
Methodological Advances for Drug Discovery and Protein
Engineering

by

Xinqiang Ding

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Bioinformatics)

in the University of Michigan
2018

Doctoral Committee:

Professor Charles L. Brooks III, Chair
Professor Heather A. Carlson
Assistant Professor Aaron T. Frank
Assistant Professor Peter L. Freddolino
Associate Professor Nina Lin



Xinqiang Ding

xqding@umich.edu

ORCID ID: 0000-0002-4598-8732

©Xinqiang Ding 2018



ACKNOWLEDGMENTS

First and foremost I would like to thank my thesis advisor Prof. Charles
Brooks III for the guidance and help in all of my research projects. I have
greatly benefited from his enthusiasm and expertise that consistently pro-
vide for me great advice. Much of the work presented in the disserta-
tion would have never happened without his guidance. I also want to
express my gratitude to my thesis committee members — Barry Grant,
Georgios Skiniotis, Aaron Frank, Heather Carlson, Peter Freddolino, and
Nina Lin — for their suggestions on the research projects. I would also
like to thank Daniel Burns and Margit Burmeister. As co-directors of
the bioinformatics program, they not only gave me the opportunity to
have training in the program but also provided guidance on my course-
work and research rotations. I have had a great time doing research in
the Brooks lab and received enormous help from many Brooks lab mem-
bers including Shanshan Cheng, Jessica Gagnon, Kira Armacost, Ryan
Hayes, Jonah Vilseck, Kathleen Dyki, and David Braun. I also want to
thank Julia Essen, the administrator for the bioinformatics program, for
her help throughout my training. At the time of writing the dissertation, I
am grateful to be financially supported by the Rackham Predoctoral Fel-
lowship program. Finally, I want to thank my parents and my wife for
their patience and support.

ii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Fast Fourier transform docking. . . . . . . . . . . . . . . . . . . 6
2.1.2 Parallel MD-based simulated annealing with GPUs. . . . . . . . 7

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Grids and soft-core potentials in CDOCKER . . . . . . . . . . . 8
2.2.2 Fast Fourier transform (FFT) docking . . . . . . . . . . . . . . . 9
2.2.3 Parallel MD-based simulated annealing with GPUs . . . . . . . . 13
2.2.4 Benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Fast Fourier transform docking . . . . . . . . . . . . . . . . . . . 15
2.3.2 Parallel MD-based simulated annealing with GPUs. . . . . . . . 18

2.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Free Energy Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Previous methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Gibbs sampler based �-dynamics . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 The Gibbs sampler. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Pairwise GSLD. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Generalizing GSLD for multiple ligands. . . . . . . . . . . . . . 29

3.4 Rao-Blackwell estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Rao-Blackwell estimators for �-dynamics . . . . . . . . . . . . . 31
3.4.2 Derivation of the MBAR/UWHAM equations using RBE . . . . . 33

3.5 Applications of GSLD and RBE . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 System setups and computational details . . . . . . . . . . . . . 35

iii



3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Auxiliary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 A Wang-Landau like algorithm to automatically determine the
biasing potential Gb

1 used in pairwise GSLD when � is continuous. 45
3.7.2 Reformulation of the PMF method using conditional probability. . 46

4 Protein Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Previous Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Sequence profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Direct coupling analysis . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Gaussian process regression . . . . . . . . . . . . . . . . . . . . 52

4.3 Variational Auto-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Learning variational auto-encoder (VAE) models of a protein fam-

ily’s sequence distribution . . . . . . . . . . . . . . . . . . . . . 53
4.4 Processing sequences in multiple sequence alignments . . . . . . . . . . 54
4.5 Variational auto-encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 Calculating the marginal probability of a sequence X , p

✓

(X) . . . 56
4.6 Simulating multiple sequence alignments . . . . . . . . . . . . . . . . . 56
4.7 A predefined protein fitness function . . . . . . . . . . . . . . . . . . . . 57
4.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.1 Predicting protein stability change upon mutations . . . . . . . . 57
4.8.2 VAE latent space representation captures phylogenetic relation-

ships between sequences . . . . . . . . . . . . . . . . . . . . . . 59
4.8.3 Navigating the protein fitness landscape in the VAE latent space . 62
4.8.4 A simulated protein family with a predefined fitness function . . . 63
4.8.5 Cytochrome P450 . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

iv



LIST OF FIGURES

2.1 The electrostatic interaction energy between proteins and ligands can be calcu-
lated as a cross correlation function between the protein electrostatic potential
grid and the ligand charge grid. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Docking accuracy of the FFT approach for docking rigid ligands onto rigid
proteins with the native conformations of both ligands and proteins using the
Astex diverse set and the SB2012 set. . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The thermodynamic cycle used for calculating a relative binding free energy
between ligand L0 and L1 with a receptor R. . . . . . . . . . . . . . . . . . . 24

3.2 Results of pairwise GSLD and RBE on harmonic systems . . . . . . . . . . . 39
3.3 Results of pairwise GSLD and RBE for calculating solvation free energies. . . 42
3.4 Results of generalized GSLD for multiple ligands and RBE for calculating

solvation free energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Results of GSLD and RBE for calculating relative binding free energy between

benzene and p-xylene with T4 lysozyme. . . . . . . . . . . . . . . . . . . . . 44

4.1 Encoder and decoder models used in the variational auto-encoder. . . . . . . . 68
4.2 Predicting protein stability change upon mutations. . . . . . . . . . . . . . . . 69
4.3 VAE latent space representation of sequences captures phylogenetic relation-

ships between sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Navigating the protein fitness landscape in the VAE latent space. . . . . . . . . 71
4.5 Two dimensional latent space representations of sequences from multiple se-

quence alignments for protein families: fibronectin type III domain, staphylo-
coccal nuclease, and phage lysozyme. . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Sequences of the three parent cytochrome P450s (CYP102A1, CYP102A2,
CYP102A3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Latent space representations of sequences for cytochrome P450 family and its
fitness landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



LIST OF TABLES

2.1 Soft-core potentials with different “softness” . . . . . . . . . . . . . . . . . . 9
2.2 Wall time used by the three methods: the naive method looping through all

positions on a CPU, FFTs (CPU), and FFTs (GPU) to calculate interaction en-
ergies between the protein and ligand in 1G9V for the ligand’s 59,220 positions. 16

2.3 Speedup of parallel MD-based simulated annealing with GPUs compared with
the original CDOCKER with CPUs on the Astex diverse set. . . . . . . . . . . 19

2.4 Docking accuracy of multiple protein-ligand docking programs on the Astex
diverse set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Docking accuracy of multiple protein-ligand docking programs on the SB2012
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Comparison of Relative Hydration Free Energies (��G in kcal/mol) for The
Three Benzene Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Alchemical Free Energy Changes (kcal/mol) Between Benzene and p-Xylene
Binding with T4 Lysozyme Calculated Using Pairwise GSLD with Corrections
from PMFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



ABSTRACT

Designing and engineering molecules not only tests our understanding of nature but also

plays an important role in improving both human health and industrial productivity. Two

such examples are drug discovery, which aims to design new molecules to treat diseases,

and protein engineering, which develops useful proteins for medical purposes or catalyz-

ing industrial chemical reactions. Drug discovery and protein engineering are both time-

consuming and financially expensive processes because they require multiple rounds of

trial-and-error. One effective path to reducing these costs and accelerating these processes

is through the development of computational methods that rationalize the course of design

and engineering. Facilitated by methodological developments and the increasing availabil-

ity of computational resources, computational strategies are becoming effective approaches

to assist drug discovery and protein engineering tasks. In this dissertation, I describe the de-

velopment of novel computational methodologies for drug discovery and protein engineer-

ing that exploit evolving accelerated computing architectures and the intersection between

statistical approaches and statistical mechanics.

Protein-ligand docking and free energy calculations are widely employed computa-

tional methods in drug discovery. In the dissertation, I first describe the development of an

accelerated version of the protein-ligand docking method, CDOCKER, by introducing two

new features — fast Fourier transform based docking and parallel simulated annealing, both

of which utilize the parallel computing power of graphical processing units (GPUs). These

advances not only accelerate CDOCKER by more than an order of magnitude but also pro-

vide an approach to calculate an upper bound on the docking accuracy of current scoring

vii



functions. In the second project that is directed toward a more rigorous assessment of a

ligand’s binding affinity for a receptor, I introduced two new methods for protein-ligand

binding free energy calculations: the Gibbs sampler �-dynamics (GSLD) methodology

and Rao-Blackwell estimators (RBE) for improved analysis of the simulation results from

GSLD. Compared with the original �-dynamics approach, GSLD is more flexible, easier

to implement, and retains the capacity to calculate free energies for multiple ligands in a

single simulation. Compared with the empirical estimator used in �-dynamics, RBE has

the advantages of being an unbiased estimator that does not depend on ad hoc cutoff values

as previously used in the empirical estimators associated with �-dynamics. Additionally,

RBE has smaller variance than the empirical estimators.

In the realm of protein engineering, I investigated the development and application of

variational auto-encoder (VAE) models to infer protein stability, evolution, and fitness land-

scapes based on alignments of protein sequences. VAE models are probabilistic generative

models that embed discrete sequences in a lower dimensional continuous latent space. Uti-

lizing the multiple sequence alignment from a protein family as training data, VAE models

learn a probability distribution of sequences for the protein family. The probability dis-

tribution may then by employed to predict protein stability changes upon mutation. The

embedding of sequences in a low dimensional latent space not only provides an approach

to visualize a protein family’s sequence space, but also captures evolutionary relationships

between sequences. Together with experimental fitness data, the embedding enables the vi-

sualization and expression of the fitness landscape in a low dimensional continuous space.

Exploiting the rapidly increasing amount of protein sequence data resulting from advances

in sequencing technology, we demonstrate that these features of the VAE models are of

significance for studying protein properties and evolution as well as guiding protein engi-

neering efforts.
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CHAPTER 1

Introduction

Designing and engineering molecules that have specified properties for good use is one of

the goals of natural sciences. It not only tests our understanding of nature but also plays an

important role in improving both human health and industrial productivity[1]. Two such

examples are drug discovery [2] and protein engineering [3], which will be the focus of

this dissertation. Drug discovery aims to design molecules to treat or even cure diseases,

which is essential to continuously improve human health. Protein engineering designs new

proteins or modifies existing proteins to make useful proteins such as antibodies and protein

drugs for medical purposes, and enzymes for catalyzing industrial chemical reactions.

Drug discovery and protein engineering are both time-consuming and financially ex-

pensive processes. For instance, developing a new drug requires on average one billion

dollars and ten years of effort [2]. One of the reasons for the high cost is that these pro-

cesses require multiple rounds of trial-and-error[2]. Therefore, one path to reducing the

cost is to develop methods that can rationalize the course of designing and engineering

processes. A particularly effective approach is developing computational methods that can

make predictions and help guide the design and engineering processes [4, 5]. As an ex-

ample, the computational methods — protein-ligand docking and free energy calculations

— have been widely employed in assisting drug discovery processes [4, 6]. Specifically,

the protein-ligand docking method is used to search a large library of small molecules to

identify molecules that can potentially bind with a target protein [4]. The free energy cal-

culation approach is for more rigorous evaluation of a ligand’s binding affinity with target
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proteins [6]. In the realm of protein engineering, computational methods for designing

proteins and predicting protein property change upon mutation are also increasingly used

for guiding protein engineering efforts [5]. With continuous computational methodolog-

ical developments and the increasing availability of computing resources, computational

approaches are becoming more and more effective in assisting both drug discovery and

protein engineering [4, 5].

In this dissertation, I describe the development and implementation of novel computa-

tional methodologies for drug discovery and protein engineering that exploit both evolving

accelerated computing architectures and the intersection between statistics and statistical

mechanics. In chapter 2, I describe the development and implementation of two new fea-

tures — fast Fourier (FFT) transform docking and parallel simulated annealing — added

to the protein-ligand docking method, CHARMM DOCKER(CDOCKER) [7]. These ad-

vances not only accelerate CDOCKER by more than an order of magnitude but also provide

an approach to calculate an upper bound on the docking accuracy that can be achieved with

current functions used in scoring docked poses. In chapter 3, two new methods for cal-

culating protein-ligand binding free energies — Gibbs sampler �-dynamics (GSLD) and

Rao-Blackwell estimators (RBE) — are described [8]. GSLD is a new sampling method

that combines the Gibbs sampler in statistics and the �-dynamics approach in computa-

tional chemistry. RBE is introduced to replace the empirical estimator used in the original

�-dynamics to better analyze the simulation results from GSLD. In chapter 4, I describe

the development and application of variational auto-encoders (VAE) models to infer infor-

mation regarding protein stability, evolution, and fitness landscapes using alignments of

multiple protein sequences. These features of the VAE models are of significance for both

studying protein properties and evolution and guiding protein engineering efforts.

The organization within chapter 2, 3, and 4 follows the same structure. At the begin-

ning of each chapter, an introduction is given to provide an overview of the specific field,

followed by a review of existing corresponding computational methods. After the review,

2



novel computational methods developed in the dissertation are described in detail. These

novel methods are applied and compared with existing methods on different systems. Then

each chapter is ended by conclusions or discussions on the novel computational methods.
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CHAPTER 2

Protein-Ligand Docking

Ding, Xinqiang, Ryan L. Hayes, Jonah Z. Vilseck, Murchtricia K. Charles, and Charles L.

Brooks III. “CDOCKER and �-dynamics for prospective prediction in D3R Grand Chal-

lenge 2.” Journal of computer-aided molecular design 32, no. 1 (2018): 89-102.

Ding, Xinqiang, Yanming Wang, Charles L. Brooks III “Accelerated CDOCKER with fast

Fourier transform docking and parallel simulated annealing on graphical processing units.”

in preparation.

2.1 Introduction

Protein-ligand docking methods aim to predict how ligands bind with a target protein, i.e.,

binding poses of ligands and their binding affinities [9]. They are widely employed in

drug discovery processes to virtually screen libraries of a large number of small molecules

to search for hit compounds that might be able to strongly bind with target proteins [4].

Today multiple off-the-shelf protein-ligand docking programs, either commercial or free,

are available for use [10], such as CDOCKER[7], Autodock[11], Autodock Vina[12],

DOCK[13], and Glide[14, 15]. Most of protein-ligand docking programs consist of two

essential components — a scoring function and a search algorithm [7]. The scoring func-

tion quantifies the fit between a ligand’s binding pose and the target protein and is expected

to be able to differentiate the correct binding pose from incorrect ones by the assumption

that the correct binding pose has the best score. When used to predict binding affinities, the
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scoring function is also expected to approximate the binding free energy between ligands

and target proteins. The search algorithm is utilized to sample potential ligand binding

poses and identify the binding pose with the best score. Because scoring functions used in

protein-ligand docking programs are not convex functions and might have multiple local

minimums, heuristic search algorithms such as genetic algorithms and simulated annealing

are often utilized in protein-ligand docking programs[7, 12].

CDOCKER[7], a CHARMM[16] module for protein-ligand docking, is one of the

protein-ligand docking programs that are widely used in both academia and industry for

drug discovery. It uses the interaction energies between proteins and ligands calculated

with the CHARMM force field for proteins and the CGenFF force field [17] for ligands as

its scoring function. To search for the lowest energy poses of ligands, CDOCKER utilizes

molecular dynamics (MD) based simulated annealing followed by energy minimization. In

the MD based simulated annealing, MD is used to simulate the dynamics of protein-ligand

interactions and the temperature of MD first increases to a high value and then slowly de-

creases. As the temperature of MD decreases, ligands are expected to adopt to low energy

poses. Resulting ligand poses from simulated annealing are further optimized by energy

minimization. As the MD-based simulated annealing is a heuristic search approach, it is

not guaranteed that the ligand will converge to the lowest energy pose in each trial of MD-

based simulated annealing. To increase the chance that the lowest energy pose of the ligand

is identified, multiple trials of simulated annealing are needed. In each trial, the ligand is

first initialized with a random conformation, a random orientation, and a random position

within the binding pocket before going through the MD-based simulated annealing and en-

ergy minimization. After the energy minimization, the resulting poses, one from each trial,

are ranked by their interaction energies with the protein and the pose with the lowest inter-

action energy is predicted to be the binding pose. In a typical application of CDOCKER,

a large number of ligands need to be docked with a protein. Therefore, the docking pro-

cedure has to run fast enough to make the method practical. To accelerate the docking
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procedure and help search for the lowest energy poses of ligands, CDOCKER utilizes a

grid representation of the binding pocket and soft-core potentials[7, 9], respectively, which

will be described in detail in the Methods section. In this chapter, two new features — fast

Fourier transform (FFT) [18] docking and parallel MD simulated annealing — are added

to CDOCKER to help quantify the accuracy of CDOCKER scoring function and to further

accelerate the search algorithm in CDOCKER.

2.1.1 Fast Fourier transform docking.

The FFT approach for docking was first used in rigid protein-protein docking [19]. In this

approach, proteins are represented as 3 dimensional grids such that the surface complemen-

tarity of two proteins can be formulated as the correlation function between two grids [19].

Calculating the correlation function between two grids can be greatly accelerated using the

FFT algorithm[20]. Since its first use in protein-protein docking [19], the FFT approach has

been extended and improved in several aspects. In addition to the original potential term

representing protein shape complementarity [19], potential terms representing desolvation

and electrostatic interactions were added into the scoring function [21, 22, 23] to more ac-

curately model the physical interactions between proteins. Moreover, the FFT approach

was further accelerated by using spherical polar Fourier correlations to speedup the rota-

tional space search [24, 25, 26] and by utilizing the parallel computing power of graphics

processor units (GPUs) [27, 28]. With these extensions and improvements, the FFT ap-

proach has been widely adopted in multiple protein-protein docking programs [25, 23, 29].

In contrast to FFT’s wide application in protein-protein docking, its application in

protein-ligand docking is largely unexplored [30]. One difficulty in adopting the FFT ap-

proach for protein-ligand docking is to represent the scoring function as a correlation func-

tion between grids, as the scoring function used in protein-ligand docking is often more

complicated than that in protein-protein docking. In addition, the FFT approach assumes

both protein and ligand are rigid bodies, whereas, in protein-ligand docking, at least the

6



ligand needs to be flexible. Therefore multiple FFTs are required to search the ligand’s

conformation space. This in turn requires a fast implementation of FFT. Otherwise running

multiple FFTs will take too much time to be practical.

In this chapter, we investigated the use of the FFT approach for protein-ligand docking

in the context of CDOCKER where the CHARMM force field [16, 17] was used as the

scoring function. The interaction energy, including electrostatic and van der Waals energy,

between proteins and ligands are represented as the sum of multiple correlation functions

between multiple pairs of grids and the calculation of correlation functions is accelerated

using FFTs. Moreover, calculating multiple FFTs is further accelerated using GPUs.

2.1.2 Parallel MD-based simulated annealing with GPUs.

One of the advances in using MD simulations to study both chemical and biological sys-

tems has been the utilization of GPUs in running MD [31, 32, 33, 34]. Compared with the

traditional central processing units (CPUs), the parallel computing power of GPUs enables

us to run MD simulations orders of magnitude faster and simulate longer timescale dynam-

ics of chemical and biological systems, which makes MD suitable to study processes that

are not accessible before [31, 32, 33, 34]. Although GPUs have been widely employed

in running MD simulations of large chemical and biological systems, they are rarely used

to accelerate protein-ligand docking methods. In this chapter, we investigated the utiliza-

tion of GPU computing to accelerate CDOCKER for protein-ligand docking by running

MD-based simulated annealing of multiple copies of ligands in parallel on GPUs.
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2.2 Methodology

2.2.1 Grids and soft-core potentials in CDOCKER

In CDOCKER’s docking protocol, most of the computational time is spent on calculating

forces on ligand atoms and the ligand’s interaction energy with the protein for a large

number of ligand poses. To accelerate the force and energy calculation a grid representation

of the binding pocket is used. Specifically, the binding pocket inside a protein is discretized

into a 3 dimensional grid. Probe atoms are placed on each of the grid points and their

interaction energies with the protein are saved in a lookup table. Then the force and the

interaction energy of a ligand atom with the protein can be rapidly calculated by looking

up values in the tables, instead of explicitly calculating its interaction with all of the protein

atoms.

Soft-core potentials in CDOCKER are used to smooth the energy landscape, which

can help the MD-based simulated annealing to escape from local minima and identify the

ligand pose with the lowest energy. Specifically, when using soft-core potentials, the van

der Waals, electrostatic attractive, and electrostatic repulsive energies are approximated

using the formula:

E
ij

= Emax � a · rb
ij

if |E⇤
ij

| > |Emax|
2

, (2.1)

where E⇤
ij

is regular interaction energy; Emax is a parameter controlling the “softness” of

the potential; a and b are determined using the condition that the energy and the force

calculated using the new formula 2.1 have to be equal to that with the regular formula at

the switch distance at which |E⇤
ij

| = |Emax|/2. Three sets of values for parameter Emax are

used in this study and they are summarized in Table 2.1
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Table 2.1: Soft-core potentials with different “softness”
name E⇤

max(vdw) E⇤
max(att) E⇤

max(rep)
soft-core potential I 0.6 -0.4 8.0
soft-core potential II 3.0 -20.0 40.0
soft-core potential III 100 -100 100

* Emax(vdw), Emax(att) and Emax(rep) in the unit of
kcal/mol are parameters for the van der Waals, electro-
static attractive, and electrostatic repulsive interactions,
respectively.

2.2.2 Fast Fourier transform (FFT) docking

2.2.2.1 Representing non-bonded interaction energy between proteins and ligands

as correlation functions between grids.

In order to use the FFT approach for protein-ligand docking, the interaction energy between

proteins and ligands needs to be expressed as correlation functions between grids. Because

CDOCKER uses the CHARMM force field [16, 17] as its scoring function, the interaction

between proteins and ligands includes electrostatic and van der Waals interactions [7].

The electrostatic interaction energy between proteins and ligands is calculated as

Uelec =
X

i2L

X

j2P

1

4⇡✏

q
i

q
j

|r
i

� r
j

| =
X

i2L

q
i

·
X

j2P

1

4⇡✏

q
j

|r
i

� r
j

| =
X

i2L

q
i

· Velec(ri), (2.2)

where L and P are collections of ligand atoms and protein atoms, respectively; q
i

and q
j

are atom partial charges; r
i

and r
j

are atom coordinates. Velec(ri) =

P
j2P

1
4⇡✏

q

j

|r
i

�r

j

| is

the protein electrostatic potential at position r
i

. As equation (2.2) shows, the electrostatic

interaction energy between protein and ligand atoms can be calculated as inner-product be-

tween the ligand atoms’ charge vector q
L

= (q
i

)

i2L and the protein electrostatic potential

vector Velec = (Velec(ri))i2L. However, the protein electrostatic potential vector Velec still

depends on positions of ligand atoms that are not known in advance. To get rid of this de-

pendency, grid representations are used for both the protein electrostatic potential and the

ligand atoms’ charges (Fig. 2.1). Specifically, the binding pocket of a protein is discretized
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(A)

(B)

(C) (D)

Figure 2.1: The electrostatic interaction energy between proteins and ligands can be calcu-
lated as a cross correlation function between the protein electrostatic potential grid and the
ligand charge grid. (A) The bind pocket in the protein is discretized into a 3 dimensional
grid with equal spacing distance. (B) Charges of ligand atoms are distributed onto a 3 di-
mensional grid which has the same spacing distance and the same number of grid points as
the potential grid in (A). (C,D) As the ligand translates within the binding pocket by mul-
tiple units of the spacing distance, the electrostatic interaction energy can be approximated
using a cross correlation between the protein potential grid and the ligand charge grid. (C)
and (D) corresponds to the cases Uelec(0, 0, 0) and Uelec(0, 1, 0), respectively.

using a 3 dimensional grid and protein electrostatic potentials at all the grid points are cal-

culated and saved in a lookup table (Fig. 2.1A). The protein electrostatic potential at the

grid point (l,m, n) is represented as V grid
elec (l,m, n). Because the protein electrostatic poten-

tial is calculated only at the grid points, in order to calculate the electrostatic interaction

energy between proteins and ligands, the partial charges of ligand atoms are distributed

onto a 3 dimensional grid (Fig. 2.1B) in a trilinear manner (Fig. S1). The aggregated

charge at the grid point (l,m, n) is represented as Qgrid
(l,m, n). Then the electrostatic in-

teraction energy between protein atoms and ligand atoms can be approximated using the

inner-product of protein electrostatic potential grid and ligand charge grid (Fig. 2.1C):

Uelec ⇡
N

x

�1X

l=0

N

y

�1X

m=0

N

z

�1X

n=0

Qgrid
(l,m, n) · V grid

elec (l,m, n), (2.3)

where N
x

, N
y

, and N
z

are numbers of grid points along X ,Y ,and Z direction, respectively.
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Moreover, when the ligand is translated with the binding pocket by i, j, and k grid spacing

units in the X, Y , and Z direction, respectively, the electrostatic potential energy between

the protein and ligand can be similarly approximated using (Fig. 2.1D):

Uelec(i, j, k) ⇡
N

x

�1X

l=0

N

y

�1X

m=0

N

z

�1X

n=0

Qgrid
(l,m, n) · V grid

elec (l + i,m+ j, n+ k), (2.4)

where V grid
elec is extended into a periodic grid, i.e., V grid

elec (l,m, n) = V grid
elec (l (mod N

x

),m (mod N
y

),

n (mod N
z

)). As shown in Eq. 2.4, as the ligand moves within the binding pocket by dis-

tances of multiple units of grid spacing in each direction, the electrostatic interaction energy

between the protein and ligand can be approximated as a cross correlation function between

the protein electrostatic potential grid V grid
elec and the ligand charge grid Qgrid. An advantage

of using the grid representation, as in Eq. 2.4, over that in Eq. 2.2 is V grid
elec is independent of

the ligand and can be calculated with only the protein. Similarly, grid Qgrid is independent

of the protein and can be calculated with only the ligand.

The van der Waals interaction energy between proteins and ligands is calculated using

the Lennard-Jones potential:

Uvdw =

X

i2L

X

j2P

✏
ij

" 
rmin
ij

r
ij

!12

� 2

 
rmin
ij

r
ij
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✏
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j
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� r
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|
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+ rmin
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)/2
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|

!6#

=
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i2L

p
✏
i

· Vvdw(ri, r
min
i

), (2.5)

where rmin
i

, rmin
j

, ✏
i

, ✏
j

are parameters of the Lennard-Jones potential and are parts of the

CHARMM force field;

Vvdw(ri, r
min
i

) =

X

j2P

p
✏
j

" 
(rmin

i

+ rmin
j

)/2

|r
i

� r
j

|

!12

� 2

 
(rmin

i

+ rmin
j

)/2

|r
i

� r
j

|

!6#
. (2.6)
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The Eq. 2.5 for van der Waals energy is similar to that in Eq. 2.2, except that Vvdw(ri, r
min
i

)

depends on not only ligand coordinates r
i

but also parameters rmin
i

, whereas Velec(ri) only

depends on ligand coordinates r
i

. Because of this difference, the approach used to repre-

sent the electrostatic energy between proteins and ligands as a cross correlation function

between a pair of grids can not be applied to van der Waals interaction directly. In the

CHARMM force field, parameters rmin of ligand atoms depend on their atom types and the

total number of atom types is finite. Therefore, there are only a finite number of possible

values for rmin. Taking advantage of this fact, we can group the terms in Eq. 2.5 based on

the value of rmin:

Uvdw =

X

i2L

p
✏
i

· Vvdw(ri, r
min
i

) =

X

r

min2Rmin

X

i2L
r

min

p
✏
i

· V r

min

vdw (r
i

) =

X

r

min2Rmin

U r

min

vdw , (2.7)

where Rmin is the set of possible values of rmin for ligand atoms and L
r

min is the set of ligand

atoms that have the parameter of rmin. The individual van der Waals energy corresponding

rmin is U r

min

vdw =

P
i2L

r

min

p
✏
i

·V r

min

vdw (r
i

), which is similar to the Eq. 2.2 and can be calculated

as a cross correlation function between grids using the same approach used for calculating

the electrostatic energy. Therefore, the total van der Waals interaction energy between pro-

teins and ligands can be approximated as the sum of multiple correlation functions between

multiple pairs of grids.

2.2.2.2 Calculating cross correlation functions between grids using FFTs in parallel

on GPUs.

Based on the convolution theorem [20], the cross correlation function for electrostatic en-

ergy in Eq. 2.4 can be calculated by applying a Fourier transform and an inverse Fourier

transform successively on both sides of the equation:

Uelec = F�1{F{Qgrid}⇤ · F{V grid
elec }}. (2.8)
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The FFT algorithm is utilized to efficiently calculate both the Fourier transform and the

inverse Fourier transform operations. In contrast to the naive algorithm which requires

O((N
x

N
y

N
z

)

2
) number of operations to calculate the cross correlation function, the FFT

algorithm only needs O((N
x

N
y

N
z

) log(N
x

N
y

N
z

)) number of operations. Similarly, the

FFT algorithm can also be used to calculate the van der Waals interaction energy in Eq.

2.7 Although the FFT algorithm can significantly accelerate the calculation of cross cor-

relation functions, one cross correlation function can only provide interaction energies be-

tween proteins and ligands as the ligand translates within the binding pocket with a fixed

conformation and a fixed orientation. In other words, FFTs only accelerate the search of

the ligand translational space. However, in protein-ligand docking where at least the ligand

is flexible, the interaction energies need to be calculated for the ligand’s different confor-

mations and orientations, in addition to different positions. Therefore, multiple FFTs, each

for one particular conformation and orientation of the ligand, are needed in protein-ligand

docking. To accelerate this calculation, multiple FFTs are run on GPUs in batch mode to

take advantage of the parallel computing power of GPUs[35].

2.2.3 Parallel MD-based simulated annealing with GPUs

As the protein-ligand interaction energy landscapes have local minimums and the MD-

based simulated annealing is a heuristic search method, multiple trials of MD-based simu-

lated annealing have to be employed to help search for the lowest energy pose. As the num-

ber of trials increases, the docking accuracy improves. In addition, in a typical application,

CDOCKER needs to dock a large number of ligands with a protein. Therefore, accelerat-

ing multiple trials of MD-based simulated annealing can help CDOCKER to dock a large

number of ligands in a limited time while maintaining docking accuracy. Because trials of

MD-based simulated annealing are independent with each other, one way to accelerate the

calculation is to run them in parallel with multiple processors. With previous implemen-

tation of CDOCKER, multiple trials of MD-based simulated annealing can already be run
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in parallel with multiple CPUs. Here we introduce a new feature of CDOCKER to enable

it to run multiple trials of MD-based simulated annealing simultaneously on GPUs which

have been widely used to accelerate other MD simulations.

As there are already implementations of MD engines running on GPUs, instead of

writing a new MD engine specifically for running multiple trials of MD-based simulation

annealing on GPUs, we adopt the existing GPU-enabled MD engine in OpenMM[36]. To

utilize the MD engine from OpenMM for our purpose, we make a customized system

consisting of multiple copies of a ligand and one copy of the potential grids of the protein.

Atoms in each copy of the ligand interacts with ligand atoms in the same copy and the

potential grids, but do not interact with atoms in all other copies of ligands. Therefore,

although the system includes multiple copies of the ligand, these copies of ligands are

independent with each other and the dynamics of each copy of ligand is the same as if there

is just one copy of ligands. Running one trial of MD-based simulated annealing with this

customized system is equivalent to running multiple trails of simulated annealing for the

ligand.

This approach of running multiple trials of MD-based simulated annealing on GPUs

is also applicable to flexible CDOCKER [9], in which both ligand atoms and protein side

chain atoms of the amino acids near the binding pocket are flexible. In this case, the

customized OpenMM[36] system includes not only multiple copies of ligand atoms but

also multiple copies of protein side chain atoms that are flexible. Similarly, each copy of

flexible protein side chain atoms only interact with itself and the corresponding copy of

ligand atoms and do not interact with other copies of either ligand atoms or flexible protein

atoms.

2.2.4 Benchmark dataset

Two sets of protein-ligand complexes, the Astex diverse set[37] and the SB2012 set[38],

are used as benchmark datasets to test protein-ligand docking methods in this study. The
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Astex diverse set contains 85 diverse high-resolution protein-ligand complexes and has

been widely used for benchmarking different protein-ligand docking methods[37]. In this

study, 70 of the 85 protein-ligand complexes that do not include cofactors are used. Com-

pared to the Astex diverse set, the SB2012 set[38] is a much larger set of protein-ligand

complexes. It contains 1043 protein-ligand complexes, out of which the 1003 complexes

that do not have cofactors and can be typed using CGenFF [39] are used in this study. The

1003 protein-ligand complexes from the SB2012 set include 69 out of 70 complexes from

the Astex diverse set.

2.3 Results

2.3.1 Fast Fourier transform docking

2.3.1.1 Energy calculation acceleration with FFTs and GPUs

When a ligand has a fixed conformation and a fixed orientation, its interaction energy with

a protein as the ligand translates on grid points can be represented as cross correlation

functions between grids and both FFTs and GPUs are used to accelerate the calculation of

these cross correlation functions. To see the extent to which FFTs and GPUs can accelerate

the calculation, we applied the FFT approach to a test example utilizing the protein-ligand

complex 1G9V(PDB ID). The ligand in 1G9V has dimensions of 5.8Å⇥14.5Å⇥8.5Å in the

X , Y , and Z directions, respectively. With a grid spacing distance of 0.5Å, the ligand grid

has 13⇥ 30⇥ 18 points. The binding pocket is defined as a cubic box with a dimension of

29.5Å, and the protein potential grid with the same grid spacing distance as the ligand grid

has 60 grid points in all three directions. Therefore, within the binding pocket, the ligand

has 59, 220 = 47⇥ 30⇥ 42 possible positions. The interaction energy between the protein

and the ligand for all possible positions of the ligand is calculated using three methods: the

naive method which explicitly calculates the interaction energy for each position on a CPU,
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Table 2.2: Wall time used by the three methods: the naive method
looping through all positions on a CPU, FFTs (CPU), and FFTs (GPU)
to calculate interaction energies between the protein and ligand in
1G9V for the ligand’s 59,220 positions.

Methods Naive(CPUa) FFTs(CPUa) FFTs(GPUb)
Wall time (seconds) 31.20 0.28 0.002c

a The CPU used is the Intel Xeon Processor E5645 2.4GHz
b The GPU used is the NVIDIA GeForce GTX 1080
c Multiple FFTs run in parallel on GPUs in batch mode. The wall time is
calculated as the wall time used to run one batch of FFTs divided by the
batch size which is 100.

FFTs running on a CPU, and FFTs running on a GPU. The wall times used by the three

methods are summarized in Table 2.2. Compared with the naive method, the FFT approach

with CPUs accelerates the calculation by more than 100 times and running FFTs on GPUs

in batch mode further accelerates the calculation by 140 fold. Overall, compared with the

naive method, the speedup of using both FFTs and GPUs is about 15,000 fold.

2.3.1.2 The scoring function’s accuracy in identifying ligand native orientations and

positions.

With the acceleration of both FFTs and GPUs for calculating the interaction energy between

ligands and proteins, it becomes feasible to systematically search ligand orientations and

positions in a reasonable computation time. This, in turn, enables us to investigate the

scoring function’s accuracy in terms of identifying ligand native orientations and positions

given the conformations of both the ligand and the protein. Using the Astex diverse set

and the SB2012 set as test sets, we applied the FFT-based approach with GPUs to rigidly

dock ligands onto proteins using the native conformations of ligands and proteins. To

systematically search the orientation and translation space of ligands, 100,000 randomly

sampled orientations of each ligand are used. For each orientation, the ligand’s translational

space is uniformly covered by a 3 dimensional grid with a grid spacing distance of 0.5Å.

The docked pose of a ligand is chosen to be the lowest energy pose among the poses with

all possible combinations of sampled orientations and translations.
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Astex diverse set              SB2012

66.34  67.75                66.22   67.63       

num of randomly sample orientations (x105)

accuracy

(A) (B)

Figure 2.2: Docking accuracy of the FFT approach for docking rigid ligands onto rigid
proteins with the native conformations of both ligands and proteins using the Astex diverse
set and the SB2012 set. (A) Docking accuracy increases as the number of randomly sam-
pled orientations increases. The error bars are estimated using 10 independent repeats. (B)
Docking accuracy when 100,000 randomly sampled orientations are used (black) and when
100,000 randomly sampled orientations plus the native orientation are used (grey).

For both test sets, the docking accuracy first increases as the number of randomly sam-

pled ligand orientations increases and reaches a plateau when 100,000 random orienta-

tions are used (Fig. 2.2A). This plateau occurs at a docking accuracy of about 66.34% and

66.22% for the Astex diverse set and the SB2012 set, respectively. (Fig. 2.2B). When the

native orientation is included, in addition to the 100,000 random orientations, the docking

accuracy increases to about 67.75% and 67.63% for the Astex diverse set and the SB2012

set, respectively. (Fig. 2.2B). It is notable that this small difference suggests that the use of

100,000 rotational samples is sufficiently dense to cover the rotational space. The docking

accuracy at the plateau, which is around 68%, represents the accuracy of the CHARMM

force field in identifying the native orientations and positions of ligands assuming the native

conformations of ligands are given. This accuracy should be an upper bound of the accu-

racy of the CHARMM force field in identifying the native ligand poses, which includes the

native conformations in addition to the native orientations and positions. Although the size

of the SB2012 set is more than ten times larger than the Astex diverse set, the results on

the two sets are quite similar. This suggests that the CHARMM force field does not over
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fit a specific set of protein-ligand complexes. This should be the case since the CHARMM

CGenFF force field together with the CHARMM protein force field representing the pro-

tein grid are transferable force fields. This contrasts the anticipated behavior of purely

empirical scoring functions for docking [12, 11, 40, 41, 42, 43], which utilize data sets

of known protein ligand complexes to optimize the parameters of their scoring function.

This suggests that the scope of application of transferable force fields like those used in

CDOCKER should be much broader than that of empirical scoring functions.

We note that the above FFT-based rigid ligand, rigid receptor docking approach could

be generalized to permit ligand conformational space to be sampled. This would involve

first sampling a suitable ensemble of ligand conformations [44] and then carrying out the

rotational/translational sampling to identify the lowest energy conformation using GPU-

accelerated FFTs. This protocol can readily be implemented using CHARMM scripting

language [45]. However, we instead pursue in the following integration of ligand (and pos-

sibly receptor side chain) sampling into an MD simulated annealing scheme as employed

in CDOCKER [7] and Flexible CDOCKER [9].

2.3.2 Parallel MD-based simulated annealing with GPUs.

2.3.2.1 Speedup of parallel MD-based simulated annealing with GPUs compared

with the original CDOCKER with CPUs.

Compared with the original CDOCKER running serially on CPUs, the speedup of the paral-

lel MD-based simulated annealing with GPUs is shown in Table 2.3. For the protein-ligand

pairs in the Astex diverse set, when 100 and 500 docking trials are used, the average wall

time used by the original CDOCKER with CPUs are 338.4 and 1692.0 seconds, respec-

tively. In contrast, the average wall time used by the parallel MD-based simulated anneal-

ing with GPUs are 30.8 and 85.5 seconds, respectively, which is about 10 fold and 20 fold

faster. The speedup becomes even larger when the number of trials used increases, because

the wall time used by the original CDOCKER on CPUs is proportional to the number of
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trials.

Table 2.3: Speedup of parallel MD-based simulated annealing with GPUs compared with
the original CDOCKER with CPUs on the Astex diverse set.

CDOCKER with CPUs CDOCKER with parallel MD-based
simulated annealing with GPUs

accuracya 0.623 ± 0.023 0.631 ± 0.029
wall timeb (seconds) 338.4 30.8
wall timec (seconds) 1692.0 85.5

a The accuracy when 100 trials are used. The ligand native conformation is used as the
starting conformation.
b The wall time used when 100 trials are used.
c The wall time used when 500 trials are used.

2.3.2.2 Comparison with other protein-ligand docking programs.

The accelerated CDOCKER is compared with three other widely used protein-ligand dock-

ing programs including Autodock, Autodock Vina, and DOCK. The re-docking results on

the Astex diverse set and the SB2012 set are shown in Table 2.4 and Table 2.5, respectively.

With the acceleration achieved by the parallel MD-based simulated annealing with GPUs in

CDOCKER, the average wall time required by CDOCKER for docking one protein-ligand

complex is either faster than or on par with other programs. For CDOCKER, Autodock,

and Autodock Vina, their docking accuracies depend on whether ligands’ native or random

conformations are used as starting conformations. Staring with ligands’ native conforma-

tions makes the conformational search easier and the docking accuracies much higher than

their docking accuracies which are corresponding to using ligands’ random conformations

as starting conformations. Because the DOCK program uses the “anchor and grow” search

method[13], its accuracy does not depend on the starting conformations of ligands.

Based on the result from the Astex diverse set, when ligand random conformations

are used as starting conformations, DOCK and Autodock Vina have similar and highest

docking accuracy. Autodock has the lowest docking accuracy and CDOCKER is in be-

tween. Increasing the parameter that controls the searching exhaustiveness in Autodock
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Table 2.4: Docking accuracy of multiple protein-ligand docking programs on the Astex
diverse set.

CDOCKERd

Autodock Autodock Autodock DOCK
v4.2.6 Vinae Vinaf v6.7

accuracy (nativea) 0.664 0.600 0.701 0.710
(± 0.022) (± 0.020) (±0.019) (± 0.009) 0.639

accuracy (randomb) 0.537 0.530 0.633 0.623 (± 0.016)
(±0.021) (±0.029) (±0.014) (±0.011)

wall timec 85.5 279.6 82.3 202.9 50.0
a Ligand native conformations are used as starting conformations.
b Ligand random conformations are used as starting conformations.
c CDOCKER is run on a GPU (NVIDIA GeForce GTX 980). All the other docking
programs use one CPU (Intel Xeon Processor E5645 2.4GHz).
d 500 trials are used in CDOCKER.
e exhaustiveness = 8.
f exhaustiveness = 20.

Vina from 8 to 20 proportionally increases the running time, but it does not change its

docking accuracy significantly. Compared with the results on the Astex diverse set (Ta-

ble 2.4), the relative performance of the protein-ligand docking programs for the SB2012

set is the same in terms of docking accuracy (Table 2.5). However, for all the programs,

the docking accuracies are significantly lower on the SB2012 set (Table 2.5) than that on

the Astex diverse set. Although the Astex diverse set contains a diverse set of protein-

ligand complexes, the number of protein-ligand complexes in the set is relatively small.

Because the SB2012 dataset contains more than an order of magnitude more protein-ligand

complexes, the performance on the SB2012 set should be a more objective measure of the

protein-ligand docking programs’ docking accuracies. The lower docking accuracies on the

SB2012 set for all the tested protein-ligand docking programs can be attributed to either

search algorithms or scoring functions or both. In the case of Autodock Vina, increasing

the exhaustiveness from 8 to 20 only slightly improves its docking accuracy, which im-

plies that the empirical scoring function used in Autodock Vina might over fit, to some

extent, the protein-ligand complexes that are used to parameterize its scoring function. In
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Table 2.5: Docking accuracy of multiple protein-ligand docking programs on the SB2012
set.

CDOCKERc

Autodock Autodock Autodock DOCK
v4.2.6 Vinad Vinae v6.7

accuracy(nativea) 0.569 0.477 0.631 0.642
(± 0.006) (± 0.009) (±0.004) (± 0.005) 0.553

accuracy (randomb) 0.429 0.418 0.532 0.547 (±0.005)
(± 0.007) (±0.004) (±0.004) (±0.004)

a Ligand native conformations are used as starting conformations.
b Ligand random conformations are used as starting conformations.
c 500 trials are used in CDOCKER.
d exhaustiveness = 8.
e exhaustiveness = 20.

the cases of both CDOCKER and DOCK, because their scoring functions are based on MD

force fields that are more physically realistic, their lower performance on the SB2012 set

are more likely because of search algorithms. The docking accuracies of both Autodock

Vina and DOCK reported in this study are quite different from those reported in previous

studies [12, 13, 46]. It is because of the fact, as shown in this study, that the docking

accuracy of a protein-ligand docking program can vary significantly depending on ligand

starting conformations and benchmark datasets.

2.4 Conclusion and Discussion

Two new features — fast Fourier transform (FFT) docking and parallel MD-based sim-

ulated annealing — are implemented and added to the protein-ligand docking program

CDOCKER in CHARMM. The FFT docking not only utilizes the acceleration provided

by FFTs but also employs the parallel computing power of GPUs. Overall, FFT dock-

ing with GPUs accelerates the search of ligand’s positions and orientations by as much as

15,000 fold. With the significant speedup achieved by FFT docking with GPUs, it becomes

practical to almost exhaustively search the translation and rotation space of ligands when

docking rigid ligands into binding pockets. Although FFT docking alone can not solve
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the protein-ligand problem in which ligands are flexible, the FFT docking can be used to

quickly to calculate an upper bound of the docking accuracy that can be achieved by a

scoring function. This in turn can provide insights into the problems of current scoring

functions and help improve the scoring function. In addition, because FFT docking with

GPUs can efficiently calculate protein ligand interaction energies for an almost exhaustive

list of positions and orientations given a ligand conformation, FFT docking could also be

used to explicitly calculate the partition function corresponding to ligands’ translational

and rotational space, which can be combined with existing scoring functions in protein-

ligand docking to more accurately estimate protein-ligand binding affinities. A similar idea

has been investigated by Nguyen et. al.[47] The parallel MD-based simulated annealing

with GPUs enables CDOCKER to run about 20 times faster when 500 trials of simulated

annealing are used. The speedup becomes even larger when more trials of simulated an-

nealing are employed. With the acceleration, the speed of CDOCKER is on par with or

faster than several other popular protein-ligand docking programs tested in this study.

22



CHAPTER 3

Free Energy Calculation

Ding, Xinqiang, Jonah Z. Vilseck, Ryan L. Hayes, and Charles L. Brooks III. “Gibbs

sampler-based �-dynamics and Rao-Blackwell estimator for alchemical free energy cal-

culation.” Journal of chemical theory and computation 13, no. 6 (2017): 2501-2510.

3.1 Background

Free energy calculation is fundamental for understanding many important biophysical pro-

cesses, such as protein conformational changes, protein-protein interactions, and protein-

ligand binding processes.[4, 48] Calculating protein-ligand binding free energy has im-

portant applications in drug discovery, especially in the lead compound generation and

optimization stages.[6, 49, 50] These stages only require calculating protein-ligand rela-

tive binding free energy, which has been shown to be easier than calculating protein-ligand

absolute binding free energy.[6, 49]

One widely used methodology for calculating protein-ligand relative binding free en-

ergy is the alchemical free energy approach.[6, 49, 50] This approach utilizes the thermody-

namic cycle shown in Figure 3.1.[48] This thermodynamic cycle specifies that ��Gbinding
L0!L1

=

�Gbinding
L1

� �Gbinding
L0

= �Gbound
L0!L1

� �Gunbound
L0!L1

. In order to calculate the relative binding

free energy between ligand L0 and L1 with receptor R, i.e, ��Gbinding
L0!L1

, the alchemical

free energy method calculates �Gunbound
L0!L1

and �Gbound
L0!L1

by employing alchemical trans-
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Figure 3.1: The thermodynamic cycle used for calculating a relative binding free energy
between ligand L0 and L1 with a receptor R.

formations morphing ligand L0 into ligand L1 in both unbound and bound environments,

respectively.

3.2 Previous methods

Several alchemical free energy calculation methods have been developed over the last sev-

eral decades, such as free energy perturbation[51, 52], thermodynamic integration[48, 53],

enveloping distribution sampling[54, 55] and �-dynamics[56, 57, 58, 59, 60, 61, 62]. �-

dynamics is a generalized ensemble method in which the alchemical transformation vari-

able � is a continuous variable ranging from 0 to 1, with � = 0, 0 < � < 1, and � = 1

corresponding to the ligand being in L0 state, intermediate hybrid states, and L1 state,

respectively. The potential energy corresponding to � is

V (�, {x
i

}1
i=0, X) = (1� �)V0(x0, X) + �

�
V1(x1, X) +Gb

1

�
+ Venv(X), (3.1)

where X , x0 and x1 are atomic coordinates associated with the environment, the ligand L0

and the ligand L1, respectively. V
i

(x
i

, X) is the potential energy between ligand L
i

and

the environment and Venv(X) is the potential energy of the environment. Gb

1 is a biasing

potential to ensure that the two physical states, corresponding to � = 0 and � = 1, are both

sampled in the simulation. The biasing potential Gb

1 is determined iteratively by running

multiple short simulations[59, 60, 63, 64]. The dynamics of the system (�, {x
i

}1
i=0, X) is
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generated from the extended Hamiltonian:

H(�, {x
i

}1
i=0, X) = T

x,X

+ T
�

+ V (�, {x
i

}1
i=0, X) (3.2)

where T
x,X

and T
�

are the kinetic energy associated with coordinates ({x}1
i=0, X) and

�, respectively. The free energy difference between ligand L0 and L1, with the biasing

potential Gb

1, is

�G = ���1
ln

P (� = 1)

P (� = 0)

, (3.3)

where � is the inverse temperature; P (� = 0) and P (� = 1) are probability denisties of

� at points 0 and 1, respectively. In practice, this free energy difference �G is estimated

using the following empirical estimator based on the trajectory of �:

�

ˆG = ���1
ln

P (� > �cutoff)

P (� < 1� �cutoff)
, (3.4)

where �cutoff (0 < �cutoff < 1) is a cutoff value which is chosen to be close to 1.[59]

Although the empirical estimator is straightforward to evaluate based on the � trajec-

tory, it is not necessarily optimal. One issue is that the empirical estimator is systematically

biased as it uses P (� < 1 � �cutoff) and P (� > �cutoff) to approximate P (� = 0) and

P (� = 1), respectively. Additionally, the bias depends on the cutoff value �cutoff, which is

chosen empirically and is difficult to quantify as it may vary among different systems.

In the current work, we present a novel form of �-dynamics called the Gibbs sam-

pler based �-dynamics (GSLD) with the Rao-Blackwell estimator (RBE). The Gibbs sam-

pler framework for calculating free energy differences between two ligands was first sug-

gested by Chodera and Shirts[65]. In their work, � was treated as a discrete variable and

MBAR[66] was used to estimate the free energy change. In this study, we show that GSLD

and RBE can treat � as either a discrete variable or a continuous variable when calculating

free energy differences between two ligands. When � is treated as a continuous variable,
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GSLD and RBE can be generalized to simultaneously calculate free energies of multiple

ligands in one simulation, as in the generalization of �-dynamics[59]. We explore these

new methods through applications to three model systems in this paper. This paper is orga-

nized as follows. In section 2, we describe GSLD and its generalization to multiple ligands.

Then we introduce the RBE and show that the MBAR/UWHAM equations [66, 67, 68] can

be derived from the RBE. In section 3, we give detailed setup information for the setup and

simulation of the three systems with which we tested the methods. Our results for these

three systems are presented in section 4. We conclude with a discussion of how the GSLD

and RBE can be used for other applications.

3.3 Gibbs sampler based �-dynamics

As a generalized ensemble method, GSLD samples from the joint distribution of � and the

atomic coordinates of the system using the Gibbs sampler. In this section, we first briefly

introduce the Gibbs sampler. We then use the Gibbs sampler to formulate pairwise GSLD.

We conclude by showing how the GSLD can be generalized to work for multiple ligands.

3.3.1 The Gibbs sampler.

The Gibbs sampler, which is widely used in both statistics and machine learning, is a

Markov Chain Monte Carlo (MCMC) method for sampling from multivariate distributions[69,

70]. To sample (X, Y ) from the joint distribution: (X, Y ) ⇠ P (X, Y ), the Gibbs sampler

generates a Markov chain of states {(X
t

, Y
t

), t = 0, 1, 2, ..., N} using the following proce-

dure:

• Step 0: initialize the starting state (X0, Y0).

• Step t: sample from the conditional distribution
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– Updating X: given the state (X
t�1, Yt�1) from step t � 1, sample X

t

from the condi-

tional distribution of X
t

⇠ P (X
t

|Y
t�1).

– Updating Y: given X
t

from the above update step, sample Y
t

from the conditional

distribution of Y
t

⇠ P (Y
t

|X
t

). The resulting sample (X
t

, Y
t

) is the state for step t.

Because the above procedure satisfies the detailed balance condition with respect to the

joint distribution: (X, Y ) ⇠ P (X, Y ), the sampled states {(X
t

, Y
t

), t = 0, 1, 2, ..., N}
converge to the joint distribution.[69, 70] The update steps require sampling from both

conditional distributions: X
t

⇠ P (X
t

|Y
t�1) and Y

t

⇠ P (Y
t

|X
t

). If direct sampling from

the conditional distribution is possible, independent samples can be directly drawn using

numerical pseudo-random number generators. Otherwise, samples can be drawn using

other Monte Carlo methods or Hamiltonian dynamics, as long as the method satisfies the

detailed balance condition with respect to the corresponding conditional distribution.[70,

71] This property of the Gibbs sampler makes it quite flexible on choosing appropriate

sampling methods based on the conditional distributions.

3.3.2 Pairwise GSLD.

Pairwise GSLD calculates the free energy difference between two ligands: ligand L0 and

ligand L1. In pairwise GSLD, � can be treated as either a continuous variable or a discrete

variable.

Continuous �. When � is treated as a continuous variable, pairwise GSLD samples

from the joint distribution of (�, {x
i

}1
i=0, X):

P (�, x0, x1, X) =

exp(��
h
(1� �)V0(x0, X) + �

�
V1(x1, X) +Gb

1

�
+ Venv(X)

i
)

Z
, (3.5)

where Z is the partition function of the generalized ensemble and Gb

1 is a biasing poten-

tial. Gb

1 is determined automatically in the current simulations using a Wang-Landau like
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algorithm[72] which is described in 3.7.1. The Gibbs sampler for sampling from the above

joint distribution is as follows:

• Step 0: initialize the starting state (�0, {x0
i

}1
i=0, X

0
).

• Step t: sample from the conditional distributions:

– Updating ({x
i

}1
i=0, X): given the state (�t�1, {xt�1

i

}1
i=0, X

t�1
) from step t�1, sample

({xt

i

}1
i=0, X

t

) from the conditional distribution: P ({xt

i

}1
i=0, X

t|�t�1
) / exp(��

h
(1�

�t�1
)V0(x

t

0, X
t

) + �t�1
�
V1(x

t

1, X
t

) + Gb

1

�
+ Venv(X

t

)

i
), which is the canonical en-

semble distribution at the inverse temperature �. A sample can be drawn from this

distribution using molecular dynamics simulation.

– Updating �: given the atomic coordinates ({xt

i

}1
i=0, X

t

) sampled from the above up-

date step, sample �t directly from the conditional distribution P (�t|{xt

i

}1
i=0, X

t

) us-

ing numerical pseudo-random number generator. The conditional distribution P (�t|
{xt

i

}1
i=0, X

t

) is:

P (�t|{xt

i

}1
i=0, X

t

)

=

exp(��
h
(1� �t)V0(x

t

0, X
t

) + �t
�
V1(x

t

1, X
t

) +Gb

1

�
+ Venv(X

t

)

i
)

R 1

0 exp(��
h
(1� �t)V0(xt

0, X
t

) + �t
�
V1(xt

1, X
t

) +Gb

1

�
+ Venv(X t

)

i
)d�

=

� · (�V t

0!1 +Gb

1) exp(��t · � · [�V t

0!1 +Gb

1])

1� exp(�� · [�V t

0!1 +Gb

1])
(0  �t  1),

(3.6)

where �V t

0!1 = V1(x
t

1, X
t

) � V0(x
t

0, X
t

). This is an exponential distribution of �t

restricted on the interval of [0, 1]. Therefore, sampling �t directly from this distribution

can be done using the inverse transformation method:

�t = � 1

� · (�V t

0!1 +Gb

1)
ln

h
1� [ 1� e�·(�V

t

0!1+G

b

1)
] · u
i

(3.7)

where u is a random sample from the uniform distribution on [0, 1]. The resulting

sample (�t, {xt

i

}1
i=0, X

t

) is the state for step t.
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Discrete �. When � is a discrete variable specified by the set {l1, l2, ...lM}, GSLD

samples from the joint distribution

P (� = l
j

, x0, x1, X) / exp(��
h
V0(x0, X, 1� l

j

)+V1(x1, X, l
j

)+Gb

j

+Venv(X)

i
), (3.8)

where Gb

j

is the biasing potential added to the state corresponding to � = l
j

. Sampling

from this distribution is done in the same way as the case where � is continuous except that

the conditional distribution P (�t|{xt

i

}1
i=0, X

t

) becomes a multinomial distribution:

P (�t = l
j

|{xt

i

}1
i=0, X

t

)

=

exp(��
h
V0(x

t

0, X
t, 1� l

j

) + V1(x
t

1, X
t, l

j

) +Gb

j

i
)

P
M

k=1 exp(��
h
V0(xt

0, X
t, 1� l

k

) + V1(xt

1, X
t, l

k

) +Gb

k

)

i
)

(3.9)

from which samples can also be drawn directly using numerical methods. The biasing

potentials Gb

j

are determined similarly as the case when � is continuous. We note that

equation 3.9 is similar to the distribution calculated using the infinite swap limit in replica

exchange methods.[73, 74, 75, 76]

The advantage of using � as a discrete variable is that the pairwise GSLD still works

when the potential energy V
i

(x
i

, X,�) is � dependent, such as when a soft-core Lennard-

Jones potential[77] is employed to facilitate sampling. When � is continuous, using �

dependent V
i

(x
i

, X,�) will make the normalization constant of the conditional distribution

P (�|{x
i

}1
i=0, X) not analytically integrable and prevent direct sampling from the condi-

tional distribution P (�|{x
i

}1
i=0, X). However, as shown below, the advantage of using �

as a continuous variable is that the GSLD can be generalized for multiple ligands.

3.3.3 Generalizing GSLD for multiple ligands.

Like �-dynamics, GSLD can be generalized to calculate the free energies for multiple lig-

ands in one simulation. Assuming there are n ligands, the fraction of the ith ligand in the
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hybrid state is represented by �
i

, for i = 1, 2, ..., n. The hybrid state is specified by the

value of (�1,�2, ...,�n) which satisfies the conditions
P

n

i=1 �i = 1 and 0  �
i

 1, i =

1, 2, ..., n. The hybrid state’s potential energy is defined as: V ({�
i

}n
i=1, {xi

}n
i=1, X) =

P
n

i=1 �i(Vi

(x
i

, X) +Gb

i

) + Venv(X), where x
i

and X are atomic coordinates associated

with the ith ligand and environment, respectively; Gb

i

is the biasing potential added for

the ith ligand and can be determined similarly as in the pairwise GSLD. Sampling from the

generalized ensemble distribution: P ({�
i

}n
i=1, {xi

}n
i=1, X) / exp(�� ·V ({�

i

}n
i=1, {xi

}n
i=1,

X)) can be done using the following Gibbs sampler procedure:

• Step 0: initialize the starting state ({�0
i

}n
i=1, {x0

i

}n
i=1, X

0
).

• Step t: sample from the conditional distributions.

– Updating ({x
i

}n
i=1, X): given the state ({�t�1

i

}n
i=1, {xt�1

i

}n
i=1, X

t�1
) from step t �

1, sample ({xt

i

}n
i=1, X

t

) from the conditional distribution P ({xt

i

}n
i=1, X

t|{�t�1
i

}n
i=1)

using molecular dynamics simulation.

– Updating {�
i

}n
i=1: given the sample ({xt

i

}n
i=1, X

t

) from the above update step, the

conditional distribution of {�t
i

}n
i=1 in the set S = {(�1, ...,�n) |

P
n

i=1 �i = 1 and �
i

�
0, i = 1, ...n} is given by

P ({�t
i

}n
i=1|{xt

i

}n
i=1, X

t

) =

exp(��
hP

n

i=1 �
t

i

[ V
i

(xt

i

, X t

) +Gb

i

] + Venv(X
t

)

i
)

Z
,

(3.10)

where

Z =

Z

S

exp(��
h nX

i=1

�t
i

[ V
i

(xt

i

, X t

) +Gb

i

] + Venv(X
t

)

i
)dm

S

(�)

= e��Venv(Xt)
nX

i=1

e
��

h
V

i

(xt

i

,X

t)+G

b

i

i

�n�1
Q

j 6=i

(

h
V
j

(xt

j

, X t

) +Gb

j

i
�
h
V
i

(xt

i

, X t

) +Gb

i

i
)

,

(3.11)

and dm
S

(�) is the infinitesimal volume element of the simplex S. Because
P

n

i=1 �
t

i

=
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1, the conditional distribution P ({�t
i

}n
i=1|{xt

i

}n
i=1, X

t

) has only n� 1 degrees of free-

dom. Sampling from this conditional distribution is equivalent to sampling from the

n� 1 dimensional distribution:

P ({�t
i

}n�1
i=1 |{xt

i

}n
i=1, X

t

) /

exp(��
h n�1X

i=1

�
i

[ V
i

(xt

i

, X t

) +Gb

i

� V
n

(xt

n

, X t

)�Gb

n

]

i
),

(3.12)

where 0  P
n�1
i=1 �

t

i

 1, and �t
i

� 0. The environment atom energy term, Venv(X
t

),

does not appear in equation (3.12) because it is part of both the numerator and denom-

inator of equation (3.10) and can be canceled out as a constant when ({xt

i

}n
i=1, X

t

)

is fixed. Sampling from this n � 1 dimensional distribution P ({�t
i

}n�1
i=1 |{xt

i

}n
i=1, X

t

)

is done using the rejection method. In the rejection method, each {�t
i

}n�1
i=1 is sam-

pled independently from the distribution: P (�t
i

) / exp(���
i

h
V
i

(xt

i

, X t

) + Gb

i

�
V
n

(xt

n

, X t

) � Gb

n

i
), where 0  �t

i

 1. If the sample {�t
i

}n�1
i=1 satisfies the condi-

tion 0  Pn�1
i=1 �

t

i

 1, it is accepted, otherwise the sample {�t
i

}n�1
i=1 is rejected. This

procedure is repeated until a sample {�t
i

}n�1
i=1 is accepted. Set �t

n

= 1 �Pn�1
j=1 �

t

j

and

the resulting sample ({�t
i

}n
i=1, {xt

i

}n
i=1, X

t

) is the state for step t.

3.4 Rao-Blackwell estimators

3.4.1 Rao-Blackwell estimators for �-dynamics

Although the empirical estimator used in �-dynamics can also be utilized in GSLD to es-

timate the free energy, it is not an optimal estimator and may contain a system dependent

bias. RBE is introduced here to eliminate these potential issues. RBE is the estimator de-

rived by applying the Rao-Blackwellization transformation to the empirical estimator. Rao-

Blackwellization is a statistical method, inspired by the Rao-Blackwell theorem[78, 79], to

transform a crude estimator into a better estimator that has smaller mean squared error for
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estimating the quantity of interest[80]. Specifically, if �(Z) is an estimator of an unknown

parameter ✓ and T (Z) is a sufficient statistics for the parameter ✓, the Rao-Blackwellized

estimator of the estimator �(Z) is the conditional expected value E(�(Z)|T (Z))[78, 79].

For pairwise GSLD with continuous �, the quantity of interest is the free energy �G =

���1
ln

⇥
P (� = 1)/P (� = 0)

⇤
. The values of both P (� = 1) and P (� = 0) are viewed

unknown parameters. To estimate �G, i.e., P (� = 1) and P (� = 0), the empirical estima-

tor approximates P (� = 1) and P (� = 0) directly by calculating the fraction of �s which

are close to 1 and 0, respectively, based on the � trajectory. In contrast, the RBE ignores

the � trajectory and only uses the atomic coordinate trajectory. Because the coordinate

({x
i

}1
i=0, X) is a sufficient statistics for the parameters P (� = 1) and P (� = 0), applying

the Rao-Blackwellization yields the RBE estimators as P (� = 1) = E{{x
i

}1
i=0,X}

⇥
P (� =

1|{x
i

}1
i=0, X)

⇤
and P (� = 0) = E{{x

i

}1
i=0,X}

⇥
P (� = 0|{x

i

}1
i=0, X)

⇤
. Therefore, RBE uses

the following formula to estimate the free energy �G:

�GRBE = ���1
ln

P (� = 1)

P (� = 0)

= ���1
ln

E{{x
i

}1
i=0,X}

⇥
P (� = 1|{x

i

}1
i=0, X)

⇤

E{{x
i

}1
i=0,X}

⇥
P (� = 0|{x

i

}1
i=0, X)

⇤

= ���1
ln

1/N ·PN

t=0 P (� = 1|{xt

i

}1
i=0, X

t

)

1/N ·PN

t=0 P (� = 0|{xt

i

}1
i=0, X

t

)

(3.13)

where

P (� = 1|{xt

i

}1
i=0, X

t

) =

� · (�V t

0!1 +Gb

1) · exp(�� · ⇥�V t

0!1 +Gb

1

⇤
)

1� exp(�� · ⇥�V t

0!1 +Gb

1

⇤
)

P (� = 0|{xt

i

}1
i=0, X

t

) =

� · (�V t

0!1 +Gb

1)

1� exp(�� · ⇥�V t

0!1 +Gb

1

⇤
)

,

(3.14)

and N is the number of samples.

For the generalized GSLD with multiple ligands, the RBE can be derived similarly. To

estimate the free energy of the ith ligand given by G(�
i

= 1,�
j 6=i

= 0) = ���1
lnP (�

i

=
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1,�
j 6=i

= 0), the RBE uses the following formula:

GRBE(�i = 1,�
j 6=i

= 0) = ���1
lnP (�

i

= 1,�
j 6=i

= 0)

= ���1
lnE{{x

k

}n
k=1,X}

h
P (�

i

= 1,�
j 6=i

= 0|{{x
k

}n
k=1, X})

i

= ���1
ln

h
1/N ·

NX

t=0

P (�
i

= 1,�
j 6=i

= 0|{{x
k

}n
k=1, X})

i

= ���1
ln

h
1/N ·

NX

t=0

exp(��⇥V
i

(xt

i

, X t

) +Gb

i

⇤
)

Z

i
,

(3.15)

where Z is given in equation 3.11 in section 2.1.3.

As shown in the above formulas, the RBE estimator �GRBE does not depend on the

empirical cutoff value of �cutoff. Based on the Rao-Blackwell theorem, �GRBE is an unbi-

ased estimator. In addition, if the samples from GSLD are independent, the mean squared

error of RBE is guaranteed to be smaller than or equal to that of the empirical estimator.

Although the samples from GSLD are usually not truly independent, the advantage of RBE

can often be justified empirically.[81]

3.4.2 Derivation of the MBAR/UWHAM equations using RBE

Although RBE is originally introduced to estimate free energies based on sampling from

GSLD, RBE can also be used when multiple equilibrium states are sampled independently.

When RBE is applied to this case, it generates the MBAR/UWHAM equations[66, 67, 68],

which are widely used in current alchemical free energy methods.

Let us assume there are M equilibrium states with potential energy function of V
i

, i =

1, 2, ...,M . Each equilibrium state is sampled independently. The conformations sampled

from state i are represented as xk

i

, k = 1, 2, ..., n
i

, where n
i

is the number of conformations

from state i. The total number of conformations is N =

P
M

j=1 nj

. The free energy of

state i is represented as G⇤
i

. We use � 2 {1, 2, ...,M} as an index variable to represent the
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M equilibrium states, with � = i corresponding to state i. To calculate the free energies

for all the equilibrium states, all the conformations {xk

i

, i = 1, 2, ...,M, k = 1, 2, ..., n
i

}
are pooled together and viewed as samples from the generalized ensemble P (� = i, x) /
e��[V

i

(x)+G

b

i

], where Gb

i

is the biasing energy added to state i to adjust the relative weight of

state i to be proportional to n
i

, i.e, Gb

i

needs to satisfy the condition:

G
i

= G⇤
i

+Gb

i

= ���1ln
n
i

N
, (3.16)

where G
i

is the free energy of state i with the biasing potential of Gb

i

and G⇤
i

is the unbiased

free energy of state i. We note that the biasing potentials Gb

i

in equation 3.16 are unknown

variables. They are introduced to make the equation 3.16 valid, which is the requirement

for applying the RBE. These unknown biasing potentials Gb

i

can be calculated after the

values of G⇤
i

are solved. The RBE for this generalized ensemble is:

G
i

= ���1lnP (� = i)

= ���1ln
1

N

MX

j=1

n

iX

k=1

P (� = i|xk

j

)

= ���1ln
1

N

MX

j=1

n

jX

k=1

e��

⇥
V

i

(xk

j

)+G

b

i

⇤

P
M

l=1 e
��

⇥
V

l

(xk

j

)+G

b

l

⇤

(3.17)

Combining equation 3.16 with equation 3.17, we have:

G⇤
i

= ���1ln
MX

j=1

n

jX

k=1

e��

⇥
V

i

(xk

j

)
⇤

P
M

l=1 nl

· e��

⇥
V

l

(xk

j

)�G

⇤
l

⇤ (3.18)

which is the same as the MBAR/UWHAM equations[66, 67, 68]. Previously, the MBAR/UWHAM

equations were derived as either a result of the maximum likelihood principle or an un-

binned extension of the weighted histogram analysis method (WHAM).[66, 67, 68] Here

we have shown that the MBAR/UWHAM equations can also be derived using RBE.
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3.5 Applications of GSLD and RBE

3.5.1 System setups and computational details

To illustrate how GSLD works and the advantage of RBE over the empirical estimator typi-

cally used in �-dynamics, we applied GSLD and RBE to three test cases: (a) calculation of

the free energy difference between two states of a harmonic oscillator system, (b) calcula-

tion of the relative hydration free energies of three benzene derivatives, and (c) calculation

of the binding free energy difference between benzene and p-xylene bound to the L99A

mutant of the protein T4 lysozyme[82, 83]. The simulations in these calculations were

run using CHARMM[45] compiled with OpenMM[34]. Each calculation was repeated 10

times. Error bars were calculated as the standard variation of the results from these 10

independent repeats.

3.5.1.1 Harmonic System.

The harmonic system consists of a one dimensional particle that switches between two

states: state 0 and state 1. Each state has a harmonic potential energy. The purpose is to

calculate the free energy difference of the particle when it changes from state 0 to state 1,

i.e, �G = G1 � G0. Specifically, state 0 has a potential energy given by 1
2k0(x � xe

0)
2,

and state 1 has a potential energy given by 1
2k1(x � xe

1)
2. In order to prevent the particle

from moving too far from the equilibrium position, a restraining potential is added for each

state. This restraining potential is not scaled by �. The resulting hybrid potential energy is:

V (�, x0, x1) = (1� �) · 1
2

k0(x0 � xe

0)
2
+ � · 1

2

k1(x1 � xe

1)
2

+

1

2

kenv(|x0|� xe

env)
2 {|x0| � xe

env}+
1

2

kenv(|x1|� xe

env)
2 {|x1| � xe

env},

where {condition} is equal to 1 if the condition is true, otherwise it is equal to 0. GSLD

is used to sample from the joint distribution of (�, {x
i

}1
i=0) : P (�, {x

i

}1
i=0) / exp(�� ·
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V (�, {x
i

}1
i=0)). Given the value of �, sampling the coordinates ({x

i

}1
i=0) is accomplished

by running Langevin dynamics for 1 ps with a step size of 1 fs, temperature of 300 K, and

friction coefficient of 10 ps�1. The total simulation time is 10 ns. The parameters used for

xe

0, xe

1, xe

env and kenv are �2.0 Å , 2.0 Å , 4.0 Å , and 2.5 kcal/mol · Å�2, respectively. Two

variations of the model system that correspond to setting different values for k0 and k1 are

used: a symmetrical system with k0 = k1 = 0.75 kcal/mol · Å�2, and an asymmetrical

system with k0 = 0.75 kcal/mol · Å�2 and k1 = 0.075 kcal/mol · Å�2.

3.5.1.2 Relative hydration free energies for three benzene derivatives.

Relative hydration free energies for three benzene derivatives: benzene, phenol, and ben-

zaldehyde were calculated from the difference between alchemical free energy changes

computed in vacuum and in water. The topology and parameter files for the hybrid ligand

were generated using MATCH[84] and in-house developed scripts based on the CHARMM

General Force Field (CGenFF)[39]. The simulation in water was done in a water box

consisting of 800 TIP3P[85] water molecules with cubic periodic boundary conditions.

The water box had a size of 30.0 Å ⇥ 30.0 Å ⇥ 30.0 Å. A nonbonded cutoff of 14

Å was used, and the van der Waals switching function and electrostatic force switching

function [86] were used between 12 Å and 14 Å. Sampling from the conditional distri-

bution P (x,X|�) was accomplished by running Langevin dynamics at 298.15 K for 0.2

ps. The time step size was 2 fs and the friction coefficient was 10 ps�1. The length of

all bonds involving hydrogen atoms was fixed during the simulation using the SHAKE

algorithm[87]. The three relative hydration free energies were first calculated by three in-

dependent pairwise GSLDs. Then they were calculated simultaneously using the general-

ized GSLD for multiple ligands. For comparison, the three relative hydration free energies

were also calculated using the FEP/MBAR method, in which 11 states corresponding to

� = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 were used.
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3.5.1.3 Relative binding free energy between benzene and p-xylene with

T4 lysozyme.

The L99A mutant of T4 lysozyme has been a model protein system for testing free energy

calculation methods[88, 89, 90]. It has experimental binding free energy data for a series

of benzene derivatives including benzene and p-xylene. [82, 83] The relative binding free

energy between benzene and p-xylene was calculated using the difference between the al-

chemical free energy change in water and in the protein environment. The alchemical free

energy change in water was calculated using pairwise GSLD with continuous �. Calcu-

lating the alchemical free energy in the protein environment is challenging, even though

the binding site of T4 lysozyme is a relatively simple non-polar pocket and the alchem-

ical change from benzene to p-xylene is small. This challenge arises from the fact that

T4 lysozyme has a conformational change for the side-chain dihedral angle � (N-CA-CB-

CG1) of residue Val111, which accompanies the alchemical transformation from benzene

to p-xylene.[88] When T4 lysozyme binds with benzene (PDB ID: 181L), the dihedral

angle stays in the trans conformation (� ⇡ �180

�). When it binds with p-xylene (PDB

ID: 187L), the dihedral angle changes into the gauche conformation (� ⇡ �60

�). Fail-

ing to sample these two relevant conformations in a free energy calculation would cause

a quasi-nonergodicity problem, i.e, the calculated free energy will depend on which con-

formation is used as the starting conformation.[88, 90] To address the problem, several

methods have been developed. These methods include enhanced sampling methods such

as the 2-dimensional replica exchange method (REM)[89] and the free energy perturba-

tion/replica exchange with solute tempering (FEP/REST) method [90], and the potential of

mean force (PMF) method, which was first introduced by Tobias and Brooks for address-

ing a similar problem in 1989[91] and rediscovered as the “confine-and-release” method by

Mobley et al. in 2007.[88] Here we combined the PMF method with GSLD to calculate the

alchemical free energy changes between benzene and p-xylene in the protein environment.

To make our computational protocol clear, we reformulated the PMF method[91, 88]
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using conditional probability as shown in 3.7.2. The free energy change �G(�⇤
) was cal-

culated using pairwise GSLD with a harmonic restraint potential on � to keep it near �⇤

during the pairwise GSLD simulation. The force constant of the harmonic restraint poten-

tial was 1195.3 kcal/mol ·radius�2. In our calculations, we chose �⇤ to be �180

� and �60

�,

although the final calculated result �G did not depend on the choice of �⇤. In the pairwise

GSLD, � was chosen to be a discrete variable specified by the set {l1, l2, ..., l16}. � = l1

corresponds to the physical state that the ligand is benzene and � = l16 corresponds to the

physical state that the ligand is p-xylene. When � was changed from l1 to l16, the ligand

was alchemically transformed from benzene into p-xylene. During the alchemical transfor-

mation, the partial charges on benzene atoms were turned off first. Then the benzene atoms

were transformed into p-xylene atoms before the partial charges on p-xylene atoms were

turned on. A soft-core Lennard-Jones potential was used during the transformation.[92]

The formula used for both electrostatic potential and the soft-core Lennard-Jones poten-

tial is shown in Table S1. The potential energy scaling factors used for each state � = l
i

are also shown in Table S1. The free energy ���1lnP (�⇤|� = l1) and the free energy

���1lnP (�⇤|� = l16) were computed by calculating the potential of mean force (PMF)

with respect to � when T4 lysozyme binds with benzene (� = l1) and with p-xylene

(� = l16), respectively. The simulations was run inside a TIP3P water box with a size

of 79.0Å ⇥ 56.4Å ⇥ 55.4Å and rectangular periodic boundary conditions were used. The

water box had 7112 water molecules in total. The CHARMM36 force field[93] was used

for T4 lysozyme and the CHARMM General Force Field (CGenFF)[39] was used for the

ligands. The nonbonded interaction options were the same as that used in the relative hy-

dration free energy calculations.
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Figure 3.2: Results of pairwise GSLD and RBE on harmonic systems. (A) � trajectories for
the symmetrical harmonic system (top) and the asymmetrical harmonic system (bottom);
(B) Free energy estimations for the symmetrical system (top) and the asymmetrical system
(bottom) using the empirical estimators with a cutoff of 0.9 and 0.99 and the Rao-Blackwell
estimator. The horizontal black line is the calculated free energy change using numerical
integration.

3.5.2 Results

3.5.2.1 The harmonic system.

As shown in Figure 3.2(A), GSLD is able to sample the continuous � well for both sym-

metrical and asymmetrical systems. Figure 3.2(B) shows the estimated free energy changes

�G using the Rao-Blackwell estimator and two empirical estimators with cutoff values of

0.9 and 0.99. For the symmetrical system, the true value for the free energy changes is

equal to 0 kcal/mol because of the symmetry. The RBE and the empirical estimator with

cutoff of 0.9 converge to 0 kcal/mol within 2 ns, whereas the empirical estimator with cut-

off of 0.99 needs 10 ns of simulation to converge to 0 kcal/mol. Moreover the RBE has the

smallest variance among the three estimators. For the asymmetrical system, the empirical

estimator with a cutoff of 0.9 converges to �0.41 ± 0.03 kcal/mol and the empirical esti-

mator with a cutoff of 0.99 converges to �0.50 ± 0.06 kcal/mol, whereas the result from
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numerical integration is -0.56 kcal/mol. This shows that the results of empirical estimators

can be biased and the bias depends on the value of the cutoff. Increasing the cutoff value

decreases the estimation bias, but it increases the estimation variance because a higher cut-

off decreases the number of valid samples used by the empirical estimator. In contrast, the

result of RBE converges to �0.56 ± 0.02 kcal/mol, which is closest to the true value and

also has the smallest variance. The detailed numerical results can be found in the Table S2.

Overall, the results suggest that, for this harmonic system, the GSLD is able to extensively

sample the alchemical states and the RBE is better than the empirical estimator in terms of

both bias and variance.

3.5.2.2 Relative hydration free energies for three benzene derivatives.

Results of pairwise GSLD simulations in vacuum and in water are shown in Figure S1 and

Figure 3.3, respectively. The pairwise GSLD is able to sample the alchemical states very

well for both the simulations in vacuum and the simulations in water. For the simulation

in vacuum, the RBE outperforms empirical estimators in terms of both bias and variance,

as in the harmonic system. For the simulation in water, the RBE has a similar variance to

that of the empirical estimators, because samples from the simulation in water are more

correlated than those from the simulations in vacuum. Nevertheless, the RBE is still better

than the empirical estimators in terms of the bias. As shown in Figure 3.3 (B), the empirical

estimator depends on the cutoff. As the cutoff increases from 0.9 to 0.99, the empirical

estimator results move towards to the RBE results. As an example, for the alchemical

change from benzene to benzaldehyde, when the cutoff increases from 0.9 to 0.99, the

empirical estimator result changes from 2.20± 0.08 kcal/mol to 2.60± .08 kcal/mol. The

RBE result is 3.04± 0.09 kcal/mol, which is indistinguishable from the FEP/MBAR result

3.01±0.02 kcal/mol. The detailed numerical values from pairwise GSLD and FEP/MBAR

can be found in the Table S3 and S4.

The simulation results in vacuum and in water from generalized GSLD for multiple
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ligands are shown in Figure S2 and Figure 3.4, respectively. The ternary plots[94] of

(�1,�2,�3) trajectories show that the generalized GSLD is able to explore the hybrid lig-

and configuration space of (�1,�2,�3): the unit simplex {(�1,�2,�3)|
P3

i=1 �i = 1, 0 
�
i

 1 for i = 1, 2, 3}, in both vacuum and water. In vacuum, the configuration space

(�1,�2,�3) is sampled rather uniformly, while in water, the configuration space is sam-

pled mostly close to the physical states, i.e. the corners of the ternary plot in Figure 3.4.

This difference is because the biasing potential energy used in this study is a linear biasing

potential �
i

Gb

i

. With the linear biasing potential, the biased free energy landscape over

the configuration space (�1,�2,�3) in vacuum is almost flat. In water, the correspond-

ing biased free energy landscape is not flat due to the polarization energy of the solvent

interacting with reactant and product states, and the biased free energies of the physical

states is lower than the intermediate non-physical states, which explains why the sampled

(�1,�2,�3) are mostly around the physical states. Based on the trajectory from the gen-

eralized GSLD simulation, the calculated free energy using RBE and empirical estimators

are shown in Figure S2 (B) and Figure 3.4 (B). These results suggests again that, compared

with the empirical estimators, the RBE is a better estimator as it has no bias and a smaller

variance. The detailed numerical results from the generalized GSLD for multiple ligands

is shown in the Table S5.

The calculated relative hydration free energies for the three benzene derivatives using

pairwise GSLD, generalized GSLD for multiple ligands and FEP/MBAR methods are com-

bined in Table 3.1. The results from all three methods agree well with each other. The total

simulation time in water for calculating all three relative hydration free energies is 9 ns for

pairwise GSLD, 3 ns for generalized GSLD for multiple ligands and 33 ns for FEP/MBAR

methods, which suggests the efficacy of the generalized GSLD for multiple ligands.
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Figure 3.3: Results of pairwise GSLD and RBE for calculating solvation free energies.
(A) � trajectories from simulations in water using GSLD for alchemical changes benzene
to phenol (top), benzene to benzaldehyde (middle), and phenol to benzaldehyde (bottom).
(B) Estimated alchemical free energy changes in water using empirical estimators with
different cutoff values and the Rao-Blackwell estimator for alchemical changes benzene to
phenol (top), benzene to benzaldehyde (middle), and phenol to benzaldehyde (bottom).

3.5.2.3 Relative binding free energy of benzene and p-xylene with T4 lysozyme.

The � trajectories from the simulation with T4 lysozyme using pairwise GSLD and the

free energy estimations using RBE are shown in Figure 3.5. For both the case where � is

restricted to the trans conformation (�⇤
= �180

�) and the case where � is restricted to the

gauche (�⇤
= �60

�) conformation, the pairwise GSLD is able to sample the alchemical

switching variable �well and the RBE estimations converge in 10 ns of simulation. When �

is restricted to the trans conformation, the estimated free energy converges to �8.40±0.46

kcal/mol. When � is restricted in the gauche conformation, the estimated free energy
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Figure 3.4: Results of generalized GSLD for multiple ligands and RBE for calculating
solvation free energies. (A) Ternary plot of (�1,�2,�3) sampled using GSLD for multiple
ligands in water. (B) Estimated free energy changes in water for alchemical changes: ben-
zene to benzaldehyde (top) and phenol to benzaldehyde (bottom) using empirical estimator
with different cutoff values and RBE.

Table 3.1: Comparison of Relative Hydration Free Energies (��G in kcal/mol) for The
Three Benzene Derivatives. The total simulation time in water for each method is shown
in parenthesis.

substituents
��G

exp

Pairwise GSLD GSLD for Multiple Ligands FEP/MBAR
change ��G(9ns) ��G(3ns) ��G(33ns)

Benzene ! Phenol -5.77 �4.46± 0.08 �4.53± 0.15 �4.46± 0.03
Benzene ! Benzaldehyde -3.18 �3.11± 0.11 �3.22± 0.11 �3.13± 0.03
Phenol ! Benzaldehyde 2.59 1.39± 0.17 1.31± 0.10 1.34± 0.14

converges to �10.60 ± 0.36 kcal/mol. These two free energy estimations are different by

2.20 kcal/mol because the dihedral angle � is restricted to different conformations. Based

on the PMF method, in order to get the free energy corresponding to the case where � is not

restricted, the restricting free energies (���1
lnP (�⇤|� = l1) and ���1

lnP (�⇤|� = l16))

need to be considered and used to correct the free energy �G(�⇤
) using equation 3.21 in

Appendix B. These corrections are shown in Table 3.2. After the corrections, the estimated

free energy �G is �9.27 ± 0.50 kcal/mol when �⇤
= �180

� and �9.01 ± 0.40 kcal/mol

when �⇤
= �60

�. Therefore, after the corrections, the estimated free energy differences

(�G) agree very well within statistical uncertainty. Based on the these corrected values, the

relative binding free energies (��G) are 0.27 ± 0.56 kcal/mol and 0.43 ± 0.46 kcal/mol
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when �⇤
= �180

� and �⇤
= �60

�, respectively. These results are close to the relative

binding free energy from experiment, which is 0.52± 0.22 kcal/mol [82, 83].

Figure 3.5: Results of GSLD and RBE for calculating relative binding free energy be-
tween benzene and p-xylene with T4 lysozyme. (A) � trajectories for simulations with T4
lysozyme using pairwise GSLD for the �⇤

= �180

� (top) and �⇤
= �60

� (bottom); (B)
Free energy estimation using RBE for �⇤

= �180

� (top) and �⇤
= �60

� (bottom).

Table 3.2: Alchemical Free Energy Changes (kcal/mol) Between Benzene and p-Xylene
Binding with T4 Lysozyme Calculated Using Pairwise GSLD with Corrections from PMFs.

�⇤ �G(�⇤) ���1lnP (�⇤|� = 0) ���1lnP (�⇤|� = 1) �G ��G

trans (�⇤ = �180�) �8.40± 0.46 �0.47± 0.01 0.4± 0.03 �9.27± 0.50 0.27± 0.56

gauche (�⇤ = �60�) �10.60± 0.36 1.14± 0.03 �0.45± 0.01 �9.01± 0.40 0.43± 0.46

The alchemical free energy change �G in water is �9.44± 0.06 kcal/mol and the experimental relative binding free
energy ��G is 0.52± 0.22 kcal/mol.

3.6 Discussion

Although the GSLD and RBE are applied only for calculating relative hydration free energy

and relative binding free energy in this study, they could also be used for other purposes.

One of the applications would be for calculating the pK
a

value of protein amino acids by

combining with the constant pH molecular dynamics methods (CPHMD)[95, 63, 96], as
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several CPHMD methods are based on �-dynamics. Furthermore, the GSLD framework

presented here is not limited to alchemical free energy calculations. The � variable could

be replaced by the pH values, which would correspond to pH generalized ensemble simu-

lations. In these cases, we can also derive the corresponding RBE similarly.

In this study, we have presented the formalism for the Gibbs sampler based �-dynamics

(GSLD) and the Rao-Blackwell estimator (RBE) for alchemical free energy calculations.

These methods were successfully demonstrated for three test cases of increasing complex-

ity. The GSLD, a generalized ensemble sampling method, works for the case where � is

a discrete variable and for the case where � is considered to be continuous. When � is

continuous, the GSLD can be generalized to calculate free energies for multiple ligands

simultaneously in one simulation. The RBE not only eliminates the bias problem of the

empirical estimator used in the original �-dynamics, but also has smaller estimation vari-

ance than the empirical estimator. Moreover, we have also shown that the RBE can be

used to derive the MBAR/UWHAM equations, which provides new understanding for the

MBAR/UWHAM method.[66, 67, 68]

3.7 Auxiliary methods

3.7.1 A Wang-Landau like algorithm to automatically determine the

biasing potential Gb
1 used in pairwise GSLD when � is continu-

ous.

The purpose of the biasing potential Gb

1 used in the pairwise GSLD when � is continuous is

to make the biased free energy landscape over the � space flat, i.e. to make the simulation

spend about equal time at all � values between 0 and 1. In current study, a linear biasing

potential �Gb

1 is utilized, because with the linear biasing potential the biased free energy

landscape over � space is quite flat, i.e. the energy barrier between the two physical states
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� = 0 and � = 1 is small enough that the � is well sampled across the interval [0, 1]. If

the linear biasing potential energy cannot make the biased free energy landscape over the

� space flat enough, a quadratic form of biasing potential can be utilized as in Hayes et

al.’s flattening method[64]. The biasing potential Gb

1 is determined automatically using the

following Wang-Landau like algorithm:

• Set the initial biasing potential Gb

1 = 0 kcal/mol, the decay parameter ↵ such that 0 <

↵ < 1 (↵ = 0.998 in this study), the biasing potential increment � in each step (� = 2.0

kcal/mol in this study) and the number of steps R (R = 3000 in this study). Initialize the

starting state (�0, {x0
i

}1
i=0, X

0
).

• For t = 1 to R :

Sample ({xt

i

}1
i=0, X

t

) from the conditional distribution: P ({xt

i

}1
i=0, X

t|�t�1
) by running

molecular dynamics simulations and then sample �t from the conditional distribution

P (�t|{xt

i

}1
i=0, X

t

). Set Gb

1(t) = Gb

1(t� 1)+ (�t � 0.5) ⇤�(t) and �(t) = ↵ ⇤�(t� 1).

• The final value of Gb

1 from the above step is fixed and used as the biasing potential in

following simulations.

3.7.2 Reformulation of the PMF method using conditional probabil-

ity.

The PMF method requires prior knowledge of which slow degree of freedom is affecting

the free energy calculation. In the context of T4 lysozyme, the slow degree of freedom is the

side-chain dihedral angle N-CA-CB-CG1 (�) of residue Val111. The joint distribution of

(�,�) : P (�,�) is of most interest, as it encapsulates all the relevant information required

to calculate the free energy �G = ���1ln(P (� = l16)/P (� = l1)). Based on the chain
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rule of conditional probability, we have the following equations:

P (� = �⇤,� = l16) = P (� = �⇤|� = l16)P (� = l16) = P (� = l16|� = �⇤
)P (� = �⇤

)

P (� = �⇤,� = l1) = P (� = �⇤|� = l1)P (� = l1) = P (� = l1|� = �⇤
)P (� = �⇤

)

(3.19)

Combining the above two equation gives us:

P (� = l16)

P (� = l1)
=

P (� = l16|� = �⇤
)

P (� = l1|� = �⇤
)

· P (� = �⇤|� = l1)

P (� = �⇤|� = l16)
. (3.20)

Therefore, we can calculate the free energy �G as

�G = ���1ln
P (� = l16)

P (� = l1)

= ���1ln
P (� = l16|� = �⇤

)

P (� = l1|� = �⇤
)

� ��1ln
P (� = �⇤|� = l1)

P (� = �⇤|� = l16)

= �G(� = �⇤
) +

⇥� ��1lnP (� = �⇤|� = l1)
⇤� ⇥� ��1lnP (� = �⇤|� = l16)

⇤
,

(3.21)

where �G(� = �⇤
) is alchemical free energy change when � is fixed at the value �⇤;

���1lnP (� = �⇤|� = l1) is the free energy required to restrict the dihedral angle � at the

value �⇤ when T4 lysozyme binds with benzene, i.e, � = l1; ���1lnP (� = �⇤|� = l16) is

the corresponding free energy required when T4 lysozyme binds with p-xylene, i.e, � = l16.

The above equation holds regardless of the value of �⇤.
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CHAPTER 4

Protein Engineering

Ding, Xinqiang, Zhengting Zou, and Charles L. Brooks III. “Learning protein stability,

evolution and fitness landscapes with variational auto-encoder models.” submitted.

4.1 Introduction

With the advance of nucleic acid sequencing technology, a large amount of protein se-

quence data has been accumulated in protein sequence databases such as UniProt [97] and

Pfam[98]. For many protein families, many thousands of sequences from different species

are available [98]. These naturally occurring diverse protein sequences, belonging to the

same protein family but functioning in a diverse set of environments, are the result of

mutation and selection occurring in protein evolution. The selection in evolution favors se-

quences which have high fitness and filters out sequences that do not fold correctly or have

low fitness. Therefore, it is expected that the distribution of a protein family’s sequences

observed in present species carries information about the protein family’s properties, such

as structure[99, 100, 101, 102, 103], stability [104, 100, 105, 106, 105, 107], evolution

[100], and fitness [108, 109, 110]. With large numbers of protein sequences becoming

available, several methods have been developed to learn these protein properties using the

sequence data [99, 104, 108, 111, 112, 113, 99].

Of particular interest in this paper are methods that are based on learning probabilis-

tic generative models of a protein family’s sequence distribution [114]. Biologically, a
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protein family is a collection of proteins that share the same evolutionary origin [98]. Pro-

tein sequences belonging to the same protein family can vary among species, as observed

in multiple sequence alignments (MSAs) of protein families in the Pfam database [98].

From a probabilistic point of view, a protein family represented by sequences contain-

ing L amino acids corresponds to a distribution in the protein sequence space: {P (S =

(s1, s2, ..., sL)) | sj 2 {0, 1, 2, ..., 20}, j = 1, 2, ..., L}, where s
j

corresponds to the amino

acid type at the jth position of the protein and the amino acid types are labelled using

numbers from 0 to 20 with 0 representing a gap. Such a probabilistic generative model

assigns a proper probability P (S = (s1, s2, ..., sL)) for each protein sequence with L

amino acids. Moreover, new sequences can be sampled from the model based on the pro-

tein family’s sequence distribution. Building a probabilistic generative model of a protein

family’s sequence distribution is useful in several aspects. For example, for a given pro-

tein sequence S = (s1, s2, ..., sL), the probability P (S = (s1, s2, ..., sL)) assigned by the

model measures how likely the sequence belongs to the protein family, which is useful for

searching protein homologies [115]. In addition, new sequences sampled from the model

can be used as candidates for protein engineering. Furthermore, the probability function

P (S = (s1, s2, ..., sL)) of sequences may contain information about dependency between

protein positions, which can be utilized to infer protein residue contact maps and epistasis

effects between protein positions [99, 113, 112, 100, 108, 111, 113].

Two example methods based on probabilistic generative models are sequence profiles

[116, 115] and direct coupling analysis (DCA).[99, 117, 113, 118, 112, 111, 119, 114,

108]. Sequence profiles, widely used for searching homologous sequences, make a strong

assumption that amino acid types at different protein positions are independent, i.e., P (S =

(s1, s2, ..., sL)) =
Q

L

j=1 Pj

(s
j

) [116, 115]. Ignoring dependency between positions greatly

reduces the number of parameters necessary to model sequence profiles, which makes it

feasible to learn a profile even with a limited number of sequences. In contrast, DCA

approaches model sequence distributions by taking pairwise dependency between protein
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positions into account [99]. Although the number of parameters in DCA is much larger

than that in sequence profiles, multiple studies have shown that, for many protein families,

sequences available in current databases are sufficient to train DCA models that are useful

to predict protein residue contact maps [99, 117, 113, 118, 112, 111, 119, 114] and protein

stability change upon mutation [112, 104] .

Although sequence profiles and DCA have proved to be effective at detecting homol-

ogous sequences and predicting protein residue contact maps, respectively, they are lim-

ited by their inherent assumptions about dependency between protein positions. Sequence

profiles do not model any dependency between protein positions and DCA ignores depen-

dency of more than two positions. However, dependency of more than two positions has

been observed in real proteins and plays important role in shaping evolutionary trajectories

[120, 121, 122]. To overcome these limitations, we propose using variational auto-encoder

models [123] for modeling protein family sequence distributions. As a probabilistic gen-

erative model, compared with sequence profiles and DCA, variational auto-encoder mod-

els do not employ inherent assumptions about dependency between protein positions and

can potentially model dependency among any number of positions. In the work presented

here, with examples of both natural protein families and simulated sequences, it is shown

that variational auto-encoder models are useful for predicting protein stability change upon

mutation, capturing evolutionary relationships between sequences, and delineating protein

fitness landscapes. Our findings suggest that, with an increasing amount of protein se-

quence data, variational auto-encoder models will be useful tools for both the study and

engineering of proteins.
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4.2 Previous Methods

4.2.1 Sequence profiles

Given a protein family’s multiple sequence alignment, sequence profiles [115] model its

sequence distribution by assuming protein positions are independent, i.e.,

P (S = (s1, s2, ..., sL)) =
LY

j=1

P
j

(s
j

), (4.1)

where s
i

2 {0, 1, 2, ..., 20}; s
j

represents the amino acid type (labelled using numbers from

0 to 20) at the jth position of the protein; P
j

(k) represents the probability that the amino

acid type at the jth position is k. Therefore, a profile model of a protein family with L

amino acids contains 21⇥L parameters which are P
j

(k), j = 1, ..., L, k = 0, ..., 20. These

parameters are estimated using the protein family’s multiple sequence alignment:

P
j

(k) =

P
N

n=1 w
n ⇤ I(sn

j

= k)
P

N

n=1 w
n

, (4.2)

where N is the total number of sequences in the MSA; wn is the weight of the nth sequence;

sn
j

is the amino acid type at the jth position in the nth sequence of the MSA; I(sn
j

= k) is

equal to 1, if sn
j

= k and 0, otherwise. With the estimated parameters, the profile assigns

a probability for any given sequence S with L amino acids based on Eqn. [4.1]. The free

energy of the sequence is calculated as �GProfile(S) = � logP (S).

4.2.2 Direct coupling analysis

The direct coupling analysis (DCA) method [99, 117, 113, 118, 112, 111, 119] models the

probability of each sequence as

P (S = (s1, s2, ..., sL)) =
1

Z
exp(�

"
L�1X

i=1

LX

j=i+1

J
ij

(s
i

, s
j

) +

LX

i=1

b
i

(s
i

)

#
), (4.3)
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where the partition function Z is

Z =

X

s1,s2,...,s
L

exp(�
"

L�1X

i=1

LX

j=i+1

J
ij

(s
i

, s
j

) +

LX

i=1

b
i

(s
i

)

#
). (4.4)

The parameters in DCA include the bias term b
i

(·) for the ith position and the interaction

term J
ij

(·, ·) between the ith and the jth position of the protein. Learning these parameters

by maximizing likelihood of the model on training data involves calculating the partition

function Z, which is computationally expensive. Therefore, the pseudo-likelihood maxi-

mization method [117] is used to learn these parameters. Similarly as in sequence profiles,

the free energy of a sequence is calculated as

�GDCA(S) = � logP (S) =
L�1X

i=1

LX

j=i+1

J
ij

(s
i

, s
j

) +

LX

i=1

b
i

(s
i

) + logZ. (4.5)

Although the partition function Z is not known, we can still calculate the difference of

�GDCA between two sequences (��GDCA), because the partition function Z is a constant

and does not depend on sequences.

4.2.3 Gaussian process regression

The Gaussian process (GP) regression method [124] is used to fit the fitness (T50) landscape

for chimeric cytochrome P450 sequences. To train a GP regression model, a kernel function

needs to be chosen to specify the covariance between sequences [124]. When the latent

space representation Z is used as the feature vector of sequences, the radial basis function

(RBF) kernel [124] is used:

K(Z1, Z2
) = �2

exp(�1

2

||Z1 � Z2||2), (4.6)

where Z1, Z2 are latent space representations of two protein sequences and ||·|| is Euclidean

distance in the latent space. When the binary matrix representations X , as in Fig. 1, is used
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as the feature vector, the linear kernel is used in GP regression:

K(X1, X2
) = �2

21X

i=1

LX

j=1

X1
ij

·X2
ij

, (4.7)

where X1, X2 are two 21⇥ L binary matrices of two protein sequences. The linear kernel

function of two sequences is proportional to the sequence identity of the two sequences.

The parameter �2 in both RBF and linear kernels is estimated by maximizing the likelihood

of the GP model on T50 training data.

4.3 Variational Auto-Encoder

4.3.1 Learning variational auto-encoder (VAE) models of a protein

family’s sequence distribution

In VAE models, a protein sequence S = (s1, s2, ..., sL) is represented as a binary 21 ⇥ L

matrix X for which X
ij

= 1 if s
j

= i, and X
ij

= 0 otherwise (Fig. 4.1). In addition to

the variables X representing sequences, VAE models also include latent space variables Z

that can be viewed as a “code” for X . VAE models define the joint distribution of X and Z

as p
✓

(X,Z) = p
✓

(Z)p
✓

(X|Z), where ✓ represents parameters of the joint distribution. The

joint distribution p
✓

(X,Z) = p
✓

(Z)p
✓

(X|Z) implies a probabilistic generative process for

(X,Z): the latent variables Z are sampled from a prior distribution p
✓

(Z) first and then

the sequence variables X are sampled from the conditional distribution p
✓

(X|Z) given Z.

The conditional distribution p
✓

(X|Z) acts as a “decoder” that converts “codes” Z into pro-

tein sequences X . Although protein sequences X are discrete random variables, the latent

space variables Z are modeled as continuous random variables. The prior distribution of

Z, p
✓

(Z), is chosen to be an independent multivariable normal distribution with mean of

zero. The conditional distribution p
✓

(X|Z) is parameterized using an artificial neuron net-

work with one hidden layer. Given observed sequence data for variables X , learning the
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parameters ✓ that parameterize the generative process is challenging and has been an in-

tensive research topic in machine learning [123]. One reason for the difficulty is that when

the conditional distribution p
✓

(X|Z) is complex, such as parameterized by a neuron net-

work, the posterior distribution p
✓

(Z|X) becomes analytically intractable and it is difficult

to even draw samples from it efficiently [123]. In this study, given a protein family’s multi-

ple sequence alignment, the reparameterization trick, first proposed in VAE models [123],

is used to learn the parameters ✓ that include weight and bias parameters in the decoder

neuron network. To remedy the difficulty with the posterior distribution p
✓

(Z|X), in VAE

models, a reparameterized “encoder” q
�

(Z|X) is introduced to approximate the posterior

distribution p
✓

(Z|X). In this paper, the encoder q
�

(Z|X) is also parameterized using an

artificial neuron network with one hidden layer (Fig. 4.1).

4.4 Processing sequences in multiple sequence alignments

Before being used as training data for learning VAE models, sequences in multiple se-

quence alignments are processed to remove positions at which too many sequences have

gaps, and sequences with too many gaps. The processing procedure is as the following:

(i) positions at which the query sequence has gaps are removed; (ii) sequences with the

number of gaps larger than 20% of the total length of the query sequence are removed;

(iii) positions at which larger than 20% of sequences have gaps are removed again; (iv)

duplicated sequences are removed.

4.5 Variational auto-encoder

VAE models with the reparameterization trick, introduced for learning Bayesian graphical

models[123], have been successfully applied for several machine learning problems, such

as image and natural language processing [123, 125, 126]. VAE models also have been

applied to discover continuous representations of organic molecules [127]. In this paper, a
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VAE model similar with that in [123] is employed.

4.5.1 Model setup

The prior distribution of Z, p
✓

(Z), is a m dimensional Gaussian distribution with mean

at the origin and variance being the identity matrix. The decoder model p
✓

(X|Z) is pa-

rameterized using a fully connected artificial neuron network with one hidden layer as

H = tanh(W1Z + b1) and p
✓

(X|Z) = softmax(W2H + b2), where the parameters ✓ in-

clude the weights {W1,W2} and the biases {b1, b2}. The encoder model q
�

(Z|X) is chosen

to be a m dimensional Gaussian distribution N (µ,⌃), where ⌃ is a diagonal matrix with

diagonal elements of �2
= (�2

1, �
2
2, ..., �

2
m

). The mean µ and the variance �2 are parame-

terized using an artificial neuron network with one hidden layer as H = tanh(W3X + b3),

µ = W4H + b4, log �2
= W5H + b5. The parameters � for the encoder model q

�

(Z|X)

include weights {W3,W4,W5} and biases {b3, b4, b5}.

4.5.2 Model training

The weights of sequences in a protein multiple sequence alignment are calculated using the

position-based sequence weights.[128] Given weighted protein sequences, VAE models

learn the parameters of both encoder and decoder models simultaneously by optimizing the

evidence lower bound objective function (ELBO) [123] which is defined as

ELBO(✓,�) =
X

Z

q
�

(Z|X) log p
✓

(X|Z) +
X

Z

q
�

(Z|X) log

p
✓

(Z)

q
�

(Z|X)

.

To reduce overfitting, a regularization term of � ·P5
i=1 k W

i

k2
F

is added to the objective

ELBO(✓,�), where � is called the weight decay factor and k W
i

k
F

is the Frobenius norm

of weight matrix W
i

. The gradient of ELBO plus the regularization term with respect

to the model parameters is calculated using the backpropagation algorithm [129] and the

parameters are optimized using the Adam optimizer [130]. The weight decay factor � is
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selected from the set of values {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} using 5-fold

cross validation (using 10-fold cross validation in the case of cytochrome P450s). In the

cross validation, models trained with different weight decay factors are evaluated based on

the marginal probability assigned by the model on the held-out sequences (based on the

Pearson correlation coefficient in the case of cytochrome P450s).

4.5.3 Calculating the marginal probability of a sequence X , p✓(X)

Given a sequence X , the marginal probability, p
✓

(X), is equal to the integral
R
p
✓

(X,Z)dZ

which is calculated using importance sampling:

p
✓

(X) =

Z
p
✓

(X,Z) dZ =

Z
q
�

(Z|X)

p
✓

(X,Z)

q
�

(Z|X)

dZ

= E
Z⇠q

�

(Z|X)


p
✓

(X,Z)

q
�

(Z|X)

�
=

1

N

NX

i=1


p
✓

(X,Z i

)

q
�

(Zi|X)

�
,

where Zi are independent samples from the distribution q
�

(Z|X), and N is number of

samples. In this study, N = 1⇥ 10

6.

4.6 Simulating multiple sequence alignments

A random phylogenetic tree with 10,000 leaf nodes was generated using the populate func-

tion of the master Tree class from ETE Toolkit [131]. The random branch range is chosen

to be from 0 to 0.3. The LG evolutionary model [132] was used to simulate the sequence

evolution on the generated phylogenetic tree. Sequences from leaf nodes were combined

into a multiple sequence alignment.
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4.7 A predefined protein fitness function

In the predefined protein fitness function, the parameters, B
i

(·), represent the contribution

of individual positions and their values are specified by sampling from the normal distribu-

tion N (0, 22). The parameters, J
ij

(·, ·), corresponds to the epistatic effect between position

i and position j. These are chosen with a probability of 0.95 that there is no epistatic effects

between positions i and j, i.e., J
ij

(·, ·) = 0. Otherwise, the values of J
ij

(·, ·) are chosen

from the normal distribution N (0, 1). Similarly, the parameters, J
ijk

(·, ·, ·), stand for epis-

tasis among positions i, j, and k. These are chosen with a probability of 0.998 that there

is no epistatic effect between positions, i.e., J
ijk

(·, ·, ·) = 0. Otherwise, their values are

chosen from the normal distribution N (0, 0.52).

4.8 Results and Discussion

4.8.1 Predicting protein stability change upon mutations

With a protein family’s multiple sequence alignment as training data, VAE models learn the

joint distribution of latent space variables Z and sequence variables X: p
✓

(X,Z). After

learning a VAE model, a marginal probability p
✓

(X) can be calculated for each sequence

X with L amino acids as p
✓

(X) =

R
p
✓

(X,Z)dZ. The marginal probability of a sequence

X , p
✓

(X), measures how likely it is that the given sequence X belongs to the protein fam-

ily, i.e., how similar the given sequence is to the sequences from the protein family’s MSA.

Because the protein family’s MSA are results of selection in protein evolution, sequences

with higher probability belonging to the protein family’s MSA are expected to have better

adaptation under selection pressures. Selection pressures for protein evolution may include

stability, enzyme activity, drug resistance, or other properties. It can also be a mixture of

different selection pressures. Although different protein families might be under differ-

ent sets of selection pressures in evolution, a common selection pressure shared by many
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structured protein families is protein stability.

To test if a protein sequence’s probability assigned by VAE models correlates with

the sequence’s stability, we applied VAE models for three protein families: fibronectin

type III domain (Pfam accession id: PF00041), staphylococcal nuclease (PF00565), and

phage lysozyme (PF00959). These three protein families were selected because there are

both experimental data on stability change upon mutation [134] and a large number of

sequences in the Pfam database[98] for the three protein families. After processing, the

number of unique sequences in their MSAs is 46498, 7649, and 3560 for fibronectin type

III domain, staphylococcal nuclease, and phage lysozyme, respectively. A VAE model was

trained with these unique sequences for each family and was used to calculate marginal

probabilities of sequences that have experimental folding free energies. To be comparable

with experimental folding free energies, probabilities of sequences, p
✓

(X), are transformed

into unitless “free energies” by �GVAE(X) = � log p
✓

(X).

For protein stability change upon single site mutations, the predicted results using VAE

models are compared with experimental results for the three protein families (Fig. 4.2A).

The Pearson’s correlation coefficients between the experimental and predicted results for

fibronectin type III domain, saphylococcal nuclease, and phage lysozyme are 0.81, 0.52,

and 0.43, respectively. The corresponding Spearman’s rank correlation coefficients are

0.85, 0.50, and 0.42, respectively. Protein families with more unique sequences in their

MSAs used as training data tend to have higher correlation coefficients. For example,

fibronectin type III domain, with the largest number of unique sequences in its MSA, has

the highest correlation coefficient among the three protein families. Therefore, the limited

number of unique sequences in their MSAs might be one of the reasons why staphylococcal

nuclease and phage lysozyme have more modest correlation coefficients. The stability

change upon single site mutations is also predicted using sequence profiles and DCA. The

results from both methods are compared with those from the VAE models in terms of

Spearman’s rank correlation coefficients (Fig. 4.2A). The performance of the VAE models
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is comparable with that of sequence profiles and DCA. VAE models are slightly better than

the other two methods for the fibronectin type III domain and staphylococcal nuclease,

which have a relatively larger number of sequences (Fig. 4.2A).

The effects of double and triple site mutations on phage lysozyme’s stability are also

predicted using all three methods. The predicted results are compared with experimental

results [133] in Fig. 4.2B. Because sequence profiles assume that protein positions are

independent and ignore epistasis between positions, its prediction on the effects of multiple

mutations on stability is much poorer than the other two models, both of which take the

dependency between positions into account.

In summary, VAE models are useful for predicting protein stability change as a result

of mutation. For predicting the effect of single site mutations on protein stability, the VAE

model’s performance is comparable with sequence profiles and DCA and becomes better

than the other two methods when a large number of sequences are available. Like DCA,

VAE models also capture the pairwise dependency between positions, which enables DCA

and VAE models to outperform the sequence profile method in predicting the effect of

double and triple site mutations on protein stability. Moreover, VAE models should also be

able to capture dependency among more than two protein positions, which is not modeled

in DCA.

4.8.2 VAE latent space representation captures phylogenetic relation-

ships between sequences

After training with a protein family’s MSA, the VAE encoder, q
�

(Z|X), can be used to em-

bed sequences in a low dimensional continuous latent space, Z. Embedding sequences in

a low dimensional continuous space can be useful for several reasons. The low (2 or 3) di-

mensionality makes it easier to visualize sequence distributions and sequence relationships.

The continuity of the space enables us to apply operations to the family of sequences, such

as interpolation and extrapolation, that are best suited to continuous variables.
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For visualization purposes, the latent space used in this section is 2-dimensional. For

the three protein families: fibronectin type III domain, staphylococcal nuclease, and phage

lysozyme, the latent space embedding of all the sequences from their MSAs is shown in

Fig. S1(A-C). These embedding results show that, in the latent space, sequences are not

distributed randomly. Their distributions have a star structure with multiple spikes, each

of which points from the center towards the outside along a specific direction. The star

structure resembles phylogenetic tree structures that represent phylogenetic relationships

between sequences. To test if the latent space representation can capture phylogenetic re-

lationships between sequences like phylogenetic trees, we applied VAE models on a simu-

lated protein family MSA. The simulated MSA is generated by neutrally evolving a random

protein sequence with 100 amino acids on a simulated phylogenetic tree [131] with 10,000

leaf nodes and combining sequences from all the leaf nodes (Fig. 4.3A). Thus, the phy-

logenetic relationships between sequences in this simulated MSA are known based on the

phylogenetic tree used for simulation.

As with the three protein families shown above, the latent space representation of the

simulated sequences has a similar star structure with multiple separate spikes (Fig. 4.3B),

even though the sequence evolves neutrally in the simulation. As a negative control, a VAE

model is also trained on an MSA consisting of random sequences sampled from the equi-

librium distribution of the LG evolutionary model [132]. The star structure is not observed

in the latent space representation of these random sequences (Fig. S1D), which strongly

supports the idea that the star structure is derived from the evolutionary relationships en-

coded in the tree structure used in the simulation. To compare the latent space star structure

with the phylogenetic tree, sequences are grouped together if they share the same ances-

tor at a reference evolutionary time point based on the phylogenetic tree. Sequences in

the same group have the same color in their latent space representation (Fig. 4.3B). Se-

quences with the same color, i.e., sharing the same ancestor at the chosen time point, are

observed to have their latent space representations in the same spike or multiple adjacent
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spikes (Fig. 4.3B). The multiple adjacent spikes occupied by the same group of sequences

represent more fine-grained phylogenetic relationships between sequences and these more

fine-grained phylogenetic relationships can be recovered by changing the reference time

point used to group the sequences (Fig. 4.3C). Therefore, the spatial organization of the la-

tent space representation of the sequences captures features of the phylogenetic relationship

between sequences.

Another similarity between the star structure in the latent space and the phylogenetic

tree is that the phylogenetic tree originates from the root node and spikes in the star structure

originate from the origin of the latent space (Fig. 4.3B). This similarity is supported by

the observation that the latent space representation of the root node sequence is near the

origin of the latent space (Fig. 4.3D). Furthermore, to see how a sequence’s latent space

representation moves in the latent space as the sequence evolves, both leaf node sequences

and their corresponding ancestral sequences are projected into the latent space. For a leaf

node sequence and its corresponding ancestral sequences, the primary moving direction is

calculated as the first component direction using principal component analysis (Fig. 4.3D).

It is shown that a sequence’s distance from the origin along the moving direction in the

latent space is highly correlated with the sequence’s evolutionary distance from the root

node sequence (Fig. 4.3D and E). This correlation suggests that as sequences evolve from

the root node towards leaf nodes in the phylogenetic tree, their latent space representations

move from the origin of the latent space towards the outside along specific directions (Fig.

4.3D). This pattern holds for most of the leaf node sequences and their corresponding

ancestral sequences (Fig. 4.3F).

The comparison between the phylogenetic tree structure and the latent space repre-

sentation of sequences demonstrates that the VAE latent space representation can capture

similar phylogenetic relationships between sequences as does the phylogenetic tree. Phy-

logenetically close sequences are clustered spatially together as spikes in the latent space.

In addition, as a sequence evolves, its latent space representation moves from the origin
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towards the outside along a spike. These phylogenetic relationships captured in the VAE’s

latent space representation make the VAE a potentially useful tool for studying protein evo-

lution. Compared with traditional phylogenetic trees, VAE models does not require choos-

ing a specific evolutionary model. Moreover, VAE models can work with a much larger

number of sequences (hundreds of thousands of sequences or more) than a phylogenetic

tree, because it does not require the tree structure search or pairwise sequence comparison.

One disadvantage of the VAE model is that it may not be able to capture as many details

of the evolutionary relationships as does the phylogenetic tree. Therefore, a mixture model

of both phylogenetic trees and VAE models might have the best of both approaches for

studying protein evolution.

4.8.3 Navigating the protein fitness landscape in the VAE latent space

A protein’s fitness landscape is a map from the protein’s sequence to the protein’s fitness,

such as the protein’s stability and activity, among a host of other properties. Knowing a pro-

tein’s fitness landscape can greatly assist in studying and engineering proteins with altered

properties. A protein’s fitness landscape can also be viewed as a fitness function in a high

dimensional discrete space of sequences. Because of the high dimensionality and discrete-

ness of this sequence space and the effects of epistasis between different protein positions,

it has been difficult for protein researchers to characterize protein fitness landscapes. As

only a relatively small number of sequences can be synthesized and have experimentally

measured fitness values, a common problem facing researchers is, given the fitness values

for a collection of sequences from a protein family, how does one predict the fitness value

of a new sequence from the same protein family, or design a new sequence which will have

a desired fitness value.

Here we propose a semi-supervised learning framework utilizing the VAE latent space

representation to learn protein fitness landscapes using both protein sequence data and ex-

perimental fitness data (Fig. 4.4D). Although fitness values are usually known for only

62



a small subset of sequences from a protein family, we often have access to a large num-

ber of homologous sequences from the same protein family. These sequences represent

functional proteins from species living in different environments. The distribution of these

sequences is shaped by evolutionary selection. Therefore, we expect that the distribution of

these sequences contains information about the relationship between sequence and fitness.

To utilize this information, with a large number of sequences from a protein family, we can

model the distribution of sequences by learning a VAE model for the protein family. The

resulting VAE model provides us with a sequence encoder and a sequence decoder. With

the sequence encoder, sequences are first embedded into a low dimensional continuous

latent space. Then the fitness landscape is estimated in the latent space with experimen-

tal fitness data. With an estimated fitness landscape in the latent space, we can predict

the fitness value of a new sequence using its latent space representation. In addition, we

can also design new sequences with desired fitness values by choosing points in the latent

space based on the fitness landscape and converting these points into sequences using the

VAE decoder (Fig. 4.4D). To test this framework, we applied it to two protein families:

a simulated protein family with a predefined fitness function and the cytochrome P450s

[135, 136, 137].

4.8.4 A simulated protein family with a predefined fitness function

An ideal case to test the above framework would be a protein family whose fitness function

is known. For natural protein families, fitness values are known for only a small number

of sequences. Therefore, we first applied the framework to a simulated protein family for

which a fitness function is predefined as:

Fitness(s1, s2, ..., sL) =
LX

i=1

B
i

(s
i

) +

X

1i<jL

J
ij

(s
i

, s
j

)

+

X

1i<j<kL

J
ijk

(s
i

, s
j

, s
k

),
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where s
i

is the amino acid type at position i. This fitness function not only includes the

effect of amino acid types at individual positions (B
i

(s
i

)), but also includes the effects of

second order (J
ij

(s
i

, s
j

)) and third order (J
ijk

(s
i

, s
j

, s
k

)) epistasis. The parameters of the

fitness function, B
i

, J
ij

, and J
ijk

, are specified using the procedure described in Methods.

The setup used for simulating sequences is the same as in Fig. 4.3 except that as the

sequence evolves along the path from the root node to a randomly chosen leaf node A,

its fitness value has to increase monotonically based on the predefined fitness function

(Fig. 4.4A). Mutations that decrease the fitness value are rejected. The simulated MSA is

used to train a VAE model with a two dimensional latent space and the sequences corre-

sponding to nodes on the path under selection are projected into the latent space using the

VAE encoder (Fig. 4.4B). Similar to the pattern observed in Fig. 4.3D, these sequences

align along a preferred direction in the latent space (Fig. 4.4B) because of their ancestral

relationship. As the sequence evolves from the root node to the leaf node A, its latent space

representation moves away from the origin along a direction which is obtained using the

lowest frequency eigenvector from a principal component analysis of the latent space rep-

resentation of these sequences. Because the fitness value increases monotonically as the

sequence evolves along the path, the sequences’ fitness values correlate with their posi-

tions in latent space along the principal component eigenvector direction (orange points in

Fig. 4.4C). This correlation can be viewed as the fitness landscape along the eigenvector

direction, but it is observed only at a finite number of discrete points. Does this correla-

tion hold continuously along this direction? To answer this question, 300 points, uniformly

distributed along the eigenvector direction, were converted into protein sequences using

the VAE decoder and their fitness values are calculated with the predefined fitness func-

tion (blue points in Fig. 4.4C). For these decoded sequences, fitness values also correlate

with their positions along the eigenvector direction in the latent space (Fig. 4.4C). Be-

cause the correlation holds continuously, it is useful to not only predict fitness of sequences

whose latent space representation lies along this eigenvector, but also to design sequences
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that have fitness values in between by interpolating sequences through their latent space

representation.

4.8.5 Cytochrome P450

The cytochrome P450 protein family was chosen to test our framework because there are

both experimental fitness data and a large number of sequences available for the protein

family. The Arnold group made a library of 6561 chimeric cytochrome P450 sequences

by recombining three cytochrome P450s (CYP102A1, CYP102A2, CYP102A3) at seven

crossover locations [135] (Fig. S2) and measured T50 values (the temperature at which 50%

of the protein is inactivated irreversibly after 10 minutes) for 278 sequences [135, 136, 137].

In addition to these experimental T50 fitness data, the cytochrome P450 family (PF00067)

has more than 28K unique homologous sequences in its MSA from the Pfam database [98].

For visualization purposes, we first trained a VAE model with a two dimensional latent

space. Embedding the 28K sequences from its MSA (Fig. S3A) shows that the latent space

representation of these sequences has a similar star structure as observed in Fig. 4.3B.

Comparing the latent space representation of sequences from the MSA (Fig. S3A) with

that of chimeric sequences (Fig. S3B), we can see that the 6561 chimeric sequences, made

by all possible recombinations of three proteins at seven crossover locations, only occupy a

small fraction of latent space available for the protein family. This suggests that most of the

sequence space of cytochrome P450 is not covered by these chimeric sequences. Therefore,

the two dimensional latent space representation, though simple, is useful to estimate how

much sequence space has been covered by a set of sequences. In addition, it can also

potentially guide designing sequences from the unexplored sequence space by converting

points in the unexplored latent space region into sequences using the VAE decoder.

Embedding the sequences which have T50 data into the two dimensional latent space

and coloring the sequences based on their fitness values provide a way to visualize the

fitness landscape (Fig. S3C). As the fitness landscape is not necessarily linear, Gaussian
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processes are used to fit a continuous fitness surface using the two dimensional latent space

representation as features and using the radial basis function (RBF) kernel with Euclidean

distance. The 278 sequences with T50 experimental data are randomly separated into a

training set of 222 sequences and a testing set of 56 sequences. Based on 10-fold cross

validation on the training set, just using the two dimensional latent space representation

of sequences which have 466 amino acids, the Gaussian process model can predict the

T50 values for the training set with a Pearson correlation coefficient of 0.80 ± 0.06 and a

MAD (mean absolute deviation) of 3.2± 0.4�C (Fig. S3D). For the testing set, the Pearson

correlation coefficient is 0.84 and the MAD is 2.9�C.

As the method is not restricted to two dimensional latent spaces, VAE models with

latent spaces of different dimensionality combined with Gaussian processes may also used

to predict the T50 experimental data. Based on 10-fold cross validation Pearson correlation

coefficients, the VAE model with a 30 dimensional latent space works the best with a

Pearson correlation coefficient of 0.93 ± 0.02 and a MAD of 1.9 ± 0.2�C on the training

set (Fig. 4.4E). On the testing set, the Pearson correlation coefficient is 0.93 and the MAD

is 2.0�C.

We note that Gaussian processes have been used before to learn the T50 fitness land-

scape of cytochrome P450 either employing sequences as features with a structure based

kernel function [136] or using embedding representations [138]. Compared with previous

methods [136, 138], one difference of our method lies in the embedding method. The em-

bedding method used in this study is the VAE encoder learned by modeling the sequence

distribution of the protein family. Therefore, it utilizes information specific to the protein

family. In contrast, the embedding method proposed in [138] is a generic doc2vec embed-

ding method, which is learned by pooling sequences from many protein families together

and viewing all protein sequences equally. Another difference with our method is that

points in the embedding space, i.e., the latent space, can be converted into sequences using

the VAE decoder. Therefore, the transformation between sequence space and embedding
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space is a two-way transformation, instead of one way as in [138]. This enables our ap-

proach to be used to propose new sequences based on the fitness landscape in the latent

space.

4.9 Conclusion

Using both simulated and experimental data, we have demonstrated that VAE models,

trained only with MSAs of protein families, can predict protein stability change upon mu-

tation and learn phylogenetic relationships between sequences. Unlike the sequence profile

method and the DCA method, VAE models can potentially model amino acid dependency

among any number of protein positions. Compared with phylogenetic trees, to learn phy-

logenetic relationships between sequences, VAE models do not assume a predefined evolu-

tionary model and can work with a much larger number of sequences. When experimental

data on protein fitness is available for a subset of sequences, VAE models can also help

learn fitness landscapes with the low dimensional continuous latent space representation

of sequences. With an estimated fitness landscape in the latent space and the two-way

transformation between the latent space and the sequence space, the VAE models can not

only predict fitness values of sequences, but also help design new candidate sequences with

desired fitness for experimental synthesis and validation. With the advance of sequencing

technology, the amount of protein sequence data that are available to train VAE models

increases rapidly. Moreover, recent deep mutational scanning experiments are generating

large-scale data sets of the relationship between protein sequences and function [139]. With

this increasing amount of both protein sequence and fitness data, the VAE model will be

a useful tool to learn information about protein stability, evolution, and fitness landscapes

and provide insights into the engineering of proteins with modified properties.
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Figure 4.1: Encoder and decoder models used in the variational auto-encoder. Both
encoder and decoder models used in this paper are fully connected artificial neuron net-
works with one hidden layer H . The encoder model transforms each protein sequence X
into a distribution q

�

(Z|X) of Z in the latent space; the decoder model transforms each
point in the latent space Z into a distribution p

✓

(X|Z) of X in the protein sequence space.
In both models, protein sequences from a multiple sequence alignment with L amino acids
are represented as a 21⇥L matrix whose entries are either 0 or 1 based on a one-hot coding
scheme. Gaps in sequences are modeled as an extra amino acid type.
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A

B

Figure 4.2: Predicting protein stability change upon mutations. (A) (Top) Correlation
between experimental results and predicted results using VAE models on protein stability
change upon single mutations for fibronectin type III domain (left), staphylococcal nu-
clease (middle), and phage lysozyme (right). ��Gexp is experimental protein folding free
energy change upon single mutations compared with the wild type protein. ��GVAE is pre-
dicted protein stability change upon single mutations using VAE. ��GVAE is calculated as
the change of negative log-likelihood of sequences when single mutations are introduced.
Therefore, ��GVAE is an unitless quantity. Each point corresponds to a mutant sequence
with one mutation compared with the wild type sequence. r and ⇢ are Pearson’s correla-
tion coefficients and Spearman’s rank correlation coefficients, respectively. (Bottom) In
addition to VAE models, protein stability change upon single mutations are also predicted
using sequence profiles and DCA. Spearman’s rank correlation coefficients between exper-
imental results and predicted results using the three methods are compared for the same
three protein families. (B) Correlation between experimental results and predicted results
on protein stability change upon single (�), double (+) and triple (4) mutations for phage
lysozyme using profiles (left), DCA (middle), and VAE (right) models. The estimated
measurement error in ��Gexp is ±0.2 kcal/mol [133]. We note that the correlations shown
here are results on testing sets because the experimental folding free energy changes are
not used in training the VAE model.
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Figure 4.3: VAE latent space representation of sequences captures phylogenetic rela-
tionships between sequences. (A) A schematic representation of the phylogenetic tree
used for simulating evolution of a random protein sequence with 100 amino acids. The
actual tree used has 10,000 leaf nodes. Dash lines, ↵ and �, represent two reference evolu-
tionary time points on which sequences of leaf nodes are grouped. Sequences of leaf nodes
are in the same group if they share the same ancestor at the reference time point, either ↵
or �. (B) VAE latent space representation of sequences of all leaf nodes. The sequence of
each leaf node is projected into the 2-dimensional latent space onto the point E

q

�

(Z|X)Z,
where Z = (Z1, Z2) based on the VAE encoder q

�

(Z|X). Sequences are separated into
groups at the reference time point ↵, which has an evolutionary distance of 0.5 from the
root node. Sequences in the same group have the same color. (C) Sequences from the yel-
low colored group in (B) are regrouped and recolored based on the reference time point �,
which has an evolutionary distance of 0.92 from the node. (D) VAE latent space represen-
tation of four representative leaf node sequences, labelled as plus signs, and their ancestral
sequences, labelled as dots. Sequences are colored based on their evolutionary distances
from the root node. The sequence of the root node sits around the origin in the latent space.
As the sequence evolves from the root node to a leaf node, its latent space representation
moves from the origin towards the surroundings along a direction. The moving direction,
labelled as a dashed arrow line for the right most leaf node, is calculated as the first com-
ponent direction using the principal component analysis. (E) For the leaf node sequence at
the rightmost of (D) and its corresponding ancestry sequences, their coordinates along the
moving direction correlates with their evolutionary distances from the root node. (F) The
distribution of Pearson’s correlation coefficients of all leaf node sequences, as calculated in
(E).
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Figure 4.4: Navigating the protein fitness landscape in the VAE latent space. (A) A
schematic representation of the phylogenetic tree used for simulating evolution of a ran-
dom protein sequence with 100 amino acids. The simulation setup is the same as that
in Fig. 4.3A except that a selection pressure with a predefined fitness function is applied
through the path (bold) from the root node to a leaf node A. Therefore, fitness of sequences
increases monotonically along the path. (B) Latent space representation of sequences cor-
responding to the nodes along the bold path in (A). Color represents fitness values of se-
quences. Red plus sign represents the position of the leaf node sequence. Dashed arrow
line represents the primary moving direction, which is used in (C). (C) (Orange) Fitness of
sequences from both the leaf node and the ancestral nodes along the path under selection.
(Blue) Fitness of interpolated sequences which are calculated by decoding points along the
primary moving direction in the latent space into sequences. (D) The proposed framework
on how VAE latent space representation of sequences can be combined with other methods,
such as Gaussian processes in this study, to predict fitness of a new sequence and to design
a new sequence with specified fitness values. (E) Correlation between predicted T50 and
experimental T50 for P450 chimera sequences in testing set.
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Figure 4.5: Two dimensional latent space representations of sequences from multiple se-
quence alignments for protein families: fibronectin type III domain (A), staphylococcal
nuclease (B), and phage lysozyme (C). A two dimensional latent space representation of
random sequences with 100 amino acids sampled from the equilibrium distributions of the
LG evolutionary model (D).
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CYP102A1    .TIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDK
CYP102A2    KETSPIPQPKTFGPLGNLPLIDKDKPTLSLIKLAEEQGPIFQIHTPAGTTIVVSGHELVKEVCDEERFDK
CYP102A3    KQASAIPQPKTYGPLKNLPHLEKEQLSQSLWRIADELGPIFRFDFPGVSSVFVSGHNLVAEVCDEKRFDK

CYP102A1    NLSQALKFVRDFAGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHI
CYP102A2    SIEGALEKVRAFSGDGLATSWTHEPNWRKAHNILMPTFSQRAMKDYHEKMVDIAVQLIQKWARLNPNEAV
CYP102A3    NLGKGLQKVREFGGDGLATSWTHEPNWQKAHRILLPSFSQKAMKGYHSMMLDIATQLIQKWSRLNPNEEI

CYP102A1    EVPEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFITSMVRALDEAMNKLQRANPDDPAYDENKRQFQEDI
CYP102A2    DVPGDMTRLTLDTIGLCGFNYRFNSYYRETPHPFINSMVRALDEAMHQMQRLDVQDKLMVRTKRQFRYDI
CYP102A3    DVADDMTRLTLDTIGLCGFNYRFNSFYRDSQHPFITSMLRALKEAMNQSKRLGLQDKMMVKTKLQFQKDI

CYP102A1    KVMNDLVDKIIADRKASGEQ.SDDLLTHMLNGKDPETGEPLDDENIRYQIITFLIAGHETTSGLLSFALY
CYP102A2    QTMFSLVDSIIAERRANGDQDEKDLLARMLNVEDPETGEKLDDENIRFQIITFLIAGHETTSGLLSFATY
CYP102A3    EVMNSLVDRMIAERKANPDENIKDLLSLMLYAKDPVTGETLDDENIRYQIITFLIAGHETTSGLLSFAIY

CYP102A1    FLVKNPHVLQKAAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPTAPAFSLYAKEDTVLGGEYPLE
CYP102A2    FLLKHPDKLKKAYEEVDRVLTDAAPTYKQVLELTYIRMILNESLRLWPTAPAFSLYPKEDTVIGGKFPIT
CYP102A3    CLLTHPEKLKKAQEEADRVLTDDTPEYKQIQQLKYIRMVLNETLRLYPTAPAFSLYAKEDTVLGGEYPIS

CYP102A1    KGDELMVLIPQLHRDKTIWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRACIGQQFALHEATLVLGMML
CYP102A2    TNDRISVLIPQLHRDRDAWGKDAEEFRPERFEHQDQVPHHAYKPFGNGQRACIGMQFALHEATLVLGMIL
CYP102A3    KGQPVTVLIPKLHRDQNAWGPDAEDFRPERFEDPSSIPHHAYKPFGNGQRACIGMQFALQEATMVLGLVL

CYP102A1    KHFDFEDHTNYELDIKETLTLKPEGFVVKAKSKKIPLGGIPSPST.
CYP102A2    KYFTLIDHENYELDIKQTLTLKPGDFHISVQSRHQEAIHADVQAAE
CYP102A3    KHFELINHTGYELKIKEALTIKPDDFKITVKPRKTAAINVQRKEQA

Figure 4.6: Sequences of the three parent cytochrome P450s (CYP102A1, CYP102A2,
CYP102A3). The chimeric sequences are made by recombining the three proteins at the
seven cross over locations marked by arrows [135].
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Figure 4.7: Latent space representations of sequences for cytochrome P450 family and its
fitness landscape. (A) A two dimensional latent space representation of sequences for cy-
tochrome P450 family (PF00067). (B) The two dimensional latent space representation
of 6561 chimeric cytochrome P450 sequences made by combining the three cytochromes
P450 (CYP102A1, CYP102A2, CYP102A3) at seven crossover locations. (C) The two di-
mensional latent space representation of 278 chimeric cytochrome P450 sequences whose
T50 values are measured experimentally by the Arnold group. Each point represents a
chimeric cytochrome P450 sequence. Points are colored by their experimental T50 val-
ues. (D) The Gaussian process’s performance at predicting T50 on the training set of 222
chimeric cytochrome P450 sequences using the two dimensional latent space representation
(Z1, Z2) as features and using the radial basis function kernel with Euclidean distance in
latent space Z. (E) The performance of the Gaussian process model from (D) at predicting
T50 on the testing set of 56 chimeric cytochrome P450 sequences. (F) The Gaussian pro-
cess’s performance at predicting T50 on the training set of 222 chimeric cytochrome P450
sequences using the 30 dimensional latent space representation (Z1, ..., Z30) as features and
using the radial basis function kernel with Euclidean distance in latent space Z.
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CHAPTER 5

Discussion and Conclusions

In the previous chapters three methodological advances have been developed and presented

for both drug discovery and protein engineering. Although these advances do solve several

problems in drug discovery and protein engineering, they are still far from perfect and can

be further improved. Moreover, in addition to the applications shown in the dissertation,

these advances also have potential to be used in other applications. Therefore, the first pur-

pose of this chapter is to share with the reader how these advances can be further improved

and used in other applications.

The significant speedup achieved by the FFT docking on GPUs for searching ligands’

translational and rotational space can be used to rank ligand docking conformations in

protein-ligand docking. In most current protein-ligand docking programs, ligand confor-

mations are ranked by their interaction energies with proteins, which does not take the

entropic effects into account explicitly[13, 14, 12, 7, 9]. With the FFT docking, a Boltz-

mann weighted energy can be calculated by calculating interaction energies of a ligand

conformation with proteins for all of its positions and orientations and taking a Boltzmann

average of these energies. This explicit way of incorporating the entropic effects of lig-

and translations and rotations into ranking ligand docking conformations has the potential

to improve the ranking accuracy of the initial scoring function. The current implementa-

tion of parallel MD simulated annealing running on a GPU is only 20 times faster than

the original simulated annealing running on a CPU when 500 trials of simulated anneal-

75



ing are used. One of the reasons that the speedup is only 20 is that the implementation

is using OpenMM[36] and a large fraction of computing time is spent on constructing the

OpenMM context. Therefore, implementing the parallel MD simulated annealing directly

using CUDA might be able to accelerate the calculation much further beyond a speedup of

20 times.

The Gibbs sampler �-dynamics (GSLD) approach for free energy calculation is only

applied to small test systems in the dissertation[8]. Like �-dynamics, GSLD can also be

extended to calculate free energies for a large number of states simultaneously. One particu-

lar suitable application of this extension will be the use of GSLD for constant pH molecular

dynamics, which can provide information on how pH affects the dynamics of a biological

system. In the dissertation, the Rao-Blackwell estimator is shown to not only address the

biasing problem of the empirical estimator but also provide a new understanding of the

multistate Bennett acceptance ratio (MBAR) equations[66]. This new way of understand-

ing the MBAR equations has inspired us to develop a fast solver for solving large scale

MBAR equations and a manuscript describing this new fast solver is in preparation.

The variational auto-encoder (VAE) approach [123] for learning protein stability, evo-

lution, and fitness landscape information from protein sequences is still in an early stage

and several questions are worth further investigation. For instance, considering that the

VAE approach can work with a large number of sequences, an effective way to combine

it with tools from evolutionary biology to help build phylogenetic trees of a large number

of sequences can provide a very useful tool for evolutionary biologists. One limitation of

the proposed VAE approach is that its input needs to be protein sequences from a multiple

sequence alignment (MSA) and obtaining MSAs is much more difficult than collecting pro-

tein sequences. Therefore, a very useful extension of the current VAE approach is to make

it work with unaligned protein sequences, which can significantly increase the amount of

data available to train the model. Moreover, working with unaligned protein sequences

could also enable the VAE method to model the sequence distribution of multiple protein
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families, which might be able to provide insights into the evolutionary relationship between

protein families in addition to the evolutionary relationship between sequences in the same

protein family. Another straightforward application of the VAE approach is for analyz-

ing RNA sequences, because, similar to protein sequences, RNA sequences can also be

clustered into different families and combined into sequence alignments [140].

These methodological advances are made by combining and adapting theories, meth-

ods, and tools from multiple disciplines including statistical mechanics, statistics, machine

learning, and computer science. In studying theories and methods from different disci-

plines and developing new interdisciplinary methods, I have learned several lessons about

how different research fields are closely connected and how new methods developed in one

field can have a big impact in another field. Therefore, it is the second purpose of this

chapter to share some of these lessons.

Free energy has been a quantity of great interest to calculate in statistical mechanics

and computational chemistry. At the same time, free energy is also a quantity of interest in

statistics, especially in Bayesian statistics. In Bayesian statistics, calculating free energies

is usually known as calculating normalization constants or calculating evidence, which

is necessary when deciding which model/assumption is more convincing given observed

data. Therefore, researchers from both statistical mechanics and Bayesian statistics have

been developing similar or equivalent methods for calculating free energies. For example,

the free energy perturbation (FEP) method using the Zwanzig equation developed in sta-

tistical mechanics is equivalent to the importance sampling method developed in statistics,

although they were developed independently in the two fields in 1950s [51, 141]. In 1976,

the Bennett acceptance ratio (BAR) method was developed in statistical mechanics and it

is a much better method than the FEP method for calculating free energies [142]. However,

the BAR method was not widely known or used in statistics until 20 years later in 1998

when the BAR method was introduced and analyzed in statistics[143]. This shows that,

despite the fact that researchers from both fields are trying to solving the same problem,
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sometimes researchers from one field are not aware of progress made in the other field

and it takes a long time for a new idea proposed in one field to be borrowed and have an

impact on another field. In addition to the free energy methods mentioned above, another

research area shared by both statistical mechanics and Bayesian statistics is development

of enhanced sampling methods. Making connections between enhanced sampling methods

that have been developed in the two disciplines could provide insights and help develop

better sampling methods that can benefit both fields.

The last lesson I want to share is that, during the last 10 years or so, there have been

great advances in machine learning, especially in the area of unsupervised learning[123,

144, 145]. Combined with the availability of a large amount of data, these advances have

been making large impacts on traditional machine learning areas such as image processing,

recommendation systems, and natural language processing[145]. Due to the advances of

both imaging and sequencing technology in biology, the amount of data in biology and

medicine, especially sequence data, has been rapidly increasing [98, 97, 140]. Most of

these data in biology is unlabelled. Therefore, unsupervised learning methods are required

to learn valuable information from the large amount of unlabelled data. The application of

the new advances in unsupervised machine learning methods in biology and medicine is

still in a starting stage and should be a research area worth much further investigation.
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