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ABSTRACT 

Suboptimal diet is a major public health concern, responsible for ~10 million death/year 

globally associated with nutrition, plus additional deaths associated with environmental emissions 

from food production. Informing consumer choices is crucial and would require to consistently 

combine latest epidemiological evidence on the impact of diet and pollution, with life cycle 

assessment (LCA) of food systems to analyze relevant trade-offs. 

This dissertation aims to address four critical challenges for assessing the life cycle impact 

and benefits of food systems on human health: (1) The failure to capture both environmental 

impacts and nutritional effects of foods consistently. (2) The lack of nutritional assessment metrics 

that evaluate the performance of individual food items based on health burden. (3) The overly 

simplified assessment of impacts of particulate matter (PM2.5) on human health, which do not 

consider spatial variation in exposure, nor evidence for non-linear exposure-response. (4)  The 

need for a consistent approach to evaluate multi-ingredient mixed dishes, a central component in 

modern diets.  

Chapter 2 developed a novel Combined Nutritional and Environmental Life Cycle 

Assessment (CONE-LCA) framework that evaluates and compares in parallel the environmental 

and nutritional effects of foods or diets in a common metric, disability adjusted life years (DALYs). 

A proof-of-concept case study indicated that nutritional health net benefits of adding a serving of 

milk to the average U.S. diet exceeded environmental impacts and highlighted the need for 

considering nutrition as a new LCA impact category.  

Chapter 3 operationalized the nutritional approach by establishing the Health Nutritional 

Index (HENI). This health burden-based nutritional index quantifies the health burden of one food 

serving in minutes of healthy life lost or gained, using epidemiological evidence for a 

comprehensive set of 16 dietary risks. Application to ~7,000 food items in the U.S. diet revealed 

substantial variability in HENI scores between and within food categories, thus the importance of 

informed choices at the level of individual food items.  
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In Chapter 4, we developed spatially-explicit intake fractions for ground-level PM2.5, NH3, 

SO2, and NOx emissions in the contiguous U.S. for agriculture and other relevant sectors. Using a 

non-linear exposure-response function and state-specific burden data, we developed the 

corresponding characterization factors considering a marginal and an average slope. Spatial 

estimates varied by three orders of magnitude, sector-specific estimates by a factor of four, and the 

average slope doubled estimates compared to marginal. This work stressed the importance of 

spatially-explicit and sector-specific estimates in LCA.  

Finally, in Chapter 5 we established a new nutritional impact category for LCA, providing 

both inventory flows and nutritional characterization factors, and a systematic approach to 

decompose mixed dishes into individual components for which environmental life cycle inventory 

is available. Using a case study of pizzas, we quantified and compared environmental and 

nutritional impacts on health and found that nutrition dominates health damages. Nutritional and 

environmental impacts were correlated with red meat pizzas generating the highest and vegetable 

pizzas the lowest health damages. 

This dissertation provides the foundation for evaluating nutritional and environmental 

impacts of foods and diets comprehensively and systematically in food sustainability assessments 

and LCAs. It introduces a new nutritional LCA impact category, pioneers a powerful nutritional 

health based index that can inform healthier dietary choices and substitutions, and improves PM2.5 

impact assessment. Findings can inform sustainable decision making for foods and diets within 

and beyond LCA.
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CHAPTER 1 

Introduction 

1.1. Background 

1.1.1. Dietary risks and need for an overarching framework to assess impacts of food 

The Global Burden of Disease (GBD) study series report the disease risk and the health 

burden in deaths and in Disability Adjusted Life Years (DALYs) associated with various risk 

factors (Forouzanfar et al. 2016; Gakidou et al. 2017). The top five leading risk factors globally 

that contributed to the GBD in 2016, in decreasing impact measured in deaths, were high blood 

pressure, dietary risks, tobacco, air pollution, and high fasting plasma glucose (Institute for Health 

Metrics and Evaluation 2018a). Food items and dietary patterns are related to several of these risk 

factors both directly (dietary risks) and indirectly either through agricultural production practices 

that contribute to air pollution or metabolic risk factors such as high blood pressure and high fasting 

plasma glucose that can be influenced by diet. Interestingly, the large contribution of dietary risks 

to global deaths (~ 10 million deaths per year) and DALYs (~250 million DALYs per year) is also 

observed at the national level in many countries, including the U.S. Underconsumption of health 

beneficial foods and nutrients and overconsumption of health detrimental foods and nutrients was 

the leading cause of premature death for Americans in 2016, responsible for more than half a 

million deaths per year that corresponded to ~20% of total deaths. Air pollution, and in particular 

ambient fine particulate matter (PM2.5), was the leading environmental risk factors both globally 

and in the U.S. and was responsible for almost 3.5 million deaths globally and close to 100 

thousand deaths in the U.S. (Institute for Health Metrics and Evaluation 2018a). While the GBD 

provides overall population estimates, there is growing interest in comparing nutritional and 

environmental performances at the level of food items, dietary patterns, and dietary guidelines 

(Tilman and Clark 2014; Springmann et al. 2016; Behrens et al. 2017; van Dooren et al. 2017; 

Walker et al. 2018). Very few studies have used nutritional epidemiology to evaluate the health 
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burden associated with diets and compared them with environmental impacts (Tilman and Clark 

2014; Springmann et al. 2016).  

Food systems present both an ideal and challenging application of life cycle assessment 

(LCA) due to their complex interlink between nature and technology. LCA is a methodology that 

enables the evaluation of the environmental impacts associated with a product, process, or service 

throughout its entire life cycle, from cradle to grave, in reference to a function determined via the 

functional unit (International Standard Organization 2006). To estimate the environmental health 

impacts of a product, process, or service system in LCA we follow a two-step approach: collect 

life cycle inventory (LCI) for the system for the determined functional unit and characterize the 

damages of the LCI using life cycle impact assessment (LCIA). LCIs quantify the inputs and 

outputs of a given product system throughout its life cycle. LCIA links LCA to environmental 

damages through characterization factors calculated as the product of exposure assessment metrics 

and exposure-response functions (International Standard Organization 2006). Since its infancy, 

LCA has been used in evaluating agricultural practices and food systems (Nemecek et al. 2016), 

and significant progress has been made in the past decade to overcome many of the challenges of 

food LCAs (Roy et al. 2009; Poore and Nemecek 2018).  

LCA tends to focus on environmental impacts while disregarding nutritional effects while 

nutritional epidemiology typically neglects environmental health impacts associated with the risk 

under investigation. Thus, there is a need to provide a valid and consistent approach and 

overarching framework for both nutrition and environment, merging LCA and epidemiology for 

both types of risks. 

1.1.2. LCA and food - the need for a nutrition specific impact category 

Food and LCA itself is a burgeoning research area that is revealing much about the 

environmental impacts of dietary patterns (Heller et al. 2013; Hallström et al. 2015). One of the 

current challenges in the field is to capture the nutritional effects associated with the “use stage” 

of foods (through consumption) that can induce health benefits and damages.  Efforts to date to 

include a nutritional aspects in LCA have primarily focused on defining the functional unit (Heller 

et al. 2013). However, the multi-functionality of foods (e.g. human nutrition, source of energy, 

health, pleasure, culture etc.) generates additional complexity (Nicklas et al. 2014; Nemecek et al. 

2016). Different types of functional units have been proposed: a “quality corrected functional unit” 

that takes into account the nutrient content of the food products (Schau and Fet 2008), a single 



3 
 

nutritient functional unit (e.g., protein content or caloric energy) (Reijnders and Soret 2003; 

González et al. 2011), and nutritional indices that combine multiple positives and negatives 

nutritional dimensions into a single score (Smedman et al. 2010; Saarinen et al. 2017). However, 

an implication of using such functional units is that it forces damages in the numerator and positive 

outcomes (as functions) in the denominator which contradicts with the conceptual LCA 

framework. In addition, using functional units as a way to capture nutrition in LCA can result in 

inconsistencies since the choice of functional unit can greatly influence results (Kendall and Brodt 

2014; Van Kernebeek et al. 2014). In the LCA framework impacts on human health are rather 

considered via specific impact categories as reported in the latest LCIA frameworks (Jolliet et al. 

2004; Verones et al. 2017). This suggests that there is a need for considering the impact of nutrition 

by creating a specific impact category characterizing both nutritional impacts and benefits of food 

items. 

To capture the nutritional impacts of food items, different approaches have been proposed:  

Nutritional indices such as the NRF9.x (Fulgoni et al. 2009) are often employed in order to evaluate 

the nutritional performance of foods and diets (van Dooren et al. 2017; Walker et al. 2018). 

Nutritional indices measure the dietary quality of foods or diets in relation to food and nutrient 

recommendation intake and adherence to dietary guidelines (Arvaniti and Panagiotakos 2008). 

Using such approaches however can be problematic as they are typically only indirectly associated 

with disease burden (McCullough and Willett 2006), they carry inherent bias associated with their 

structure (Drewnowski 2005),  and treat components equally that restricts them from capturing the 

varying effect of components, typically nutrients, on health (Arvaniti and Panagiotakos 2008; 

Fulgoni et al. 2009). Nutritional epidemiology studies evaluate the health effects of individual 

nutrients (e.g., the effects of saturated fat, sodium, or dietary fiber), individual foods/food groups 

(e.g., the impacts of red meat or fruits and vegetables), and diets/dietary patterns (e.g., current diets 

vs. recommended diets), and can provide data that directly relate nutrients, food items, food 

groups, and dietary patterns to human health outcomes, typically expressed as disease incidence 

or mortality (Willett 2013). However, the GBD provides an ideal first attempt to consistently 

evaluate both environmental and nutritional health impacts in DALYs by utilizing epidemiology-

based information. Although, a good starting point, this effort is focused on providing global 

burden estimates related to overall national diet rather than particular food items or functional units 

that would be more relevant to food LCA. 
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1.1.3. Improving the PM2.5 human health impact assessment, including agriculture-specific 

characterization 

There are also challenges associated with the environmental assessment of food systems 

that need to be addressed, in particular for the substantial human health impacts associated with 

fine particulates of diameter lower than 2.5 µm (PM2.5). For PM2.5 human health impacts, intake 

fraction (iF), the inhaled PM2.5 per kg precursor emitted (Bennett et al. 2002), is the recommended 

metric to characterize exposure in LCIA (Jolliet et al. 2018). Precursors include primary PM2.5 

(aerosols directly emitted in the atmosphere), ammonia (NH3), sulfur dioxide (SO2), and nitrogen 

oxides (NOx); NH3, SO2, and NOx contribute to secondary PM2.5 after gases are being converted 

to particles through photochemical reactions.  Food systems and agricultural practices are the 

dominant sources of NH3 atmospheric emissions (Paulot and Jacob 2014; Brunekreef et al. 2015). 

NH3 is important in the secondary PM2.5 formation mechanism, which is complex and has a non-

linear chemistry (Ansari and Pandis 1998; West et al. 1999), as a limiting factor to neutralize SO2 

and NOx (Squizzato et al. 2013; Paulot and Jacob 2014). Current iF estimates used in LCIA rely 

on short exposure tracking (Levy et al. 2009; Humbert et al. 2011), archetypes (Humbert et al. 

2011), simplified atmospheric chemistry that fails to capture the complex non-linear chemistry 

(van Zelm et al. 2008; Levy et al. 2009), and low spatial resolution (van Zelm et al. 2008, 2016; 

Heo et al. 2016). These can lead to poor characterization of exposure (Paolella et al. 2018) and 

potential double counting of impacts associated with secondary PM2.5 (Fantke et al. 2015). There 

are also limitations associated with the exposure-response function for PM2.5. Current LCIA 

approaches are based on the linear exposure-response function by Krewski et al. (2009) (Gronlund 

et al. 2015; van Zelm et al. 2016), whereas recent evidence support that the integrated exposure 

response (IER) function for PM2.5 between ambient PM2.5 and ischemic heart diseases, stroke, lung 

cancer, and chronic obstructive pulmonary disease in adults over 25 years old and acute lower 

respiratory infection in children under 5 years old is non-linear (Burnett et al. 2014; Cohen et al. 

2017). 
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1.1.4. Capturing the environmental and nutritional impacts of mixed dishes  

An additional challenge of food sustainability assessment is the evaluation of mixed dishes. 

Mixed dishes, defined as a mixture of components with varying proportions (multi-ingredient), are 

an important food group to investigate as they comprise a large fraction of modern diets. For 

example, in 2010 mixed dishes accounted for 29% of the energy intake in the U.S. diet (Dietary 

Guidelines Advisory Committee 2015). For LCA in particular, it is challenging to determine of 

LCIs associated with mixed dishes.   Mixed dishes are poorly studied in food LCA since research 

has mainly focused on food-related environmental impacts associated with single-component food 

items (e.g., beef, milk, grains, etc.) (Davis and Sonesson 2008). The few studies that have 

investigated mixed dishes are not harmonized since they use a distinct set of assumptions and 

recipes. Consequently, results are incomparable and possibly inconsistent.  

1.2. Objectives and specific aims 

The overarching goal of this dissertation was to improve human health impact assessment 

in LCA, specifically for food items and diets. In particular, this dissertation sought to establish an 

improved human health impact assessment for food LCA by: 1) Introducing a LCA framework of 

holistically assessing health impacts of food items and diets from production to consumption by 

accounting for potential nutritional health effects (Chapter 2), 2) Developing the parameters that 

will allow for a nutritional health assessment of food items in LCA and will determine a new 

nutritional impact category (Chapter 3), 3) Improving PM2.5 human health impact assessment by 

developing spatial characterization factors based on updated intake fractions for the U.S. and a 

non-linear exposure-response function with agriculture-specific factors, in particular for NH3 and 

secondary PM2.5 (Chapter 4), and  4) Harmonizing the assessment of mixed dish evaluation in 

LCA by identifying and applying a decomposition method that will enable a consistent evaluation 

of environmental and nutritional human health impacts (Chapter 5).  
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Specific aim 1 (Chapter 2): Develop and test a life cycle assessment (LCA) framework that 

evaluates and compares in parallel the environmental and nutritional effects of food items.  

There is a need and necessity for a framework in LCA that enables a comprehensive 

assessment of both the direct nutritional from the “use stage” and the indirect environmental effects 

on health from the life cycle of food items and diet on a comparable scale. To address this, we 

developed a novel LCA framework that allows for a parallel assessment of environmental damages 

and nutritional effects (positive and negative) on human health from foods and diets in a common 

metric, disability adjusted life years (DALYs). We demonstrate and test the proposed framework 

with a proof-of-concept case study that investigates the potential human health effects associated 

with the addition of one serving of fluid milk to the average American adult diet as well as 

alternative iso-caloric substitution scenarios. We followed a traditional LCA to quantify 

environmental health damages from global warming and particulate matter and compared them 

with nutritional health benefits and damages estimated using epidemiological evidence for the 

following health outcomes: colorectal cancer, stroke, and prostate cancer.  

 

Specific aim 2 (Chapter 3): Develop nutritional characterization factors for a new nutritional 

impact category in LCA that translates the nutritional composition of food items and diets into 

human health benefits or damages and apply them to ~7,000 food items in the U.S. diet to estimate 

overall nutritional health impact scores.  

Building on the case study from specific aim 1 we expand the nutritional health assessment 

beyond milk to other dietary risk factors. In particular, this aim required to: (1) Identify a 

comprehensive set of dietary risk with established associations with adverse health effects and 

establish the Health Nutritional Index (HENI) as a framework that quantifies the nutrition-related 

health burden associated with a serving of food. (2) Develop dietary risk factors (DRFs) that 

characterize the cumulative health burden associated with a gram of dietary risk in DALYs, taking 

into account effect modifiers, disease burden, and disease severity in the U.S. (3) Develop 

nutritional profiles of the food items in grams/serving in the U.S. diet using the NHANES database 

(National Center for Health Statistics 2018) that align them with the definition of dietary risks. (4) 

Implement HENI to food items in the NHANES database and evaluate their performance. 
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Specific aim 3 (Chapter 4): Develop spatially-explicit and sector-specific intake fractions and 

characterization factors for PM2.5 from ground level emissions of primary PM2.5, NH3, SO2, and 

NOx in the contiguous U.S. 

We developed updated components (exposure, exposure-response slope, severity factors) 

to inform primary and secondary PM2.5 characterization factors (CFs) from ground level emissions, 

focusing on the entire contiguous U.S. and the sectors that contribute the most to each precursor’s 

emissions. More specifically, this aim entailed: (1) Developing spatial intake fraction (exposure) 

estimates for primary PM2.5, NH3, SO2, and NOx emissions in the contiguous U.S. using InMAP 

(Intervention Model for Air Pollution) (Tessum et al. 2017), a reduced-complexity air quality 

model  covering the greater North America region with flexible grid resolution and spatial domain 

that captures the long-range exposure potential of primary and secondary PM2.5. (2) Developing 

location-specific ‘marginal’ and ‘average’ PM2.5 exposure-response slopes as described in Fantke 

et al. (2018) for each of grid cells in InMAP using cause-of-death- and age-specific inputs from 

the non-linear IER from Cohen et al. (2017), local PM2.5 annual average ambient concentrations 

for 2016 (WHO 2016), and region-, age-, and cause-of-death-specific annual mortality estimates 

for 2016 (Institute for Health Metrics and Evaluation 2018b). (3) Calculating new region-, age-, 

and cause-of-death-specific severity factors in DALYs/death based on 2016 GBD (Institute for 

Health Metrics and Evaluation 2018b). (4) Combining updated components to estimates spatial 

‘marginal’ and ‘average’ CF for PM2.5 from ground level emissions of primary PM2.5, NH3, SO2, 

and NOx in the contiguous U.S. (5) Characterizing the spatial extent of intake and burden as the 

radial distance from the source the reach certain cumulative fraction of intake fraction and 

characterization factors, respectively. (6) Developing emission-weighted sector-specific intake 

fractions and CFs for the adjoining 48 U.S. States including Washington, D.C and the U.S. for five 

main sectors (agriculture, fuel combustion, industrial processes, and mobile) all based on annual 

emission estimates from the U.S. EPA 2014 National Emissions Inventory (NEI) (U.S. 

Environmental Protection Agency 2018). 
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Specific aim 4 (Chapter 5): Determine a decomposition method to consistently evaluate the 

environmental impacts of mixed dishes and compared them with nutritional health benefits and 

damages. 

To address the challenges of mixed dishes in LCA, we used a case study of a popular mixed 

dish in the U.S. diet, pizza. The specific aims were to: (1) Establish a new nutritional life cycle 

impact category, including both inventory flows per functional unit and nutritional characterization 

factors, using an adaptation of HENI (specific aim 2). (2) Quantify and compare the nutritional 

health burden associated with main types of pizzas in the U.S. diet. (3) Develop a systematic 

approach to decompose mixed dishes into individual components for which environmental life 

cycle inventory is available. (4) Evaluate the cradle-to-gate environmental impacts from global 

warming and PM2.5 associated with main types of pizzas in the U.S. diet, using agriculture-specific 

CFs for particulate matter impacts (specific aim 3). (5) Compare the nutrition and environmental 

damages on human health for all pizzas in the U.S diet using the CONE-LCA framework (specific 

aim 1) and test for any correlations. 

1.3. Dissertation Outline 

This dissertation is structured according to the above Specific Aims. Following the present 

introductory Chapter 1, Chapters 2, 3, 4 and 5 address each of the four Specific Aims. Chapters 2-

5 are formatted as journal articles accompanied by additional information available in Appendices 

1, 2, 3, and 4, respectively. Finally, Chapter 6 provides an overall discussion of dissertation results 

and offers suggestions for future directions of this topic. 
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CHAPTER 2 

A life cycle assessment framework combining nutritional and environmental health 

impacts of diet: a case study on milk 

Abstract 

While there has been considerable effort to understand the environmental impact of a food 

or diet, nutritional effects are not usually included in food-related life cycle assessment (LCA). 

We developed a novel Combined Nutritional and Environmental Life Cycle Assessment (CONE-

LCA) framework that evaluates and compares in parallel the environmental and nutritional effects 

of foods or diets. We applied this framework to assess human health impacts, expressed in 

Disability Adjusted Life Years (DALYs), in a proof-of-concept case study that investigated the 

environmental and nutritional human health effects associated with the addition of one serving of 

fluid milk to the present American adult diet. Epidemiology-based nutritional impacts and benefits 

linked to milk intake, such as colorectal cancer, stroke, and prostate cancer, were compared to 

selected environmental impacts traditionally considered in LCA (global warming and particulate 

matter) carried to the human health endpoint. Considering potential human health effects related 

to global warming, particulate matter and nutrition, within the context of this study, findings 

suggest that adding one serving milk to the current average diet could result in a health benefit for 

American adults, assuming that this existing foods associated with substantial health benefits are 

not substituted, such as fruits and vegetables. The net health benefit is further increased when 

considering an iso-caloric substitution of less healthy foods (sugar-sweetened beverages). Further 

studies are needed to test whether this conclusion holds within a more comprehensive assessment 

of environmental and nutritional health impacts. This case study provides the first quantitative 

epidemiology-based estimate of the complements and trade-offs between nutrition and 

environment human health burden expressed in DALYs, pioneering the infancy of a new approach 

in LCA. We recommend further testing of the CONE-LCA approach for other food items and 

diets, especially when making recommendations about sustainable diets and food choices. 
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2.1. Introduction 

Agricultural and food product systems present both an ideal and challenging application of 

life cycle assessment (LCA) methods due to their complex interlink between nature and 

technology. Significant progress has been made in the past decade in overcoming many of the 

challenges of food LCAs (Roy, et al., 2009), and interest in their application has increased, as 

evidenced by the quality and quantity of work and growing attendance at the International Life 

Cycle Assessment of Foods Conference. LCA applied at the diet level is itself a burgeoning 

research area that is revealing much about the environmental impacts of dietary patterns (Heller et 

al., 2013; Hallström et al., 2014). The “use stage” nutritional effects of food – both impacts and 

benefits– have to date not been satisfactorily included in LCA. 

Past efforts to include nutritional aspects in LCA have primarily focused on defining the 

functional unit (Heller et al., 2013). One review recommends a “quality corrected functional unit” 

that takes the nutrient content of the food products into account (Schau and Fet, 2008). Such an 

approach has become common in farm-level LCAs of milk production when considering fat and 

protein corrected milk (International Dairy Federation, 2010) and has been used to consider the 

effect of production practices on the protein content of wheat (Charles et al., 2006). Functional 

units based on a single nutritional aspect (e.g., protein content or caloric energy) are common and 

can be effective in particular inquiries (Gonzalez et al., 2011; Reijnders and Soret, 2003). Still 

others have explored the use of nutritional profiling algorithms, which aggregate multiple 

nutritional dimensions into a single score, as the basis for functional unit (Smedman et al., 2010; 

Saarinen, 2012; Heller and Keoleian, 2012). Attempting to force impacts and benefits of nutrition 

into the functional unit can, however, create conceptual dissonance within an LCA framework 

built on expressing impacts in the numerator and positive outcomes (function) in the functional 

unit denominator. 

Within nutritional sciences, studies typically focus on the health effects related to dietary 

intake and rarely account for environmental impacts occurring throughout the life cycle of food 

production. There is a growing appreciation, however, of the need to base dietary guidelines on 

environmental as well as nutritional science (van Dooren et al., 2014). Nutritional studies evaluate 

health effects on various levels: individual nutrients (e.g., the effects of saturated fat, sodium, or 

dietary fiber), individual foods/food groups (e.g., the impacts of red meat or fruits and vegetables), 

and diets/dietary patterns (e.g., current diets vs. recommended diets).  Nutritional epidemiology 
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studies provide data that directly relate food items, nutrients, dietary patterns or dietary quality 

indices to human health outcomes, typically expressed as disease incidence or mortality (Willet, 

2012). Such nutritional epidemiology-based information is captured by the Global Burden of 

Disease (GBD) studies, a large-scale and detailed scientific effort to quantify global levels and 

trends in health. 

The 2010 GBD reports (Murray, et al., 2013; Lim, et al., 2012) detail the disease risk and 

impact in deaths and in Disability Adjusted Life Years (DALYs) associated with various risk 

factors. The top ten leading risk factors globally that contribute to the GBD, in decreasing impact 

measured in deaths, are dietary risks, high blood pressure, smoking, household air pollution, high 

body-mass index, high fasting plasma glucose, ambient particulate matter (PM) pollution, physical 

inactivity, alcohol use, and high total cholesterol (IHME, 2013). Food items and dietary habits are 

related to several of these risk factors either directly (dietary risks) or indirectly through 

agricultural production methods (ambient PM pollution). Interestingly, dietary risks are the largest 

contributor to both deaths and DALYs both globally and specifically to the U.S., and contribute to 

14% of DALYs and 26% of deaths in the U.S. (IHME, 2013). Ambient PM pollution ranks 7th in 

terms of risk factors contributing to deaths globally, and 9th in the U.S., leading to 2.2% of total 

DALYs and 3.9% of total deaths in the U.S. (IHME, 2013).  A full list of global and U.S. burden 

of disease for the top ten risk factors can be found in Appendix 1, Section A1.1 (Table A1.4).  

In this paper, we first present a framework enabling a comprehensive assessment of both 

the direct nutritional and indirect environmental effects on human health of food items/diet in a 

comparable scale. We then demonstrate the proposed framework with a fluid milk case study, 

analyzing the potential effects of dietary substitution scenarios resulting from increased milk 

consumption. Focusing on human health as the “area of protection” for this case study, we utilize 

two relevant environmental impact categories on human health, global warming and particulate 

matter formation. Using the 2010 GBD and other epidemiological data, we directly compare the 

environmental and nutritional impacts of a specific dietary change on human health. Finally, we 

make recommendations for methodological and data developments necessary for a more complete 

comparison between environmental and nutritional health effects of food production and 

consumption. 
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2.2. Methods 

2.2.1. Combined Nutritional and Environmental LCA framework of diet 

Figure 2.1 schematically outlines the proposed Combined Nutritional and Environmental 

LCA (CONE-LCA) framework, evolving out of conceptual outlines presented in Heller et al., 

(2013), for harmonizing nutritional and environmental effects over food life cycles. Food items, 

alone or as a part of a diet, are first associated with environmental emissions occurring over the 

life cycle of the food item (supply, production and distribution stages), some of which may lead to 

population-scale health impacts. Likewise, consuming foods, the “use stage” of a food LCA, 

results in population-scale positive and/or negative nutritional health effects.  

In this framework, the environmental assessment follows a traditional LCA approach. 

Starting from a common comparison basis (functional unit), emissions (e.g. N2O, CH4, CO2, NH3, 

PM2.5) and important resource usages/extractions (e.g. water, land, mineral and energy) are 

determined, and then midpoint impacts in the most relevant categories are assessed: e.g., climate 

change, water consumption and quality (eutrophication), land use and respiratory impacts. These 

impacts can then be linked to endpoint damages on human health, ecosystem quality, resource use, 

and ecosystem services (Jolliet, et al., 2003; Jolliet, et al., 2004).  Human health damage, which is 

the focus of this paper, can ultimately be expressed as an impact in DALYs using epidemiological 

studies.  

Nutritional impacts and benefits are assessed in parallel to environmental impacts relating 

the “use stage” in a food life cycle framework. Published epidemiology data are used to directly 

relate the food in question to reported health effects expressed in DALYs. Likewise, the quantity 

of individual nutrients (e.g. protein, calcium, vitamin A, vitamin C, saturated fat, sodium) 

contained in foods can be calculated based on standard nutrient databases, and nutrients may then 

be associated using epidemiological data to overall health impacts or benefits. 

Having both the environmental and nutritional assessment of food items or diets expressed 

in DALYs, as proposed by this approach, allows the addition of nutritional assessment into a life 

cycle impact assessment framework for a parallel comparison of effects. However, it should be 

emphasized that the validity of results produced by the proposed approach are contingent on the 

data used, their availability, level of detail, and associated uncertainty.  
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Figure 2.1. Graphical representation of the Combined Nutritional and Environmental Health Impact LCA framework. Dashed lines 
represent links between midpoint and endpoint categories that are useful to interpret impact scores, but whose quantification is also 
associated with a high degree of uncertainty. 
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2.2.2. Case study: Milk consumption in the U.S. 

We tested the CONE-LCA framework by investigating a case study of increased fluid milk 

consumption in the U.S., as recommended by the Dietary Guidelines for Americans 2010 (USDA 

and USHHS, 2010). Since dietary recommendations are based on nutritional health benefits, it was 

interesting to explore in a parallel comparison the potential trade-offs between indirect 

environmental health impacts and nutritional health benefits associated with increased 

consumption of dairy. 

We focused on two environmental midpoint impact categories of high environmental 

significance to the food production sector, global warming and respiratory inorganics. Global 

warming (GW) impacts from the dairy industry, indicated as greenhouse gases emissions (GHGE), 

are largely connected to methane (CH4) and nitrous oxide (N2O) emissions from enteric 

fermentation, manure management, and feed production (Thoma et al., 2013; Asselin-Balencon et 

al., 2013). Ammonia (NH3) emissions from manure management contribute to the formation of 

secondary PM adding to direct PM emissions from tractors and transportation (Henderson et al., 

2013), and resulting in respiratory inorganic impacts. Impacts due to PM often dominate human 

health impacts in LCA, and PM is the most important environmental risk factor in the U.S., 

according to the GBD (Murray et al., 2013). Henderson et al. (2013) found that other impacts from 

the milk life cycle on human health, such as toxicological effects and pesticide residues detected 

in milk, are limited compared to PM impacts. For the nutritional health impact assessment, we 

focused on both positive and negative health outcomes that have been associated with milk intake 

in epidemiological studies.  

For the purposes of this case study, we use a serving of fluid milk as a functional unit. We 

also consider two alternative scenarios in which milk substitutes for other food items in the diet. 

The sections below define the dietary scenarios evaluated, describe the current average U.S. diet 

baseline used in this case study, and summarize the environmental and nutritional assessment 

approaches used. 
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2.2.2.1. Dietary scenarios 

The USDA-maintained 2010 Loss Adjusted Food Availability (LAFA) dataset (USDA 

ERS, 2012) shows that the average U.S. adult diet includes 148 g of fluid milk per day (0.61 

servings) as part of the currently consumed 1.53 servings of dairy per person per day (USDA ERS, 

2012), which is about half the recommended value in the Dietary Guidelines for Americans 2010. 

For this study, we defined fluid milk as the consumption weighted average (with respect to 

population-scale consumption frequencies) of whole, 2% reduced fat, 1% reduced fat, and non-fat 

milk consumed in the U.S. (detailed in Appendix 1, Section A1.2.: Table A1.5).  

We investigated the total effect resulting from a one serving (244 g) increase in fluid milk 

consumption in the U.S. This addition led to a total daily consumption of 392 g, which is below 

the GBD-reported theoretical-minimum-risk exposure of 450 g/day for colorectal cancer (Lim et 

al., 2012). Adding one serving of fluid milk to the average adult U.S. diet may or may not substitute 

a compensatory dietary portion of other food or beverages. To address the possibility of a potential 

substitution we use a default iso-caloric equivalent basis for this case study as a first proxy and a 

pragmatic measure of a substitution scenario. We acknowledge that a potential substitution 

scenario could be based on other rationale. Ideally, data from detailed market-based surveys should 

be used, when available, to identify and assess more realistic substitution scenarios. Section 2.4 

further discusses the selection of substitution scenario and its consequences.  

One serving of fluid milk has a nutritional energy content of 119 calories. Hence, we also 

investigated two replacement scenarios, assuming an iso-caloric substitution of 119 calories. 

Starting from the current average diet as a baseline, we investigated the following per person, per 

day scenarios (Figure 2.2): 

A. Add a serving of fluid milk, with no change to the rest of the diet. This scenario results 

in an increased caloric intake over the average diet baseline.  

B. Add a serving of fluid milk while subtracting an equal caloric quantity from the overall 

average diet, excluding fluid milk. The resulting diet would be iso-caloric with the 

baseline average diet. 

C. Add a serving of fluid milk while subtracting an iso-caloric quantity of sugar-sweetened 

beverages (SSB).  The resulting diet would be iso-caloric with the baseline average diet. 
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Figure 2.2. Graphical representation of dietary replacement scenarios. The width of food groups 
in the average U.S. diet corresponds to their caloric contribution to the total diet. 

 

2.2.2.2. Defining the current U.S. diet 

To understand how a shift in dairy consumption may affect the overall nutritional intake, 

we first characterized the current U.S. diet to establish a baseline for the environmental impacts of 

the average U.S. diet.  To define the average U.S. food consumption (average U.S. diet) we used 

the 2010 LAFA data series, which tracks the availability of food commodities in the U.S. 

marketplace (USDA ERS, 2012). In the LAFA series, the available supplies for over two hundred 

commodities are adjusted by percent loss assumptions at primary, retail, and consumer levels to 

arrive at a proxy for per capita food consumption in the U.S.  The data are presented at the food 

commodity level (i.e., raw farm products like wheat and corn rather than consumables like bread 

or tortilla chips), which is far more manageable from an environmental impact perspective, since 

most LCA studies of food are performed at this level.  LAFA data also explicitly account for supply 

chain losses, allowing differentiation between foods produced, which contribute to environmental 

impact, and foods consumed, which are responsible for nutritional health effects. 
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2.2.2.3. Environmental health assessment  

Greenhouse gases emissions 

GHGE associated with the average U.S. diet were estimated via a meta-review of food 

LCA studies, reported by Heller & Keoleian (2014). Several limitations were identified in this 

approach: many underlying studies were not specific to U.S. production scenarios; significant 

variability exists between studies of the same food item; and several variables (including 

transportation) were not treated in a consistent manner across studies.  Still, this approach captured 

the foods in the LAFA dataset, accounting for both consumption and losses, and utilizes the most 

thorough collection of data currently available. For SSB, the GHGE estimate was based on an 

emission factor of 0.37 kg CO2-eq/kg “soda” accounting for packaging and transportation to retail 

outlet (Vieux et al., 2012) and the corresponding energy content of 410 calories/ kg “Carbonated 

beverage” (USDA, 2011). The fluid milk GHGE emissions were obtained from a detailed LCA 

study specifically on U.S. milk (Thoma, et al., 2013). GHGE estimates were based on the IPCC 

Global Warming Potential for 100 years (IPCC, 2007). Though estimates of human health impact 

of GW are much more uncertain than the midpoint indicator based on radiative forcing, an initial 

estimate of human health impact on a 100 years horizon is 0.82 μDALY/ kg CO2-eq (Bulle et al., 

2015), which is useful for comparing on the same scale the order of magnitude of GW impacts 

with other environmentally induced effects on human health. The uncertainty associated with this 

impact factor is estimated at a GSD2 of 4.8 with the uncertainty analysis description available in 

Appendix 1 (Section A1.4). 

Particulate matter  

Primary and secondary fine particulate matter, particles of less than 2.5 µm diameter 

(PM2.5), are among the environmental contributors to human health impact of food items and 

agricultural systems. In a comprehensive LCA of U.S. fluid milk production, PM2.5 was found to 

be the primary contributor to human health impacts, exceeding other environmental contributors 

considered by at least two orders of magnitude (Henderson et al., 2013). 

PM2.5 emissions and precursors (NOx, SO2, and NH3) are not routinely reported in food 

LCA studies, hindering direct estimates of emissions associated with the average U.S. diet and 

SSB. To get around this limitation, we correlated PM-related emissions (primary PM2.5, NOx, SO2, 

and NH3) to the GW indicator measured in kg of CO2-eq using 47 food-related Ecoinvent processes 

(Frischknecht, et al., 2005). Results of the correlation analysis are summarized in Table 2.1 
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(detailed methodology description available in Appendix 1, Section A1.3). The correlations to 

CO2-eq were found to be high for NOx (R2=0.96), primary PM2.5 (R2=0.92), and SO2 (R2=0.65), 

and were thus used to estimate the corresponding emissions associated with the average diet and 

SSB (Table 2.1). For NH3 we used other sources to estimate emissions since the correlation with 

CO2-eq was weak (R2=-0.02). The NH3 emission estimate for the average diet was estimated based 

on food-specific emission factors by Meier and Christen (2013), while the SSB-related emissions 

were estimated as a proxy from an available emission factors for “sugar” from the same study. All 

PM-related emissions for fluid milk were based on emission factors from the Comprehensive LCA 

of Fluid Milk (Henderson et al., 2013). The emission estimates for each 119-calorie equivalent 

portion intake are available in Appendix 1 (Section A1.3: Table A1.7). 

 

 

 

Table 2.1. Summary of results from correlation of PM related emissions to GHGE for all food-
related processes in the ecoinvent database, and characterization factors for PM species. 

 PM2.5 SO2 NOx NH3 

Emission correlation analysis model: 𝑦𝑦 = 𝑏𝑏 × 𝑥𝑥 a 

CO2-eq correlation factor 

(kg/kgCO2-eq) 

 

2.4E-4 

 

8.3E-4 

 

2.7E-3 

 

3.5E-3b 

GSD2 1.5 2.9 1.5 6.8 

R2 0.92 0.65 0.96 -0.02 

Human Health Impacts per kg emitted 

Characterization factor 

(kgPM2.5 eq/kg emitted) 

(DALYs/kg emitted) 

 

1.2E-3 

3.0E-4 

 

5.2E-2 

6.2E-5 

 

1.1E-2 

1.3E-5 

 

1.1E-1 

1.3E-4 
a 𝑦𝑦 =precursor, 𝑥𝑥 = CO2-eq, 𝑏𝑏 = CO2-eq correlation factor 
b Not used in this analysis 
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Overall PM2.5 emissions in the U.S. are responsible for 103,000 deaths per year and 

1,820,410 DALYs, mostly via cardio-pulmonary diseases (Murray et al., 2013). To link PM2.5 

emissions to human health impact, we used the framework designed by UNEP/SETAC as 

described by Fantke et al. (2014). A set of default human intake fractions (iF) associated with PM-

related emissions (Humbert et al., 2011) was complemented with corresponding effect factors to 

yield characterization factors (CFs), i.e. the human health impact per kilogram of PM-related 

emission, accounting for cardiopulmonary and lung cancer impacts from both primary and 

secondary PM2.5 (Gronlund et al., 2014). Using such epidemiological data to link midpoint (PM2.5 

formation) to endpoint impact categories (human health) supports comparability between 

environmental and nutritional findings in our study. The CF used to calculate health impacts for 

primary PM2.5 is 3.0x10-4 DALYs/ kg PM2.5 for emissions in rural areas; likewise, for secondary 

PM2.5 the CF estimates for SO2, NOx and NH3 are 6.2x10-5 DALYs/ kg SO2, 1.3x10-5 DALYs/ kg 

NOx, and 1.3 x10-4 DALYs/ kg NH3, respectively (Table 2.1). Uncertainty factors for the CFs as 

well as all other estimates used for the PM health impact calculation are available in Appendix 1 

(Section A1.4: Table A1.10). 

2.2.2.4. Nutritional health assessment 

Fluid milk 

There are a number of positive and negative health outcomes linked with milk 

consumption. One benefit of milk consumption on human health is related to a reduced risk of 

colorectal cancer as considered by the GBD. Another effect that we considered is stroke. Limited 

evidence also suggests that milk intake is associated with an increased risk of prostate cancer in 

males. Increased milk consumption has also been associated with a change in body mass index 

(BMI). However,  evidence has been inconclusive with two recent meta-analyses of 

epidemiological studies and randomized clinical trials indicating that increased dairy consumption 

does not have an effect on weight (Abargouei et al., 2012) or has a modest effect on weight loss 

(Dougkas et al., 2011). Hence, we have decided to not include BMI change as a health outcome in 

our nutritional assessment. A further discussion of milk consumption-related outcomes is provided 

in Section 2.4. 

Colorectal cancer: Milk intake has been found to reduce the risk of colorectal cancer as 

concluded by the World Cancer Research Fund/American Institute for Cancer Research 

(WCR/AICR, 2007). The hypothesized mechanism for this inverse association is related to the 
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high calcium content of milk through two possible pathways. The first is the reduced cell 

proliferation in the colonic epithelium when calcium is bound to pro-inflammatory secondary bile 

and ionized fatty acids. The second is the enhanced cell differentiation between normal and 

apoptotic cells under the influence of calcium in a number of intracellular influences (Aune, et al., 

2012). This inverse association between milk intake and colorectal cancer is supported by multiple 

meta-analyses that report a statistically significant association in a consistent manner and with 

almost equal risk ratio (RR) estimates (Murray et al., 2013; Aune et al., 2012). To assess the 

corresponding nutritional benefit, measured in avoided DALYs related to colorectal cancer, 

attributable to an increase of current fluid milk consumption by one serving, we used a RR of 1.11 

(95% CI: 1.03-1.20) per 226.8 g/day of milk intake decrease as reported in the 2010 GBD (Murray 

et al., 2013), a theoretical-minimum-risk exposure of 450 g/day (Lim et al., 2012) above which it 

is assumed that there is no additional health benefit, and a U.S. colorectal cancer burden estimate 

of 1,146,830 DALYs for both sexes in 2010 (IHME, 2013) 

All stroke outcomes: Evidence from a number of epidemiological studies suggests a 

protective effect of milk intake to all stroke outcomes (Elwood et al., 2004; Larsson etal., 2012; 

Ness et al., 2001). The hypothesized mechanisms of this association are linked to the influence of 

milk intake on hypotension (Larsson et al., 2012) and blood cholesterol levels (Elwood et al., 

2004). A more recent meta-analysis of total milk intake and any stroke outcome generated a 

statistically significant summary association of 0.85 RR (95% CI: 0.77-0.94) comparing high (2-

4 servings) versus low (0-0.5 servings) milk intake (Alexander et al., 2015), approximately 

corresponding to an intake difference of 541 g of milk (95% CI: 400-732).  We used this RR to 

estimate avoided DALYs related to stroke when current fluid milk consumption is increased by 

one serving, assuming there is no additional benefit above an intake of 597 g, and a 2010 U.S. 

stroke burden of disease estimate of 1,569,720 DALYs for both sexes (IHME, 2013). 

Prostate cancer: Limited evidence suggests that there could be an increased risk of prostate 

cancer in males associated with milk consumption, with the most cited hypothesized mechanism 

being that calcium may increase risk by disrupting of the circulation of vitamin D in the human 

body (WCR/AICR, 2007; Aune et al., 2015).  Although conclusions are less established and are 

confounded by conflicting evidence for this health outcome, a recent meta-analysis reported a 

summary RR for a 200-g/day increase of milk intake of 1.03 (95% CI: 1.00, 1.06) with some 

indication of a nonlinear association; risk increased rapidly from 0 to 100-200 g milk/day with no 
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further risk increase above this level (Aune et al., 2015). Hence, given a current milk intake of 148 

g/day, adding one serving of fluid milk to the average U.S. diet may not result in an increase in the 

burden of prostate cancer according to these findings. However, we considered this health endpoint 

in our nutritional health assessment using the RR by Aune et al. (2015) and a 2010 U.S. prostate 

cancer burden of disease of 592,400 DALYs (IHME, 2013), allowing for an example of a possible 

negative nutritional effect of a food/diet. 

Average diet 

The average diet, as defined in our study, consists of numerous food items that might have 

positive or negative effects on human health such as fruits and vegetables and SSB, respectively. 

For the purposes of this case study, we assume that average diet has no effect on health and our 

results and conclusions are contingent on this assumption. 

Sugar-sweetened beverages 

One important dietary risk factor for the U.S. is “diet high in sugar-sweetened beverages 

(SSB)”. The U.S. burden of disease for this risk factor includes health outcomes such as diabetes 

(75%), cardiovascular and circulatory diseases (20%), cancer and musculoskeletal disorders (3% 

each), as reported in the 2010 GBD (IHME, 2013).  According to Lim et al. (2012), the theoretical-

minimum-risk exposure for SSB is 0 g/day. Therefore, the total burden of disease related to SSB 

of 770,584 DALYs reported in the 2010 GBD (IHME, 2013) can be considered to be the direct 

outcome of the current U.S. SSB consumption, estimated at 236 calories/person/day (Han & 

Powell, 2013). Building on these findings, we estimated an overall SSB-related disease effect 

factor of 0.03 μDALYs/SSB-calorie (95% CI: 0.02-0.04).  

2.3. Results 

2.3.1. Environmental health assessment  

2.3.1.1. Greenhouse gases  

The GHGE associated with the current average diet of an American consumer (assuming 

an intake of 2534 calories/day according to LAFA data) was 5.0 kg CO2-eq/person/day (95% CI: 

2.5-9.2). To demonstrate the impact associated with our three diet modification scenarios, the bars 

in figure 2.3 present the GW midpoint impacts associated with a 119-calorie equivalent portion of 

three distinct components: fluid milk, average diet, and SSB.  
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Fluid milk produced the highest GW midpoint impact per calorie; a serving of fluid milk 

(scenario A) was associated with 0.47 kg CO2-eq. The corresponding human health endpoint 

impact was estimated at 0.38 µDALY (GSD2=4.9).  In comparison the GW impacts of 119 calories 

of average diet amount to 0.24 kg CO2-eq which was equivalent to 0.19 avoided µDALY 

(GSD2=5.5), close to half the impact of fluid milk. Therefore the net GW impact associated with 

scenario B could be calculated as the difference between the impact of one serving milk and the 

impact of the iso-caloric substitution of average diet, i.e. 0.47-0.23=0.24 kg CO2-eq (0.19 

µDALY).  Finally, 119 calories of SSB were linked to 0.19 kg CO2-eq, equal to 0.15 avoided 

µDALY (GSD2=6.5). As a result, the net difference in GW impact between milk and SSB for 

scenario C was 0.29 kg CO2-eq (0.23 µDALY).  

 

 

 
Figure 2.3. Global warming impacts measured in kg CO2-eq associated with a 119-calorie 
equivalent portion of three distinct intakes: 1) fluid milk, 2) average diet, 3) sugar-sweetened 
beverages (SSB). 
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2.3.1.2. Particulate matter  

The total respiratory inorganic impacts from PM-related emissions linked to the baseline 

U.S. diet were 2.2 g PM2.5-eq/person/day (95% CI: 1.1-3.9). Figure 2.4 illustrates the PM-related 

emissions in grams (g) corresponding to 119 calorie of fluid milk, average diet, and SSB. The 

emissions for scenario B and C can be estimated by subtracting the emissions associated with each 

corresponding substitution from those of fluid milk. 

 

 
Figure 2.4. Particulate matter related emissions measured in grams (g) PM2.5-eq associated with a 
119-calorie equivalent portion of three distinct intakes: 1) fluid milk, 2) average diet, 3) sugar-
sweetened beverages (SSB).  

 

One serving of fluid milk (scenario A) was linked to total PM-related emissions of 0.26 g 

PM2.5-eq, corresponding to a human health impact of 0.32 µDALY (95% CI: 0.04-0.83). This 

impact was predominately caused by NH3 emissions from barn and manure management (80%) 

and to a lesser extent by SO2 (13%). The iso-caloric equivalent of the average diet resulted in 

emissions about half of those of fluid milk. 70% of the PM-related impact for the average diet was 

due to NH3, 14% was due to primary PM2.5, and 10% was due to SO2. The corresponding human 
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health impact was 0.15 avoided µDALY (95% CI: 0.02-0.39). This resulted in a net PM emissions 

estimate of 0.13 g PM2.5-eq, equal to 0.15 µDALY for scenario B. For the 119-calorie SSB 

equivalent, we estimated PM-related emissions of 0.03 g PM2.5-eq, one third of which was 

attributable to primary PM2.5 that was analogous to a human health damage of 0.04 avoided 

µDALY (95% CI: 0.01-0.10). As a result, the net PM-related emissions estimate for scenario C 

was 0.23 g PM2.5-eq, corresponding to a health impact of 0.28 µDALY, slightly lower than scenario 

A. 

2.3.2. Nutritional health assessment 

We estimated a linear dose-response relationship between milk intake in g/person/day and the 

impact of colorectal cancer and stroke in DALYs/person/day (Figure 2.5A and 2.5B). For prostate 

cancer, the dose-response for the male population is obtained from in Aune et al. (2015).  

We used these dose-response functions to estimate the expected nutritional human health 

burden change for each outcome as a result of a shift in fluid milk intake of one additional serving 

to current consumption. Not taking into account any detrimental impacts from increasing caloric 

intake, for colorectal cancer we found that the addition of one serving of fluid milk results in an 

impact of 1.10 avoided µDALY (95% CI: 0.78-1.56) while for all stroke outcomes the impact was 

equal to 0.95 avoided µDALY (95% CI: 0.67-1.35). In parallel, we estimated an increase in 

prostate cancer burden for the male population equal to 0.32 µDALY (95% CI: 0.20-0.51). To 

extrapolate the prostate cancer impact to the overall population, we accounted for the fraction of 

males in the U.S.; this resulted in an impact of 0.16 µDALY (95% CI: 0.10-0.26). Overall, we 

estimated that there is a net nutritional benefit for an average adult American consumer of 1.88 

avoided µDALY (95% CI: 0.03-1.02) in response to the addition of one serving of fluid milk to 

the current diet. 

The nutritional benefit from dietary changes could be further increased when food items 

with negative health effects such as SSB are replaced. In particular, a reduction of 119-calorie 

equivalent in the SSB daily intake was associated with 3.48 avoided µDALY (95% CI: 2.23-5.43). 

This finding demonstrates the importance of considering the added nutritional effects (positive 

and/or negative) of substitution scenarios when dietary changes are evaluated. 
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Figure 2.5. Dose-impact function for milk intake and A) colorectal cancer impact, B) stroke, with 
95% confidence intervals shown as dashed lines. 
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2.3.3. Overall comparison 

Figure 2.6 represents the overall comparison of environmental and nutritional effects for 

the three scenarios, all expressed at the human health endpoint level in avoided 

μDALYs/person/day (result summary available in Appendix 1, Section A1.5: Tables A1.12-

A1.13). Based on the epidemiological evidence considered, we estimated that adding one serving 

of fluid milk to the present adult U.S. diet leads to an overall health improvement associated with 

avoided DALYs as a result of nutritional benefits. Considering no health effect associated with the 

average diet substitution in scenario B, all scenarios indicated an overall health benefit (positive 

avoided DALYs exceeded the overall health impacts measured in negative avoided DALYs). To 

estimate the robustness of this finding, we employed the approach by Hong et al. (2010) for each 

scenario to estimate the likelihood that overall benefits are greater than overall impacts, accounting 

for uncertainty propagation. We estimated that there was at least a 98.1% probability that overall 

benefits of one additional serving of fluid milk exceeded the corresponding impact in scenario A. 

This probability increased to 99.2% for scenario B and 100% for scenario C. When considering 

only outcomes reported in the 2010 GBD for the nutritional assessment, colorectal cancer for milk 

intake and all diseases related to SSB intake, we observed a greater likelihood variability between 

scenarios using this approach. . In fact, the increased consumption of fluid milk remained 

beneficial under all scenarios with a probability of 80.8% for scenario A, 91.4% for scenario B, 

and 100% for scenario C. As a sensitivity analysis, we also used this approach considering only 

the male U.S. population, assuming that all impact categories besides prostate cancer have an effect 

on males and females. This analysis resulted in a slightly reduced probability of 98.9% and 99.7% 

for scenario A and B, respectively, while the probability remained 100% for scenario C.  
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Figure 2.6. Comparison of daily environmental impacts  (GHGE and PM-related emissions) with nutritional effects (milk-related 
disease: colorectal cancer, stroke, prostate cancer for males only and SSB-related diseases) in avoided μDALY/person/day, for three 
dietary changes scenarios over the average diet: 1) Add one serving of fluid milk (scenario A), 2) Add one serving of fluid milk with an 
iso-caloric substitution from the overall average diet (scenario B), and 3) Add a serving of fluid milk with an iso-caloric substitution 
from sugar-sweetened beverages (SSB, scenario C). A positive value indicates a benefit (avoided burden) while a negative value 
indicates an impact (induced burden). Error bars indicate the 95% confidence intervals representing a preliminary characterization of 
uncertainty. It should be noted that for Scenario B we assumed that substitution from the average diet has no health effects, with all 
observed health effects solely associated with the addition of one serving of milk. 
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2.4. Discussion 

In this paper, we describe the CONE-LCA framework that allows for a parallel 

epidemiology-based assessment in LCA of environmental and nutritional effects of food items. 

We demonstrate this approach using a proof-of-concept case study investigating the environmental 

and nutritional effects associated with an increase in U.S. milk consumption. Our analysis was 

only focused on human health as the “area of protection,” using DALYs as a common endpoint 

metric, since nutritional effects only contribute to this area via the “use stage” of a food LCA. We 

limited our analysis to only two relevant environmental impact categories contributing to human 

health, namely PM and GW impacts. However, it should be emphasized that the CONE-LCA 

framework can be extended to other human health related environmental impact categories so that 

to provide a more balanced and comprehensive assessment.  

Specific to this case study, nutritional human health benefits associated with the addition 

of one serving of fluid milk exceeded the corresponding overall impacts (environmental and 

nutritional) under three dietary scenarios. It should be emphasized that our findings are initial 

estimates and dependent on the present quality and high uncertainty level of the available data. 

Hence, our findings should be interpreted with caution, taking into account the scope, assumption, 

and limitations of this study. This is reflected in the high level of uncertainty for the different 

assessment categories (Appendix 1, Section A1.4: Tables A1.9-A1.11). A detailed Monte Carlo 

analysis of uncertainties and trade-offs would be useful in further refining these findings, as well 

as obtaining more accurate estimates of the uncertainty ranges for the considered impacts and 

benefits.  

We found that one serving fluid milk has a higher impact in both environmental categories 

under consideration, GW on a 100 year time horizon and respiratory inorganics formation, than 

the iso-caloric equivalent from the average diet and SSB. This resulted in lower overall 

environmental impacts at the human health endpoint in DALYs associated with increased fluid 

milk consumption when substitutions are considered (scenario B and C), compared a no 

substitution case (scenario A).  

The characterization factors for human health impacts due to GW are very uncertain. 

Hence, the corresponding human health impact estimates should only be considered as order of 
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magnitude approximations. In future work, it would be informative to also assess the “long term” 

GW human health impacts beyond the 100-year time horizon.  

Estimates of respiratory inorganics have wide confidence intervals, mostly due to the 

uncertainty on the CFs originating from variability in iF estimates. However, it should be 

mentioned that a fair comparison of uncertainty is often difficult since model uncertainty is hard 

to characterize. Additionally, there is a potential for double counting the impact on human health 

due to the way secondary PM2.5 is currently handled in LCA. NOx, SO2, and NH3 impacts are 

estimated using individual characterization factors that do not consider the interactions between 

these PM precursors. A better characterization of secondary PM2.5 in LCA is therefore needed, 

especially for food items with high NH3 emissions. This may be achieved through a spatially 

differentiated analysis of the respective effects of NOx, SO2 and NH3 on the formation of secondary 

PM2.5 which depend on the each precursors’ background concentrations and the location of 

emission, rural or urban, for which limiting factors for PM formation may differ. Finally, impact 

characterization depends on the shape of the exposure-response function used, which is assumed 

to be linear in our study. Recent evidence supports that the exposure-response is non-linear and 

dependent on the background PM2.5 concentration at the location of exposure (Burnett et al. 2014a; 

Cohen et al. 2017) which should also be accounted for in future PM2.5 impact characterization 

efforts. 

Our nutritional analysis focused on health outcomes for which epidemiological evidence 

supports an association with milk and SSB intake. For the nutritional assessment of milk, our 

analysis was limited to only two beneficial (colorectal cancer and stroke) and one detrimental 

(prostate cancer) health outcomes. It should be noted that evidence supporting an association 

between milk intake and increased prostate cancer risk in males is controversial.  In the study by 

Aune et al. (2015), whole milk appears to have a protective effect on prostate cancer whereas in 

the same study any milk and low-fat milk increase risk. The same study indicates a threshold effect 

where prostate cancer risk is flattened for intakes over 200 g/day of milk. Taking this into account, 

the prostate cancer burden for the male population corresponding to the addition of one serving of 

fluid milk over the present consumption of 146g would be increased by only 0.08 µDALY (95% 

CI: 0.05-0.13). However, for this case study we included the worst case scenario to avoid any 

overestimation of the net nutritional benefit of milk. Regarding the framework proposed in this 
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paper, it should be emphasized that the nutritional analysis of this case study demonstrates that the 

CONE-LCA can evaluate foods that have both positive and negative effects on health. 

In a further investigation of the nutritional health effects of milk, other health outcomes 

associated with milk and/or dairy product consumption should also be considered. For example, 

toxicological impacts due to pesticide residues detected in milk could be accounted for. However, 

based on data collected in 2005 from the USDA Pesticide Data Program, the estimated impact 

from pesticides in one serving of milk is 0.00015 µDALY (Henderson et al., 2013), dominated by 

the impact from dieldrin. This appears to be a negligible contribution compared to other “use stage” 

consumption impacts. Change in BMI is another health outcome to be considered with increased 

milk consumption without any compensatory decrease in caloric intake (scenario A) or increase in 

physical activity. Although the relationship between dairy consumption and weight loss/gain has 

been extensively studied, findings are inconclusive. Results from two recent meta-analyses show 

that increased dairy consumption does not have an effect on weight (Abargouei et al., 2012) or has 

a modest effect on weight loss (Dougkas et al., 2011) when controling for energy intake. Other 

health outcomes that could be considered are cardiovascular diseases, type 2 diabetes, 

hypertension, osteoporosis, and breast cancer. It would therefore be of interest to further 

investigate the environmental and nutritional health impacts and benefits from changes in total 

dairy consumption versus milk alone. 

When assessing dietary changes, it is important to consider potential substitutions, 

especially when assessing nutritional effects, since substitutions may have positive or negative 

health effects. In our case study, we investigated increased milk consumption, but also considered 

scenarios that assumed possible iso-caloric substitutions from the average diet and SSB. Beyond 

the exact choices of the substitution scenario (as many could be considered), our results emphasize 

the importance of substitution scenarios choice when assessing dietary changes. This is apparent 

in scenario C where the nutritional health benefit associated with SSB reduced consumption 

dominated the overall health impact (Figure 2.6). It should be noted that although potentially 

significant, a nutritional assessment of the substituted average diet has not been performed. In this 

case study, average diet is defined using the 2010 LAFA dataset to primarily determine its 

environmental impacts of global warming and particulate matter. The composition consisted of 

various items that are also linked to various health outcomes with positive and negative effects. 

Although a single impact score of the average diet substitution could be theoretically possible by 
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combining the effect of each single food items (consumption in average diet compared with 

recommended or reference values on epidemiological studies), this was beyond the scope of this 

study since it could potentially be problematic due to double counting resulted from the assumption 

of independent effect between food items and due to the limited data available. Instead, the average 

diet substitution was considered to have neither nutritional benefits nor impacts on human health.  

In a worst case scenario analysis where milk would substitute foods that are beneficial for human 

health, such as fresh fruits and vegetables, the overall assessment may lead to a negative health 

impact. Finally, we also acknowledge that the definition and iso-caloric parameterization of the 

substitution scenarios was pragmatic in this proof-of-concept exercise. The scenarios evaluated 

here are not exhaustive, and alternative approaches for selecting scenarios may be used. Ideally, 

detailed market-based data that capture consumer behavioral patterns should be used to determine 

potential substitutions resulting from dietary changes. 

Finally, in this study, we have not considered the possible variations in health impacts of 

increased milk consumption by sex or age. The health effects of milk likely differ between men 

and women either by the effect magnitude or by the outcome, as evident by the nutritional 

assessment of prostate cancer. It is also possible that health effects might be different between age 

groups (younger adults versus the elderly). In this paper, we considered the general order of 

magnitude of potential impacts at the population-scale level for an average adult American 

consumer.  Therefore, a possible improvement of our analysis would be the segmentation by sex 

and age groups to allow for more refined environmental and nutritional human health impact 

estimates associated with increased milk consumption.  

2.5. Conclusion and recommendations 

The CONE-LCA framework proposed in this paper provides the groundwork for an 

improved, more balanced LCA methodology that, in addition to the production-related 

environmental impacts of food items, also considers for the “use stage” nutritional effects resulting 

from consumption. The originality of this framework is that it innovatively takes dietary 

epidemiological evidence expressed in DALYs and compares them consistently with life cycle 

impact assessment human health endpoint DALYs, related to food items. Assessing environmental 

and nutritional human health effects of food items/diet at the DALYs level aligns well with the 

traditional LCA approach as well as methods used for assessing burden of disease. The need and 
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importance of such a framework was demonstrated with a proof-of-concept case study in which 

we compared the environmental and nutritional effects on human health associated with the daily 

addition of one serving of fluid milk to the current U.S diet. Therefore, the approach proposed in 

this paper allows for a quantitative estimate of human health impacts by evaluating, via a common 

metric, the complements and trade-offs between nutritional and environmental effects of 

foods/diets. 

However, there is a need to maintain full transparency in communicating results generated 

with this framework due to possible limitations emerging from the quality of data used and more 

specifically the uncertainties associated with the characterization of environmental and nutritional 

effects of food items. For the environmental assessment, it is important to differentiate the 

influence of each midpoint category on the endpoint and the related uncertainty. At the same time, 

epidemiological evidence for both environmental and nutritional effects should be used with 

caution as they are suggestive of correlations and do not imply causation. More specifically, it is 

possible that the magnitude of the effect associated to an individual risk factor is partially due to 

confounders, which at that point of the study were either unknown or not controlled for. For 

example, when estimating the effect of PM on human health it is possible that noise also 

contributes to that effect, since high PM levels due to traffic may be correlated to high noise 

exposures. The same applies to nutritional epidemiology; for instance, the burden associated with 

SSB might be confounded by sedentary lifestyle and/or higher consumption of less healthy food 

such as saturated fats, sugars, and sodium. All in all, there is a need to acknowledge uncertainties, 

knowledge gaps, and limitations when attempting to quantify the environmental and nutritional 

linkage to human health. 

Despite the limitations and the exploratory character of this CONE-LCA framework proof-

of-concept case study, several recommendations can already be drawn. First, our results 

demonstrate the potential limitations when using the established environmentally-focused LCA 

approaches for food items and suggest that the nutritional effects of the “use stage” should be 

considered in food-related LCAs. In our case study, we have shown that the nutritional effects 

during the “use stage” could have an effect of comparable magnitude when compared to 

environmental effects. Second, the study emphasized the importance and need for enhanced data 

availability and refinement to support this new approach. Third, when considering the human 

health impacts of GHGE and PM as well as nutritional impacts, results within the context of this 
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study are suggestive of a health benefit linked with a one serving increase in milk consumption for 

American adults, provided that it does not substitute any health beneficial food items such as fruits 

and vegetables. The benefit is further increased when considering an iso-caloric substitution of 

less healthy beverage options. Further studies are now needed to test whether this conclusion holds 

within a more comprehensive assessment of environmental and nutritional health impacts, e.g. 

examining additional substitutions, such as the substitution of health beneficial food items such as 

fresh fruits and vegetables. Fourth, while not being the purpose of this paper, our results suggest 

that, despite the focus on GHGE of many food LCA studies, other environmental health impacts 

of food items, such as PM, can also be relevant. Finally, we recommend applying this CONE-LCA 

approach, which constitutes the infancy of a new area within food/diet-related LCA, to other food 

items or diets, to characterize potential trade-offs between environmental and nutritional impacts 

when making recommendations about sustainable diets and food choices.  
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CHAPTER 3 

HENI: A health burden-based nutritional index for food items 

Abstract 

Nutrition profiling measures the nutritional quality of foods and can inform dietary patterns 

that are important determinants of health; however, they rarely quantify the nutritional health 

performance of foods. We developed the Health Nutritional Index (HENI) that quantifies the 

nutrition-related health burden associated with foods. Building on the Global Burden of Disease, 

HENI estimates the minutes of healthy life lost or gained per food serving, based on the marginal 

cumulative health burden associated with 16 dietary risks (nine major food groups and seven 

nutrients). HENI scores are calculated as the sum of products of the amounts of dietary risks in the 

food and the corresponding marginal cumulative health burden per g risk, defined as dietary risk 

factors (DRFs in disability-adjusted life years). DRFs are estimated by coupling 6,195 risk-

outcome-age group-gender-burden-specific relative risks with 4,344 U.S.-specific outcome-age 

group-gender-specific U.S. burden rates. We estimate HENI scores for 6,888 foods in the U.S. 

diet. Scores vary substantially, typically ranging from 40 minutes of healthy life lost per serving 

of hot dog sandwiches up to 30 minutes of healthy life gained per serving of nuts and seeds. HENI 

identifies nuts and seeds, legumes, fruits, and seafood as key healthy foods, whereas non-starchy 

vegetables and whole grains foods are also positive but to a lesser extent. Processed and red meat 

foods have key adverse health effects. HENI can translate complex food and nutritional 

information into a single health score. Thus, HENI could inform healthier dietary choices, 

including healthier substitutions, and can become a tool for disease prevention and public health 

promotion.  
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3.1. Introduction 

Diet is fundamental for human survival and has substantial effects on human health (WHO 

2003; World Cancer Research Fund and American Institute for Cancer Research 2007). According 

to the 2016 Global Burden of Disease (GBD) study series, suboptimal diets (over-consumption of 

unhealthy food and under-consumption of healthy food) are responsible for more than 500,000 

deaths and 10,000,000 disability adjusted life years (DALYs) per year in the U.S. alone, due to 

non-communicable chronic diseases (Gakidou et al. 2017; Mokdad et al. 2018). The GBD is a 

remarkable effort to quantify disease burden globally for multiple risk factors. It estimates DALYs 

associated with both mortality and disease morbidity, covering a set of 15 dietary risks: milk, nuts 

and seeds, red meat, processed meat, whole grains, fruits, vegetables, legumes, sugar-sweetened 

beverages (SSB), omega-3, sodium, trans fatty acids (TFA), polyunsaturated fats (PUFA), 

calcium, fiber, plus various metabolic risks (Gakidou et al. 2017). However, the GBD focuses on 

population-level estimates that cannot be easily used for inferences on individual food items. 

Informing and incentivizing dietary shifts from poor to healthy choices can be challenging. 

Dietary guidelines provide messaging to promote healthy diets. However, such efforts are not 

always effective, one reason being that they can be hard to interpret and use for daily food choices 

(Mokdad et al. 2018). To improve public health, various nutritional profiling indices have been 

developed to measure dietary quality in relation to food and nutrient intake recommendations and 

adherence to dietary guidelines (Arvaniti and Panagiotakos 2008). These indices are also used for 

nutrition and health claims (Fulgoni et al. 2009) and are often only indirectly associated with 

disease burden (McCullough and Willett 2006). 

Attempts have been made to rank individual foods based on their nutrient quality (Sorenson 

and Hansen 1975; Drewnowski 2005; Fulgoni et al. 2009; Tharrey et al. 2017). Nutrient profiling 

models have a common structure with a combination of only encouraged nutrients (e.g., protein, 

fiber, calcium, vitamin C, iron) (Drewnowski 2005), only restricted nutrients (e.g., sodium, added 

sugars, and saturated fats), or both (Fulgoni et al. 2009; Drewnowski 2017). These models can 

have sophisticated algorithms based on up to 40 nutrients (Drewnowski 2017) that can generate 

continuous scores (Fulgoni et al. 2009) or assign foods into categories (Tharrey et al. 2017). 

Overall, nutrient profiling indices agree with general knowledge and perception of food 

classification and some are well correlated with diet quality metrics (Fulgoni et al. 2009). 

However, these models suffer from many limitations such as dependency on energy content 
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(Sorenson and Hansen 1975), inconsistent nutrition density definitions (Drewnowski and Fulgoni 

2008), inherent bias due to the selection of considered nutrients and reference intake values used 

(Drewnowski 2005),  and failure to capture the varying effect of nutrients on health (Arvaniti and 

Panagiotakos 2008; Fulgoni et al. 2009). In addition, these indices typically fail to capture 

synergistic effects of nutrients (Arvaniti and Panagiotakos 2008) and are not consistent with recent 

nutrition advancements that support focusing more on foods and dietary patterns than on nutrients 

(Mozaffarian 2017). 

Other popular dietary indices are based on both nutrients and food groups such as the 

Healthy Eating Index  (HEI) (Kennedy et al. 1995; Guenther et al. 2013) and the Alternate Healthy 

Eating Index  (AHEI) (McCullough and Willett 2006). These scoring systems have shown 

relevance and predictability of health (Chiuve et al. 2012; Schwingshackl and Hoffmann 2015; 

Wang et al. 2015; Onvani et al. 2017), but limitations include that components are assumed to 

contribute equally to the overall score (Chiuve et al. 2012) and that both approaches do not directly 

relate to health burden. In addition, these indices have been primarily applied to diets which makes 

them hard to use by consumers for healthier choices and substitutions at the food level (US Federal 

Trade Commission 2004). 

Despite the plethora of dietary assessment tools, we still lack a metric meeting the 

following essential attributes for nutrition indices (Arvaniti and Panagiotakos 2008): consider the 

health burden associated with each dietary risk component; expand beyond nutrients; and be 

applicable to all food items. To address this gap, we developed the Healthy Nutritional Index 

(HENI), a health burden-based continuous single score nutritional metric. HENI builds on the 

GBD dietary burden assessment, translating dietary risks at a population level into health burden 

associated with individual food items. HENI quantifies health burden in marginal minutes of 

healthy life gained (+) or lost (-) from all-cause premature mortality and morbidity per serving of 

food, based on the 15 food groups and nutrients identified as dietary risks in the GBD plus saturated 

fatty acids (SFA). We first determined the dietary risk factors (DRFs) to quantify the marginal 

burden of disease per g of each HENI dietary risk component (e.g., in 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

, 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−3

), 

accounting for 50 health outcomes, and gender- and age-specific risk ratios. Using information 

from publically available nutritional databases (Fulgoni III et al. 2018), we combine these DRFs 

with the amount of each dietary risk r (dr in e.g. 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−3

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ) per serving of  6,888 food items 

consumed in the U.S. diet, to yield the HENI of each food item. 
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3.2. Materials and Methods  

3.2.1. HENI Overview  

HENI quantifies the marginal changes of healthy life per reference amount of food based 

on 15 dietary risks identified by the GBD (Gakidou et al. 2017) plus SFA. HENI scores are 

reported in minutes of healthy life gained (+) or lost (-) per serving, and alternatively per 100 kcal 

or 100 grams. HENI dietary risk components cover nine main food groups and seven nutrients. 

Food groups include milk, nuts and seeds, processed meat, red meat, SSB (mediated through body 

mass index), vegetables, legumes, fruits, and whole grains. The nutrients considered in HENI are 

calcium, fiber, seafood omega-3 fatty acids, sodium (mediated through systolic blood pressure), 

TFA, PUFA, and SFA (mediated through total serum cholesterol as used by GBD). Additional 

information and the definition and characteristics of all HENI components are available in 

Appendix 2, section A2.1 and Table A2.14, respectively. 

The marginal HENI model is built on the assumption that the aggregated health effect from 

multiple dietary risk components is independent unless evidence suggests that there is a mediation 

mechanism between risks (WHO 2003). The joint risk effect is considered additive for small 

dietary changes, with the understanding that our results are primarily valid for marginal dietary 

changes. The HENI score in minutes of healthy life of food item i is calculated using: 

 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 = −0.53 ∙ ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟   (Eq. 3.1) 

 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the cumulative age- and gender-adjusted marginal dietary risk factor per g of 

dietary risk r in μDALYs/gr , and 𝑑𝑑𝑖𝑖,𝑟𝑟 is the amount of dietary risk r in food item i in gr/servingi. 

The constant of -0.53 represents the minutes of healthy life per μDALYs*. For the purpose of this 

paper, HENI is developed to produce scores for an average adult (25+ y) in the U.S. 

3.2.2. Food composition 

 The amount of HENI components in food items (𝑑𝑑𝑖𝑖,𝑟𝑟) from the WWEIA/NHANES 2007-

2014 is determined using a combination of publically available databases from the USDA that 

have been customized to comply with dietary risk definitions from the GBD. For food group 

                                                      
*1 μDALYs=1 year of healthy life lost ∙ 365𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∙ 24ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 60𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 10−6 =- 0.53 minutes of healthy life gained 

https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/
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dietary risks, the content of dietary risk r in food (in 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟
100 𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) were adapted from the Food Patterns 

Equivalents Database (FPED). For nutrient dietary risks, equivalent estimates were obtained by 

combining the Standard Reference (SR) with the Food and Nutrient Database for Dietary Studies 

(FNDDS). TFA estimates required special treatment since 63% of food items investigated in this 

paper had incomplete or missing TFA profile. We used imputed TFA values for foods with missing 

or incomplete profiles based on a regression model of existing data using food group and available 

nutrient information as predictors (R2=0.69). For milk and yogurt, the regression model was further 

adapted based on the food category-specific ratio of known TFA/total fat. However, it should be 

emphasized that TFA has been drastically decreasing in foods, especially after the banning rule by 

the U.S. Food and Drug Administration (FDA), and imputed values and their corresponding 

impacts should be interpreted with caution. A detailed description of the methodology used in 

obtaining the amounts of HENI dietary risks in foods is available in Fulgoni et al. (2018).  

3.2.3. Dietary risk factor model 

 DRFs quantify the marginal all-cause health burden benefit (-) or impact (+) from 

premature mortality and disease morbidity per g dietary risk r, expressed in μDALYs/𝑔𝑔𝑟𝑟. DRFs 

are estimated using the attributable burden approach for marginal changes. That is, DRFs measure 

the health burden for an individual that would have occurred with a marginal intake shift 

standardized for one gram of dietary risk component, assuming that the individual’s current risk 

intake is within an effective range (Appendix 2, Table A2.14). For intakes outside these ranges, 

DRFs are considered to have a neutral halth effect (DRF=0). 

For each dietary risk, DRF is estimated as the age- and gender-weighted sum of the risk-

outcome-burden metric-age group-gender-specific estimates, assuming that the effect from all 

outcomes is additive in a marginal context (model details in Appendix 2, section A2.2): 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟 = ∑ ∑ ∑ ∑ 𝑓𝑓𝑎𝑎,𝑔𝑔 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟,𝑜𝑜,𝑏𝑏
𝑎𝑎,𝑔𝑔

𝑏𝑏𝑜𝑜𝑎𝑎𝑔𝑔 = ∑ ∑ ∑ ∑ 𝑓𝑓𝑎𝑎,𝑔𝑔 ∙
ln (𝑅𝑅𝑅𝑅𝑟𝑟,𝑜𝑜,𝑏𝑏

𝑎𝑎,𝑔𝑔 )

𝑅𝑅𝑅𝑅𝑟𝑟
𝑎𝑎,𝑔𝑔 ∙ 𝐵𝐵𝐵𝐵𝑜𝑜,𝑏𝑏

𝑎𝑎,𝑔𝑔
𝑏𝑏𝑜𝑜𝑎𝑎𝑔𝑔  (Eq.3. 2) 

 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟,𝑜𝑜,𝑏𝑏
𝑎𝑎,𝑔𝑔  is the marginal DRF for outcome o and burden b due to dietary risk r in age group 

a and gender g in μDALYs/gr, and 𝑓𝑓𝑎𝑎,𝑔𝑔 is the population fraction in age group a and gender g. 

𝑅𝑅𝑅𝑅𝑟𝑟,𝑜𝑜,𝑏𝑏
𝑎𝑎,𝑔𝑔  is the relative risk (RR) for outcome o and burden b due to dietary risk r in age group a 

https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference/
https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds/
https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds/
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and gender g. 𝑅𝑅𝑅𝑅𝑟𝑟
𝑎𝑎,𝑔𝑔 is the reference intake for dietary risk r in age group a and gender g reported 

in grams/day. 𝐵𝐵𝐵𝐵𝑜𝑜,𝑏𝑏
𝑎𝑎,𝑔𝑔 is the burden rate for outcome o and burden b in age group a and gender g in 

μDALYs/person-day, with burden measured in years of life disable (YLD) or years of life lost 

(YLL) and YLD+YLL=DALY. 

For the 16 dietary risk components in HENI, we identified 479 risk-outcome RR in the 

2016 GBD (Gakidou et al. 2017). Age- and gender-specific RRs were available for 15 age groups 

(in 5-year age groups starting from 25 years old). When an RR was available for “both” genders 

or “both” burden metrics (mortality and morbidity), the same RR was used in the gender-specific 

and burden-specific calculations, respectively. This resulted in 6,195 specific RRs considered in 

our analysis. Typically, dietary RRs in the GBD are reported per g/day, except for energy-related 

nutrients such as TFA and PUFA for which RIs are reported as fractions of daily energy intake (% 

kcal/day). To convert these intakes to their corresponding gram amounts, we used age- and gender-

specific daily energy requirement for U.S. adults (Appendix 2, Table A2.18) and an estimate of 

9.25 kcal/gfat. We used disease-specific burden rates (YLL and YLD) by age group and gender 

(adapted from GBD Results Tool) and population distribution information for the U.S. in 2016. 

Three of the dietary risks included in HENI (SSB, SFA, and sodium) are assumed to be 

100% mediated through other risks (body mass index, total serum cholesterol, and systolic blood 

pressure, respectively). In addition, the sodium exposure is defined using daily urinary sodium in 

the GBD. To adjust for effect modifiers, DRFs for these dietary risks were adjusted for strata-

specific associations between SSB and body mass index status, and between sodium and race and 

hypertension status (Gakidou et al. 2017). We describe the additional steps and data required to 

develop the DRFs for these mediated dietary risks in Appendix 2, section A2.3. Finally, 

cardiovascular effects of fiber are mediated through fruits, vegetables, legumes, and whole grains 

(Gakidou et al. 2017). Hence, we developed distinct DRFs for fiber for the different sources of 

fiber to avoid double counting, “fiberother” representing fiber from sources other than fruits, 

vegetables, and whole grains; “fiberf,v,l,w” represents fiber from fruits, vegetables, legumes, and 

whole grains. 

There are three input parameters with characterized uncertainty in the DRF model. The 

first two parameters are RRs (including the effect modification RRs for sodium and SSB) and 

disease burden rates; the GBD studies report the 95th uncertainty interval as lower (2.5th 

percentile) and upper (97.5th percentile) estimates for these parameters using random draws of 

http://ghdx.healthdata.org/gbd-results-tool
http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-population-estimates-1950-2016
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1000 samples from the corresponding distributions (Gakidou et al. 2017). The third input with 

uncertainty is the SFA-total serum cholesterol association with an estimated standard error (SE) 

of 0.013 (Mensink 2016). We characterize the uncertainty of DRFs with lower and upper estimates 

calculated using the corresponding estimates of the uncertain input parameter for each dietary risk 

by assuming uniform distributions. 

3.2.4. HENI score characteristics for foods 

 We used HENI to evaluate the performance and quantify the health burden of food items 

in the U.S. diet. We evaluated 6,888 food items from the What We Eat in America, National Health 

and Nutrition Examination Survey (WWEIA/NHANES) 2007-2014. For food items with multiple 

entries, we only included the most recent entry. We excluded baby foods, infant formulas, 100% 

fruit and vegetable juices, alcoholic beverages, water, and “other” foods. Foods were evaluated 

per reference amounts customarily consumed (RACC) serving, or per 100 kcal (food items with 

zero energy not considered) and 100 gram. Food items have been classified into 11 main groups 

and 48 food groups based on an adaptation of the USDA Food Coding Scheme (Appendix 2, Table 

A2.20).  

3.3. Results 

3.3.1. Dietary risk factors (DRFs).  

The cumulative gender- and age-adjusted DRF estimates for U.S. adults (25+ y) vary 

substantially between dietary risks from -100.5 μDALY/g (95% uncertainty interval (UI): -170.4 

to -39.1) for the beneficial effects of seafood omega-3 fatty acids to 11.7 μDALY/g (95% UI: 8.0 

to 15.3) for the adverse health effects of sodium (Figure 3.7 and Appendix 2, Table A2.15 for 

uncertainty estimates). In addition to the 15 dietary risks from the GBD, we developed a DRFSFA 

since SFA-related health burdens are captured with total serum cholesterol at the population level 

in the GBD, estimated at 0.70 μDALY/g (95% UI: 0.20 to 1.65). 

DRFs are associated with 50 health outcomes. However, for most dietary risks the burden 

is dominated by years of life lost due to ischemic heart disease (IHD) mortality, except for calcium, 

fiber (from fruits, vegetables, legumes, and whole grains – “fiberf,v,l,w”), and milk for which 

colorectal cancer mortality is the leading health burden contributor (Figure 3.7). The years of life 

disabled due to diabetes have substantial contributions to the burden induced by red meat (71%), 

https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/
https://www.regulations.gov/document?D=FDA-2004-N-0258-0136
https://reedir.arsnet.usda.gov/codesearchwebapp/(gcp3kq55ssdyc445ry2k2rus)/coding_scheme.pdf
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processed meat (33%), and SSB (26%). Overall, the 50 to 79 years olds experience the majority 

of the burden associated with these dietary risks,  and the burden is higher in males than females 

except for 85+ years olds (Appendix 2, Figure A2.21). 

All cumulative DRFs are valid within a range of effective daily intakes defined by the GBD 

as the theoretical minimum thresholds (Appendix 2, Table A2.14). Intake estimates for the largest 

share of the population fall within these limits; only a small minority of the U.S. adult population 

have intakes above or below these thresholds (Dietary Guidelines Advisory Committee 2015). The 

magnitude of DRFs values are not directly comparable; meaningful comparisons need to be 

determined at food level (HENI), accounting for the amount of each dietary risk component in a 

food item. 
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Figure 3.7. Cumulative gender- and age-adjusted dietary risk factor (DRFs) estimates for US adults (25+ y) in μDALY/g and disease 
contribution (%) by burden measure, including morbidity in years of life disabled (YLD) and mortality in years of life lost (YLL). 
Fiberf,v,l,w=fiber from fruit, vegetables, legumes, and whole grains. Fiberother= fiber from sources other than fruits, vegetables, legumes, 
and whole grains. 
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3.3.2. HENI for foods 

From the 6,888 food items in the WWEIA/NHANES 2007-2014 database, processed and 

red meat dishes, as well as sweetened beverages, have a lower health performance compared to 

nuts and seeds, legumes, fruits, and seafood (Figure 3.8). In particular, the food categories with 

the five lowest HENI medians are hot dog sandwiches (-42 minutes of healthy life/serving, 

interquartile range-IQR: -48 to -37), cured meats (-31 minutes of healthy life/serving, IQR: -33 to 

-28), breakfast sandwiches (-16 minutes of healthy life/serving, IQR: -24 to -11), burgers (-9 

minutes of healthy life/serving, IQR: -15 to -6), and sweetened beverages (-7 minutes of healthy 

life/serving, IQR: -10 to 0). The food categories with the highest HENI medians are nuts and seeds 

(+30 minutes of healthy life/serving, IQR: +28 to +31), legumes (+11 minutes of healthy 

life/serving, IQR: +2 to +12), fruits (+11 minutes of healthy life/serving, IQR: +7 to+16), seafood 

(+9 minutes of healthy life/serving, IQR: +4 to +22), and seafood mixed dishes (+6 minutes of 

healthy life/serving, IQR: +2 to +12). 

Foods in the categories of milk and dairy (excluding cheese), oils, non-alcoholic beverages 

(excluding sweetened beverages), and sugars tend to have an overall net neutral health effect per 

serving. Interestingly, only a few food categories have HENI scores of all their foods entirely 

positive or entirely negative, thus the importance to identify which food items have high or low 

HENI scores within each food category. 

In the U.S., nutrition labeling is based on RACC serving sizes established by the U.S. FDA, 

and thus this unit served as the primary comparison basis in our analysis (Drewnowski et al. 2009). 

Nevertheless, HENI can also be determined per 100 kcal or 100 g. The 100 kcal-based HENI leads 

to a somewhat similar food category rankings as the serving-based results (Appendix 2, Figure 

A2.22), but with less extreme HENI scores for food items with high energy density (e.g., nuts, 

meat) and higher scores for lower energy content food items (e.g., fruit and non-starchy 

vegetables), see  Appendix 2, Figure A2.24A. HENI per 100 g scores could result in considerable 

food category ranking differences, especially for foods with small serving size such as fats, oils, 

sugars, snacks, sweets, condiments, nuts, seeds, and cheese (Appendix 2, Figures A2.23 & 

A2.24B). However, 100 g-based HENI scores should be interpreted with caution as these foods 

are typically consumed in much lesser quantities than 100 g within conventional diets. 
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Figure 3.8. Distribution of HENI in minutes of healthy life per serving for 6,888 foods in the WWEIA/NHANES 2007-2014 by food 
category. Positive HENI values indicate health benefits. Boxes represent the interquartile range (IQR), horizontal lines represent the 
medians, whiskers extend to 1.5 times the IQR, and data points represent outliers. 16 outliers fall outside the HENI range in this figure. 
The dotted line represents the neutral health effect score (HENI=0). Nfood represents the number of foods in each category. See also 
Appendix 2, Table A2.16. 
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3.3.3. HENI composition.  

HENI scores show considerable inter- and intra-food category variability that could not be 

explained by food characteristics such as energy density and serving size (Appendix 2, Figure 

A2.25).  To better understand the drivers of HENI we analyzed the contribution of each component 

by food group for five foods,  representative* of the minimum, 25th percentile, median, 75th 

percentile, and maximum of the food group HENI range (Figure 3.9 and  Appendix 2, Figure 

A2.26). For mixed dishes (Figure 3.9A), the lowest HENI scores (88 minutes of healthy life 

lost/serving) were associated with high levels of processed meat, while the highest HENI scores 

(119 minutes of healthy life gained/serving) were associated with high seafood omega-3 fatty 

acids, a tendency also observed for protein foods (Appendix 2, Figure A2.26A). Mexican dishes 

and vegetable soups tend to have neutral scores, with the positive effect of vegetables being offset 

by sodium and SFA. For dairy products (Figure 3.9B), cheeses have the lowest scores with higher 

levels of sodium and SFA leading to moderately detrimental scores (-5 minutes of healthy 

life/serving). For milk, HENI scores improve as its fat content reduces while maintaining the health 

benefits of milk on colorectal cancer. The best dairy score is associated with fruits in low-fat 

yogurt, mostly due to the health benefits of fruits. Snacks and sweets show substantial HENI 

variation (Figure 3.9C),  between 16 minutes lost/serving for foods high in TFA (e.g., fritters and 

doughnuts) and 29 minutes of life gained/serving for nut-based snacks. For vegetables (Figure 

3.9D), HENI score differences between starchy (corn, potato) and non-starchy vegetables are due 

to the GBD definition of vegetables that excludes starchy vegetables (Gakidou et al. 2017). Sodium 

added during cooking lowers the HENI score of certain vegetable dishes. Grains show increasing 

benefits (Figure 3.9E), up to 14 minutes of healthy life gained/serving, as the whole grain content 

increases. For the rest of the food groups (Appendix 2, Figure A2.26), low HENI scores are driven 

by a single detrimental dietary risk component such as processed meat (protein foods), SSB 

(nonalcoholic beverages), SFA (sauces), and TFA (fats). Similarly, the highest HENI scores are 

linked with high levels of a single dietary risk such as seafood omega-3 fatty acids (protein foods), 

fruits (nonalcoholic beverages and sugars), and nuts and seeds (sauces). The HENI score for fruits 

increases with the content of fruits per serving and is positively correlated with serving size 

(ρ=0.85, p <0.0001, Appendix 2, Table A2.17 and Figures A2.4B and A2.6F). Additional 

                                                      
*Selected as the nearest food item within one percentile that best represented the food composition in each food category.  
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correlations are discussed in Appendix 2, section  A2.6. Finally, sodium has a small adverse health 

effect in most foods in comparison with other dietary risk components. However, the small 

contributions of sodium at the food level can accumulate to a substantial intake at the diet level. 

In a sensitivity analysis, we evaluated the addition of added sugars as a HENI dietary risk 

component since it is not included in the GBD but has been associated with adverse health effects 

(Appendix 2, section A2.4). Assuming 50% the effect of SSB, added sugars has little influence on 

the HENI scores of foods, except for candy with a median HENIadded sugars of 4.4 minutes of healthy 

life lost/serving (Appendix 2, Figure A2.28). We also investigated in more detail the influence of 

TFA and SFA on HENI since their contributions could be refined in the future  (Appendix 2, 

section A2.5). TFA appears to have a relatively small impact overall, with the largest influence 

observed in margarine with a median of 2.2 minutes of healthy life lost/serving (Appendix, Figure 

A2.29). The contribution of SFA on HENI is slightly higher than TFA, especially for animal-based 

food categories (Appendix 2, Figure A2.30). 

We also quantify the disease composition of the net health burden associated with each 

food (Appendix 2, Figure A2.27). IHD mortality dominates the net health burden of foods in most 

categories as observed is the DRF disease repartition. “Other cardiovascular diseases” and “other 

neoplasms” mortality also play an essential role for fruits. 
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Figure 3.9. Dietary risk contribution to HENI for select food groups: A. Mixed dishes, B. Milk and Dairy, C. Snacks and Sweets, D. 
Vegetables, E. Grains. The foods are representative of the min, 25th percentile, median, 75th percentile, and max scores within the food 
group (within one percentile). The black diamond represents the HENI score per serving. The dotted line represents the neutral health 
effect score (HENI=0). For the remaining food groups, see Appendix 2, Figure A2.26. 
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3.4. Discussion 

HENI evaluates the marginal health burden-based nutritional quality of foods and satisfies 

the characteristics of a proper nutrition evaluation index (Arvaniti and Panagiotakos 2008). HENI 

is the first nutritional index to directly link individual food items to health impacts and benefits in 

a single continuous score. The model is based on the most recent epidemiological evidence from 

more than 100 risk-health outcome pairs that meet the World Cancer Research Fund criteria of 

causality (Gakidou et al. 2017). Moving away from the nutrient-based indices (Mozaffarian 2017), 

HENI is based on both nutrients and food groups with established beneficial and adverse 

associations with cardiovascular, cancer, and metabolic health. This approach is consistent with 

recent dietary recommendations (Dietary Guidelines Advisory Committee 2015). Furthermore, 

model components are weighted (via the DRFs) using information on the magnitude of health 

effect, type of disease affects, disease prevalence, and diseases severity in the population, 

addressing a major limiting factor in previous indices where components contributed equally to 

the overall performance (Arvaniti and Panagiotakos 2008). Using the risk ratio and burden rate 

uncertainty characterizations from the GBD, and assuming uniform distributions, the high-end 

DRF uncertainty estimates confirm the significance of each dietary risk, with typical variations 

between 30% to 87% around the best estimates. This preliminary uncertainty analysis can serve as 

an input for more advanced Monte Carlo simulations in the future. As a whole, HENI can translate 

a complex nutritional food evaluation to a simple but powerful score expressed in minutes of 

healthy life lost or gained. This metric is easy to understand and relevant to consumers, 

stakeholders, and academics (Kunkel and McKinley 2007). Thus, HENI can be used in decision-

making towards healthier choices and substitutions within and between food groups. 

Our evaluations of almost 7,000 foods consumed in the U.S. diet using HENI supports that 

foods can have a broad range of scores, extending from -88 (Corned beef with tomato sauce and 

onion) up to 119 (Sardines with tomato-based sauce) minutes of healthy life/serving. Our approach 

is consistent with increasing evidence that dietary choices based on food quality might be a better 

health promoter than calorie-dependent approaches (Mozaffarian 2017). The broad range of HENI 

scores illustrates the index’s ability to assess extreme food items adequately while also providing 

more general recommendations at the food group level (e.g., nuts and seeds, legumes, fruits, 

seafood, and non-starchy vegetables induce health benefits while processed and red meat foods 
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induce adverse effects). The general trends of food group performance with HENI are in line with 

other nutritional indices (Fulgoni et al. 2009; Chiuve et al. 2012). However, wide variability within 

food groups suggests that selection solely based on the food group could be problematic. This 

variability emphasizes the complexity of dietary assessments and the need to make inferences at 

the food level and not at the food category level. 

The HENI composition can shed light on the drivers and hidden health risks and benefits 

associated with food, especially in mixed foods which are popular in the U.S. diet. HENI not only 

quantifies the magnitude of health burden associated with food but also identifies the component 

with the highest contribution to health burden as well as the health outcome affected the most. For 

example, the highest HENI scores are typically linked with high levels of nuts and seeds or seafood 

omega-3 fatty while foods with the lowest HENI scores are high in processed meat. Our analysis 

supports that IHD mortality is responsible for the majority of the health burden associated with 

most foods, followed by other cardiovascular diseases mortality, neoplasm mortality, and diabetes 

morbidity. This granularity feature of HENI helps the differentiation and allows for the 

identification of foods within a category with maximum beneficial components and minimum 

detrimental components. This level of information could help advise disease prevention programs. 

The validity of our results relies on a number of assumptions and limitations. First, this 

work investigates the health burden associated with food items in a marginal context, assuming 

that for marginal changes the model components have an independent and additive joint health 

effect. However, large diet-level shifts may not satisfy this marginality condition and will require 

considering the synergistic effect of multiple foods within the diet and treating the combined risk 

effects as multiplicative (Arvaniti and Panagiotakos 2008). HENI is valid under the assumption of 

isocaloric changes. Additional health benefits or impacts associated with changes in calories could 

be considered in complementary diet level approaches.  

Second, our estimates were developed using U.S.-specific data for background disease 

prevalence and disease severity in adults, and for food composition. An additional validity 

condition of this work is that current consumption levels in the U.S. exceed the GBD minimum 

levels of intake for detrimental dietary risks and are below GBD maximum levels of intake for 

beneficial dietary risks. This condition is satisfied for the vast majority of the U.S. population as 

shown by estimates from a representative sample (Dietary Guidelines Advisory Committee 2015), 

although, certain individuals might not fall within such minimum or maximum levels.  
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Third, the TFA content of 63% of foods in our analysis was imputed using a regression 

model. Although the regression analysis used had a relatively good fit (R2=0.69), the rather small 

contributions of TFA to HENI scores should be interpreted with caution as TFA levels from 

partially hydrogenated oils are declining in food since FDA has ruled their elimination from food 

earlier this year. Finally, our analysis fails to capture possible additional damaging health effects 

linked with cooking methods (Liu et al. 2018) and discretionary salt added at the dining table. 

We also want to stress out that since our model builds on the work of the GBD, our results 

depend on the accuracy of the estimates provided and are limited to risk-outcomes pairs considered 

in that work. While the approach implemented by the GBD to identify risk-outcome pairs and 

quantify pooled association estimates is rigorous and comprehensive, estimates have not 

considered the growing evidence of additional associations and effect modifiers of dietary risks. 

Such evidence includes, but are not limited to, the direct (Slattery and Randall 1988) and food-

specific (De Oliveira Otto et al. 2012) effect of SFA on cardiovascular disease, the protective effect 

of fiber on chronic kidney disease (Chiavaroli et al. 2015), the joint effect of sodium and potassium 

on cardiovascular and all-cause mortality (Yang et al. 2011), the inverse association between 

coffee consumption and diabetes (Ding et al. 2014) as well as cardiovascular and all-cause 

mortality (Crippa et al. 2014). Thus, HENI scores in this paper could underestimate the total health 

burden of foods studied here. However, as new data are developed, HENI can be easily updated 

and expand beyond the work of the GBD. Such an expansion was partly illustrated by the inclusion 

of SFA in HENI, a dietary risk component not directly considered in the GBD. Similarly, HENI 

could be further expanded and consider nutrients of public health concern (e.g., vitamin D and 

potassium) and shortfall nutrients (e.g., magnesium, vitamin C) as identified by the U.S. 

Department of Agriculture (USDA) that are not included in the GBD studies (Dietary Guidelines 

Advisory Committee 2015). 

3.5. Conclusion 

HENI is a nutritional index that uses epidemiological evidence to provide health 

intelligence to inform healthier food choices and substitutions. Reporting nutrition-related health 

information at the food level in a relatable and straightforward unit such as minutes of healthy life, 

HENI could become a powerful tool to guide disease prevention associated with diet, an important 
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public health challenge. Future studies are needed to investigate whether HENI can improve the 

understanding of food healthiness in consumers and help them achieve adherence to a healthy diet. 

Our analysis could uniquely complement growing efforts to evaluate the relationship 

between environmental impacts from food production and nutrition (Springmann et al. 2016; van 

Dooren et al. 2017; Walker et al. 2018). With growing interest on sustainable diets (Tilman and 

Clark 2014; Drewnowski 2017), HENI can be integrated into ongoing efforts to develop 

sustainability indicators that would measure and document the progress of the trade-offs between 

environmental impacts from agricultural production and nutrition health effects of foods and diets 

(Stylianou et al. 2016). In this context, HENI can characterize the nutritional pathway within a 

new life cycle impact subcategory, evaluating health impacts of foods in parallel with their ‘cradle 

to grave’ environmental impacts. Combining environmental and nutritional health effects of foods 

and diets in a comparable manner using a common metric (e.g., DALYS or minutes of healthy 

life) would result in a comprehensive sustainability index, which is needed for optimizing 

sustainable dietary recommendations (Drewnowski 2017). Overall, HENI can help inform 

healthier dietary choices and substitutions, assist with nutrition promotion and education, and 

expand towards a sustainable diet indicator that can tackle both nutritional and environmental 

dietary challenges. 
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CHAPTER 4 

Spatially-explicit characterization of the exposure and health burden of fine particulate 

matter in the U.S.  

Abstract 

The growing literature on regionalized life cycle impact assessments (LCIA) has 

highlighted the need to develop spatial estimates to characterize exposure and health damage from 

pollutants. In this paper we develop spatially-explicit intake fraction (iF- fraction of the emission 

taken in by population) and characterization factors (CF – impact per kg precursor emitted) for 

fine particulate matter (PM2.5) from ground level emissions of PM2.5, NH3, SO2, and NOx in the 

U.S. We calculate iFs for 43,304 locations in the contiguous U.S. using a reduced-form chemical 

transport model, the Intervention Model for Air Pollution (InMAP), with high spatial resolution in 

urban settings and large spatial domain. For each source location, we integrate iFs multiplied by a 

non-linear exposure-response function and region-specific burden estimates at each receptor 

location to derive cumulative location-specific CF estimates. We finally investigate the spatial 

extent of exposure and impacts by quantifying the radial distance from the source to reach 25%, 

50%, and 95% of the cumulative exposure and burden. The emission-weighted national average 

cumulative iF is 0.8 parts per million (ppm) for primary PM2.5, 0.4 ppm for NH3, 0.3 ppm for SO2, 

and 0.1 ppm for NOx, with location-specific estimates  varying up to 3 orders of magnitude across 

the U.S. The corresponding CFs using a marginal slope of the exposure-response are 103 

μDALYs/kg for primary PM2.5, 48.4 μDALYs/kg for NH3, 36.3 μDALYs/kg for SO2, and 18.5 

μDALYs/kg for NOx, with the estimates using the average slope being about twice as large. The 

location-specific estimates show considerable variability of about three orders of magnitude that 

is higher for SO2 and NOx. Urban emissions result in higher iF and CF estimates and have a spatial 

extent about a factor 10 lower than rural emissions. We also report estimates for four distinct 

sectors (agriculture, fuel combustion, industrial processes, and mobile) that account for the spatial 

distribution of the corresponding emissions, in order to provide exposure and health damage 

characterizations that are more accurate for processes in life cycle assessment (LCA) studies. This 
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work informs LCIA, helping quantify sector-specific health damages from PM2.5–related 

emissions, using the current state of knowledge for PM2.5 exposure and health effect. 
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4.1. Introduction 

Ambient fine particulate matter (PM2.5) emissions can be released to the environment 

throughout the life cycle of a product or a process. In life cycle assessment (LCA), a tool that 

evaluates product- or process-related damages associated with emissions, PM2.5 often dominates 

human health impacts. The adverse health effects of PM2.5 include cardiovascular impacts, cancer 

impacts, respiratory impacts, and premature mortality (Künzli et al. 2000; Lipsett et al. 2011; Pope 

et al. 2011; Lepeule et al. 2012; Smith et al. 2014). According to the Global Burden of Disease 

(GBD), PM2.5 is the leading environmental health risk and it is estimated that in 2016 ambient 

PM2.5 was responsible for more than 100 million disability adjusted life years (DALYs) globally 

and about 1.7 million DALYs in the U.S. (Institute for Health Metrics and Evaluation (IHME) 

2018). 

A critical input in life cycle impact assessment (LCIA) approaches is characterization 

factors (CFs). CFs quantify the damage associated with a marginal unit emission of a pollutant. 

Human health CFs are measured in disability adjusted life years (DALYs) per kg pollutant emitted 

and are estimated by combining information on exposure characterization, exposure to health 

response relationships, and disease severity. For PM2.5 CFs, these metrics are influenced by 

precursor (exposure), emission location (exposure), population density (exposure) and age 

distribution (exposure-response, disease severity), as well as background mortality rates 

(exposure-response, disease severity), all variables that show important spatial variations. With 

recent evidence supporting that the integrated exposure response (IER) function for PM2.5 is non-

linear (Burnett et al. 2014; Cohen et al. 2017), background ambient PM2.5 concentration levels also 

influence CFs estimates. Since the initial PM2.5 CFs by Hofstetter (1998), significant 

improvements have been implemented to account for some of these factors of influence (van Zelm 

et al. 2008, 2016; Gronlund et al. 2015; Tang et al. 2015). However, we lack CFs that combine all 

the attributes mentioned above, while accounting for the spatial variation in each of the influential 

parameters. 

Intake fraction (iF), the inhaled PM2.5 by the exposed population per kg precursor emitted 

in 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  (Bennett et al. 2002), is the recommended metric to 

characterize PM2.5 exposure in LCIA (Jolliet et al. 2018). There are four PM2.5 precursors of 

interest: primary PM2.5 (aerosols directly emitted in the atmosphere), ammonia (NH3), sulfur 
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dioxide (SO2), and nitrogen oxides (NOx). The three latter, when released in the atmosphere, 

produce aerosols through photochemical reactions and contribute to secondary PM2.5 that accounts 

for up to 50% of the ambient PM2.5 concentrations and have long-range travel distance (Hand et 

al. 2012; Brunekreef et al. 2015). Past studies have shown that source characteristics such as 

location (van Zelm et al. 2008, 2016; Humbert et al. 2011; Apte et al. 2012; Fantke et al. 2017; 

Lamancusa et al. 2017), stack height (Wang et al. 2006; van Zelm et al. 2008; Humbert et al. 2011), 

and type (e.g., industry, mobile) (Wang et al. 2006; Zhou et al. 2010) are key determinants of PM2.5 

iF. Seasonality is equally important (Zhou et al. 2010; Heo et al. 2016a; Lamancusa et al. 2017). 

The majority of these studies have heavily focused on characterizing exposure from primary PM2.5, 

leading to secondary PM2.5 being poorly studied (Heo et al. 2016a; Fantke et al. 2017). This was 

primarily due to the complex and non-linear relationship between precursors and secondary PM2.5  

causing computational challenges (Ansari and Pandis 1998; West et al. 1999). The limited studies 

that investigate secondary PM2.5 exposure suffer from several limitations including short exposure 

travel distance tracking (Levy et al. 2009; Humbert et al. 2011), small number of source locations 

(Lamancusa et al. 2017), archetypes  that may produce results of lower precision (Humbert et al. 

2011), simplified atmospheric chemistry that fails to capture the complex non-linear formation 

chemistry (van Zelm et al. 2008; Levy et al. 2009), and low spatial resolution (van Zelm et al. 

2008, 2016; Heo et al. 2016a) that does not allow for proper characterization of exposure 

disparities between sources (Paolella et al. 2018). In addition, the studies that investigated 

differences in source types have not developed iFs for the agricultural sector, the dominant source 

of NH3 atmospheric emissions (Paulot and Jacob 2014; Brunekreef et al. 2015). 

Recent epidemiological evidence support that the integrated exposure to health response 

function, IER, between ambient PM2.5 and ischemic heart diseases, stroke, lung cancer, and chronic 

obstructive pulmonary disease in adults over 25 years old and acute lower respiratory infection in 

children under 5 years old is non-linear (Cohen et al. 2017). The slope of IER quantifies the annual 

mortality (all-cause or disease-specific) per unit PM2.5 inhaled (in 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)⁄ . 

Previous LCIA approaches have primarily used linear exposure-response from large 

epidemiological studies in the U.S. that utilized region-specific estimates to adjust for the 

background ambient PM2.5 concentrations (van Zelm et al. 2008, 2016; Gronlund et al. 2015).  

Spatially-explicit estimates of global IER slopes based on the non-linear function produced results 

with similar central tendency as previous estimates. However, quantification of location-specific 
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exposure-response estimates enabled the identification of differences between locations, with the 

leading factors of influence being background ambient PM2.5 concentrations and mortality rates. 

The non-linear IER function also showed flexibility within a LCA context as it could be tailored 

towards consequential (‘marginal’ IER slope) and attributional (‘average’ IER slope) studies, 

which emphasized the importance of the shape of the IER function (Fantke et al. 2018). 

To address limitations from previous estimates, this paper aims to develop updated 

exposure and human health factors for primary and secondary PM2.5 CFs from ground level 

emissions, focusing on the entire contiguous U.S. and the sectors that contribute the most to each 

precursor’s emissions. The specific objectives were:  

1. Develop spatial iF for PM2.5 from ground level emissions of the four main precursors 

(primary PM2.5, NH3, SO2, and NOx) for about 43,000 source locations in the entire 

contiguous U.S. using InMAP (Intervention Model for Air Pollution) (Tessum et al. 

2017), a reduced-complexity air quality model  covering the greater North America 

region with flexible grid resolution that captures the long-range exposure potential of 

primary and secondary PM2.5 (exposure). Derive sector- and state-specific estimates for 

the 48 adjoining U.S. States plus Washington, D.C. 

2. Determine location-specific ‘marginal’ and ‘average’ PM2.5 exposure-response slopes as 

described in Fantke et al. (2018) for each of grid cells in InMAP using cause-of-death- 

and age-specific inputs from the non-linear IER from Cohen et al. (2017), local PM2.5 

annual average ambient concentrations (WHO 2016), and region-, age-, and cause-of-

death-specific annual mortality estimates (Institute for Health Metrics and Evaluation 

2018). 

3. Calculate new region-, age-, and cause-of-death-specific severity factors in 

DALYs/death based on 2016 GBD for each of grid cells in InMAP and combine them 

with IER slopes to derive region-, age-, and cause-of-death-specific effect factors (EF), 

the annual health burden (all-cause or disease-specific) per unit PM2.5 inhaled (in 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑)⁄ . 

4. Calculate spatial CF for PM2.5 from ground level emissions of the four main precursors 

(primary PM2.5, NH3, SO2, and NOx) for about 43,000 source locations in the entire 

contiguous U.S., as well as sector- and state-specific estimates for the 48 adjoining U.S. 
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states plus Washington, D.C, by combining updated exposure, exposure-response, and 

severity estimates. 

5. Analyze the spatial distribution of exposure and burden associated with an emitter by 

quantifying for the 43,000 source locations the distance from the source (travel distance) 

at which ground-level emissions affect that exposure (‘intake travel distance’) and health 

burden (‘burden travel distance’). 

4.2. Materials and methods 

4.2.1. Intake fraction 

Intake fraction (iF) is an exposure metric that links environmental emissions to population 

exposure, defined as the fraction of precursor emission that is eventually inhaled as PM2.5 by the 

exposed population integrated over space and time (𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑⁄ ). The 

cumulative iF of precursor i in source location j (𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗) was calculated as follows: 

 

𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 = ∑ 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗→𝑤𝑤𝑤𝑤 = ∑ 𝐵𝐵𝐵𝐵∙𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤∙𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦→𝑠𝑠∙∆𝐶𝐶𝑃𝑃𝑃𝑃2.5,𝑖𝑖,𝑗𝑗→𝑤𝑤

𝐸𝐸𝑖𝑖,𝑗𝑗𝑤𝑤   (Eq. 4.1) 

 

where 𝐵𝐵𝐵𝐵 is the annual volumetric breathing rate (𝑚𝑚3 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄ ), 𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤 is the population in 2015 

at location w, 𝐸𝐸𝑖𝑖,𝑗𝑗is the marginal unit emission flow of precursor i in source location j (𝜇𝜇𝜇𝜇 𝑠𝑠⁄ ), 

𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦→𝑠𝑠 is a years-to-seconds conversion factor, and ∆𝐶𝐶𝑃𝑃𝑃𝑃2.5,𝑖𝑖,𝑗𝑗→𝑤𝑤 is the change in the annual 

average concentration of PM2.5 at receptor location w from a marginal unit emission of precursor 

i in source location j (𝜇𝜇𝜇𝜇 𝑚𝑚3⁄ ). 

There are different approaches that can be used in estimating change in ambient 

concentration of a pollutant after the emission of a precursor such as box models (Humbert et al. 

2011; Apte et al. 2012), Gaussian plume dispersion models (Wang et al. 2006; Levy et al. 2009), 

and Eulerian chemical transport models (CTMs) (Zhou et al. 2010; Heo et al. 2016a; van Zelm et 

al. 2016; Lamancusa et al. 2017). CTMs are  considered the state-of-the-art in air pollution 

modeling, however, they can be computationally expensive and typically are used in evaluating 

limited number of emission scenarios (Heo et al. 2016b). In addition, CTMs could compromise 

high spatial resolution across large regions that are necessary to adequately characterize exposure 

differences between sources (Paolella et al. 2018). Reduced-form CTMs are computationally 
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efficient but often suffer from low spatial resolution (Heo et al. 2016b; Paolella et al. 2018), unless 

they work on adaptive scales with higher resolution in areas of higher exposure and lower 

resolution in the more remote area, while covering an entire continent.  

We used the source-receptor matrix InMAP Source-Receptor Matrix (ISRM) from the 

reduced-form CTM Intervention Model for Air Pollution (InMAP) to obtain information on the 

change in PM2.5 ambient concentration from marginal primary PM2.5, NH3, SO2, and NOx 

emissions (Tessum et al. 2017). InMAP is based on simplified runs from a state-of-the-art CTM, 

WRF-Chem, using emissions and atmospheric conditions from 2005. The spatial domain of the 

model is the greater North America region that covers the contiguous U.S., adjacent portions of 

Canada and Mexico, and the islands of Cuba and the Bahamas. The spatial domain is large enough 

to capture the long travel distance of PM2.5, particularly important for secondary PM2.5.  Unlike 

other reduced-form CTMs, InMAP has a flexible spatial resolution (grid cell dimensions: 48-, 24-

, 12-, 4-, 2- and 1-km per side depending on population density) that allows for high resolution 

when necessary such as population-dense urban centers. This resolution results in 52,411 grid cells 

(43,304 located in the U.S.) that serve as both emission and receptor locations in InMAP. To 

develop the ISRM, InMAP was run thousands of times with each run modeling a 1 μg⁄s change 

from a single grid cell and characterizing the corresponding change on ambient annual PM2.5 

concentrations at every receptor cell. Although InMAP has three emission levels (0-57 m, 57-379 

m, and >379 m), we focused on ground level emissions (0-57 m) as this emission height is the 

most relevant for NH3 emissions, primarily from agriculture, which has a critical role in secondary 

PM2.5 formation (Paulot and Jacob 2014). 

For the breathing rate we used a combined indoor and outdoor annual population average 

of 11.68 m3/d (Fantke et al. 2018). Population estimates in each grid cell were estimated using 

U.N. adjusted population counts in 2015 from the Center for International Earth Science 

Information Network (CIESIN 2017). 

4.2.2. Effect factor 

4.2.2.1. Exposure-response function 

We followed the approach from the GBD, as recommended for LCIA (Jolliet et al. 2018), 

and used the exposure-response function (ERF) by Cohen et al. (2017), deriving a non-linear 

integrated exposure-response (IER) function between PM2.5 and ischemic heart diseases, stroke, 
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lung cancer, and chronic obstructive pulmonary disease in adults over 25 years old and acute lower 

respiratory infection in children under 5 years old. Age was an effect modifier for ischemic heart 

diseases and stroke. 

 Building on this work, Fantke et al. (2018) developed updated model parameters for the 

non-linear IER function and for a given background PM2.5 concentration proposed two approaches 

to derive a slope for the IER that can serve different types of LCA studies. A ‘marginal’ slope 

specific to the background PM2.5 ambient levels is more suitable for consequential LCA studies 

interested in characterizing the change in morbidity and mortality likely to follow a small change 

in exposure, whereas an ‘average’ slope between the background PM2.5 ambient levels and the 

level of minimum risk (defined as the theoretical minimum risk exposure level by the GBD) better 

fits the scope of attributional LCA studies, attempting to determine the fraction of air pollution 

mortality impacts attributable to total emissions from a source or class of sources. Unlike Fantke 

et al (2018), here we use state-specific instead of national mortality estimates. The ERF for the 

two approaches at location w for disease e and age group k (𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤,𝑒𝑒,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤,𝑒𝑒,𝑘𝑘

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) are 

calculated as follows: 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤,𝑒𝑒,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �

0                                                                           for 𝐶𝐶 < 𝐶𝐶0
�𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶𝑤𝑤+∆𝐶𝐶)−𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶𝑤𝑤)�∙𝑀𝑀𝑒𝑒,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤

∆𝐶𝐶∙𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤)∙𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤∙𝐵𝐵𝐵𝐵∙𝑓𝑓kg→µg
          for 𝐶𝐶 ≥ 𝐶𝐶0

            (Eq. 4. 2a) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤,𝑒𝑒,𝑘𝑘
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �

0                                                                             for 𝐶𝐶 < 𝐶𝐶0
�𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶𝑤𝑤)−1�∙𝑀𝑀𝑒𝑒,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤

(𝐶𝐶𝑤𝑤−𝐶𝐶0)∙𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤)∙𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤∙𝐵𝐵𝐵𝐵∙𝑓𝑓kg→µg
     for 𝐶𝐶 ≥ 𝐶𝐶0

            (Eq. 4.2b) 

 

where 𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶)is the relative risk for disease e and age group k at PM2.5 ambient concentration C, 

𝑀𝑀𝑒𝑒,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤is the annual mortality for disease e and age group k at the region of location w, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 is the population of age group k at the region of location w, 𝐵𝐵𝐵𝐵 is the annual 

volumetric breathing rate per capita, and 𝑓𝑓kg→µg is the kg-to-μg conversion factor. 𝐶𝐶𝑤𝑤 and 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 

denote the annual average ambient PM2.5 concentration at location w and in the region of location 

w, respectively, while 𝐶𝐶0 represent the theoretical minimum risk exposure level for PM2.5. In this 

study, for grid cell falls in the U.S. region represents a U.S. State while for grid cells with centroids 

in Canada, Mexico, Cuba, and the Bahamas region represents the country. 
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We obtained 𝐶𝐶0 and 𝑅𝑅𝑅𝑅𝑒𝑒,𝑘𝑘(𝐶𝐶) estimates from Fantke et al (2018). For ischemic heart 

disease and stroke RR estimates were reported separately for 12 age groups (25-29, 30-34, 35-39, 

40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, and ≥80 years), while for lung cancer and 

chronic obstructive pulmonary disease RRs were reported for adults above 25 years old. For acute 

lower respiratory infection, RRs were reported for children below the age of 5 years. The 

corresponding annual mortality estimates in 2016 for the U.S. States, Canada, Mexico, Cuba, and 

the Bahamas were obtained from the results of the 2016 GBD study (Institute for Health Metrics 

and Evaluation 2018). Regional and grid cell-specific PM2.5 annual average ambient 

concentrations were estimated to reflect population distribution in the respective area (population-

weighted averages) using estimates for 2016 from the World Health Organization (WHO 2016). 

Age-specific national population estimates for 2016 were obtained from the GBD (Global Burden 

of Disease Collaborative Network 2017). To determine the population by age in each U.S. State, 

we estimated the fraction of U.S. population in each state for 2015 and applied them to the national 

estimates, assuming that the population distribution by State is equal for all age groups. 

4.2.2.2. Severity factors 

Severity factors (SF) characterize the health burden in DALYs associated with a death, 

accounting for both morbidity and mortality. For each region in this study (U.S. States, Canada, 

Mexico, Cuba, and the Bahamas) we calculated the age- and disease-specific SF (𝑆𝑆𝑆𝑆𝑒𝑒,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) as 

the ratio of the corresponding annual total health burden in DALYs and annual total mortality in 

deaths for the year 2016 using estimates from the GBD (Institute for Health Metrics and Evaluation 

2018). 

4.2.2.3. Effect factor model 

Effect factors (EFs) quantify the annual change in health burden associated with a unit 

change in population exposure in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ . EFs are calculated as the product of the 

exposure-response function (ERF) slope that reflects the annual change in mortality (all-cause or 

disease-specific) per unit change in population exposure in 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 𝑘𝑘𝑔𝑔𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄  and the 

respective severity factor (SF) that characterizes the health burden of a death in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ⁄ . 

We estimated all-cause age-adjusted EF at location w for marginal or average slope s (𝐸𝐸𝐸𝐸𝑤𝑤𝑠𝑠) as 

follows: 

 

𝐸𝐸𝐸𝐸𝑤𝑤𝑠𝑠 = ∑ 𝑓𝑓𝑓𝑓𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤,𝑒𝑒,𝑘𝑘
𝑠𝑠 ∙ 𝑆𝑆𝑆𝑆𝑒𝑒,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤𝑒𝑒,𝑘𝑘  (Eq. 4.3) 
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where 𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤,𝑒𝑒,𝑘𝑘
𝑠𝑠 is the ERF calculated using slope s at location w for health outcome e  and age 

group k in 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ , 𝑆𝑆𝑆𝑆𝑒𝑒,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 is the SF for health outcome e and age group k at 

the region of location w in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ⁄ , and 𝑓𝑓𝑓𝑓𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 is the fraction of  the population in age 

group k at the region of location w. We calculated 𝑓𝑓𝑓𝑓𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 using population estimates by age 

for U.S., Canada, Mexico, Cuba, and the Bahamas for 2016 from the GBD (Global Burden of 

Disease Collaborative Network 2017).  

4.2.3. Characterization factor 

Characterization factors (CFs) quantify the annual cumulative health burden associated 

with PM2.5 exposure due to a unit emission. The cumulative CF for an emission of precursor i in 

source location j assume an ERF slope s (𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗𝑠𝑠 ) in  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  was calculated as: 

 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗𝑠𝑠 = ∑ 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗→𝑤𝑤𝑤𝑤 ∙ 𝐸𝐸𝐸𝐸𝑤𝑤𝑠𝑠 (Eq.4.4) 

 

where 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗→𝑤𝑤 is the cumulative iF for PM2.5 from precursor i emitted in location j at location w 

(𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄ ) and 𝐸𝐸𝐸𝐸𝑤𝑤𝑠𝑠 is the  all-cause age-adjusted EF for PM2.5 at 

location w based on ERF slope s ( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ ). 

4.2.4. Travel Distance 

Determining the spatial extent of the effect of an emission can provide an additional layer 

of information in characterizing the associated exposure and health burden. (Greco et al. 2007) We 

developed intake travel distance (𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥) and burden travel distance (𝐵𝐵𝐵𝐵𝐵𝐵𝑥𝑥) estimates that represent 

the radial distance from the source to achieve x fraction of the cumulative iF and cumulative CF, 

respectively (Greco et al. 2007; Wannaz et al. 2018).  

To estimate 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗,𝑥𝑥 and 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗,𝑥𝑥 we developed the cumulative radial distribution of 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗, 

and 𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 using 1 km- width rings that were centered at the location of emission. We used these 

distributions to determine the percentage of the cumulative 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 and 𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗  reached as a function of 

the distance from the source. We then estimated for each emission location j, the travel distances 

at which iF reaches fractions of 25%, 50%, and 95% of the cumulative 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗. 
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4.2.5. Spatial aggregation by sector 

We estimated 𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗, 𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗,𝑥𝑥, and 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗,𝑥𝑥 for 52,411 emission locations i identified 

as grid cells in the spatial domain of InMAP. However, since the specific location of emissions is 

often unknown in LCA studies, we aggregated results to derive emission-weighted total, sector-

specific national and state-specific estimates for the 48 adjoining U.S. states plus Washington, 

D.C. (Ngrid=43,304) using the U.S. EPA 2014 National Emissions Inventory (NEI) (U.S. 

Environmental Protection Agency 2018). When estimates are aggregated, it is important that the 

spatial variability of the considered estimates be carried forward as uncertainty. 

From the 60 sectors available in the dataset, we first selected four main sectors directly 

relevant to life cycle inventory emissions, namely: agriculture, fuel combustion, industrial 

processes, and mobile. We also considered the overall emission (referred to as “all sectors” or 

“national emission-weighted” in this paper) of primary PM2.5, NH3, SO2, and NOx, that also 

include the remaining of emission sectors associated with dust, fires, miscellaneous, solvent and 

“other” sectors (N=16), dust and fire being sectors associated with major emission at national level. 

Since emission estimates in NEI are reported per county and the InMAP resolution is higher than 

the county level in regions with high population density, we employed two approaches to aggregate 

𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗, and 𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 from grid cell to counties, each approach related to different sectors. For the fuel 

combustion, industrial processes, and mobile sectors, we used population count from 2015 

(CIESIN 2017) as a proxy for emissions and estimated population-weighted country estimates. For 

the agricultural sector, land use was a better surrogate for emissions. To determine agriculture-

related land use, we used land use and land cover geospatial information from FAO (FAO; 

Nachtergaele and Petri 2013), adjusting for the level of livestock density (Appendix 3, Table 

A3.21). For the all-sector estimates, we used the agriculture-related land aggregation approach to 

calculate county estimates for NH3 and the population count approach for the rest of the precursors. 
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4.3. Results 

4.3.1. Intake fraction 

4.3.1.1. iF spatial variability 

Figure 4.10 shows maps of location-specific of PM2.5 intake fractions (iFs) in the greater 

North America region for four precursors: primary PM2.5, NH3, SO2, and NOx. The spatial 

variability of iFs is precursor dependent. For PM2.5 and NH3, emissions close to population centers 

lead to substantially higher exposure estimates. 

Figure 4.11 shows the distribution of iFs by state and nationally by precursors along with 

their respective emission-weighted sector-specific estimates.  Emissions from primary PM2.5 and 

NH3 result in exposures with the most varying magnitude, with the upper and lower bounds having 

more than two orders of magnitude difference. The iF estimates for primary PM2.5 emissions in 

the U.S. range from 3.0x10-2 to 58.4 ppm whereas for NH3 emissions from 2.7x10-2 to 36.9 ppm. 

The median state-specific estimates of  𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃2.5 typically range from 0.07 ppm in Montana 

to 9.1 ppm in New Jersey (Appendix 3, Table A3.28). NH3 emissions result in similar state-specific 

median estimates with approximately the same ranking between states. 

Exposure estimates in the U.S. from SO2 (1.4x10-2 to 2.7 ppm) and NOx (3.6x10-3 to 1.2 

ppm) emissions are of substantially lower magnitude compared to primary PM2.5 and NH3 (Figure 

4.11). Estimates for these precursors show a lower spatial variability that is less affected by 

population centers (Figure 4.10), as exposure occurs further away from the source location (higher 

travel distances as demonstrated later in Figure 4.14a). The lowest spatial variability is observed 

for SO2 emissions for which the majority of iFs fall within one order of magnitude for most states, 

with median state-specific estimates ranging between 0.05 ppm (Montana) and 1.2 ppm (New 

Jersey). NOx emissions result in the lowest exposures, with state-specific median estimates ranging 

from 0.03 ppm (Maine) up to 3.9 ppm (California). Interestingly, the ranking between states for 

NOx and SO2 differs substantially from PM2.5, which is linked to each precursor’s dependency on 

population clusters. The correlation between the fraction of population in urban areas in a state 

(defined as areas with >386 people/km2) and median state iF is 0.84 for PM2.5, 0.80 for NH3, and 

0.54 for NOx and SO2. 
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Figure 4.10. PM2.5 Intake fraction estimates for ground-level emissions of primary PM2.5, NH3, 
SO2, and NOx in parts per million (ppm, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2.5,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄ ). Each point estimate 
represents the cumulative intake per marginal precursor emission released at the point. 
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4.3.1.2. Weighted-average and sector-specific iFs 

Using annual emission estimates from 2014, we estimate emission-weighted sector-

specific iF estimates by state and nationally (Figure 4.11 and Appendix 3, Table A3.22). The 

national emission-weighted average (all sectors) is 0.8 ppm for primary PM2.5, 0.4 ppm for NH3, 

0.3 ppm for SO2, and 0.1 ppm for NOx (Appendix 3, Table A3.23). The PM2.5 estimate is relatively 

low due to the inclusion of fire and dust emissions that represent a substantial part of the overall 

national emissions (fire 33%, dust 16%) and primarily occur in areas with low population density.   

For all four pollutants, iFs from four sectors (agriculture, fuel combustion, industrial 

processes, and mobile) follow a similar spatial variability distribution as the central tendency of 

estimates in each state. Agriculture-specific estimates are obtained only for primary PM2.5 and NH3 

emissions, and estimates for these precursors show sector dependency. For PM2.5 emissions, 

agriculture iFs are substantially lower than estimates for other sectors, representing emissions at 

rural locations. We observe a factor ~5 difference between agriculture iFs (weighted average of 

0.4 ppm, range: 0.07-1.5 ppm) and the mobile-sector iFs (weighted average of 1.8 ppm, range: 

0.08-6.1 ppm), the sector with typically the highest estimate in most states. This difference can be 

negligible (West Virginia) or as high as a factor of 13 (Nevada) depending on the state. For states 

with substantial fire emissions such as California (19%), Oregon (9%), and Washington (8%), the 

all-sectors weighted average of PM2.5 is substantially lower than the industry and mobile sources 

by a factor of 3. 

For NH3 emissions, agriculture- and all-sector estimates are similar - ranging between 0.07-

2.1 ppm and 0.07-2.3 ppm, respectively - since agriculture emissions make up the majority of total 

emissions and produce the lowest sector-specific iFs. Compared to agriculture, mobile (weighted-

average 1.4 ppm, range: 0.08-4.3 ppm), fuel combustion (weighted average 1.3 ppm, range: 0.08-

4.1), and industrial (weighted-average 1.0 ppm, range: 0.09-9.3 ppm) are substantially higher in 

most states. There is little variability between sectors for SO2 and NOx with estimates around 0.3 

ppm and 0.1 ppm, respectively. 
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Figure 4.11. Distribution of cumulative PM2.5 intake fraction (iF) in parts per million (ppm) from 
ground level primary PM2.5, NH3, SO2, and NOx emission in 43,304 emission locations in the 
contiguous U.S. Boxes represent the interquartile range (IQR), vertical lines represent the medians, 
whiskers extend to 1.5 times the IQR, and data points represent outliers. Markers represent the 
sector-specific emission-weighted iF estimates using annual emission estimates from NEI 2014 
from agriculture, fuel combustion, industrial processes, mobile, and all-sectors. States are ranked 
by decreasing median for primary PM2.5 emissions. Data are available in Appendix 3, Table A3.28. 
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4.3.2. Characterization factors 

4.3.2.1. CFs spatial variability 

Figure 4.12 maps the spatial variability of the location-specific characterization factors 

(CFs) for PM2.5 from ground level emissions of primary PM2.5, NH3, SO2, and NOx in the greater 

North America region using a ‘marginal’ and an ‘average’ exposure-response effect factor (EF). 

The magnitude of CFs is strongly correlated with the magnitude of iFs with higher CFs estimates 

for emissions released in urban areas (Appendix 3, Table A3.23), highlighting the influence of 

population. This correlation is more prominent for primary PM2.5 and NH3. Overall, CFs calculated 

using the average slope (slope between background PM2.5 ambient concentration at the location of 

emission and theoretical minimum risk level) are about twice as large as the CFs calculated based 

on the marginal slope at the background PM2.5 ambient concentration. This can be explained by 

the EF estimates (Appendix 3, Figure A3.31). The population-weighted average EF for the spatial 

domain of our model (North America) is 144 DALYs/kgPM2.5 inhaled (27-941 DALYs/kgPM2.5 inhaled) 

for the marginal and 288 DALYs/kgPM2.5 inhaled (59-941 DALYs/kgPM2.5 inhaled) for the average slope, 

with the concave shape of the non-linear dose-response leading to higher EFs in regions of low 

PM2.5 concentrations and lower EFs in regions of high PM2.5 exposure.  

Figure 4.13 summarizes the CFs distribution by state and nationally and illustrates the 

comparison with the respective distributions of emission-weighted sector-specific estimates. The 

spatial variability of CFs from both approaches is about three orders of magnitude for primary 

PM2.5, NH3, and NOx and two orders of magnitude for SO2. The variability of CFmarginal in the U.S. 

is 3.5-4,960 μDALYs/kgemitted for primary PM2.5, 2.9-3,140 μDALYs/kgemitted for NH3, 2.2-205 

μDALYs/kgemitted for SO2, and 0.3-1,252 μDALYs/kgemitted for NOx. Background ambient PM2.5 

concentrations that influence the value of EFs inherently influence CFs but the correlation is 

moderate, more evident in marginal than in average CFs. For CFsaverage the influence of population 

on iFs is partly compensated by higher EFaverage estimates associated with lower background PM2.5 

ambient concentrations for which the effect is regional rather than local.  

For primary and NH3 emissions, there is substantial variability of the central tendency of 

state-specific CFs, primarily reflecting differences in population density. The median state-specific 

CFmarginal spans from 14.7 (North Dakota) to 911 (Arizona) μDALYs/kgemitted for primary PM2.5 

and 13.6 (North Dakota) to 564 (New Jersey) μDALYs/kgemitted for NH3 (Appendix 3, Table 

A3.29). In some cases, the effect of high iFs is further enhanced by higher EFs associated with 
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lower background PM2.5 ambient concentrations (e.g., CFs from primary PM2.5 in Arizona which 

ranks among the highest CFs). Within state variability of CFs ranges from about a factor 10 in 

states with lower CFs such as Wyoming and South Dakota, up to more than two orders of 

magnitude in states with diverse population density throughout the state, such as New York. These 

trends are similar but twice higher for CFaverage estimates. 

On the contrary, the two exposure-response slopes produce different state-specific 

estimates for SO2 and NOx. For SO2, the state-specific median CFs range from 8.5 (North Dakota) 

to 90.3 (Georgia) μDALYs/kgemitted for the marginal slope whereas for the average slope CFs vary 

between 15.6 (Montana) and 197.5 (New Jersey). NOx emissions result in about half the marginal 

burden of SO2 but follow similar trends. The within state variability for both SO2 and NOx 

emissions is relatively narrow, except for densely populated states on the northeast coast.  

4.3.2.2. Weighted average and sector-specific CFs 

The emission-weighted average (all-sector) for an emission in the contiguous of U.S. for 

the marginal (average) CF is 103 (209) μDALYs/kgemitted for primary PM2.5, 48.4 (99.1) 

μDALYs/kgemitted for NH3, 36.3 (75.2) μDALYs/kgemitted for SO2, and 18.5 (38.0) μDALYs/kgemitted 

for NOx. Sector-specific estimates are available in Appendix 3, Table A3.24. The emission-

weighted sector-specific CF estimates by state (Figure 4.13, also see Appendix 3, Tables A3.29-

A3.30) follow similar trends with the central tendencies of each precursor for both marginal and 

average estimates. While SO2 and NOx show negligible differences between sectors in most states, 

for PM2.5 and NH3 agriculture CFs are typically lower by a factor of 2 compared to the sector with 

the highest CFs, for both marginal and average slopes.  
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Figure 4.12. Characterization factors (CF) for PM2.5 from ground-level emissions of primary PM2.5, NH3, SO2, and NOx in 
𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  for two types of exposure-response slope approaches: ‘marginal’ and ‘average’. Each point estimate 
represents the cumulative health burden per marginal precursor emission released at the point. 
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Figure 4.13. Distribution of 
cumulative PM2.5 characterization 
factors (CF) in μDALYs/kgemitted from 
ground level  primary PM2.5, NH3, SO2, 
and NOx emission in 43,304 emission 
locations in the contiguous U.S based 
on (A) a marginal slope of a non-linear 
exposure-response function, and (B) an 
average slope of a non-linear exposure-
response function. Boxes represent the 
interquartile range (IQR), vertical lines 
represent the medians, whiskers extend 
to 1.5 times the IQR, and data points 
represent outliers. Markers represent 
the sector-specific emission weighted 
iF estimates using annual emission 
estimates from NEI 2014 from 
agriculture, fuel combustion, industrial 
processes, mobile, and all-sectors. 
States are ranked by decreasing median 
for primary PM2.5 emissions. Data are 
summarized in Appendix 3, Tables 
A3.29-A3.30. 
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4.3.3. Spatial extent of exposure and burden 

The spatial extent of exposure and burden is quantified by the intake travel distance (ITDx) 

and burden travel distance (BTDx), respectively. We investigate the radial distance from the source 

required to reach 25%, 50%, and 95% of the cumulative exposure and burden for all precursors.  

Figure 4.14 summarizes the distribution of ITD estimates for rural and urban sources separately, 

using the rural and urban classification from the U.S. Census 2010 (U.S. Census Bureau 2015) 

(urban areas must have a population density of at least 386 people per km2).  For emissions released 

in areas with high population density, the majority of exposure and consequently burden is in short 

distance from the source, often within a few km except for SO2 emissions. In particular, 50% of 

the cumulative exposure and burden from urban emissions is achieved within a median of 5 km 

from the source for primary PM2.5 and NH3, whereas for NOx (~10 km) and SO2 (~20 km) the 

travel distance is longer. The longer travel distance of SO2 is primarily linked with the time 

required to covert the gas into sulfates (secondary PM2.5) that allows the exposure (and burden) to 

affect populations living downwind from the emission origin. Meeting 50% of exposure and 

burden from emissions in rural areas requires substantially longer travel distances, with median 

ranges between about 10 km for primary PM2.5 and NH3 and 180 km for SO2. Our results support 

that secondary PM2.5 have a longer spatial extent than primary PM2.5 and have the ability to affect 

populations as far as 3,000 km downwind from the source, signifying that secondary PM2.5 can 

induce health impacts at continental levels. The spatial variability of travel distances are mapped 

in Figures A3.32 and A4.33, respectively, in Appendix 3, confirming the short travel distances for 

highly urbanized areas. BTDs follow similar trends. 

The emission-weighted average of ITDx and BTDx by sectors for the contiguous of the 

U.S. are summarized in Tables A3.22 and A3.24 in Appendix 3. Overall, the travel distance for 

burden is slightly shorter than the travel distance for exposure, with very similar marginal and 

average BTDs. However, the difference between ITDs and BTDs increases at higher fractions of 

cumulative exposure and burden. The spatial extent to meet 50% of all-sector emissions is ~150 

km for primary PM2.5, against ~300 km for secondary PM2.5. The spatial extent of agriculture 

emissions is significantly larger compared to the other sectors (rural emissions), with half of the 

effect occurring within 300 km for primary PM2.5 and 400 km for NH3. In all sectors, NOx has the 

longest emission-weighted spatial extent with the distance to meet 95% of the cumulative exposure 

and burden estimated at approximately 1,500 km from the sources. 
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Figure 4.14. 25%, 50%, and 95% intake (ITD) for urban and rural ground level emissions of primary PM2.5, NH3, SO2, and NOx in the 
contiguous U.S. ITDx represents the radial distance from the source to meet x% of the cumulative iF. Boxes represent the interquartile 
range (IQR), vertical lines represent the medians, whiskers extend to 1.5 times the IQR, and data points represent outliers. The data of 
this figure is summarized in Tables A3.25 (Rural) and A3.26 (Urban) in Appendix 3. 
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4.4. Discussion 

Using source-receptor matrices based on a reduced-form CTM, we were able to investigate 

the magnitude of marginal exposure (intake factions) associated with PM2.5 from ground level 

emissions of primary PM2.5, NH3, SO2, and NOx in more than 43,000 locations of the contiguous 

U.S., including transboundary impacts that occur beyond the U.S. border. For each source location, 

we integrated location-specific iFs with marginal and average EF estimates based on a non-linear 

exposure-response function to derive characterization factors. The high resolution in urban 

locations of the underlying model, InMAP, and its large spatial domain covering the greater North 

America region allowed us to explore the spatial distribution of the impacts associated with these 

emissions. In addition, were able to track the long-range transport of air pollution, and calculate 

intake and burden travel distance in order to characterize the spatial extent of emissions. Our 

analysis resulted in iFs, CFs, ITDs, and BTDs with large heterogeneity, with the values across 

source locations having three to four orders of magnitude difference that was primarily associated 

with the population density near the source. This highlights the need for high-resolution spatially 

explicit estimates when evaluating PM2.5-related human health impacts in LCA. However, since 

the specific source location is often unknown in LCA, U.S. state-specific averages or emission-

weighted sector-specific estimates offer interesting alternatives as long as the uncertainty related 

to the spatial variability is carried forward.  

We find that across all sources in the U.S., there is considerable spatial variability between 

iF estimates that is precursor-specific ranging from 0.03-58.4 ppm for primary PM2.5, 0.03-36.9 

ppm for NH3, 0.01-2.7 for SO2, and 0.004-1.2 ppm for NOx. Table 4.2 compares our archetype-

specific and national estimates for the U.S.  with those from the literature. Our archetype estimates 

fall in the range of other studies and show comparable trends for most substance-archetype 

combinations. However, the magnitude of estimates between archetypes and pollutants can show 

differences that are primarily linked with underlying assumptions and air pollution model used in 

each study. For urban areas, our estimates fall within a factor 2 from previous estimates for all 

precursors expect for the PM2.5 estimate from Humbert et al. (2011), which is a factor 7 higher 

than ours, and NOx for which our estimate is  26 times lower than Lamancusa et al. (2017) and 5-

fold lower than Greco et al. (2007). For rural emissions, our estimates are consistently lower than 

others; our median estimates of PM2.5 (0.6 ppm) and NOx (0.1 ppm) are five times lower than 

Humbert et al. (2011) and Lamancusa et al. (2017), respectively. In contrast, for the remote 
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archetype, we report estimates that are substantially higher (between a factor 3 for SO2 and 9 for 

NOx) compared to Humbert et al. (2011) and similar to Lamancusa et al. (2017) for all precursors 

but NOx for which we observe a 6-fold difference. The difference in the iF definition could explain 

the higher estimates by Lamancusa et al. (2017); here we only consider the particulate sulfates and 

nitrates, respectively, while in Lamancusa et al. (2017) iF estimates consider not only sulfates and 

nitrates PM2.5 but also the intake of the precursor themselves and other degradation products. In 

addition, we model annual iFs whereas in their study iFs are calculated by season which better 

captures the influence of temperature and relative humidity in the formation mechanism of nitrates 

(Dassios and Pandis 1999; Fountoukis and Nenes 2007). Our national emission-weighted estimates 

were also comparable with those reported in other studies. In particular, emission-weighted 

national estimates from van Zelm et al. (2016) and Greco et al. (2007) are similar to ours for all 

precursors, except for NOx for which we estimate iF values 2-3 times higher. Our population-

weighted national estimates fall within the range of estimates from other studies, but are 

substantially higher than the emission-weighted estimates. 

As expected, we found that the magnitude of exposure was directly related to the proximity 

of densely populated areas for PM2.5 and NH3. NOx and SO2 are the least influenced by populations 

since it takes longer to partition from gas to solid phase and therefore exposure affects population 

living downwind rather than close to a source. This was supported by the ITD estimates that clearly 

illustrate a considerable difference in the spatial extent of emissions in urban and rural areas and a 

longer travel distance for secondary PM2.5. We estimate that for urban ground level emissions, the 

majority of exposure occurs within a radial distance of 20 km from the source for all precursors, 

which is comparable with previous estimates,  (Lamancusa et al. 2017) while for rural emissions 

the spatial extent is an order of magnitude higher. However, this trend is not observed for SO2 that 

shows minor differences in the spatial extent between the two source archetypes. Furthermore, the 

spatial extent of SO2 is considerably longer compared to other precursors, especially for urban 

emissions. While typically the majority of exposure occurs close to the source, our results also 

indicate that the exposure extent can be continental with exposure reaching populations livings as 

far as 2,000-3,000 km away from the source for some sources, with SO2 having on average the 

longest extend. This finding was also shown in the work by Greco et al. (2007).  
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Table 4.2. Comparison of intake fraction in parts per million (ppm) by archetype from selected 
studies to the present study 

Study  
Archetype a National 

Urban Rural Remote Population-
weighted 

Emission- 
weighted 

Mobile 
emission-
weighted 

Humbert et 
al. (2011) 

PM2.5 
b 39.53 3.41 0.09 22.46   

NH3 1.53 1.53 0.09 1.53   
SO2 0.89 0.71 0.04 0.80   
NOX 0.18 0.15 0.01 0.16   

Lamancusa et 
al. (2017) c 

PM2.5 6.69 0.86 0.65 2.95   
NH3 3.30 0.21 0.17 1.04   
SO2 2.57 0.52 0.35 1.38   
NOX 7.95 0.61 0.50 2.85   

Van Zelm et 
al. (2016) d 

PM2.5     1.42  
NH3     0.47  
SO2     0.16  
NOX     0.04  

Greco et al. 
(2007) e 

PM2.5 5.72 1.05   0.70 1.46 
NH3 0.99 0.30   0.24 0.39 
SO2 0.06 0.13   0.04 0.07 

Present study 
f 

PM2.5 5.61 0.61 0.57 4.70 0.80 1.81 
NH3 3.04 0.44 0.35 2.75 0.37 1.43 
SO2 1.24 0.24 0.15 0.44 0.27 0.32 
NOX 0.31 0.12 0.08 0.24 0.13 0.14 

  

                                                      
a Archetypes defined according to Humbert et al. (2011) classification: Urban (>386 people/km2), Rural (1<x<100 people/km2), 
Remote (<1 people/km2) 
b Reflect ground level emissions 
c Represent the median of a total of 25 source locations and archetype classification considered in the study 
d Represent national estimates 
e Represent the median of county-level estimates for mobile sources and archetype classification considered in the study 
f Archetype-specific estimates reflect median estimates 
* All estimates have been adjusted for a breathing rate of 11.68 m3/d for comparability with the present study 
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To estimate CFs, we followed recent recommendations for LCIA and combined iFs with 

EFs based on the non-linear integrated exposure-response function by Cohen et al. (2017) and 

compatible health burden estimates from the GBD to estimate the marginal change in health 

burden associated with PM2.5 (Jolliet et al. 2018). This non-linear exposure-response depends on 

the background PM2.5 ambient levels and has been used widely in estimating the health burden 

associated with ambient PM2.5 exposure (Lelieveld et al. 2015; Forouzanfar et al. 2015; Gakidou 

et al. 2017). Our location-specific CF estimates illustrate considerable spatial variability on the 

magnitude of CFs between U.S. sources, with average slope-based estimates being about two times 

higher than marginal slope-based estimates due to differences of the corresponding EFs. In 

particular, the marginal CFs ranged between 3.5-4,960 μDALYs/kgemitted for primary PM2.5, 2.9-

3,140 μDALYs/kgemitted for NH3, 2.2-205 μDALYs/kgemitted for SO2, and 0.3-125 μDALYs/kgemitted 

for NOx. Estimates follow a similar spatial distribution and spatial extent with iFs.  

This is the first study to reporting location-specific CFs for the U.S. Hence, we can only 

compare our emission-weighted national estimates with estimates reported in the literature (Figure 

4.15). Unlike our study which uses spatially differentiated non-linear exposure-response factors, 

previous studies estimated CFs using on a linear exposure-response from a single study (Krewski 

et al. 2009). Since previous studies only report population-weighted estimates (using population 

as a proxy for emissions), we report both population-weighted and all-sector emission-weighted 

national estimates. Our population-weighted CFmarginal estimates (PM2.5: 469 μDALYs/kgemitted; 

NH3: 276 μDALYs/kgemitted; SO2: 48.6 μDALYs/kgemitted; and NOx: 28.6 μDALYs/kgemitted) are 

comparable with the estimates reported by van Zelm et al. (2016), although the study only used 

severity factors that reflected only disease burden from premature mortality (years of life lost) 

instead of disease burden from morbidity and premature mortality (DALYs). Compared to 

Gronlund et al. (2015), marginal CFs are also comparable, except from primary PM2.5 for which 

the authors report an estimate almost four times higher than ours that can be explained by the 

higher underlying iF used from Humbert et al. (2011). We also observe up to a factor four 

differences in secondary PM2.5 estimates compared to both studies. These differences cannot be 

fully explained by the underlying differences of iFs and are associated with differences in EFs. 

Although EFs between the three studies are similar on a national level (Fantke et al. 2018), the use 

of location-specific estimates based on a non-linear exposure-response at different background 

PM2.5 levels explains the minor precursor-specific differences observed. Our CFaverage estimates 
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are a factor of 1.2 to 8 higher than estimates from both studies, except for the PM2.5 estimate by 

Gronlund et al. (2015). 

We also estimate emission-weighted CF estimates that are substantially lower than 

population-weighted estimates reported in previous studies regardless of approach 

(marginal/average). This finding suggests that using population as a proxy for emissions might not 

be appropriate, particularly in countries were dust and fire emissions can be substantial. This also 

stresses the importance of using sector-specific estimates corresponding to the considered 

processes rather than global averages in LCA. Therefore, it is recommended to use emission-

weighted estimates when available. In Table A3.27, Appendix 3, we also summarize the 

comparison of archetype-specific CFs between Gronlund et al. (2015) and the present study. 

 

 

 

Figure 4.15. Comparison of national characterization factor in μDALYs/kgemitted for the U.S. from 
selected studies to the present study. Estimates have been adjusted for a breathing rate of 11.68 
m3/d for comparability with the present study. 
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Our analysis and results depend on a number of assumptions and limitations. For exposure 

estimates were calculated using the ISRM and the underlying air pollution model, InMAP. The 

model is a reduced-complexity CTM with high spatial resolution in urban areas and a great spatial 

domain that allows tracking long-range air pollution. As a reduced-form CTM, InMAP relies on 

chemistry and transportation simplifications. Tessum et al. (2017) showed that InMAP under-

predicts primary PM2.5 at fine resolution grids, which means that the corresponding exposure 

estimates in urban settings in our analysis might be underestimated. More recently, Paolella et al. 

(2018) evaluated the performance of InMAP at different spatial resolutions and showed good 

predictability for SO2 at fine resolution (Paolella et al. 2018). The model estimates marginal annual 

changes in PM2.5 concentrations from precursor emissions. This might be a limitation for our study 

since temporal resolution is important for secondary PM2.5. In addition to the limitations associated 

with exposure estimates, there are additional limitations associated with burden. First, we assume 

that particles from different precursors have equal toxicity. Second, the non-linear exposure-

response curve is associated with high uncertainty that currently does not account for model 

uncertainty. Third, estimates are dependent on the shape of the exposure-response curve which 

relies on evidence synthesis and at low concentrations is driven by the PM2.5 minimum risk level 

that is itself uncertain. Furthermore, since the curve is non-linear, there is additional uncertainty 

associated with the slope of the curve at the level of exposure in locations of interest. Estimates 

based on a marginal slope are the least robust as the slope is very steep for low exposure levels (in 

some cases reaching infinity) and relatively low for high exposure levels. Temporal resolution 

limitations might can also affect the burden estimates of this work since local background 

concentrations used to determine the working point on the exposure-response curve might change 

with time, especially for forest fire emissions. Finally, we limited our analysis to ground level 

emissions, primarily since we were interested in developing iFs and CFs for NH3 that is primarily 

release at ground level through agricultural processes. However, our approach could be extended 

to other the other emissions heights available in InMAP, combining them with the stack height 

information on point sources available in the NEI since 2011.  
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4.5. Conclusion 

In this study, we propose comprehensive and consistent intake fraction and characterization 

factor estimates for primary and secondary inorganic PM2.5 for the U.S. based on spatially explicit 

estimates of ground-level precursor emissions. Using a reduced-form air pollution model with high 

resolution in urban settings, we are able to improve from previous studies and characterize 

exposure more accurately for a large number of source locations as well as sector-specific 

archetypes. Since the spatial domain of the model covers the greater North America region, our 

estimates capture the health damage that occurs within the U.S. and in adjoined countries. 

Following recommendations to characterize the health burden associated with PM2.5 exposure in 

LCIA using a non-linear exposure-response function and burden estimates from the GBD, we 

implement an integrated approach and estimate location-specific CFs taking into considerations 

the background ambient PM2.5 concentrations and background state-specific mortality at the 

receptor location.  

Our analysis highlights the importance of spatial estimates in LCA, as both iF and CF 

estimates may vary by three orders of magnitude between sources that cover the contiguous U.S. 

The magnitude of exposure and consequently health damage is associated with the proximity of 

emission source to population centers, with urban emissions resulting in considerably higher 

estimates. For secondary PM2.5 population density is not as an important determinant of exposure 

and burden as in primary PM2.5, and in particular for NOx and SO2 emissions. This finding was 

further supported by the characterization of the spatial extent of emissions, which provides an 

additional layer of information in regards to the exposure and health burden associated with 

emissions. We find that the majority the effect of emissions can span from ~20 km (urban PM2.5 

emissions) up to 3,000 km (rural SO2 emissions). In general, NOx and SO2 share the longest spatial 

extent. 

We aggregate the results of our analysis and report emission-weighted state-specific and 

national estimates for the U.S. In addition, we report for the first time iF and CF estimates for four 

distinct sectors (agriculture, fuel combustion, industrial processes, and mobile). These estimates 

can be used in LCA studies to quantify the health burden associated with primary PM2.5, NH3, 

SO2, and NOx emissions.  
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CHAPTER 5 

Bridging the gap between environmental and nutritional sciences towards more sustainable 

foods: A case study on pizza 

Abstract 

Food systems are complex and pose several challenges for assessing food sustainability 

and their impacts and benefits on human health. Three major challenges in assessing the effects of 

food on human health are the lack of nutritional health impact consideration in methods such as 

Life Cycle Assessment, inconsistencies in the environmental assessment of mixed dishes, the lack 

of data comparing environmental and nutritional health impacts of foods. Here we address these 

issues by developing an approach to evaluate and compare nutritional and harmonized 

environmental impacts on health from pizzas in the U.S. diet. First, we developed the DALY 

Nutritional Index (DANI), an epidemiology-based nutritional index covering 16 dietary risks for 

major food groups and nutrients, serving as a new life cycle nutritional impact category in LCA. 

DANI was used to quantify the health burden associated with different pizza types in disability 

adjusted life years (DALYs). Second, we determined the Standard Reference (SR) as a 

decomposition methodology to harmonize the environmental impacts of mixed dishes after 

evaluating the performance of four difference approaches. Using SR, we quantified the global 

warming and particulate matter impacts for different pizza types using Impact World+ and U.S. 

spatially- and sector-explicit characterizations factors for PM2.5, respectively. Third, we compared 

human health damages from nutritional and environmental impacts using the Combined 

Nutritional and Environmental LCA framework for all pizzas in the National Health and Nutrition 

Examination Survey. We found that nutritional impacts dominate the health performance of pizzas, 

with the most nutritional healthy options typically being the environmentally friendliest. Our 

analysis showed great variability in health damages for all impact categories, with nutritional 

impacts dominating with estimates one to two orders of magnitude higher than environmental 

estimates. Health impacts ranged between -1.6 and 28.5 μDALYs/serving pizza for nutrition, 0.20-

0.88 for global warming, and 0.04-0.24 for particulate matter. We found a significant positive 
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correlation between environmental and nutritional health impacts for pizzas, with the highest 

damages associated with red meat pizzas and the lowest with vegetable pizzas. This case study 

supports that nutrition can dominate health damages and should be considered as in impact 

category in LCA. This approach can be used as a benchmark for a comprehensive assessment of 

all food items and mixed dishes in LCA and help to inform sustainable dietary food choices and 

substitutions. 
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5.1. Introduction 

Food systems are undergoing drastic transformations. Population growth and economic 

growth have increased food demand that poses risks to food security  (FAO 2017). At the same 

time, convenience, price, and increased accessibility to processed and manufactured foods have 

contributed to radical increases of empty calories and less healthy food (Popkin et al. 2012; 

Stuckler et al. 2012; Rao et al. 2013; Gakidou et al. 2017). Furthermore, increased environmental 

emissions result in environmental changes and especially climate change that threaten food 

systems (FAO 2017), while at the same time compromising the nutrient profiles of foods (Myers 

et al. 2016).  All these challenges threaten the sustainability of food systems contributing to an 

urgent need to understand and quantify the tradeoffs between environmental and nutritional 

impacts of food systems (Tilman and Clark 2014).  

Life cycle assessment (LCA) is a methodology that enables the evaluation of the 

environmental impacts associated with a product, process, or service throughout its entire life 

cycle, from cradle to grave, in reference to a function (International Standard Organization 2006). 

For close to 40 years, LCA has been used to study food systems and evaluate the environmental 

performance of foods and diets (Nemecek et al. 2016), within a food sustainability assessment 

context. Granting significant progress in food sustainability assessment and food LCA (Roy et al. 

2009), several challenges still remain to be addressed in relation to the evaluation of foods and 

diets (Castellani et al. 2017). A fundamental limitation, particularly in food LCA, is that nutritional 

health effects from the “use stage” of food systems are often neglected or unsatisfactorily 

addressed when evaluating their environmental performance (Stylianou et al. 2016a). This is of 

particular importance for human health damages, as dietary risks are the leading cause of 

premature death and disease morbidity, contributing to more than 10 million disability adjusted 

life years (DALYs) per year globally (Institute for Health Metrics and Evaluation (IHME) 2018). 

The need to address this limitation is evident in a recent movement in LCA that promotes the 

consideration of benefits within human health impact assessments in LCA (Arvidsson et al. 2016; 

Schaubroeck and Rugani 2017), emphasizing the need for a new impact category to assess the 

nutritional life cycle impact of food items on human health. 

An additional challenge for both food sustainability assessments and LCA is the limited 

availability of necessary environmental data to evaluate mixed dishes. Mixed dishes are defined 

as a mixture of components with varying proportions (multi-ingredient). Mixed dishes currently 
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comprise a large fraction of modern diets. Environmental information, such as life cycle 

inventories (LCIs) in LCA that quantify the inputs and outputs of a given product system 

throughout its life cycle (International Standard Organization 2006) are primarily available for 

main individual agricultural commodities. This has led practitioners to not only understudy mixed 

dishes but possibly underestimate their impacts in the limited number of studies available in the 

literature due to a variety of simplifications (Davis and Sonesson 2008; Pernollet et al. 2017). In 

addition, mixed dishes evaluation studies rely on different decomposition methods causing 

incomparable and possibly inconsistent results that highlight the need to harmonize the 

environmental evaluation of mixed dishes. 
Using a case study on pizza in the U.S. diet, this work aims to address these limitations and 

evaluate  the environmental impacts of foods with multiple ingredients by: 1) Establishing a new 

nutritional life cycle impact category, including both inventory flows per functional unit and health 

burden-based nutritional characterization factors (CFNutrition). 2) Quantifying and comparing the 

nutritional health burden associated with main types of pizzas in the U.S. diet. 3) Evaluating the 

potential use of four decomposition methods in LCA to determine a systematic approach to 

decompose mixed dishes into individual components for which environmental life cycle 

inventories are available. 4) Assessing the cradle-to-gate environmental impacts from global 

warming and particulate matter associated with main types of pizzas in the U.S. diet. 5) Analyzing 

the magnitude and potential correlations of nutritional and environmental health damages between 

all pizzas in the U.S diet. 

To achieve these goals, we first use the Healthy Nutritional Index (HENI) developed in 

Chapter 3 to determine the DALY Nutritional Index (DANI) as a new nutritional impact category 

in LCA. DANI evaluates the nutritional health benefits and damages of foods in a marginal context 

in DALYs per functional unit using a health-based approach based on 16 dietary risks (9 main food 

groups and 7 nutrients). Then we explore the potential of four publically available databases as 

methods to deconstruct mixed dishes. In particular, we evaluate their environmental performance 

in reconstructing the daily consumption of pizzas in the U.S. diet and their applicability within an 

LCA framework. Based on the results of these analyses, we use the most appropriate method to 

evaluate first the nutritional and then the environmental impacts of different pizza types in the U.S. 

diet as reported in the National Health and Nutrition Examination Survey (NHANES) database. 

Finally, we employ the Combined Nutritional and Environmental LCA framework (CONE-LCA) 
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from Chapter 2 to compare environmental human health damages from global warming and 

particulate matter with nutritional human health effects associated with pizzas in a common metric, 

DALYs. 

5.2. Material and methods  

5.2.1. Pizza in the U.S. diet 

We determined the U.S. consumption of various pizzas types using the What We Eat in 

America/National Health and Nutrition Examination Survey (WWEIA/NHANES) 2007-2014 

database (National Center for Health Statistics 2018). This is a nationally representative, cross-

sectional survey administered every two years to U.S. citizens. For determining the population 

average of the daily pizza consumption, we combined data for the various survey cycles (2005-

2008) for participants older than 19 years old, excluding pregnant women.  

To identify all the pizza types that could possibly be consumed in the U.S. diet, we searched 

the database for foodcodes with the description that included the word “pizza,” and excluded 

pizzas with multiple entries in the database. In addition, we excluded foodcodes described as 

“pizza toppings” as they represented individual ingredients and we considered that a comparison 

with these items would be unfair. We also eliminated entries identified as “calzones” and “rolls.” 

The final 78 identified pizzas were classified into six main categories (“Red Meat pizza”, 

“Vegetable pizza”, “Cheese pizza”, “Chicken pizza”, “Seafood pizzas”, and “Other pizza”) based 

on their main components (Appendix 4, Table A4.31). 

5.2.2. Life cycle assessment framework 

We implemented the Combined Nutritional and Environmental Life Cycle Assessment 

(CONE-LCA) framework to compares the environmental and nutritional effects of foods on human 

health (Stylianou et al. 2016a). The functional unit (FU) for this work is defined as the reference 

amounts customarily consumed (RACC) serving sizes that have been established by the U.S. Food 

and Drug Administration (FDA) (U.S. Food and Drug Administration 2017). For all pizzas, RACC 

is defined at 140 g.  The system boundaries for the life cycle assessments were cradle to farm or 

processing facility gate and did not include impacts from packaging. 

5.2.3. Nutritional assessment 

We adapted the HENI developed in chapter 3 to the LCIA framework and produced the 
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DALY Nutritional Index (DANI) as a new nutritional impact category in LCA. DANI quantifies 

the marginal health burden from all-cause premature mortality and disease morbidity associated 

with food items for U.S. adult age 25+ years, expressed in disability adjusted life years (DALYs) 

per functional unit. DANI evaluates the nutritional performance of foods based on 15 dietary risks 

identified by the Global Burden of Disease (GBD) plus saturated fatty acids (Stylianou et al. 

2018a). The dietary risks include nine main food groups (milk, nuts and seeds, processed meat, 

red meat, sugar-sweetened beverages, vegetables, legumes, fruits, and whole grains) and six 

nutrients (calcium, fiber, seafood omega-3 fatty acids, sodium, trans fatty acids, and 

polyunsaturated fatty acids).   

The DANI for food i is calculated in DALYs/FU as the sum of products of the inventory 

flows of the 16 dietary risk components in the food, e.g.,  the risk factor components per functional 

unit (𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in kgrisk component/FU),  and the corresponding nutritional characterization 

factors, defined as dietary risk factors (𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in  DALY/kgrisk component): 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = ∑ 𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (Eq. 5.1) 

 

CFNutrition are based on epidemiological evidence from 6,195 risk-outcome-age group-

gender-burden stratum and U.S.-specific burden rates obtained from the GBD (Gakidou et al. 

2017; Institute for Health Metrics and Evaluations 2018). The methodology followed to develop 

these CFs is described in Stylianou et al. (2018a), and estimates are available in Appendix 4, Table 

A4.32. 

The nutritional inventory flows of the 16 dietary risk components are determined in a 

multistep approach through a combination of multiple publically available databases. First, foods 

are identified from the WWEIA/NHANES database. To determine inventory flows for food groups 

we adapt estimates reported in food group serving-eq/100 g food from the Food Patterns 

Equivalents Database (FPED) and obtain estimates of food group kg/FU (Bowman et al. 2013). 

Adaptations include both conversions from serving equivalents to masses and customization of 

food groups to align definitions between FPED and the GBD. This process is informed by the 

Standard Reference (SR) database that details the ingredients of foods by relative weight (SR28 

2016). The inventory flows of nutrients are estimated as the sum of products of ingredients in foods 

as identified by the SR and the nutritional profile of SR ingredients reported in the Food and 
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Nutrient Database for Dietary Studies (FNDDS) (USDA 2014). The inventory flow for trans fat, 

as it was incomplete in FNDDS for the majority of ingredients, was imputed at the food level using 

regression models. The transfat regression model and the full methodology to determine the 

inventory flows for this work is as described by Fulgoni et al. (2018).  

5.2.4. Environmental assessment 

5.2.4.1. Decomposition methods  

To evaluate the environmental impacts of foods with multiple ingredients, we first need to 

establish a consistent method to decompose (or deconstruct) mixed dishes in order to identify their 

composition and quantify the amounts of each individual food components (in kg) that can then 

be related to available LCI unit processes. This is a different and more detailed breakdown of foods 

into components compared to the nutritional assessment; for nutrition, the breakdown is related to 

the health effect associated with components (e.g., dietary risks) which is at a higher level, for 

example, the nutritional health benefits of a kg of strawberries is equal to that of a kg of apples. 

However, environmental impacts can differ substantially between ingredients (e.g., global 

warming impacts from one kg strawberries in the U.S. are three times higher than the impacts of 

one kg of apples produced in the U.S.). In addition, impacts are influenced by production systems 

(e.g., there is a 5- to 10-fold difference in the global warming impacts of strawberry produced in 

open fields compared to those produced in green houses). Hence, there is a need for a high-level 

disaggregation of mixed dishes to components from an environmental perspective in order to 

capture these differences. 

Recently, a few studies have evaluated diet-level environmental impacts and have used two 

different approaches to decompose diets. Heller et al. (2018) used the Food Commodity Intake 

Database (FCID) to estimate environmental impacts of dietary patterns reported in NHANES. 

Conrad et al. (2018) used the same database to investigate diet-level nutritional and environmental 

trade-offs associated with food losses. Finally, Tichenor Blackstone et al. (2018) used the Food 

Intakes Converted to Retail Commodities Database (FICRCD) to quantify environmental impacts 

associated with different dietary patterns recommended in U.S. dietary guidelines. However, these 

databases have never been used to evaluate environmental impacts associated with individual 

foods. Therefore, using the U.S. population average of daily pizza consumption reported in g/d by 

the WWEIA/NHANES 2005-2008 based on 57 pizzas reported as consumed, we evaluate the 

potential of these methods along with methods used in the nutritional assessment, namely FPED 
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and SR, as decomposition approaches. Descriptions of the four methods are available in Table 5.3.  

We based our evaluation on the following criteria: 

a) Ability to determine component quantity expressed in mass/FU 

b) Ability to reconstitute the total daily intake of pizza from NHANES 

c) Resolution that enables a disaggregation into components that identify the appropriate 

environmental dataset accurately (e.g., type of meat or dairy product) 

d) Applicability and frequency of updates that follow the NHANES cycles 

 

5.2.4.2. Environmental life cycle inventory  

All components identified by the four decomposition methods have been linked with 

environmental life cycle inventory (LCI) datasets. LCIs quantify the inputs and outputs of a given 

product system throughout its life cycle (International Standard Organization 2006). We use these 

datasets to quantify food-related life cycle environmental emissions (e.g., CO2, CH4, and PM2.5). 

We employed three databases to maximize the coverage of LCIs in our analysis. Listed in 

the order of priority, we obtained LCIs from the Ecoinvent v3.2 (Wernet et al. 2016), the World 

Food LCA Database v3.1 (Nemecek et al. 2015), and the ESU World food LCA database (ESU). 

If a direct match was not available, we used proxies either by production system similarities or by 

developing “average” component LCIs that represented the average of the food group that the 

component belongs to. Since we are investigating environmental impacts of foods in the U.S. diet, 

we assume that all ingredients used in pizzas are produced in the U.S., so we link them with US-

specific LCIs, when available. Otherwise, global LCIs are selected that represent the market-

weighted average of LCIs for the specific ingredient. 

Since retail levels are more consistent to be connected with life cycle inventories than 

consumption amounts (as they partially account for supply chain food losses), and the FICRCD 

method only allows for a decomposition at the retail level, we applied consumption-to-retail 

conversion factors reported in the database to all deconstruction methods for comparability.  

5.2.4.3. Environmental life cycle impact assessment 

We estimated environmental impacts using Impact World+ v1.4 (Bulle et al., 2018) at the 

midpoint and endpoint level. Midpoint impacts quantify changes in the natural environmental 

whereas endpoint impacts quantify damages on ecosystems, human health, and resource use. 

Human health damages from short-term global warming were calculated using the work by De 
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Schryver (2009). Human health damages from particulate matter were tabulated separately by 

multiplying inventory data for primary PM2.5, NH3, NOx, and SO2 emissions with spatially-explicit 

characterization factors (CFs) for the U.S. from Stylianou et al. (2018b). For primary PM2.5 and 

NH3 we used agriculture-specific national CFs and for NOx, and SO2 we used the emission-

weighted national CFs (Appendix 4, Table A4.34). CFs have been estimated using a marginal slope 

from the non-linear exposure-response function by Cohen et al. (2017). 

5.3. Results 

5.3.1. Nutritional assessment of pizzas 

5.3.1.1. Nutritional Decomposition by risk factors 

Table A4.32, in Appendix 4, provides a summary of the nutritional profiles per serving 

pizza (e.g., the 𝑑𝑑𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) for seven select pizza types in the U.S. diet with distinct 

composition. From the 16 dietary risks in our approach, only seven are present in all pizza types 

in varying amounts and additional four were identified within specific pizza types. The amounts 

of the seven dietary exposures varied by as much as a factor of 8 depending on the type of pizza: 

calcium (0.02-0.4 g/serving), transfat (0.3-0.7 g/serving), sodium (0.35-0.91 g/serving), saturated 

fats (1.2-10 g/serving), total fiber (2-3 g/serving), polyunsaturated fatty acids (1.9-3.9 g/serving), 

and vegetables (33-54 g/serving). For example, the composition (in g/serving) of a ‘pizza with 

extra meat’ consisted of vegetables (33.6), processed meat (14.4), saturated fats (10), red meat 

(3.5), polyunsaturated fats (3.9), fibers (total: 2.0), sodium (0.9), transfat (0.7), and calcium (0.3). 

In comparison, for the ‘pizza with extra vegetables’, the composition for beneficial dietary risks 

increased between 6% (calcium) and 60% (vegetables), except for polyunsaturated fats, while the 

amount of detrimental dietary risks reduced up to a factor 2 (transfat) in addition to no meat. 

However, meaningful comparisons of pizzas needs to account for the health effect of dietary risks, 

e.g., using DANI scores. 

5.3.1.2. Nutritional impact of pizzas 

Figure 5.16 presents the nutritional performance of the select pizza types with distinct 

composition, differentiating the contribution of each DANI dietary risk component. In all seven 

pizza types investigated here, we found contributions from both detrimental and beneficial dietary 

risk components (negative impact). However, in most pizzas health damages exceed benefits 

leading to net positive and therefore health-damaging DANI scores (Figure 5.16 – diamonds). 
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Interestingly, the damage score of sodium in most pizzas (except those without cheese) was nearly 

constant at around ~9 μDALY/serving pizza. A similar trend was observed for saturated fats. 

Polyunsaturated fatty acids (2.1 avoided μDALY/serving pizza), total fiber (1.8 avoided 

μDALY/serving pizza), and calcium (1.5 avoided μDALY/serving pizza) also showed relative 

uniform contributions to the health benefits of pizzas. 

The highest nutritional health damage was estimated for “pizza with extra meat” with a 

DANI score of 27.2 μDALY/serving pizza. The dietary exposures that contributed the most to 

damages were processed meat (56%), sodium (39%), and saturated fats (26%). Reducing the 

amount of processed meat improved the nutritional health performance of pizzas as lower net 

DANI scores indicate that the food is better for human health. Compared to the “pizza with extra 

meat”, meatless pizzas had lower DANI scores by at least a factor 4 (e.g. “pizza with extra cheese”) 

for which damages were associated with the detrimental health effects of sodium and saturated fats 

primarily from cheese, and only partly compensated by the health benefit from calcium. DANI 

scores further reduce as the quantity of vegetables and legumes increases with the beneficial health 

effect associated with these ingredients compensating for the detrimental impacts of cheese. The 

“pizza with beans and vegetables” produced an almost neutral score of 0.5 μDALY/serving pizza. 

A better score was estimated for cheeseless pizzas (0.04 avoided μDALY/serving pizza) with the 

detrimental effects of sodium halved and negligible damages associated with saturated fats 

compared to other pizza types. Finally, the presence of fruits on a pizza results in the best DANI 

score at 0.7 avoided μDALY/serving pizza (indicating health benefit) due to the substantial 

beneficial health effects of fruits.  
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Figure 5.16. Dietary risk contribution to DANI scores measured in μDALY/serving for select 
pizza types. The black diamond represents the DANI score. The dotted line represents the neutral 
health effect score (DANI=0). 

 

5.3.2. Environmental assessment of pizzas 

5.3.2.1. Decomposition approach evaluation  

a)  Environmental decomposition 

57 pizza items have been reported to be consumed in the WWEIA/NHANES 2005-2008. 

On average, the daily consumption of pizza in the U.S. diet of adults is estimated at 31.4 g/d that 

amounts to 4.2% of the total energy intake (Appendix 4, Table A4.35). There is a large discrepancy 

in the number of components identified by each decomposition method. With the FPED, the 57 

pizzas were decomposed into 14 food categories, with FICRCD into 20 commodities, with FCID 

into 61 components, and with SR into 47 ingredients. 

Figure 5.17 illustrates the repartition and total of intake and retail amounts (accounting for 

FICRCD loss factors for all methods) obtained by each decomposition method. An accurate 
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decomposition should obtain an intake equal to the total intake of 31.4 g/d reported by NHANES. 

The highest disaggregation is offered by the SR that is the food composition database in NHANES 

and directly reports quantities for each component in g. Therefore, SR perfectly matches NHANES 

(estimates intake 31.4 g/d) and can constitute a reference to compare the reconstruction of daily 

pizza intake from other approaches. The most recent version of SR have introduced multi-

ingredient components that can be challenging as LCIs are typically single-ingredient foods.  The 

way we addressed this limitation was by referencing multi-ingredients items in the SR with single 

ingredient items from previous versions of the database, a process that when implemented for all 

multi-ingredient components of SR can be meticulous and time-consuming. However, due to 

similarities of multi-ingredient items that could nearly be classified into several food groups, we 

can use proxies to address this limitation.  

The FPED method estimated a pizza intake of 41.0 g/day, overestimating it by 30%. This 

difference was attributable primarily to twice higher estimates of grains and, to a lesser extent, four 

times higher estimates of fats. As FPED repartitions foods in food equivalents, differences are 

possibly due to the approach we used to convert serving equivalents to masses (Appendix 4, Table 

A4.33), which is one of the requirements for a decomposition method. It should also be mentioned 

that unlike SR, FPED does not contain water as a decomposition component that explains the 

difference observed in ingredients categorized as ‘other.’  

FCID slightly underestimated intake (30.8 g/d); however, this approach produced a 

substantially different repartition compared to SR. Compared to the SR, FCID overestimated oils 

in pizzas by a factor of seven, dominated by the estimate of soybean oil, and grains by 35%. At the 

same time, this approach underestimated meats by 33% and water that falls under the ‘other’ 

category by a factor of 3.5. Although FCID reports water as a component, estimates represent 

indirect sources of water such as ingredient moisture. Interestingly, this approach offers a less than 

ideal decomposition of dairy products as it was intended to capture pesticide residue that is linked 

to fat content in ingredients. Hence, dairy products are decomposed into ‘Milk, fat’, ‘Milk, nonfat 

solids’, and ‘Milk, water’. This decomposition does not enable the identification of the dairy 

product used in a mixed dish, especially when multiple dairy products are used. 

Finally, FICRCD estimated the retail level of daily pizzas intake at 45.8 g/d and could not 

provide an intake estimate. This estimate was ~20% higher than the corresponding retail-level 

estimate of SR, derived using consumption-to-retail factors from FICRCD. In addition, this 
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approach yielded a considerably different repartition compared to SR. More specifically, FICRCD 

overestimated oils by a factor 4, sugars by a factor 2, dairy by 70%, vegetables by 40%, and grains 

by 20%. Similar to the other decomposition approaches, FICRCD does not characterize well the 

water in foods and in fact does not cover any beverages beyond fruits juices and milk. Although 

from an environmental perspective, water is not anticipated to have substantial contributions, when 

evaluating decomposition methods on a mass basis, lack of water that is typically used in larger 

amounts, might hide overestimated quantities of other ingredients. 

 

 

 

Figure 5.17. Reconstruction of daily pizza intake reported by WWEIA/NHANES 2005-2008 by 
deconstruction method in consumed (intake) and retail amounts. Retail estimates were obtained 
by applying conversions factors available in the FICRCD database and capture mass lost or gained 
during preparation, cooking, and other processing, as well as mass losses from non-edible parts of 
foods. Components have been aggregated to main food group categories as described in Tables 
A4.36-A9, in Appendix 4. 
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b) Environmental impacts of pizzas 

Figure 5.18 presents the midpoint global warming scores associated with the retail-level 

amounts of daily pizza consumption from each deconstruction method. The method produced 

varying estimates that span from 47.8 g CO2 eq/d for SR (which is our reference) up to 117.4 g 

CO2 eq/d for FICRCD, showing that the decomposition method really matters and can strongly 

influence results. According to the SR, dairy - in particular cheese - was responsible for nearly 

40% of greenhouse gas emissions (GHG), followed by meat with a 30% contribution. Adjusting 

for the retail amounts associated with each approach, we produced the first estimate of the carbon 

footprint of one kg of pizza. The highest estimate was derived with the FICRCD approach at 2.2 

kg CO2 eq/kgpizza that was almost twice higher than the lowest from SR at 1.2 kg CO2 eq/kgpizza. 

FPED generated a GHG estimate 50% higher than SR at 71.9 g CO2 eq/d (retail level) and 

substantially different relative and absolute contributions for some components. More specifically, 

this approach resulted in relative contributions of dairy to total impacts (36%) similar to those of 

SR. However, in absolute values dairy components produced 50% higher impacts in FPED than in 

SR. The method identified substantial impact contributions from grains (20%), vegetables (17%), 

and at lower degree meat (14%).  Compared to SR, the absolute contributions of these components 

differed by a factor of 2-3. The overestimation of fats with FPED from the decomposition was 

further enhanced in the environmental assessment with GHG associated with fats in FPED being 

seven times higher than in SR. Adding to the decomposition limitations discussed, FPED is also 

limited in its ability to link decomposed components to LCIs. The approach covers mainly food 

groups and has a low resolution that required aggregation of LCIs into ‘average components’ that 

might over- (e.g., vegetables) or under-estimate (e.g., meat) the impacts associated with certain 

components (Appendix 4, Table A4.40). 

Using FCID, the midpoint global warming of the average daily pizza at the retail level was 

80.4 g CO2 eq/d. Almost half of the impact (44%) was attributable to meat and in particular beef 

(32%). Although compared to SR this approach was in relative agreement with the quantity of 

meat in the average pizza (Figure 5.17), environmental impacts are 2.5 times higher for FCID. 

This is associated with the resolution differences between the two approaches for meats (as well 

as other products, e.g., dairy). While for FCID we were able to identify the different meet types in 

pizza (e.g., pork and beef), in SR meat ingredients were more descriptive which allowed us to 

match them with more representative LCIs. For example, the beef identified in the SR was “ground 
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beef, 75% lean, 25 fat” for which we developed a new LCI that reflects this composition (Appendix 

4, Table A4.40). Compared to the beef LCI used in FCID, the new LCI resulted in 15% lower 

impacts per kg; when combined with composition information this difference in LCIs resulted in 

a 4-fold difference with the estimate from FCID being the highest. The same was observed for 

pork; SR identifies the pork content primarily in the form of sausage for which an LCI is available 

and results in a carbon footprint three times lower than the pork LCI used in FCID. Discrepancies 

were also observed for oils due to decomposition differences. Finally, although we mentioned that 

dairy product decomposition is limited with FCID, in our case we assumed that all dairy FCID 

components represent cheese. However, such an assumption would not be possible if we were 

investigating multi-ingredient foods that contain different types of dairy such as pasta, pastries, 

and desserts. 

 Finally, the FICRCD approach provided the highest estimate of midpoint global warming 

impacts at 117.4 g CO2 eq/d, more than twice higher than SR. This was driven by an almost 4-fold 

overestimation the impacts from meat and vegetable. For meat, the difference was due to the 

underlying meat types quantities in each approach; sausages that are a mixture of beef and pork 

make up  83% of the meat in SR, whereas in FICRCD 64% of the meat is beef, with the LCIs 

matched with these two components generating carbon footprint estimates that differ by a factor 

7. The difference between impacts from vegetables was due to a 2-part difference in disaggregating 

tomatoes between the two approaches. First, in the decomposition of pizza at the retail level, the 

mass of tomatoes in FICRCD was twice higher than in SR. Second, in SR we were able to identify 

distinct tomato products (e.g., fresh, pure, canned) for which LCIs were available. In contrast, 

FICRCD does not allow for such resolution, and hence we used an ‘average tomato’ LCI, estimated 

as the mean of all LCIs identified as tomato products, that was more than three times higher than 

any of the LCIs used in SR.
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Figure 5.18. Carbon footprint associated with daily pizza consumption at the retail level by deconstruction method. Detailed information 
on the underlying environmental LCIs used for each approach is available in Appendix 4, Tables A4.36-A4.40.
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c)  Overall evaluation 

Table 5.3 summarizes the overall performance of the four decomposition methods 

evaluated in this work as decomposition methods for mixed dishes. The different approaches differ 

by scope and resolution, but all suffer from limitations linked to their ability to accurately 

repartition mixed dishes into components in mass that align well with environmental information. 

Several limitations have already been discussed for each approach. However, additional attributes 

of each approach need to be considered for a comprehensive and fair comparison.  For example, 

while the SR and FPED databases are being frequently updated and reflect updated in the 

WWEIA/NHANES cycles, the FCID and FICRCD databases have not been updated for nearly 10 

years. This limits their ability to capture changes in the food composition over time properly (e.g., 

the same foodcode in NHANES can have different meat content between cycles) and fails to 

provide information on newly introduced foods.  

The recommended approaches to be used in evaluating mixed dishes is the SR. This 

approach showed the best performance according to the criteria of this evaluation. It can provide 

exact masses of components, capture the variability of environmental information very well, and 

is consistent with the nutritional decomposition. The limitation of SR in relation to multi-

ingredient components can be addressed using either foodcode proxies or reference previous SR 

versions. The FPED can be used as a systematic check mechanism of these proxies as the two 

databases work in conjunction. In addition, attributes from the FICRCD (retail-to-intake losses) 

and FCID (cooking processes), can complement the SR when the system boundary of LCAs is 

cradle-to-fork. 
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Table 5.3. Evaluation summary of the potential of four database as decomposition methods for mixed dishes in LCA 
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5.3.2.2. Environmental assessment of pizzas 

Figure 5.19 presents the midpoint global warming and particulate matter impacts for the 

seven select pizza types. “Pizza with extra meat” produced the highest impacts in both categories 

with a serving associated with 0.64 kg CO2 eq and 0.28 g PM2.5 eq. Reducing the amount of meat 

in pizza substantially reduced impacts by a factor of 1.5 for carbon footprint and 1.7 for particulate 

matter. The absence of meat reduced GHG by at least a factor of 2, with the pizza without cheese 

generating the lowest estimate of 0.18 kg CO2 eq. For particulate matter, the deduction was more 

evident, with estimates of all meatless pizzas around 0.07 g PM2.5 eq/serving, more than 4 times 

lower than the extra meat pizza. Ammonia emission had the highest contribution to particulate 

matter impacts of ~83% for pizzas with meat and ~70% for meatless pizzas.  

 

 

Figure 5.19. Midpoint environmental impacts of global warming (A) and particulate matter (B) 
per serving of select pizza types. 
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5.3.3. Comparison of environmental and nutritional impacts on health 

Following the CONE-LCA framework proposed by Stylianou et al. (2016a), we compared 

the environmental and nutritional impacts on health from all pizzas (N=78) in the 

WWEIA/NHANES database in a common metric, DALYs, using the damage level scores for the 

environmental impacts. Figure 5.20 compares global warming health damages and PM2.5-related 

health damages with nutritional DANI scores. 

We found that nutritional impacts dominate the health performance of pizzas, with most 

nutritional healthy options also typically being environmentally friendliest. Results, showed 

variability in all impact categories that could be explained by the type of pizza. The highest 

variability was observed for nutritional impacts with DANI scores ranging from -1.6 up to 28.5 

μDALYs per serving pizza. Environmental human health impacts from global warming and PM2.5 

also varied between pizzas but were on average one to two orders of magnitude lower than 

nutritional impacts. This suggests that for pizzas, when evaluated from the perspective of human 

health, the nutritional costs are so dominant that it is not necessary to consider the environmental 

health impacts. Just for a context, for global warming, estimates associated with a serving of pizza 

ranged from 0.20-0.88 μDALYs, while for PM2.5 estimates varied by a factor of 6, from 0.04-0.24 

μDALYs per serving pizza. The regression analysis shows significant positive correlations 

between the environmental health damages investigated in this study and the nutritional health 

impacts for pizzas, with Pearson correlation coefficients estimated at 0.68 (p-value<0.001, 

R2=0.46) for global warming and 0.67 (p-value<0.001; R2=0.45) for PM2.5. For the latter, we 

performed a correlation analysis for the impacts associated with each precursor separately. The 

highest correlation was observed for NH3-induced impacts which dominates particulate matter 

impacts (p=0.67, p-value<0.001; R2=0.46) and the lowest for NOx (p=0.18, p-value<0.001; 

R2=0.03).  
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Figure 5.20. (A) Global warming and (B) Particulate matter human health damages as a function 
of nutritional health impacts estimated by DANI scores, for 78 pizzas in the WWEIA/NHANES 
database, classified into four main classes based on their main component. Blue lines represent the 
linear fit between impacts and shaded areas the corresponding 95% confidence interval. Positive 
DANI scores indicate health damages. 
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Red meat pizzas typically generated the highest health damages in all impact categories 

(19.7, 0.42, and 0.11 μDALYs/serving pizza for nutritional, global warming, and PM2.5 health 

damages, respectively), associated with processed and red meat that increase health risk from a 

nutritional perspective and higher environmental emissions associated with beef production from 

an environmental perspective. .Red meat pizzas containing fruits generate considerably lower 

environmental health damages, especially for global warming (0.23 μDALYs/serving pizza). On 

the contrary, for a “pizza with a whole grain crust” Figure 5.20 shows high environmental health 

impacts but low nutritional damages due to health benefit from whole grains compensate for the 

detrimental health effects of processed meat, sodium, and saturated fats. We also observed this for 

a cluster of red meat pizzas “from restaurant or fast food”. The shared commonality of these pizzas 

was that we used proxies from previous versions of the SR database to decompose multi-ingredient 

components, the predicted quantity of meat from past years being substantially higher than the 

amount of meat from most recent FPED that informs the nutritional assessment. This discrepancy 

suggests that using earlier versions of the SR might not reflect the current composition of foods 

and in our case lead to overestimating the amount of red meat and the corresponding environmental 

damages. Finally, from all the protein-containing pizzas, poultry pizzas generate the lowest impact 

estimates of 5.02, 0.27, and 0.07 μDALYs/serving pizza for nutritional, global warming, and PM2.5 

health damages, respectively. 

For meatless pizzas, intermediary levels of impacts were observed for cheese pizzas with 

average health damage estimates of 6.99, 0.25, 0.05 μDALYs/serving pizza for nutrition, global 

warming, and PM2.5, pizzas with “extra cheese” having higher environmental impacts and cheese 

pizzas without vegetables generating higher nutritional damages. Vegetable pizzas and a cluster of 

“other pizzas” that contain fruits generated the lowest overall impacts. The mean estimates for 

nutritional, global warming, and PM2.5 health damages for vegetable pizza was 2.9, 0.20, and 0.04 

μDALYs/serving, respectively. Fruit-containing pizzas produced on average similar environmental 

health damages (global warming: 0.19 μDALYs/serving, PM2.5: 0.04 μDALYs/serving). In 

contrast to all other pizzas, the presence of fruit generated net nutritional health benefits, with a 

DANI score of 0.8 avoided μDALYs/serving.  

Interestingly, the pizza crust influenced the damage scores for all impact categories. 

Regular crust pizzas produced on average a DANI score of 10.4 μDALYs/serving with health 
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damage estimates of 0.03 μDALYs/serving for global warming and 0.07 μDALYs/serving for 

PM2.5. Other crust types had higher damage estimates some for nutritional and some for 

environmental impacts. The most evident differences were observed for stuffed-crust pizzas that 

had on average ~60% higher DANI scores, while for environmental had higher impacts of only 

10%. For thin and thick crust pizzas, impacts were up to 15% higher. However, we found that for 

thick crust pizzas highest differences were linked with nutritional impacts whereas for thin crust 

pizzas impacts were higher for environmental impacts.   

For all pizzas, health impacts from both nutritional and environmental perspective 

predominantly induce health burden associated with cardiovascular diseases, in principle affecting 

premature mortality.  

5.4. Discussion 

In this paper, we propose DANI as a new nutritional impact category in LCA. DANI is a 

health burden-based nutritional assessment tool based on a comprehensive set of 16 dietary risks 

that cover main food groups and nutrients in the diet. Using epidemiological and disease burden 

evidence, DANI evaluates the cumulative marginal nutritional health benefits and damages 

associated with foods in DALYs that is compatible with the LCA concept. In this work, we 

illustrated that DANI has the ability to evaluate the nutritional performance of both simple food 

item such as milk and complex dishes such as pizzas, and can be used to identify the dominant 

dietary risks, an important attribute that can be useful in hotspot analysis.  

Several limitations of this approach should be acknowledged. First, the nutritional 

characterization factors used in this work were developed using U.S.-specific data and are valid 

under the assumption that present intake levels of each dietary risks fall within ranges that do not 

exceed levels of minimum risk (Gakidou et al. 2017). According to estimates from USDA, this 

condition is met by the majority of the Amercian population (Dietary Guidelines Advisory 

Committee 2015). Second, the contributions of transfats in DANI should be interpreted with 

caution as, for more than half foods in the NHANES database, transfat values have been imputed 

with a linear regression (Fulgoni III et al. 2018; Stylianou et al. 2018a)and as artificial transfat is 

being eliminated from the food supply chain. Finally, the current dietary risks and their 

corresponding characterization factors used in DANI are based on evidence developed by the GBD 

and are affected by any inherent limitations of this data. Even though the GBD follows a rigorous 
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and comprehensive framework to determine health risks and their magnitude, emerging evidence 

might offer room for refinement. The underlying DANI methodology used to produce nutritional 

characterization factors is flexible and can be easily updated and expanded as associations between 

dietary risks and health outcomes are being developed (Stylianou et al. 2018a). 

In this paper, we also addressed the lack of environmental inventory data for mixed dishes. 

We evaluated the potential use of four publically databases as sources of consistent reference flows 

for mixed dishes. We showed that the choice of the decomposition method has a substantial 

influence on results, and that all approaches suffer from some limitations. We nevertheless 

identified the SR method as the most appropriate decomposition approach to link consistently U.S. 

foods with LCIs. SR having the highest resolution enables the differentiation of ingredient with 

different environmental impacts and quantifies ingredient amounts accurately.  Since the SR 

resolution is currently higher than available LCIs, the use of proxies will be required for several 

food items (of lower consumption levels in most cases). In addition, this approach contains multi-

ingredient components that entail further decomposition that can be time- and resource consuming. 

We were able to address this limitation by using previous versions of the SR, complemented by 

the FPED for a systematic check of changes in the composition of multi-ingredient items between 

WWEIA/NHANES and SR cycles.  The FPED itself had the lowest resolution, overestimated the 

daily average pizza intake; this and could lead to substantial errors of environmental impacts in 

LCA. For certain food groups, FICRCD has a moderate resolution that does not enable to account 

for important LCIs variability within food groups. In addition, it reports consumed food amount 

only in retail-level commodity amounts that might be inappropriate for certain LCAs. The FCID 

approach has a satisfactory resolution but is unsuitable for certain food groups such as dairy 

products, preventing the identification of the dairy product present in the food. 

Using the SR decomposition method, we compared nutritional and environmental impacts 

of pizzas. Using the CONE-LCA framework we compared health damages from nutrition using 

DANI scores, with health damages from global warming and particulate matter, in a common 

metric (DALYs). PM2.5 health damages were estimated using spatially explicit characterization 

factors for the U.S. for PM2.5, NH3, SO2, and NOx emissions. Characterization factors were sector-

specific; we used agriculture estimates for PM2.5 and NH3, and national emission-weighted 

estimates from NOx and SO2. The estimates used reflected a marginal non-linear exposure-

response slope and state-specific severity factors derived from data in the GBD. It should also be 
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mentioned that endpoint global warming estimates are associated with high uncertainty and should 

be interpreted with caution (De Schryver et al. 2009). 

Our analysis showed that for an evaluation of pizzas based on human health, it is only 

necessary to evaluate nutrition, as this is the dominant pathway for impacts being one to two orders 

of magnitude higher than global warming and PM2.5-related health damages, respectively. This 

highlighted the importance of considering nutritional impacts and benefits in food LCA. Similar 

trends have been found for milk (Stylianou et al. 2016a), and fruits and vegetables (Stylianou et 

al. 2016b). We also found that health damages are pizza type-dependent for all impact categories 

investigated in this study, with nutritional damages positively correlated with environmental 

impacts. Red meat pizzas generated the highest DANI scores and induced the highest 

environmental health impacts, while at the opposite end of the range for all impact categories we 

found vegetable pizzas, with cheese pizzas being in between. One limitation is that the system 

boundary used in this study was cradle to farm or processing facility gate and environmental 

impacts reported here did not capture impacts from distribution, packaging, and cooking nor they 

accounted for supply chain food losses, which can have substantial contributions to impacts, 

especially for vegetables (Heller and Keoleian 2015; Pernollet et al. 2017). This could be addressed 

by complementing our approach with FCID that provides cooking information and the Loss-

Adjusted Food Availability (LAFA) database that reports food losses throughout the supply chain 

for the U.S. (USDA 2015). However, considering the substantially higher human health damages 

associated with nutrition, these added environmental impacts would probably have little influence 

on the overall health damages of pizzas.  

5.5. Conclusion  

This study addresses important gaps in food sustainability assessment and food LCA. 

Using a case study on pizzas in the U.S. diet, a popular food group with a complex composition, 

we were able to illustrate an approach that evaluates and compares nutritional and environmental 

damages on human health using DALYs as a common unit. This approach uniquely uses consistent 

GBD epidemiological data for assessing both PM2.5- and nutritional-related health impacts. The 

analysis illustrated that nutritional impacts can dominate human health impacts for certain foods 

such as pizza. We also found that for pizzas, nutritional damages were strongly correlated with 

environmental impacts. The type of pizza was a key determinant of impacts with the red and 
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processed meat generating the highest damages. To the best of our knowledge, this is the first study 

to produce consistent environmental and nutritional health impact estimates for pizzas in the U.S. 

From an impact assessment perspective, DANI can be a powerful nutritional assessment 

tool that translates health burden in a single score for individual foods and can serve as a new 

impact category in LCA. The DRFs can serve as nutritional characterization factors available for 

16 dietary risks along with the corresponding inventory flows for about 7,000 food items in the 

WWEIA/NHANES database. Including DANI in LCA will allow for a more comprehensive 

assessment of foods and diets. Such an accomplishment could lead to a holistic metric that could 

be used as a solution to “fixing” the food systems (Sukhdev 2018) and answer needs in assessing 

human health impacts within social LCA (Arvidsson et al. 2016; Schaubroeck and Rugani 2017). 

This approach could be used as a benchmark to evaluate foods and diets comprehensively. 

Implementation of such broader and inclusive methodologies could help inform stakeholders not 

only in making science-based quantitative comparisons between foods but also by identifying food 

items and substitutions that optimize public and planetary health by minimizing environmental 

impacts and maximizing nutritional benefits. 
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CHAPTER 6 

Conclusion 

The overarching goal of this dissertation was to improve human health impact assessment 

in food sustainability assessment and life cycle assessment of food systems in particular, in order 

to inform more healthy and sustainable diet choices. As defined in Chapter 1, the dissertation 

sought to: 1) Develop and test a life cycle assessment (LCA) framework that evaluates and 

compares the environmental and nutritional effects of food items on health (Chapter 2). 2) Develop 

nutritional characterization factors for a new nutritional impact category in LCA that translates the 

nutritional composition of food items and diets into human health benefits or damages and apply 

them to ~7,000 food items in the U.S. diet to estimate overall nutritional health impact scores 

(Chapter 3). 3)  Develop spatially explicit intake fractions and characterization factors for PM2.5 

from ground level emissions of primary PM2.5, NH3, SO2, and NOx in the contiguous U.S. for 

agriculture and other relevant sectors (Chapter 4). 4) Determine a decomposition method to 

consistently evaluate the environmental impacts of mixed dishes and compare them with 

nutritional health benefits and damages (Chapter 5).  

The findings of this dissertation propose a new nutritional impact category as well as 

promising methodological and inventory data improvements for agricultural processes, food 

systems, and diets in sustainability assessment and LCA. For each chapter, the summary, 

conclusions, limitations, and recommendations for future research are listed below. 

6.1. LCA framework to assess and compare environmental and nutritional health impacts of 
food items 

Chapter 2 described the development of a novel Combined Nutritional and Environmental 

Life Cycle Assessment (CONE-LCA) framework that evaluates and compares the environmental 

and nutritional health effects of foods or diets in a common metric, disability adjusted life years. 

The framework was demonstrated in a proof-of-concept case study investigating the addition of 

one serving of fluid milk to the current average diet of U.S. adults. Considering health impacts 

from global warming, particulate matter, and nutrition, preliminary results suggested a net health 



127 
 

benefits that was associated with nutrition-related risk reduction of colorectal cancer; the health 

benefit further increased when the milk was an iso-caloric substitute for less healthy foods. This 

case study was the first to quantify trade-offs between nutrition and environment human health 

burden, expressed in DALYs, which highlighted the importance to consider nutrition as an impact 

category in LCA.  

The CONE-LCA framework pioneers an improved and more comprehensive approach in 

LCA. Going forward, there is a need for evaluation of additional impact pathways linked with 

human health burdens in relation to foods such as dietary energy loss through water use (Motoshita 

et al. 2014), chemical exposure through pesticides (Fantke and Jolliet 2016), and chemical 

migration from packaging into food (Ernstoff et al. 2017a). Future research is recommended using 

this framework to provide sustainability information on dietary guidelines and substitution options. 

However, it is essential to base such work on carefully selected and realistic scenarios (Ernstoff et 

al. 2017b).  

6.2. Nutritional characterization factors for a new nutritional impact category in LCA 

Chapter 3 detailed the development of a new nutritional assessment tool, the Health 

Nutritional Index (HENI). HENI, unlike other nutritional indices, links individual foods to health 

burden measured in minutes of healthy life lost or gained per serving. HENI is based on 16 dietary 

risks using epidemiological evidence. The originality of this index is that it weights component 

contributions based on health burden, an attribute not considered in other nutritional indices. An 

implementation of HENI to ~7,000 food items in the U.S. diet revealed substantial variability of 

scores between and within food categories, signifying the importance of evaluating nutritional 

performance at the food level rather than the food group. This work offers a unique opportunity 

for science communication as it can be used as a resource to educate and inform the public. More 

specifically, HENI scores could translate nutritional information to a simple score or color-coded 

scale for consumers through a smartphone app or a food-labeling scheme. 

HENI could be further refined to include epidemiological evidence covering a broader set 

of dietary risks and health outcomes and expanded to other countries or regions. The latter would 

be particularly useful in developing countries facing an epidemic of diet-related chronic diseases 

due to drastic dietary pattern changes that converge towards western diets. For such endeavors, 

there should be a focus on diet not solely individual foods. To be effective, HENI would need to 

be adapted to account for the multiplicative joint effect of dietary risks. 
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6.3. Spatially-explicit intake fractions and characterization factors for PM2.5 from ground 
level emissions of primary PM2.5, NH3, SO2, and NOx in the contiguous U.S. for agriculture 
and other relevant sectors 

Chapter 4 illustrated the development of estimates to characterize exposure (intake 

fraction, iFs) and burden (characterization factors, CFs) of PM2.5 in LCA. Spatial estimates were 

calculated for ground-level primary PM2.5, NH3, SO2, and NOx emissions in the U.S. using the 

current state of knowledge for PM2.5 exposure and health effect that can help inform life cycle 

impacts assessment (LCIA). Marginal burden estimates were calculated using recent 

epidemiological evidence supporting a non-linear exposure-response for PM2.5. As emission 

location is often unknown in LCA, results were aggregated using emission weighted-averages by 

state, sector, and nationally. Our analysis highlighted the importance of spatially-explicit and 

emission-weighed sector-specific estimates in LCA (Seppälä et al. 2004; Azevedo et al. 2013). In 

addition, it revealed the importance of the influence that the shape of the exposure-response 

function has on burden estimates. Interestingly, we found that the aggregation method produces 

considerably different national estimates. Population-weighted estimates that is the most 

commonly approach used in LCA produces higher national estimates compared to emission-

weighted estimates, suggesting that population might not be a good surrogate for emissions. We 

recommend that emission-weighted sector-specific estimates be used when available. In this work, 

we characterized not only the magnitude of exposure and burden but also their spatial extent. When 

combined, these data improve our understanding of where, who, and how much impact is 

associated with PM2.5 emissions from an emitter-perspective. As such, these estimates can also 

inform risk assessment. 

As our estimates only cover ground-level emission, future work should focus on 

developing iF and CF estimates for different stack heights, a factor that can influence iF (Humbert 

et al. 2011). Such estimates would improve this work and allow for estimates applicable to more 

refined sector (e.g., power plants that have high stacks). This could be achieved by combining 

information from the second atmospheric layer of InMAP and sector-specific stack height data 

made recently available in the U.S. National Emission Inventory (NEI) database. A higher sector 

granularity would also be useful since in the present work we have aggregated several sectors into 

“main sectors” (e.g., industrial processes), including a sector that reports unclassified emissions 

with substantial contributions in certain areas, and may influence results and lack of specificity is 

not useful for  LCA (U.S. Environmental Protection Agency 2018). Another improvement of this 
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work would be to expand the approach spatially and develop global estimates. Both iF and CF 

estimates are calculated using parameters that vary substantially between regions.  iFs are 

influenced by population density (Apte et al. 2012; van Zelm et al. 2016), and non-linear exposure-

response slopes are influenced by background PM2.5 ambient concentrations (Fantke et al. 2018). 

6.4. Determine a decomposition method to consistently evaluate the environmental impacts 
of mixed dishes and compare them with nutritional health benefits and damages 

In Chapter 5, we demonstrated the application of the findings in Chapters 2-4 by comparing 

nutritional and environmental health damages for mixed dishes. In this work, we established the 

DALY Nutritional Index (DANI), an adaptation of HENI (Chapter 3) for the damage-oriented 

LCIA field, measuring the nutritional health impacts of foods in DALYs. After evaluating four 

methods, we recommended the use of the Standard Reference (SR) databases as the best 

decomposition methods for mixed dishes. SR offered the highest resolution that could identify 

components with varying environmental impacts and quantify the exact amount of components in 

mixed dishes. Using the CONE-LCA framework from Chapter 2, we compared health damages 

from global warming, particulate matter, and nutritional for pizzas in the U.S. diet, with particulate 

matter estimates calculated using CFs from Chapter 4. We found that nutritional impacts dominate 

the health performance of pizzas, with most nutritional healthy pizza options also typically being 

environmentally friendliest and red meat pizzas inducing the highest damages. This study is the 

first to consistently quantify and compare complex foods using a common metric, DALYs, 

The system boundary of this work would benefit if expanded to consider cradle-to-fork 

impacts. Such an expansion would improve the environmental impact assessment as it would 

consider additional impacts from food waste throughout the supply chain and cooking processes, 

which can be an important source of environmental impacts for foods (Heller and Keoleian 2015; 

Pernollet et al. 2017). Furthermore, the application of this work to other mixed dishes of different 

composition is required to test whether the correlation between the nutritional and environmental 

performance of pizzas that we observed in this work is valid for other food groups as well. 

6.5. General application and outlook 

Overall, the interdisciplinary collaboration with an outstanding expert in the field of 

nutrition, Dr. Victor Fulgoni, and thinking outside the box has enabled us to address critical 

challenges in food system and diet evaluation. Diverging from the traditional norms of 
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environmental and nutritional sciences, we developed frameworks, methodologies, and data that 

bridge the gap between the two fields and empower a comprehensive evaluation of food systems 

and diets in a common metric, aiming to make hidden health risks visible. 

This multi-angled inclusive approach to evaluate food systems has potential implication 

for public health policies and sustainable dietary guidelines. Every five years the USDA develops 

dietary guidelines for Americans based on the current state of knowledge in nutrition. These 

guidelines have never been evaluated as to the health benefit they could generate. Future 

adaptations of HENI for diets, would allow such an evaluation and could provide key insights on 

the magnitude of health benefits and simultaneously help dentify areas for improvement. In the 

2015-2020 dietary guidelines, there was a qualitative discussion about food sustainability and the 

sustainability of particular foods (Dietary Guidelines Advisory Committee 2015). However, the 

current state of knowledge on the topic is far more advanced. Using the findings from this 

dissertation could inform dietary guidelines using science-based quantitative data that account for 

both the nutritional and environmental impacts on health. Such an undertaking will enable the 

optimization of guidelines in a way that maximizes health benefits and minimizes environmental 

impacts. Even if a small fraction of Americans follow such guidelines, it would yield benefits in 

public health, health care, communities, and ecosystems. 

HENI, as a stand-alone product of this dissertation, has the potential to be used as a 

decision-making tool that could guide consumers towards healthier dietary choices and 

substitutions. HENI can translate complex nutritional food evaluation to a simple but powerful 

score expressed in minutes of healthy life lost or gained that is easy to understand and relevant to 

consumers, stakeholders, and academics (Kunkel and McKinley 2007). The past summer, we 

partnered with Innovation Studio at the University of Michigan School of Public Health for a 12-

week internship aiming to explore the potentials of HENI in improving public health and having a 

social impact. This collaboration revealed a great deal of exciting and promising feedback received 

from stakeholders. One potential use of HENI is the development of a nutritional app that can 

inform consumers for healthy and environmentally friendly dietary options at grocery stores, 

restaurants, and during meal preparation. Other potential applications of HENI include a food 

labeling system answering the recent call for new methods to inform ‘health’ claims from the U.S. 

Food and Drug Administration as part of their nutrition innovation strategy, a scoring system 

which evaluates the social impact of food manufacturers that could also quantifying their public 
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health impacts under a corporate social responsibility regime, and an evaluation tool that enables 

nutritional programs like SNAP and organizations like Food Banks determine their social impact 

by quantifying the health benefit they generate to the populations they serve. 

Personal preferences, socio-economic status, education, culture, taste, and health status are 

some of the factors that affect dietary patterns. In addition, food price is an important determinant 

of diet , with healthier diets typically costing more (Rao et al. 2013). Future efforts to improve this 

work should account for these determinans. In particular, our environmental and nutritional 

approach could be integrated with food cost databases to develop and generate optimized dietary 

recommendations at different budget levels that also consider personal preference (e.g., a diet 

optimized for vegetarians with a low budget for groceries). Eventually, disease history and genetic 

traits could also be incorporated in our approach to provide personalized health responses to 

nutritional or environmental risks. 

In all, this work has been an exciting endeavor that has propelled substanital advances in 

the rapidly evolving field of food sustainability. Food systems are at the nexus of a systemic crisis 

in diets, public health, and ecosystems. I hope that with this dissertation, we have laid the 

foundation for the development and implementation of more inclusive approaches to inform 

decision-making for lifestyles choices with long-term benefits for good public and planetary 

health. 
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APPENDIX 1 
A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk 

A1.1. 2010 Global Burden of Disease 

Table A1.4 lists the top 10 risk factors for the total (all cause) global and U.S. burden of disease measured in both deaths and 
disability adjusted life years (DALYs) for the year 2010 (IHME 2013). 
 

Table A1.4. 2010 Global and U.S. burden of disease 

Global United States (U.S.) 

Risk factor Deaths 
(Millions) 

DALYs 
(Millions) Risk factor Deaths 

(Millions) 
DALYs 

(Millions) 
Dietary risks 11.4 230.2 Dietary risks 0.7 11.5 

High blood pressure 9.4 173.6 Tobacco smoking 0.5 9.7 
Tobacco smoking 6.3 156.8 High blood pressure 0.4 6.4 

Household air pollution from solid fuels 3.5 108.1 High body-mass index 0.4 8.9 
High body-mass index 3.4 93.6 Physical inactivity and low physical activity 0.2 4.3 

High fasting plasma glucose 3.4 89.0 High fasting plasma glucose 0.2 4.8 
Ambient particulate matter pollution 3.2 76.2 High total cholesterol 0.2 2.8 
Physical inactivity and low physical 

activity 3.2 69.3 Ambient particulate matter pollution 0.1 1.8 

Alcohol use 2.7 97.2 Alcohol use 0.1 3.6 
High total cholesterol 2.0 40.9 Drug use 0.03 2.4 
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A1.2. Defining fluid milk 

In this study, when referring to milk we use the term fluid milk. This was defined as the 

consumption weighted average (with respect to population-scale consumption frequencies) of 

whole, 2% reduced fat, 1% reduced fat and non-fat milk consumed in the U.S. based on sales data 

from Thoma et al. (2013) and milk energy values available in USDA Standard Reference 27 

database (USDA, 2011) as summarized in Table A1.5. This resulted an energy content estimate 

for a serving (244 g) of fluid milk equal to 119 calories. 

 

Table A1.5. Average national fluid milk consumption in the U.S. 

Milk type Total Sales  

(million kg) 

Energy content per serving   

(Calories) 

Whole milk 7398 149 

Reduced fat milk (2%) 8742 122 

Low fat milk (1%) 5257 102 

Fat free milk 3971 83 

 

A1.3. Defining PM-related Emissions 

To estimate particulate matter (PM) related emissions for the average diet and sugar-

sweetened beverages (SSB) we extrapolated from greenhouse gases emissions (GHGE) using 

correlation factors since there were no available data in the literature. To do so, we performed a 

correlation analysis between PM2.5, NOx, SO2, and NH3 emissions (in kg pollutant) from 47 food-

related ecoinvent processes (Frischknecht et al. 2005) with their corresponding global worming 

potential for a 100 year time horizon (in kg CO2-eq). The list of the ecoinvent processes included 

in the analysis are presented in Table A1.6. 

The analysis supported a strong linear correlation for PM2.5 (correlation coefficient=+0.96), 

NOx (correlation coefficient=+0.98), and SO2 (correlation coefficient=+0.83) with GHGE, while 

NH3 showed a weaker association (correlation coefficient=+0.62). We then performed a regression 

analysis using the model (eq. A1.1): 
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𝑙𝑙𝑙𝑙𝑔𝑔10(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑎𝑎 × 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝐶𝐶2 − 𝑒𝑒𝑒𝑒) + 𝑏𝑏                Eq. A1.1 

 

for which all but the one for SO2 𝑎𝑎 estimates were not statistically different than 1 (for SO2 the 

estimate was lower but close to 1). Therefore, we forced a=1 for all models for a more 

parsimonious model to capture these correlations. As beta (𝑏𝑏 ) estimates we used the 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑙𝑙𝑙𝑙𝑙𝑙 10
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐶𝐶𝐶𝐶2−𝑒𝑒𝑒𝑒

� that was then used to estimate correlation factors as summarized in 

Table 2.1. For NH3 we used emission factors by Meier and Christen (2013). These emission factors 

were used to estimate emissions related to all three 119 caloric equivalent portion of intake: fluid 

milk, average diet, and SSB. Finally, PM-related emission factors for fluid milk were retrieved 

from the Comprehensive LCA of Fluid Milk (Henderson et al. 2013). All emissions estimates 

associated with the three distinct 119 caloric equivalent portion of intake used in our analysis are 

summarized in Table A1.7. 

 

 



138 
 

Table A1.6. Food-related ecoinvent processes 

Dataset-ID Name Location
190 barley grains extensive, at farm CH
191 barley grains IP, at farm CH
192 barley grains organic, at farm CH
196 fava beans IP, at farm CH
197 fava beans organic, at farm CH
200 grain maize IP, at farm CH
201 grain maize organic, at farm CH
216 potatoes IP, at farm CH
217 potatoes organic, at farm CH
218 protein peas, IP, at farm CH
219 protein peas, organic, at farm CH
220 rape seed extensive, at farm CH
221 rape seed IP, at farm CH
222 rye grains extensive, at farm CH
223 rye grains IP, at farm CH
224 rye grains organic, at farm CH
230 soy beans IP, at farm CH
231 soy beans organic, at farm CH
234 sugar beets IP, at farm CH
235 sunflower IP, at farm CH
236 wheat grains extensive, at farm CH
237 wheat grains IP, at farm CH
238 wheat grains organic, at farm CH

6215 rape seed, organic, at farm CH
6258 sugar cane, at farm BR
6528 corn, at farm US
6576 rape seed conventional, at farm DE
6577 rye grains conventional, at farm RER
6659 soybeans, at farm US
6711 sweet sorghum grains, at farm CN
6955 protein peas conventional, Saxony-Anhalt, at farm DE
6956 barley grains conventional, Saxony-Anhalt, at farm DE
6957 rape seed conventional, Saxony-Anhalt, at farm DE
6958 wheat grains conventional, Saxony-Anhalt, at farm DE
6959 protein peas conventional, Castilla-y-Leon, at farm ES
6960 barley grains conventional, Castilla-y-Leon, at farm ES
6961 sunflower conventional, Castilla-y-Leon, at farm ES
6962 wheat grains conventional, Castilla-y-Leon, at farm ES
6963 protein peas conventional, Barrois, at farm FR
6964 barley grains conventional, Barrois, at farm FR
6965 rape seed conventional, Barrois, at farm FR
6966 wheat grains conventional, Barrois, at farm FR
6968 potatoes, at farm US
6969 rape seed, at farm US
6970 rice, at farm US
6972 wheat grains, at farm US
6976 sheep for slaughtering, live weight, at farm US
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Table A1.7. Emissions for each of the 119 caloric equivalent portion of intake (kg) 

 CO2-eq* NOx  PM2.5  SO2 NH3
† 

Fluid milk 4.7E-01 
8.6E-04‡ 

below 
2.8E-05‡ 6.6E-04‡ 2.0E-03 

Average diet 2.3E-01 6.2E-04 5.5E-05 1.9E-04 9.0E-04 

SSB 1.8E-01 4.9E-04 4.4E-05 1.5E-04 8.2E-05 

 

 

A1.4. Characterizing Uncertainty 

To calculate uncertainty, represented by squared geometric standard deviation (GSD2), in 

our analysis we employed the approach by MacLeod et al. (2002) which is based on a Taylor series 

expansion and is given in equation A1.2: 

 

         Eq.A1.2 

 

where, Si is a sensitivity factor describing how sensitive is the outcome (O) to each input (Ii) 

parameter calculated by: 

 

𝑆𝑆𝑖𝑖 =
∆𝑂𝑂
𝑂𝑂
∆𝐼𝐼
𝐼𝐼

   Eq. A1.3 

 

Although this approach assumes linearity, we applied eq. A1.1 even in cases where the 

assumption was violated in order to generate an initial proxy for uncertainty. 

 

  

                                                      
* Based on the meta-analysis by Heller and Keoleian (2014) 
† Based on Meier and Christen (2013) 
‡ Based on the Comprehensive LCA of Fluid Milk by Henderson et al. (2013) 

2/12222222222 ])(ln...)(ln)(lnexp[
2211 nn IIIIIIO GSDSGSDSGSDSGSD ++=
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A1.4.1. Global warming 

The input parameters used in the uncertainty analysis for the global warming endpoint 

estimate was calculated as the product of emissions and the global warming human health damage 

factor (Bulle et al. 2015). For the milk and average diet emissions uncertainty was obtained from 

Thomas et al. (2013) and from Heller and Keoleian (2014), while for SSB the emission uncertainty 

was calculated based on the range of emission available in the literature as summarized in Table 

A1.8 that reflect differences in packaging. Table A1.9 summarizes the global warming uncertainty 

estimates. 

 

Table A1.8. Summary of GHGE estimates for SSB 

 
  

Estimate  
(kg CO2-eq/kg)   

Source Commodity Min Max Arithmetic Mean GSD2* 
Vieux et al., (2012) Soda 0.30 0.44 0.37 1.21 
Amienyo et al., (2013) Carbonated soft drink 0.14 0.36 0.25 1.59 
Coca Cola (2015) Coca Cola 0.25 1.09 0.67 2.09 
Updated estimate  0.14 1.09 0.37 2.80 

   * Calculated as �𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀

 

Table A1.9. Uncertainty estimates associated with the global warming impact assessment (GSD2) 

  Milk Av. diet SSB 

Emission  1.2 1.9 2.8 

Impact factor 

 

Midpoind Impact 

Climate sensitivity parameter 

Human Health 

Burden (human health) 

 

Total 

𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ×
∆𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖

∆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
×
∆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∆𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖

× 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

 
𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺  

∆𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
∆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

 

∆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∆𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖

 

 

 

 

1.5 (S=0.6+) 

1.5 

1.8 

4.0++ 

 

4.8 

Total  4.9 5.5 6.5 
   + Accounting for the impact of CH4 and N20. The sensitivity estimate is the contribution of these two gases to GHGE for fluid 

milk according to Thoma et al. (2013). 
++ Determined to reflect uncertainty associated with global warming health impacts that are not currently being considered and 

outcomes occurring beyond the 100 year time horizon. 
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A1.4.2. Particulate Matter 

The input parameters used in the uncertainty analysis for the PM endpoint estimate 

calculated as the additive impact of the product of emissions and characterization factors 

(Gronlund et al. 2014) of PM2.5, NOx, SO2, and NH3 are summarized in Table A1.10.  

The emission uncertainty is divided between fluid milk and average diet/SSB because of 

the methodology followed. For fluid milk we used GSD2 estimates from the ecoinvent database  

(The ecoInvent Databse: Overview and Methodological Framework, 2005) from which the 

processes used in the work by Henderson et al (2013) were originated. For average diet/SSB, eq. 

A1.2 was used considering uncertainty from the correlation analysis that accounted for the model 

uncertainty and the uncertainty of GHGE (assuming S=1 for both parameters). 

Characterization factors are a product of intake fraction (iF), dose response (DR), and 

severity factor (SF). To estimate uncertainty we used eq. A1.2 with a GSD2DR of 2.2 and GSD2SF 

of 1.4 as reported in Gronlund et al. (2014) and low and high uncertainty factors for PM2.5, NOx, 

SO2, and NH3 based on the work by Humbert et al. (2011). 

For the human health damage we first calculated the total GSD2 (low and high) for each of 

the three distinct intakes as the product of emissions and CFs for each PM-related pollutant. To 

estimate the total impact associated with each food item intake we combined the resulting PM-

related pollutant GSD2 accounting for their contribution as an input sensitivity (Si) when using eq. 

A1.2.  
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Table A1.10. Uncertainty estimates associate with the particulate matter impact assessment 
(GSD2) 

Emission 
PM2.5 
SO2 
NOX 
NH3 

Fluid Milk 
3.0 
1.1 
1.5 
1.5 

Av. Diet/SSB 
1.5 
2.9 
1.5 
1.5 

Intake fractions 
PM2.5 
SO2 
NOX 
NH3 

Low 
2.0 

10.0 
10.0 
10.0 

High 
5.0 
2.0 

10.0 
2.0 

Characterization factors 
PM2.5 
SO2 
NOX 
NH3 

Low 
3.0 

11.7 
11.7 
11.7 

High 
6.2 
3.0 

11.7 
3.0 

Contribution (Si  x10-1) 
PM2.5 
SO2 
NOX 
NH3 

Fluid milk 
0.3 
1.3 
0.4 
8.0 

Average diet 
0.5 
1.1 
0.8 
7.6 

SSB 
3.3 
2.4 
1.6 
2.7 

Total health damage 
Low 
High 

Fluid milk 
7.5 
2.6 

Average diet 
6.9 
2.6 

SSB 
3.0 
2.4 
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A1.4.3. Nutritional Assessment 

The total effect of nutrition for the different endpoints considered associated with 119 

calories of intake was calculated as an attributable burden. Therefore, the uncertainty of the effect 

was a combination of uncertainty associated with the risk ratio (RR) and the burden estimate. For 

the SSB nutritional assessment, uncertainty is linked to the SSB daily intake estimate. The input 

parameters used in the uncertainty analysis for the nutritional assessment are summarized in Table 

A1.11. 

Table A1.11. Uncertainty estimates associate with the nutritional impact assessment (GSD2) 

 Colorectal cancer Stroke Prostate cancer SSB-related diseases 
RR 

Burden 
Intake 

1.1 
1.4 
- 

1.1 
1.4 
- 

1.0 
1.6 
- 

- 
1.4 
1.3 

Total 1.4 1.4 1.6 1.6 
 

A1.5. Overall comparison 

Table A1.12. Environmental human health impact for each of the 119 caloric equivalent portion 
of intake (μDALYs) 

 CO2-eq NOx  PM2.5  SO2 NH3 

Fluid milk 3.84E-01 1.11E-02 8.46E-03 4.06E-02 2.55E-01 

Average diet 1.88E-01 8.07E-03 1.66E-02 1.18E-02 1.17E-01 

SSB 1.50E-01 6.42E-03 1.32E-02 9.42E-03 1.07E-02 

 

Table A1.13. Environmental and nutritional human health impacts and benefits under each 
scenario (avoided μDALYs)§ 

 Impacts Benefits  

 CO2-eq Total 
PM2.5 

Prostate** 
cancer  

Colorectal 
cancer 

All stroke 
outcomes 

SSB-related 
disease Net 

Scenario A -3.84E-01 -3.15E-01 

-1.64E-01 +1.10E+00 +9.50E-01 

 +1.18E+00 

Scenario B -1.96E-01 -1.62E-01  +1.53E+00 

Scenario C -2.34E-01 -2.75E-01 +3.48E+00 +4.85E+00 

                                                      
§ Impacts are indicative of induced burden (negative values) while benefits are indicative of avoided burden (positive values). 
**Impact weighted with the male population fraction so as to reflect an impact for the overall population 
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APPENDIX 2 
HENI: A health burden-based nutritional index for food items 

A2.1. HENI components description 

The Health Nutritional Index (HENI) is a single score dietary assessment tool that 

quantifies changes in total all-cause disease burden per serving, mass, or energy content of foods, 

measured in gain (+) or loss (-) of minutes of healthy life. The score attributes healthiness to the 

marginal consumption of a food item. HENI is based on a 16-component model, with components 

selected based on the work by the Global Burden of Disease (GBD) study series by which they 

have been identified as dietary risks (Gakidou et al. 2017). First published in 1996, the GBD study 

series is an ongoing effort aiming to quantify the disease burden of premature death and disability 

on a global, regional, and national scale and constitutes the most comprehensive and consistent 

approach to evaluate behavioral, environmental, occupational, and metabolic health risk factors 

simultaneously (Gakidou et al. 2017). 

HENI dietary risk components fall under the behavioral cluster of health risks in the 2016 

GBD and are composed of nine food groups and six nutrients. Food groups include fruits, 

vegetables, legumes, red meat, processed meat, milk, whole grains, nuts and seeds, and sugar-

sweetened beverages (SSB). The nutrient components include calcium, fiber, polyunsaturated fatty 

acids (PUFA), omega-3 fatty acids, sodium, and trans fatty acids (TFA). Each dietary risk 

components has been positively or negatively associated with one to 38 disease outcomes in adults 

aged 25 years and up, covering a total of 50 health outcome. The selection of risk-outcome pairs 

in the GBD is based on four criteria. These criteria are: 1) the importance of risk factor to disease 

burden and/or policy; 2) availability of sufficient risk factor exposure data; 3) support of a causal 

relationship based on epidemiological studies and ability to estimate effect magnitude per exposure 

unit increase; and 4) evidence supporting that the association can be generalized (Gakidou et al. 

2017). To evaluate these criteria, the GBD has adopted the World Cancer Research Fund (WCRF) 

grading system, and risk-outcome pairs are included only when it is determined that they have of 
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convincing or probable evidence (Gakidou et al. 2017). According to WCRF (World 

Cancer Research Fund and American Institute for Cancer Research 2007), convincing 

evidence is defined as evidence with a high robustness that is unlikely to be modified with 

new evidence. In particular, convincing evidence should be based on numerous good 

quality epidemiological studies (prospective observational and randomized control trials) 

that show consistent direction and magnitude of the effect, with limited or no studies with 

opposing findings. The evidence should be supported by biological plausibility. Evidence 

is defined as probable if there is fair support of a probable causal relationship based on 

epidemiological studies that suffer from some limitations. Limitations could include a 

small number of studies, availability of evidence with opposite effects, and lower quality 

studies. The evidence should be supported by experimental studies and by biological 

plausibility. New evidence is evaluated with each update of the GBD study series. 

Due to correlations between dietary risks, the effects of a few components in HENI 

is mediated either by other dietary risks or by other factors such as metabolic risks. In 

particular, cardiovascular effects associated with fiber are mediated through fruits, 

vegetables, and whole grains. Other dietary risk components are 100% mediated through 

metabolic risks such as SSB and sodium that are mediated via body mass index (BMI) and 

systolic blood pressure (SBP), respectively (Gakidou et al. 2017). The burden associated 

with SSB and sodium is estimated in a two-step process. First, the dietary risk (e.g., SSB) 

is linked to a change in the metabolic risk (e.g., BMI). Second, the corresponding metabolic 

risk change (e.g., BMI) is linked to a disease burden (e.g., diabetes). As a result, SSB and 

sodium are indirectly associated with all the health outcomes that their respective metabolic 

risks have effects on.  

Since SFA-related health burdens are captured with total serum cholesterol at the 

population level in the 2016 GBD, HENI also considers the health effects of saturated fatty 

acids (SFA) in individual food items. Studies support that SFA increase the risk for 

ischemic heart disease (IHD) mortality (Slattery and Randall 1988). The direct effect of 

SFA, as with other fatty acids, is dependent on the substitution and some studies have found 

that reduction of SFA could increase carbohydrate intake that might not improve health 

(Slattery and Randall 1988; Mensink 2016). However, increased consumption of SFA 

induces higher concentrations of serum cholesterol, which is identified as a metabolic risk 
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factor in the GBD (Hu et al. 2001; Mensink 2016; Gakidou et al. 2017). Therefore, HENI 

also considers the indirect effect of SFA mediated via cholesterol as described in the 

section A2.3 focusing on mediated dietary risk factors. 

Table A2.14 summarizes the HENI dietary risk components and provides their 

description and characteristics. 
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Table A2.14. Definition, description, and characteristics of HENI indicators 
Dietary risk 
component Description* Effective intake* Health 

effect 
Health 

outcomes 
Calcium Calcium from all sources <1.25 g/day Positive 1 
Fiber Fiber from all sources <23.5 g/day Positive 2 
Polyunsaturated fats Omega-6 fatty acids from all sources <11% total energy intake Positive 1 
Seafood omega-3 fats Eicosapentaenoic & docosahexaenoic acids <250 mg/day Positive 1 
Sodium† Dietary sodium from all sources >3.49 g/day Negative 15 
Saturated fatty acids‡ Saturated fat from all sources  Negative 2 
Trans fatty acids Trans fat from all sources >0.5% total energy intake Negative 1 

Fruits Fresh, frozen, cooked, canned, or dried, excluding fruit juices and 
salted or pickled fruits < 250 g/day Positive 10 

Milk Milk (including non-fat, low-fat, and full-fat milk) but excluding 
plant derivatives <435 g/day Positive 1 

Nuts and seeds Nut and seed foods <20.5 g/day Positive 2 

Processed meat Meat preserved by smoking, curing, salting, or addition of 
chemical preservatives >2 g/day Negative 3 

Legumes Fresh, frozen, cooked, 
canned, or dried legumes <60 g/day Positive 1 

Red meat Beef, pork, lamb, and goat but excluding poultry, fish, eggs, and 
all processed meats >22.5 g/day Negative 2 

Sugar-sweetened 
beverages§ 

Beverages >50 kcal per 226.8 g serving, including carbonated 
beverages, sodas, energy drinks, and fruit drinks, but excluding 
100% fruit and vegetable juices 

>2.5 g/day Negative 38 

Vegetables 
Fresh, frozen, cooked, canned, or dried vegetables, excluding 
legumes, salted or pickled vegetables, juices, and starchy 
vegetables 

<360 g/day Positive 3 

Whole grains Whole grains from breakfast cereals, bread, rice, pasta, biscuits, 
muffins, tortillas, pancakes, and other sources <125 g/day Positive 4 

*Description obtained from Gakidou et al. 2017 
†Based on "Diet high in sodium" described as 24 h urinary sodium in g/day. All health effects are mediated through systolic blood pressure. Effective intake calculated as 
3
gramsurinary sodium

day /0.85
gramsdietary sodium
gramsurinary sodium

=3.49 
gramsdietary sodium

day  
‡All health effects are mediated through total serum cholesterol 
§ All health effects are mediated through body mass index  
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A2.2. Dietary risk factors model 

To calculate the health effects of marginal dietary changes per dietary risk 

component, we adapted the Comparative Risk Assessment (CRA) used in the GBD 

(Murray et al. 2003; Gakidou et al. 2017). CRA entails determining the fraction of each 

disease attributable to changes in intakes from a baseline to a counterfactual, known as 

population attributable fraction (PAF). Since we are interested in marginal intake changes, 

we estimate PAF(∆x) for a marginal difference between the baseline and counterfactual 

intake (∆x → 0). In addition, we assume a log-linear dose-response relationship for the 

epidemiological associations (Gakidou et al. 2017).  

Therefore, the generic model for dietary risk factors (DRFs) for marginal dietary 

changes is given by: 

 

DRF = lim
∆x→0

PAF(∆x) ∙ 1
∆x
∙ BR = lim

∆x→0
�RR

∆x RI⁄ -1
RR∆x RI⁄ � ∙ 1

∆x
∙ BR 

Taylor expansion series
������������������ DRF = ln(RR)

RR
∙ BR                      (Eq. A2.1) 

 

where RR is the relative risk, RI is the reference intake for the corresponding RR, and BR 

is the burden rate of the disease associated with the risk represented by the RR. 
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A2.3. Mediated dietary risk factors 

A2.3.1. Sodium 

The GBD studies define sodium exposure using 24-hour urinary sodium estimates 

using a crosswalk adjustment between data from dietary and urinary surveys (Gakidou et 

al. 2017). 24-h urinary sodium is considered the most reliable method to measure sodium 

intake (WHO 2006), averting measurement errors present in dietary estimates due to under- 

or over-reporting (Willett 2001). Evidence supports that the health effect of sodium is 

mediated through systolic blood pressure (SBP) (Aburto et al. 2013; Gakidou et al. 2017). 

Race (black versus non-black) and hypertension status (hypertensive versus non-

hypertensive) have been found as significant effect modifiers for this relationship 

(Mozaffarian et al. 2011).  

The DFRsodium accounts for the mediation mechanism in grams of dietary sodium 

and adjusts for effect modifiers such as age, gender, race, and hypertension, as follows: 

 

DRFSodium = � ���� fa,g,ssodium ∙
ln RRSBP,o,b

a,g

10 mmHg
∙

SBPa,g,ssodiummmHg
2.3 gurinary

∙ 0.86
gurinary

gdietary
∙ BR

o,b

a,g

boagssodium

 

(Eq. A2. 2) 

 

fa,g,ssodium is the fraction of the 2016 US population in age group a and gender g and strata 

ssodium obtained by combining information from the US 2016 population distribution by the 

GBD and race and hypertension information from the National Health and Nutrition 

Examination Survey (NHANES) 2015-2016.  RRr,o,b
a,g  is the relative risk (RR) for outcome o 

and burden b due to SBP in age group a and gender g for a reference of 10 mmHg (Gakidou 

et al. 2017). SBPa,g,ssodium represents the systolic blood pressure shifts in mmHg per 2.3 

grams of urinary sodium in age group a and gender g and strata ssodium. We assume that 

86% (standard error (SE): 1.6%) of dietary sodium ingested is excreted in urine (Rhodes 

et al. 2013). BRo,b
a,g  is the burden rate for outcome o and burden b in age group a and gender 

g in μDALYs/person-day, with burden measured in years of life disable (YLD) or years of 

life lost (YLL) and YLD+YLL-DALY. BR estimates are adapted from the US estimates 

from GBD 2016 (Institute for Health Metrics and Evaluation 2018). 

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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A2.3.2. Sugar-sweetened beverages 

According to the GBD, SSB health effects are mediated via body mass index 

(Gakidou et al. 2017). Body mass index status (BMI>25 vs. BMI<25) is reported to modify 

this relationship (Mozaffarian et al. 2011; Malik et al. 2013; Gakidou et al. 2017). To 

address this, the updated DRFSSB model is: 

DRFSSB = � ���� fa,g,sBMI ∙
ln RRBMI,o,b

a,g

5 kgm2

∙

weighta,g,sBMI

heighta,g
kg

m2∙serving

226.8 grams
serving

∙ BRo,b
a,g

boagsBMI

 

(Eq. A2.3) 

fa,g,sBMI is the fraction of the 2016 US population in age group a and gender g and strata 

sBMI obtained by combining information from the US 2016 population distribution by the 

GBD and BMI status from the National Health and Nutrition Examination Survey (NHANES) 

2015-2016.  RRr,o,b
a,g  is the relative risk (RR) for outcome o and burden b due to BMI in age 

group a and gender g for a reference of 5 kg
m2  (Gakidou et al. 2017). Weighta,g,sBMI  represents 

the weight gain in kg per serving SSB (226.8 grams/serving) in age group a and gender g and 

strata sBMI which when divided by height estimates in m2 (heighta,g) results in a BMI increase 

per serving SSB. Weighta,g,sBMI  estimates are obtained from the 2016 GBD (Gakidou et al. 2017) 

and heighta,g estimates are derived using the National Health and Nutrition Examination Survey 

(NHANES) 2015-2016. BRo,b
a,g  is the burden rate for outcome o and burden b in age group a 

and gender g in μDALYs/person-day, with burden measured in years of life disable (YLD) 

or years of life lost (YLL) and YLD+YLL-DALY. BR estimates are adapted from the US 

estimates from GBD 2016 (Institute for Health Metrics and Evaluation 2018). 

A2.3.3. Saturated fatty acids 

The GBD recognizes high total serum cholesterol as an important metabolic risk 

factor for cardiovascular diseases (Gakidou et al. 2017). Evidence supports an association 

between SFA and total serum cholesterol, with the relationship influenced by the nutrient 

substitution (e.g., carbohydrates versus PUFA replaced with SFA) (Mensink 2016), thus 

the importance for a food-based index to capture SFA-related health burdens as mediated 

by serum cholesterol. To capture the effect of saturated fats on health in HENI, we use the 

2016 GBD metric, i.e., total serum cholesterol as a proxy. 

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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We use the work by the World Health Organization (WHO) in 2016 to associate SFA with 

total serum cholesterol. WHO reports that a 1% energy increase from SFA replacing 

carbohydrates results in a total cholesterol increase of 0.045 mmol/L (95% confidence 

interval (CI): 0.038 to 0.051) (Mensink 2016). As a result, the SFA DRF is estimated using: 

 

DRFSFA = ���� fa,g ∙
ln RRtotal cholesterol,o,b

a,g

1 mmolL
∙

0.045mmolL ∙ 9.25 kcal
gramsfat 

0.01 ∙ EERa,gkcal
day

∙ BRo,b
a,g

boag

 

(Eq. A2.4) 

 

where fa,g is the fraction of the 2016 US population in age group a and gender g (Global 

Burden of Disease Collaborative Network 2017), RRr,o,b
a,g  is the relative risk (RR) for 

outcome o and burden b due to total serum cholesterol in age group a and gender g for a 

reference of 1 mmol
L   (Gakidou et al. 2017). EERa,g represents the physical activity adjusted 

estimated energy requirement (EER) in age group a, gender g (Table A3.18). BRo,b
a,g  is the 

burden rate for outcome o and burden b in age group a and gender g in μDALYs/person-

day, with burden measured in years of life disable (YLD) or years of life lost (YLL) and 

YLD+YLL-DALY. BR estimates are adapted from the US estimates from GBD 2016 

(Institute for Health Metrics and Evaluation 2018). 

According to the GBD, total serum cholesterol can have adverse effects on health 

for individuals with total cholesterol above 3.1 mmol/L (119.9 mg/dL) (Gakidou et al. 

2017). Current total cholesterol levels exceed by far this limit (Benjamin et al. 2017). As a 

result, the adverse health effects of SFA are valid at any intake level. 

A2.4. Sensitivity analysis: Addition of added sugars in HENI  

Added sugars are defined as free, mono- and disaccharides sugars added to foods 

and beverages during manufacturing, processing, cooking or consumption. Dietary 

guidelines propose the restriction of added sugars to <10% of total daily energy (Brouns 

2015; Dietary Guidelines Advisory Committee 2015). Although not consistent (Khan and 

Sievenpiper 2016), evidence supports an association between added sugars and weight gain 

(Te Morenga et al. 2012), diabetes (Basu et al. 2013), and cardiovascular diseases (Yang 

et al. 2014). Since the GBD only considers SSB and does not consider added sugars as a 
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dietary risk, we performed a sensitivity analysis to determine the additional health damage 

that could occur if the health effect of added sugars was to be added in the HENI 

framework. First, we developed a DRFAdded sugar assuming that added sugar has 50% the 

effect of SSB1, which resulted in an estimate of 4.6 × 10-1 μDALY/g. Using the added 

sugar density of food items from the Food Patterns Equivalents Database (FPED) we estimated 

the HENIadded sugar per serving (Figure A2.28).  

Under the assumptions listed above, our analysis suggests that added sugar is not a 

major influential contributor to health burden for most food categories. Candy is the 

category affected the most on average, with a median health burden of added sugars of -

4.4 minutes of healthy life/serving. For about 80% of all food items, added sugars induce 

a health loss lower than a minute of healthy life/serving. However, for specific food items 

with high added sugar density in food categories such as sweet baked products, other 

desserts, and yogurts, added sugars may induce a health burden up to 10 minutes of minutes 

lost per serving. It should be noted that the effect of added sugars was not evaluated for 

sweetened beverages to avoid double counting.   

A2.5. Sensitivity analysis: Contribution of trans and saturated fatty acids to HENI 

We also evaluated the influence of TFA and SFA on HENI in a separate sensitivity 

study. TFA contributions to HENI scores should be interpreted with caution for three main 

reasons. First, the TFA content for about 60% of the food items in our analysis is based on 

imputing values using a regression described by Fulgoni et al. (Fulgoni III et al. 2018). 

Second, TFA has been eliminated or reduced in many food products since 2013 when US 

FDA determined TFA to be “no longer generally recognized as safe” (US Food and Drug 

Administration 2013), which makes keeping up-to-date values of TFA in foods a virtually 

impossible task. Third,  recent evidence support that the effect of TFA on health could by 

source-specific with natural ruminant TFA, and especially conjugated linoleic acids and 

trans-palmitoleic acid, compensating for some of the adverse effects of other TFA (Astrup 

et al. 2016; Kleber et al. 2016; Kuhnt et al. 2016).   

                                                      
1 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.5∙𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑖𝑖𝑖𝑖  1 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑆𝑆𝑆𝑆𝑆𝑆
 . We applied an estimate of 0.07 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆
 based on the 

mean sugar content of the sweetened beverages in WWEIA/NHANES (Table A2.6) 

https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/
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We investigate the contribution of TFA on HENI for all food items by food 

category (Figure A2.29). TFA appears to have a relatively small impact in all food 

categories with the median effect varying from 0.02 minutes of healthy life lost/serving for 

candy to up to 2.2 minutes of healthy life lost/serving for margarine. Very few foods have 

substantial health effects due to TFA (> 5 minutes of healthy life lost/serving), with the 

majority of them belonging to the sweet bakery products food category, which are typically 

high in industrial TFA. For foods high in natural ruminant TFA such as red meat, cheese, 

and milk the median contribution of TFA to HENI is  0.5, 0.3, and 0.2 minutes of healthy 

life lost/serving, respectively.  

The contribution of SFA on HENI is slightly higher than TFA, especially for 

animal-based food categories (Figure A2.30). The median HENISaturated fat ranges from 0 to 

3 minutes of healthy life lost per serving of diet beverages and burgers, respectively. SFA-

related health damages tend to be higher for red meat-based foods. Extreme estimates of 

HENISaturated fat (<-5 minutes of healthy life/serving) include primarily grain-based foods 

that with high levels of coconut milk (coconut milk has the highest  HENISaturated fat= -19 

minutes of healthy life/serving). The high content of SFA in coconut products is well 

known, however, evidence support that coconut-SFA may not share the detrimental impact 

as SFA from other sources (Bengmark 2017; Nagashree et al. 2017). Similarly, emerging 

evidence supports a food-dependent effect of SFA on health, with SFA from dairy having 

cardiovascular neutrality/protection (De Oliveira Otto et al. 2012; Astrup 2014; Astrup et 

al. 2016). Based on these results, if we were to exclude the health effects of TFA and SFA 

for dairy and coconut products, their HENI scores would improve substantially, with the 

majority of milk and yogurt foods having positive HENI scores (Medianmilk= 0.6 minutes 

of healthy life gained/serving, IQRmilk=-0.01 to 0.7; Medianyogurt= 0.7 minutes of healthy 

life gained/serving, IQRyogurt= 0.6 to 2.7) 

A2.6. HENI correlation analyses 

HENI scores per serving revealed that the performance of food might vary both 

between and within food groups. We performed various correlation analysis to evaluate 

whether this variability is associated with food characteristics and food components. 

Differences in energy density (Figure A2.25A) or serving size (Figure A2.25B) 

could not explain most of the variability between food categories. However, a Pearson 
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correlation analysis by food group revealed a statistically significant strong positive 

correlation between HENI scores for fruits and serving size (ρ=0.85, p <0.0001, Table 

A2.17). A weak but statistically significant positive correlation was identified between 

milk and dairy and serving size (ρ=0.38, p <0.0001). We also found weak inverse 

associations between energy density and the HENI score for mixed dishes and vegetables, 

with statistically significant correlation coefficients of -0.37 (p<0.0001) and -0.49 

(p<0.0001), respectively. 
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Figure A2.21. Cumulative gender- and age-adjusted dietary risk factor (DRFs) estimates for US adults (25 years and older) in μDALY/g 
and age group contribution (%) by gender. Fiberf,v,l,w=fiber from fruit, vegetables, legumes, and whole grains. Fiberother= fiber from 
sources other than fruits, vegetables, legumes, and whole grains. 
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Figure A2.22. Distribution of HENI in minutes of healthy life per 100 kcal for 6,870 foods in the WWEIA/NHANES 2007-2014 by 
food category. Positive HENI values indicate health benefits. Boxes represent the interquartile range (IQR), horizontal lines represent 
the medians, whiskers extend to 1.5 times the IQR, and data points represent outliers. 18 food items with zero calories were not included 
in the analysis, and 11 outliers fall outside the HENI range in this figure. The dotted line represents the neutral health effect score 
(HENI=0). Nfood represents the number of foods in each category. 
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Figure A2.23. Distribution of HENI (minutes of healthy life/100 g) for 6,888 foods in the WWEIA/NHANES 2007-2014 by food 
category. Positive HENI values indicate health benefits. Boxes represent the interquartile range (IQR), horizontal lines represent the 
medians, whiskers extend to 1.5 times the IQR, and data points represent outliers. 132 outliers fall outside the HENI range in this figure. 
The dotted line represents the neutral health effect score (HENI=0). Nfood represents the number of foods in each category. 
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Figure A2.24. Association between and median HENI scores per serving by food category and 
(A) median HENI scores per 100 kcal, and (B) median HENI scores per 100 grams. 

A 
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Figure A2.25. HENI per serving as a function of energy density (A) and serving size (B) by food group for 6,888 food items in the US 
diet. ρ represents the Pearson’s correlation coefficient. 
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Figure A2.26. Dietary risk contribution to HENI for food group (complementary of Figure 3.3): A. Protein Foods, B. Beverages, 
Nonalcoholic, C. Condiments and Sauces, D. Fats and Oils, E. Sugars, F. Fruits). The five foods are representative of the min, 25th 
percentile, median, 75th percentile, and max scores within the category (within one percentile). The black diamond represents the HENI 
score per serving. The dotted line represents the neutral health effect score (HENI=0). 
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Figure A2.27. Disease composition of HENI by food group: A. Mixed dishes, B. Protein foods, C. Milk and Dairy, D. Snacks and 
Sweets, E. Vegetables, F. Nonalcoholic Beverages, G. Condiments and Sauces, H. Fats and Oils, I. Grains, J. Sugars, K. Fruits). The 
five foods are representative of the min, 25th percentile, median, 75th percentile, and max scores within the category (within one 
percentile). The black diamond represents the HENI score per serving. The dotted line represents the neutral health effect score 
(HENI=0). YLD= years of life disabled, YLL= years of life lost 
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Figure A2.28. Risk-specific HENI estimates in minutes of healthy life per serving by food category for 6,888 food items in the 
WWEIA/NHANES 2007-2014 for added sugars. Results were estimated based on DRFadded sugars=4.6 × 10-1 μDALY/g, assuming that 
added sugars have 50% of the effect of SSB. The health effect of added sugars was not evaluated for SSBs to avoid double counting. 
Nine outliers fall outside the HENI range in this figure. 
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Figure A2.29. Risk-specific HENI estimates in minutes of healthy life per serving by food category for 6,888 food items in the 
WWEIA/NHANES 2007-2014 for trans fatty acids. 16 outliers fall outside the HENI range in this figure. 
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Figure A2.30. Risk-specific HENI estimates in minutes of healthy life per serving by food category for 6,888 food items in the 
WWEIA/NHANES 2007-2014 for saturated fatty acids. Three outliers fall outside the HENI range in this figure. 
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Table A2.15. 95% uncertainty interval (UI) characterization of dietary risk factors (DRFs) in 
μDALYs/g 
 

Dietary risk DRF 
(μDALYs/g) Lower Upper 

Seafood (omega-3) -100.54 -170.35 -39.11 
Calcium -5.988 -8.022 -4.195 
Nuts and seeds -1.837 -2.830 -1.031 
Fiberother -1.063 -1.551 -0.652 
Polyunsaturated fatty acids -0.665 -1.120 -0.250 
Whole grains -0.470 -0.735 -0.262 
Legumes -0.266 -0.449 -0.104 
Fruits -0.215 -0.390 -0.076 
Fiberf,v,l,w -0.201 -0.304 -0.110 
Vegetables -0.098 -0.178 -0.033 
Milk -0.0089 -0.016 -0.0030 
Sugar-sweetened beverages 0.065 0.020 0.164 
Red meat 0.102 0.013 0.213 
Saturated fatty acids 0.704 0.195 1.653 
Processed meat 1.060 0.199 1.902 
Trans fatty acids 4.945 3.381 6.757 
Sodium 11.70 7.959 15.34 

 
Fiberother= fiber from sources other than fruits, vegetables, legumes, and whole grains  
Fiberf,v,l,w=fiber from fruit, vegetables, legumes, and whole grains  
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Table A2.16. HENI score summary statistics per serving for 6,888 food items in the WWEIA/NHANES 2007-2014 by HENI 
category 
 

HENI categories N Min Q1 
(25th percentile) Median Q3 

(75th percentile) Max Mean 

Frankfurter sandwiches 58 -57.66 -47.57 -41.56 -37.06 0.48 -40.49 
Cured Meats/Poultry 149 -55.08 -33.37 -31.00 -28.07 -0.11 -28.60 
Egg/breakfast sandwiches 48 -47.10 -25.10 -16.09 -10.61 -1.39 -18.35 
Burgers 46 -15.28 -10.64 -8.55 -6.28 -3.02 -8.59 
Sweetened Beverages 137 -9.75 -8.00 -7.45 0.26 19.91 -3.63 
Red meat 198 -45.68 -8.30 -7.33 -6.48 -0.99 -8.06 
Meat mixed dishes 258 -87.98 -10.94 -6.88 -3.36 8.38 -11.38 
Other sandwiches 52 -42.10 -12.23 -6.48 -1.61 36.36 -8.61 
Macaroni and cheese 20 -35.64 -9.58 -5.47 -3.55 0.56 -9.12 
Pizza 85 -14.97 -10.88 -4.40 -2.05 0.87 -6.10 
Eggs 197 -31.51 -12.67 -3.11 -1.16 10.84 -6.83 
Cheese 85 -5.65 -3.42 -2.51 -1.76 1.34 -2.46 
Poultry 250 -52.40 -2.73 -2.39 -2.11 1.36 -2.93 
Margarine 28 -5.91 -3.34 -2.33 -1.59 -0.67 -2.73 
Soups 258 -30.02 -3.95 -2.23 0.60 54.56 -1.37 
Poultry sandwiches 29 -9.48 -3.39 -2.01 -0.63 7.79 -1.93 
Sweet Bakery Products 428 -18.83 -3.61 -1.23 0.62 14.38 -1.41 
Poultry mixed dishes 142 -15.86 -3.55 -1.12 0.98 11.35 -1.31 
Other pasta mixed dishes 106 -21.82 -5.09 -0.97 1.64 15.64 -1.57 
Butter, Animal Products and Fats 73 -4.25 -1.69 -0.96 -0.29 1.17 -1.15 
Other grain-based mixed dishes 203 -25.37 -4.87 -0.81 6.55 22.57 -0.04 
Milk 27 -3.32 -1.90 -0.79 -0.27 0.46 -1.10 
Cooked Cereals 99 -6.58 -1.79 -0.74 6.13 14.16 1.33 
Oils 64 -7.62 -1.40 -0.74 -0.07 2.63 -0.88 
Mexican Mixed Dishes 150 -16.32 -3.95 -0.72 2.60 18.41 -0.84 
Other Dairy Drinks and Substitutes 107 -18.66 -1.61 -0.69 0.11 5.90 -0.55 
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HENI categories N Min Q1 
(25th percentile) Median Q3 

(75th percentile) Max Mean 

Other desserts 178 -11.83 -1.96 -0.69 0.36 26.03 -0.13 
Asian Mixed Dishes 142 -35.47 -2.10 -0.42 2.98 35.40 1.22 
Quick Breads and Bread Products 91 -7.72 -2.53 -0.21 1.29 18.50 -0.18 
Condiments and Sauces 159 -9.34 -1.45 -0.17 0.81 13.35 -0.18 
Diet Beverages 29 -1.13 -0.52 -0.10 -0.04 2.57 -0.18 
Coffee and Tea 150 -2.50 -0.73 -0.04 -0.01 13.35 -0.12 
Sugars 65 -3.83 -0.03 0.01 0.99 14.62 0.69 
Starchy vegetables 300 -13.95 -0.98 0.05 1.14 12.56 -0.30 
Candy 124 -3.60 -1.13 0.09 7.58 28.58 3.96 
Yogurt 31 -2.63 -0.55 0.24 1.19 11.21 0.68 
Crackers and savory snacks 120 -4.89 -0.71 0.37 2.74 11.91 1.42 
Breads, Rolls, Tortillas 192 -2.33 -0.68 0.48 2.41 8.23 1.28 
Cooked Grains 91 -4.39 -1.78 1.14 10.12 13.84 3.64 
Mixed vegetables 480 -14.53 1.86 2.88 3.44 22.77 2.68 
Ready-to-Eat Cereals 221 -2.26 0.39 3.06 6.41 20.01 3.92 
Vegetables, excluding starchy 348 -2.34 3.04 3.44 4.53 10.26 3.76 
Snack/meal bars 56 -1.49 2.80 4.05 6.03 13.15 4.83 
Seafood mixed dishes 101 -15.81 2.28 6.04 12.44 119.40 9.81 
Seafood 287 -5.84 3.70 8.67 21.99 95.04 15.40 
Fruits 221 -4.18 6.70 11.10 16.08 31.84 11.47 
Legumes and soy products 136 -11.46 2.13 11.16 11.99 29.29 7.61 
Nuts and seeds 69 -1.85 28.16 29.73 31.15 36.31 28.07 
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Table A2.17. Pearson correlation coefficient between HENI per serving and energy density 
by the main food group 
 

Main Food Group 
Description 

Energy density 
(kcal/serving) 

Serving size 
(g/serving)    

Mixed Dishes -0.37 **** 0.09 ***     Strong + 
Protein Foods -0.12 **** -0.03         Moderate + 
Snacks and Sweets -0.15 **** -0.2 ****    Weak + 
Milk and Dairy -0.16 **   0.38 ****    Weak - 
Vegetables -0.49 **** -0.01         Moderate - 
Beverages, Nonalcoholic -0.21 ***  -0.07         Strong - 
Condiments and Sauces -0.08      0.11         
Grains 0.09 *    -0.04         
Fats and Oils 0.04      0.03         
Fruit 0.21 **   0.85 ****    
Sugars 0.09      0.14         

p-value < .0001 ‘****’; p-value < .001 ‘***’, p-value < .01 ‘**’, p-value < .05 ‘*’ 
 
 
 
Table A2.18. Physical activity adjusted estimated calorie needs per pay (kcal/day), by Age 
and Sex. Estimated daily calorie needs are obtained from the 2015-2020 Dietary Guidelines 
for Americans and physical activity distribution information from US estimates in 2008-
2010 (Schoenborn et al. 2013) 
 
 
 Age group Male Female 

25-29 2662 2018 
30-34 2662 1956 
35-39 2586 1956 
40-44 2494 1956 
45-49 2418 1931 
50-54 2418 1781 
55-59 2355 1781 
60-64 2249 1731 
65-69 2198 1704 
70-74 2198 1704 
75-79 2103 1657 
80-84 2103 1657 
85-89 2103 1657 
90-94 2103 1657 
95+ 2103 1657 

https://health.gov/dietaryguidelines/2015/guidelines/appendix-2/#table-a2-1
https://health.gov/dietaryguidelines/2015/guidelines/appendix-2/#table-a2-1
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Table A2.19. Added sugar density of sweetened beverages in the WWEIA/NHANES database. 
Information obtained from the Food Patterns Equivalents Database (FPED) 
 

Food Description Added sugars 
(g/100 g) 

Orange Julius 1.44 
Fruit smoothie drink, made with fruit or fruit juice and dairy products 10.20 
Instant breakfast, powder, milk added 5.80 
Meal supplement or replacement, commercially prepared, ready-to-drink 6.09 
High calorie beverage, canned or powdered, reconstituted 8.44 
Meal supplement or replacement, milk-based, high protein, liquid 7.43 
Meal replacement or supplement, milk based, ready-to-drink 7.43 
Licuado / Batido (milk fruit drink) 4.91 
Fruit smoothie, NFS 3.06 
Meal replacement or supplement, soy- and milk-base, powder, reconstituted with 
water 0.00 

Nutritional supplement for people with diabetes, liquid 7.43 
Ensure with fiber, liquid 3.32 
Ensure Plus liquid nutrition 11.97 
Energy Drink 10.08 
Fluid replacement, electrolyte solution 2.44 
Fruit smoothie drink, made with fruit or fruit juice only (no dairy products) 4.13 
Fruit nectar, NFS 10.08 
Apricot nectar 10.08 
Banana nectar 9.98 
Cantaloupe nectar 12.41 
Guava nectar 13.46 
Mango nectar 6.51 
Peach nectar 9.95 
Papaya nectar 11.55 
Passion fruit nectar 11.98 
Pear nectar 11.26 
Soursop (Guanabana) nectar 7.64 
Full Throttle Energy Drink 12.10 
Ensure liquid nutrition 0.00 
Soft drink, NFS 9.16 
Coconut water, unsweetened (liquid from coconuts) 0.00 
Coconut water, sweetened 5.05 
Soft drink, fruit flavored, caffeine containing 10.21 
Soft drink, ale type 8.06 
Fruit juice drink 10.17 
Fruit punch, made with fruit juice and soda 4.35 
Fruit punch, made with soda, fruit juice, and sherbet or ice cream 6.54 

https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/
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Food Description Added sugars 
(g/100 g) 

Fruit flavored drink (formerly lemonade) 11.28 
Citrus fruit juice drink, containing 40-50% juice 6.42 
Frozen daiquiri mix, frozen concentrate, not reconstituted 48.43 
Frozen daiquiri mix, from frozen concentrate, reconstituted 11.07 
Pina Colada, nonalcoholic 21.07 
Fruit flavored drink, with high vitamin C 12.99 
Fruit juice drink, with high vitamin C 11.30 
Vegetable and fruit juice drink, with high vitamin C 0.88 
Fruit juice drink, with high vitamin C, plus added calcium 5.69 
Fruit flavored drink, reduced sugar, with high vitamin C, plus added calcium 7.89 
Horchata beverage, made with rice 9.10 
Horchata beverage, NFS 12.97 
Sugar cane beverage, Puerto Rican 6.95 
Atole (corn meal beverage) 11.74 
Nonalcoholic malt beverage 8.06 
Shirley Temple 13.18 
Meal replacement or supplement, liquid, soy-based 0.00 
Soft drink, cola-type, with higher caffeine 10.58 
Mavi drink 10.38 
Wine, nonalcoholic 0.00 
Monster Energy Drink 11.26 
Mountain Dew AMP Energy Drink 12.10 
Powerade sports drink 6.09 
Carbonated juice drink, NS as to type of juice 0.00 
Boost, nutritional drink, ready-to-drink 3.99 
Boost Plus, nutritional drink, ready-to-drink 3.99 
Carnation Instant Breakfast, nutritional drink, regular, ready-to-drink 5.67 
Ensure, nutritional shake, ready-to-drink 3.99 
Ensure Plus, nutritional shake, ready-to-drink 17.98 
Glucerna, nutritional shake, ready-to-drink 2.02 
Kellogg's Special K Protein Shake 4.49 
Muscle Milk, ready-to-drink 0.00 
Muscle Milk, light, ready-to-drink 0.00 
Slim Fast Shake, meal replacement, regular, ready-to-drink 1.39 
Slim Fast Shake, meal replacement, high protein, ready-to-drink 0.00 
Nutritional drink or meal replacement, ready-to-drink, NFS 3.99 
Nutritional drink or meal replacement, high protein, ready-to-drink, NFS 0.00 
Nutritional drink or meal replacement, high protein, light, ready-to-drink, NFS 3.99 
Nutritional drink or meal replacement, liquid, soy-based 3.99 
Red Bull Energy Drink 10.08 
NOS Energy Drink 11.26 



173 
 

Food Description Added sugars 
(g/100 g) 

Rockstar Energy Drink 12.26 
SoBe Energize Energy Juice Drink 10.00 
XS Energy Drink 0.00 
Fruit smoothie, with whole fruit and dairy 3.06 
Fruit smoothie, with whole fruit and dairy, added protein 3.30 
Fruit smoothie juice drink, with dairy 0.00 
Vault Energy Drink 12.98 
Fruit smoothie, with whole fruit (no dairy) 0.00 
Fruit smoothie, with whole fruit (no dairy), added protein 0.00 
Fruit smoothie juice drink (no dairy) 0.36 
Fruit smoothie, light 0.00 
Fruit smoothie, bottled 0.00 
Soft drink, cola 9.95 
Soft drink, cola, reduced sugar 5.17 
Soft drink, cola, decaffeinated 10.58 
Soft drink, pepper type 9.95 
Soft drink, pepper type, decaffeinated 10.58 
Fruit and vegetable smoothie 0.00 
Fruit and vegetable smoothie, added protein 0.00 
Fruit and vegetable smoothie, bottled 0.00 
Soft drink, cream soda 13.31 
Soft drink, fruit flavored, caffeine free 8.99 
Soft drink, ginger ale 8.90 
Soft drink, root beer 10.58 
Soft drink, cola, fruit or vanilla flavored 9.95 
Fruit juice drink, citrus, carbonated 0.00 
Fruit juice drink, noncitrus, carbonated 0.00 
Tamarind drink (Refresco de tamarindo) 13.41 
Margarita mix, nonalcoholic 21.42 
Fruit flavored smoothie drink, frozen (no dairy) 7.56 
Cranberry juice drink, with high vitamin C 9.87 
Sunny D 12.10 
Fruit flavored drink, powdered, reconstituted 6.50 
Fruit flavored drink, with high vitamin C, powdered, reconstituted 9.75 
Fruit juice drink, with high vitamin C, light 2.60 
Fruit juice drink, diet 0.00 
Cranberry juice drink, with high vitamin C, light 2.60 
Orange juice beverage, 40-50% juice, light 0.00 
Vegetable and fruit juice drink, with high vitamin C, light 0.00 
Soft drink, chocolate flavored 10.71 
Sunny D, reduced sugar 0.00 
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Food Description Added sugars 
(g/100 g) 

Lemonade, fruit juice drink 11.68 
Lemonade, fruit flavored drink 6.50 
Fruit flavored drink 15.83 
Capri Sun, fruit juice drink 7.01 
Sunny D, added calcium 6.01 
Refresco de avena (oatmeal beverage with water) 9.34 
Fruit juice drink, light 7.01 
Atole de avena (oatmeal beverage with milk) 11.86 
Grape juice drink, light 0.00 
Atole de chocolate / Champurrado (cornmeal beverage with chocolate and milk) 14.45 
Apple juice beverage, 40-50% juice, light 4.79 
Lemonade, fruit juice drink, light 5.00 
Horchata beverage, made with water 8.04 
Horchata beverage, made with milk 8.76 
Gatorade G sports drink 5.25 
Sports drink, NFS 5.25 
Slim Fast Shake, meal replacement, sugar free, ready-to-drink 1.39 
Energy drink, sugar free 0.00 
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Table A2.20. Correspondence table between USDA food coding scheme and HENI food categories 
 

Main Group 
Description 

Subgroup Description Category Description Final Categories 

Alcoholic Beverages Alcoholic Beverages Beer Alcoholic Beverages 
Alcoholic Beverages Alcoholic Beverages Liquor and cocktails Alcoholic Beverages 
Alcoholic Beverages Alcoholic Beverages Wine Alcoholic Beverages 
Beverages, Nonalcoholic 100% Juice Citrus juice 100% Juice 
Beverages, Nonalcoholic 100% Juice Other fruit juice 100% Juice 
Beverages, Nonalcoholic 100% Juice Apple juice 100% Juice 
Beverages, Nonalcoholic 100% Juice Vegetable juice 100% Juice 
Beverages, Nonalcoholic Coffee and Tea Coffee Coffee and Tea 
Beverages, Nonalcoholic Coffee and Tea Tea Coffee and Tea 
Beverages, Nonalcoholic Diet Beverages Diet soft drinks Diet Beverages 
Beverages, Nonalcoholic Diet Beverages Other diet drinks Diet Beverages 
Beverages, Nonalcoholic Diet Beverages Diet sport and energy drinks Diet Beverages 
Beverages, Nonalcoholic Sweetened Beverages Smoothies and grain drinks Sweetened Beverages 
Beverages, Nonalcoholic Sweetened Beverages Nutritional beverages Sweetened Beverages 
Beverages, Nonalcoholic Sweetened Beverages Fruit drinks Sweetened Beverages 
Beverages, Nonalcoholic Sweetened Beverages Soft drinks Sweetened Beverages 
Beverages, Nonalcoholic Sweetened Beverages Sport and energy drinks Sweetened Beverages 
Condiments and Sauces Condiments and Sauces Dips, gravies, other sauces Condiments and Sauces 
Condiments and Sauces Condiments and Sauces Pasta sauces, tomato-based Condiments and Sauces 
Condiments and Sauces Condiments and Sauces Soy-based condiments Condiments and Sauces 
Condiments and Sauces Condiments and Sauces Mustard and other condiments Condiments and Sauces 
Condiments and Sauces Condiments and Sauces Olives, pickles, pickled vegetables Condiments and Sauces 
Condiments and Sauces Condiments and Sauces Tomato-based condiments Condiments and Sauces 
Fats and Oils Fats and Oils Cream and cream substitutes Butter, Animal Products and Fats 
Fats and Oils Fats and Oils Cream cheese, sour cream, whipped 

cream 
Butter, Animal Products and Fats 

Fats and Oils Fats and Oils Butter and animal fats Butter, Animal Products and Fats 
Fats and Oils Fats and Oils Margarine Margarine 
Fats and Oils Fats and Oils Mayonnaise Butter, Animal Products and Fats 
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Main Group 
Description 

Subgroup Description Category Description Final Categories 

Fats and Oils Fats and Oils Salad dressings and vegetable oils Oils 
Fruit Fruits Citrus fruits Fruits 
Fruit Fruits Dried fruits Fruits 
Fruit Fruits Other fruits and fruit salads Fruits 
Fruit Fruits Apples Fruits 
Fruit Fruits Bananas Fruits 
Fruit Fruits Melons Fruits 
Fruit Fruits Grapes Fruits 
Fruit Fruits Peaches and nectarines Fruits 
Fruit Fruits Berries Fruits 
Grains Breads, Rolls, Tortillas Yeast breads Breads, Rolls, Tortillas 
Grains Breads, Rolls, Tortillas Rolls and buns Breads, Rolls, Tortillas 
Grains Breads, Rolls, Tortillas Bagels and English muffins Breads, Rolls, Tortillas 
Grains Breads, Rolls, Tortillas Tortillas Breads, Rolls, Tortillas 
Grains Cooked Cereals Grits and other cooked cereals Cooked Cereals 
Grains Cooked Cereals Oatmeal Cooked Cereals 
Grains Cooked Grains Pasta, noodles, cooked grains Cooked Grains 
Grains Cooked Grains Rice Cooked Grains 
Grains Quick Breads and Bread Products Biscuits, muffins, quick breads Quick Breads and Bread Products 
Grains Quick Breads and Bread Products Pancakes, waffles, French toast Quick Breads and Bread Products 
Grains Ready-to-Eat Cereals Ready-to-eat cereal, lower sugar 

(=<21.2g/100g) 
Ready-to-Eat Cereals 

Grains Ready-to-Eat Cereals Ready-to-eat cereal, higher sugar 
(>21.2g/100g) 

Ready-to-Eat Cereals 

Milk and Dairy Cheese Cheese Cheese 
Milk and Dairy Cheese Cottage/ricotta cheese Cheese 
Milk and Dairy Dairy Drinks and Substitutes Milk substitutes Other Dairy Drinks and Substitutes 
Milk and Dairy Dairy Drinks and Substitutes Milk shakes and other dairy drinks Other Dairy Drinks and Substitutes 
Milk and Dairy Flavored Milk Flavored milk, whole Other Dairy Drinks and Substitutes 
Milk and Dairy Flavored Milk Flavored milk, nonfat Other Dairy Drinks and Substitutes 
Milk and Dairy Flavored Milk Flavored milk, reduced fat Other Dairy Drinks and Substitutes 



177 
 

Main Group 
Description 

Subgroup Description Category Description Final Categories 

Milk and Dairy Flavored Milk Flavored milk, lowfat Other Dairy Drinks and Substitutes 
Milk and Dairy Milk Milk, reduced fat Milk 
Milk and Dairy Milk Milk, whole Milk 
Milk and Dairy Milk Milk, lowfat Milk 
Milk and Dairy Milk Milk, nonfat Milk 
Milk and Dairy Yogurt Yogurt, regular Yogurt 
Milk and Dairy Yogurt Yogurt, Greek Yogurt 
Mixed Dishes Mixed Dishes - Asian Stir-fry and soy-based sauce mixtures Asian Mixed Dishes 
Mixed Dishes Mixed Dishes - Asian Fried rice and lo/chow mein Asian Mixed Dishes 
Mixed Dishes Mixed Dishes - Asian Egg rolls, dumplings, sushi Asian Mixed Dishes 
Mixed Dishes Mixed Dishes - Grain-based Rice mixed dishes Other grain-based mixed dishes 
Mixed Dishes Mixed Dishes - Grain-based Turnovers and other grain-based items Other grain-based mixed dishes 
Mixed Dishes Mixed Dishes - Grain-based Pasta mixed dishes, excludes macaroni 

and cheese 
Other pasta mixed dishes 

Mixed Dishes Mixed Dishes - Grain-based Macaroni and cheese Macaroni and cheese 
Mixed Dishes Mixed Dishes - Meat, Poultry, 

Fish 
Meat mixed dishes Meat mixed dishes 

Mixed Dishes Mixed Dishes - Meat, Poultry, 
Fish 

Poultry mixed dishes Poultry mixed dishes 

Mixed Dishes Mixed Dishes - Meat, Poultry, 
Fish 

Seafood mixed dishes Seafood mixed dishes 

Mixed Dishes Mixed Dishes - Mexican Burritos and tacos Mexican Mixed Dishes 
Mixed Dishes Mixed Dishes - Mexican Other Mexican mixed dishes Mexican Mixed Dishes 
Mixed Dishes Mixed Dishes - Mexican Nachos Mexican Mixed Dishes 
Mixed Dishes Mixed Dishes - Pizza Pizza Pizza 
Mixed Dishes Mixed Dishes - Sandwiches Other sandwiches Other sandwiches 
Mixed Dishes Mixed Dishes - Sandwiches Burgers Burgers 
Mixed Dishes Mixed Dishes - Sandwiches Chicken/turkey sandwiches Poultry sandwiches 
Mixed Dishes Mixed Dishes - Sandwiches Frankfurter sandwiches Frankfurter sandwiches 
Mixed Dishes Mixed Dishes - Sandwiches Egg/breakfast sandwiches Egg/breakfast sandwiches 
Mixed Dishes Mixed Dishes - Soups Soups Soups 
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Main Group 
Description 

Subgroup Description Category Description Final Categories 

Other Other Not included in a food category Other 
Other Other Protein and nutritional powders Other 
Protein Foods Cured Meats/Poultry Cold cuts and cured meats Cured Meats/Poultry 
Protein Foods Cured Meats/Poultry Bacon Cured Meats/Poultry 
Protein Foods Cured Meats/Poultry Frankfurters Cured Meats/Poultry 
Protein Foods Cured Meats/Poultry Sausages Cured Meats/Poultry 
Protein Foods Eggs Eggs and omelets Eggs 
Protein Foods Meats Beef, excludes ground Red meat 
Protein Foods Meats Ground beef Red meat 
Protein Foods Meats Pork Red meat 
Protein Foods Meats Lamb, goat, game Red meat 
Protein Foods Meats Liver and organ meats Red meat 
Protein Foods Plant-based Protein Foods Beans, peas, legumes Legumes and soy products 
Protein Foods Plant-based Protein Foods Processed soy products Legumes and soy products 
Protein Foods Plant-based Protein Foods Nuts and seeds Nuts and seeds 
Protein Foods Poultry Chicken, whole pieces Poultry 
Protein Foods Poultry Chicken patties, nuggets and tenders Poultry 
Protein Foods Poultry Turkey, duck, other poultry Poultry 
Protein Foods Seafood Fish Seafood 
Protein Foods Seafood Shellfish Seafood 
Snacks and Sweets Candy Candy not containing chocolate Candy 
Snacks and Sweets Candy Candy containing chocolate Candy 
Snacks and Sweets Crackers Crackers, excludes saltines Crackers and savory snacks 
Snacks and Sweets Crackers Saltine crackers Crackers and savory snacks 
Snacks and Sweets Other Desserts Ice cream and frozen dairy desserts Other desserts 
Snacks and Sweets Other Desserts Pudding Other desserts 
Snacks and Sweets Other Desserts Gelatins, ices, sorbets Other desserts 
Snacks and Sweets Savory Snacks Tortilla, corn, other chips Crackers and savory snacks 
Snacks and Sweets Savory Snacks Pretzels/snack mix Crackers and savory snacks 
Snacks and Sweets Savory Snacks Popcorn Crackers and savory snacks 
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Main Group 
Description 

Subgroup Description Category Description Final Categories 

Snacks and Sweets Savory Snacks Potato chips Crackers and savory snacks 
Snacks and Sweets Snack/Meal Bars Nutrition bars Snack/meal bars 
Snacks and Sweets Snack/Meal Bars Cereal bars Snack/meal bars 
Snacks and Sweets Sweet Bakery Products Cakes and pies Sweet Bakery Products 
Snacks and Sweets Sweet Bakery Products Doughnuts, sweet rolls, pastries Sweet Bakery Products 
Snacks and Sweets Sweet Bakery Products Cookies and brownies Sweet Bakery Products 
Sugars Sugars Jams, syrups, toppings Sugars 
Sugars Sugars Sugars and honey Sugars 
Sugars Sugars Sugar substitutes Sugars 
Vegetables Vegetables, excluding Potatoes Vegetable mixed dishes Mixed vegetables 
Vegetables Vegetables, excluding Potatoes Other vegetables and combinations Mixed vegetables 
Vegetables Vegetables, excluding Potatoes Other starchy vegetables Starchy vegetables 
Vegetables Vegetables, excluding Potatoes Dark green vegetables, excludes 

lettuce 
Vegetables, excluding starchy 

Vegetables Vegetables, excluding Potatoes Lettuce and lettuce salads Vegetables, excluding starchy 
Vegetables Vegetables, excluding Potatoes Carrots Vegetables, excluding starchy 
Vegetables Vegetables, excluding Potatoes Other red and orange vegetables Vegetables, excluding starchy 
Vegetables Vegetables, excluding Potatoes Tomatoes Vegetables, excluding starchy 
Vegetables Vegetables, excluding Potatoes String beans Vegetables, excluding starchy 
Vegetables Vegetables, excluding Potatoes Corn Starchy vegetables 
Vegetables Vegetables, excluding Potatoes Onions Vegetables, excluding starchy 
Vegetables White Potatoes White potatoes, baked or boiled Starchy vegetables 
Vegetables White Potatoes Mashed potatoes and white potato 

mixtures 
Starchy vegetables 

Vegetables White Potatoes French fries and other fried white 
potatoes 

Starchy vegetables 

Water Flavored or Enhanced Water Flavored or carbonated water Water 
Water Flavored or Enhanced Water Enhanced or fortified water Water 
Water Plain Water Tap water Water 
Water Plain Water Bottled water Water 



180 
 

References 

Aburto NJ, Ziolkovska A, Hooper L, et al (2013) Effect of lower sodium intake on health: 
systematic review and meta-analyses. BMJ 346:f1326. doi: 10.1136/bmj.f1326 

Astrup A (2014) A changing view on saturated fatty acids and dairy: From enemy to friend. Am J 
Clin Nutr 100:1407–1408. doi: 10.3945/ajcn.114.099986 

Astrup A, Rice Bradley BH, Thomas Brenna J, et al (2016) Regular-fat dairy and human health: 
A synopsis of symposia presented in Europe and North America (2014-2015). Nutrients 8: 

Basu S, Yoffe P, Hills N, Lustig RH (2013) The Relationship of Sugar to Population-Level 
Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data. PLoS 
One 8: 

Bengmark S (2017) Choose right carbohydrates and right fats (RCRF) - keys to optimal health. 
HepatoBiliary Surg Nutr 6:429–433. doi: 10.21037/hbsn.2017.12.03 

Benjamin EJ, Blaha MJ, Chiuve SE, et al (2017) Heart Disease and Stroke Statistics—2017 
Update: A Report From the American Heart Association 

Brouns F (2015) WHO Guideline: “Sugars intake for adults and children” raises some question 
marks. Agro Food Ind Hi Tech 26:34–36. doi: 978 92 4 154902 8 

De Oliveira Otto MC, Mozaffarian D, Kromhout D, et al (2012) Dietary intake of saturated fat by 
food source and incident cardiovascular disease : the Multi-Ethnic Study of Atherosclerosis 
1 – 4. Am J Clin Nutr 07:397–404. doi: 10.3945/ajcn.112.037770.INTRODUCTION 

Dietary Guidelines Advisory Committee (2015) Scientific Report of the 2015 Dietary Guidelines 
Advisory Committee. Washington (DC) 

Fulgoni III VL, Wallace TC, Stylianou KS, Jolliet O (2018) Calculating Intake of Dietary Risk 
Components Used in the Global Burden of Disease Studies from the What We Eat in 
America / National Health and Nutrition Examination Surveys. Submitted: 

Gakidou E, Afshin A, Abajobir AA, et al (2017) Global, regional, and national comparative risk 
assessment of 84 behavioural, environmental and occupational, and metabolic risks or 
clusters of risks, 1990-2016: A systematic analysis for the Global Burden of Disease Study 
2016. Lancet 390:1345–1422. doi: 10.1016/S0140-6736(17)32366-8 

Global Burden of Disease Collaborative Network (2017) Global Burden of Disease Study 2016 
(GBD 2016) Population Estimates 1950-2016. Institute for Health Metrics and Evaluation 
(IHME), Seattle, United States 

Hu FB, Manson JE, Willett WC (2001) Types of Dietary Fat and Risk of Coronary Heart Disease: 
A Critical Review. J Am Coll Nutr 20:5–19. doi: 10.1080/07315724.2001.10719008 

Institute for Health Metrics and Evaluation (2018) GBD Results Tool. In: IHME, Univ. Washingt. 
http://ghdx.healthdata.org/gbd-results-tool. Accessed 29 Mar 2018 

Khan TA, Sievenpiper JL (2016) Controversies about sugars: results from systematic reviews and 
meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr 55:25–43. doi: 
10.1007/s00394-016-1345-3 

Kleber ME, Delgado GE, Lorkowski S, et al (2016) Trans-fatty acids and mortality in patients 



181 
 

referred for coronary angiography: The Ludwigshafen Risk and Cardiovascular Health 
Study. Eur Heart J 37:1072–1078. doi: 10.1093/eurheartj/ehv446 

Kuhnt K, Degen C, Jahreis G (2016) Evaluation of the Impact of Ruminant Trans Fatty Acids on 
Human Health: Important Aspects to Consider. Crit Rev Food Sci Nutr 56:1964–1980. doi: 
10.1080/10408398.2013.808605 

Malik VS, Pan A, Willett WC, Hu FB (2013) Sugar-sweetened beverages and weight gain in 
children and adults: a systematic review and meta-analysis. Am J Clin Nutr 98:1084–102. 
doi: 10.3945/ajcn.113.058362.1 

Mensink RP (2016) Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic 
review and regression analysis. Geneva 

Mozaffarian D, Hao T, Rimm EB, et al (2011) Changes in Diet and Lifestyle and Long-Term 
Weight Gain in Women and Men. N Engl J Med 364:2392–404 

Murray CJL, Ezzati M, Lopez AD, et al (2003) Comparative quantification of health risks: 
coneptual framework and methodological issues. Popul Health Metr 1:1–20 

Nagashree RS, Manjunath NK, Indu M, et al (2017) Effect of a Diet Enriched with Fresh Coconut 
Saturated Fats on Plasma Lipids and Erythrocyte Fatty Acid Composition in Normal 
Adults. J Am Coll Nutr 36:330–334. doi: 10.1080/07315724.2017.1280713 

Rhodes DG, Murayi T, Clemens JC, et al (2013) The USDA Automated Multiple-Pass Method 
accurately assesses population sodium intakes. Am J Clin Nutr 97:958–964. doi: 
10.3945/ajcn.112.044982 

Schoenborn CA, Adams PF, Peregoy JA (2013) Health behaviors of adults: United States, 2008-
2010 

Slattery ML, Randall DE (1988) Trends in coronary heart disease consumption in the United 
States. Am J Clin Nutr 47:1060–1067 

Te Morenga L, Mallard S, Mann J (2012) Dietary sugars and body weight: systematic review and 
meta-analyses of randomised controlled trials and cohort studies. BMJ 346:e7492–e7492. 
doi: 10.1136/bmj.e7492 

US Food and Drug Administration (2013) Tentative determination regarding partially 
hydrogenated oils; request for comments and for scientific data and information 

WHO (2006) Reducing salt intake in populations: report of a WHO forum and technical meeting. 
Paris, France 

Willett W (2001) Commentary: Dietary diaries versus food frequency questionnaires - A case of 
undigestible data. Int J Epidemiol 30:317–319. doi: 10.1093/ije/30.2.317 

World Cancer Research Fund, American Institute for Cancer Research (2007) Food, Nutrition, 
Physical Activity, and the Prevention of Cancer: a Global Perspective. AICR, Washington, 
DC 

Yang Q, Zhang Z, Gregg EW, et al (2014) Added Sugar Intake and Cardiovascular Diseases 
Mortality Among US Adults. JAMA - J Am Med Assoc 174:516–524. doi: 
10.1001/jamainternmed.2013.13563 

 



182 
 

 
 

APPENDIX 3 
Spatially-explicit characterization of the exposure and health burden of fine particulate 

matter in the U.S. 

A3.1. Land use and land cover for agriculture 

 
We used land use and land cover geospatial data from FAO to estimate agriculture scores 

for InMAP grid-U.S. county cells (N=123,000) (FAO; Nachtergaele and Petri 2013). To estimate 

agricultural scores we grouped the 36 land use and land cover categories into agriculture and non-

agriculture land use (Table A3.21). Since agriculture is primarily contributing to ammonia (NH3) 

emissions, with livestock activities leading emissions (Paulot and Jacob 2014), we further 

disaggregated agriculture land use into four categories that reflect varying levels of livestock 

activity and assigned higher weights to land use with higher livestock activity. We supplemented 

land use with livestock density geospatial data from FAO (FAO).
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Table A3.21. Grouping and weighting of the land cover categories from GeoNetwork (FAO) into agriculture and non-agriculture 
categories.  

Category Description GeoNetwork Category Weight 

Non-agriculture Non-agriculture 
land use 

Livestock density = "No data", "None", "Water" 

0 

Land cover and land use = "Forest virgin", "Forest protected", "Grasslands 
unmanaged", "Grasslands protected", "Shrub cover unmanaged", "Shrub cover 
protected", "Urban areas", "Wetlands unmanaged", "Wetlands protected", 
"Wetlands mangroves", "Sparse areas unmanaged", "Sparse areas protected", 
"Bare areas unmanaged", "Bare areas protected", "Water unmanaged", "Water 
protected", "Water inland fisheries" 

Agriculture 

Other agriculture-
related land use 

Land cover and land use = "Forest with agriculture activities", "Rainfed 
Agriculture (Subsistence/commercial)","Agriculture Large scale irrigation", 
"Agriculture protected", "Wetlands with agriculture activities" 

1 

Land use with 
low livestock 

density 

Livestock density = "Low livestock" 

2 Land cover and land use = "Grasslands low livestock density", "Shrub cover low 
livestock density", "Sparse areas with low livestock density", "Bare areas with low 
livestock density" 

Land use with 
moderate 

livestock density 

Livestock density = "Moderate livestock" 

3 

Land cover and land use = "Forestry moderate or higher livestock density", 
"Grasslands moderate livestock density", "Shrub cover moderate livestock 
density", " Crops and moderate livestock density", "Crops, large-scale irrigation, 
moderated or higher livestock density", "Sparse areas with moderate/high 
livestock density", "Bare areas with moderate livestock density" 

Land use with 
high livestock 

density 

Livestock density = "High livestock" 
4 Land cover and land use = "Grasslands high livestock density", "Shrub cover high 

livestock density", "Crops and high livestock density", 
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Table A3.22. Emission-weighted national intake fraction (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
) and intake travel distances 

(ITD, in km) for the contiguous U.S. by sector. Sectors are defined based on the classification of 
the National Emission Inventory by the EPA. (U.S. Environmental Protection Agency 2018) 
 

 
 Precursor Agriculture Fuel 

Combustion 
Industrial 
Processes Mobile All-sectors 

Intake fraction 
(𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) 

PM2.5 3.85E-07 1.14E-06 1.15E-06 1.81E-06 8E-07 

NH3 3.44E-07 1.33E-06 9.93E-07 1.43E-06 3.68E-07 

SO2  2.69E-07 2.58E-07 3.15E-07 2.66E-07 

NOX  1.32E-07 1.14E-07 1.44E-07 1.34E-07 

ITD25 
(km) 

PM2.5 133 45 61 46 68 

NH3 195 51 92 49 175 

SO2  174 164 78 171 

NOX  178 258 142 178 

ITD50 
(km) 

PM2.5 300 113 154 113 165 

NH3 414 133 223 126 382 

SO2  325 327 166 324 

NOX  384 527 343 400 

ITD95 
(km) 

PM2.5 1394 689 895 693 1029 

NH3 1528 797 1041 782 1496 

SO2  1002 1144 792 1035 

NOX  1297 1645 1413 1447 

ITDx= Radial distance from the source in km to reach x% of the cumulative intake of an emission   
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Figure A3.31. Effect factors (EF) for PM2.5 in 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄  for two exposure-response slope: A) Marginal and B) 
Average using the approach by Fantke et al. (2018) Each point estimate represents the point-estimate based on the background PM2.5 

ambient levels from 2016.
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Table A3.23. Pearson correlation coefficient between characterization factors (CFs) for 
PM2.5 from primary PM2.5, NH3, SO2, and NOx ground emissions in the greater North 
American region and background ambient PM2.5 concentrations in 2016 (WHO 2016) and 
precursor-specific intake fractions (iFs) 

p-value < .0001 ‘****’; p-value < .001 ‘***’, p-value < .01 ‘**’, p-value < .05 ‘*’

 
Ambient PM2.5 
concentration iFPM2.5 iFNH3 iFSO2 iFNOx 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃2.5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.41**** 0.91**** 0.89**** 0.62**** 0.76**** 

𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁3
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.44**** 0.93**** 0.91**** 0.64**** 0.78**** 

𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.4**** 0.84**** 0.91**** 0.61**** 0.67**** 

𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.43**** 0.85**** 0.92**** 0.63**** 0.69**** 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃2.5
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0.45**** 0.57**** 0.59**** 0.91**** 0.68**** 

𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁3
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0.47**** 0.59**** 0.61**** 0.92**** 0.69**** 

𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0.36**** 0.52**** 0.48**** 0.48**** 0.86**** 

𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0.41**** 0.55**** 0.51**** 0.52**** 0.88**** 
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Table A3.24. Emission-weighted national characterization factors ( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) and burden travel 
distances (BTD in km) for the contiguous U.S. by sector for exposure-response marginal and 
average defined by Fantke et al. (2018). Sectors are defined based on the classification of the 
National Emission Inventory by the EPA (2018). 

 Precursor Agriculture Fuel 
Combustion 

Industrial 
Processes Mobile All-sectors 

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) 

PM2.5 5.56E-05 1.45E-04 1.34E-04 2.02E-04 1.03E-04 
NH3 4.57E-05 1.41 E-04 9.79E-05 0.000152 4.84E-05 
SO2  3.69E-05 3.52E-05 3.68E-05 3.63E-05 
NOX  1.84E-05 1.69E-05 1.93E-05 1.85E-05 

𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) 

PM2.5 1.13E-04 2.98E-04 2.76E-04 4.19E-04 2.09E-04 
NH3 9.37E-05 2.95E-04 2.07E-04 3.19E-04 9.91E-05 
SO2  7.67E-05 7.26E-05 7.54E-05 7.52E-05 
NOX  3.8E-05 3.45E-05 3.99E-05 3.8E-05 

BTD25marginal 
(km) 

PM2.5 101 38 48 37 53 
NH3 168 43 76 41 150 
SO2  159 151 76 155 
NOX  153 234 123 153 

BTD25average 
(km) 

PM2.5 111 39 50 40 57 
NH3 177 45 80 43 157 
SO2  162 156 78 159 
NOX  166 248 133 165 

BTD50marginal 
(km) 

PM2.5 249 97 127 95 135 
NH3 370 115 195 108 333 
SO2  304 308 161 302 
NOX  352 495 316 365 

BTD50average 
(km) 

PM2.5 266 101 137 100 143 
NH3 383 120 202 112 347 
SO2  311 318 164 309 
NOX  362 508 331 381 

BTD95marginal 
(km) 

PM2.5 1301 646 848 657 914 
NH3 1525 785 994 768 1475 
SO2  963 1095 792 992 
NOX  1262 1595 1403 1423 

BTD95average 
(km) 

PM2.5 1328 654 868 668 950 
NH3 1540 794 1000 777 1495 
SO2  965 1100 804 996 
NOX  1264 1599 1406 1426 

BTDx= Radial distance from the source in km to reach x% of the cumulative health burden of an emission   
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Figure A3.32. 25%, 50% and 75% intake travel distance (ITDx) in km. Each point estimate represents radial distance from the point to 
reach x% of the cumulative intake fraction for an emission released at the point.
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Figure A3.33. 25%, 50%, and 95% burden travel distance (BTDx) in km for exposure-response slopes: A) Marginal and B) Average. 
Each point estimate represents radial distance from the point to reach x% of the cumulative characterization factor for an emission 
released at the point.
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Table A3.25. Distribution of 25%, 50%, and 95% intake (ITD) and burden (BTD) travel distance 
for rural* source locations in the contiguous U.S. (N=17,871).

  Min Q1  Median Q3  Max Mean SD 
IT

D
25

 PM2.5 0.0 3.0 9.0 33.0 858.0 40.0 86.9 
NH3 0.0 5.0 12.0 53.0 1105.0 63.1 135.1 
SO2 0.0 30.0 81.0 188.0 1138.0 149.5 185.6 
NOX 0.0 8.0 19.0 91.0 1505.0 131.0 275.9 

IT
D

50
 PM2.5 0.0 11.0 26.0 102.0 1335.0 96.3 173.6 

NH3 0.0 14.0 42.0 170.0 1848.0 158.7 278.2 
SO2 7.0 69.0 177.0 372.0 1710.0 289.9 321.6 
NOX 0.0 29.0 107.0 311.0 2320.0 312.4 485.3 

IT
D

95
 PM2.5 10.0 149.0 409.0 823.0 3139.0 625.5 658.6 

NH3 15.0 230.0 628.0 1316.0 3685.0 896.8 839.1 
SO2 59.0 375.0 840.0 1486.0 3527.0 1061.2 856.4 
NOX 25.0 515.0 1216.0 2153.0 3936.0 1405.2 1037.0 

M
ar

gi
na

l 

B
T

D
25

 PM2.5 0.0 3.0 8.0 30.0 576.0 32.3 64.9 
NH3 0.0 5.0 11.0 46.0 782.0 50.6 101.3 
SO2 0.0 30.0 78.0 174.0 942.0 135.0 158.3 
NOX 0.0 8.0 19.0 82.0 1253.0 112.1 232.1 

B
T

D
50

 PM2.5 0.0 11.0 24.0 88.0 981.0 80.6 138.7 
NH3 0.0 13.0 36.0 147.0 1458.0 131.4 218.7 
SO2 5.0 71.0 176.0 356.0 1483.0 270.5 281.2 
NOX 0.0 28.0 101.0 284.5 2072.0 285.0 438.8 

B
T

D
95

 PM2.5 8.0 156.0 399.0 788.0 2839.0 592.6 601.3 
NH3 14.0 234.5 616.0 1305.0 3387.0 875.1 799.0 
SO2 57.0 387.0 826.0 1493.0 3304.0 1059.9 828.3 
NOX 19.0 549.5 1192.0 2246.0 3824.0 1428.5 1038.5 

A
ve

ra
ge

 

B
T

D
25

 PM2.5 0.0 3.0 8.0 30.0 605.0 34.4 71.7 
NH3 0.0 5.0 11.0 47.0 899.0 54.5 114.0 
SO2 0.0 30.0 78.0 175.0 1035.0 140.9 171.7 
NOX 0.0 8.0 19.0 84.0 1417.0 123.8 261.3 

B
T

D
50

 PM2.5 0.0 11.0 24.0 89.0 1149.0 85.4 152.5 
NH3 0.0 13.0 37.0 151.0 1600.0 139.6 240.6 
SO2 5.0 70.0 175.0 358.0 1569.0 281.7 308.1 
NOX 0.0 29.0 101.0 288.0 2216.0 299.4 468.3 

B
T

D
95

 PM2.5 10.0 154.5 398.0 791.0 3003.0 604.8 629.5 
NH3 13.0 232.0 612.0 1321.5 3494.0 890.1 826.5 
SO2 56.0 383.0 822.0 1492.0 3406.0 1067.1 849.9 
NOX 18.0 544.0 1186.0 2258.5 3881.0 1433.1 1051.4 

 
  

                                                      
* Sources have been classified into urban/rural using the U.S. Census 2010 (2015). Urban grids are classified  based on a 
population density of at least 386 people/km2 
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Table A3.26. Distribution of 25%, 50%, and 95% intake (ITD) and burden (BTD) travel distance 
for urban* source locations in the contiguous U.S. (N=25,333).

  Min Q1  Median Q3  Max Mean SD 
IT

D
25

 PM2.5 0.0 0.0 1.0 2.0 109.0 1.6 2.0 
NH3 0.0 1.0 2.0 3.0 96.0 2.1 2.5 
SO2 0.0 14.0 20.0 39.0 1088.0 52.0 88.6 
NOX 0.0 2.0 3.0 5.0 1016.0 6.1 38.6 

IT
D

50
 PM2.5 0.0 3.0 4.0 7.0 127.0 5.8 6.0 

NH3 0.0 3.0 5.0 9.0 312.0 8.3 13.6 
SO2 3.0 28.0 45.0 175.0 1644.0 137.5 198.9 
NOX 0.0 6.0 11.0 19.0 1943.0 49.6 184.2 

IT
D

95
 PM2.5 5.0 31.0 51.0 120.0 1430.0 107.3 137.2 

NH3 11.0 44.0 94.0 323.0 2686.0 247.5 329.9 
SO2 55.0 199.0 402.0 985.0 3479.0 736.3 738.3 
NOX 14.0 151.0 774.0 1488.0 3631.0 977.4 921.5 

M
ar

gi
na

l 

B
T

D
25

 PM2.5 0.0 0.0 1.0 3.0 116.0 1.8 3.0 
NH3 0.0 1.0 2.0 3.0 108.0 2.4 3.9 
SO2 0.0 14.0 21.0 41.0 873.0 50.7 82.0 
NOX 0.0 2.0 3.0 5.0 1053.0 13.2 83.7 

B
T

D
50

 PM2.5 0.0 3.0 4.0 7.0 293.0 6.0 7.9 
NH3 0.0 3.0 5.0 9.0 313.0 8.7 15.8 
SO2 2.0 29.0 49.0 203.0 1411.0 145.3 198.0 
NOX 0.0 6.0 12.0 22.0 1831.0 62.2 231.7 

B
T

D
95

 PM2.5 3.0 31.0 55.0 134.0 1520.0 115.4 145.8 
NH3 5.0 46.0 116.0 391.0 2501.0 283.0 364.0 
SO2 54.0 249.0 523.0 1082.0 3260.0 788.4 736.9 
NOX 7.0 192.0 1018.0 2037.0 3452.0 1180.8 978.1 

A
ve

ra
ge

 

B
T

D
25

 PM2.5 0.0 0.0 1.0 3.0 117.0 1.8 3.1 
NH3 0.0 1.0 2.0 3.0 114.0 2.4 3.9 
SO2 0.0 13.0 21.0 41.0 975.0 52.0 86.9 
NOX 0.0 2.0 3.0 5.0 1230.0 14.4 91.1 

B
T

D
50

 PM2.5 0.0 3.0 4.0 7.0 297.0 6.0 8.4 
NH3 0.0 3.0 5.0 9.0 309.0 8.5 15.1 
SO2 2.0 28.0 48.0 201.0 1537.0 148.3 212.2 
NOX 0.0 6.0 11.0 22.0 1871.0 66.3 248.8 

B
T

D
95

 PM2.5 3.0 31.0 54.0 130.0 1724.0 114.3 148.1 
NH3 5.0 46.0 114.0 386.0 2535.0 284.7 376.5 
SO2 52.0 237.0 489.0 1074.0 3359.0 783.0 753.0 
NOX 7.0 178.0 1001.0 2048.0 3534.0 1175.2 990.9 

                                                      
* Sources have been classified into urban/rural using the U.S. Census 2010 (2015). Urban grids are classified  based on a 
population density of at least 386 people/km2 
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Table A3.27. Comparison of characterization factors in μDALYs/kgemitted by archetype from 
selected studies to the present study

                                                      
a Archetypes defined according to Humbert et al. (2011) classification: Urban (>386 people/km2), Rural (1<x<100 
people/km2), Remote (<1 people/km2) 
b Represent national estimates 
c Archetype-specific estimates reflect median estimates 
* All estimates have been adjusted for a breathing rate of 11.68 m3/d for comparability with the present study 

Study Pollutant 

Archetypea 
National  

(emission-weighted) 

Urban Rural Remote 
Population 

(proxy) 
All-

sector 
emissions 

Van Zelm et al. 
(2016)b 

PM2.5 
   

404  
NH3 

   
135  

SO2 
   

13  
NOX 

   
48  

Gronlund et al. 
(2015) 

PM2.5 3055 273 7 1797  
NH3 117 117 7 117  
SO2 69 56 3.5 62  
NOX 14 117 0.7 13  

Present studyc 

Marginal 
PM2.5 624 87 66 469 103 
NH3 344 62 43 276 48 
SO2 47 34 21 49 36 
NOX 34 18 12 29 19 

Average 
PM2.5 1303 179 127 982 209 
NH3 716 126 81 581 99 
SO2 98 69 41 101 75 
NOX 72 36 24 59 38 
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Table A3.28. Distribution of intake fractions (𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) of source locations and emission-weighted sector-specific estimates by state. 

 

Min Q1 Median Q3 Max Mean SD Agriculture Fuel Combustion
Industrial 
Processes Mobile All-sectors

Alabama 435 1.48E-07 5.11E-07 9.07E-07 1.74E-06 4.03E-06 1.24E-06 9.64E-07 4.40E-07 5.56E-07 6.94E-07 5.77E-07 4.91E-07
Arizona 997 1.45E-07 1.60E-06 5.94E-06 8.78E-06 1.29E-05 5.57E-06 3.82E-06 6.99E-07 1.79E-06 7.83E-07 2.70E-06 1.17E-06
Arkansas 222 1.76E-07 2.94E-07 5.31E-07 1.03E-06 2.95E-06 7.46E-07 5.65E-07 3.01E-07 3.96E-07 3.36E-07 4.04E-07 3.25E-07
California 8452 5.53E-08 3.67E-06 8.56E-06 1.38E-05 4.30E-05 9.84E-06 7.57E-06 9.18E-07 4.40E-06 5.78E-06 5.97E-06 1.74E-06
Colorado 778 1.07E-07 1.08E-06 3.47E-06 7.31E-06 1.25E-05 4.26E-06 3.41E-06 2.62E-07 1.58E-06 1.36E-06 1.90E-06 1.12E-06
Connecticut 618 3.74E-07 1.65E-06 2.40E-06 3.27E-06 7.12E-06 2.64E-06 1.40E-06 1.10E-06 1.21E-06 1.54E-06 1.41E-06 1.26E-06
Delaware 38 2.04E-07 4.17E-07 5.83E-07 8.59E-07 2.68E-06 7.32E-07 4.80E-07 3.74E-07 5.83E-07 6.19E-07 5.62E-07 5.45E-07
Florida 2296 1.07E-07 1.42E-06 2.73E-06 5.37E-06 1.55E-05 3.61E-06 2.86E-06 5.23E-07 1.88E-06 1.20E-06 1.85E-06 1.17E-06
Georgia 1008 2.33E-07 8.95E-07 2.24E-06 4.68E-06 9.30E-06 2.84E-06 2.22E-06 4.94E-07 1.14E-06 5.80E-07 1.69E-06 7.16E-07
Idaho 235 3.49E-08 8.93E-08 1.91E-07 1.00E-06 4.07E-06 6.44E-07 8.60E-07 1.56E-07 2.70E-07 1.34E-07 2.19E-07 1.50E-07
Illinois 1551 2.85E-07 1.68E-06 5.41E-06 8.41E-06 1.89E-05 5.84E-06 4.52E-06 6.56E-07 1.71E-06 2.26E-06 2.95E-06 1.27E-06
Indiana 610 4.00E-07 7.50E-07 1.43E-06 2.61E-06 5.21E-06 1.88E-06 1.31E-06 7.01E-07 7.63E-07 9.47E-07 1.04E-06 8.22E-07
Iowa 327 2.23E-07 4.36E-07 7.48E-07 1.39E-06 3.02E-06 9.77E-07 6.59E-07 3.68E-07 4.49E-07 5.12E-07 4.45E-07 4.02E-07
Kansas 302 1.09E-07 3.16E-07 6.98E-07 1.58E-06 4.14E-06 1.09E-06 1.04E-06 2.32E-07 4.95E-07 5.54E-07 5.43E-07 3.38E-07
Kentucky 356 2.74E-07 3.84E-07 6.13E-07 1.31E-06 4.21E-06 1.02E-06 8.71E-07 4.26E-07 6.46E-07 4.59E-07 5.78E-07 4.64E-07
Louisiana 368 1.05E-07 4.15E-07 7.62E-07 1.35E-06 3.45E-06 9.88E-07 7.08E-07 3.48E-07 4.72E-07 4.79E-07 4.94E-07 3.85E-07
Maine 154 2.96E-08 1.39E-07 3.74E-07 7.51E-07 1.94E-06 5.33E-07 4.86E-07 1.45E-07 1.85E-07 1.53E-07 1.91E-07 1.82E-07
Maryland 1636 1.55E-07 3.94E-06 6.33E-06 8.58E-06 1.78E-05 6.40E-06 3.15E-06 8.99E-07 2.20E-06 2.00E-06 2.68E-06 1.83E-06
Massachusetts 1163 7.13E-08 1.80E-06 3.31E-06 5.77E-06 1.72E-05 4.50E-06 3.60E-06 1.11E-06 1.70E-06 1.58E-06 1.85E-06 1.70E-06
Michigan 1110 7.45E-08 1.15E-06 2.31E-06 4.20E-06 7.43E-06 2.77E-06 1.90E-06 6.92E-07 1.09E-06 9.28E-07 1.50E-06 1.10E-06
Minnesota 627 3.80E-08 5.77E-07 2.16E-06 4.45E-06 9.92E-06 2.70E-06 2.33E-06 2.70E-07 5.67E-07 4.36E-07 9.91E-07 4.93E-07
Mississippi 246 1.94E-07 3.12E-07 4.29E-07 8.22E-07 2.43E-06 6.45E-07 4.96E-07 2.89E-07 3.37E-07 3.45E-07 3.68E-07 3.36E-07
Missouri 691 1.80E-07 3.85E-07 1.49E-06 3.30E-06 6.77E-06 2.02E-06 1.78E-06 3.41E-07 7.45E-07 5.94E-07 9.50E-07 4.76E-07
Montana 226 3.26E-08 5.48E-08 7.16E-08 9.96E-08 1.64E-06 1.68E-07 2.76E-07 6.73E-08 9.04E-08 9.22E-08 7.72E-08 7.38E-08
Nebraska 214 1.14E-07 1.59E-07 4.44E-07 2.59E-06 4.66E-06 1.32E-06 1.41E-06 1.91E-07 3.20E-07 3.27E-07 2.83E-07 2.33E-07
Nevada 641 7.78E-08 1.16E-06 5.59E-06 9.44E-06 1.23E-05 5.46E-06 4.01E-06 1.52E-07 1.91E-06 3.92E-07 2.05E-06 9.21E-07
New Hampshire 325 1.13E-07 1.48E-06 2.22E-06 3.52E-06 6.25E-06 2.49E-06 1.39E-06 6.38E-07 1.16E-06 1.03E-06 1.23E-06 1.19E-06
New Jersey 1676 2.78E-07 3.39E-06 9.10E-06 2.06E-05 5.84E-05 1.41E-05 1.32E-05 1.48E-06 5.49E-06 2.41E-06 6.07E-06 4.47E-06
New Mexico 379 1.11E-07 2.27E-07 7.62E-07 2.75E-06 5.26E-06 1.53E-06 1.54E-06 2.32E-07 5.25E-07 2.95E-07 5.22E-07 4.67E-07
New York 2289 1.40E-07 1.75E-06 4.35E-06 1.17E-05 5.80E-05 8.77E-06 1.05E-05 4.63E-07 2.69E-06 1.33E-06 4.40E-06 2.81E-06
North Carolina 888 6.75E-08 8.75E-07 1.46E-06 2.32E-06 5.24E-06 1.70E-06 1.10E-06 5.68E-07 1.02E-06 7.54E-07 1.01E-06 8.04E-07
North Dakota 118 5.45E-08 7.48E-08 8.98E-08 1.53E-07 1.58E-06 2.06E-07 2.71E-07 9.07E-08 9.18E-08 8.89E-08 9.84E-08 9.27E-08
Ohio 1139 3.13E-07 8.67E-07 1.62E-06 3.37E-06 7.29E-06 2.19E-06 1.58E-06 7.39E-07 8.71E-07 1.01E-06 1.18E-06 8.97E-07
Oklahoma 392 1.58E-07 3.92E-07 9.79E-07 2.26E-06 4.02E-06 1.35E-06 1.07E-06 3.27E-07 6.27E-07 4.30E-07 7.34E-07 4.55E-07
Oregon 436 4.30E-08 1.88E-07 9.36E-07 2.11E-06 6.56E-06 1.47E-06 1.57E-06 1.46E-07 6.28E-07 4.77E-07 7.45E-07 2.85E-07
Pennsylvania 2382 2.68E-07 1.46E-06 3.01E-06 5.83E-06 1.96E-05 4.46E-06 4.23E-06 1.06E-06 1.48E-06 1.54E-06 1.83E-06 1.52E-06
Rhode Island 68 1.76E-07 9.21E-07 2.56E-06 4.93E-06 8.21E-06 3.09E-06 2.38E-06 3.62E-07 8.38E-07 9.81E-07 8.72E-07 9.19E-07
South Carolina 465 2.01E-07 6.42E-07 1.23E-06 1.85E-06 3.42E-06 1.31E-06 7.73E-07 4.43E-07 6.98E-07 5.57E-07 6.08E-07 6.06E-07
South Dakota 124 9.24E-08 1.09E-07 1.25E-07 2.46E-07 1.85E-06 2.82E-07 3.61E-07 1.53E-07 1.74E-07 1.62E-07 1.72E-07 1.52E-07
Tennessee 632 2.79E-07 8.06E-07 1.52E-06 2.58E-06 4.79E-06 1.79E-06 1.20E-06 5.58E-07 8.33E-07 8.53E-07 1.05E-06 7.83E-07
Texas 3416 1.73E-07 1.81E-06 4.91E-06 7.16E-06 1.71E-05 4.82E-06 3.23E-06 5.37E-07 1.48E-06 1.53E-06 2.26E-06 1.34E-06
Utah 412 1.21E-07 3.83E-07 1.85E-06 3.72E-06 7.78E-06 2.32E-06 2.01E-06 2.81E-07 9.40E-07 1.45E-06 1.55E-06 8.26E-07
Vermont 69 1.47E-07 2.35E-07 4.22E-07 1.09E-06 1.61E-06 6.29E-07 4.85E-07 2.39E-07 2.85E-07 2.31E-07 2.88E-07 2.81E-07
Virginia 861 1.57E-07 8.20E-07 1.51E-06 3.13E-06 6.43E-06 2.05E-06 1.52E-06 7.27E-07 1.06E-06 6.83E-07 1.20E-06 8.96E-07
Washington 934 6.29E-08 1.22E-06 3.50E-06 5.16E-06 1.37E-05 3.71E-06 2.85E-06 2.03E-07 2.23E-06 9.90E-07 1.82E-06 5.92E-07
Washington D.C. 23 1.39E-06 2.26E-06 3.85E-06 4.59E-06 5.37E-06 3.57E-06 1.36E-06 2.36E-06 2.36E-06 2.36E-06 2.36E-06
West Virginia 142 2.80E-07 3.80E-07 5.30E-07 1.03E-06 2.25E-06 7.43E-07 4.88E-07 5.46E-07 4.68E-07 4.45E-07 5.66E-07 4.60E-07
Wisconsin 713 1.12E-07 7.41E-07 1.64E-06 3.02E-06 8.44E-06 2.25E-06 1.94E-06 5.76E-07 8.06E-07 7.30E-07 7.95E-07 6.97E-07
Wyoming 120 5.34E-08 1.14E-07 1.33E-07 1.74E-07 5.51E-07 1.55E-07 8.10E-08 1.43E-07 1.71E-07 1.92E-07 1.76E-07 1.60E-07
United States 43304 2.96E-08 1.16E-06 3.13E-06 7.04E-06 5.84E-05 5.33E-06 6.46E-06 3.85E-07 1.14E-06 1.15E-06 1.81E-06 8.00E-07

Emission weighted by sectorNU.S. State Descriptive statistics
Intake fraction from PM2.5 emissions
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Min Q1 Median Q3 Max Mean SD Agriculture Fuel Combustion
Industrial 
Processes Mobile All-sectors

Alabama 435 1.23E-07 4.07E-07 6.51E-07 1.19E-06 3.08E-06 9.15E-07 7.17E-07 3.60E-07 4.92E-07 3.51E-07 4.71E-07 3.55E-07
Arizona 997 1.18E-07 5.17E-07 1.30E-06 1.62E-06 2.75E-06 1.13E-06 6.30E-07 2.71E-07 5.38E-07 2.60E-07 6.65E-07 2.54E-07
Arkansas 222 2.00E-07 2.54E-07 3.67E-07 5.77E-07 1.57E-06 4.55E-07 2.67E-07 2.53E-07 3.03E-07 2.52E-07 3.15E-07 2.53E-07
California 8452 4.71E-08 1.44E-06 3.94E-06 7.25E-06 1.83E-05 4.77E-06 3.85E-06 4.99E-07 2.66E-06 4.93E-06 3.54E-06 5.27E-07
Colorado 778 1.03E-07 5.48E-07 1.56E-06 2.89E-06 4.28E-06 1.73E-06 1.24E-06 2.05E-07 9.61E-07 3.17E-07 1.03E-06 2.23E-07
Connecticut 618 3.28E-07 1.32E-06 1.88E-06 2.55E-06 5.16E-06 2.03E-06 9.86E-07 8.00E-07 1.13E-06 1.08E-06 1.11E-06 1.16E-06
Delaware 38 1.28E-07 2.52E-07 3.63E-07 6.36E-07 1.75E-06 4.86E-07 3.34E-07 2.41E-07 5.01E-07 2.48E-07 4.35E-07 2.55E-07
Florida 2296 9.51E-08 1.19E-06 2.29E-06 4.50E-06 1.43E-05 3.13E-06 2.59E-06 4.29E-07 1.52E-06 1.14E-06 1.75E-06 4.46E-07
Georgia 1008 2.00E-07 6.22E-07 1.38E-06 2.81E-06 5.42E-06 1.76E-06 1.31E-06 5.26E-07 1.33E-06 3.34E-07 1.12E-06 5.14E-07
Idaho 235 3.88E-08 7.14E-08 1.02E-07 2.46E-07 8.70E-07 1.84E-07 1.74E-07 9.38E-08 1.13E-07 1.01E-07 1.05E-07 8.87E-08
Illinois 1551 2.91E-07 1.03E-06 3.25E-06 5.02E-06 1.10E-05 3.53E-06 2.66E-06 5.34E-07 2.35E-06 7.20E-07 2.06E-06 6.25E-07
Indiana 610 3.78E-07 5.86E-07 9.53E-07 1.58E-06 3.01E-06 1.20E-06 7.22E-07 5.50E-07 7.50E-07 5.88E-07 7.80E-07 5.55E-07
Iowa 327 2.19E-07 3.54E-07 5.08E-07 7.23E-07 1.52E-06 5.77E-07 2.84E-07 3.08E-07 4.04E-07 3.31E-07 3.86E-07 3.10E-07
Kansas 302 1.37E-07 2.71E-07 4.47E-07 8.51E-07 2.08E-06 6.17E-07 4.91E-07 2.11E-07 4.83E-07 2.29E-07 4.62E-07 2.19E-07
Kentucky 356 2.54E-07 3.29E-07 4.75E-07 8.43E-07 2.56E-06 6.88E-07 4.89E-07 3.53E-07 4.42E-07 5.13E-07 4.69E-07 3.56E-07
Louisiana 368 8.42E-08 3.12E-07 4.87E-07 8.02E-07 1.95E-06 6.05E-07 3.71E-07 2.79E-07 3.14E-07 3.00E-07 3.70E-07 2.71E-07
Maine 154 2.70E-08 1.03E-07 2.70E-07 5.40E-07 1.25E-06 3.53E-07 3.01E-07 1.38E-07 1.37E-07 1.17E-07 1.58E-07 1.43E-07
Maryland 1636 1.14E-07 2.88E-06 4.56E-06 6.10E-06 1.23E-05 4.59E-06 2.22E-06 6.70E-07 2.32E-06 1.90E-06 2.03E-06 8.93E-07
Massachusetts 1163 6.31E-08 1.40E-06 2.36E-06 4.00E-06 1.02E-05 3.06E-06 2.17E-06 9.85E-07 1.35E-06 1.24E-06 1.47E-06 1.12E-06
Michigan 1110 6.02E-08 8.26E-07 1.57E-06 3.02E-06 5.19E-06 1.97E-06 1.35E-06 5.52E-07 1.31E-06 4.05E-07 1.24E-06 6.28E-07
Minnesota 627 3.44E-08 3.22E-07 9.32E-07 1.88E-06 3.93E-06 1.15E-06 9.34E-07 2.27E-07 4.57E-07 2.11E-07 5.63E-07 2.27E-07
Mississippi 246 2.00E-07 2.68E-07 3.40E-07 5.61E-07 1.36E-06 4.44E-07 2.56E-07 2.59E-07 2.66E-07 2.29E-07 2.99E-07 2.61E-07
Missouri 691 2.12E-07 3.40E-07 8.47E-07 1.67E-06 3.36E-06 1.12E-06 8.65E-07 3.05E-07 7.47E-07 4.43E-07 6.41E-07 3.10E-07
Montana 226 3.98E-08 5.84E-08 7.25E-08 9.91E-08 9.85E-07 1.19E-07 1.47E-07 7.28E-08 8.36E-08 9.34E-08 7.70E-08 7.18E-08
Nebraska 214 1.31E-07 1.76E-07 3.21E-07 1.25E-06 1.86E-06 6.49E-07 5.58E-07 1.96E-07 2.90E-07 3.67E-07 2.83E-07 1.99E-07
Nevada 641 6.08E-08 6.04E-07 2.28E-06 3.32E-06 4.69E-06 2.09E-06 1.43E-06 1.15E-07 1.02E-06 1.34E-07 9.23E-07 1.36E-07
New Hampshire 325 8.54E-08 1.14E-06 1.70E-06 2.43E-06 3.88E-06 1.76E-06 8.63E-07 5.95E-07 1.04E-06 1.53E-06 9.96E-07 7.32E-07
New Jersey 1676 2.29E-07 2.66E-06 6.68E-06 1.40E-05 3.64E-05 9.58E-06 8.41E-06 2.11E-06 4.10E-06 9.84E-06 4.25E-06 2.30E-06
New Mexico 379 1.12E-07 1.76E-07 4.04E-07 1.35E-06 2.61E-06 8.16E-07 7.74E-07 1.87E-07 3.61E-07 4.03E-07 3.67E-07 1.89E-07
New York 2289 1.19E-07 1.37E-06 3.09E-06 8.44E-06 3.69E-05 6.13E-06 6.94E-06 4.61E-07 3.53E-06 4.42E-07 3.00E-06 5.43E-07
North Carolina 888 5.36E-08 5.48E-07 9.06E-07 1.43E-06 3.05E-06 1.03E-06 6.33E-07 2.76E-07 7.02E-07 3.69E-07 6.52E-07 2.90E-07
North Dakota 118 5.53E-08 7.65E-08 9.40E-08 1.16E-07 6.08E-07 1.31E-07 1.04E-07 8.51E-08 9.96E-08 8.67E-08 9.28E-08 8.46E-08
Ohio 1139 3.04E-07 6.78E-07 1.11E-06 2.09E-06 4.60E-06 1.42E-06 9.05E-07 5.85E-07 7.88E-07 6.31E-07 8.45E-07 6.11E-07
Oklahoma 392 1.59E-07 2.97E-07 5.44E-07 1.11E-06 1.87E-06 7.10E-07 4.65E-07 2.42E-07 4.78E-07 3.28E-07 4.95E-07 2.51E-07
Oregon 436 4.39E-08 1.05E-07 3.24E-07 6.68E-07 2.34E-06 4.99E-07 5.22E-07 9.80E-08 3.28E-07 4.19E-07 2.93E-07 9.76E-08
Pennsylvania 2382 2.79E-07 1.22E-06 2.19E-06 4.18E-06 1.30E-05 3.21E-06 2.81E-06 9.75E-07 1.52E-06 1.29E-06 1.52E-06 1.02E-06
Rhode Island 68 1.51E-07 7.79E-07 1.96E-06 3.72E-06 6.08E-06 2.36E-06 1.74E-06 4.65E-07 8.55E-07 1.04E-06 8.38E-07 5.92E-07
South Carolina 465 1.72E-07 4.75E-07 7.86E-07 1.25E-06 2.41E-06 9.05E-07 5.17E-07 3.54E-07 5.97E-07 3.48E-07 4.56E-07 3.67E-07
South Dakota 124 1.02E-07 1.22E-07 1.34E-07 2.12E-07 6.80E-07 1.92E-07 1.23E-07 1.50E-07 1.84E-07 1.42E-07 1.69E-07 1.49E-07
Tennessee 632 2.73E-07 5.53E-07 9.56E-07 1.66E-06 2.81E-06 1.15E-06 7.04E-07 4.46E-07 7.62E-07 8.66E-07 7.14E-07 4.93E-07
Texas 3416 1.62E-07 1.05E-06 2.59E-06 3.67E-06 1.01E-05 2.66E-06 1.84E-06 3.45E-07 1.37E-06 9.98E-07 1.64E-06 3.83E-07
Utah 412 1.05E-07 2.17E-07 7.79E-07 1.51E-06 2.87E-06 9.60E-07 7.81E-07 1.75E-07 7.70E-07 7.91E-07 7.66E-07 2.32E-07
Vermont 69 1.21E-07 2.21E-07 3.20E-07 6.50E-07 9.30E-07 4.21E-07 2.55E-07 1.98E-07 2.46E-07 2.07E-07 2.50E-07 2.05E-07
Virginia 861 1.26E-07 5.21E-07 1.02E-06 2.22E-06 4.50E-06 1.42E-06 1.07E-06 4.46E-07 8.03E-07 4.12E-07 7.97E-07 4.46E-07
Washington 934 4.65E-08 4.75E-07 1.34E-06 2.21E-06 5.09E-06 1.49E-06 1.14E-06 1.29E-07 1.01E-06 3.29E-07 8.49E-07 1.17E-07
Washington D.C. 23 1.06E-06 1.67E-06 2.78E-06 3.30E-06 3.84E-06 2.59E-06 9.63E-07 1.73E-06 1.73E-06 1.73E-06
West Virginia 142 2.48E-07 3.20E-07 4.35E-07 8.09E-07 1.72E-06 6.01E-07 3.64E-07 4.66E-07 4.38E-07 6.14E-07 4.57E-07 4.23E-07
Wisconsin 713 7.89E-08 4.68E-07 9.98E-07 1.80E-06 4.87E-06 1.35E-06 1.11E-06 4.15E-07 9.14E-07 5.03E-07 5.96E-07 4.47E-07
Wyoming 120 5.76E-08 1.05E-07 1.24E-07 1.43E-07 3.39E-07 1.29E-07 4.48E-08 1.24E-07 1.43E-07 1.93E-07 1.42E-07 1.24E-07
United States 43304 2.70E-08 7.04E-07 1.77E-06 3.90E-06 3.69E-05 3.08E-06 3.81E-06 3.44E-07 1.33E-06 9.93E-07 1.43E-06 3.68E-07
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Min Q1 Median Q3 Max Mean SD Fuel Combustion
Industrial 
Processes Mobile All-sectors

Alabama 435 9.01E-08 2.12E-07 2.75E-07 3.52E-07 4.03E-07 2.78E-07 7.68E-08 2.32E-07 2.17E-07 2.13E-07 2.28E-07
Arizona 997 8.64E-08 1.42E-07 1.62E-07 1.76E-07 1.99E-07 1.56E-07 2.75E-08 1.13E-07 1.33E-07 1.55E-07 1.25E-07
Arkansas 222 1.47E-07 1.72E-07 1.88E-07 2.10E-07 2.64E-07 1.93E-07 2.75E-08 1.74E-07 1.77E-07 1.88E-07 1.74E-07
California 8452 4.75E-08 4.02E-07 8.12E-07 1.26E-06 2.71E-06 8.92E-07 5.68E-07 7.05E-07 7.22E-07 1.06E-06 4.74E-07
Colorado 778 9.36E-08 1.17E-07 1.33E-07 1.40E-07 1.85E-07 1.29E-07 1.76E-08 1.18E-07 1.22E-07 1.27E-07 1.19E-07
Connecticut 618 1.21E-07 2.92E-07 3.17E-07 3.91E-07 7.29E-07 3.40E-07 8.81E-08 3.01E-07 2.97E-07 2.86E-07 3.01E-07
Delaware 38 7.59E-08 1.03E-07 1.24E-07 2.59E-07 3.01E-07 1.70E-07 7.79E-08 1.71E-07 2.30E-07 1.70E-07 1.74E-07
Florida 2296 7.12E-08 2.34E-07 3.65E-07 4.77E-07 7.37E-07 3.66E-07 1.55E-07 2.70E-07 2.74E-07 2.82E-07 2.70E-07
Georgia 1008 1.32E-07 2.63E-07 6.36E-07 9.59E-07 1.21E-06 6.31E-07 3.43E-07 3.27E-07 2.25E-07 3.94E-07 3.14E-07
Idaho 235 3.40E-08 4.94E-08 5.62E-08 5.94E-08 8.12E-08 5.47E-08 1.02E-08 5.98E-08 7.27E-08 5.59E-08 5.41E-08
Illinois 1551 2.10E-07 3.24E-07 4.89E-07 5.67E-07 9.24E-07 4.63E-07 1.35E-07 2.96E-07 3.13E-07 3.95E-07 3.01E-07
Indiana 610 2.42E-07 2.96E-07 3.08E-07 3.32E-07 3.75E-07 3.13E-07 2.66E-08 2.85E-07 3.01E-07 3.14E-07 2.86E-07
Iowa 327 1.50E-07 2.11E-07 2.28E-07 2.85E-07 3.60E-07 2.39E-07 5.08E-08 2.45E-07 2.98E-07 2.32E-07 2.47E-07
Kansas 302 9.70E-08 1.70E-07 1.92E-07 2.09E-07 2.50E-07 1.87E-07 3.76E-08 2.07E-07 1.61E-07 1.89E-07 2.00E-07
Kentucky 356 1.94E-07 2.38E-07 2.50E-07 2.63E-07 3.14E-07 2.52E-07 2.01E-08 2.50E-07 2.46E-07 2.67E-07 2.50E-07
Louisiana 368 8.04E-08 2.00E-07 2.39E-07 2.72E-07 3.37E-07 2.34E-07 5.26E-08 2.22E-07 1.88E-07 1.57E-07 2.05E-07
Maine 154 1.35E-08 4.62E-08 7.60E-08 8.71E-08 1.33E-07 6.96E-08 2.80E-08 5.76E-08 5.28E-08 5.14E-08 5.61E-08
Maryland 1636 7.43E-08 3.10E-07 3.72E-07 4.52E-07 6.45E-07 3.90E-07 1.10E-07 3.36E-07 5.30E-07 2.49E-07 3.37E-07
Massachusetts 1163 3.53E-08 2.66E-07 3.19E-07 3.83E-07 5.47E-07 3.20E-07 8.97E-08 2.57E-07 3.33E-07 2.48E-07 2.59E-07
Michigan 1110 4.20E-08 2.55E-07 2.81E-07 2.94E-07 3.48E-07 2.67E-07 5.07E-08 2.36E-07 1.98E-07 2.56E-07 2.34E-07
Minnesota 627 2.83E-08 1.36E-07 1.63E-07 1.84E-07 2.20E-07 1.50E-07 4.77E-08 1.17E-07 1.05E-07 1.54E-07 1.14E-07
Mississippi 246 1.46E-07 1.88E-07 2.08E-07 2.31E-07 2.98E-07 2.09E-07 2.90E-08 1.54E-07 1.99E-07 1.77E-07 1.59E-07
Missouri 691 1.53E-07 1.95E-07 2.24E-07 2.82E-07 3.65E-07 2.37E-07 4.94E-08 2.43E-07 2.20E-07 2.36E-07 2.40E-07
Montana 226 3.22E-08 4.32E-08 4.97E-08 5.88E-08 7.41E-08 5.09E-08 1.09E-08 6.47E-08 6.39E-08 5.12E-08 6.29E-08
Nebraska 214 8.93E-08 1.23E-07 1.70E-07 1.84E-07 1.93E-07 1.53E-07 3.43E-08 1.45E-07 1.68E-07 1.52E-07 1.45E-07
Nevada 641 5.28E-08 7.98E-08 1.41E-07 1.61E-07 2.10E-07 1.29E-07 4.14E-08 1.01E-07 1.03E-07 1.35E-07 1.03E-07
New Hampshire 325 6.53E-08 2.84E-07 3.29E-07 4.30E-07 5.47E-07 3.54E-07 1.15E-07 2.96E-07 3.10E-07 2.92E-07 2.95E-07
New Jersey 1676 9.97E-08 5.39E-07 1.20E-06 1.65E-06 1.90E-06 1.11E-06 5.70E-07 5.94E-07 3.16E-07 7.55E-07 6.13E-07
New Mexico 379 9.71E-08 1.12E-07 1.20E-07 1.26E-07 1.47E-07 1.19E-07 9.21E-09 1.03E-07 1.41E-07 1.18E-07 1.22E-07
New York 2289 7.41E-08 2.94E-07 7.00E-07 1.10E-06 1.83E-06 7.46E-07 4.53E-07 3.50E-07 2.90E-07 5.10E-07 3.50E-07
North Carolina 888 3.57E-08 2.46E-07 3.71E-07 4.15E-07 5.46E-07 3.36E-07 1.27E-07 3.41E-07 2.05E-07 1.72E-07 3.11E-07
North Dakota 118 3.85E-08 4.91E-08 5.99E-08 6.63E-08 9.16E-08 5.90E-08 1.08E-08 5.90E-08 5.66E-08 5.92E-08 5.87E-08
Ohio 1139 2.46E-07 2.90E-07 3.18E-07 3.34E-07 3.99E-07 3.13E-07 2.70E-08 2.93E-07 2.95E-07 3.03E-07 2.93E-07
Oklahoma 392 1.12E-07 1.96E-07 2.21E-07 2.45E-07 2.98E-07 2.21E-07 3.58E-08 1.95E-07 1.90E-07 2.18E-07 1.94E-07
Oregon 436 3.80E-08 6.15E-08 1.49E-07 2.02E-07 2.60E-07 1.41E-07 7.17E-08 6.92E-08 1.53E-07 1.57E-07 7.59E-08
Pennsylvania 2382 2.51E-07 4.17E-07 5.50E-07 7.61E-07 1.51E-06 5.87E-07 1.90E-07 4.45E-07 5.34E-07 4.81E-07 4.51E-07
Rhode Island 68 8.51E-08 2.12E-07 2.71E-07 2.84E-07 3.08E-07 2.43E-07 5.90E-08 1.79E-07 2.12E-07 1.54E-07 1.79E-07
South Carolina 465 1.02E-07 2.22E-07 2.56E-07 3.26E-07 4.35E-07 2.73E-07 7.30E-08 2.28E-07 2.43E-07 1.79E-07 2.28E-07
South Dakota 124 7.19E-08 8.36E-08 9.29E-08 1.35E-07 1.51E-07 1.05E-07 2.57E-08 1.15E-07 8.87E-08 1.12E-07 1.12E-07
Tennessee 632 2.01E-07 2.92E-07 3.24E-07 3.48E-07 4.65E-07 3.21E-07 4.96E-08 2.96E-07 3.12E-07 3.21E-07 2.98E-07
Texas 3416 1.16E-07 3.95E-07 5.74E-07 7.66E-07 1.48E-06 6.35E-07 3.57E-07 3.47E-07 3.63E-07 5.91E-07 3.55E-07
Utah 412 7.60E-08 9.76E-08 1.05E-07 1.17E-07 1.36E-07 1.07E-07 1.36E-08 1.07E-07 1.18E-07 1.16E-07 1.08E-07
Vermont 69 8.11E-08 1.01E-07 1.05E-07 1.78E-07 3.79E-07 1.51E-07 8.04E-08 1.81E-07 1.69E-07 1.79E-07
Virginia 861 8.68E-08 2.27E-07 2.66E-07 3.14E-07 6.33E-07 2.83E-07 8.92E-08 2.52E-07 2.62E-07 2.21E-07 2.53E-07
Washington 934 3.58E-08 7.85E-08 1.47E-07 1.94E-07 2.87E-07 1.40E-07 6.89E-08 1.67E-07 6.82E-08 1.33E-07 1.01E-07
Washington D.C. 23 2.21E-07 2.65E-07 2.97E-07 3.04E-07 3.13E-07 2.83E-07 2.82E-08 2.59E-07 2.59E-07 2.59E-07 2.59E-07
West Virginia 142 2.44E-07 2.66E-07 2.91E-07 3.76E-07 6.21E-07 3.35E-07 9.80E-08 3.26E-07 3.78E-07 3.44E-07 3.27E-07
Wisconsin 713 5.15E-08 1.81E-07 2.96E-07 3.26E-07 4.67E-07 2.65E-07 9.01E-08 1.91E-07 1.96E-07 2.42E-07 1.92E-07
Wyoming 120 5.89E-08 7.60E-08 8.38E-08 9.48E-08 1.18E-07 8.56E-08 1.30E-08 9.00E-08 8.33E-08 9.05E-08 8.87E-08
United States 43304 1.35E-08 2.14E-07 3.35E-07 6.18E-07 2.71E-06 5.03E-07 4.37E-07 2.69E-07 2.58E-07 3.15E-07 2.66E-07
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Alabama 435 2.96E-08 9.85E-08 1.39E-07 1.78E-07 3.23E-07 1.41E-07 5.48E-08 1.06E-07 9.88E-08 1.05E-07 1.04E-07
Arizona 997 3.54E-08 7.54E-08 1.34E-07 1.71E-07 2.38E-07 1.28E-07 5.04E-08 7.96E-08 7.07E-08 9.48E-08 8.99E-08
Arkansas 222 9.86E-08 1.22E-07 1.57E-07 2.16E-07 4.96E-07 1.83E-07 8.28E-08 1.36E-07 1.26E-07 1.40E-07 1.36E-07
California 8452 2.79E-08 2.50E-07 3.89E-07 5.06E-07 1.18E-06 4.01E-07 2.11E-07 2.37E-07 2.38E-07 2.65E-07 2.43E-07
Colorado 778 7.45E-08 1.20E-07 2.20E-07 2.91E-07 4.04E-07 2.08E-07 9.00E-08 1.24E-07 1.15E-07 1.33E-07 1.23E-07
Connecticut 618 2.80E-08 9.48E-08 1.18E-07 1.45E-07 2.38E-07 1.20E-07 3.99E-08 7.20E-08 7.53E-08 7.18E-08 7.19E-08
Delaware 38 3.06E-08 7.51E-08 8.46E-08 1.01E-07 2.14E-07 9.30E-08 3.29E-08 7.97E-08 7.92E-08 7.36E-08 7.50E-08
Florida 2296 1.14E-08 4.81E-08 6.24E-08 8.14E-08 1.67E-07 6.62E-08 2.52E-08 5.67E-08 5.05E-08 4.86E-08 4.97E-08
Georgia 1008 3.91E-08 1.19E-07 2.47E-07 4.29E-07 6.14E-07 2.77E-07 1.69E-07 1.41E-07 7.77E-08 1.70E-07 1.50E-07
Idaho 235 3.34E-08 5.09E-08 6.47E-08 9.55E-08 2.08E-07 7.84E-08 3.72E-08 6.22E-08 5.55E-08 6.05E-08 5.92E-08
Illinois 1551 1.18E-07 2.34E-07 3.74E-07 4.66E-07 6.91E-07 3.63E-07 1.40E-07 2.19E-07 1.77E-07 2.44E-07 2.28E-07
Indiana 610 1.21E-07 1.83E-07 2.31E-07 3.17E-07 4.63E-07 2.56E-07 8.80E-08 1.67E-07 1.80E-07 2.00E-07 1.86E-07
Iowa 327 1.08E-07 1.47E-07 1.88E-07 2.80E-07 4.29E-07 2.13E-07 7.96E-08 1.45E-07 1.57E-07 1.45E-07 1.44E-07
Kansas 302 7.69E-08 1.25E-07 1.73E-07 2.71E-07 4.32E-07 2.02E-07 9.81E-08 1.44E-07 1.19E-07 1.47E-07 1.34E-07
Kentucky 356 7.76E-08 1.12E-07 1.32E-07 1.87E-07 3.10E-07 1.51E-07 5.52E-08 1.26E-07 1.03E-07 1.21E-07 1.21E-07
Louisiana 368 3.24E-08 1.00E-07 1.23E-07 1.74E-07 3.66E-07 1.41E-07 6.26E-08 9.00E-08 1.02E-07 9.03E-08 9.30E-08
Maine 154 3.57E-09 1.43E-08 2.77E-08 3.94E-08 1.31E-07 3.39E-08 2.88E-08 1.67E-08 1.56E-08 1.54E-08 1.56E-08
Maryland 1636 2.15E-08 2.03E-07 2.82E-07 3.57E-07 5.24E-07 2.78E-07 9.80E-08 1.38E-07 1.87E-07 1.41E-07 1.41E-07
Massachusetts 1163 5.39E-09 9.07E-08 1.29E-07 1.97E-07 4.41E-07 1.55E-07 8.93E-08 8.15E-08 8.00E-08 7.82E-08 7.91E-08
Michigan 1110 2.04E-08 1.80E-07 2.60E-07 3.12E-07 4.22E-07 2.46E-07 8.48E-08 1.57E-07 7.56E-08 1.68E-07 1.55E-07
Minnesota 627 1.46E-08 1.25E-07 2.24E-07 3.04E-07 4.27E-07 2.13E-07 1.05E-07 1.34E-07 4.72E-08 1.37E-07 1.23E-07
Mississippi 246 4.89E-08 9.87E-08 1.10E-07 1.43E-07 2.23E-07 1.22E-07 3.82E-08 8.07E-08 8.26E-08 1.02E-07 9.65E-08
Missouri 691 1.07E-07 1.42E-07 2.35E-07 3.23E-07 4.71E-07 2.39E-07 9.48E-08 1.68E-07 1.41E-07 1.69E-07 1.64E-07
Montana 226 3.27E-08 4.43E-08 4.98E-08 5.83E-08 1.07E-07 5.22E-08 1.26E-08 5.67E-08 5.10E-08 4.84E-08 5.00E-08
Nebraska 214 7.42E-08 9.40E-08 1.40E-07 3.10E-07 4.96E-07 2.07E-07 1.32E-07 1.24E-07 1.27E-07 1.08E-07 1.09E-07
Nevada 641 4.81E-08 6.82E-08 8.89E-08 1.03E-07 1.47E-07 8.80E-08 2.20E-08 6.61E-08 6.48E-08 6.94E-08 6.79E-08
New Hampshire 325 1.87E-08 6.81E-08 9.47E-08 1.14E-07 1.75E-07 9.28E-08 3.44E-08 6.03E-08 6.95E-08 5.83E-08 5.88E-08
New Jersey 1676 2.91E-08 1.66E-07 3.14E-07 5.67E-07 1.19E-06 3.88E-07 2.68E-07 2.08E-07 1.15E-07 1.91E-07 1.93E-07
New Mexico 379 6.75E-08 8.28E-08 9.20E-08 1.15E-07 1.59E-07 9.86E-08 2.03E-08 8.29E-08 8.29E-08 8.60E-08 8.47E-08
New York 2289 1.03E-08 1.31E-07 2.08E-07 3.90E-07 1.22E-06 2.87E-07 2.18E-07 2.07E-07 1.00E-07 1.53E-07 1.64E-07
North Carolina 888 1.43E-08 1.30E-07 1.95E-07 2.64E-07 4.69E-07 2.04E-07 9.70E-08 1.48E-07 1.01E-07 1.42E-07 1.40E-07
North Dakota 118 3.08E-08 4.54E-08 5.35E-08 5.93E-08 2.08E-07 5.91E-08 2.67E-08 5.16E-08 4.76E-08 5.04E-08 5.01E-08
Ohio 1139 8.50E-08 1.79E-07 2.44E-07 3.40E-07 5.00E-07 2.58E-07 9.68E-08 1.57E-07 1.66E-07 1.93E-07 1.79E-07
Oklahoma 392 8.54E-08 1.40E-07 1.95E-07 2.92E-07 4.16E-07 2.20E-07 9.31E-08 1.40E-07 1.27E-07 1.64E-07 1.44E-07
Oregon 436 3.24E-08 5.09E-08 9.95E-08 1.67E-07 3.09E-07 1.18E-07 7.21E-08 7.19E-08 6.71E-08 7.65E-08 7.08E-08
Pennsylvania 2382 6.52E-08 1.88E-07 2.53E-07 3.36E-07 7.75E-07 2.82E-07 1.25E-07 1.68E-07 1.59E-07 1.82E-07 1.74E-07
Rhode Island 68 1.33E-08 5.25E-08 1.03E-07 1.65E-07 2.48E-07 1.13E-07 6.68E-08 5.14E-08 5.03E-08 4.27E-08 4.45E-08
South Carolina 465 2.98E-08 8.35E-08 1.16E-07 1.70E-07 2.70E-07 1.26E-07 5.39E-08 8.58E-08 7.38E-08 8.94E-08 8.72E-08
South Dakota 124 6.14E-08 6.85E-08 7.50E-08 1.03E-07 4.13E-07 1.06E-07 7.44E-08 8.13E-08 7.61E-08 8.76E-08 8.23E-08
Tennessee 632 8.01E-08 1.32E-07 1.79E-07 2.28E-07 3.82E-07 1.89E-07 7.20E-08 1.49E-07 1.34E-07 1.46E-07 1.45E-07
Texas 3416 6.44E-08 1.90E-07 3.67E-07 4.92E-07 8.01E-07 3.53E-07 1.71E-07 1.65E-07 1.28E-07 2.21E-07 1.81E-07
Utah 412 6.16E-08 7.88E-08 1.04E-07 1.27E-07 2.00E-07 1.07E-07 3.27E-08 8.27E-08 8.33E-08 9.52E-08 8.88E-08
Vermont 69 1.94E-08 4.15E-08 5.87E-08 1.33E-07 1.84E-07 8.23E-08 5.21E-08 4.47E-08 5.25E-08 4.46E-08 4.45E-08
Virginia 861 1.84E-08 7.08E-08 1.03E-07 1.52E-07 3.14E-07 1.17E-07 6.28E-08 7.42E-08 6.55E-08 7.45E-08 7.32E-08
Washington 934 2.15E-08 8.50E-08 1.34E-07 1.65E-07 3.05E-07 1.33E-07 6.11E-08 7.93E-08 8.47E-08 8.67E-08 8.11E-08
Washington D.C. 23 7.72E-08 1.08E-07 1.70E-07 1.85E-07 2.09E-07 1.52E-07 4.67E-08 1.10E-07 1.10E-07 1.10E-07 1.10E-07
West Virginia 142 5.54E-08 7.88E-08 9.11E-08 1.20E-07 1.82E-07 1.03E-07 3.32E-08 9.87E-08 8.95E-08 9.47E-08 9.56E-08
Wisconsin 713 2.65E-08 1.60E-07 2.32E-07 3.23E-07 5.71E-07 2.46E-07 1.15E-07 1.51E-07 1.27E-07 1.48E-07 1.47E-07
Wyoming 120 5.22E-08 6.68E-08 7.16E-08 7.78E-08 1.12E-07 7.28E-08 1.02E-08 7.44E-08 7.38E-08 7.65E-08 7.49E-08
United States 43304 3.57E-09 1.15E-07 2.08E-07 3.61E-07 1.22E-06 2.58E-07 1.85E-07 1.32E-07 1.14E-07 1.44E-07 1.34E-07

Emission weighted by sector
Intake fraction from NOx emissions

Descriptive statisticsU.S. State N
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Table A3.29. Distribution of marginal characterization factors ( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) of source locations and emission-weighted sector-specific 
estimates by state. 

 

Min Q1 Median Q3 Max Mean SD Agriculture Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 2.42E-05 9.45E-05 1.75E-04 3.29E-04 7.21E-04 2.32E-04 1.76E-04 8.17E-05 1.02E-04 1.26E-04 1.06E-04 8.95E-05
Arizona 997 2.47E-05 2.60E-04 9.11E-04 1.23E-03 1.62E-03 7.81E-04 5.00E-04 1.08E-04 2.65E-04 1.30E-04 3.80E-04 1.76E-04
Arkansas 222 3.25E-05 5.75E-05 1.02E-04 1.98E-04 4.27E-04 1.39E-04 9.89E-05 5.50E-05 7.63E-05 6.31E-05 7.61E-05 6.15E-05
California 8452 1.22E-05 3.09E-04 6.31E-04 9.79E-04 2.85E-03 7.13E-04 5.06E-04 8.77E-05 3.30E-04 4.31E-04 4.31E-04 1.47E-04
Colorado 778 1.88E-05 1.59E-04 5.38E-04 8.67E-04 1.42E-03 5.36E-04 3.77E-04 4.26E-05 2.07E-04 1.83E-04 2.41E-04 1.49E-04
Connecticut 618 3.54E-05 1.68E-04 2.49E-04 3.51E-04 7.79E-04 2.77E-04 1.52E-04 1.21E-04 1.11E-04 1.32E-04 1.19E-04 1.13E-04
Delaware 38 2.19E-05 4.76E-05 6.58E-05 9.72E-05 3.38E-04 8.58E-05 6.07E-05 4.03E-05 6.38E-05 6.81E-05 6.12E-05 5.93E-05
Florida 2296 1.60E-05 1.97E-04 3.93E-04 8.72E-04 2.62E-03 5.84E-04 5.11E-04 7.71E-05 2.93E-04 1.87E-04 2.91E-04 1.80E-04
Georgia 1008 3.54E-05 1.30E-04 3.05E-04 6.19E-04 1.20E-03 3.85E-04 2.92E-04 7.35E-05 1.61E-04 8.32E-05 2.31E-04 1.03E-04
Idaho 235 8.64E-06 2.03E-05 4.59E-05 2.55E-04 1.01E-03 1.54E-04 2.05E-04 3.52E-05 6.03E-05 2.99E-05 4.97E-05 3.52E-05
Illinois 1551 4.37E-05 2.02E-04 5.09E-04 7.08E-04 1.48E-03 5.15E-04 3.42E-04 7.87E-05 1.70E-04 2.16E-04 2.73E-04 1.32E-04
Indiana 610 6.20E-05 1.02E-04 2.02E-04 3.74E-04 7.31E-04 2.64E-04 1.86E-04 9.68E-05 1.05E-04 1.12E-04 1.39E-04 1.11E-04
Iowa 327 2.88E-05 5.73E-05 1.00E-04 2.05E-04 4.50E-04 1.36E-04 9.57E-05 4.81E-05 5.81E-05 6.49E-05 5.86E-05 5.25E-05
Kansas 302 1.77E-05 5.22E-05 1.22E-04 2.61E-04 6.27E-04 1.76E-04 1.61E-04 3.83E-05 8.01E-05 8.90E-05 8.74E-05 5.52E-05
Kentucky 356 4.87E-05 7.12E-05 1.14E-04 2.45E-04 7.22E-04 1.93E-04 1.66E-04 7.82E-05 1.10E-04 8.06E-05 1.02E-04 8.41E-05
Louisiana 368 1.38E-05 6.54E-05 1.16E-04 2.19E-04 5.73E-04 1.60E-04 1.20E-04 5.65E-05 7.27E-05 7.51E-05 7.37E-05 5.84E-05
Maine 154 6.47E-06 2.92E-05 7.16E-05 1.35E-04 3.67E-04 1.02E-04 9.46E-05 2.92E-05 3.46E-05 3.12E-05 3.55E-05 3.44E-05
Maryland 1636 1.52E-05 4.11E-04 6.79E-04 9.10E-04 1.89E-03 6.79E-04 3.40E-04 9.67E-05 2.27E-04 2.05E-04 2.75E-04 1.89E-04
Massachusetts 1163 3.52E-06 2.12E-04 3.78E-04 6.60E-04 1.82E-03 5.03E-04 3.83E-04 1.33E-04 1.90E-04 1.75E-04 2.02E-04 1.89E-04
Michigan 1110 1.12E-05 1.62E-04 3.27E-04 5.59E-04 9.69E-04 3.74E-04 2.46E-04 9.44E-05 1.45E-04 1.21E-04 1.95E-04 1.46E-04
Minnesota 627 5.88E-06 6.67E-05 2.32E-04 4.71E-04 1.05E-03 2.89E-04 2.43E-04 3.25E-05 6.32E-05 5.13E-05 1.06E-04 5.55E-05
Mississippi 246 3.50E-05 5.75E-05 7.67E-05 1.63E-04 4.84E-04 1.24E-04 1.01E-04 5.33E-05 6.01E-05 6.29E-05 6.64E-05 6.12E-05
Missouri 691 3.03E-05 6.22E-05 2.54E-04 5.24E-04 1.03E-03 3.25E-04 2.74E-04 5.53E-05 1.21E-04 9.35E-05 1.51E-04 7.78E-05
Montana 226 7.50E-06 1.24E-05 1.61E-05 2.87E-05 5.94E-04 5.61E-05 1.08E-04 1.50E-05 2.13E-05 2.19E-05 1.96E-05 1.80E-05
Nebraska 214 1.75E-05 2.49E-05 6.57E-05 3.65E-04 6.12E-04 1.79E-04 1.85E-04 2.85E-05 4.49E-05 4.59E-05 4.04E-05 3.39E-05
Nevada 641 1.56E-05 1.53E-04 3.95E-04 8.42E-04 1.65E-03 5.01E-04 4.19E-04 2.59E-05 2.99E-04 5.90E-05 3.11E-04 1.45E-04
New Hampshire 325 2.01E-05 1.95E-04 3.08E-04 4.55E-04 8.33E-04 3.39E-04 1.89E-04 8.89E-05 1.55E-04 1.38E-04 1.64E-04 1.59E-04
New Jersey 1676 2.73E-05 3.15E-04 7.61E-04 1.66E-03 4.69E-03 1.11E-03 9.63E-04 1.46E-04 4.53E-04 2.04E-04 4.96E-04 3.72E-04
New Mexico 379 2.07E-05 4.10E-05 1.24E-04 4.49E-04 1.31E-03 2.94E-04 3.34E-04 4.15E-05 1.08E-04 5.75E-05 1.06E-04 9.53E-05
New York 2289 1.17E-05 1.90E-04 4.15E-04 8.83E-04 4.96E-03 6.74E-04 7.35E-04 5.26E-05 2.09E-04 1.18E-04 3.19E-04 2.15E-04
North Carolina 888 8.33E-06 1.41E-04 2.43E-04 3.63E-04 7.84E-04 2.68E-04 1.67E-04 9.06E-05 1.64E-04 1.21E-04 1.58E-04 1.28E-04
North Dakota 118 9.39E-06 1.22E-05 1.47E-05 2.95E-05 2.83E-04 3.79E-05 5.34E-05 1.43E-05 1.54E-05 1.49E-05 1.58E-05 1.48E-05
Ohio 1139 3.59E-05 1.17E-04 2.20E-04 4.64E-04 9.97E-04 2.98E-04 2.18E-04 9.61E-05 1.16E-04 1.27E-04 1.50E-04 1.17E-04
Oklahoma 392 2.71E-05 7.66E-05 2.04E-04 4.69E-04 8.25E-04 2.77E-04 2.19E-04 6.31E-05 1.24E-04 8.35E-05 1.47E-04 8.95E-05
Oregon 436 1.08E-05 5.42E-05 2.44E-04 5.44E-04 1.53E-03 3.72E-04 3.84E-04 3.60E-05 1.37E-04 1.07E-04 1.56E-04 6.94E-05
Pennsylvania 2382 3.22E-05 1.89E-04 3.93E-04 7.56E-04 2.54E-03 5.75E-04 5.45E-04 1.32E-04 1.84E-04 1.90E-04 2.27E-04 1.88E-04
Rhode Island 68 1.83E-05 9.55E-05 3.39E-04 6.41E-04 1.08E-03 4.00E-04 3.22E-04 4.31E-05 1.00E-04 1.20E-04 1.04E-04 1.11E-04
South Carolina 465 3.25E-05 1.05E-04 2.07E-04 3.20E-04 5.86E-04 2.24E-04 1.34E-04 7.50E-05 1.18E-04 9.24E-05 1.01E-04 1.01E-04
South Dakota 124 1.41E-05 1.63E-05 1.98E-05 3.51E-05 2.93E-04 4.51E-05 5.84E-05 2.22E-05 2.62E-05 2.65E-05 2.59E-05 2.32E-05
Tennessee 632 5.27E-05 1.52E-04 2.80E-04 4.88E-04 8.18E-04 3.30E-04 2.12E-04 1.04E-04 1.55E-04 1.58E-04 1.91E-04 1.45E-04
Texas 3416 2.58E-05 2.17E-04 5.84E-04 8.53E-04 2.28E-03 5.86E-04 4.03E-04 7.48E-05 1.88E-04 1.92E-04 2.78E-04 1.70E-04
Utah 412 2.18E-05 5.07E-05 1.91E-04 3.41E-04 7.32E-04 2.18E-04 1.69E-04 3.82E-05 9.29E-05 1.33E-04 1.47E-04 8.70E-05
Vermont 69 2.27E-05 3.61E-05 5.97E-05 1.77E-04 2.67E-04 1.01E-04 8.16E-05 3.64E-05 4.24E-05 3.54E-05 4.31E-05 4.19E-05
Virginia 861 1.27E-05 1.07E-04 1.79E-04 3.50E-04 7.56E-04 2.40E-04 1.66E-04 1.00E-04 1.25E-04 9.57E-05 1.35E-04 1.13E-04
Washington 934 1.23E-05 2.40E-04 5.39E-04 8.05E-04 1.89E-03 5.78E-04 4.12E-04 3.99E-05 3.36E-04 1.57E-04 2.71E-04 9.60E-05
Washington D.C. 23 1.41E-04 2.24E-04 3.91E-04 4.63E-04 5.40E-04 3.57E-04 1.37E-04 2.34E-04 2.34E-04 2.34E-04 2.34E-04
West Virginia 142 4.53E-05 6.68E-05 9.29E-05 1.78E-04 3.83E-04 1.31E-04 8.58E-05 8.06E-05 7.18E-05 7.61E-05 8.79E-05 7.43E-05
Wisconsin 713 1.74E-05 9.54E-05 1.93E-04 3.39E-04 9.06E-04 2.53E-04 2.07E-04 7.10E-05 9.52E-05 8.72E-05 9.35E-05 8.38E-05
Wyoming 120 1.16E-05 2.15E-05 2.55E-05 3.13E-05 1.39E-04 3.10E-05 2.01E-05 2.74E-05 3.48E-05 3.87E-05 3.42E-05 3.17E-05
United States 43304 3.52E-06 1.56E-04 3.78E-04 7.37E-04 4.96E-03 5.23E-04 5.01E-04 5.56E-05 1.45E-04 1.34E-04 2.02E-04 1.03E-04

U.S. State N

Marginal characterization factor from PM2.5 emissions
Descriptive statistics Emission weighted by sector
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Min Q1 Median Q3 Max Mean SD Agriculture Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 1.99E-05 7.45E-05 1.21E-04 2.21E-04 5.51E-04 1.69E-04 1.31E-04 6.45E-05 8.89E-05 6.28E-05 8.51E-05 6.35E-05
Arizona 997 1.56E-05 8.78E-05 1.90E-04 2.35E-04 4.73E-04 1.69E-04 9.11E-05 4.45E-05 8.55E-05 4.44E-05 9.95E-05 4.22E-05
Arkansas 222 3.51E-05 4.54E-05 6.76E-05 1.08E-04 2.24E-04 8.14E-05 4.32E-05 4.49E-05 5.42E-05 4.51E-05 5.67E-05 4.49E-05
California 8452 1.00E-05 1.28E-04 2.95E-04 5.08E-04 1.22E-03 3.45E-04 2.57E-04 4.85E-05 1.97E-04 3.49E-04 2.54E-04 5.12E-05
Colorado 778 1.80E-05 8.56E-05 2.14E-04 3.65E-04 4.87E-04 2.22E-04 1.41E-04 3.25E-05 1.27E-04 5.14E-05 1.34E-04 3.52E-05
Connecticut 618 3.06E-05 1.38E-04 1.96E-04 2.65E-04 5.65E-04 2.10E-04 1.07E-04 8.83E-05 9.64E-05 1.16E-04 9.54E-05 1.22E-04
Delaware 38 1.30E-05 2.85E-05 4.07E-05 7.11E-05 2.18E-04 5.54E-05 4.15E-05 2.49E-05 5.44E-05 2.52E-05 4.68E-05 2.65E-05
Florida 2296 1.40E-05 1.68E-04 3.23E-04 7.42E-04 2.43E-03 5.08E-04 4.65E-04 6.15E-05 2.35E-04 1.34E-04 2.76E-04 6.47E-05
Georgia 1008 2.99E-05 9.20E-05 1.87E-04 3.80E-04 7.02E-04 2.40E-04 1.72E-04 7.83E-05 1.83E-04 4.91E-05 1.54E-04 7.59E-05
Idaho 235 8.51E-06 1.41E-05 1.98E-05 5.76E-05 2.04E-04 4.20E-05 4.20E-05 1.85E-05 2.34E-05 1.93E-05 2.17E-05 1.77E-05
Illinois 1551 4.48E-05 1.23E-04 3.01E-04 4.23E-04 8.47E-04 3.07E-04 1.96E-04 6.43E-05 2.11E-04 7.98E-05 1.89E-04 7.28E-05
Indiana 610 5.80E-05 7.80E-05 1.29E-04 2.25E-04 4.21E-04 1.67E-04 1.04E-04 7.42E-05 9.81E-05 7.31E-05 1.04E-04 7.49E-05
Iowa 327 2.75E-05 4.46E-05 6.38E-05 9.88E-05 2.02E-04 7.66E-05 3.99E-05 3.87E-05 5.06E-05 4.21E-05 4.89E-05 3.89E-05
Kansas 302 2.10E-05 4.17E-05 7.23E-05 1.37E-04 3.18E-04 9.77E-05 7.60E-05 3.26E-05 7.56E-05 3.60E-05 7.23E-05 3.39E-05
Kentucky 356 4.64E-05 5.99E-05 8.43E-05 1.60E-04 4.27E-04 1.27E-04 9.18E-05 6.23E-05 7.44E-05 8.47E-05 8.11E-05 6.32E-05
Louisiana 368 1.09E-05 4.85E-05 7.40E-05 1.27E-04 3.15E-04 9.57E-05 6.23E-05 4.43E-05 4.80E-05 4.62E-05 5.45E-05 4.16E-05
Maine 154 5.84E-06 2.25E-05 4.92E-05 9.89E-05 2.35E-04 6.67E-05 5.67E-05 2.68E-05 2.56E-05 2.37E-05 2.88E-05 2.74E-05
Maryland 1636 1.09E-05 3.02E-04 4.86E-04 6.50E-04 1.30E-03 4.86E-04 2.39E-04 7.20E-05 2.36E-04 1.79E-04 2.07E-04 9.58E-05
Massachusetts 1163 2.92E-06 1.60E-04 2.77E-04 4.59E-04 1.08E-03 3.42E-04 2.32E-04 1.16E-04 1.47E-04 1.40E-04 1.59E-04 1.30E-04
Michigan 1110 9.19E-06 1.13E-04 2.24E-04 3.93E-04 6.77E-04 2.63E-04 1.75E-04 7.54E-05 1.70E-04 5.59E-05 1.62E-04 8.53E-05
Minnesota 627 5.18E-06 3.89E-05 1.02E-04 2.01E-04 4.17E-04 1.25E-04 9.75E-05 2.75E-05 5.10E-05 2.56E-05 6.20E-05 2.75E-05
Mississippi 246 2.91E-05 4.78E-05 5.80E-05 1.04E-04 2.69E-04 8.27E-05 5.23E-05 4.58E-05 4.75E-05 3.90E-05 5.24E-05 4.63E-05
Missouri 691 3.47E-05 5.15E-05 1.42E-04 2.74E-04 5.07E-04 1.76E-04 1.31E-04 4.66E-05 1.16E-04 6.46E-05 9.98E-05 4.76E-05
Montana 226 8.29E-06 1.15E-05 1.42E-05 1.98E-05 3.61E-04 3.34E-05 5.62E-05 1.38E-05 1.89E-05 2.02E-05 1.73E-05 1.38E-05
Nebraska 214 1.95E-05 2.46E-05 4.47E-05 1.66E-04 2.45E-04 8.78E-05 7.37E-05 2.76E-05 3.96E-05 5.00E-05 3.87E-05 2.79E-05
Nevada 641 1.14E-05 7.07E-05 1.68E-04 3.31E-04 7.59E-04 2.17E-04 1.81E-04 2.01E-05 1.59E-04 2.34E-05 1.46E-04 2.28E-05
New Hampshire 325 1.54E-05 1.50E-04 2.28E-04 3.33E-04 5.21E-04 2.38E-04 1.19E-04 8.16E-05 1.36E-04 1.95E-04 1.32E-04 9.90E-05
New Jersey 1676 2.25E-05 2.44E-04 5.64E-04 1.12E-03 2.87E-03 7.50E-04 6.03E-04 1.96E-04 3.35E-04 7.53E-04 3.47E-04 2.12E-04
New Mexico 379 1.99E-05 3.01E-05 7.04E-05 2.25E-04 6.13E-04 1.59E-04 1.72E-04 3.15E-05 7.12E-05 8.51E-05 7.40E-05 3.24E-05
New York 2289 9.94E-06 1.49E-04 3.01E-04 6.42E-04 3.14E-03 4.74E-04 4.83E-04 5.12E-05 2.57E-04 5.66E-05 2.22E-04 5.62E-05
North Carolina 888 6.39E-06 8.63E-05 1.50E-04 2.25E-04 4.59E-04 1.64E-04 9.80E-05 4.33E-05 1.10E-04 5.68E-05 1.03E-04 4.55E-05
North Dakota 118 8.32E-06 1.16E-05 1.36E-05 1.83E-05 1.13E-04 2.19E-05 2.10E-05 1.24E-05 1.45E-05 1.33E-05 1.38E-05 1.24E-05
Ohio 1139 3.47E-05 8.83E-05 1.52E-04 2.81E-04 6.27E-04 1.92E-04 1.25E-04 7.50E-05 9.98E-05 8.00E-05 1.08E-04 7.86E-05
Oklahoma 392 2.55E-05 5.38E-05 1.09E-04 2.25E-04 4.03E-04 1.40E-04 9.66E-05 4.26E-05 9.09E-05 5.82E-05 9.50E-05 4.42E-05
Oregon 436 9.78E-06 2.89E-05 8.44E-05 1.60E-04 5.40E-04 1.22E-04 1.24E-04 2.32E-05 6.78E-05 9.71E-05 6.15E-05 2.36E-05
Pennsylvania 2382 3.24E-05 1.52E-04 2.77E-04 5.32E-04 1.68E-03 4.11E-04 3.62E-04 1.19E-04 1.86E-04 1.61E-04 1.85E-04 1.24E-04
Rhode Island 68 1.54E-05 8.17E-05 2.61E-04 4.83E-04 7.95E-04 3.03E-04 2.36E-04 5.79E-05 1.03E-04 1.29E-04 1.01E-04 7.52E-05
South Carolina 465 2.74E-05 7.69E-05 1.40E-04 2.13E-04 4.03E-04 1.54E-04 8.92E-05 5.86E-05 9.87E-05 5.70E-05 7.55E-05 6.08E-05
South Dakota 124 1.49E-05 1.72E-05 1.96E-05 2.93E-05 1.04E-04 2.85E-05 2.06E-05 2.03E-05 2.58E-05 1.91E-05 2.41E-05 2.04E-05
Tennessee 632 5.02E-05 1.03E-04 1.80E-04 3.06E-04 5.10E-04 2.11E-04 1.26E-04 8.18E-05 1.37E-04 1.53E-04 1.30E-04 9.04E-05
Texas 3416 2.01E-05 1.27E-04 3.06E-04 4.42E-04 1.34E-03 3.26E-04 2.33E-04 4.88E-05 1.72E-04 1.29E-04 2.03E-04 5.34E-05
Utah 412 1.69E-05 3.16E-05 8.12E-05 1.40E-04 2.73E-04 9.46E-05 6.49E-05 2.55E-05 7.56E-05 7.80E-05 7.57E-05 2.98E-05
Vermont 69 1.93E-05 3.39E-05 5.03E-05 1.05E-04 1.54E-04 6.67E-05 4.29E-05 3.03E-05 3.64E-05 3.25E-05 3.71E-05 3.12E-05
Virginia 861 9.94E-06 6.87E-05 1.19E-04 2.42E-04 4.91E-04 1.63E-04 1.15E-04 5.84E-05 9.06E-05 4.43E-05 8.76E-05 5.79E-05
Washington 934 9.03E-06 9.23E-05 2.13E-04 3.34E-04 7.00E-04 2.31E-04 1.63E-04 2.40E-05 1.50E-04 5.83E-05 1.27E-04 2.24E-05
Washington D.C. 23 1.06E-04 1.65E-04 2.82E-04 3.32E-04 3.87E-04 2.58E-04 9.71E-05 1.71E-04 1.71E-04 1.71E-04
West Virginia 142 3.56E-05 5.74E-05 7.71E-05 1.45E-04 2.53E-04 1.04E-04 5.94E-05 6.45E-05 6.81E-05 8.97E-05 7.10E-05 6.34E-05
Wisconsin 713 1.20E-05 6.08E-05 1.18E-04 2.01E-04 5.23E-04 1.52E-04 1.18E-04 5.08E-05 1.02E-04 5.99E-05 6.94E-05 5.42E-05
Wyoming 120 1.10E-05 1.95E-05 2.13E-05 2.45E-05 9.42E-05 2.37E-05 1.11E-05 2.16E-05 2.54E-05 3.35E-05 2.59E-05 2.17E-05
United States 43304 2.92E-06 9.45E-05 2.16E-04 4.09E-04 3.14E-03 3.07E-04 3.11E-04 4.57E-05 1.41 E-04 9.79E-05 1.52E-04 4.84E-05

Marginal characterization factor from NH3 emissions
Descriptive statistics Emission weighted by sector

U.S. State N



200 
 

 

Min Q1 Median Q3 Max Mean SD Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 1.38E-05 3.77E-05 4.88E-05 6.37E-05 7.29E-05 4.97E-05 1.44E-05 4.15E-05 3.80E-05 3.71E-05 4.06E-05
Arizona 997 1.05E-05 2.23E-05 2.48E-05 2.67E-05 3.00E-05 2.40E-05 3.87E-06 1.85E-05 2.20E-05 2.34E-05 2.05E-05
Arkansas 222 2.60E-05 3.11E-05 3.38E-05 3.79E-05 4.59E-05 3.46E-05 4.73E-06 3.07E-05 3.14E-05 3.37E-05 3.07E-05
California 8452 9.53E-06 3.72E-05 6.93E-05 9.58E-05 2.05E-04 7.05E-05 3.85E-05 5.74E-05 5.96E-05 7.94E-05 4.15E-05
Colorado 778 1.46E-05 1.85E-05 2.00E-05 2.07E-05 2.87E-05 1.98E-05 2.32E-06 1.87E-05 1.90E-05 1.96E-05 1.87E-05
Connecticut 618 1.25E-05 2.68E-05 3.14E-05 3.58E-05 4.92E-05 3.17E-05 6.93E-06 2.56E-05 2.65E-05 2.48E-05 2.56E-05
Delaware 38 7.14E-06 1.01E-05 1.20E-05 2.70E-05 3.25E-05 1.72E-05 8.68E-06 1.72E-05 2.37E-05 1.70E-05 1.75E-05
Florida 2296 1.02E-05 3.15E-05 5.19E-05 7.15E-05 1.12E-04 5.37E-05 2.60E-05 3.73E-05 3.56E-05 4.07E-05 3.72E-05
Georgia 1008 2.05E-05 3.99E-05 9.03E-05 1.33E-04 1.67E-04 8.94E-05 4.64E-05 4.86E-05 3.30E-05 5.66E-05 4.65E-05
Idaho 235 6.50E-06 9.17E-06 1.02E-05 1.10E-05 1.35E-05 1.00E-05 1.35E-06 1.06E-05 1.23E-05 1.01E-05 9.92E-06
Illinois 1551 3.05E-05 3.86E-05 4.49E-05 4.85E-05 6.01E-05 4.46E-05 6.88E-06 3.72E-05 3.83E-05 4.12E-05 3.75E-05
Indiana 610 3.33E-05 3.89E-05 4.37E-05 4.61E-05 5.11E-05 4.24E-05 4.44E-06 4.08E-05 3.78E-05 4.14E-05 4.05E-05
Iowa 327 1.91E-05 2.63E-05 2.83E-05 3.36E-05 4.05E-05 2.91E-05 4.94E-06 2.98E-05 3.49E-05 2.85E-05 3.00E-05
Kansas 302 1.53E-05 2.60E-05 3.02E-05 3.21E-05 3.85E-05 2.90E-05 5.74E-06 3.21E-05 2.58E-05 2.97E-05 3.12E-05
Kentucky 356 3.25E-05 3.93E-05 4.20E-05 4.42E-05 5.11E-05 4.18E-05 3.32E-06 4.05E-05 3.94E-05 4.26E-05 4.05E-05
Louisiana 368 1.04E-05 3.06E-05 3.58E-05 4.14E-05 5.38E-05 3.52E-05 8.55E-06 3.33E-05 2.75E-05 2.11E-05 3.02E-05
Maine 154 2.61E-06 8.66E-06 1.31E-05 1.46E-05 1.94E-05 1.18E-05 4.08E-06 9.86E-06 9.82E-06 8.53E-06 9.66E-06
Maryland 1636 6.67E-06 3.11E-05 3.77E-05 4.65E-05 6.96E-05 4.00E-05 1.22E-05 3.66E-05 5.94E-05 2.47E-05 3.67E-05
Massachusetts 1163 2.24E-06 2.61E-05 3.34E-05 4.24E-05 6.28E-05 3.40E-05 1.08E-05 2.67E-05 3.74E-05 2.48E-05 2.69E-05
Michigan 1110 6.57E-06 2.93E-05 3.22E-05 3.57E-05 4.17E-05 3.14E-05 5.91E-06 2.72E-05 2.24E-05 2.96E-05 2.70E-05
Minnesota 627 4.05E-06 1.68E-05 1.97E-05 2.20E-05 2.65E-05 1.82E-05 5.28E-06 1.45E-05 1.35E-05 1.86E-05 1.43E-05
Mississippi 246 2.10E-05 3.31E-05 3.63E-05 3.92E-05 4.80E-05 3.64E-05 5.30E-06 2.20E-05 3.48E-05 2.96E-05 2.34E-05
Missouri 691 2.49E-05 3.07E-05 3.35E-05 3.89E-05 5.19E-05 3.50E-05 5.74E-06 3.63E-05 3.41E-05 3.51E-05 3.59E-05
Montana 226 5.78E-06 7.25E-06 8.49E-06 9.76E-06 1.15E-05 8.48E-06 1.51E-06 1.02E-05 1.03E-05 8.71E-06 1.00E-05
Nebraska 214 1.35E-05 1.75E-05 2.33E-05 2.45E-05 2.58E-05 2.10E-05 4.06E-06 2.04E-05 2.30E-05 2.11E-05 2.05E-05
Nevada 641 9.63E-06 1.35E-05 1.80E-05 2.00E-05 2.59E-05 1.73E-05 3.86E-06 1.47E-05 1.51E-05 1.86E-05 1.49E-05
New Hampshire 325 1.11E-05 3.39E-05 4.08E-05 5.15E-05 6.37E-05 4.22E-05 1.30E-05 3.63E-05 3.62E-05 3.47E-05 3.62E-05
New Jersey 1676 8.96E-06 4.71E-05 8.94E-05 1.17E-04 1.49E-04 8.25E-05 3.88E-05 4.81E-05 2.71E-05 5.79E-05 4.90E-05
New Mexico 379 1.62E-05 1.88E-05 2.01E-05 2.09E-05 2.46E-05 1.99E-05 1.46E-06 1.74E-05 2.34E-05 1.97E-05 2.04E-05
New York 2289 6.41E-06 3.42E-05 5.24E-05 7.85E-05 1.45E-04 5.78E-05 2.88E-05 3.26E-05 3.27E-05 4.08E-05 3.32E-05
North Carolina 888 4.89E-06 3.81E-05 5.91E-05 6.83E-05 8.60E-05 5.32E-05 2.09E-05 5.45E-05 3.23E-05 2.67E-05 4.96E-05
North Dakota 118 5.43E-06 7.10E-06 8.47E-06 9.26E-06 1.16E-05 8.25E-06 1.32E-06 8.44E-06 8.19E-06 8.20E-06 8.40E-06
Ohio 1139 2.71E-05 3.57E-05 4.06E-05 4.33E-05 5.13E-05 3.94E-05 5.17E-06 3.76E-05 3.51E-05 3.70E-05 3.75E-05
Oklahoma 392 1.86E-05 3.45E-05 4.02E-05 4.48E-05 5.74E-05 4.01E-05 7.61E-06 3.45E-05 3.33E-05 3.96E-05 3.43E-05
Oregon 436 7.62E-06 1.60E-05 3.45E-05 4.16E-05 5.31E-05 3.06E-05 1.45E-05 1.43E-05 3.10E-05 3.23E-05 1.62E-05
Pennsylvania 2382 2.68E-05 4.78E-05 6.13E-05 8.18E-05 1.28E-04 6.45E-05 1.86E-05 5.19E-05 5.83E-05 5.26E-05 5.23E-05
Rhode Island 68 8.49E-06 2.32E-05 3.13E-05 3.34E-05 3.65E-05 2.77E-05 7.84E-06 1.93E-05 2.34E-05 1.64E-05 1.93E-05
South Carolina 465 1.60E-05 3.48E-05 4.18E-05 5.36E-05 7.34E-05 4.45E-05 1.28E-05 3.72E-05 3.95E-05 2.80E-05 3.71E-05
South Dakota 124 1.05E-05 1.19E-05 1.29E-05 1.70E-05 1.98E-05 1.41E-05 2.80E-06 1.43E-05 1.28E-05 1.49E-05 1.42E-05
Tennessee 632 3.41E-05 5.25E-05 5.77E-05 6.19E-05 7.68E-05 5.68E-05 8.37E-06 5.23E-05 5.50E-05 5.67E-05 5.26E-05
Texas 3416 1.58E-05 5.00E-05 7.79E-05 1.01E-04 1.87E-04 8.35E-05 4.54E-05 4.77E-05 4.83E-05 7.59E-05 4.84E-05
Utah 412 1.21E-05 1.51E-05 1.61E-05 1.74E-05 1.99E-05 1.61E-05 1.41E-06 1.67E-05 1.72E-05 1.69E-05 1.68E-05
Vermont 69 1.34E-05 1.50E-05 1.54E-05 2.56E-05 4.57E-05 2.11E-05 9.36E-06 2.48E-05 2.35E-05 2.46E-05
Virginia 861 6.83E-06 2.30E-05 2.98E-05 4.45E-05 6.77E-05 3.28E-05 1.29E-05 2.98E-05 3.91E-05 2.09E-05 3.21E-05
Washington 934 6.71E-06 1.34E-05 2.29E-05 3.37E-05 5.19E-05 2.40E-05 1.25E-05 2.74E-05 1.11E-05 1.94E-05 1.60E-05
Washington D.C. 23 2.19E-05 2.64E-05 2.99E-05 3.05E-05 3.13E-05 2.83E-05 2.94E-06 2.58E-05 2.58E-05 2.58E-05 2.58E-05
West Virginia 142 3.51E-05 3.81E-05 4.50E-05 4.79E-05 6.79E-05 4.52E-05 8.20E-06 4.24E-05 4.85E-05 4.54E-05 4.26E-05
Wisconsin 713 7.63E-06 2.32E-05 3.50E-05 3.79E-05 5.08E-05 3.15E-05 9.25E-06 2.40E-05 2.44E-05 2.90E-05 2.41E-05
Wyoming 120 9.95E-06 1.21E-05 1.34E-05 1.50E-05 1.90E-05 1.37E-05 2.03E-06 1.44E-05 1.34E-05 1.44E-05 1.42E-05
United States 43304 2.24E-06 2.76E-05 4.16E-05 6.83E-05 2.05E-04 5.19E-05 3.41E-05 3.69E-05 3.52E-05 3.68E-05 3.63E-05

Marginal characterization factor from SO2 emissions

U.S. State N
Descriptive statistics Emission weighted by sector
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Min Q1 Median Q3 Max Mean SD Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 4.68E-06 1.73E-05 2.51E-05 3.25E-05 6.28E-05 2.56E-05 1.06E-05 1.88E-05 1.74E-05 1.87E-05 1.84E-05
Arizona 997 5.07E-06 1.24E-05 2.04E-05 2.44E-05 3.53E-05 1.92E-05 6.59E-06 1.28E-05 1.16E-05 1.44E-05 1.39E-05
Arkansas 222 1.72E-05 2.17E-05 2.91E-05 3.96E-05 1.08E-04 3.42E-05 1.77E-05 2.49E-05 2.30E-05 2.57E-05 2.49E-05
California 8452 2.71E-06 2.33E-05 3.19E-05 4.09E-05 1.25E-04 3.34E-05 1.53E-05 2.12E-05 2.15E-05 2.30E-05 2.16E-05
Colorado 778 1.20E-05 1.89E-05 3.03E-05 3.81E-05 7.80E-05 3.00E-05 1.24E-05 1.89E-05 1.82E-05 1.97E-05 1.87E-05
Connecticut 618 2.42E-06 9.68E-06 1.23E-05 1.58E-05 2.62E-05 1.27E-05 4.73E-06 6.79E-06 7.44E-06 6.83E-06 6.81E-06
Delaware 38 3.55E-06 8.17E-06 9.85E-06 1.23E-05 2.64E-05 1.09E-05 4.35E-06 8.70E-06 8.68E-06 7.97E-06 8.14E-06
Florida 2296 1.58E-06 7.01E-06 9.80E-06 1.27E-05 2.83E-05 1.02E-05 4.20E-06 8.58E-06 7.81E-06 7.35E-06 7.53E-06
Georgia 1008 5.85E-06 1.80E-05 3.58E-05 6.05E-05 8.39E-05 3.94E-05 2.30E-05 2.11E-05 1.20E-05 2.49E-05 2.22E-05
Idaho 235 5.95E-06 9.09E-06 1.15E-05 2.08E-05 5.15E-05 1.57E-05 9.10E-06 1.11E-05 9.83E-06 1.11E-05 1.08E-05
Illinois 1551 1.74E-05 2.83E-05 3.74E-05 4.46E-05 6.89E-05 3.67E-05 1.04E-05 2.54E-05 2.24E-05 2.72E-05 2.60E-05
Indiana 610 1.77E-05 2.48E-05 3.21E-05 4.51E-05 6.31E-05 3.55E-05 1.23E-05 2.35E-05 2.33E-05 2.70E-05 2.54E-05
Iowa 327 1.44E-05 1.97E-05 2.50E-05 3.94E-05 6.33E-05 2.95E-05 1.16E-05 1.94E-05 2.03E-05 1.96E-05 1.94E-05
Kansas 302 1.22E-05 1.96E-05 2.78E-05 4.49E-05 6.69E-05 3.22E-05 1.56E-05 2.27E-05 1.90E-05 2.32E-05 2.12E-05
Kentucky 356 1.24E-05 1.89E-05 2.22E-05 3.38E-05 5.38E-05 2.65E-05 1.05E-05 2.03E-05 1.70E-05 2.00E-05 1.98E-05
Louisiana 368 4.63E-06 1.60E-05 2.02E-05 2.84E-05 5.86E-05 2.29E-05 1.07E-05 1.42E-05 1.67E-05 1.43E-05 1.48E-05
Maine 154 7.39E-07 2.91E-06 5.04E-06 7.26E-06 2.93E-05 6.65E-06 6.22E-06 3.22E-06 3.12E-06 2.88E-06 2.97E-06
Maryland 1636 2.40E-06 2.12E-05 3.01E-05 3.85E-05 5.55E-05 2.95E-05 1.08E-05 1.44E-05 2.07E-05 1.47E-05 1.48E-05
Massachusetts 1163 3.24E-07 1.01E-05 1.46E-05 2.30E-05 4.67E-05 1.74E-05 9.56E-06 8.91E-06 9.37E-06 8.52E-06 8.64E-06
Michigan 1110 2.83E-06 2.38E-05 3.39E-05 4.09E-05 6.22E-05 3.22E-05 1.13E-05 1.97E-05 9.57E-06 2.13E-05 1.96E-05
Minnesota 627 2.11E-06 1.55E-05 2.59E-05 3.32E-05 4.68E-05 2.44E-05 1.09E-05 1.58E-05 6.28E-06 1.62E-05 1.46E-05
Mississippi 246 7.61E-06 1.71E-05 1.97E-05 2.61E-05 4.22E-05 2.21E-05 7.65E-06 1.39E-05 1.44E-05 1.80E-05 1.70E-05
Missouri 691 1.70E-05 2.26E-05 3.68E-05 4.95E-05 9.28E-05 3.77E-05 1.51E-05 2.62E-05 2.13E-05 2.64E-05 2.56E-05
Montana 226 5.73E-06 7.33E-06 8.59E-06 9.71E-06 4.18E-05 9.87E-06 4.99E-06 9.13E-06 8.35E-06 8.36E-06 8.37E-06
Nebraska 214 1.14E-05 1.43E-05 2.00E-05 4.19E-05 6.63E-05 2.88E-05 1.72E-05 1.78E-05 1.80E-05 1.58E-05 1.58E-05
Nevada 641 8.24E-06 1.00E-05 1.14E-05 1.37E-05 3.13E-05 1.28E-05 4.41E-06 1.05E-05 1.05E-05 1.14E-05 1.11E-05
New Hampshire 325 2.50E-06 9.12E-06 1.24E-05 1.49E-05 2.45E-05 1.24E-05 4.65E-06 7.95E-06 8.90E-06 7.72E-06 7.78E-06
New Jersey 1676 2.93E-06 1.57E-05 2.74E-05 4.46E-05 9.96E-05 3.14E-05 1.94E-05 1.75E-05 1.01E-05 1.63E-05 1.64E-05
New Mexico 379 1.10E-05 1.38E-05 1.52E-05 2.02E-05 3.33E-05 1.71E-05 4.67E-06 1.39E-05 1.40E-05 1.47E-05 1.43E-05
New York 2289 9.58E-07 1.37E-05 1.96E-05 3.28E-05 1.03E-04 2.48E-05 1.56E-05 1.75E-05 1.20E-05 1.37E-05 1.46E-05
North Carolina 888 1.99E-06 2.13E-05 3.10E-05 4.16E-05 7.09E-05 3.21E-05 1.48E-05 2.38E-05 1.61E-05 2.24E-05 2.22E-05
North Dakota 118 4.67E-06 6.80E-06 7.87E-06 8.83E-06 3.58E-05 9.17E-06 4.79E-06 7.71E-06 7.23E-06 7.45E-06 7.46E-06
Ohio 1139 1.30E-05 2.33E-05 3.21E-05 4.55E-05 6.76E-05 3.44E-05 1.33E-05 2.07E-05 2.06E-05 2.45E-05 2.29E-05
Oklahoma 392 1.40E-05 2.52E-05 3.76E-05 5.73E-05 8.16E-05 4.18E-05 1.87E-05 2.52E-05 2.26E-05 3.02E-05 2.61E-05
Oregon 436 6.81E-06 1.07E-05 2.33E-05 4.10E-05 8.31E-05 2.81E-05 1.88E-05 1.47E-05 1.37E-05 1.57E-05 1.45E-05
Pennsylvania 2382 6.85E-06 2.38E-05 3.22E-05 4.38E-05 1.02E-04 3.60E-05 1.63E-05 2.13E-05 1.99E-05 2.26E-05 2.18E-05
Rhode Island 68 1.39E-06 5.29E-06 1.34E-05 2.13E-05 3.20E-05 1.41E-05 9.13E-06 5.97E-06 5.87E-06 4.86E-06 5.09E-06
South Carolina 465 4.71E-06 1.35E-05 1.90E-05 2.87E-05 4.84E-05 2.12E-05 9.49E-06 1.41E-05 1.20E-05 1.46E-05 1.43E-05
South Dakota 124 9.06E-06 1.01E-05 1.12E-05 1.53E-05 6.41E-05 1.58E-05 1.15E-05 1.12E-05 1.14E-05 1.27E-05 1.19E-05
Tennessee 632 1.43E-05 2.36E-05 3.24E-05 4.06E-05 6.54E-05 3.38E-05 1.22E-05 2.64E-05 2.39E-05 2.60E-05 2.58E-05
Texas 3416 8.18E-06 2.64E-05 4.94E-05 6.44E-05 1.08E-04 4.74E-05 2.20E-05 2.42E-05 1.88E-05 3.08E-05 2.58E-05
Utah 412 9.80E-06 1.25E-05 1.45E-05 1.65E-05 3.24E-05 1.50E-05 3.66E-06 1.26E-05 1.34E-05 1.37E-05 1.32E-05
Vermont 69 3.47E-06 6.30E-06 8.31E-06 2.13E-05 3.03E-05 1.30E-05 8.73E-06 6.75E-06 7.88E-06 6.70E-06 6.70E-06
Virginia 861 1.92E-06 8.43E-06 1.39E-05 1.94E-05 3.45E-05 1.45E-05 7.27E-06 9.84E-06 1.02E-05 9.36E-06 9.57E-06
Washington 934 3.27E-06 1.55E-05 2.08E-05 2.72E-05 5.05E-05 2.25E-05 1.07E-05 1.33E-05 1.42E-05 1.43E-05 1.35E-05
Washington D.C. 23 7.91E-06 1.09E-05 1.75E-05 1.88E-05 2.12E-05 1.55E-05 4.73E-06 1.12E-05 1.12E-05 1.12E-05 1.12E-05
West Virginia 142 8.65E-06 1.28E-05 1.49E-05 1.84E-05 2.96E-05 1.62E-05 4.58E-06 1.41E-05 1.34E-05 1.41E-05 1.40E-05
Wisconsin 713 3.90E-06 2.04E-05 2.78E-05 3.76E-05 7.33E-05 2.96E-05 1.28E-05 1.89E-05 1.64E-05 1.86E-05 1.85E-05
Wyoming 120 8.60E-06 1.07E-05 1.15E-05 1.26E-05 2.20E-05 1.19E-05 2.04E-06 1.21E-05 1.20E-05 1.25E-05 1.22E-05
United States 43304 3.24E-07 1.58E-05 2.60E-05 3.92E-05 1.25E-04 2.93E-05 1.73E-05 1.84E-05 1.69E-05 1.93E-05 1.85E-05

Descriptive statistics Emission weighted by sector
Marginal characterization factor from NOx emissions

U.S. State N
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Table A3.30. Distribution of average characterization factors ( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) of source locations and emission-weighted sector-specific 
estimates by state. 

 

Min Q1 Median Q3 Max Mean SD Agriculture Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 5.03E-05 1.96E-04 3.62E-04 6.91E-04 1.52E-03 4.86E-04 3.72E-04 1.69E-04 2.13E-04 2.65E-04 2.21E-04 1.87E-04
Arizona 997 4.38E-05 4.56E-04 1.78E-03 2.45E-03 3.32E-03 1.54E-03 1.02E-03 2.04E-04 5.14E-04 2.41E-04 7.52E-04 3.39E-04
Arkansas 222 6.80E-05 1.20E-04 2.14E-04 4.13E-04 8.82E-04 2.90E-04 2.05E-04 1.15E-04 1.58E-04 1.32E-04 1.58E-04 1.28E-04
California 8452 2.02E-05 6.50E-04 1.35E-03 2.11E-03 6.46E-03 1.54E-03 1.11E-03 1.81E-04 7.08E-04 9.26E-04 9.29E-04 3.04E-04
Colorado 778 3.54E-05 2.77E-04 9.45E-04 1.67E-03 2.76E-03 1.00E-03 7.40E-04 7.74E-05 3.88E-04 3.38E-04 4.55E-04 2.78E-04
Connecticut 618 7.49E-05 3.50E-04 5.19E-04 7.35E-04 1.61E-03 5.75E-04 3.16E-04 2.49E-04 2.31E-04 2.77E-04 2.49E-04 2.36E-04
Delaware 38 4.61E-05 1.01E-04 1.40E-04 2.08E-04 7.10E-04 1.83E-04 1.28E-04 8.59E-05 1.36E-04 1.45E-04 1.31E-04 1.27E-04
Florida 2296 3.30E-05 4.01E-04 7.99E-04 1.72E-03 5.22E-03 1.16E-03 1.01E-03 1.56E-04 5.90E-04 3.75E-04 5.84E-04 3.63E-04
Georgia 1008 7.32E-05 2.73E-04 6.47E-04 1.32E-03 2.55E-03 8.19E-04 6.27E-04 1.53E-04 3.39E-04 1.74E-04 4.90E-04 2.15E-04
Idaho 235 1.42E-05 3.35E-05 7.24E-05 4.07E-04 1.63E-03 2.50E-04 3.34E-04 5.71E-05 9.93E-05 4.87E-05 8.13E-05 5.70E-05
Illinois 1551 9.08E-05 4.29E-04 1.09E-03 1.52E-03 3.16E-03 1.11E-03 7.40E-04 1.67E-04 3.63E-04 4.63E-04 5.87E-04 2.81E-04
Indiana 610 1.29E-04 2.16E-04 4.22E-04 7.93E-04 1.55E-03 5.58E-04 3.95E-04 2.04E-04 2.21E-04 2.38E-04 2.96E-04 2.34E-04
Iowa 327 5.92E-05 1.19E-04 2.09E-04 4.23E-04 9.23E-04 2.81E-04 1.96E-04 9.98E-05 1.21E-04 1.36E-04 1.22E-04 1.09E-04
Kansas 302 3.49E-05 1.06E-04 2.35E-04 5.30E-04 1.29E-03 3.55E-04 3.28E-04 7.70E-05 1.63E-04 1.81E-04 1.78E-04 1.12E-04
Kentucky 356 9.95E-05 1.44E-04 2.29E-04 5.06E-04 1.47E-03 3.95E-04 3.40E-04 1.59E-04 2.28E-04 1.65E-04 2.09E-04 1.71E-04
Louisiana 368 2.87E-05 1.38E-04 2.45E-04 4.63E-04 1.22E-03 3.38E-04 2.56E-04 1.18E-04 1.53E-04 1.59E-04 1.55E-04 1.23E-04
Maine 154 1.08E-05 5.49E-05 1.37E-04 2.64E-04 7.12E-04 1.94E-04 1.80E-04 5.31E-05 6.52E-05 5.77E-05 6.71E-05 6.47E-05
Maryland 1636 3.20E-05 8.90E-04 1.47E-03 1.98E-03 4.06E-03 1.47E-03 7.30E-04 2.08E-04 4.90E-04 4.44E-04 5.95E-04 4.08E-04
Massachusetts 1163 7.08E-06 4.30E-04 7.66E-04 1.37E-03 3.85E-03 1.04E-03 8.12E-04 2.71E-04 3.88E-04 3.58E-04 4.13E-04 3.87E-04
Michigan 1110 2.19E-05 3.45E-04 7.10E-04 1.22E-03 2.13E-03 8.09E-04 5.38E-04 2.00E-04 3.12E-04 2.60E-04 4.23E-04 3.14E-04
Minnesota 627 1.07E-05 1.34E-04 4.68E-04 9.42E-04 2.10E-03 5.78E-04 4.86E-04 6.51E-05 1.27E-04 1.02E-04 2.14E-04 1.11E-04
Mississippi 246 7.38E-05 1.20E-04 1.61E-04 3.38E-04 1.01E-03 2.59E-04 2.10E-04 1.12E-04 1.26E-04 1.32E-04 1.40E-04 1.29E-04
Missouri 691 6.30E-05 1.29E-04 5.26E-04 1.10E-03 2.19E-03 6.81E-04 5.78E-04 1.15E-04 2.53E-04 1.96E-04 3.17E-04 1.62E-04
Montana 226 1.35E-05 2.14E-05 2.78E-05 4.60E-05 9.45E-04 8.80E-05 1.66E-04 2.56E-05 3.59E-05 3.68E-05 3.25E-05 3.01E-05
Nebraska 214 3.47E-05 4.85E-05 1.31E-04 7.31E-04 1.25E-03 3.63E-04 3.78E-04 5.63E-05 9.04E-05 9.26E-05 8.08E-05 6.76E-05
Nevada 641 2.63E-05 2.78E-04 7.12E-04 1.56E-03 2.94E-03 9.13E-04 7.73E-04 4.45E-05 5.61E-04 1.06E-04 5.88E-04 2.68E-04
New Hampshire 325 3.67E-05 3.91E-04 5.99E-04 9.04E-04 1.67E-03 6.72E-04 3.75E-04 1.76E-04 3.08E-04 2.73E-04 3.26E-04 3.17E-04
New Jersey 1676 5.94E-05 6.89E-04 1.69E-03 3.69E-03 1.04E-02 2.45E-03 2.14E-03 3.17E-04 1.00E-03 4.49E-04 1.10E-03 8.20E-04
New Mexico 379 3.81E-05 7.62E-05 2.09E-04 8.01E-04 2.11E-03 4.98E-04 5.52E-04 7.72E-05 1.87E-04 1.03E-04 1.84E-04 1.65E-04
New York 2289 2.44E-05 4.08E-04 9.05E-04 1.96E-03 1.08E-02 1.49E-03 1.63E-03 1.11E-04 4.59E-04 2.55E-04 7.03E-04 4.72E-04
North Carolina 888 1.69E-05 2.86E-04 4.91E-04 7.42E-04 1.60E-03 5.43E-04 3.42E-04 1.83E-04 3.32E-04 2.45E-04 3.22E-04 2.60E-04
North Dakota 118 1.69E-05 2.25E-05 2.68E-05 5.19E-05 5.14E-04 6.71E-05 9.24E-05 2.65E-05 2.81E-05 2.71E-05 2.91E-05 2.73E-05
Ohio 1139 7.58E-05 2.49E-04 4.62E-04 9.85E-04 2.09E-03 6.31E-04 4.62E-04 2.04E-04 2.45E-04 2.68E-04 3.17E-04 2.48E-04
Oklahoma 392 5.35E-05 1.57E-04 4.20E-04 9.81E-04 1.73E-03 5.74E-04 4.58E-04 1.29E-04 2.57E-04 1.72E-04 3.05E-04 1.84E-04
Oregon 436 1.77E-05 8.55E-05 3.90E-04 8.38E-04 2.46E-03 5.87E-04 6.07E-04 5.73E-05 2.28E-04 1.76E-04 2.64E-04 1.12E-04
Pennsylvania 2382 6.80E-05 4.00E-04 8.31E-04 1.60E-03 5.35E-03 1.22E-03 1.16E-03 2.81E-04 3.91E-04 4.05E-04 4.84E-04 4.01E-04
Rhode Island 68 3.73E-05 1.94E-04 6.94E-04 1.33E-03 2.26E-03 8.30E-04 6.74E-04 8.73E-05 2.04E-04 2.46E-04 2.13E-04 2.27E-04
South Carolina 465 6.68E-05 2.18E-04 4.31E-04 6.62E-04 1.22E-03 4.64E-04 2.78E-04 1.54E-04 2.44E-04 1.91E-04 2.09E-04 2.09E-04
South Dakota 124 2.67E-05 3.16E-05 3.80E-05 7.15E-05 5.95E-04 8.78E-05 1.17E-04 4.39E-05 5.07E-05 4.93E-05 5.04E-05 4.45E-05
Tennessee 632 1.08E-04 3.11E-04 5.83E-04 1.03E-03 1.74E-03 6.90E-04 4.50E-04 2.14E-04 3.19E-04 3.24E-04 3.98E-04 2.99E-04
Texas 3416 5.14E-05 4.49E-04 1.22E-03 1.79E-03 4.56E-03 1.22E-03 8.35E-04 1.53E-04 3.89E-04 3.96E-04 5.79E-04 3.51E-04
Utah 412 3.78E-05 9.02E-05 3.58E-04 6.12E-04 1.42E-03 4.05E-04 3.26E-04 6.72E-05 1.76E-04 2.55E-04 2.82E-04 1.61E-04
Vermont 69 4.30E-05 6.95E-05 1.17E-04 3.45E-04 5.17E-04 1.95E-04 1.58E-04 7.02E-05 8.24E-05 6.82E-05 8.37E-05 8.14E-05
Virginia 861 2.69E-05 2.19E-04 3.68E-04 7.30E-04 1.57E-03 4.97E-04 3.53E-04 2.03E-04 2.57E-04 1.92E-04 2.81E-04 2.32E-04
Washington 934 2.08E-05 3.95E-04 9.48E-04 1.43E-03 3.50E-03 1.01E-03 7.41E-04 6.68E-05 5.99E-04 2.75E-04 4.85E-04 1.67E-04
Washington D.C. 23 3.06E-04 4.87E-04 8.45E-04 1.00E-03 1.18E-03 7.74E-04 2.96E-04 5.10E-04 5.10E-04 5.10E-04 5.10E-04
West Virginia 142 9.24E-05 1.32E-04 1.87E-04 3.66E-04 7.04E-04 2.63E-04 1.67E-04 1.65E-04 1.47E-04 1.54E-04 1.80E-04 1.51E-04
Wisconsin 713 3.40E-05 1.97E-04 4.06E-04 7.20E-04 1.92E-03 5.31E-04 4.39E-04 1.48E-04 1.99E-04 1.82E-04 1.96E-04 1.75E-04
Wyoming 120 2.00E-05 3.87E-05 4.48E-05 5.53E-05 2.26E-04 5.32E-05 3.19E-05 4.79E-05 5.74E-05 6.41E-05 5.84E-05 5.40E-05
United States 43304 7.08E-06 3.18E-04 7.78E-04 1.54E-03 1.08E-02 1.10E-03 1.08E-03 1.13E-04 2.98E-04 2.76E-04 4.19E-04 2.09E-04

U.S. State N

Average characterization factor from PM2.5 emissions
Descriptive statistics Emission weighted by sector
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Min Q1 Median Q3 Max Mean SD Agriculture Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 4.12E-05 1.55E-04 2.54E-04 4.64E-04 1.16E-03 3.53E-04 2.76E-04 1.34E-04 1.86E-04 1.30E-04 1.77E-04 1.32E-04
Arizona 997 3.00E-05 1.55E-04 3.66E-04 4.61E-04 8.80E-04 3.26E-04 1.78E-04 8.18E-05 1.61E-04 7.95E-05 1.91E-04 7.74E-05
Arkansas 222 7.34E-05 9.50E-05 1.41E-04 2.27E-04 4.69E-04 1.70E-04 9.07E-05 9.34E-05 1.13E-04 9.37E-05 1.18E-04 9.34E-05
California 8452 1.72E-05 2.65E-04 6.34E-04 1.09E-03 2.74E-03 7.42E-04 5.62E-04 9.81E-05 4.20E-04 7.53E-04 5.47E-04 1.03E-04
Colorado 778 3.35E-05 1.50E-04 4.01E-04 6.77E-04 9.49E-04 4.15E-04 2.74E-04 6.10E-05 2.39E-04 9.36E-05 2.53E-04 6.57E-05
Connecticut 618 6.48E-05 2.87E-04 4.07E-04 5.53E-04 1.17E-03 4.37E-04 2.21E-04 1.82E-04 2.01E-04 2.42E-04 1.99E-04 2.53E-04
Delaware 38 2.75E-05 6.05E-05 8.70E-05 1.52E-04 4.59E-04 1.18E-04 8.76E-05 5.30E-05 1.16E-04 5.38E-05 9.99E-05 5.64E-05
Florida 2296 2.88E-05 3.39E-04 6.58E-04 1.46E-03 4.82E-03 1.01E-03 9.16E-04 1.25E-04 4.73E-04 2.77E-04 5.53E-04 1.31E-04
Georgia 1008 6.18E-05 1.91E-04 3.98E-04 8.11E-04 1.49E-03 5.10E-04 3.69E-04 1.63E-04 3.88E-04 1.02E-04 3.27E-04 1.59E-04
Idaho 235 1.46E-05 2.46E-05 3.35E-05 9.31E-05 3.32E-04 6.93E-05 6.81E-05 3.17E-05 3.97E-05 3.32E-05 3.67E-05 3.04E-05
Illinois 1551 9.29E-05 2.61E-04 6.44E-04 9.03E-04 1.81E-03 6.59E-04 4.24E-04 1.36E-04 4.53E-04 1.70E-04 4.05E-04 1.54E-04
Indiana 610 1.21E-04 1.65E-04 2.74E-04 4.77E-04 8.96E-04 3.53E-04 2.20E-04 1.57E-04 2.08E-04 1.54E-04 2.20E-04 1.58E-04
Iowa 327 5.69E-05 9.28E-05 1.34E-04 2.05E-04 4.20E-04 1.59E-04 8.22E-05 8.07E-05 1.06E-04 8.83E-05 1.02E-04 8.11E-05
Kansas 302 4.21E-05 8.53E-05 1.46E-04 2.77E-04 6.55E-04 1.98E-04 1.55E-04 6.65E-05 1.55E-04 7.35E-05 1.48E-04 6.91E-05
Kentucky 356 9.28E-05 1.21E-04 1.71E-04 3.30E-04 8.89E-04 2.60E-04 1.89E-04 1.27E-04 1.53E-04 1.76E-04 1.66E-04 1.29E-04
Louisiana 368 2.28E-05 1.01E-04 1.57E-04 2.68E-04 6.81E-04 2.02E-04 1.32E-04 9.26E-05 1.01E-04 9.74E-05 1.14E-04 8.71E-05
Maine 154 9.79E-06 4.13E-05 9.45E-05 1.90E-04 4.56E-04 1.27E-04 1.09E-04 5.00E-05 4.80E-05 4.38E-05 5.46E-05 5.12E-05
Maryland 1636 2.29E-05 6.56E-04 1.05E-03 1.41E-03 2.79E-03 1.05E-03 5.15E-04 1.55E-04 5.10E-04 3.90E-04 4.47E-04 2.07E-04
Massachusetts 1163 5.88E-06 3.26E-04 5.61E-04 9.46E-04 2.28E-03 7.06E-04 4.91E-04 2.36E-04 3.00E-04 2.85E-04 3.26E-04 2.65E-04
Michigan 1110 1.79E-05 2.42E-04 4.81E-04 8.49E-04 1.49E-03 5.69E-04 3.82E-04 1.60E-04 3.68E-04 1.18E-04 3.50E-04 1.81E-04
Minnesota 627 9.63E-06 7.83E-05 2.01E-04 4.03E-04 8.38E-04 2.51E-04 1.95E-04 5.60E-05 1.03E-04 5.12E-05 1.25E-04 5.60E-05
Mississippi 246 6.08E-05 9.98E-05 1.21E-04 2.15E-04 5.62E-04 1.72E-04 1.09E-04 9.60E-05 9.94E-05 8.17E-05 1.10E-04 9.69E-05
Missouri 691 7.23E-05 1.07E-04 2.94E-04 5.67E-04 1.08E-03 3.68E-04 2.78E-04 9.69E-05 2.43E-04 1.35E-04 2.09E-04 9.90E-05
Montana 226 1.43E-05 2.05E-05 2.55E-05 3.33E-05 5.74E-04 5.46E-05 8.72E-05 2.47E-05 3.23E-05 3.49E-05 2.97E-05 2.47E-05
Nebraska 214 3.89E-05 4.98E-05 9.04E-05 3.34E-04 5.01E-04 1.78E-04 1.50E-04 5.60E-05 8.13E-05 1.02E-04 7.89E-05 5.67E-05
Nevada 641 1.99E-05 1.28E-04 3.03E-04 6.20E-04 1.34E-03 3.89E-04 3.22E-04 3.50E-05 3.00E-04 4.10E-05 2.73E-04 3.98E-05
New Hampshire 325 2.82E-05 2.99E-04 4.55E-04 6.59E-04 1.05E-03 4.72E-04 2.36E-04 1.61E-04 2.71E-04 3.91E-04 2.62E-04 1.96E-04
New Jersey 1676 4.89E-05 5.33E-04 1.24E-03 2.48E-03 6.37E-03 1.66E-03 1.34E-03 4.28E-04 7.40E-04 1.67E-03 7.66E-04 4.65E-04
New Mexico 379 3.73E-05 5.70E-05 1.24E-04 3.87E-04 9.91E-04 2.70E-04 2.83E-04 6.06E-05 1.25E-04 1.47E-04 1.29E-04 6.17E-05
New York 2289 2.07E-05 3.20E-04 6.56E-04 1.43E-03 6.85E-03 1.04E-03 1.07E-03 1.08E-04 5.66E-04 1.17E-04 4.88E-04 1.19E-04
North Carolina 888 1.30E-05 1.77E-04 3.04E-04 4.59E-04 9.36E-04 3.32E-04 2.00E-04 8.75E-05 2.25E-04 1.15E-04 2.09E-04 9.20E-05
North Dakota 118 1.54E-05 2.20E-05 2.64E-05 3.38E-05 1.94E-04 4.02E-05 3.60E-05 2.40E-05 2.80E-05 2.52E-05 2.63E-05 2.38E-05
Ohio 1139 7.34E-05 1.87E-04 3.22E-04 5.97E-04 1.32E-03 4.06E-04 2.65E-04 1.59E-04 2.11E-04 1.70E-04 2.29E-04 1.66E-04
Oklahoma 392 5.12E-05 1.11E-04 2.26E-04 4.66E-04 8.11E-04 2.90E-04 2.01E-04 8.71E-05 1.88E-04 1.21E-04 1.97E-04 9.06E-05
Oregon 436 1.66E-05 4.48E-05 1.35E-04 2.58E-04 8.71E-04 1.95E-04 1.97E-04 3.75E-05 1.15E-04 1.55E-04 1.03E-04 3.80E-05
Pennsylvania 2382 6.86E-05 3.24E-04 5.86E-04 1.14E-03 3.54E-03 8.73E-04 7.69E-04 2.53E-04 3.96E-04 3.43E-04 3.95E-04 2.65E-04
Rhode Island 68 3.14E-05 1.66E-04 5.35E-04 1.00E-03 1.66E-03 6.28E-04 4.94E-04 1.18E-04 2.10E-04 2.64E-04 2.05E-04 1.53E-04
South Carolina 465 5.63E-05 1.59E-04 2.83E-04 4.39E-04 8.34E-04 3.17E-04 1.84E-04 1.21E-04 2.05E-04 1.18E-04 1.56E-04 1.25E-04
South Dakota 124 2.94E-05 3.43E-05 3.89E-05 5.94E-05 2.10E-04 5.61E-05 3.95E-05 4.10E-05 5.13E-05 3.83E-05 4.76E-05 4.10E-05
Tennessee 632 1.03E-04 2.11E-04 3.69E-04 6.34E-04 1.07E-03 4.41E-04 2.66E-04 1.68E-04 2.85E-04 3.20E-04 2.69E-04 1.86E-04
Texas 3416 4.02E-05 2.60E-04 6.41E-04 9.25E-04 2.69E-03 6.76E-04 4.81E-04 1.00E-04 3.56E-04 2.66E-04 4.22E-04 1.09E-04
Utah 412 3.03E-05 5.61E-05 1.53E-04 2.57E-04 5.29E-04 1.75E-04 1.26E-04 4.54E-05 1.45E-04 1.50E-04 1.45E-04 5.38E-05
Vermont 69 3.62E-05 6.57E-05 9.75E-05 2.05E-04 2.98E-04 1.29E-04 8.30E-05 5.82E-05 7.08E-05 6.27E-05 7.21E-05 6.00E-05
Virginia 861 2.10E-05 1.40E-04 2.49E-04 5.09E-04 1.05E-03 3.38E-04 2.45E-04 1.19E-04 1.88E-04 9.16E-05 1.83E-04 1.18E-04
Washington 934 1.53E-05 1.51E-04 3.75E-04 5.95E-04 1.29E-03 4.04E-04 2.92E-04 4.03E-05 2.67E-04 9.82E-05 2.26E-04 3.73E-05
Washington D.C. 23 2.31E-04 3.60E-04 6.10E-04 7.21E-04 8.43E-04 5.61E-04 2.10E-04 3.73E-04 3.73E-04 3.73E-04
West Virginia 142 7.25E-05 1.13E-04 1.54E-04 2.89E-04 5.03E-04 2.08E-04 1.18E-04 1.33E-04 1.40E-04 1.86E-04 1.45E-04 1.30E-04
Wisconsin 713 2.36E-05 1.24E-04 2.48E-04 4.25E-04 1.11E-03 3.20E-04 2.50E-04 1.06E-04 2.16E-04 1.25E-04 1.46E-04 1.13E-04
Wyoming 120 1.98E-05 3.47E-05 3.90E-05 4.52E-05 1.47E-04 4.25E-05 1.77E-05 3.96E-05 4.59E-05 6.04E-05 4.60E-05 3.98E-05
United States 43304 2.92E-06 9.45E-05 2.16E-04 4.09E-04 3.14E-03 3.07E-04 3.11E-04 4.57E-05 1.41 E-04 9.79E-05 1.52E-04 4.84E-05

U.S. State N

Average characterization factor from NH3 emissions
Descriptive statistics Emission weighted by sector
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Min Q1 Median Q3 Max Mean SD Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 2.87E-05 7.84E-05 1.02E-04 1.32E-04 1.52E-04 1.03E-04 3.01E-05 8.64E-05 7.91E-05 7.70E-05 8.45E-05
Arizona 997 2.04E-05 4.23E-05 4.72E-05 5.11E-05 5.80E-05 4.57E-05 7.69E-06 3.51E-05 4.12E-05 4.48E-05 3.86E-05
Arkansas 222 5.44E-05 6.45E-05 6.98E-05 7.92E-05 9.67E-05 7.21E-05 1.01E-05 6.41E-05 6.53E-05 7.01E-05 6.41E-05
California 8452 1.64E-05 7.70E-05 1.46E-04 2.04E-04 4.52E-04 1.49E-04 8.43E-05 1.20E-04 1.25E-04 1.69E-04 8.49E-05
Colorado 778 2.91E-05 3.57E-05 3.89E-05 4.02E-05 5.36E-05 3.83E-05 4.13E-06 3.60E-05 3.66E-05 3.80E-05 3.61E-05
Connecticut 618 2.55E-05 5.57E-05 6.53E-05 7.42E-05 1.05E-04 6.58E-05 1.45E-05 5.34E-05 5.52E-05 5.17E-05 5.33E-05
Delaware 38 1.52E-05 2.15E-05 2.56E-05 5.80E-05 6.96E-05 3.69E-05 1.87E-05 3.68E-05 5.09E-05 3.64E-05 3.76E-05
Florida 2296 2.10E-05 6.41E-05 1.05E-04 1.43E-04 2.27E-04 1.07E-04 5.13E-05 7.57E-05 7.28E-05 8.15E-05 7.55E-05
Georgia 1008 4.24E-05 8.33E-05 1.90E-04 2.82E-04 3.55E-04 1.88E-04 9.89E-05 1.01E-04 6.83E-05 1.19E-04 9.71E-05
Idaho 235 1.14E-05 1.64E-05 1.85E-05 1.95E-05 2.50E-05 1.80E-05 2.67E-06 1.90E-05 2.26E-05 1.81E-05 1.77E-05
Illinois 1551 6.43E-05 8.19E-05 9.56E-05 1.04E-04 1.28E-04 9.48E-05 1.50E-05 7.84E-05 8.08E-05 8.73E-05 7.90E-05
Indiana 610 7.07E-05 8.20E-05 9.16E-05 9.66E-05 1.08E-04 8.91E-05 8.99E-06 8.51E-05 7.98E-05 8.72E-05 8.47E-05
Iowa 327 3.94E-05 5.49E-05 5.92E-05 7.08E-05 8.58E-05 6.11E-05 1.07E-05 6.26E-05 7.37E-05 5.97E-05 6.30E-05
Kansas 302 3.06E-05 5.32E-05 6.19E-05 6.59E-05 7.96E-05 5.95E-05 1.21E-05 6.62E-05 5.28E-05 6.10E-05 6.42E-05
Kentucky 356 6.76E-05 8.06E-05 8.52E-05 9.05E-05 1.02E-04 8.54E-05 6.86E-06 8.32E-05 8.11E-05 8.74E-05 8.31E-05
Louisiana 368 2.16E-05 6.40E-05 7.50E-05 8.60E-05 1.14E-04 7.38E-05 1.81E-05 6.95E-05 5.75E-05 4.42E-05 6.32E-05
Maine 154 4.57E-06 1.61E-05 2.52E-05 2.79E-05 3.70E-05 2.24E-05 8.16E-06 1.87E-05 1.82E-05 1.62E-05 1.83E-05
Maryland 1636 1.41E-05 6.70E-05 8.11E-05 1.00E-04 1.50E-04 8.60E-05 2.62E-05 7.79E-05 1.27E-04 5.29E-05 7.81E-05
Massachusetts 1163 4.52E-06 5.26E-05 6.80E-05 8.66E-05 1.28E-04 6.92E-05 2.23E-05 5.42E-05 7.59E-05 5.02E-05 5.47E-05
Michigan 1110 1.28E-05 6.20E-05 6.83E-05 7.57E-05 8.90E-05 6.65E-05 1.29E-05 5.73E-05 4.69E-05 6.25E-05 5.67E-05
Minnesota 627 7.71E-06 3.39E-05 4.01E-05 4.45E-05 5.54E-05 3.69E-05 1.10E-05 2.92E-05 2.72E-05 3.78E-05 2.88E-05
Mississippi 246 4.39E-05 6.89E-05 7.56E-05 8.22E-05 1.01E-04 7.62E-05 1.12E-05 4.59E-05 7.30E-05 6.20E-05 4.88E-05
Missouri 691 5.18E-05 6.37E-05 6.94E-05 8.19E-05 1.10E-04 7.30E-05 1.24E-05 7.59E-05 7.12E-05 7.32E-05 7.51E-05
Montana 226 1.06E-05 1.35E-05 1.56E-05 1.83E-05 2.21E-05 1.58E-05 3.01E-06 1.95E-05 1.95E-05 1.62E-05 1.91E-05
Nebraska 214 2.67E-05 3.56E-05 4.81E-05 5.08E-05 5.33E-05 4.31E-05 8.75E-06 4.18E-05 4.75E-05 4.34E-05 4.20E-05
Nevada 641 1.68E-05 2.41E-05 3.38E-05 3.76E-05 4.80E-05 3.21E-05 7.66E-06 2.72E-05 2.78E-05 3.48E-05 2.76E-05
New Hampshire 325 2.08E-05 6.79E-05 8.13E-05 1.04E-04 1.29E-04 8.49E-05 2.68E-05 7.28E-05 7.30E-05 6.97E-05 7.26E-05
New Jersey 1676 1.93E-05 1.03E-04 1.98E-04 2.60E-04 3.29E-04 1.82E-04 8.62E-05 1.06E-04 5.90E-05 1.28E-04 1.08E-04
New Mexico 379 3.19E-05 3.68E-05 3.91E-05 4.04E-05 4.91E-05 3.86E-05 2.77E-06 3.35E-05 4.64E-05 3.84E-05 3.99E-05
New York 2289 1.33E-05 7.06E-05 1.13E-04 1.72E-04 3.18E-04 1.25E-04 6.47E-05 6.93E-05 6.73E-05 8.83E-05 7.03E-05
North Carolina 888 9.92E-06 7.75E-05 1.20E-04 1.39E-04 1.76E-04 1.08E-04 4.26E-05 1.10E-04 6.55E-05 5.43E-05 1.00E-04
North Dakota 118 1.04E-05 1.37E-05 1.66E-05 1.82E-05 2.33E-05 1.61E-05 2.74E-06 1.65E-05 1.59E-05 1.60E-05 1.64E-05
Ohio 1139 5.72E-05 7.48E-05 8.56E-05 9.13E-05 1.08E-04 8.31E-05 1.08E-05 7.87E-05 7.39E-05 7.80E-05 7.84E-05
Oklahoma 392 3.73E-05 7.09E-05 8.27E-05 9.25E-05 1.18E-04 8.26E-05 1.58E-05 7.11E-05 6.84E-05 8.15E-05 7.07E-05
Oregon 436 1.33E-05 2.52E-05 5.54E-05 6.88E-05 8.77E-05 4.99E-05 2.37E-05 2.40E-05 5.06E-05 5.32E-05 2.67E-05
Pennsylvania 2382 5.64E-05 1.02E-04 1.32E-04 1.76E-04 2.80E-04 1.38E-04 4.04E-05 1.10E-04 1.25E-04 1.13E-04 1.11E-04
Rhode Island 68 1.73E-05 4.68E-05 6.33E-05 6.77E-05 7.42E-05 5.61E-05 1.59E-05 3.91E-05 4.73E-05 3.32E-05 3.91E-05
South Carolina 465 3.25E-05 7.20E-05 8.61E-05 1.11E-04 1.50E-04 9.18E-05 2.63E-05 7.68E-05 8.15E-05 5.77E-05 7.65E-05
South Dakota 124 2.06E-05 2.37E-05 2.60E-05 3.48E-05 4.09E-05 2.85E-05 6.06E-06 2.89E-05 2.53E-05 3.02E-05 2.86E-05
Tennessee 632 7.07E-05 1.08E-04 1.19E-04 1.27E-04 1.59E-04 1.17E-04 1.69E-05 1.07E-04 1.13E-04 1.17E-04 1.08E-04
Texas 3416 3.15E-05 1.03E-04 1.62E-04 2.09E-04 3.88E-04 1.73E-04 9.38E-05 9.86E-05 9.93E-05 1.57E-04 9.99E-05
Utah 412 2.22E-05 2.77E-05 3.00E-05 3.24E-05 3.70E-05 3.00E-05 2.77E-06 3.13E-05 3.22E-05 3.14E-05 3.13E-05
Vermont 69 2.55E-05 2.87E-05 2.94E-05 5.01E-05 9.22E-05 4.13E-05 1.93E-05 4.88E-05 4.60E-05 4.84E-05
Virginia 861 1.44E-05 4.79E-05 6.23E-05 9.02E-05 1.45E-04 6.78E-05 2.66E-05 6.03E-05 7.83E-05 4.35E-05 6.48E-05
Washington 934 1.17E-05 2.27E-05 3.94E-05 5.64E-05 8.60E-05 4.06E-05 2.05E-05 4.63E-05 1.95E-05 3.34E-05 2.75E-05
Washington D.C. 23 4.68E-05 5.66E-05 6.41E-05 6.55E-05 6.73E-05 6.07E-05 6.38E-06 5.52E-05 5.52E-05 5.52E-05 5.52E-05
West Virginia 142 7.14E-05 7.80E-05 9.02E-05 1.01E-04 1.46E-04 9.33E-05 1.83E-05 8.86E-05 1.01E-04 9.41E-05 8.90E-05
Wisconsin 713 1.50E-05 4.81E-05 7.39E-05 8.00E-05 1.08E-04 6.63E-05 2.00E-05 4.99E-05 5.07E-05 6.08E-05 5.01E-05
Wyoming 120 1.86E-05 2.32E-05 2.55E-05 2.89E-05 3.58E-05 2.61E-05 3.90E-06 2.74E-05 2.55E-05 2.76E-05 2.70E-05
United States 43304 4.52E-06 5.57E-05 8.65E-05 1.43E-04 4.52E-04 1.09E-04 7.35E-05 7.67E-05 7.26E-05 7.54E-05 7.52E-05

U.S. State N

Average characterization factor from SO2 emissions
Descriptive statistics Emission weighted by sector
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Min Q1 Median Q3 Max Mean SD Fuel Combustion Industrial 
Processes

Mobile All-sectors

Alabama 435 9.70E-06 3.59E-05 5.19E-05 6.75E-05 1.30E-04 5.32E-05 2.19E-05 3.89E-05 3.61E-05 3.88E-05 3.82E-05
Arizona 997 1.01E-05 2.44E-05 4.00E-05 4.88E-05 7.02E-05 3.80E-05 1.34E-05 2.53E-05 2.27E-05 2.86E-05 2.75E-05
Arkansas 222 3.59E-05 4.50E-05 6.01E-05 8.33E-05 2.14E-04 7.08E-05 3.58E-05 5.16E-05 4.77E-05 5.32E-05 5.15E-05
California 8452 5.63E-06 4.86E-05 6.77E-05 8.71E-05 2.59E-04 7.08E-05 3.32E-05 4.43E-05 4.50E-05 4.83E-05 4.52E-05
Colorado 778 2.40E-05 3.58E-05 5.73E-05 7.39E-05 1.30E-04 5.66E-05 2.19E-05 3.63E-05 3.48E-05 3.82E-05 3.61E-05
Connecticut 618 5.09E-06 2.01E-05 2.54E-05 3.29E-05 5.39E-05 2.64E-05 9.77E-06 1.41E-05 1.55E-05 1.42E-05 1.42E-05
Delaware 38 7.43E-06 1.74E-05 2.10E-05 2.63E-05 5.56E-05 2.31E-05 9.20E-06 1.85E-05 1.85E-05 1.70E-05 1.73E-05
Florida 2296 3.23E-06 1.40E-05 1.97E-05 2.57E-05 5.58E-05 2.05E-05 8.52E-06 1.75E-05 1.59E-05 1.49E-05 1.53E-05
Georgia 1008 1.20E-05 3.74E-05 7.51E-05 1.27E-04 1.79E-04 8.31E-05 4.89E-05 4.40E-05 2.48E-05 5.21E-05 4.65E-05
Idaho 235 1.08E-05 1.65E-05 2.11E-05 3.43E-05 8.28E-05 2.74E-05 1.46E-05 2.04E-05 1.81E-05 2.01E-05 1.97E-05
Illinois 1551 3.65E-05 6.00E-05 7.97E-05 9.49E-05 1.47E-04 7.81E-05 2.24E-05 5.36E-05 4.72E-05 5.77E-05 5.50E-05
Indiana 610 3.67E-05 5.24E-05 6.72E-05 9.48E-05 1.35E-04 7.49E-05 2.62E-05 4.93E-05 4.90E-05 5.69E-05 5.34E-05
Iowa 327 2.97E-05 4.08E-05 5.19E-05 8.15E-05 1.30E-04 6.10E-05 2.39E-05 4.03E-05 4.24E-05 4.06E-05 4.02E-05
Kansas 302 2.45E-05 4.00E-05 5.61E-05 9.09E-05 1.38E-04 6.52E-05 3.16E-05 4.63E-05 3.89E-05 4.74E-05 4.34E-05
Kentucky 356 2.51E-05 3.85E-05 4.54E-05 6.93E-05 1.10E-04 5.42E-05 2.17E-05 4.17E-05 3.45E-05 4.10E-05 4.05E-05
Louisiana 368 9.58E-06 3.34E-05 4.21E-05 6.02E-05 1.27E-04 4.82E-05 2.29E-05 2.96E-05 3.47E-05 2.98E-05 3.09E-05
Maine 154 1.23E-06 5.25E-06 9.65E-06 1.41E-05 5.15E-05 1.24E-05 1.12E-05 6.02E-06 5.80E-06 5.40E-06 5.55E-06
Maryland 1636 5.02E-06 4.58E-05 6.53E-05 8.30E-05 1.19E-04 6.37E-05 2.32E-05 3.10E-05 4.46E-05 3.16E-05 3.18E-05
Massachusetts 1163 6.48E-07 2.05E-05 2.98E-05 4.68E-05 9.85E-05 3.57E-05 2.02E-05 1.81E-05 1.90E-05 1.74E-05 1.76E-05
Michigan 1110 5.61E-06 5.04E-05 7.23E-05 8.75E-05 1.32E-04 6.85E-05 2.43E-05 4.16E-05 1.99E-05 4.52E-05 4.15E-05
Minnesota 627 4.06E-06 3.15E-05 5.14E-05 6.72E-05 9.42E-05 4.90E-05 2.20E-05 3.19E-05 1.24E-05 3.27E-05 2.96E-05
Mississippi 246 1.59E-05 3.57E-05 4.11E-05 5.45E-05 8.88E-05 4.61E-05 1.61E-05 2.91E-05 2.99E-05 3.76E-05 3.54E-05
Missouri 691 3.56E-05 4.66E-05 7.70E-05 1.03E-04 1.87E-04 7.85E-05 3.15E-05 5.45E-05 4.43E-05 5.50E-05 5.32E-05
Montana 226 1.07E-05 1.37E-05 1.61E-05 1.84E-05 6.17E-05 1.80E-05 7.39E-06 1.76E-05 1.59E-05 1.57E-05 1.59E-05
Nebraska 214 2.27E-05 2.85E-05 4.08E-05 8.46E-05 1.35E-04 5.85E-05 3.52E-05 3.62E-05 3.68E-05 3.20E-05 3.20E-05
Nevada 641 1.54E-05 1.95E-05 2.19E-05 2.67E-05 5.21E-05 2.40E-05 6.81E-06 2.03E-05 2.01E-05 2.17E-05 2.11E-05
New Hampshire 325 4.92E-06 1.80E-05 2.48E-05 2.97E-05 4.72E-05 2.45E-05 9.18E-06 1.58E-05 1.77E-05 1.53E-05 1.54E-05
New Jersey 1676 6.26E-06 3.41E-05 6.04E-05 9.90E-05 2.20E-04 6.94E-05 4.32E-05 3.85E-05 2.21E-05 3.57E-05 3.60E-05
New Mexico 379 2.18E-05 2.74E-05 2.99E-05 3.78E-05 5.87E-05 3.28E-05 7.69E-06 2.75E-05 2.76E-05 2.88E-05 2.83E-05
New York 2289 1.98E-06 2.93E-05 4.19E-05 7.11E-05 2.25E-04 5.39E-05 3.47E-05 3.80E-05 2.50E-05 2.95E-05 3.14E-05
North Carolina 888 4.04E-06 4.34E-05 6.30E-05 8.44E-05 1.45E-04 6.53E-05 3.03E-05 4.82E-05 3.27E-05 4.57E-05 4.52E-05
North Dakota 118 8.67E-06 1.30E-05 1.54E-05 1.72E-05 6.65E-05 1.75E-05 8.63E-06 1.50E-05 1.40E-05 1.45E-05 1.45E-05
Ohio 1139 2.68E-05 4.94E-05 6.78E-05 9.65E-05 1.42E-04 7.26E-05 2.82E-05 4.35E-05 4.34E-05 5.17E-05 4.82E-05
Oklahoma 392 2.83E-05 5.21E-05 7.68E-05 1.19E-04 1.70E-04 8.64E-05 3.91E-05 5.19E-05 4.63E-05 6.22E-05 5.37E-05
Oregon 436 1.16E-05 1.85E-05 3.80E-05 6.58E-05 1.26E-04 4.55E-05 2.90E-05 2.52E-05 2.35E-05 2.69E-05 2.49E-05
Pennsylvania 2382 1.49E-05 5.05E-05 6.87E-05 9.28E-05 2.17E-04 7.64E-05 3.47E-05 4.50E-05 4.22E-05 4.81E-05 4.63E-05
Rhode Island 68 2.83E-06 1.08E-05 2.72E-05 4.40E-05 6.66E-05 2.90E-05 1.91E-05 1.21E-05 1.19E-05 9.87E-06 1.03E-05
South Carolina 465 9.66E-06 2.79E-05 3.92E-05 5.87E-05 9.82E-05 4.37E-05 1.95E-05 2.90E-05 2.48E-05 3.02E-05 2.94E-05
South Dakota 124 1.78E-05 2.02E-05 2.22E-05 2.96E-05 1.30E-04 3.17E-05 2.35E-05 2.24E-05 2.25E-05 2.54E-05 2.38E-05
Tennessee 632 2.88E-05 4.81E-05 6.70E-05 8.47E-05 1.38E-04 7.00E-05 2.62E-05 5.45E-05 4.90E-05 5.36E-05 5.31E-05
Texas 3416 1.68E-05 5.41E-05 1.03E-04 1.34E-04 2.18E-04 9.80E-05 4.57E-05 4.97E-05 3.84E-05 6.36E-05 5.30E-05
Utah 412 1.90E-05 2.40E-05 2.76E-05 3.17E-05 5.05E-05 2.84E-05 5.99E-06 2.44E-05 2.55E-05 2.62E-05 2.54E-05
Vermont 69 6.48E-06 1.22E-05 1.62E-05 4.14E-05 5.86E-05 2.52E-05 1.69E-05 1.30E-05 1.52E-05 1.30E-05 1.30E-05
Virginia 861 4.04E-06 1.75E-05 2.83E-05 3.97E-05 7.36E-05 2.99E-05 1.52E-05 2.01E-05 2.03E-05 1.93E-05 1.96E-05
Washington 934 5.94E-06 2.63E-05 3.71E-05 4.77E-05 9.12E-05 3.92E-05 1.86E-05 2.33E-05 2.50E-05 2.53E-05 2.39E-05
Washington D.C. 23 1.70E-05 2.35E-05 3.77E-05 4.07E-05 4.58E-05 3.35E-05 1.02E-05 2.42E-05 2.42E-05 2.42E-05 2.42E-05
West Virginia 142 1.75E-05 2.60E-05 3.01E-05 3.83E-05 5.97E-05 3.28E-05 9.35E-06 2.92E-05 2.74E-05 2.89E-05 2.87E-05
Wisconsin 713 7.75E-06 4.21E-05 5.83E-05 7.85E-05 1.54E-04 6.18E-05 2.72E-05 3.92E-05 3.39E-05 3.87E-05 3.84E-05
Wyoming 120 1.66E-05 2.08E-05 2.23E-05 2.43E-05 3.95E-05 2.29E-05 3.58E-06 2.33E-05 2.31E-05 2.40E-05 2.35E-05
United States 43304 6.48E-07 3.18E-05 5.38E-05 8.22E-05 2.59E-04 6.10E-05 3.68E-05 3.80E-05 3.45E-05 3.99E-05 3.80E-05

U.S. State N

Average characterization factor from NOx emissions
Descriptive statistics Emission weighted by sector
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APPENDIX 4 
Bridging the gap between environmental and nutritional sciences towards more sustainable 

foods: A case study on pizza 

Table A4.31. Pizzas in the What We Eat in America/National Health and Nutrition Examination 
Survey (WWEIA/NHANES) 2007-2014 database and their pizza types classes 

# Pizza description Pizza type class 

1 Pizza, cheese, from school lunch, thin crust Cheese Pizza 
2 Pizza, cheese, prepared from frozen, thin crust Cheese Pizza 
3 Pizza, cheese, from restaurant or fast food, thick crust Cheese Pizza 
4 Pizza, cheese, prepared from frozen, thick crust Cheese Pizza 
5 Pizza, cheese, from restaurant or fast food, NS as to type of crust Cheese Pizza 
6 Pizza, cheese, from restaurant or fast food, regular crust Cheese Pizza 
7 Pizza, extra cheese, thick crust Cheese Pizza 
8 Pizza, extra cheese, NS as to type of crust Cheese Pizza 
9 Pizza, extra cheese, regular crust Cheese Pizza 

10 Pizza, cheese, from school lunch, thick crust Cheese Pizza 
11 Pizza, extra cheese, thin crust Cheese Pizza 
12 Pizza, cheese, stuffed crust Cheese Pizza 
13 Pizza, cheese, from restaurant or fast food, thin crust Cheese Pizza 
14 Pizza, with meat other than pepperoni, from school lunch, thin crust Red Meat Pizza 
15 Pizza with chicken and fruit, regular crust Chicken Pizza 
16 Pizza with chicken and vegetables, thick crust Chicken Pizza 
17 Pizza with chicken and vegetables, regular crust Chicken Pizza 
18 Pizza with chicken, thick crust Chicken Pizza 
19 Pizza with chicken, regular crust Chicken Pizza 
20 Pizza with chicken and vegetables, thin crust Chicken Pizza 
21 Pizza with chicken, thin crust Chicken Pizza 
22 Pizza with pepperoni, from school lunch, thin crust Red Meat Pizza 
23 Pizza with pepperoni, from restaurant or fast food, thick crust Red Meat Pizza 
24 Pizza with pepperoni, from restaurant or fast food, NS as to type of crust Red Meat Pizza 
25 Pizza with pepperoni, from restaurant or fast food, regular crust Red Meat Pizza 
26 Pizza with meat, prepared from frozen, thick crust Red Meat Pizza 
27 Pizza with meat, prepared from frozen, thin crust Red Meat Pizza 
28 Pizza with extra meat and extra vegetables, prepared from frozen, thin crust Red Meat Pizza 
29 Pizza with meat and vegetables, prepared from frozen, thick crust Red Meat Pizza 
30 Pizza with pepperoni, from school lunch, thick crust Red Meat Pizza 
31 Pizza with meat and vegetables, prepared from frozen, thin crust Red Meat Pizza 
32 Pizza with extra meat and extra vegetables, prepared from frozen, thick crust Red Meat Pizza 
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# Pizza description Pizza type class 
33 Pizza with meat and vegetables, thick crust Red Meat Pizza 
34 Pizza with meat and vegetables, NS as to type of crust Red Meat Pizza 
35 Pizza with meat and vegetables, thin crust Red Meat Pizza 
36 Pizza with meat other than pepperoni, from restaurant or fast food, NS as to type of crust Red Meat Pizza 
37 Pizza with meat other than pepperoni, from restaurant or fast food, regular crust Red Meat Pizza 
38 Pizza, with meat other than pepperoni, from school lunch, thick crust Red Meat Pizza 
39 Pizza with meat and vegetables, regular crust Red Meat Pizza 
40 Pizza with meat other than pepperoni, from restaurant or fast food, thick crust Red Meat Pizza 
41 Pizza with pepperoni, stuffed crust Red Meat Pizza 
42 Pizza, with meat other than pepperoni, stuffed crust Red Meat Pizza 
43 Pizza with meat and fruit, regular crust Red Meat Pizza 
44 Pizza with extra meat and extra vegetables, regular crust Red Meat Pizza 
45 Pizza with meat and fruit, thick crust Red Meat Pizza 
46 Pizza with meat and fruit, thin crust Red Meat Pizza 
47 Pizza with extra meat and extra vegetables, NS as to type of crust Red Meat Pizza 
48 Pizza with extra meat and extra vegetables, thin crust Red Meat Pizza 
49 Pizza with extra meat and extra vegetables, thick crust Red Meat Pizza 
50 Pizza with meat other than pepperoni, from restaurant or fast food, thin crust Red Meat Pizza 
51 Pizza with pepperoni, from restaurant or fast food, thin crust Red Meat Pizza 
52 Pizza with extra meat, regular crust Red Meat Pizza 
53 Pizza with extra meat, NS as to type of crust Red Meat Pizza 
54 Pizza with extra meat, thick crust Red Meat Pizza 
55 Pizza with extra meat, thin crust Red Meat Pizza 
56 Pizza, no cheese, thin crust Other Pizza 
57 Pizza, cheese, with fruit, thick crust Other Pizza 
58 Pizza, cheese, with fruit, regular crust Other Pizza 
59 Pizza, no cheese, regular crust Other Pizza 
60 Pizza, no cheese, NS as to type of crust Other Pizza 
61 Pizza, cheese, with fruit, thin crust Other Pizza 
62 Pizza, no cheese, thick crust Other Pizza 
63 Pizza with seafood, thin crust Seafood Pizza 
64 Pizza with seafood, regular crust Seafood Pizza 
65 White pizza, thin crust Other Pizza 
66 White pizza, thick crust Other Pizza 
67 White pizza, regular crust Other Pizza 
68 Pizza with beans and vegetables, thick crust Vegetable Pizza 
69 Pizza with beans and vegetables, thin crust Vegetable Pizza 
70 Pizza with cheese and extra vegetables, regular crust Vegetable Pizza 
71 Pizza with cheese and extra vegetables, thick crust Vegetable Pizza 
72 Pizza, cheese, with vegetables, prepared from frozen, thin crust Vegetable Pizza 
73 Pizza, cheese, with vegetables, regular crust Vegetable Pizza 
74 Pizza, cheese, with vegetables, thick crust Vegetable Pizza 
75 Pizza with cheese and extra vegetables, thin crust Vegetable Pizza 
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# Pizza description Pizza type class 
76 Pizza, cheese with vegetables, prepared from frozen, thick crust Vegetable Pizza 
77 Pizza, cheese, with vegetables, NS as to type of crust Vegetable Pizza 
78 Pizza, cheese, with vegetables, thin crust Vegetable Pizza 
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Table A4.32. Nutritional characterizations factors (CF) in DALYs/kg and nutritional profile in kg/serving by dietary risks in select types 
of pizzas in the U.S. diet 

 
 
Fiberother= fiber from sources other than fruits, vegetables, legumes, and whole grains  
Fiberf,v,l,w=fiber from fruit, vegetables, legumes, and whole grains  
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Table A4.33. Average mass in grams per serving equivalents for components in the Food Patterns 
Equivalents Database (FPED) 

FPED component Serving 
equivalent unit Grams 

Intact fruits (whole or cut) of citrus, melons, and berries cup eq 162.7 
Intact fruits (whole or cut); excluding citrus, melons, and berries  cup eq 127.3 
Fruit juices, citrus and non citrus  cup eq 214.0 
Dark green vegetables  cup eq 112.6 
Tomatoes and tomato products  cup eq 176.3 
Other red and orange vegetables, excluding tomatoes and tomato products  cup eq 166.4 
White potatoes  cup eq 122.1 
Other starchy vegetables, excluding white potatoes  cup eq 142.8 
Other vegetables not in the vegetable components listed above  cup eq 130.2 
Legumes computed as vegetables  cup eq 120.5 
Whole grains  oz eq 22.2 
Refined or non-whole grains  oz eq 22.2 
Beef, veal, pork, lamb, game meat; excludes organ meats and cured meat  oz eq 28.4 
Cured/luncheon meat made from beef, pork, or poultry  oz eq 28.4 
Organ meat from beef, veal, pork, lamb, game, and poultry  oz eq 28.4 
Chicken, turkey, Cornish hens, and game birds; excludes organ meats and 
cured meat  

oz eq 28.4 

Seafood (finfish, shellfish and other seafood) high in n-3 fatty acids  oz eq 28.4 
Seafood (finfish, shellfish and other seafood) low in n-3 fatty acids  oz eq 28.4 
Eggs (chicken, duck, goose, quail) and egg substitutes  oz eq 50.0 
Soy products, excluding calcium fortified soy milk and immature soybeans  oz eq 35.0 
Peanuts, tree nuts, and seeds, excludes coconut  oz eq 15.1 
Legumes computed as protein foods  oz eq 482.1 
Fluid milk and calcium fortified soy milk  cup eq 245.0 
Yogurt  cup eq 245.0 
Cheese cup eq 54.3 
Total milk, yogurt, cheese, and whey  cup eq 69.2 
Oils  Grams 1.0 
Solid fats  Grams 1.0 
Foods defined as added sugars  tsp. eq 4.2 
Alcoholic beverages  number of drinks  14.0 
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Table A4.34. Characterization factors for particulate matter precursors using a marginal slope of a 
non-linear exposure response function.  

 
PM2.5 SO2 NOx NH3 

Characterization factors 
    

(kgPM2.5-eq/kg emitted)* 1.20E-03 5.20E-02 1.10E-02 1.10E-01 

(DALYs/kg emitted) † 5.56E-05 3.63E-05 1.85E-05 4.57E-05 

  

                                                      
* Obtained from Stylianou et al. (2016) 
† Obtained from Stylianou et al. (2018) 
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Table A4.35. List of pizza items reported to be consumed in the WWEIA/NHANES 2005-2008 
by adults above the age of 19 years old, excluding pregnant women 

Description Average intake 
(g/d) 

Average energy 
intake 

(kcal/d) 
Topping from cheese pizza 0.014 0.031 
Topping from vegetable pizza 0.010 0.016 
Topping from meat pizza 0.038 0.115 
Pizza, cheese, prepared from frozen, thin crust 0.438 1.174 
Pizza, cheese, prepared from frozen, thick crust 0.042 0.108 
Pizza, cheese, from restaurant or fast food, NS as to type of crust 0.045 0.128 
Pizza, cheese, from restaurant or fast food, thin crust 2.787 8.105 
Pizza, cheese, from restaurant or fast food, regular crust 0.475 1.255 
Pizza, cheese, from restaurant or fast food, thick crust 2.314 6.255 
Pizza, extra cheese, thin crust 0.025 0.077 
Pizza, extra cheese, thick crust 0.011 0.031 
Pizza, cheese, w/ vegetables, prepared from frozen, thin crust 0.119 0.293 
Pizza, cheese w/ vegetables, prepared from frozen, thick crust 0.245 0.589 
Pizza, cheese, w/ vegetables, thin crust 0.839 1.927 
Pizza, cheese, w/ vegetables, regular crust 0.117 0.276 
Pizza, cheese, w/ vegetables, thick crust 0.789 1.934 
Pizza w/ cheese and extra vegetables, thin crust 0.023 0.059 
Pizza w/ cheese and extra vegetables, thick crust 0.018 0.041 
Pizza, cheese, w/ fruit, thick crust 0.517 1.216 
Pizza w/ meat, prepared from frozen, thin crust 1.007 2.861 
Pizza w/ meat, prepared from frozen, thick crust 0.257 0.712 
Pizza w/ meat, NS as to type of crust 0.116 0.351 
Pizza w/ meat, thin crust 3.360 9.873 
Pizza w/ meat, thick crust 4.956 15.304 
Pizza w/ pepperoni, from restaurant or fast food, NS as to type of crust 0.017 0.048 
Pizza w/ pepperoni, from restaurant or fast food, thin crust 0.935 3.005 
Pizza w/ pepperoni, from restaurant or fast food, regular crust 1.287 3.551 
Pizza w/ pepperoni, from restaurant or fast food, thick crust 1.438 4.084 
Pizza w/ meat other than pepperoni, from restaurant or fast food, thin crust 0.405 1.247 
Pizza w/ meat other than pepperoni, from restaurant or fast food, regular crust 0.343 0.938 
Pizza w/ meat other than pepperoni, from restaurant or fast food, thick crust 0.396 1.110 
Pizza w/ extra meat, NS as to type of crust 0.002 0.007 
Pizza w/ extra meat, thin crust 0.150 0.488 
Pizza w/ extra meat, regular crust 0.325 0.951 
Pizza w/ extra meat, thick crust 0.137 0.411 
Pizza w/ meat and vegetables, prepared from frozen, thin crust 0.298 0.822 
Pizza w/ meat and vegetables, prepared from frozen, thick crust 0.096 0.261 
Pizza w/ meat and vegetables, NS as to type of crust 0.046 0.118 
Pizza w/ meat and vegetables, thin crust 2.468 6.508 
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Description Average intake 
(g/d) 

Average energy 
intake 

(kcal/d) 
Pizza w/ meat and vegetables, regular crust 0.291 0.711 
Pizza w/ meat and vegetables, thick crust 2.010 5.424 
Pizza w/ extra meat and extra vegetables, NS as to type of crust 0.006 0.015 
Pizza w/ extra meat and extra vegetables, thin crust 0.380 1.033 
Pizza w/ extra meat and extra vegetables, thick crust 0.343 0.953 
Pizza w/ extra meat and extra vegetables, regular crust 0.053 0.145 
Pizza w/ meat and fruit, thin crust 0.227 0.537 
Pizza w/ meat and fruit, regular crust 0.183 0.428 
Pizza w/ meat and fruit, thick crust 0.548 1.341 
Pizza w/ beans and vegetables, thin crust 0.039 0.094 
Pizza w/ beans and vegetables, thick crust 0.088 0.219 
Pizza, no cheese, NS as to type of crust 0.001 0.003 
Pizza, no cheese, thin crust 0.033 0.071 
Pizza, no cheese, thick crust 0.047 0.123 
White pizza, thin crust 0.112 0.414 
White pizza, regular crust 0.024 0.089 
White pizza, thick crust 0.196 0.716 
Pizza rolls 0.327 0.986 
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Table A4.36. Metadata for mapping life cycle assessments to Standard Reference (SR) commodities. LCIs in blue indicate a “new” 
average group LCIs 

# Ingredients LCI Database Proxy Food 
group 

Retail-to-
intake 
factor* 

1 beef,ground,75% ln meat / 25% 
fat,crumbles,ckd,pan-browned 75% beef,25% fat  Yes Meat 1.05 

2 bns,pinto,mature,bld beans, IP, at farm/kg/CH S ESU No Vegetable
s 0.42 

3 cheese substitute, mozzarella mozzarella, at dairy/kg/CH S ESU No Dairy 1 
4 cheese, cheddar mozzarella, at dairy/kg/CH S ESU No Dairy 1 
5 cheese,mozzarella,part skim,lo moist mozzarella, at dairy/kg/CH S ESU No Dairy 1 
6 cheese,parmesan,grated mozzarella, at dairy/kg/CH S ESU No Dairy 1 
7 cheese,romano mozzarella, at dairy/kg/CH S ESU No Dairy 1 
8 cornmeal, degermed, unenriched, yellow Maize starch {GLO}| market for | Cut-off, U Ecoinven

t Yes Grains 1 

9 fat used in pizza recipe Fats (food group average)  Yes Fats 1 
1
0 fat,lard animal fat, at plant/kg/CH S ESU Yes Fats 1 

11 garlic,raw    Vegetable
s 1.15 

1
2 

leavening agents, yeast, baker's, active 
dry yeast, at plant/kg/RER S ESU No Dairy  

1
3 lettuce,iceberg,raw Iceberg lettuce {GLO}| production | Cut-off, U Ecoinven

t No Vegetable
s 1.05 

1
4 

mushrooms, white, cooked, boiled, 
drained, without salt white mushrooms, at farm/kg/CH S ESU No Vegetable

s 1.03 

1
5 mushrooms,raw white mushrooms, at farm/kg/CH S ESU No Vegetable

s 1.03 

1
6 oil, canola Oils (food group average)  Yes Oils 1 

1
7 

oil, corn, industrial and retail, all purpose 
salad or cooking Maize oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 

1
8 oil, olive, salad or cooking Olive oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 

                                                      
* Obtained from the Food Intakes Converted to Retail Commodities Database (FICRCD) (USDA 2017) 
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# Ingredients LCI Database Proxy Food 
group 

Retail-to-
intake 
factor* 

1
9 oil, peanut, salad or cooking Peanut oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 

2
0 oil,soybn Soybean oil, refined {US}| soybean oil refinery operation | 

Cut-off, U 
Ecoinven

t No Oils 1 

2
1 olives,ripe,cnd(sml-ex lrg) Olive {GLO}| market for olive | Cut-off, U Ecoinven

t No Vegetable
s 0.89 

2
2 

onions, cooked, boiled, drained, without 
salt Onion, at farm (WFLDB 3.1)/GLO S WFLDB No Vegetable

s 1.18 

2
3 onions,raw Onion, at farm (WFLDB 3.1)/GLO S WFLDB No Vegetable

s 1.11 

2
4 pepper jack cheese Hard cheese, Emmental-style, at dairy (WFLDB 3.1)/GLO 

S WFLDB yes Dairy 1 

2
5 pepperoni,pork,bf saucisson, at plant/kg/CH S ESU Yes Meat 1.38 

2
6 peppers, hot chili, green, raw Green bell pepper {GLO}| production | Cut-off, U Ecoinven

t No Vegetable
s 1.37 

2
7 

peppers, sweet, green, cooked, boiled, 
drained, without salt Green bell pepper {GLO}| production | Cut-off, U Ecoinven

t No Vegetable
s 1.22 

2
8 pineapple, canned, juice pack, drained Pineapple {GLO}| production | Cut-off, U Ecoinven

t No Fruits 1.96 

2
9 pnappl,raw Pineapple {GLO}| production | Cut-off, U Ecoinven

t No Fruits 1.96 

3
0 pork,cured,ham,bnless,unhtd Pork, fresh meat, at slaughterhouse (WFLDB 3.1)/CA S WFLDB No Meat 1.07 

3
1 

refried beans,canned (incl usda 
commodity) beans, IP, at farm/kg/CH S ESU No Vegetable

s 
 

3
2 

sauce, pasta, spaghetti/marinara, ready-
to-serve sauce, tomato, vegetarian, at plant/kg/CH S ESU Yes Vegetable

s 2.42 

3
3 sausage,pork&bf,fresh,ckd saucisson, at plant/kg/CH S ESU No Meat 1 

3
4 

shortening, vegetable, household, 
composite animal fat, at plant/kg/CH S ESU Yes Fats 1 

3
5 shortening,institutional,comp animal fat, at plant/kg/CH S ESU Yes Fats 1 

3
6 sodium Sodium chloride, powder {GLO}| market for | Cut-off, U Ecoinven

t No Other  
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# Ingredients LCI Database Proxy Food 
group 

Retail-to-
intake 
factor* 

3
7 soy protein isolate    Other  

3
8 sugars,granulated Sugar, from sugarcane {GLO}| market for | Cut-off, U Ecoinven

t No Sugars 1 

3
9 sweet dwarf pepper Green bell pepper {GLO}| production | Cut-off, U Ecoinven

t No Vegetable
s 1.22 

4
0 tomato puree,cnd Tomato pulp, 5° Brix, at plant (WFLDB 3.1)/GLO S WFLDB Yes Vegetable

s 2.42 

4
1 tomatoes,red,cnd,whl,reg pk Tomato, fresh grade {MX}| tomato production, fresh grade, 

open field | Cut-off, U 
Ecoinven

t No Vegetable
s 1.27 

4
2 tomatoes,red,ripe,raw Tomato, fresh grade {MX}| tomato production, fresh grade, 

open field | Cut-off, U 
Ecoinven

t No Vegetable
s 1.1 

4
3 water,municipal Tap water {GLO}| market group for | Cut-off, U WFLDB No Other  

4
4 wheat flour, whole-grain Wheat flour, at industrial mill (WFLDB 3.1)/GLO S WFLDB No Grains 1 

4
5 wheat flr,white,allpurp,enr,bleach Wheat flour, at industrial mill (WFLDB 3.1)/GLO S WFLDB No Grains 1 

4
6 yeast,baker's,compressed yeast, at plant/kg/RER S ESU No Dairy  

4
7 yellow bean flour Refined grains (food group average)  Yes Grains 1 
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Table A4.37. Metadata for mapping life cycle assessments to Food Pattern Equivalent Database (FPED) food groups. LCIs in blue 
indicate a “new” average group LCIs 

# 
Food Group LCI 

Database Proxy Food group 
Retail-to-intake 

factor* 
1 Added sugars (tsp eq.) Sugars (food group average)  Yes Sugars 1 
2 Cheeses (cup eq.) mozzarella, at dairy/kg/CH S ESU Yes Dairy 1 
3 Cured meat (oz eq) Cured meat (food group average)  Yes Meat 1.210403 

4 Eggs and substitutes (oz eq) Chicken egg, in barn single tiered, at farm 
(WFLDB 3.1)/GLO S WFLDB No Meat 1.14 

5 Legumes (cup eq) Legumes (food group average)  Yes Vegetables 0.42 
6 Legumes (oz eq) Legumes (food group average)  Yes Vegetables 0.42 
7 Meat (oz eq) Red meat (food group average)  Yes Meat 1.05 
8 Oils (g) Oils (food group average)  Yes Oils 1 
9 Other vegetables (cup eq) Vegetables (food group average)  Yes Vegetables 1.135524 

10 Poultry (oz eq) Chicken, fresh meat, at slaughterhouse (WFLDB 
3.1)/US S WFLDB No Meat 1.25 

11 Refined grain (oz eq) Refined grains (food group average)  Yes Grains 1 
12 Solid fats (g) Fats (food group average)  Yes Fats 1 
13 Tomatoes (cup eq) Tomatoes (food group average)  Yes Vegetables 1.883282 

14 Whole fruits excluding citrus, 
melons and berries (cup eq) Fruits (food group average)  Yes Fruits 1.96 

  

                                                      
* Obtained from the Food Intakes Converted to Retail Commodities Database (FICRCD) (USDA 2017) 
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Table A4.38. Metadata for mapping life cycle assessments to Food Commodity Intake Database (FCID) components 

# Components LCI Database Proxy Food 
group 

Retail-to-
intake factor* 

1 Basil, dried leaves basil, dried, conventional, at plant/kg/CH S ESU No Other  
2 Bean, pinto, seed beans, greenhouse, at farm/kg/CH S ESU No Vegetables  
3 Beef, fat Beef, food grade fat, at slaughterhouse (WFLDB 3.1)/US s WFLDB No Fats 1 
4 Beef, meat Beef, fresh meat, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Meat 1.2 
5 Beef, meat byproducts Beef, cat. 3 slaughter by-products, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Meat 1.2 
6 Beet, sugar Sugar, from sugar beet, at sugar refinery (WFLDB 3.1)/GLO S WFLDB No Sugars 1 
7 Cassava 

 
  Vegetables 1.67 

8 Celery celery, storage, ÖLN, at farm/kg/CH S ESU No Vegetables 1.12 
9 Chicken, fat Chicken, food grade offal, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Fats 1 

10 Chicken, meat Chicken, fresh meat, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Meat 1.23 
11 Chicken, meat 

byproducts 
Chicken, cat. 3 slaughter by-products, at slaughterhouse (WFLDB 3.1)/US 
S WFLDB No Meat 1.23 

12 Chicken, skin Chicken, food grade offal, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Meat 1.23 
13 Cilantro, leaves 

 
  Vegetables  

14 Coriander, seed 
 

  Other  
15 Corn, field, oil Maize oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 
16 Corn, field, starch Maize starch {GLO}| market for | Cut-off, U Ecoinvent No Grains  
17 Corn, field, syrup Molasses, from sugar beet {RoW}| beet sugar production | Cut-off, U Ecoinvent Yes Sugars 1 
18 Cottonseed, oil Cottonseed oil, refined {US}| cottonseed oil refinery operation | Cut-off, U Ecoinvent No Oils  
19 Egg, white Chicken egg, in barn single tiered, at farm (WFLDB 3.1)/GLO S WFLDB No Other 1.14 
20 Egg, whole Chicken egg, in barn single tiered, at farm (WFLDB 3.1)/GLO S WFLDB No Other 1.14 
21 Garlic, bulb 

 
  Vegetables 1.15 

22 Ginger, dried 
 

  Other  
23 Guar, seed 

 
  Other  

24 Herbs, other 
 

  Other  
25 Honey honey, at farm/CH S ESU No Sugars 1 
26 Lettuce, head Iceberg lettuce {GLO}| production | Cut-off, U Ecoinvent No Vegetables 1.35 

                                                      
* Obtained from the Food Intakes Converted to Retail Commodities Database (FICRCD) (USDA 2017) 
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# Components LCI Database Proxy Food 
group 

Retail-to-
intake factor* 

27 Marjoram 
 

  Vegetables  
28 Milk, fat mozzarella, at dairy/kg/CH S ESU Yes Dairy 1 
29 Milk, nonfat solids mozzarella, at dairy/kg/CH S ESU Yes Dairy 1 
30 Milk, water mozzarella, at dairy/kg/CH S ESU Yes Dairy 1 
31 Mushroom white mushrooms, at farm/kg/CH S ESU No Vegetables 1.03 
32 Olive Olive {GLO}| market for olive | Cut-off, U Ecoinvent No Vegetables 0.89 
33 Olive, oil Olive oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 
34 Onion, bulb Onion, at farm (WFLDB 3.1)/GLO S WFLDB No Vegetables 1.11 
35 Onion, bulb, dried Onion, at farm (WFLDB 3.1)/GLO S WFLDB No Vegetables 1.18 
36 Peanut, oil Peanut oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 
37 Pepper, bell Green bell pepper {GLO}| production | Cut-off U Ecoinvent No Vegetables 1.22 
38 Pepper, black and white Green bell pepper {GLO}| production | Cut-off, U Ecoinvent No Vegetables  
39 Pepper, nonbell Green bell pepper {GLO}| production | Cut-off, U Ecoinvent Yes Vegetables 1.22 
40 Pineapple Pineapple {GLO}| production | Cut-off, U Ecoinvent No Fruits 1.96 
41 Pork, fat Pork, food grade fat, at slaughterhouse (WFLDB 3.1)/CA S WFLDB No Fats 1 
42 Pork, meat Pork, fresh meat, at slaughterhouse (WFLDB 3.1)/CA S WFLDB No Meat 1.47 
43 Pork, meat byproducts Pork, cat. 3 slaughter by-products, at slaughterhouse (WFLDB 3.1)/CA S WFLDB No Meat 1.47 
44 Pork, skin Pork, food grade rind, at slaughterhouse (WFLDB 3.1)/CA S WFLDB No Meat  
45 Potato, flour Potato {US}| production | Cut-off, U Ecoinvent No Grains 1 
46 Rapeseed, oil Rapeseed oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils  
47 Rice, flour rice flour, at regional storage/kg/US S ESU No Grains 1 
48 Safflower, oil 

 
  Oils 1 

49 Savory 
 

  Vegetables  
50 Seaweed 

 
  Vegetables  

51 Sesame, oil 
 

  Oils 1 
52 Sheep, fat animal fat, at plant/kg/CH S ESU Yes Fats 1 
53 Sheep, meat Sheep for slaughtering, live weight {US}| sheep production, for meat | Cut-

off, U Ecoinvent No Meat 1.11 

54 Soybean, oil Soybean oil, refined {US}| soybean oil refinery operation | Cut-off, U Ecoinvent No Oils 1 
55 Spices, other spices, at plant/kg/CH S ESU No Other  
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# Components LCI Database Proxy Food 
group 

Retail-to-
intake factor* 

56 Sugarcane, sugar Sugar, from sugarcane {GLO}| market for | Cut-off, U Ecoinvent No Sugars 1 
57 Sunflower, oil Sunflower oil, at oil mill (WFLDB 3.1)/GLO S WFLDB No Oils 1 
58 Tomato Tomato, fresh grade {MX}| tomato production, fresh grade, open field | 

Cut-off, U Ecoinvent No Vegetables 1.13 

59 Tomato, puree Tomato pulp, 5° Brix, at plant (WFLDB 3.1)/GLO S WFLDB Yes Vegetables 2.42 
60 Water, indirect, all 

sources 
Tap water {CA-QC}| market for | Alloc Rec, U Ecoinvent No Other  

61 Wheat, flour Wheat flour, at industrial mill (WFLDB 3.1)/GLO S WFLDB No Grains 1 
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Table A4.39. Metadata for mapping life cycle assessments to Food Intakes Converted to Retail Commodities Database (FICRCD) 
commodities. LCIs in blue indicate a “new” average group LCIs 

# Commodities LCI Database Proxy Food 
group 

1 Beef Beef, fresh meat, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Meat 
2 Cheese mozzarella, at dairy/kg/CH S ESU Yes Dairy 
3 Chicken Chicken, fresh meat, at slaughterhouse (WFLDB 3.1)/US S WFLDB No Meat 
4 Corn Flour & Meal Maize starch {GLO}| market for | Cut-off, U Ecoinvent yes Grains 
5 Eggs, without shell (liquid eggs) Chicken egg, in barn single tiered, at farm (WFLDB 3.1)/GLO S WFLDB No Other 
6 Eggs, with shell (shell eggs) Chicken egg, in barn single tiered, at farm (WFLDB 3.1)/GLO S WFLDB No Other 
7 Total Fluid Milk Milk (food group average)  Yes Dairy 
8 Legumes (dry beans & peas) Legumes (food group average)  Yes Vegetables 
9 Lettuce (head & leaf) Iceberg lettuce {GLO}| production | Cut-off, U Ecoinvent No Vegetables 

10 Margarine Margarine (food group average)  Yes Fats 
11 Onions Onion, at farm (WFLDB 3.1)/GLO S WFLDB No Vegetables 
12 Peppers Green bell pepper {GLO}| production | Cut-off U Ecoinvent No Vegetables 
13 Pork Pork, fresh meat, at slaughterhouse (WFLDB 3.1)/CA S WFLDB No Meat 
14 Salad and Cooking Oils Oils (food group average)  Yes Oils 
15 Shortening animal fat, at plant/kg/CH S ESU Yes Fats 
16 Tomatoes Tomatoes (food group average)  Yes Vegetables 
17 Total Caloric Sweeteners Sugars (food group average)  Yes Sugars 
18 Tropical Fruits Tropical fruits (food group average)  Yes Fruits 
19 Wheat flour Wheat flour, at industrial mill (WFLDB 3.1)/GLO S WFLDB No Grains 
20 Total Vegetables Vegetables (food group average)  Yes Vegetables 
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Table A4.40. Estimated greenhouse gas emissions for new LCIs used in study. Food group 
averages represent the Estimates average of all LCIs identified to belong in the respective food 
group.  

New LCI description kg CO2 eq/kg 

75% beef,25% fat* 21.09 
Cured meat (food group average) 3.69 
Red meat (food group average) 13.26 
Refined grains (food group average) 0.85 
Fats (food group average) 1.95 
Beef (food group average) 27.59 
Chicken (food group average) 5.00 
Citrus fruits (food group average) 0.21 
Eggs (food group average) 3.98 
Fruits (food group average) 0.77 
Grains (food group average) 1.56 
Legumes (food group average) 0.91 
Margarine (food group average) 2.31 
Milk (food group average) 1.64 
Oils (food group average) 3.54 
Pig (food group average) 5.23 
Pork (food group average) 10.25 
Sugars (food group average) 0.29 
Tomatoes (food group average) 0.65 
Tropical fruits (food group average) 0.24 
Vegetables (food group average) 1.04 

  

                                                      
* Calculated as the weighted average of two LCIs. For the fat part we used ‘animal fat, at plant/kg/CH S’ and for the beef part 
‘Beef, fresh meat, at slaughterhouse (WFLDB 3.1)/US S’ 
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