased microglia infiltration and nerve damage in NM and DM, but not in BM (C). All 

the data are presented as mean ± SEM. Scale bars: 5, 20 and 50 µm. 
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Figure 14. MADM-based lineage tracing reveals that Nf1 loss confers growth advantage to 

Olig2+ cells. 

Scheme of MADM-based mouse model under the hGFAP-cre promoter illustrates how MADM 

concurrently mutates and labels cells (A). Representative images from longitudinal sections of the 

prechiasmatic optic nerve and the III-VZ of P60 MADM mutants (B). Distribution of the red, green 

yellow and colorless cells and quantification of the R/G ratio in P60 MADM mutants (C). Olig2 

and GFAP staining in MADM mutants shows increase in Olig2 and disorganized GFAP pattern 

compared to age-matched controls (D). Iba1+ microglia are not targeted by cre recombination in 

the MADM system (E), but the number of immune cells is doubled compared to controls (F). 

Staining of GFAP together with MADM shows distribution of astrocytes within red and green 

cells (G). Arrowheads point to GFAP+ cells expressing green label and arrows point to those 

expressing red label. BLBP staining with MADM shows the majority of BLBP glial progenitors 

are Nf1 mutants (arrows) (H). Compared to green wild-type cells where Olig2 accounted only for 

31% of the cells, Olig2+ cells were overexpanded in mutant cells (75%) (I, J). Table representative 

of the increase in the percentage of mutant Olig2 (red) vs control Olig2 (green) within the 

oligodendrocyte lineage (K). Four MADM mutants were analyzed at P60. All the data are 

presented as mean ± SEM. Scale bars: 5, 20 and 50 µm. 
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Figure 15. Dose-dependent genetic inactivation of Mek1/2 prevents OPG formation in 

Nf1hGFAPCKO mice 

Adjacent sections of prechiasmatic optic nerves at 4-8 months of age from controls, M1 (1 

remaining wild-type MEK1/2 allele), M2 (2 remaining wild-type MEK1/2 alleles) and M3 (3 

remaining wild-type MEK1/2 alleles) mutants stained with H&E, p-Erk, NF68K, Iba1, Olig2 and 

GFAP to show the degree of OPG rescue with increasing number of MEK1/2 allele deletion (M1: 

10/11, 91% rescued; M2: 4/9, 44% rescued; M3: 3/8, 38% rescued) (A). Rescued M2 and M3 

mutants showed concurrent decrease in the number of p-Erk+ cells and GFAP+ astrocyte 

organization indistinguishable from controls (B). Comparison between M1 and M2 and their age-

matched, littermate controls reveal rescue in appearance and weight with 3-allele MEK1/2 deletion 

(M1) (C). Scale bars: 1 cm, 5 µm. 
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Figure 16. Dose-dependent neuronal protection with genetic inactivation of Mek1/2. 

Representative cross-sections of control and M1, M2 and M3 retinas stained with RBPMS, 

TUNEL and GFAP (A). The number of RGCs (B) and apoptotic cells in the RGC layer (C) were 

quantified for control and all 3 genotypes. All the data are presented as mean ± SEM. Scale bar: 

20 µm. 
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Chapter III: Transient pharmacological inhibition of the MAPK pathway 

prevents optic nerve glioma formation in a dose-dependent manner 
 

3.1 Introduction 

 

Despite the great progress made in unraveling the mysteries of cancer genetics, the daunting 

task facing researchers and clinicians remains the translation of these exciting discoveries into 

novel therapeutics that will ameliorate patient outcomes. Many of the genetic mutations found in 

cancers involve genes whose products are involved in regulating signal transduction (Hanahan and 

Weinberg 2000). As a result, much of the focus of target-based therapies has been on inhibitors of 

signal transduction molecules such as protein kinases. The process of signal transduction involves 

an extracellular signaling molecule activating a specific receptor on the cell surface which in turn 

triggers a biochemical chain of events inside the cell cumulating in cellular response. All 

multicellular organisms possess the evolutionary conserved four subfamilies of mitogen-activated 

protein kinases (MAPKs), which play an essential role in numerous normal cellular processes, 

such as gene expression regulation, progression of the G1 stage of the cell cycle before DNA 

replication, and spindle assembly during both meiotic and mitotic cell division. The RAS–RAF–

MEK–ERK pathway (ERK signaling) is generally considered the ‘classical MAPK pathway’ and 

is the most characterized. The main components include the RAS family of small GTPases. In 

normal physiological conditions, feedback loops at multiple levels tightly control ERK signaling. 

When stimulated by upstream receptors through stimuli such as extracellular mitogens, growth 

factors, and cytokines, RAS switches from the inactive (GDP-bound) to the active (GTP-bound) 

form. This conformational change leads to its binding to RAF, the first kinase in the signaling 

cascade. RAS subsequently recruits RAF to the membrane and promotes its dimerization and 

activation. The activated form of RAF phosphorylates and activates the MEK kinase, which in 

turn phosphorylates and activates ERK kinase. Activated ERK can then translocate to the nucleus 

and is able to phosphorylate several substrates, such as kinases and transcription factors that are in 
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charge of regulating cell cycle progression, differentiation, protein translation and escape from 

apoptosis. 

 

Germline mutational activation of RAS, B-RAF, MEK1 and MEK2 has been discovered 

in patients that encompass a group of related developmental disorders (Costello, cardio-facial-

cutaneous and Noonan syndromes) (Rodriguez-Viciana et al. 2006; Niihori et al. 2006).  Lastly, 

neurofibromin, the protein encoded by NF1, negatively regulates the RAS-MEK-ERK signaling 

cascade by activating RAS GTPase and precipitating the transformation of RAS from its active, 

GTP-bound form to inactive GDP-bound form (Ballester et al. 1990). Thus, inactivation of the 

NF1 gene is directly linked to the dysregulation of the MAPK signaling pathway. There is ample 

evidence that support the essential role of MEK in malignant transformation and tumorigenesis. 

MEK1 and MEK2 are highly homologous, dual-specificity kinases, capable of phosphorylating 

both serine/threonine and tyrosine residues of their substrates ERK1 and ERK2 and possess a 

distinctive pocket structure located next to the ATP-binding site. Moreover, due to their unique 

structural characteristics and narrow substrate specificities, MEK1 and MEK2 represent ideal 

targets for drug development in cancer and developmental disorders. 

 

The first MEK inhibitor (MEKi) to enter phase I clinical study was, CI-1040 (also known 

as PD0184352), a highly potent and selective inhibitor of MEK1 and MEK2 developed by Pfizer 

(Sebolt-Leopold et al. 1999). One of the reasons for MEKis target selectivity is the fact that they 

are non-ATP competitive, but instead bind to a unique inhibitor binding pocket adjacent to the 

ATP-binding site (Ohren et al. 2004). Since that first breakthrough, several other highly specific 

and potent MEK1/2 inhibitors have been developed and evaluated in clinical studies (Table 1). 

Three MEK inhibitors are of particular interest due to their superior pharmacological and 

biopharmaceutical properties and their promising status in clinical trials: PD0325901, selumetinib 

(AZD6244) and trametinib (GSK1120212). PD0325901 is a derivative of CI-1040 in which 

modifications in the chemical structure of the molecule has yielded a more than a 50-fold increase 

in potency for MEK inhibition, higher bioavailability, and longer duration of target suppression 

(Sebolt-Leopold and Herrera 2004). Remarkably, a phase 2 study in adolescents and adults NF1 

patients with plexiform neurofibromas is currently ongoing with an expected completion date at 

the end of 2018 (ClinicalTrials.gov number, NCT02096471). Selumetinib is an effective, highly 
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selective, non-ATP-competitive MEK1 inhibitor developed by Array Biopharma and then licensed 

to AstraZeneca. Early results in a phase 2 clinical study showed that selumetinib was effective in 

treating children with recurrent/refractory low-grade glioma (LGG), including those with NF1-

associated LGG (Fangusaro et al. 2017). Trametinib is an allosteric, non-ATP-competitive MEK1 

and MEK2 inhibitor that was approved in 2003 by the FDA for melanoma treatment. Unlike 

Selumetinib which is available only in capsule form, trametinib is available as an oral solution and 

can be used in children as young as one year of age. Chemotherapeutic agents have shown very 

high efficacy in the management of clinically progressive OPGs, but provided variable outcomes 

in vision improvement. Therefore, the most critical challenge in the field is to develop preventive 

or early interventional therapies to be delivered before irreversible neurological deficits such as 

axonal degeneration and RGC loss.  

 

Recently, the use of MEK inhibitors in children with NF1 and LGGs has received 

tremendous undertaking. In the past 3 years, there have been three consensus conferences on 

pediatric low-grade gliomas in collaboration with Children’s National Medical Hospital 

(Washington, D.C.), the Hospital for Sick Children (Toronto), the Children’s Hospital in Boston 

and the DKFZ group led by Dr. Stefan Pfister in Germany. The goals of these international 

conferences were to assess the body of information related to molecularly-targeted therapies in 

children with newly diagnosed with LGGs, and to determine new treatment paradigms. The 

general consensus is that MEKis should be used, not only in progressive and recurrent disease but 

also in newly diagnosed individuals (Jones et al. 2018). Thereby, a major objective of this study is 

to provide enough data and incentive towards this treatment transition. 

 

In chapter II of my thesis, I use GEM models to demonstrate that hyperactivation of the 

MAPK pathway is responsible for NF1-assiociated glial abnormalities, leading to tumor formation. 

In the present study, I utilize the Nf1hGFAPCKOs as a preclinical model to investigate 

pharmacological inhibition of MEK as a therapeutic strategy for NF1-OPGs. By comparing three 

clinically relevant MEKis, PD0325901 (PD901), selumetinib and trametinib, I first show that both 

PD901 and trametinib can achieve greater inhibition outside the central nervous system compared 

to selumetinib. However, PD901 is far superior at crossing the blood-brain barrier than trametinib. 

Based on these results, I chose PD901 to screen for optimal dose and delivery method and as the 
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benchmark for the preclinical study. Using three doses of PD901, 5 mg/kg, 10 mg/kg and 20mg/kg, 

I demonstrate that transient MEK inhibition during a neonatal window (P0.5-P21) prevents OPG 

formation in a dose-dependent fashion. This study, in conjunction with the previous chapter, 

underscores the essential role of the MAPK signaling pathway in the formation and maintenance 

of NF1-OPG and the need to target it in early interventional treatments. 

 

3.2 Results 

 

3.2.1 Biological effect of MEK-inhibitors: screening for the optimal dose and delivery 

method 

 

The majority of MEKis were developed to suppress MEK activity in tumor tissues outside 

the central nervous system (melanoma, pancreatic cancer, ovarian cancer, non-small cell lung 

cancer). Therefore, their potential to cross the blood-brain barrier (BBB) has not been 

systematically investigated. To study the ability of the three MEKis to cross into the brain and the 

extent of p-Erk inhibition, I treated groups of P30 mice by oral gavage with doses of the agents 

previously used in preclinical studies (Gilmartin et al. 2011; Brown et al. 2007; Yeh et al. 2007). 

Mice treated with GSK were given two different doses: 3 mg/kg and 5 mg/kg. Mice treated with 

AZD were given the maximum tolerated dose (MTD) of 100 mg/kg and mice treated with PD901 

were administered 5 mg/kg dose. Four hours after treatment, mice were sacrificed and the 

cerebellum and spleen were collected to determine MEK inhibition by western blot analysis. Both 

PD901 and GSK achieved excellent inhibition in the spleen (between 80% to nearly 100%). In 

contrast, the spleens of AZD treated mice showed significantly less p-Erk inhibition (about 40%), 

even though the mice were treated with the MTD dose (Figures 17A and 17C). However, AZD 

was able to efficiently cross the BBB, as evidence by the cerebellum which showed similar levels 

of p-Erk inhibition as the spleen. Likewise, the PD901 agent demonstrated great potential to cross 

in the CNS (greater than 80% p-Erk inhibition in the cerebellum). Although, GSK was highly 

potent at p-Erk inhibition outside the CNS, its ability to inhibit the pathway in the brain was greatly 

limited, indicating that the drug cannot efficiently cross the BBB (Figure 17B). Based on its 

combined potency in inhibiting the MAPK pathway and efficiency at crossing the BBB, I selected 

the PD901 agent to continue with my preclinical study. 
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In Chapter II, I demonstrated that the NF1-associated glial abnormalities are established 

within the first three weeks of postnatal development. Therefore, I set out to establish a treatment 

protocol to efficiently and consistently inhibit p-Erk in young pups. First, I used an established 

protocol in the Zhu laboratory of administering MEKi through lactation (“MEKi in the milk”) by 

treating the nursing mothers via oral gavage. To determine the duration of p-Erk inhibition in the 

brain, lactating mothers were treated with a dose of 5 mg/kg of PD901 and cerebella were collected 

in both mothers and P8 pups at different time intervals: 4hr, 8hr, 10hr and 12hr. Four hours after 

gavage, the cerebellum in treated pups showed close to 60% inhibition (Figure 18A). This was the 

highest reduction in Erk phosphorylation observed at all time-points with a dose of 5 mg/kg in the 

pups. Consistently, treated cerebella in the mothers achieved near complete p-Erk inhibition with 

this dose (data not shown). Inhibition of p-Erk in the cerebellum was no longer detected 10 hours 

following treatment. These data indicate that the peak inhibition time in the pups after oral gavage 

lies around 4 hours and that a lower dose than administered will reach the pups through lactation. 

To investigate whether higher inhibition can be achieved with a different route of administration, 

I decided to treat P8 pups via single intraperitoneal injection (IP) with reduced dosages of 0.125 

mg/kg, 0.25 mg/kg, 0.5 mg/kg and 1 mg/kg and harvested the cerebella at 2hrs and 4hrs after 

treatment (Figure 18B). A dose of 1 mg/kg almost completely eliminated p-Erk signal at both 2 

and 4hrs after treatment (Figure 18C). There was a dose-dependent inhibition of p-Erk with 

decreasing doses of the drug. Of note, treatment with 0.125 mg/kg through IP injection achieved 

the same level of p-Erk inhibition as gavage treatment with 5 mg/kg within the same time frame 

(4hrs after treatment). Following these results, I decided to treat a cohort of pups from P0.5 to P8 

via IP injection with a dose of 0.5 mg/kg of PD901 to test for toxicity and sustainability. 

Unfortunately, this treatment modality resulted in very high mortality level in the pups due to a 

combination of drug toxicity and repeated handling of the mice at such a young age. 

 

3.2.2 A dose of 10 mg/kg of PD901 through “MEKi in the milk” can inhibit hyperactive p-

Erk in Nf1hGFAPCKOs to the level of controls 

 

As a result of the failure of the IP treatments, I decided to increase the oral gavage dosage 

from 5 mg/kg to 10 mg/kg in order to achieve greater inhibition in the brain. To test the extent of 
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inhibition that can be achieved with PD901 treatment in Nf1hGFAPCKOs, I treated mothers with P8 

litters that were capable of generating three different genotypes: Nf1+/+ (wild-type), Nf1fl/+ 

(heterozygous) and Nf1fl/fl (mutant). Vehicle-treated Nf1hGFAPCKOs showed an 80% increase in 

Erk phosphorylation in the cerebellum compared to either Nf1 heterozygous or wild-type pups. 

Treatment with 10 mg/kg of PD901 resulted in about 40% inhibition of p-Erk in both wild-type 

and heterozygous mice. Remarkably, treatment of Nf1 mutants with the same dosage decrease Erk 

phosphorylation to the same level as controls (Figures 19A and 19B). There was no significant 

change in the levels of phosphorylated AKT in Nf1hGFAPCKOs and PD901 did not appear to target 

this downstream effector of RAS-mediated signaling pathway (Figure 19C). There appears to be 

an increase in phosphorylation of S6, a readout for the mTORC1 pathway, in the cerebella of P8 

mutants. Interestingly, the MEKi treatment also inhibited the p-S6 signal to the level of controls 

(Figure 19D). Together, these results confirm that MEK-Erk pathway is the downstream signaling 

pathway that is the most hyperactivated in Nf1hGFAPCKOs and that a dose of 10 mg/kg of PD901 

through “MEKi in the milk” can successfully inhibit the pathway to the level of controls. 

 

3.2.3 A three-week MEKi treatment during early postnatal stages suppresses Erk 

activation and rescues hypercellularity in Nf1hGFAPCKOs 

 

To test whether hyperactive Erk signaling is responsible for glia abnormalities in Nf1-

deficient nerves, I treated newborn control and Nf1hGFAPCKO pups with 10 mg/kg PD901 or 

vehicle from P0.5 to P21 for 3 weeks with the “MEKi in the milk” protocol (Figure 20A).  This 3-

week treatment protocol exhibited very little adverse effects on the pups. When I analyzed the 

prechiasmatic nerve of PD treated Nf1hGFAPCKOs at P21, there was a complete rescue of the 

increase in cell number and cell density compared to vehicle-treated mutants (Figures 20B-20B”). 

Strikingly, MEK inhibition significantly reduced p-Erk expression in treated mutants as well as 

the number of abnormal generated GFAP+Olig2+ double-positive cells (Figure 20C). These results 

demonstrate that inhibition of Nf1-mediated MEK-Erk is the major mechanism underlying the 

ectopic Olig2 expression in GFAP+ cells and the hypercellularity in the developing nerves of 

Nf1hGFAPCKOs. 
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3.2.4 Transient, neonatal inhibition of the MEK-ERK pathway prevents the formation of 

optic nerve glioma formation in a dose-dependent manner 

 

To determine whether the transient P0.5-P21 MEKi treatment protocol can provide long-

term and sustained therapeutic benefits in a dose-dependent fashion, I treated groups of litter with 

either 5, 10 or 20 mg/kg doses of PD901 and analyzed the optic nerves at P60, about 40 days after 

treatment was terminated (Figure 21A). Mice treated with the 20 mg/kg dose displayed the most 

clinical signs of toxicity in both mothers and pups. Specifically, this high dosage negatively 

affected lactation in the mothers resulting in pups that looked malnourished and sickly, leading to  

high mortality. Therefore, I was only able to analyze three surviving mice treated at this high dose. 

Decreasing dose levels reduced this problem in a dose-dependent fashion. H&E analysis also 

revealed a dose-dependent decrease in cellularity in PD-treated mice with the 20 mg/kg dose 

providing the most complete and consistent rescue (Figures 21A and 22A’). The 5 mg/kg dose did 

not appear to provide significant rescue effect as evidence by the majority of mice (4 out of 5) 

displaying cellularity level similar to untreated mutants. Consistent with the results from P21 

analysis, the vast majority of 10 mg/kg treated mutants showed rescue in cellularity to the level of 

controls, indicating the long-term benefit of transient MEKi treatment. Next, I performed 

immunofluorescence experiments to examine whether the MAPK pathway is reactivated 40 days 

after the MEKi treatment. The majority of mutants treated with either 5 mg/kg and 10 mg/kg 

showed a reduction in the number of p-Erk+ cells when analyzed at P60. However, there was a 

cluster of poor-responders that still maintained high p-Erk activity (Figures 21B and 21B’). These 

poor-responders also corresponded to the mice that displayed higher cellularity after treatment. 

Remarkably, the group treated with 20 mg/kg PD did not have any poor-responder and achieved 

consistent p-Erk inhibition almost to the level of controls.  

 

To evaluate whether the sustained p-Erk inhibition resulted in overall improvement in the 

glial abnormalities, I examined the different doses treated mice for decrease in the number of 

GFAP+Olig2+ cells. Although there was dose-dependent variation in the p-Erk rescue, all three 

doses showed significant reduction in the number of abnormal GFAP+Olig2+ cells (Figure 21B”). 

Furthermore, only a small number of the remaining double-positive cells showed Erk activation 

(arrows, Figure 21B). Similarly, there was a complete rescue in the number of BLBP+ progenitors 



 87 

in the nerves of mutants treated with 10 mg/kg dose of PD (Figures 21C and 21C’). Out of the 11 

MEKi-treated mutants with 10 mg/kg of PD, only 1 showed clear signs of non-rescue and exhibited 

an OPG. A comparison between this non-rescued mouse and the remaining rescued group revealed 

a strong correlation between the degree of p-Erk inhibition and the rescue of glial abnormalities 

(Figure 22A). Together, these results demonstrate that transient MEKi treatment during neonatal 

stages prevents NF1-dependent glial abnormalities and provides long-term, sustained benefits in a 

dose-dependent manner. 

 

3.2.5 Neonatal MEKi treatment rescues nerve damage and RGC loss in Nf1hGFAPCKO mice 

 

 The second phase of NF1-OPG disease pathogenesis is manifested after the establishment 

of glial abnormalities and is characterized by immune cell activation, axonal and myelin defects 

and RGC apoptosis. Based on the success of the MEKi treatment in rescuing the glial defects in 

Nf1hGFAPCKOs, I investigated whether the transient P0.5-P21 treatment protocol could also prevent 

the nerve degeneration and the death of RGCs observed in the second phase of the disease. When 

analyzed 40 days after the last 10 mg/kg PD treatment, MEKi-treated mutant nerves displayed a 

complete rescue of the increase in immune cell infiltration compared to vehicle-treated mutants 

(Figures 23 A and 23A’). Furthermore, the Iba+ microglia present in the nerves after treatment did 

not exhibit the “activated” morphology typically found in the tumors (amoeboid-like shape). In 

contrast to the disoriented axonal fibers associated with axonal swelling and loss observed in the 

OPGs of vehicle-treated animals, MEKi treatment completely restored the axonal architecture of 

the mutant nerve to the level of controls (Figure 23A). Similarly, MBP staining revealed no 

disruption of myelin or the presence of blebs in MEKi treated mutants (Figure 23B). Lastly, I 

investigated the rescue in neuronal loss in P60 mutants following neonatal treatment. As expected 

tumor-bearing, vehicle-treated mutants exhibited significant reduction in the number of RGC 

neurons compared to controls. The 10 mg/kg PD901 treatment completely rescued neuronal loss 

by preventing apoptosis in the GCL (Figures 23C-23C”). Collectively, these findings indicate that 

by rescuing the Phase I NF1-associated glial abnormalities, the transient, neonatal MEKi treatment 

can prevent the nerve damage and neuronal loss characteristic of the Phase II disease pathogenesis. 
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3.2.6 The first postnatal week represents a critical period in NF1-OPG formation 

 

 The P0.5-P21 MEKi treatment protocol clearly demonstrate that the neonatal stage is an 

important period in OPG formation. However, it remains unclear which week has the most critical 

need for NF1 function. The period of P0.5-P5 highlights two major events in optic nerve 

development: 1) peak time when Pax2+ cells acquire astrocyte specification, 2) oligodendrocyte 

precursors migrate in the nerve from the chiasm. Our previous findings have shown that NF1 plays 

an important role in suppressing Olig2 expression in Pax2+ APCs and mediating gliogenesis in the 

first week of postnatal development. To confirm the essential requirement of NF1 during this 

period, I administered the “MEKi in the milk” protocol to mice from P5 to P21 with the highest 

dose of PD901 (20 mg/kg) and analyzed the optic nerves at P60. Although this shortened protocol 

resulted in increased survival of the pups, most of the treated mice in this group developed OPG 

under histological analysis. When I directly compared P5-P21 to the conventional three-week 

protocol (P0.5-P21) at the same dose, I observed that the number of p-Erk+ cells in the majority of 

P5-P21 treated mice was significantly higher than P0.5-P21 group and even reached the level of 

untreated mutants (Figure 24A). Furthermore, triple-positive (p-Erk+GFAP+Olig2+) cells could be 

readily detected in this group whereas they were almost completely eliminated with the P0.5-P21 

treatment protocol. Unsurprisingly, the number of BLBP+ progenitors remained elevated in the 

P5-P21 treated group with the majority of them co-localizing with Olig2+ cells (Figure 24B). These 

results demonstrate that ERK signaling plays a critical role in normal gliogenesis during the first 

postnatal week of optic nerve development.  

 

3.3 Discussion 

 

 The goal of molecularly-targeted treatment strategies is to achieve long-term tumor control 

in patients with LGGs while simultaneously having less negative impact on their developing brain 

compared to conventional genotoxic therapies. In the context of NF1-OPGs, the most pressing 

challenge, in addition to tumor shrinkage, is to develop early interventional therapies in newly 

diagnosed patients before irreversible neuronal loss. The use of cell lines from patient tumors 

would be ideal for testing preclinical drugs because of the fact that they closely resemble actual 

human tumors and would therefore provide a more accurate response to a particular treatment. 
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Despite the combine efforts of many research groups, human NF1-pylocitic astrocytoma cell 

cultures have not yet been successfully established. Several factors could underlie this failure such 

as issues with cellular senescence or the lack of trophic growth factors from the tumor 

microenvironment.  

 

3.3.1 Screening for the most potent MEKi in the CNS  

 

In the absence of patient-derived cell lines, the availability of accurate preclinical mouse 

models together with a deeper understanding of neurofibromin function can offer the opportunity 

to develop treatments tailored to specific features of NF1-associated medical problems. In this 

study, I employ pharmacological inhibition of MEK to demonstrate the critical role that the MEK-

Erk signaling pathway plays in NF1-OPG formation. In a proof of concept study, I tested three 

clinically relevant MEKis, PD0325901, selumetinib (AZD6244) and trametinib (GSK1120212), 

for their potential to cross the blood-brain-barrier. Oral gavage of P30 mice with both PD901 and 

GSK can achieve excellent inhibition outside the central nervous system (between 80-100% in the 

spleen). AZD showed significantly less inhibition in the spleen (up to 40%), even at the maximum 

tolerated dose. However, AZD was able to efficiently cross to the brain where comparable level 

of inhibition as the spleen was observed. Similarly, PD901 showed excellent affinity at crossing 

the blood-brain barrier. Although GSK can efficiently inhibit p-Erk signal in the body, it displayed 

poor ability to reach the cerebellum. As a result, the level of inhibition decreased to about 50% in 

the brain compared to the spleen. Consistent with my findings, AZD was shown to be 10 times 

less potent, with a relatively poor bioavailability, and lower p-Erk inhibition in tumor biopsies than 

PD901 in clinical testing (Messersmith et al. 2006). Based on these results, the agent PD901 was 

selected for the remaining study. Drug administration via repeated intraperitoneal injections 

proved to be too toxic for the pups, even at very low dose. Our laboratory is one of the first to use 

MEKi to treat NF1-associated diseases in GEM models using the “MEK in the milk” protocol by 

treating lactating mothers via oral gavage. This protocol allows the pups to receive a relatively low 

dose of the drug (about 1-5% of the administered dose reached the CNS in the pups) without added 

physical distress. By using this strategy in P8 pups, I determined that the highest reduction in Erk 

phosphorylation with PD901 was achieved at 4-5 hours after treatment. The duration of inhibition 

in the brain was about 10 hours.  
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3.3.2 The use of Nf1hGFAPCKO mice for preclinical drug evaluation 

  

 Previously published studies in our lab have demonstrated a transient MEK inhibition 

during a neonatal window can rescue forebrain and cerebellum defects in Nf1hGFAPCKO mice 

(Wang et al. 2012; Kim et al. 2014). Based on the success of these treatments and my genetic 

inhibition studies, I decided to use the Nf1hGFAPCKOs to evaluate MEKi treatment as targeted 

therapy for NF1-OPG. The Nf1hGFAPCKO mice provide several advantages as a model to study 

NF1-OPG. First, their OPGs share similar histopathological features and similar disease 

progression as the human disease. Second, the mice develop tumors predictably in the 

prechiasmatic area in complete penetrance. Third, the cellular and molecular targets of Nf1 loss 

during development have been identified (GFAP+Olig2+, BLBP+ and p-Erk+ cells) and can be used 

as readout for treatment efficacy. Lastly, I have established the time course of visual impairment 

during OPG progression in Nf1hGFAPCKO mice. I first began by showing that a single dose of 10 

mg/kg of PD901 through “MEKi in the milk” can inhibit hyperactive p-Erk in the Nf1 mutants to 

the level of controls. Next, I revealed that P0.5-P21 MEKi treatment protocol can prevent cell 

increase and GFAP+Olig2+ glial abnormalities at P21 by suppressing p-Erk signaling. In particular, 

the 3-week transient, neonatal inhibition of the MEK-Erk pathway also provided long-term and 

sustained therapeutic benefits, even 40 days after last treatment. In the treated P60 Nf1 mutants, 

there was a dose-dependent rescue in the tumor phenotype, with 20 mg/kg dose of PD901 

providing the most consistent rescue in glial defects but with the highest toxicity. In addition, the 

neonatal MEKi treatment prevented the nerve damage and neuronal loss that characterize the 

second phase of disease pathogenesis. These results suggest that the neurological deficits including 

axonal degeneration and RGC loss are a direct consequence of the NF1-associated glial 

abnormalities. A possible implication of a cross-talk between neoplastic glial cells and microglia 

will be further explored in Chapter IV. To improve the translational potential for these preclinical 

findings from our mouse studies, it is essential to determine whether the prevention of 

neuroanatomic deficits by the “MEKi in Milk” protocol can also provide visual and behavioral 

improvement to Nf1hGFAPCKO mice. Additional behavioral, imaging, and electrophysiological 

tests will help to examine whether these preclinical findings can be translated rapidly and reliably 

to clinical testing in NF1 patients. However, as most clinical studies with MEKis are still 
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underway, we will have to learn how to integrate promising preliminary results into clinical 

practice while waiting for long-term toxicity and outcome data. 
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Table 3. MEK inhibitors in clinical trials. (See text for details)  
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Figure 17. Comparison of three different MEKis administered by oral gavage to P30 wild-

type mice 

P30 wild-type mice were treated by oral gavage with a single dose of different MEKis at the 

following doses: GSK 5 or 3 mg/kg of body weight (BW), AZD 100 mg/kg BW and PD 5 mg/kg 

BW. Mice were sacrificed between 4-6hrs after treatment. Western blot (WB) analysis was 

performed on whole cerebellar lysates and spleen lysates from treated mice and compared to 

untreated wild-type to evaluate inhibition in downstream effectors of the RAS pathway (A). Other 

pathways were not activated as evidence by no change in p-AKT and p-S6 levels. Each lane 

represents a sample from an individual animal. Quantification of the relative fold change in p-Erk 

level for each MEKi in the cerebellum (B) and the spleen (C). 
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Figure 18. Time-course of MEK inhibition in the brain and degree of inhibition via IP 

injection 

Quantification of relative fold change in p-Erk level in P8 pups after “MEKi in the milk” treatment 

with PD901 at 5 mg/kg BW and cerebella harvested at different time-points: 4, 8, 10, 12hrs for 

WB analysis (A). Western blot analysis was performed on cerebella of P8 pups treated with PD901 

at different doses via IP injection and collected at 2hrs and 4hrs after treatment (B). Relative fold 

change in p-Erk level in the cerebellum in treated pups compared to untreated littermate controls 

4hrs after treatment (C). Asterisks denote statistically significant differences ( ** p < 0.01; paired 

t-test). All the data are presented as mean ± SEM. 
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Figure 19. 10 mg/kg of PD901 can inhibit p-Erk in Nf1hGFAPCKOs to the level of controls. 

Western blot analysis of cerebella of P8 pups from different genotypes (WT, Het, Mut) treated 

with either vehicle or 10 mg/kg PD901 via “MEKi in the milk” protocol (A). Quantification of the 

relative fold change in p-Erk in the cerebellum revealed that this dose inhibits p-Erk activation in 

Nf1hGFAPCKOs to the level of controls (B). No significant change in p-AKT activation was detected 

in mutants before or after treatment (C). Increase in pS6 level in Nf1hGFAPCKOs was also inhibited 

with the treatment (D). All the data are presented as mean ± SEM. 
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Figure 20. A three-week MEKi treatment rescues glia defects in the Nf1hGFAPCKOs 

Schematic representation of the P0.5-P21 “MEKi in the milk” PD901 treatment at different 

dosages. Cohorts of vehicle or PD treated mice were collected at either P21 (4hrs after last 

treatment) or 40 days later at P60 for long-term analysis (A, A’). H&E staining on paraffin sections 

of optic nerve of P21 vehicle-treated and 10 mg/kg PD-treated mice (B). Quantification of the cell 

number (B’) and optic nerve diameter (B”) demonstrate complete rescue in PD-treated mutants 

versus vehicle-treated mutants. Triple labeling p-Erk/Olig2/GFAP staining on adjacent sections 

demonstrated that MEKi treatment inhibits ERK signaling and decreased the number of 

GFAP+Olig2+ cells in the mutants (C). All the data are presented as mean ± SEM. Scale bar: 50 µm. 
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Figure 21. Neonatal MEK inhibition provides long-term rescue of Nf1-associated glial defects 

in a dose-dependent manner. 

Control and Nf1hGFAPCKO mice were treated with vehicle or PD901 at different doses from P0.5–

P21 and paraffin sections of the prechiasmatic optic nerve were analyzed by H&E at P60 (A). The 

total cell number in controls, vehicle-treated mutants and 5, 10 and 20 mg/kg PD-treated mutants 

were quantified, respectively (A′). Triple labeling p-Erk/Olig2/GFAP staining was performed on 

adjacent sections (B). Arrows highlight triple-positive (p-Erk+Olig2+GFAP+) cells present in 

untreated P60 mutant nerves. The number of p-Erk+ cells (B’) and Olig2+GFAP+ cells (B”) were 

quantified and compared. Optic nerves sections from controls, vehicle- and 10 mg/kg PD-treated 

mutants were stained for BLBP/Olig2 (C). Arrows denote BLBP+Olig2+ cells in vehicle-treated 

mutants. Quantification of BLBP+ cells in all three groups at P60 (C’). All the data are presented 

as mean ± SEM. Scale bar: 50 µm. 
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Figure 22. Correlation between decrease in p-Erk activation and long-term rescue of glia 

abnormalities after transient MEKi treatment. 

Adjacent paraffin sections of optic nerves from controls and 10 mg/kg PD-treated mutants were 

strained for p-Erk, BLBP/Olig2 and GFAP (A). There was a strong correlation between the degree 

of p-Erk inhibition (number of p-Erk+ cells) and the rescue in glial abnormalities 21 days after last 

treatment. DAPI labels the nuclei. Scale bar: 20, 50 µm. 
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Figure 23. Transient MEKi treatment prevents nerve degeneration and neuronal loss in 

Nf1hGFAPCKO mice. 

Control and Nf1hGFAPCKO mice were treated with vehicle or 10 mg/kg PD901 from P0.5–P21 and 

paraffin sections of the prechiasmatic optic nerve were analyzed for Iba1/NF68k at P60. The last 

row represents high magnification images highlighting rescue in microglia number/activation and 

neurofilament loss in PD-treated mutants compared to vehicle-treated mutants (A). The total 

number of Iba1+ cells in all three groups were quantified (A’). Double-labeling staining for MBP 

and Olig2 show complete rescue in myelin defect in PD-treated mice (B). Sections of retinas were 

doubly labeled by RBPMS and TUNEL (C). The insets are the high magnification images of the 

boxed areas representing TUNEL+ cells in the GCL. The number of RBPMS+ RGCs (C’) and 

TUNEL+ cells in the GCL were quantified respectively. All the data are presented as mean ± SEM. 

Scale bars: 5, 20, 50 µm.  
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Figure 24. The first postnatal week represents a critical time-point for Nf1 requirement in 

the developing optic nerve.  

Control and Nf1hGFAPCKO mice were treated with 20 mg/kg PD901 from P0.5–P21 or P5-P21 and 

paraffin sections of the prechiasmatic optic nerve were triple labeled for p-Erk/Olig2/GFAP at P60 

(A). Adjacent sections were immunostained for BLBP/Olig2 and analyzed (B). MEKi treatment 

initiated after the first postnatal week is not sufficient to rescue glial abnormalities in the mutant 

optic nerve. DAPI labels the nuclei.  
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Chapter IV: Discussion and Future Directions 
 

4.1 NF1 serves as a potent regulator of gliogenesis during optic nerve development 

 

Besides the loss of the remaining NF1 wild-type allele (LOH) in NF1 patients who already 

sustain germline NF1 heterozygous mutations, there is limited knowledge about the genetic and 

molecular basis for NF1-OPG disease pathogenesis. One of the main objectives of my thesis 

project is to determine the cellular and molecular mechanisms underlying Nf1 loss in the 

developing optic nerve that induce tumor formation and neurological deficits at later stages. By 

using two independent genetic systems (conventional CKOs and MADM CKO) under the hGFAP-

cre promoter, I demonstrated in Chapter II that Nf1 loss lead to Erk-dependent abnormal glial cell 

expansion in the optic nerve during neonatal development. The phase I glial abnormalities are 

followed by a second phase of NF1-OPG disease progression characterized by immune cell 

infiltration and activation, axonal degeneration, myelin loss and Bax-dependent, progressive 

apoptosis of RGCs. These observations suggest that Nf1-dependent glial defects are directly 

responsible for tumor initiation and progression and represent an attractive target for preventative 

and early interventional therapies. In Chapter III, I tested this possibility by using MEK inhibitors 

to treat the glial defects during a critical developmental window (P0.5-P21). This treatment 

protocol resulted in long-term benefits by preventing nerve damage and RGC loss. Collectively, 

these results indicate that transient, glial restricted precursor cells (Pax2+Olig2+ that differentiate 

into GFAP+Olig2+ cells and BLBP+Olig2+ cells) are the cellular compartment most susceptible to 

Nf1 deficiency.  

 

4.1.1  A case for glial restricted progenitors as the cell of origin of Nf1-OPG 

 

 In patients with familiar cancer syndromes like NF1, even though every cell harbors the 

initial mutation “first-hit”, only biallelic inactivation in a specific cell type can trigger tumor 

formation. In the context of NF1-OPG, the early childhood-onset of the disease suggests that the 
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somatic “second-hit” event must occur in early stem and/or precursor cells during a critical 

window of optic nerve development. Therefore, identification of this “putative” cell of origin 

susceptible to NF1 loss could provide valuable insights for understanding disease pathogenesis 

and for developing rational therapeutic strategies. Due to the substantial self-renewal and 

multilineage capacities possessed by developing neural stem cell (NSC) populations, they have 

been proposed as the cell of origin of NF1-OPG. In support of this theory, it was demonstrated 

that Nf1 heterozygosity (Nf1+/-) and absence (Nf1-/-) in NSCs increased stem cell proliferation in 

vitro and in vivo (Dasgupta and Gutmann 2005). Additionally, Chen et al. reported that 

neurofibromin regulates NSC differentiation and multilineage differentiation through different 

arms of RAS downstream effector pathways (Chen, Gianino, and Gutmann 2015). Through the 

use of Nf1 GEM and pharmacological inhibition, they showed that neurofibromin controls NSC 

proliferation through the PI3K/AKT pathway, but multilineage differentiation was MEK-ERK 

dependent. Furthermore, successful isolation of tumor cells with stem cell features (cancer stem 

cells) such as expression of CD133 from a mouse model of low grade glioma suggests NSCs as 

the cell of origin (Chen et al. 2015). Additional evidence supporting the NSC origin Nf1-OPG 

came from the same research group. By comparing NSCs from germinal zones in the lateral 

ventricle and the third ventricle, they showed that only NSCs from the III-VZ display increase 

proliferation following mutations characteristic of childhood glioma. Next, they reported that OPG 

developed in a GFAP-creER mouse model only when Nf1 mutation was introduced at E16.5, but 

not after postnatal stage (Lee, Gianino, and Gutmann 2012). Based on these observations, they 

concluded that the III-VZ NSCs was the source of mouse Nf1-OPG. However, the cells that 

initially acquire the mutation may not necessarily be the cell of origin. Therefore, it remains 

unclear whether NSCs or their more restricted glial progeny are the most susceptible to Nf1 loss 

and represent the actual cell of origin. Although it is difficult to distinguish the cell of origin, the 

natural history of NF1-OPGs as slowly progressing benign tumors suggests that they are more 

likely to arise from glial restricted progenitors (GRPs) during postnatal development instead of 

NSCs from early embryonic stages. 

 

 Many of the features that make NSCs susceptible to oncogenic mutations are also shared 

by GRPs such as oligodendrocyte precursor cells (OPCs). In both adult rodent and human brains, 

OPCs make up the largest proliferative cell population (Dawson et al. 2003; Geha et al. 2010). 
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During early developmental stages, OPCs have been found to express common stem cell markers 

nestin and Sox2. Remarkably, OPCs isolated from the rodent optic nerve acquire multipotent NSC-

like features when reprogrammed under in vitro conditions (Kondo and Raff 2000). Olig2 

expression was shown to be both necessary and sufficient in directing SVZ progenitors toward 

glial fates, while preventing neuronal differentiation, in neonatal and adult brain (Marshall, 

Novitch, and Goldman 2005; Menn et al. 2006). OPCs have been shown to be particularly sensitive 

to neurofibromin loss. Dr. Ratner’s group showed that Nf1 mutation alone was sufficient to 

promote OPC proliferation in mice (Bennett et al. 2003). In the adult hippocampus, NF1 has been 

shown to suppress the OPC lineage potential of NSCs (Sun et al. 2015). Importantly, our lab 

demonstrated that Nf1 suppresses Olig2 expression in neonatal and adult SVZ progenitor cells 

(Wang et al. 2012). Thus, Nf1 functions as a negative regulator of Olig2 specifically in both 

neonatal and adult brain.  

 

Examination of the effect of Nf1 loss during early postnatal stages in our lab has revealed 

several intriguing findings. hGFAP-cre is known to be expressed in multi-potent radial glial cells 

in the dorsal brain. However, our findings indicate that cre expression is restricted to glia 

precursors already committed to the glial lineage in the ventral brain, including the III-VZ. 

Furthermore, embryonic analysis uncovered that cre-mediated recombination does not occur until 

E15.5 in the optic nerve, long after the neuronal-to-glial transition of neural stem cells in the ventral 

forebrain (E12.5). Our unpublished findings revealed that embryonic Nf1 inactivation leads to the 

expansion of BLBP+Olig2+ progenitors from the ventral brain which then migrate into the nerve. 

Astrocytes in the optic nerve, unlike brain-derived oligodendrocytes, arise form locally generated 

neuroepithelial cells that produce APCs. These optic nerve-derived APCs only differentiate into 

mature astrocytes in the direction from the eye to the brain. In the developing nerve, Nf1 loss 

results in Erk-dependent transcriptional activation of Olig2 in Pax2+ APCs. Pax2+Olig2+ cells later 

differentiate into GFAP+Olig2+ cells (unpublished findings from Zhu laboratory). Taken together, 

these data suggest that glial progenitor populations are the most affected by Nf1 deficiency. My 

study further extends the consequences from these findings in OPG formation. By studying the 

optic nerve at different time-points during development (P15, P21, P60, and 6 months or older), I 

determined that GFAP+Olig2+ and BLBP+Olig2+ cells represent transient populations that are 

present in the normal nerve during a short, early developmental window and become rare later on. 
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However, these cells are maintained throughout gliomagenesis in Nf1 mutant nerves and are the 

most expanded cellular compartment in late-stage tumors. The MADM system has provided the 

definitive evidence that Nf1 inactivation gave a growth advantage to Olig2 cells. Indeed, Olig2+ 

cells were overexpanded in MADM OPGs and contributed to an astonishing 75% in the increased 

cell number in mutant (red) cells compared to only 31% of the wild-type cells (green). Similarly, 

the percentage of mutant cells in the Olig2 population rose to 33% compare to the 3% of wild-type 

cells in the same population. These findings suggest over proliferation of Olig2+ cells as a major 

underlying mechanism for overabundance of glia. It also suggests that Olig2 cells are the most 

sensitive cellular compartment to Nf1 inactivation. Pediatric gliomas such as NF1-OPGs are 

classified as neurodevelopmental disorders based on their cellular composition, growth 

environment, early timing of development and low proliferation rates. Consistently, the rate of 

proliferation in the Nf1hGFAPCKO mice was highest at P15 (about 10%) but decreased dramatically 

at P21 and later stages (~ 1%). Together with the observation that the proportion of abnormal glial 

cells does not significantly fluctuate over time, these results indicate that the glial abnormalities 

are established during a specific window of neonatal development, mimicking the early childhood-

onset of the human disease. They also suggest a clear requirement for neurofibromin to serve as a 

potent regulator of gliogenesis during early optic nerve development.  

 

4.1.2 Understanding the mechanism underlying the generation of GFAP+Olig2+ double-

positive glial cells in the developing optic nerve 

 

 Previous studies have reported an abnormal increase of glial cells in Nf1-deficient mouse 

brain (Dasgupta and Gutmann 2005; Zhu et al. 2005; Hegedus et al. 2007). In the neonatal 

forebrain, Nf1 was found to regulate fate specification in neuroglial progenitor. Specifically, Nf1 

functions as a negative regulator of Olig2 in SVZ Ascl1+ cells to repress glial fate determination 

(Wang et al. 2012). In the ventral brain, Nf1 loss only results in increase OPC proliferation at 

E17.5, after the neuronal-to-glial transition of neural stem cells but not at E15.5 (unpublished data 

from Dr. Miriam Bornhorst). Therefore, neurofibromin acts to regulate OPC proliferation during 

embryonic development in the ventral brain, including III-VZ. However, little is known about the 

role of neurofibromin on optic nerve-derived glial progenitor cells. Findings from the early 

postnatal study in our lab revealed glial cell expansion accompanied by increase cell proliferation 
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in optic nerve of Nf1hGFAPCKO mice at P0.5, when the first wave of OPCs begin to migrate in the 

distal portion of the nerve. In fact, the expansion of Pax2+ APCs in the mutants stemmed from an 

increase in Pax2+Olig2+ cells at the expense of Pax2+Olig2- cells.  Pax2+ cells later differentiate 

into GFAP+ astrocytes and retain abnormal Olig2 expression (GFAP+Olig2+) in the Nf1 mutants. 

These findings are more consistent with a model where Nf1 loss results in two critical events in 

the developing nerve: 1- Pax2+ APCs ectopically acquire Olig2 expression and 2- Pax2+Olig2+ 

cells transiently expand during neonatal stages and differentiate into abnormal GFAP+Olig2+ cells. 

However, the fact the expansion of Pax2+Olig2+ cells coincides with the time when the first wave 

of OPCs start to migrate in the optic nerve from the brain at P0.5 coupled with the knowledge that 

hGFAP-cre targets both astrocyte and oligodendrocyte lineages make it harder to dissect the exact 

phenotypic consequence of Nf1 loss on locally arising astrocytic lineage cells. Therefore, 

GFAP+Olig2+ cells could conceivably arise by non-cell autonomous mechanism of Nf1 

inactivation on the astrocytic lineage triggered by the influx of mutant Olig2 cells. One way to 

address this possibility is to target Nf1 mutation specifically in the astrocyte or oligodendrocyte 

lineage by different genetic strategies. To target the astrocyte lineage specifically in the nerve, we 

could use the Pax-cre promoter which is specifically expressed in APCs (Ohyama and Groves 

2004). In this model, the Olig2+ cells coming from the brain will remain wild-type and thus should 

not impact the nerve-derived APCs. Analysis of neonatal optic nerve from these Nf1Pax2CKOs at 

P0.5 could reveal the effect of neurofibromin loss on the astrocyte lineage alone and elucidate their 

potential to generate GFAP+Olig2+ cells. Alternatively, we could use an inducible Cre/estrogen 

receptor fusion strain under the Olig2 promoter (Olig2-creER) to inactivate Nf1 in the 

oligodendrocyte lineage at specific developmental time-points (Ono et al. 2008). By administering 

Tamoxifen injection at E17.5, we could target Nf1 mutation in Olig2+ cells in the ventral brain 

before they enter the optic nerve. These two genetic strategies will allow us to investigate the 

mechanisms by which Nf1-deficient astrocyte and oligodendrocyte lineage cells cooperatively and 

individually contribute to OPG formation.  

 

Finally, due to paucity of human NF1-OPGs tissues, it is unclear whether GFAP+Olig2+ 

cells are a feature of the human disease. OLIG2 is expressed in human ventral neural progenitor 

cells and oligodendroglia (Ligon et al. 2004). Historically, NF1-OPGs have been classified as 

pilocytic astrocytomas based of the strong immunostaining for GFAP. However, numerous recent 
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studies have shown that a significant proportion of gliomas show ambiguous histological features 

that make classification as either oligodendroglial or astrocytic difficult. In fact, pilocytic 

astrocytomas, diffuse low-grade astrocytomas (grade II) and anaplastic astrocytomas (grade III) 

all contained numerous OLIG2+ cells with large irregular nuclei within the dense fibrillary areas 

(Ligon et al. 2004; Reis et al. 2013; Mokhtari et al. 2005). Likewise, semi-quantitative RT-PCR 

analysis and in situ hybridization demonstrated that pilocytic astrocytomas contain the highest 

expression of OLIG2 genes (Bouvier et al. 2003). Strong co-expression of GFAP and Olig2 was 

found in gliomas that contain gliofibrillary features (Preusser et al. 2007). The neurodevelopmental 

basis for NF1-OPGs and their benign nature make it very unlikely that expression of OLIG2 is 

aberrant in these tumors and results from genomic instability or rearrangements. In the future, it 

would be helpful to obtain samples of PAs from other brain sites (cerebellum, brainstem) in NF1 

patients in order to validate the presence of GFAP+OLIG2+ double-positive cells. 

  

4.1.3 The natural history of Nf1-OPG in the mouse offers a window of opportunity for 

therapeutic treatment. 

 

 The majority of NF1-OPGs are diagnosed in children before the age of 6 years. Of these 

patients, less than half will develop vision loss. As a consequence, initial management typically 

involves close observation. When therapy is advised, chemotherapy is usually the treatment of 

choice. There is currently no general consensus regarding treatment protocol for the disease. Some 

clinicians advocate treatment when there is radiographic progression or visual deterioration. On 

the other hand, the remaining health care professionals promote treatment only for patients with 

documented visual deterioration. Much of the confusion stems from the heterogeneous nature of 

disease progression in NF1-OPG patients and the lack of reliable markers to predict which patients 

will develop vision loss. Furthermore, there is a poor correlation between radiographic response 

and visual acuity outcomes with only a third of chemotherapy-treated patients showing 

improvement in vision (Fisher et al. 2012). Since chemotherapy is not expected to regenerate 

RGCs or re-establish neuronal circuits, the most critical challenge for the field is to develop 

preventive or early interventional therapies before irreversible neurological deficits such as axonal 

degeneration and RGC loss occur (Listernick 2016). In Chapter II, I used the Nf1hGFAPCKO mice 

to delineate the cellular and molecular events that underlie Nf1-OPG development and vision loss 
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and identify critical window for neuroprotective intervention. First, I showed that Nf1-associated 

glial defects are established during early neonatal development. Specifically, aberrant 

GFAP+Olig2+ cells that activate the RAS-Erk signaling pathway and increased glial progenitors 

are evident at P15 in Nf1hGFAPCKO optic nerves and persist throughout gliomagenesis (P21, P60 

and 6 months or older). Although increased microglia infiltration was observed in mutant nerves 

as early as P15, it did not result in immediate nerve damage. Accordingly, no increase in apoptosis 

or RGC loss was detected in P21 Nf1hGFAPCKO retinas. About forty days later, there were clear 

signs of nerve damage in optic nerves of P60 Nf1 mutants as evidence by patterns of misaligned 

optic nerves fibers and axonal and myelin loss. The resulting RGC loss in mutant retinas was 

progressive over time with ~40% decrease relative to normal retinas at P60 and culminating to 

60% loss in aged mutants. By crossing the Nf1hGFAPCKO mice with Bax-/-  mutants, I demonstrated 

that the mechanism of progressive RGC loss in tumor bearing Nf1hGFAPCKOs is dependent on Bax-

mediated apoptosis. Collectively, my findings provide a specific temporal sequence of events that 

underlie OPG progression following abnormal glial expansion (Phase I), from immune infiltration 

to RGC degeneration (Phase II). Furthermore, I established that the first three weeks of postnatal 

development represent a critical window for therapeutic intervention before neuronal loss. 

However, it remains unclear how the phase I glial abnormalities can lead to subsequent nerve 

degeneration. 

 

 One possible explanation could be a cross talk between neoplastic cells and microglia. It is 

well documented that gliomas microenvironment is composed of neoplastic and non-neoplastic 

cells that contribute to cancer formation, progression and response to treatment. In PAs, the 

percentage of microglia can be as high as 35% to 50% (Gutmann et al. 2013). Numerous studies 

using models of pharmacological (minocycline, c-Jun-NH(2)-kinase inhibition) or genetic 

inactivation (ganciclovir treatment of CD11b−thymidine kinase–expressing mouse line, CX3CR1) 

have established the critical role of microglia in mediating glioma formation and maintenance 

(Daginakatte and Gutmann 2007; Daginakatte et al. 2008; Simmons et al. 2011; Pong et al. 2013). 

Gliomas are known to attract microglia and reprogram them into immunosuppressive, pro-invasive 

cells. There are many factors that mediate microglia chemoattraction such as chemokines, 

cytokines, growth factors, neurotransmitters and ATP. However, the distinct factors that recruit 

microglia to the tumor site are currently unknown. One potential player could be monocyte 
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chemoattractant protein-1 (MCP-1), also known as CCL2. Indeed, ectopic expression of CCL2 in 

rat glioma cells resulted in a three-fold increase in tumor size (Platten et al. 2003). CX3CR1 (the 

receptor for the cytokine CX3CL1), another potent microglia chemoattractant, is mostly expressed 

by microglial cells and is critical for neuron-microglia communication (Paolicelli, Bisht, and 

Tremblay 2014). Genetic inhibition of CX3CR1 delays glioma formation in a mouse model of 

Nf1-OPG. The growth factor glial cell–derived neurotrophic factor (GDNF) is secreted by both 

mouse and human gliomas and has been shown to be a strong chemoattractant for microglia (Ku 

et al. 2013). Colony stimulating factor 1 (CSF-1) is another microglia chemoattractant secreted by 

glioma cells that is capable of converting microglia into a pro-tumorigenic phenotype. Inhibition 

of its receptor, CSF-1R, decreased the number of tumor-associated microglia (TAM) and inhibited 

glioblastoma invasion (Coniglio et al. 2012). Lastly, granulocyte-macrophage colony-stimulating 

factor (GM-CSF) was shown to recruit and activate microglia and thereby promote glioma growth 

(Sielska et al. 2013). Collectively, these studies help to establish that a critical step in creating a 

supportive microenvironment for tumor growth involves microglial recruitment and activation. In 

turn, glioma-associated microglia can secrete a large number of cytokines, interleukins, and growth 

factors (such as IL-6, TGFb, TNFa, STI1) to directly stimulate glioma cell growth and invasion. 

 

 The observation that there is a temporal window between microglia infiltration/activation 

and axonal loss opens the possibility that microglia recruited by the neoplastic cells release soluble 

factors that promote nerve damage. To investigate this hypothesis, we could perform an assay for 

cytokines using a Multi-Analyte ELIS Array kit (Qiagen, CA, USA) to check the concentration of 

12 inflammatory cytokines (IL1-α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IFNγ, TNF-α, 

GM-CSF, and RANTES) in tissue supernatant from P21-P30 Nf1 mutant nerves compared to age-

matched littermate controls. These experiments would enable us to explore the mechanism for the 

delay from abnormal cell expansion to nerve degeneration and the role of microglia in tumor 

progression. Additionally, anatomical assays such as optical coherence tomography (OCT), retinal 

nerve fiber layer (RNFL) and ganglion cell complex (GCC) thickness can provide automated, high 

resolution in vivo quantification of the relationship between RGC axon number and cell survival 

to further delineate the time course of visual impairment during OPG progression. Due to their 

important role in influencing tumor growth, microglia represent an attractive target for 

incorporation into future clinical therapies for low grade gliomas.  
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4.2 MEK-ERK signaling is the major signaling pathway underlying Nf1-OPG formation. 

 

 The RAS-MEK-ERK pathway is known to play a critical role in cell proliferation, 

differentiation and function. In the mammalian spinal cord, oligodendrocyte proliferation was 

shown to be at least partially controlled by RAS-Erk signaling pathway (Newbern et al. 2011). Li 

et al. have shown that blockage of MAPK signaling pathway through genetic deletion of Mek1/2 

prevents the generation of OPCs in the developing cortex (Li et al. 2012). Several studies have 

also implicated a role for the signaling pathway in regulating Nf1-deficient neural progenitor cell 

growth and differentiation in the forebrain and the cerebellum (Sanchez-Ortiz et al. 2014; Wang 

et al. 2012; Kim et al. 2014). Specifically, our lab has shown that neurofibromin regulates Olig2 

expression in SVZ Ascl1+ cells through RAS-Erk signaling. In my study, I have shown that MAPK 

pathway activation is associated with glial abnormalities (GFAP+Olig2+, BLBP+) in 

Nf1hGFAPCKOs throughout gliomagenesis. Furthermore, I demonstrated that MAPK pathway 

activation is the main/sole molecular mechanism responsible for optic gliomagenesis. This 

conclusion is based on clear-cut in vivo findings in genetically induced loss of function model 

(Mek1/2 genetic inactivation) and MEK pharmacological inhibition in the Nf1hGFAPCKO mice. 

First, I crossed the Nf1 mutants with Mek1/2 mice with different levels of genetic inactivation. 

Three alleles Mek1/2 deletion prevented nerve enlargement and abnormal glial cell increase in 

aged Nf1hGFAPCKO mice. Importantly, the rescue in glial abnormalities such as GFAP+Olig2+ cells 

and BLBP+ progenitors were correlated with decreased MEK-Erk activation. Of note, there was a 

dose-dependent rescue in Nf1-OPG phenotypes corresponding to increasing number of wild-type 

Mek1/2 alleles. When 2 alleles of Mek1/2 were deleted (M2), less than half of the M2 mutants (4 

out of 9, 44%) were rescued, with a further decrease to 38% rescued with one allele deletion (M3). 

Consistently, the degree of rescue in M2 and M3 mutants was associated the levels of 

phosphorylated Erk protein (low number of p-Erk+ cells correlated to complete rescue of tumor 

phenotype). Finally, I also observed a dose-dependent rescue in nerve degeneration and RGC 

apoptosis corresponding to degree of Mek1/2 inactivation. These results demonstrate that MEK-

ERK signaling is essential in regulating gliogenesis in the developing optic nerve and raise 

significant clinical implications for optic glioma treatment (Figure 25).  
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 Based on the successful use of MEK inhibitors to rescue forebrain and cerebellum defects 

in Nf1hGFAPCKO mice, I then investigated the potential for pharmacological MEK inhibition in the 

prevention and treatment of Nf1-OPGs. Initial screening showed that PD901 displayed the most 

potent inhibition inside and outside the CNS compared to two clinically relevant MEKis 

(selumetinib (AZD6244) and trametinib (GSK1120212)). Remarkably, a twenty-one days’ 

treatment “MEKi in the milk” protocol during neonatal development (P0.5-P21) not only repressed 

abnormal Olig2 expression in the astrocytic lineage, but also provided long-term rescue of the 

subsequent phase II nerve damage and neuronal loss by suppressing Erk activation. Similar to the 

results from genetic Mek1/2 inactivation, I noted a dose-dependent (5, 10, 20 mg/kg) rescue in the 

tumor phenotype, with 20 mg/kg dose of PD901 providing the most consistent rescue in glial 

defects but with high toxicity. My findings are most consistent with a model where neurofibromin 

downregulate bipotency of Pax2+ APCs by inhibiting Olig2 expression through MEK-Erk 

inactivation during early postnatal optic nerve development. As such, Nf1 is a key regulator of 

glial fate specification in the developing nerve. In the ventral brain, Nf1 inactivation leads to 

abnormal expansion of BLBP+Olig2+ glia progenitors that migrate into the nerve and persist 

throughout development (Figure 25). Although this model addresses the role of Nf1 in progenitor 

fate specification, the mechanism of MAPK regulation of gliogenesis is less defined. Several 

studies have implicated members of the Ets family transcription factor in regulation of gliogenesis. 

Ets transcription factors are targets of FGF and can be phosphorylated and activated by MAPK 

pathway (Bertrand et al. 2003; Chen et al. 2005). The Pointed domain, named after the Drosophila 

Ets protein Pointed, is the docking site for ERK1/2 and plays an important role in glial 

differentiation in the developing Drosophila brain (Klaes et al. 1994). In the mammalian brain, 

overexpression of Etv5/Erm, a member of Ets transcription factor, in radial progenitors induces 

glial progenitor specification. MEK was shown to be a key regulator of Erm expression in radial 

progenitors (Li et al. 2012). Another possible mechanism is through MEK modulation of Egfr 

expression which increases during late embryonic development. EGFR is known to regulate the 

competence of gliogenic progenitors in vivo (Viti et al. 2003). One important future direction 

would be to use FACS techniques to isolate Nf1-/- and Nf1+/+ cells based on their genetically 

coupled RFP (red) and GFP (green) from optic nerves of MADM-Nf1hGFAPCKO mice during early 

postnatal development (P0.5, P5 and P15) when the majority of abnormal expansion of Nf1-/- glial 

cell populations occurs compared to their sibling Nf1+/+ cells. Next, we could extract total RNAs 
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and mRNAs for library construct and RNA sequencing analysis to identify potential targets that 

are differentially expressed between sibling Nf1-/- cells and Nf1+/+ cells isolated from different 

stages of the developing optic nerve.   

 

4.3 Clinical implications for NF1-associated OPG 

 

 The progression-free survival (PFS) for pediatric LGG patients with unresectable/residual 

disease requiring treatment is approximately 40% (Ater et al. 2012). Radiotherapy treatment has 

been shown to cause neurocognitive and neuroendocrine dysfunction, ototoxicity, vasculopathy, 

and secondary neoplasms. Although chemotherapeutic strategies can achieve tumor stabilization 

in 80–90% of patients, they are often only transiently effective and visual outcomes are variable. 

Over the past several years, several groups and institutions have undertaken and completed 

multiple clinical trials on NF1 children with progressive LGGs using mTOR inhibitors. However, 

improvement in vision was infrequently observed. The use of MEK inhibitors has been greatly 

advocated in NF1 patients with recurrent disease. Preliminary data from clinical studies suggest 

that MEKis are not only effective in tumor shrinkage, but they can also ameliorate vision. Over 

the past four years, several national consensus conferences have advocated for the use of MEKis 

in NF1 patients with newly diagnosed disease, not just recurrent disease (Jones et al. 2018). 

Amendments in the eligibility criteria are being investigated for current clinical studies to allow 

children as young as one-year-old to participate. Although the MEKi treatment was shown to be 

very effective in preventing tumor formation, the functional consequences of these anatomic 

outcomes remain unknown. Therefore, we must examine whether the prevention of neurologic 

deficits by the “MEKi in milk” protocol can provide improvement in functional outcomes and 

behavioral impairment in Nf1hGFAPCKO mice. One possible method is to measure optomotor and 

optokinetic responses (OMR & OKR) in order to evaluate visual acuity and contrast sensitivity in 

MEKi-treated versus untreated mutants at P60. Optical coherence tomography (OCT) has been 

used as a biomarker for vision loss in patients with NF1-OPG and can detect thinning of the retinal 

nerve fiber layer (RNFL) and ganglion cell complex (GCC). OCT measurements after treatment 

would therefore provide automated and precise in vivo quantification for RGC survival in Nf1 

mutants. Finally, electrophysiological studies using multielectrode array (MEA) to simultaneous 

record 50-200 RGCs can be performed to measure spontaneous activity (number of action 
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potentials per second), light-evoked responses (strength, latency and duration) between treated 

versus untreated mutants. These studies can provide the foundation for developing MEKi-based 

early intervention therapies for NF1-OPG. 
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Figure 25. Proposed model of how Nf1 loss affects transient brain-derived and optic nerve-

derived glial precursor cells during optic nerve development.  

During neonatal stage, Nf1 loss causes the ectopic expression of Olig2 in nerve-derived transient 

Pax2+ APCs and the expansion Pax2+Olig2+ cells which later differentiate into GFAP+Olig2+ cells. 

In the embryonic brain, Nf1 inactivation leads to the expansion of BLBP+Olig2+ glia-restricted 

progenitors which migrate in the developing optic nerve and a portion of these cells express GFAP 

marker later on. Pax2+Olig2+ and BLBP+Olig2+ cells represent transient glial progenitor 

populations that are present in the normal nerve during a short, early developmental window and 

become rare later on. These cells are maintained throughout gliomagenesis in Nf1 mutant nerves 

through p-Erk activation and are the most expanded cellular compartment in late-stage tumors. 

The second phase of disease progression is characterized by microglia infiltration, axonal and 

myelin defects and RGC loss. Phase I abnormal glial expansion represent an attractive therapeutic 

window that can be targeted by genetic and pharmacological MEK inhibition. 
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Chapter V: Materials and Methods 
 

5.1 Mouse Models 

 

Nf1hGFAPCKO 

 The control mice used in this study are a pool of phenotypically indistinguishable mice 

with genotypes Nf1flox/flox; Nf1flox/+; and hGFAP-cre+; Nf1flox/+. The mutant Nf1hGFAPCKO used was 

of the genotype hGFAP-cre+; Nf1flox/flox and was maintained in the mixed backgrounds of C57Bl6, 

129Svj, and FVB, which resulted in improvement of the overall health and life span of the mutant 

mice. Age and littermate-matched control and mutant mice were used for the developmental 

analyses to minimize the impact of modifier genes. All mice in this study were cared for according 

to the guidelines that were approved by the Animal Care and Use Committees of the University of 

Michigan at Ann Arbor as well as the Institutional Animal Care and Use Committee of Children’s 

National Medical Center in Washington DC. 

 

Mek1/2hGFAPCKO 

 

Mek1flox/flox mice were generated by flanking the ATP-binding site for the kinase in the 

third exon with LoxP sites (Bissonauth et al. 2006). The Mek2-/- mice were generated by replacing 

exon VI-IV with a reversed neo cassette in the middle of the gene coding sequence (Belanger et 

al. 2003). They were later crossed with Nf1 mice to generate three groups of Nf1 mutants with 

various degrees of Mek1/2 allele inactivation: M1 (Nf1hGFAPCKO, Mek1fl/fl, Mek2-/+ or Mek1fl/+, 

Mek2-/-); M2 (Nf1hGFAPCKO, Mek1fl/+, Mek2-/+; Mek1fl/fl, Mek2+/+; Mek1+/+, Mek2-/-); M3 

(Nf1hGFAPCKO, Mek1fl/+, Mek+/+ or Mek1+/+, Mek2-/+). 

 

MADM hGFAP-cre, Nf1fl/+ 
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 RG mice were crossed with hGFAP-cre+; Nf1flox/+ mice. They were subsequently crossed 

with GR mice to generate RG/GR hGFAP-cre+; Nf1flox/+ mice for MADM analysis. Cre negative 

mice were used for controls. 

 

5.2 Genotyping and PCR 

 

 Genetic analysis of mice in the colony used genomic DNA extracted from P18-P21 tail 

snips incubated overnight at 50ºC in SDS-EDTA TAE Buffer with Proteinase K (Roche 

Diagnostics). The resulting solution was mixed with 70% isopropanol (1:1) to allow DNA to 

precipitate. The precipitate was then transferred and diluted into ultrapure water before PCR 

analysis was performed for the Cre insert, NF1 recombination and tdTomato and GFP reporters 

using the Taq 2X MeanGreen Master Mix (Empyrical BioScience) or 2X PCR Super Master Mix 

(Bimake) in conjuncture with the following primers: 

  

Cre primers     

 

Icres 5'-CCG TTT GCC GGT CGT GGG-3'  

 

IcreAs 5'-CG TAT ATC CTG GCA GCG ATC- 3'  
     

 

NF1 Primers    

 

Yuan 11    5'-CTT CAG ACT GAT TGT TGT ACC TGA- 3' 

 

Yuan 6.1    5'-AAA TCA GCA GAG GTT GTC AGA ATC- 3' 

 

Yuan 6.2    5'-AGT TCC ATC ACA CGT AAA ATT GAG- 3' 

 

   tdTomato Primers 

      5'-AAG GGA GCT GCA GFG GAG TA- 3' 
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 RT 1 

 

 RT 2      5'-CCG AAA ATC TGT GGG AAG TC- 3' 

 

 RT 3 

     

     5'-GGC ATT AAA GCA GCG TAT CC- 3' 

 

 RT 4      5'-CTG TTC CTG TAC GGC ATG G- 3' 

 

   GFP Primers 

 

eGFP-F 

      

     5'-GAG CTG GAC GGC GAC GTA AAC- 3' 

 

eGFP-R      5'-CGT TGT GGC TGT TGT TAG TGT TAC- 3' 

 

  Mek1/2 Primers 

 

  Mek1-Olig9            5'-CAG AAG TTC CCA CGA CAC TA- 3' 

   

  Mek1-2772Flox      5'-GTC TGT CAC TTG TCT TCT GG- 3' 

 

  Mek2WT-13131      5'-CTG ACC TTC CTG TAG GTG- 3' 

 

  Mek2WT-13424      5'-ACT CAC GGA CAT GTA GGA- 3' 

 

  Mek2KO-Neo25      5'-CGT GCA ATC CAT CTT GTT C- 3' 

 

  MADM primers 

 

  Chr11_CS1           5-TGGAGGAGGACAAACTGGTCAC-3 

  Rosa4           5-TCAATGGGCGGGG GTCGTT-3 
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  Chr11_CS2           5-TTCCCTTTCTGCTTCATCTTGC-3 

 

5.3 Tissue preparation 

 

Mice were perfused with 4% paraformaldehyde (PFA) and optic nerves and brains were 

dissected, followed by overnight post-fixation in 4% PFA at 4ºC. Following sacrifice, chiasms and 

optic nerves were micro dissected, cleaned and imaged using an Olympus DP70 camera. Optic 

nerves, retinas and brains were processed through a sequence of dehydration steps prior to paraffin 

embedding. Brains were divided into two hemispheres along the midline and each hemisphere was 

embedded. Optic nerves were separated into 2 portions: the distal nerves including prechiasmatic 

nerve and chiasm were embedded separately from the proximal portion which included the retina 

and optic nerve head. Embedded tissue was sectioned sagittally at 5 µm for paraffin sections or 10 

µm for cryostat sections. Serial sections were prepared at 5 µm for paraffin sections or 10~14 µm 

for cryostat sections. Slides from histologically comparable positions were stained by hematoxylin 

and eosin (H&E). Adjacent sections were subjected to immunohistochemical or 

immunofluorescence analysis. 

 

5.4 Immunohistochemistry/immunofluorescence 

 

 Paraffin sections were deparaffinized through Xylene, 100% ethanol, 95% ethanol, 50% 

ethanol and 30% ethanol and rehydrated in distilled water. Antigen retrieval was performed with 

Retrieve-all antigen retrieval solution (BioLegend) in heated coplin jars. Cryosections do not 

require deparaffinization or antigen retrieval steps and were directly fixed in 4% PFA for 15 

minutes. Sections were then permeabilized by 0.3% Triton-X (Sigma) solution for 20 minutes and 

blocked for 1 hour with 3% normal goat/horse/donkey serum (Sigma) depending on the secondary 

antibody selection. Slides were put in humidified chamber and incubated in primary antibodies 

dissolved in the blocking solution at 4ºC overnight. The visualization of primary antibodies was 

performed with either a horseradish peroxidase system using a diaminobenzidine-based (DAB) 

peroxidase substrate (Vectastain ABC kit, Vector) or immunofluorescence by using Cy2 (or Alexa 

488), Cy3 (or Alexa 555) and Cy5 (Alexa 647)-conjugated secondary antibodies at 1:200 dilution 

for 1 hour incubation (Cy2/Cy3/Cy5, Jackson Immunoresearch; Alexa 488/555/647, Invitrogen). 
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Slides were washed in between the steps with 1X PBS. The dilutions of primary antibodies were 

as followed:  

GFAP (1:2000, mouse, BD Pharmingen),  

GFAP (1:2000, mouse, DAKO),  

Olig2 (1:2000, rabbit, Millipore),  

Olig2 (1:300, mouse, Millipore), 

Olig2 (1:10000, guinea pig, a kind gift from Dr. B. Novitch),  

Iba-1 (1:2000, rabbit, Wako),  

PDGFRa (1:1000, goat, RD) 

MBP (1:500, rat, Chemicon),  

BLBP (1:100, rabbit, Abcam),  

Ki-67 (1:500, mouse, BD Pharmingen),  

Ki-67 (1:500, rabbit,), 

p-ERK (1:200, rabbit, Cell Signaling),  

p-S6 (1:1000, rabbit, Cell Signaling),  

RBPMS (1:250, guinea pig, Cedarlane).  

GFP (1:500, rabbit, Molecular Probes) 

GFP (1:500, chicken, Abcam) 

 

Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay 

was performed using the Click-iT® TUNEL Alexa Fluor® Imaging kit from Thermo-

Fisher according to manufacturer’s recommendations. 

Sections were examined under either a light or a fluorescence microscope (Olympus).  

 

MADM staining design 

 

Fluorescence involving MADM (for GFP and RFP) occupied the commonly used green (488 nm 

laser) and red (555 nm laser) channels in fluorescent microscope. Marker staining other than 

MADM was applied in either the Far-red channel (635 nm laser). When a single marker was 

stained along with MADM (three-channel staining), I stained this marker with the appropriate 

secondary antibody to visualize it in the Far-red channel (Alexa Fluor 647 secondary antibody).  
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5.5 Retinal analyses 

 

 For whole-mount retinal staining, special care was taken to maintain the orientation of the 

eyes by the following methods. After anesthesia and before perfusion a suture was placed on the 

superior pole of each eye. Upon dissection of the eyeball, the rectus muscle insertion into the 

superior part of the eye and the nasal caruncle were used as additional landmarks. Both retinas 

were dissected and prepared as flattened whole-mounts by making four radial cuts (the deepest 

one in the superior pole), post-fixed for an additional hour, rinsed in 1X PBS, mounted vitreal side 

up on subbed slides and covered with anti-fading mounting media containing 50% glycerol and 

0.04% p-phenylenediamine in 0.1 M sodium carbonate buffer (pH 9). 

 

For cross-sectional analysis, eyes from pigmented mice were enucleated and immunostained for 

RBPMS (retinal ganglion cells) following previously described methods for immunofluorescence. 

TUNEL-positive cells were quantified by counting the number of cells positive for TUNEL 

staining within the DAPI+ cells in the retinal ganglion cell layer. The total number of RBPMS+ 

cells was counted per section starting from area adjacent to the optic nerve head. 

 

5.6 MEK inhibitor treatment  

 

MEK inhibitor (MEKi) PD0325901 (Sigma, PZ0162-25MG) was dissolved in 0.5% 

hydroxypropyl methyl-cellulose plus 0.2% Tween 80 (Sigma) at a concentration of 1mg/ml. The 

solution was administered by oral gavage at the dosage of 5, 10 or 20 mg/kg (body weight) every 

day from P0.5-P21 to lactating females (“MEKi in the milk”). Mice that receive vehicle (0.5% 

hydroxypropyl methyl-cellulose plus 0.2% Tween 80) treatment were used as controls. MEKi-

treated mice were collected and compared to control mice and vehicle-treated mice. 

 

5.7 Western blotting 

 

 Snap-frozen tissue samples from wild-type control brains and tumors were homogenized 
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in Pierce RIPA Buffer (Thermo Scientific) (10 µl buffer/1 mg tissue), mixed 1:1 with Laemmli 

Sample Buffer (BioRad, Hercules, CA) for 20 minutes on ice, subjected to centrifugation at 14,000 

rpm for 10 min at 4°C and boiled at 100°C for 10 minutes. Equal amounts of protein samples were 

mixed with 1X SDS loading buffer [50 mM Tris-HCL (pH6.8), 2% SDS, 0.05% bromophenol 

blue, 10% glycerol, 100 mM β-mercaptoethanol] (BioRad). Samples were then subjected to SDS-

PAGE using the Criterion TGX Precast gels (BioRad) and transferred onto PVDF membranes 

(Millipore). Membranes were blocked in 5% non-fat milk (BioRad) prepared in 1X TBST and 

incubated with primary antibodies at 4°C overnight. The following day, the membranes were 

washed with TBST and incubated in horseradish peroxidase (HRP)- conjugated secondary 

antibodies at room temperature for 1 hour. The membranes were then exposed to Pierce ECL 

western blotting substrate (Thermo Scientific) for 3-5 minutes to detect signal by film development 

in dark room. The primary antibodies used in this study were as follows: 

 

pAktS473 (1:1,000, rabbit, Cell Signaling),  

Akt (1:1,000, rabbit, Cell Signaling),  

β-Actin (1:5,000-10,000, mouse, Sigma-Aldrich),  

pS6KT389 (1:1,000, rabbit, Cell Signaling),  

S6 (1:2,000, rabbit, Cell Signaling), 

pErk1/2T202/Ty204 (1:1,000, rabbit, Cell Signaling),  

Erk1/2 (1:1,000, rabbit, Cell Signaling), 

P120 (1:1000, mouse, BD Biosciences) 

NF1 (1:1000, rabbit, Upstate, Lake Placid, NY) 

HRP-conjugated secondary antibodies were anti-mouse (1:5,000-1: 10,000, 

goat, BioRad) and anti-rabbit (1: 5,000-1: 10,000, goat, BioRad). 

 

5.8 Quantification and Statistical analyses 

Anatomically comparable sections from control and mutant prechiasmatic nerves were visualized 

using an Olympus BX51 microscope. Images were captured and subjected to double-blinded 

counting. Lengths, areas and the number of cells were quantified by the NIH software, ImageJ. 

Control and mutant groups were compared, and statistical analysis was carried out using two-tailed 

Student’s t-test. At least three animals from each group were used for quantification. Data were 
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presented as mean ± Standard Error Mean (SEM). p < 0.05 was considered to be statistically 

significant. 
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