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ABSTRACT

The design of optimal planing craft structures is a challenging process that must

take into account aspects such as cost, weight, operability, maintainability, manu-

facturability, and structural integrity. To ensure structural integrity, an accurate

determination of the extreme loads that the structure will experience during its ser-

vice lifetime is essential. Even more important is the ability to determine the effects

of hydrodynamic loading on the structural response and the subsequent effect of the

structure deformation on the fluid loading, a phenomenon known as hydroelasticity.

In the field of naval architecture, concerns arise when high-speed vessels impact the

water when operating in waves, a process know as slamming. Another example in

which hydroelastic analysis is needed during design is the emergency landing of an

aircraft in water, known as ditching. Both problems are related since the craft im-

pacts the dense fluid at high horizontal-to-vertical speed ratios, developing a large

fluid loading which, when coupled with the structural response, becomes a complex

fluid-structure interaction (FSI) system.

In practice, empirical and experimental models are used to calculate loads and

response in FSI problems, but are inadequate, especially when considering new ma-

terials such as composites. Experimental testing campaigns use rigid scale models

to mimic full-scale structural phenomena. The primary challenge is to select the

adequate scaling of all the physical processes of the high-speed water entry problem

between the full and scale models. Empirical approaches lack essential features such

as three-dimensional effects and the FSI of the problem.

For this reason, a tightly-coupled FSI solver is developed. The FSI solver is based

xviii



on Computational Fluid Dynamics (CFD) with a Volume of Fluid (VoF) approach

to precisely track the complex non-linear free surface coupled with Finite Element

Method (FEM) and modal decomposition, which reduces the complexity of the cou-

pled system. The tightly-coupled approach accounts for the time-dependent wetness

of structure, accurately predicting fluid loading and structure deformation through

time. Furthermore, the FSI solver is capable of performing a local and global hydroe-

lastic analysis of composite structures, while previous work examines only one or the

other.

The FSI solver is validated with aluminum high-horizontal-speed flat-plate ditch-

ing experimental data, becoming the first FSI solver with a CFD method to study

high forward speed problems in three dimensions. Several test conditions are analyzed

that ensure that the FSI solver can capture highly localized pressure, hydrodynamic

loading, jet root propagation, free-surface nonlinearities, and hydroelastic coupling.

The local peak pressure is captured with an error of 0.45 % for locations where enough

integration points are present along the plate. The overall hydroelastic response is

captured with a slight underprediction in the maximum strain due to a fully-clamped

edge boundary condition used to model the flat-plate. The FSI tool is used to inves-

tigate the influence of aspect ratio on the maximum pressure distribution and water

pile-up. A wide range of aspect ratio is studied, and it is shown that two-dimensional

solution applies only for very large beam-to-length ratios (B/L > > 1). The FSI

framework is expanded to incorporate composite structures using a modal basis cou-

pled with CFD. The validation of the FSI tool for uniformly loaded composite plates

is presented. A more complex slamming case is analyzed, highlighting the impor-

tance of time-dependent wetness and nonlinear geometric effects in the hydroelastic

analysis of composite structures.
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CHAPTER I

Introduction

In several fields, the development of new materials (e.g., composite and aluminium

alloys) has allowed the construction of more flexible structures. The accurate design

of these structures in aircraft and seagoing ships is critical to ensure the safety of

the crew and passengers and the structural durability of the craft under extreme

loading conditions. In this investigation, the primary concern relates to the impact

of these craft moving at a high horizontal velocity with a dense fluid (e.g., water).

This phenomenon is known as ditching in the aeronautical field, where an aircraft

makes an emergency landing in water. In naval architecture, this event is known as

slamming, which is a violent impact of a section of the vessel on the water. The most

severe impacts develop high loadings that can lead to catastrophic structural failure,

so consideration and estimation of these impacts is an essential step in the design

process to ensure resilient structures.

The design of optimum elastic structures is a complicated process that includes

several elements, such as cost, weight, operability, maintenance, manufacturing, and

structural integrity, among others. One of the main challenges that designers face

is how to accurately model and predict the response of elastic structures interacting

with water (known as hydroelasticity). In certain cases, the elastic response of the

structure influences the fluid loading that acts on the structure, which in turn alters
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the structural response. The entire system therefore becomes a complex coupled

system: this concept is known as fluid-structure interaction. To ensure an accurate

design of elastic structures when they interact with water, hydrodynamic effects which

are density-dependent must take into account fluid inertia effects. It can be expected

that when modeling engineering problems that involve dense fluids (e.g., water) versus

light fluids (e.g., air), the fluid inertia will have considerable effects on the elastic

response of the structure due to the significant difference in densities (a factor of a

thousand). Also, since the fluid density matters, time-dependent wetness becomes

essential to track accurately the evolution of the hydrodynamic loading, making the

analysis even more challenging.

Today, model reductions and simplifications are used to calculate the loads and

responses of elastic structures. Often, hydroelastic effects are neglected or mini-

mally considered in the design phase due to the lack of a methodology that can

adequately capture all the hydroelastic features. There is a range of capabilities used

in industry today to model these structures. Among them are the rigid-quasi-static

approach Stenius et al. (2011b), the rigid-dynamic approach Maki et al. (2011), the

model description of the structure with strip theory Zhao et al. (1996), fully-coupled

Boundary Element Method (BEM) with a finite element method (FEM) Kim et al.

(2015), potential flow methods Zhao and Faltinsen (1993), and physical model test-

ing Iafrati (2016b). Each of these algorithms and methods is accurate for a wide

range of problems. However, when hydroelastic effects are significant, it is essential

to apply methods that consider the change in wetness through time, high local pres-

sures, three-dimensional effects, free-surface nonlinearities and the FSI response for

an accurate representation of the physical phenomena.

An example of the current approach to model these type of problems are exper-

imental campaigns to obtain the airframe design loads and for airworthiness certifi-

cation. The first limitation of these kinds of experiments is the proper scaling and
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reproduction of all the physical phenomena involved in the ditching problems be-

tween full and model scales. Furthermore, the tests are performed using rigid models

which may lead to a substantial underestimation of the global loading acting over the

structure and a failure to capture the FSI phenomena of the problem.

On the other hand, theoretical solutions tend to overpredict the hydrodynamic

loading due to a neglect of critical three-dimensional effects, fluid flow nonlinearities

and FSI.

Lastly, the existing numerical tools have not been validated, as they may not

be capable of capturing added mass effects, high local pressure, FSI coupling, and

three-dimensional and compressible effects.

The proposed numerical FSI framework of this investigation solves for the struc-

ture wetness which includes the free-surface nonlinearities that determine the added-

mass and the coupled hydroelastic structure response.

The numerical FSI has been developed to solve the hydroelastic problem in a

tightly-coupled manner. The tightly-coupled approach solves the fluid and structure

domains sequentially. Within each time-step, iterations between the two domains are

performed to account for the added mass effects in the structural response and mod-

ify the hydrodynamic loading due to the structural deformation. The method uses

CFD with the VoF approach to solve the nonlinear free surface and account for three-

dimensional effects of the water entry problem. Then, the fluid solution is coupled

with a linear dynamic FEM through the modal decomposition approach. The modal

decomposition approach assumes a small deformation which is a suitable approxi-

mation for marine structures and special designs of composite structures. Moreover,

the FSI tool is capable of performing local and global hydroelastic analysis of com-

posite structures in the linear regime. Furthermore, the FSI methodology is ideal for

managing problems where larger added mass may be expected compared to the struc-

ture mass (e.g., composite structural members) through an inertial under-relaxation
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technique.

This dissertation consists of eight chapters. Chapter II provides an overview of the

current state-of-the-art techniques for water-entry problems. The chapter is divided

into four subsections: theoretical approaches, experimental campaigns, numerical

methods and lastly, composite hydroelastic problems. Chapter III gives a detailed

explanation of the development and implementation of the numerical FSI framework.

The successful validation of the FSI tool with high horizontal velocity flat-plate ditch-

ing experiments in several impact conditions is presented in Chapter IV. The flat-plate

results are used to discuss the importance of the impact condition and high horizontal

velocity components in water entry problems. Chapter V provides a detailed discus-

sion of finite-span effects in the jet propagation velocity, pressure magnitude, and

distribution during the slamming events. Primarily, this chapter discusses a pioneer-

ing study of the unsteady maximum pressure distribution with the steady water rise

problem. The application of the FSI tool to an aluminium-stiffened panel design in

slamming events is presented in Chapter VI. The hydroelastic analysis of composite

plates using the FSI method is covered in Chapter VII. The validation for beams and

plates composite members under uniform pressure is discussed. In addition, the FSI

methodology is compared with composite flat-plate ditching experiments, where the

limitations of the modal basis and linear structure response are discussed. Lastly,

Chapter VIII provides the summary, conclusions and future work beyond this present

hydroelastic investigation for high horizontal velocity water entry problems.
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CHAPTER II

Literature Review and Related Work

High-speed planing crafts used in rescue, patrol, and special mission are subjected

to high hydroelastic loads during normal operation conditions. An example of this

will be the rapid and continued impact of the bottom hull of these vessels as they move

through waves. This continued impact produces undesired vibrations and noises that

affect the crew operations. In the naval field, this phenomenon is called slamming.

Slamming can be defined as a rapid impact between a structure and a dense fluid that

produces a change in wetness modifying the structure response and developing high

hydrodynamic loadings. In the aeronautical field, the interest in water entry problems

is related to the emergency landing of an aircraft in water, known as ditching. These

problems are related since both involve high forward speed during the impact, strong

fluid-structure interaction (FSI) and high hydrodynamic loads that can lead to struc-

tural failures. These large hydrodynamic loads related to the water-entry problem as

described in Korobkin and Pukhnachov (1988) are essential in the structural design

and certification process of these specialized structures.

2.1 Current State-Of-The-Art

As mentioned previously, the fluid-structure-interaction in several areas can lead

to failures, therefore we need knowledge and tools to develop resilient infrastructures.
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In this research special attention is given to aircraft ditching and high-speed planing

craft problems. The similarities of these problems are the development of high fluid

pressures due to impact in a small area and rapid movement along the body and

the wetted surface time dependency. In these problems, fluid-structure interaction

coupling becomes dominant and essential in the understanding of the inertia and

elasticity effects on the overall structural response.

The current approaches used to model the FSI phenomena can be divided into

three principal research areas: analytical, experimental, and numerical approaches.

In the following sections, a review of these areas and relevant related work to the

development of this FSI numerical framework are presented.

2.1.1 Theoretical Solutions for Water-Entry Problems

The body water-entry problem has been studied since the early decades of the 20th

century. Von Karman (1929) developed a theoretical formula for maximum pressures

during the landing of seaplane floats. The maximum pressure acting on the floats

during impact was considered using the change in the added mass of the floats to

estimate an impulsive force. In a similar manner Wagner (1932) studied the impact

of a solid on the water surface by momentum theory using a potential-flow-theory

approach. Leibowitz (1962) was one of the first to calculate the global deformation

of a ship using a beam model and to determine local stresses.

The exact solutions based on the work of Von Karman (1929) and Wagner (1932)

for simplified geometry impact problems provide a benchmark for numerical tech-

niques such as CFD and physical approximations. Dobrovol’Skaya (1969) developed

an exact solution for a impacting wedged using a potential theory in terms of a

similarity solution. Scolan and Korobkin (2001) extended the method by including

three-dimensional effects.

Faltinsen (1997) developed an asymptotic theory which was divided in two phases.
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The first phase is where large hydrodynamic forces cause large accelerations of a small

structural mass. Then the second phase is free elastic vibrations with initial condi-

tions obtained from the first phase. The theory shows that the maximum bending

stress is proportional to an effective drop in velocity and is not sensitive to the curva-

ture of the wave or where the waves hit the beam. Observations were made on cases

where water surface rises near the end of the beam and a compressible air cushion

is created between the beam and free surface. This phenomenon has less effect if

the beam is part of a long wetdeck. The theory matches experimental results for

the first oscillation; however, significant differences were observed on the second half

oscillation period. These differences were attributed to the occurrence of air cushion

under body. Furthermore, the experimental and theoretical structural response anal-

ysis in the wet deck of a multihull during slamming was presented in Kvalsvold and

Faltinsen (1995) and Faltinsen et al. (1997). The fluid flow was represented using a

velocity potential that satisfied the problem boundary-conditions and accounted for

the forward speed effects. The theoretical framework displays an excellent agreement

with the experimental flat plate drops strain and displacement data.

A suitable model of an elastic-plate with constant and relative high forward speed

was derived in Reinhard et al. (2013). The two-dimensional problem solves for the

hydrodynamics loads using a potential flow theory and assumes that the spray jet

moving in front of the plate is negligible. The plate deflection is governed by a

Euler’s beam theory subjected to free-free boundary condition. The study confirms

the need for solving both the plate motion and the fluid flow simultaneously to avoid

an overestimation of the plate bending stress. The two-dimensional solution does

not consider free-surface separation near the trailing edge and more realistic plate

boundary conditions.

A fully nonlinear two-dimensional self-similar solution derived for multiple pitch

angle and vertical/horizontal speed ratios was derived in Faltinsen and Semenov
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(2008). The later solution is not in the applicable range that characterizes the trajec-

tory of an aircraft ditching such as the intent experimental campaign performed by

Iafrati et al. (2015). The experimental data presented in Iafrati et al. (2015) is used

for validation of the FSI numerical tool in this investigation. Iafrati and Calcagni

(2013) developed a fully nonlinear solution for the water entry problem of a flat

plate with similar impact and vertical/horizontal speed ratio conditions performed

in Iafrati et al. (2015). The mathematical model was formulated for an inviscid and

constant density fluid, neglecting the effects caused by surface tension, gravity, and

air, similar to Faltinsen and Semenov (2008) and Semenov and Iafrati (2006). The

flow was approximated as a two-dimensional described in terms of the velocity poten-

tial. The plate was assumed semi-infinite, and the problem was self-similar with no

length scales. A modified velocity potencial presented in Iafrati and Korobkin (2004)

allows for a simplification in the free-surface conditions. A simplified shallow water

model similar to Korobkin and Iafrati (2006) is used to model the thin jet layer. The

essential assumption of the plate been semi-infinite to hold the similarity solution will

hold until the spray root reaches the leading edge of the plate as described in Zhao

et al. (1996), Zhao et al. (1997), and Iafrati and Battistin (2003). Due to the complex-

ity of the water-entry problem special attention is required for several assumptions

considered in the development of the mathematical model. Air cushion effects, varia-

tion in horizontal and vertical velocities and three-dimensional effects require special

consideration for accurate modeling of the problem fundamental physics.

One of the major issues of these approaches was the determination of the added

mass for complex geometries. Furthermore, note that all previously analytical sur-

veyed methods used a 2D Boundary Value Problem (BVP)’s to compute the hydro-

dynamic loads, missing the three-dimensional effects in the solution. Computational

fluid dynamics (CFD) with the volume of fluid (VoF) method will assist to solve the

nonlinear free surface accurately and account for the added-mass effects on the body,
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during all FSI simulations. The present FSI investigation implemented pinned and

clamped structural domain boundary conditions (BC) that mimic the experimental

physical BC’s. The FSI numerical approach includes three-dimensional effects and

solves the fluid-structural equations sequentially to consider the effects of deformation

on the hydrodynamic loading.

2.1.2 Experimental Testing

Experimental techniques have been used for many years in the industry to model

aircraft ditching and high-speed craft slamming. Performing these kinds of exper-

iments is not a trivial task, and many issues arise when details about local quan-

tities such as pressure, structure deformation, stresses, etc. are recorded. Journée

(1992) performed rigid body physical experiments on four mathematically defined

hulls. These experiments serve as a baseline to validate numerical rigid body motions

solvers. Validation of the FSI flow solver rigid body motions has been performed and

presented in Piro (2013).

Due to the limitations of theoretical solutions and the lack of numerically vali-

dated tools, the aeronautical field typically performs similar experimental approaches

as in the naval field. Since implementing a full-scale test of these structures is expen-

sive and nearly impossible for several impact conditions, a model-scale experiment is

used to represent the large-scale phenomena physics. The experimental campaigns

use a rigid model scale test to ensure air-worthiness and obtain the airframe required

certifications. The primary concern with these types of tests is if the proper physical

phenomena of the full-scale impact are captured in the model-scale. Climent et al.

(2006) and Zhang et al. (2012) performed experimental trials using rigid models to

simulate the aircraft ditching and avoid the structure deformation scaling issues due

to the scaled hydrodynamic loading. Rigid models provide a good understanding

of pressure loads, system stability, and flow around the structure; however, the ma-
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jor limitation is the representation of the structural flexibility and its effect on the

problem hydrodynamics.

More sophisticated experiments for ship models have been carried out to measure

the vessel’s global response. Two ways to obtain an elastic model have been used. The

first one is to construct a complete elastic model, which is expensive if not impossible,

to model precisely a ship in detail. Then the second one and most popular one is

to divide the model in segments and connect them with an elastic beam that has

the scaled properties of the full-scale ship. The numerical FSI tool was validated for

the JHSS segmented model bending stress in waves as presented in Piro (2013), Piro

et al. (2012a), and Piro et al. (2012b).

Faltinsen (1997) reported experimental data for vertical drop test of horizontal

plates of steel and aluminium, were results reveal that slamming-induced local stresses

are strongly influenced by dynamic hydroelastic effects. Experiments of elastic plate

dropped against regular waves were performed in the towing tank at MARINTEK.

Five different wave conditions in addition to five different drop speeds and heights

were carried out. The physical modelling provided data to corroborate the analytical

theory presented in Faltinsen et al. (1997), previously mentioned in section 2.1.1. A

major limitation for the Faltinsen (1997) experiments was the capacity of the facility

include horizontal speed during impact.

An experimental method to characterize the significance of hydroelastic slamming

loaded marine panels is presented in Stenius et al. (2013). The work of Stenius

et al. (2013) is an expansion of the experimental effort performed by Battley and

Allen (2012) on slamming loaded flexible panels. Furthermore, Stenius et al. (2013)

discussed details of the structural responses, and a hydroelastic characterization for

the assessment of hydroelastic effects in the experiments presented in Stenius et al.

(2011a) and Stenius et al. (2011b).

Several research activities have been carried out in the past to study the effect of
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high forward speed during the ditching, among them Smiley (1950), Smiley (1951)

and Smiley (1952). Mainly the water entry problem of a flat plate with high horizontal

speed is presented in Smiley (1951). The maximum velocity during this experimental

campaign was limited to 30 m/s and the impact vertical velocity exhibited a sub-

stantial decrease during the impact phase. In addition, due to the limited capacity

in experimental instrumentation at the time, the low resolution provided by the mea-

surements reduces the accuracy of the experimental data. Therefore, the data set

provided in Smiley (1951) provides an insight of the physical phenomena, but due to

limited accuracy in measurements the data set can not be directly used for numerical

tool validation.

Furthermore, it is important to highlight that all the above experimental efforts

have focused on pure vertical motion or have used rigid models during scale testing.

Therefore important aspects of the water-entry problem are missing, especially the

effects of large forward speed and the structure deformation effects on the hydrody-

namics of the problem.

To account for the fluid-structure interaction and avoid the scaling challenges,

Campbell (2012) performed guided ditching test at nearly-full scale conditions. The

horizontal speeds performed in these tests ranged from 30-46 m/s overpassing the

maximum velocity of the test of Smiley (1951). A similar guided flat plate ditch-

ing experimental campaign was carried out by Iafrati (2016b) and Iafrati (2016a).

The plate ditching experiments included several plate configurations aimed at un-

derstanding the effects of horizontal/vertical velocity ratio, shape, thickness, plate

incidence and material on the pressure distribution, acceleration, and fluid-structure

interaction. The tests were performed at a new ditching facility in CNR-INSEAN.

The guided facility have a catapult that launches a trolley that holds the test speci-

men until the end of the test. The fully guided test allowed for control of the impact

conditions in terms of horizontal to vertical speed ratios, pitch and heel angles. Fur-
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thermore, the rigidity of the guide provided an accurate representation of the structure

inertia; therefore, it allowed for a more accurate representation of the expected load-

ing during the impact. Also, the total mass of the ditching system was approximately

1,100 kg as reported in Iafrati et al. (2015). This large mass in the system for a lower

velocity reduction during the impact phase compared to Smiley (1951) and Campbell

(2012), provided more accurate measures for validation purposes. In addition, a de-

tailed facility uncertainty analysis is presented in Iafrati et al. (2015), allowing for a

detailed assessment of the numerical tools.

Iafrati (2016a) emphasized that stiffness played an important role in the estima-

tion of loads and hydroelastic effects. In the naval area the traditional procedure of

hull design is based on uniform pressure distribution over hull panel to simulate the

slamming loads (empirical pressures), but there exists evidence that when flat plate

impacts the free surface, local stresses are dominated by dynamic hydroelastic effects,

and is independent from maximum pressure.

Iafrati et al. (2014) described how actual simulation tools have limitations accu-

rately estimating high local pressure distributions, hydroelastic coupling, air cush-

ioning, cavitation and ventilation. In several repeated tests, it was found that the

pressure distribution follows the predicted analytical solution, while most of the re-

peats then exhibited an oscillatory behavior in the pressure distribution. This trend

may be due to entrapment of air (bubbles) which roughens the free surface before

impact. In large pitch angle tests, the effect of wind is reduced since it can exit on

the side of the plate. Therefore, it is confirmed the need for design tools that can

accurately solve for fluid-structure interaction problems, while taking into account

the elastic/plastic structural behavior, including failure.

The current numerical investigation presented in this work focused on the valida-

tion and expansion of a reliable high-fidelity FSI framework. The FSI is based on a

coupled CFD with the VoF method to solve the fluid domain and structural dynamics
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with modal decomposition approach for representing the structure. The FSI tool is

capable of capturing salient features of the planing hull slamming or aircraft ditching

problem such as non-linear free surface, high local pressure distributions, hydroelas-

tic coupling and three-dimensional effects. The FSI tool is validated with several flat

plate impact conditions presented in Iafrati et al. (2015) and Iafrati (2016b). The

simulated conditions range from a pitch angle of 6-10 degrees, a vertical velocity of

1.5 m/s, and horizontal velocities between 30 and 40 m/s.

2.1.3 Numerical Methods

The development and application of numerical approaches to solved water-entry

problems have been of great effort during the past decades. Kapsenberg (2011) high-

lights how computational tools can be used to model water-entry problems if they

properly include all the fundamental physics such as three-dimensional effects, FSI,

cavitation, and ventilation. Therefore, numerical tools can overcome the experimen-

tal extrapolation challenges, and the analytical methods lack in including essential

features of the fluid flow.

A well known approach to solve body impacting problems is the Boundary-Element

Methods (BEMs). Greenhow and Lin (1985) studied impact with BEM and then the

approach was improved by Zhao and Faltinsen (1993). Good solutions have been

obtained in the past with computational effort. But the method has a fundamental

problem at the moment of initial contact where discontinuities of the velocity potential

cause an infinite pressures, as described in Ogilvie (1963). Even more complications

rise when adding three dimensional effects to the model. Zhao et al. (1996) managed

to develop a BEM used to simulate the three-dimensional slamming of ships, using a

combination of 2D problems to model the 3D shape known as strip theory.

From the past two decades, evidence was found for using CFD to simulate the

impact of bodies on water. Arai et al. (1994) applied this approach to slamming
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simulation of ship sections. The technique has also been used in a strip-theory manner

to determine pressure from impact of ship in waves. Traditionally, the quasi-statical

approach has been carried out to transfer the CFD hydrodynamic pressure to finite

element code for slamming and whipping analysis.

Maki et al. (2011) applied a one-way coupled technique to simulate the hydroe-

lastic impact of a wedge-shaped body and the structural problem included a model

of finite elements which represents the body. The finite element model was primary

shell and beams elements, along with acoustic elements that represented the influence

of the water. To capture the complexity of the free-surface, an interface capturing ap-

proach was used (VoF) on the fluid domain and modal analysis for structural domain,

to reduce the cost of the structural computations. The one-way coupled technique

obtained poor results of time accuracy during the impact stage, when hydroelastic

effects were significant. Good agreement was found when elements were fully wet,

indicating that the one-way coupled technique was not sufficient when body experi-

ences a significant change in wetted area. In addition, as the deadrise angle or plate

thickness increases hydroelastic effects diminish and the comparison with existing

fully-coupled methods improves.

Piro and Maki (2013) developed a fluid-structure interaction capability that is

suitable for studying the behavior of marine vehicles that undergo slamming. One

of the major complication in FSI problems is the time-dependent wetted surface of

the structure as discussed in Maki et al. (2011). Tightly coupled method accurately

accounts for this phenomenon. The current method predicts lower deflections than

the results from Korobkin et al. (2008). CFD results compared well with the Wagner

(1932) theory for impact force. The Von Karman (1929) theory under-predicts results

since it does not consider the pile up of water, but on exit forces are similar in

magnitude to CFD.

Furthermore, Piro et al. (2012b) extended this methodology and applied it for
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the study of ships slamming and whipping. He validated the numerical simulations

with the Joint High Speed Sealift (JHSS) segmented model experimental test results.

The JHSS is a segmented structural ship model that has scaled longitudinal bending

and torsional stiffness obtained from an integrated backspline and cutting the shell

in several places. The Piro et al. (2012b) structural model uses beam finite elements

with a linearly varying cross-section. The shell was discretized with transfer elements

and a total of 5 modes were used for the structure modal description. More details

can be found in Piro (2013).

Similar analysis using a nonlinear higher-order boundary element method Aegir

and CFD with VoF for fluid domain and modal description were compared in Craig

(2015). It was found that CFD approach predicted well the low frequency bending

moment component at mid-ship, but under-predicted at high frequency components.

The linear Aegir solution performed well predicting low frequency bending moment,

but no information was obtained on slamming force. The inclusion of nonlinear

Froud-Krylov and hydrostatics provided good results for high and low frequencies.

In contrast to the tightly-coupled approach discussed above, a fully coupled slam-

ming and whipping simulations were performed by Kim et al. (2015). Among his

results the fully-coupled numerical model in conjunction with the generalized Wagner

model produced similar high-frequency results to model tests. The classical approach

of assuming a rigid structure in the fluid solution and then applying the calculated

load to an elastic structure tends to overestimate the response compared to fully

coupled simulations and model tests. The effects of the FSI are stronger for the

most severe slamming conditions. The limitations on applying CFD methods is the

computer-intensive requirements and the need of parallelalization on a large number

of processors to obtain reasonable computational time.

Stenius et al. (2011b) studied the membrane effects involved in panel-water im-

pacts for high-speed craft, showing that they had large influence on the hydroelastic
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effects even for moderate panel deflections. They performed a fully coupled FSI sim-

ulation using LS-DYNA and compared numerical results with rigid-quasi-static sim-

ulations. Stenius et al. (2011b) found that the structural response without in-plane

fixation were significantly larger than the solution with in-plane fixation for increased

impact velocities. Rigid-quasi-statically method under-predicted the response when

increase in impact velocity is made. Larger hydroelastic effects can be seen for a

decreased deadrise angle confirming experimental tests performed by Iafrati et al.

(2014).

Campbell (2012) discussed the semi-analytical models that were based on Von

Karman, Wagner and the modified Logvinovich model used in industry to model

aircraft ditching. He emphasized the development of methods that could include the

effects of physical phenomena in fluids: ventilation and air entrapment, cavitation,

and the suction force. He defined the key development to improve analytical and

numerical modeling for the prediction of global aircraft loads and local pressures

during ditching. This key development is expected to build a reliable and predictive

aircraft model for structural behaviour that can include structural behavior from

elasticity to rupture.

In actuality, global behavior of model is assessed and extrapolated to the real

aircraft size in order to define the optimum ditching conditions. Climent et al. (2006)

pointed out that the majority of studies had focus on vertical velocity. The Smooth

Particle Hydrodynamics (SPH) techniques had been proven to be effective in ver-

tical impacts, where good correlations with experimental tests are found Climent

et al. (2006). But, when combining vertical with horizontal velocities, the problem

becomes more complex including negative (suction) and positive pressure (over pres-

sures) where the current SPH approach constitutive laws are not able to accurately

represent these forces as explained in Climent et al. (2006).

Siemann and Groenenboom (2014) performed a coupled SPH-FE approach to sim-
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ulate the complex non-linear ditching problem. In addition, full-scale test were per-

formed to understand all complex physical processes relevant for ditching impacting

phase. The interaction between the structure and the fluid is modeled by penalty

contact algorithms. They found that a limitation to reduce computational effort

adapting the spatial resolution to the interest area can be done with VOF and FEM,

but not with SPH. This limitation is due to the SPH nature, where not accurate

results are obtained if the neighbor particles vary significantly in size (smoothing

length). Simulation comparison with model test was good for strains and forces.

However, numerical pressure results observed challenges in capturing extremely small

temporal and spatial scales of present pressure peaks. The FSI solver used for this

investigation is based on CFD with VoF method allowing the spatial resolution to

be confined on areas of interest, making numerical simulations more optimum and to

assist in the accurate determination of the max pressure during impact.

Another example of the need of development of computational tools to simulate

hydroelatic problems is discussed in Razola et al. (2014). They discuss the derivation

of semi-empirical equation to determine the pressure value to use during design as

presented by Gray et al. (1972). Several factors of the design equation were re-

evaluated and improved based on numerical and experimental measurements. The

FSI solver can improve Razola et al. (2014)’s approach by considering a tightly-

coupled numerical simulation instead of a rigid-quasi statically approach to better

describe the hydroelatic loads acting on the hull for short impact periods. In a

similar manner loads of non-linear time domain simulations perform using a 2D + t

theory (two-dimensional plus time dependent theory) presented in Sun and Faltinsen

(2011a) can be improved with FSI proposed approach because full 3-D simulations

are performed.
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2.1.4 Composite Hydroelastic Problems

Composite materials have become widely used in recent years due to their high

strength-to-weight ratio. This high strength-to-weight ratio allows for the design of

a light-weighted structure maintaining or improving its yield capacity in the load-

ing direction. Both aerospace and aeronautical fields have exploited the benefits of

composite materials in the design of composite fins, wings, flaps, straps and in some

occasions, the full airframe allows for a significant reduction in fuel consumption

and travel distance. In marine applications, the use of composite materials has not

been used as much as in the above fields, but evidence shows that the application of

this materials has been increasing in the past years. One of the great advantages of

composite materials in marine applications is its corrosion resistance. Furthermore,

composite materials can provide sufficient strength in the desired direction (longi-

tudinal direction for high-speed slamming events) if properly design (laminate ply

stacking sequence and fiber orientation) while reducing the overall structure weight

becoming more cost-efficient.

The natural frequencies and mode shapes of cantilever laminate plates and shells

were experimentally investigated by Crawley (1979). The experiments provide a val-

idation dataset for analytical and numerical composite laminates dynamic behavior.

The analytical solution for the estimation of dry frequencies and plate mode shapes

using the Ritz method was presented in Narita and Leissa (1992). The Narita and

Leissa (1992) analytical solution provides information on the vibration characteristics

of composite symmetric cantilever plates. These studies provide excellent informa-

tion on the dynamical behavior of composite materials, but they lack in including the

added mass effects on the system response which is of relevance during slamming or

ditching events.

In Kramer et al. (2013a) the free vibration of cantilevered plates considering dry

and wetted conditions was investigated. The dry and wetted characteristics of the
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plates were studied analytically and numerically using FEA. The analytical solution

presented in Kramer et al. (2013a) considers the bending-torsion coupling due to the

material anisotropy and represents the plate using a Bernoulli-Euler beam theory with

potential flow to account for the added-mass effect. The numerical approach used by

Kramer et al. (2013a) is similar to the one implemented by the FSI tool used in this in-

vestigation, where wetted frequencies are obtained from a solid-fluid coupling through

acoustic elements in Abaqus. The study shows how added mass effects reduced the

structure frequency significantly for lightweight composite structures. The results

coincide with the findings of this investigation were the inertial-under relaxation fac-

tor for composite plates are substantially higher than those of aluminum (isotropic)

plates. Motley et al. (2013) investigates the effects of surrounding boundaries on the

free vibration of a fully and partially submerged cantilevered composite plate. The

findings confirm that for composite materials the added mass cannot be neglected

since the fluid inertia force can be of the same order as the structure. Furthermore,

results show that the added mass of marine structures depends on the proximity to

the free-surface and that the reduction in natural frequency will be mode-shape de-

pendent. As mentioned, one of the major challenges is the accurate determination

of the time-dependent wetness, which for composite materials will become even more

significant to accurate represent the hydroelastic structure behavior.

Lin et al. (2010) performs a coupled structural and fluid flow analysis to assess

the hydroelastic behavior of a composite marine propeller. The surface pressure is

obtained assuming a rigid structure, and then the structural response is calculated

including the geometric non-linearities. Therefore, the approach is a loosely-coupled

(one-way), where the added mass is implicitly included through the surface pressure,

but the effects of the structure deformation are neglected in the fluid solution. The

Newton-Raphson procedure is used to solve the equations. Moreover, the analysis

performed by Lin et al. (2010) finds that the stacking sequence (balance or unbalance)
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has a significant influence on the performance of the propeller.

An investigation of the sandwich composite panel response and delamination be-

tween the core and faces during slamming is presented in Das and Batra (2011). In

this study, the rigid and flexible 2D wedge slamming are investigated using a coupled

Lagrangian and Eulerian formulations within the commercial software LS-DYNA.

The hull and fluid deformations are solved assuming a plane-strain state. The fluid

deformation is described through the Lagrangian method with a penalty factor to

satisfy continuity in the mutual domains interface. The methodology is validated for

the local slamming of rigid wedges, but due to limitations in high-fidelity experimen-

tal data involving composite structures, the sandwich composite panels simulations

are not compared with literature data.

The composite sandwich bottom hull panel slamming for planning hulls craft was

investigated numerically and experimentally by Volpi et al. (2017). The sea trials con-

sisted of a steel/composite boat under sessions of 1-2 minutes long for speeds between

15-20 m/s, where sea state conditions were obtained from the closest NOAA buoy.

The experimental trials were performed in a sea state type 3, with a significant wave

height of 0.60 m. The numerical simulations consisted of one-way and tightly cou-

pled FSI between CFD single-phase with the level-set method (CFDShip-Iowa) and

a Computational Structural Dynamics (CSD) with modal basis within the commer-

cial software ANSYS. The experimental and numerical results display a large average

error for peaks, duration, and starboard vs. port peak ratio of strain and pressure.

Therefore, although the experimental sea trials mimic more realist sea conditions and

FSI problems, they make the validation process challenging since sea conditions were

affected by several uncertainties.

This investigation aims to develop and validate a high-fidelity FSI tool capable

of performing a hydroelastic analysis of composite structures. The FSI framework is

validated with a high-quality data set of composite flat-plate ditching experiments
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performed in Iafrati (2015). Furthermore, the investigation aims to provide an un-

derstanding of the FSI modal basis limitations and relevance of the added mass and

geometric non-linearities effects during composite slamming events.
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CHAPTER III

Numerical Fluid-Structure Interaction Framework

3.1 Numerical Method Overview

This chapter provides an overview of the tightly-coupled FSI numerical framework.

The FSI framework hydroelastic algorithm is based on the solver described in Piro and

Maki (2013) and Piro (2013). The FSI uses CFD to solve for the fluid domain coupled

with a FEM linear modal description for the structural domain. The tightly-coupled

method performs iterations between the fluid domain and structural domain solutions

and use under-relaxation to ensure the method stability and achieve convergence.

This factor maintains the FSI numerical method stability while capturing the effects of

large added mass and time-dependent wetness. First, the expansion of shell elements

and methodology for accurate estimation of the inertia-under relaxation is discussed.

Then, the addition of a non-linear damping technique to avoid structure response

instability due to the initial impulse of the numerical simulation is covered. Lastly, I

present an expansion of the FSI algorithm to solve hydroelastic problems of composite

materials with classical lamination theory for local and global composite beams and

shells.
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3.2 Fluid Domain

A detailed description of the fluid solver is presented in Piro (2013) and described

here for completeness. The fluid domain solution is determined using CFD with

the VoF approach. The fluid solution is governed by the Navier-Stokes equations

for incompressible flow of a two-phase viscous-fluid system. The finite volume dis-

cretization combined with Arbitrary Lagrangian-Eulerian (ALE) allows moving and

deforming fluid grids. In this investigation, the ALE approach is used to move the

fluid mesh, but not allows an undeformed mesh. The Boundary Condition (BC) used

in the fluid-structure mutual interface is discussed in Section 3.4. The VoF approach

is suitable for complex high-speed planing craft geometries and accurately captures

the non linear air-water interface of the slamming problem. Mainly, VoF resolves the

thin jet root, the high local pressure, the pile-up of water in front of the structure,

and the three-dimensional effects given suitable grid resolution.

VoF is used with the Navier-Stokes equations to combine the properties of fluids

(air and water) into one single continuous fluid using the volume fraction variable α.

The volume fraction variable α can have any value between 0 and 1, where a value

of 0 represents air and a value of 1 represents water. Values of α between 0 and

1 represent the interface between the two fluids. The combination of VoF and the

traditional Navier-Stokes equations are shown in Equations 3.1 through 3.5.

∇ · ~u = 0 (3.1)

∂ρ~u

∂t
+∇ · ρ~u~u = −∇p̄+∇ ·

[
µ
(
∇~u+∇~uT

)]
+ ρ~g (3.2)

where ~u is the fluid velocity, ρ is the fluid density, µ the fluid viscosity, p̄ the fluid
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pressure and ~g the gravitational acceleration. The combination of the Navier-Stokes

equations with the volume of fraction α is as follows:

ρ(~x, t) = ρwaterα(~x, t) + ρair(1− α(~x, t)) (3.3)

µ(~x, t) = µwaterα(~x, t) + µair(1− α(~x, t)) (3.4)

∂α

∂t
+∇ · (α~u) +∇ · (α(1− α) ~ur) = 0 (3.5)

Solutions of the equations are performed on arbitrary-polyhedral discretization

with the OpenFOAM CFD library, while the discretization error of all terms in space

and time are formally of second-order.

3.3 Structure Domain

The structural domain is solved using the modal decomposition method within the

FEA approach. The FEA uses a linear dynamic solver to perform a modal extraction

analysis (modal representation of the system). The FSI tool presented in Piro (2013)

was capable of modeling the structure using an in-house FEA or the commercial

software Nastran. The commercial software Abaqus is added to the FSI tool to

expand the structural modeling capabilities. All structures were simulated using the

commercial software Abaqus in this investigation. The modal decomposition allows

modal truncation, reducing the complexity of the structure. The selection of modes

is based on their energy participation factor in the response. Furthermore, due to the

orthogonality of the mode shapes, the system can be truncated and simplified to a

decoupled system of structural equations of motion as shown in Equation 3.6.
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n
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qn
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
f1
...

fn

(3.6)

For simplification, the equation of motion system of Equation 3.6 can be written

as shown in Equation 3.7, where [I] is the identity matrix, [ω2
n] is the diagonal matrix

containing the natural frequencies of each mode shape, [2ξω] is the modal viscous

damping matrix, {q} is the vector containing the modal amplitude and {f} is the

modal force vector. Equations are represented in state-space that ranges between an

n secound-order equations to a 2n first-order equations, simplifying the problem and

then solved using standard numerical methods for ordinary differential equations.

[I]{q̈}+ [2ξωn]{q̇}+ [ω2
n]{q} = {f} (3.7)

The modal decomposition system matrices are obtained using the FEM performed

within the Abaqus software. The structure is represented by a series of conventional

shell elements (SR4) during the linear dynamic FEA. The shell elements reference

surface is located at the shell’s mid surface and is defined by the element’s nodes and

normal direction. The thickness of the shell element is defined by a section property.

The uniformly reduced integration SR4 elements are designed to avoid shear and

membrane locking and are suitable for classical thin shell theory or flexible theory for

thick shells. SR4 elements are four-node shell elements, and their respective shape

functions follow the classical four-node FEA derivation presented in Abaqus (2013).
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3.4 Domain Mappings

Both the structural and fluid domains are solved sequentially in an iterative man-

ner by the tightly-coupled solver. The rigid-body fluid normal stress is averaged at the

structural Gauss points; then the velocity is provided at the fluid grid points from the

structure-shape functions. The fluid stress is determined by using a distance-weighted

average of the closest four-fluid cell center pressure data. Then, the rigid-body fluid

stress is integrated using a three-point Gauss integration rule to provide the fluid

force at the structural nodes.

After the determination of the fluid loading through CFD, the elastic response of

the structure is solved. The structure nodal displacement and velocities are obtained

through solving Equation 3.7. In the mutual fluid-structure interface, a no-slip con-

dition needs to be satisfied. This fluid boundary condition forces the fluid velocity to

equal the structural velocity of the mutual interface.

The FSI framework is capable of transferring the velocity information between the

domains in two ways. The first method deforms the fluid mesh to follow the structural

mesh. The second approach applies the structural velocity obtained from the shape

functions to a undeformed fluid mesh. The approximate velocity boundary condition

approach yields accurate results and is suitable for a wide range of applications as

shown in Young et al. (2012) and Piro (2013). The advantage of the approximate

boundary condition is its ability to avoid deforming the fluid mesh, reducing signif-

icantly the number of iterations needed for a converged solution. This reduction in

the number of iterations reduces the computational expense required to perform the

FSI simulation. Due to the segregated nature of the FSI, an inertial under-relaxation

factor γe introduced in Piro and Maki (2013) is applied to ensure the stability of the

method. The methodology used to estimate the inertia-under relaxation factor per

mode in this investigation is discussed in Section 3.5.
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3.5 Acoustic Model for Inertia-Under Relaxation Factor

The tightly coupled solution of the FSI algorithm results from the segregated

nature of the domains solution, where the rigid body position and structural defor-

mation are solved based on the previous iteration fluid stress. Then, the fluid solution

is updated based on the obtained body position and deformation. To avoid numeri-

cal instability, an inertial under-relaxation factor was implemented in Piro and Maki

(2013) to ensure convergence of the solution. The inertial under-relaxation approach

follows a similar derivation presented in Sun and Faltinsen (2011b) and Young et al.

(2012). The inertia under-relaxation technique applies an estimated added mass force

to both sides of Equation 3.7. Now, the system equation of motion takes the form of

Equation 3.8 as presented in Piro and Maki (2013).

([I] + [Γe]){q̈}+ [2ξωn]{q̇}+ [ω2
n]{q} = {f}+ [Γe]{q̈est} (3.8)

where [Γe] is a diagonal estimated modal added mass matrix, and q̈est is the estimated

modal acceleration. Since the modal added mass matrix is diagonal, the modes can

be decoupled and solved separately. In the case that the added mass matrix is not a

diagonal matrix, the system of equations needs to be solved simultaneously. In this

investigation, all modes are assumed to be uncoupled, and therefore the Equation of

Motion (EQM) reduces to a single degree of freedom system. The EQM for a single

degree of freedom system with inertial under relaxation given by Piro and Maki (2013)

is:

(1 + γe)q̈ + 2ξωnq̇ + ω2
nq = f + γe ¨qest (3.9)
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Taking the stability limit of the numerical method, to achieve stability, the re-

quirement is that the inertial under-relaxation factor γe ≥ (γ − 1)/2, where γ is the

physical dimensionless modal-added-mass coefficient.

Now the task is to select the inertia under-relaxation factors since a larger γe

requires a higher number of iterations between the fluid-structure systems to reach

a converged solution. Therefore, the selection of the user-estimate inertial under-

relaxation factor (γe) is essential to obtain an accurate solution and reduce the com-

putational expenses of the FSI algorithm.

3.5.1 Wetted Frequency Estimation

To simplify the task of estimating the inertial under-relaxation factor, the method-

ology discussed in Section 3.5.2 is developed using the dry and wetted structure fre-

quencies. To assess the effectiveness of the method, the free vibration of a cantilever

plate is tested. Details on the inertial under-relaxation factor determination, FSI

iterations, and method stability are discussed in Section 3.5.3.

As previously mentioned in Section 3.5, the estimation of the modal-added-mass

coefficient γe is essential to ensure an accurate and stable FSI solution. It is pos-

sible to estimate the added mass effects for simple geometries through strip theory

based on the potential flow method. For complex geometries such as a multihull,

planing craft, and airframe structures where the geometry has several intersections

between structural components, the theory lack in providing an accurate estimation

of the effective added mass due to the simplifications typically implemented during

the method derivation. Therefore, in this investigation, the evaluation of the added

mass effects is performed through a comparison between the dry and fully-wetted fre-

quencies of the structure. The fully wetted frequencies are determined using acoustic

elements within the commercial software Abaqus. The acoustic medium captures the

FSI during the frequency analysis, providing an estimate of the added mass effects.
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A similar approach was performed by Kramer et al. (2013a) to understand the added

mass effects on composite cantilever plates.

In Maki et al. (2011) an acoustic medium was used to simulate the fully wetted

hydroelastic response of wedge bodies. In that study, as part of the acoustic FEM

validation, the free vibration of partially submerged cantilever plates was compared to

the experiments performed by Lindholm et al. (1962). Here, the finite element acoustic

modeling approach and the FSI simulation plate vibration frequencies are compared

to the numerical frequencies calculated in Maki et al. (2011) and the experimental

frequencies measured by Lindholm et al. (1962).

(a) Cantilever plate test geometry Maki et al. (2011) (b) CFD fluid domain for vibration test

Figure 3.1: Cantilever plate wetted vibrations test

Table 3.1: CFD grid resolution
Fluid Structure

Density [kg/m3] 1,000 7,830
Young’s modules E [GPa] – 206.8

Bulk modulus [GPa] 2.1 –

Figure 3.1 shows the geometry and fluid domain of the cantilever plate used for the
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vibration test. The simulation is intended to assess the tightly-coupled algorithm ca-

pability of determining the added mass effects (wetted frequencies) and the numerical

method stability. The frequency analysis is performed using the Lanczos extraction

method within the Abaqus linear dynamic solver. The structure material and acous-

tic medium properties used during the frequency extraction are listed in Table 3.1.

Figure 3.2 shows the first six dry mode-shapes and frequencies of the cantilever plate.

The wetted frequency analysis is performed for two different submergence levels

denoted by their draft-to-depth ratio (d/a). The two wetted conditions selected

are d/a=1 (fully wetted plate) and d/a=0.2 (a quarter of plate wetted), and are

henceforth referred to as Case 1 and Case 2, respectively.

Figures 3.3 and 3.4 show the wetted mode-shapes interacting with the acoustic

solid finite elements. The acoustic mesh is discretized into three sections: two rect-

angular strips with a tie constraint in the share interface on each side plate face and

an outer cylinder with a radius equal to six times the width of the plate. The outer

boundary condition is non-reflective. This boundary condition along the outer edge

of the cylinder models the fluid domain as infinite and neglects the boundary con-

dition effects in the coupled solution. The acoustic discretization matches the plate

mesh resolution up to one plate width around the periphery of the plate. Beyond this

region, a gradient is used to stretch the acoustic mesh until the sides of the domain

are reached.

Table 3.2: Summary of experimental data and numerical frequencies comparisons
Experiment This Study

Mode In Air [Hz] 0.25 1.0 In Vacuo 0.25 1.0
1 3.84 2.17 1.78 3.9417 2.1250 1.7165
2 24.20 21.01 11.50 24.680 21.809 12.346
3 39.10 29.75 24.20 39.154 31.087 26.607
4 68.10 57.36 33.50 69.283 60.933 38.022
5 121.00 106.35 75.26 119.78 107.66 82.513
6 - - - 136.34 118.38 81.216
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(a) Mode 1, fdry = 3.9417 Hz (b) Mode 2, fdry = 24.680 Hz

(c) Mode 3, fdry = 39.154 Hz (d) Mode 4, fdry = 69.283 Hz

(e) Mode 5, fdry = 119.78 Hz (f) Mode 6, fdry = 136.34 Hz

Figure 3.2: Cantilever plate dry frequencies and mode-shapes
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(a) Mode 1, fwet = 1.7165 Hz (b) Mode 2, fwet = 12.346 Hz

(c) Mode 3, fwet = 26.607 Hz (d) Mode 4, fwet = 38.022 Hz

(e) Mode 5, fwet = 82.513 Hz (f) Mode 6, fwet = 81.216 Hz

Figure 3.3: Cantilever plate wetted frequencies and mode-shapes (Case 1)
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(a) Mode 1, fwet = 2.1250 Hz (b) Mode 2, fwet = 21.809 Hz

(c) Mode 3, fwet = 31.087 Hz (d) Mode 4, fwet = 60.933 Hz

(e) Mode 5, fwet = 107.66 Hz (f) Mode 6, fwet = 118.38 Hz

Figure 3.4: Cantilever plate wetted frequencies and mode-shapes (Case 2)
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The numerical dry and wetted frequencies show good agreement with the experi-

mental measure values from Lindholm et al. (1962). For Case 2 the error ranges from

1.23% to 6.22%. For Case 1 the error is higher, ranging from 3.57% to 13.49%. As

shown in Table 3.2 the larger difference occurs in higher modes which are harder to

capture experimentally and require a higher resolution in the numerical mesh. The

margins of error are acceptable for the current investigation since the added mass ef-

fects are captured through the fluid loading, while the wetted frequency estimation is

only required for the determination of the modal-added-mass coefficients as discussed

in Section 3.5.2.

3.5.2 Modal-Added-Mass Coefficients

The modal-added-mass is estimated using the ratio between the dry and wetted

frequencies for each mode. The dry natural frequency of a system can be determined

using Equation 3.10, where k is the system stiffness, M is the structure mass, and

ωd is the dry natural frequency. Now, using the same analogy, the wetted frequency

(ωw) of the system should decrease due to the added mass (ma) effects as shown in

Equation 3.11.

ωd
2 =

k

M
(3.10)

ωw
2 =

k

M +ma

(3.11)

Combining Equations 3.10 and 3.11, then normalizing the with respect to the

structural mass M and solving for γ (ratio between the added mass and the structural

mass) in terms of the system, frequencies we get Equation 3.12.
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γ =
ωd

2

ωw2
− 1 (3.12)

Equation 3.12 is a robust way of estimating the added mass effects on the struc-

ture per mode, based on the dry and wetted frequencies. In this investigation, all

modal-added-mass coefficients are determined using Equation 3.12 with an acous-

tic medium. However, the frequencies can also be calculated by the user with any

preferred method and are not limited to the implementation of acoustic medium.

The proposed methodology for the inertia under-relaxation estimation is suitable for

complex geometries and estimates an under-relaxation factor for each mode. As dis-

cussed in Section 3.5, the optimal determination of this factor reduces the number of

iterations required to converge and ensure the FSI solution.

3.5.3 Convergence of FSI Solver for Cantilever Plate

The modal-added-mass coefficient estimation method is applied to the cantilever

plate cases presented in Section 3.5.1. Table 3.3 shows the results of the estimate

modal-added-mass inertial under-relaxation factor for each mode. Case 1 has higher

values for the inertia under-relaxation as expected since the added mass effects become

more significant for fully-wetted conditions. For γ’s less than 1, the FSI algorithm

requires no inertial under-relaxation for stability in Case 2 of the cantilever plate

example.

To analyze the FSI method stability and the number of iterations needed for

a convergent solution, a free-vibration test of the plate is performed. An initial

perturbation of 1% of the plate length (approximately 10.16 mm) is applied to the

first five modes simultaneously. The critical damping of six percent is used for all

modes during the FSI free-vibration test. Stability of the FSI algorithm is observed
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Figure 3.5: Case 1: modes 1 to 3 free-vibration convergence
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Table 3.3: Estimate inertial under-relaxtion factor for Case 1 and 2 for cantilever
plate

Case 1 Case 2
Mode γe γe

1 1.452 0.75
2 1.305 0.0
3 0.309 0.0
4 1.139 0.0
5 0.267 0.0
6 - -
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Figure 3.6: Case 1: modes 4 and 5 free-vibration convergence
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for all simulations within the tested iteration range as shown in Figures 3.5 and 3.6

for Case 1. Using the described methodology for the inertia under-relaxation factor,

convergence in the solution is observed at six iterations. To assess the accuracy of the

FSI method to capture the added mass effects, the vibration period for each mode

is compared to the experimental vibration period. The vibration period is obtained

from the of the average periods of the first eight oscillations. The wetted vibration

period for the 4 iterations case is then compared. The displacement response for the

first three modes calculated from the FSI simulation for Case 1 is shown in Figure 3.7.

Even for the FSI simulation with four iterations, all results compared well with

the experimental values, yielding a maximum error of 9.53%. Results confirm the

ability of the FSI algorithm to capture added mass effects during the coupling of the

domains. The under-relaxation factor estimation approach proves to be a suitable

yielding optimal factor, while reducing the number of iterations (6 iterations) needed

to solve the problem accurately.

3.6 Non-Linear Structural Damping

In the numerical simulations when the initial conditions are assumed to be at

rest (modal displacement and velocities are zero), and the FSI simulations start, the

system will exhibit a significant jump in the force. Therefore, the system will exhibit

a significant jump in the acceleration in accordance with the jump in force if no ramp

time is used to reach the final body motion. However, this initial impulse in the

simulation causes undesirable structural responses and vibrations in the structural

modes, depending on the initial prescribed modal conditions. One way to reduce the

initial impulse similar to experiments trails is to use a time ramp that allows the body

motion and force to develop smoothly until the steady-state motion is achieved. The

time ramp permits a stable modal response, avoiding the large artificial response due

to the initial impulse. The disadvantage of using the ramp time is that the length will
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depend on each specific problem final body motion and impact condition. Therefore,

to avoid large time ramp periods and the user iteration process to determine the

optimal time ramp, a non-linear time-dependent damping is developed.

The nonlinear viscous damping implemented in this investigation is an exponen-

tial decay form of Equation 3.13. The decay rate λ, the linear viscous damping ξ,

simulation time t and nonlinear amplitude factor A are selected based on the ramp

time of the simulation. In this investigation, the nonlinear amplitude factor A is cho-

sen to be 10% of the linear viscous damping. The decay rate λ is user-specified and

determined using Equation 3.14, where ε is the small number close to zero defined

by 10−6/A and tramp is the simulation time ramp. This calculation of λ forces the

non-linear viscous damping to become essentially zero at the user selected time ramp

(before impact). Therefore, the system of EQM becomes the same as proposed by

Piro (2013) but avoids the oscillatory behavior due to the initial impulse, minimizing

ramp time.

ξnl = Aξe−λt (3.13)

λ = − ln ε

tramp

(3.14)

The matrix form of the EQM from Equation 3.9 with the implemented non-linear

damping becomes of the form of Equation 3.15.

([I] + [Γe]){q̈}+ ([2ξωn] + ξnl){q̇}+ [ω2
n]{q} = {f}+ [Γe]{q̈est} (3.15)
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An example of this artificial structural response is shown in Figure 3.8 for a

stiffened-panel (Design B) slamming problem which is discussed in Chapter VI. Fig-

ure 3.8 shows the displacement as a function of time for a smooth acceleration with

time ramp (non-linear damping) and impulsive acceleration with time ramp (linear

damping). As shown in Figure 3.8, the two-way coupled simulation with the linear

damping have a high oscillatory behavior during the time ramp period. The two-way

coupled simulation with the implemented non-linear damping technique is also shown

in Figure 3.8. The response period is slight reduce due to the added mass effects,

and the overall response magnitude is captured by the FSI simulation, eliminating

the artificial response due to the initial impulse. Note how the displacement magni-

tude and response period of the linear damping simulation are slightly affected by the

artificial impulse response. Therefore, the determination of the time ramp is essen-

tial to avoid artificial effects in the numerical FSI simulations. In this investigation,

non-linear viscous damping is implemented to avoid the artificial structural response

in the early stages of the numerical simulations and reduce the require time ramp

needed to reach steady motion conditions.

3.7 Classical Lamination Theory

As discussed in Section 2.1.4, composite materials have become of great interest in

several fields due to their high strength-to-weight ratio. In this investigation, the focus

on composite structures is related to their anisotropic behavior and bending-twisting

characteristic. The following section describes the methodology developed for the

local and global hydroelastic analysis of composite structures. In this investigation,

a composite material can be defined as a heterogeneous material which is composed

of two phases, where one reinforces the other. The two phases present in composite

materials are the fibers and the matrix. The matrix is reinforced by the fibers and

the combination of fiber direction and stacking sequences determines the final global
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Figure 3.8: Artificial structural response couse by FSI numerical initial impulse.

composite materials properties. A composite ply is constituted by the combination

of a fiber with a specific orientation and the selected matrix. An arrangement of plies

(stacking of plies) produces a laminate.

The laminates are assumed to be perfectly bounded, and no shear deformation

is allowed between the plies. Furthermore, it is assumed that no residual or imper-

fections occur in the fabrication process; therefore the displacement and strain are

considered to be continuous along the ply interfaces. Moreover, the layers or plys are

assumed to be homogeneous, orthotropic, or transversely isotropic. Based on these

assumptions the laminate can be treated as one single material combining the the

individual properties of the plys. The Classical Lamination Theory (CLT) assumes

that the composite laminate is subjected to bending moments and in-plane loads in

a state of plane stress. The CLT derivation follows the work presented in Herakivich

(1998), Jones (2014) and Waas (2013).
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3.7.1 Composite Laminate Coordinate System

The global x−y−z coordinate system is selected with z perpendicular to the x−y

plane and positive downwards as shown in Figure 3.9. The coordinate system origin

is located at the midplane of the laminate (centered between the top and bottom

surfaces).

Figure 3.9: Laminate coordinates Waas (2013)

The N layers (plys) that compose the laminate are numbered from top to bottom

with a respective fiber direction θk. The z-coordinate of the bottom kth layer is

designated as zk with the top of the layer denoted as zk−1.

3.7.2 Composite Laminate Strain-Displacement Relationships

The CLT follows the Kirchhoff assumption for bending and stretching of thin

plates. The following are the fundamental CLT lamination theory assumptions as

presented in Herakivich (1998):

1. The laminate consists of perfectly bounded layers (lamina).

2. Each layer is a homogeneous material with known effective properties.

3. Individual layer properties can be isotropic, orthotropic, or transversely isotropic.

4. Each layer is in a state of plane stress.
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5. The lamina deform according to the following Kirchhoff assumptions:

• Normals to the midplane remain straight and normal to the deformed

midplane after deformation.

• Normals to the midplane do not change length.

The first Kirchhoff assumption simplifies the problem since the shear strains γzx,

γzy and strain εz are equal to zero. Therefore, the z-displacement becomes a func-

tion of the x and y coordinates, w = w(x, y). Figure 3.10 shows the deformed and

undeformed midplane surface.

Figure 3.10: Deformed laminate midplane Waas (2013)

If we assumed small displacements that follow the modal decomposition assump-

tions, then the slope α in Figure 3.10 can be approximated by a small angle approx-

imation. The tangent of the angle then becomes:

tanα =
∂w

∂x
∼= α (3.16)
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Then the total x displacement, u, of any point ACDB is the sum of the midplane

displacement uo, plus the displacement due to the rotation, α, of the normal to the

plane. Therefore,

u = uo − z tanα = uo − z
∂w

∂x
(3.17)

by a similar approach in the yz plane, we can write the y displacement, v, as:

v = vo − z tanα = vo − z
∂w

∂x
(3.18)

and finally since the normals do not change length, the plate deflection w is inde-

pendent of z and is expressed as:

w(x, y) = wo(x, y) (3.19)

Note that in Equations 3.17 to 3.19, the superscript o represents the laminate

midplane displacements.

The planar strains are obtained by combining the classical strain-displacement

relations from mechanics of materials with Equations 3.17-3.19:
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εx =
∂u

∂x
=
∂uo

∂x
− z∂

2w

∂x2
= εox + zκx

εy =
∂v

∂y
=
∂vo

∂y
− z∂

2w

∂y2
= εoy + zκy

γxy = (
∂u

∂y
+
∂v

∂x
) =

∂uo

∂y
− 2z

∂2w

∂x∂y
+
∂vo

∂x
= γoxy + zκxy

(3.20)

where κ are the curvatures defined as:

κx = −∂
2w

∂x2

κy = −∂
2w

∂y2

κxy = −2
∂2w

∂x∂y

(3.21)

combining Equation 3.20 and 3.21 in matrix form, we obtain:


εx

εy

γxy

 =


εox

εoy

γ0
xy

+ z


κx

κy

κxy

 (3.22)

Equation 3.22 express the total strains at any z location in the laminate in terms

of the midplane strains εo and the curvature, κ. Therefore, the total strains are the

sum of the midplane strains and the strains associated with the curvature. Note

that the strain derivation does not depend on the material or number of layers. It is
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based on the Kirchhoff displacement assumptions which follow the FSI plate element

derivation. The strains and curvature of the midplate of the laminate are determined

through the total displacement response based on the modal decomposition approach.

3.7.3 Lamina Stress-Strain Relationships

In the FSI numerical framework we assume that each composite layer is trans-

versely isotropic. A transversely isotropic material is defined to be a material in

which the effective properties are the same in one of the planes (plane of isotropy).

An example of the typical transversely isotropic material is an unidirectional fibrous

composite where the random array of fibers exhibits isotropic properties in the plane

transversely to the fibers. The stress-strain relation for a single transversely isotropic

fiber ply is:



ε1

ε2

ε3

γ23

γ31

γ12



=



1
E1

−ν21

E2
−ν21

E2
0 0 0

−ν21

E2

1
E2

−ν23

E2
0 0 0

−ν12

E1
−ν23

E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12





σ1

σ2

σ3

τ23

τ31

τ12



(3.23)

Due to our assumption of plane stress condition, Equation 3.23 reduces to:


ε1

ε2

γ12

 =


S11 S12 0

S21 S22 0

0 0 S66



σ1

σ2

τ12

 (3.24)

Now writing Equation 3.24 in terms of tensorial strain, we get:
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
σ1

σ2

τ12

 =


Q11 Q12 0

Q21 Q22 0

0 0 Q66



ε1

ε2

γ12

 (3.25)

Since the local stress in each layer depends on the fiber orientation, a tenso-

rial transformation relation needs to be performed to accurately transform the stress

from the global reference coordinate system to the ply local coordinate system. Equa-

tion 3.26 shows the relationship between the global and local coordinate systems.


σx

σy

τxy

 =

[
T

]−1


σ1

σ2

τ12

 (3.26)

Therefore, the local stresses in terms of the global coordinates can be expressed

as:


σ1

σ2

τ12

 =

[
T

]
σx

σy

τxy

 (3.27)

A similar transformation occurs for the tensorial strains:


ε1

ε2

γ12/2

 =

[
T

]
εx

εy

γxy/2

 (3.28)
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Substituting Equations 3.25 and 3.28 into Equation 3.26 we obtain:


σx

σy

τxy

 =

[
T

]−1 [
Q

] [
T

]
εx

εy

γxy/2

 (3.29)

Defining a diagonal matrix [G],

[
G

]−1

=


1 0 0

0 1 0

0 0 1
2


we can write the global stress-strain relation considering the layer local properties

as:


σx

σy

τxy

 =

[
T

]−1 [
Q

] [
T

] [
G

]
=

[
Q̄

]
εx

εy

γxy/2

 (3.30)

Inverting Equation 3.30 we get the global strains in terms of the global stresses:


εx

εy

γxy/2

 =

[
S̄

]
σx

σy

τxy

 (3.31)

Now that we obtained the ply stress-strain relations, we can now obtain the

stresses in the kth layer with respect to the midplane strains and the strains re-

lated to the curvature of the midplane. Therefore, let us assume that we want the

stress at any point in the kth layer situated between z = zk and z = zk−1 (between
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the kth layer thickness). Then the stress-strain relations become for ply k:


σx

σy

τxy


k

=


Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


k


ε0x

ε0y

γ0
xy

+ z


Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


k


κx

κy

κxy

 (3.32)

If the local ply-transformed reduced stiffness matrix is known, the local stress can

be determined using Equation 3.32. The FSI framework is capable of calculating the

transformed reduced stiffness of the laminate layers, and combined with the midplane

strains and curvatures from the modal extraction analysis, can determine the local

stress of the layers. Equation 3.32 shows that even though the strains are linear

across the laminate thickness, the local stresses vary between layers. In this case,

the resultant stress and moments are more helpful variables to describe the global

laminate response.

3.7.4 Laminate Stress and Moment Resultants

The resultant laminate force and moments are calculated by integrating the local

components over the entire laminate thickness. Figure 3.11 displays the convention

for the laminate resultant stress and moments.

If we integrate over the thickness of all the stress components in each axis we get:


Nx

Ny

Nxy

 =

h
2∫

−h
2


σx

σy

τxy

 dz =
n∑
k=1

hk∫
hk−1


σx

σy

τxy


k

dz (3.33)

and, if we integrate over the thickness of all the moments components in each axis

we get:

50



Figure 3.11: Laminate resultant stress and moments Waas (2013)


Mx

My

Mxy

 =

h
2∫

−h
2


σx

σy

τxy

 zdz =
n∑
k=1

hk∫
hk−1


σx

σy

τxy


k

zdz (3.34)

Substituting Equation 3.32 into Equations 3.33 and 3.34, and noting that the

midplane strain and curvatures remain constant along all the plys in the laminate,

we obtain:


Nx

Ny

Nxy

 =


A11 A12 A16

A21 A22 A26

A16 A26 A66



ε0x

ε0y

γ0
xy

+


B11 B12 B16

B21 B22 B26

B16 B26 B66



κx

κy

κxy

 (3.35)
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
Mx

My

Mxy

 =


B11 B12 B16

B21 B22 B26

B16 B26 B66



ε0x

ε0y

γ0
xy

+


D11 D12 D16

D21 D22 D26

D16 D26 D66



κx

κy

κxy

 (3.36)

Equations 3.35 and 3.36 can be written in matrix form as shown in Equation 3.37,

which represents the constitutive description of the laminate, where the [A] matrix

is the extensional stiffness matrix, [B] is the extensional-bending coupling stiffness

matrix, and [D] is the bending stiffness matrix. A more detailed description of the

determination of the laminate [A], [B] and [D] coefficients and intermediate equations

for the CLT derivation can be found in Appendix A.

NM
 =

A B

B D


ε

o

κo

 (3.37)

The in-house code of the FSI numerical framework combines the transformed re-

duce stiffness matrix of each layer to the global laminate response using Equation 3.37.

The FSI method solves for the local stress and strain at the bottom, center, and top

points of each ply. Then, the global stress and moments laminate results are solved

at the same point location in the laminate. As mentioned before, all the strain and

curvatures are solved assuming a small displacement approximation with the modal

analysis within FEM. This small displacement approximation is suitable for ma-

rine structures since longitudinal or transverse structural sections typically reinforce

the bottom hull. Furthermore, this type of analysis is suitable for high-speed craft

slamming events because composite structures can be designed such that the fiber

direction and ply stacking increases the strength in the loading direction, thereby

minimizing the displacement.
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CHAPTER IV

Hydroelastic Flat-Plate Slamming

This chapter discusses a tightly-coupled fluid-structure interaction (FSI) algorithm

for the modeling of the entry of a flat plate with a high horizontal speed into a body

of water. The aim of the chapter is to model the hydroelastic response of structures

when it enters the water from some height at a relatively high horizontal velocity

parallel to the surface of the water. As defined in Chapter I this phenomenon is

known as slamming in the naval architecture field (rapid impact between the vessels

bottom hull and the water surface). The flat plate model can be used to simulate

the bottom hull panels of a vessel and the complex hydroelastic phenomena involved

during the impact. The problems encountered in situations when craft enter water are

not only limited to marine applications, but they also are common to many different

fields for example, in aeronautics, aircraft sometimes conduct emergency landings on

water known as ditching.

The model of these structures is critical since the hydrodynamic loads can develop

high dynamic stress during the vessel slam that can lead to structural failure. The

hydroelastic analysis of water entry problems is complex since they involve: large

hydrodynamic loading, high localized pressure, complex free surface topology, jet root

propagation along the plate, time-dependent wetness, and large fluid density relative

to the effective density of structures and FSI. Today the design and certification of
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these complex structures involve experimental testing and two-dimensional theoretical

approaches. The primary challenge in the experimental campaigns is the selecting of

the adequate scaling for all the physical processes during the high-speed water entry

problem between the full and scale models. Furthermore, experimental testing is not

a cost-effective way for design or certification process, since a model it is required

for each structure. Regarding the current theoretical approaches salient feature of

the water entry problem such as three-dimensional effects and hydroelastic coupling

are neglected. Therefore, validated high-fidelity numerical tools can reduce the need

for experimental testing in the certification process. In addition, numerical tools

can provide an accurate prediction of the structure hydroelastic response considering

the challenging physics commonly neglected by theoretical solutions such as three-

dimensional effects, nonlinear free-surface, cavitation, ventilation, FSI, and material

failure.

This investigation aims to develop, apply, and validate an FSI methodology that

will address the majority of aspects among them three-dimensional effects, nonlin-

ear free-surface, and FSI. The application of numerical tools to solve these types of

problems is still in the development stage and currently, there is no numerical ap-

proach validated for these problems. This investigation aims to develop, apply, and

validate an FSI numerical tool to address these complex aspects involved in the water

entry problem with high velocity parallel to the surface of the water and a strong

fluid-structure interaction. The numerical framework is capable of providing detailed

information of the fundamental physics and the effects of the interaction between the

impact parameters of the problem.

As part of the FSI algorithm validation, two slamming conditions are studied

independently, providing independent validations of the fluid and structural domains.

In each condition, the nonlinear CFD solver is validated through the simulation of

a rigid flat plate impact. Then a hydroelastic analysis of the flat plate impact is
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performed. This particular analysis validates of the linear dynamic finite element

solver while overcoming limitations of one-way coupled methods.

The geometry used for all simulations presented in this chapter is shown in Fig-

ure 4.1. The flat plate is defined based on the length L, beam B, thickness t, and

pitch angle θ. The plate is modeled using shell elements and assumes classical theory

for thin shells.

Figure 4.1: Flat plate pressure probes and strain gauges location from the trailing
edge from Iafrati et al. (2015)

4.1 Slamming Test Conditions and FSI Model

FSI generally refers to a broad set of situations in which an elastic structure is

coupled to a fluid dynamics problem. This numerical investigation validates and

applies a tightly-coupled FSI methodology to simulate the hydroelastic effects during

slamming events involving high-speed vessels. While a majority of the studies of

water-entry problems have been focused on pure vertical motion, in this study we

specifically introduced large forward speed and studied its effect on the structural
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loading.

This numerical method is used to study water entry of a rectangular flat plate at a

high horizontal speed (Iafrati , 2016b). The experiments were designed and conducted

for the aerospace problem of ditching (aircraft emergency landing on water), but they

are also suitable for high-speed planning craft slamming. For validation purposes,

Condition 1 (10◦ pitch angle, horizontal velocity U = 40 m/s and vertical velocity

V = 1.5 m/s) presented by Iafrati et al. (2014) is studied. The experimental campaign

performed 10 repeats for this condition, including for a data uncertainty analysis

providing error analyses between the numerical and experimental results. A second

slamming condition (Condition 2) is simulated with a 6◦ pitch angle, U = 40 m/s

and V = 1.5 m/s as discussed in Iafrati (2016b). For Condition 2, three repeats were

performed. Lastly, a third case is simulated with 10◦ pitch angle, U = 30 m/s and

V = 1.5 m/s using only the medium CFD grid resolution. This last slamming case is

referred to as Condition 3. Table 4.1 summarizes the slamming conditions performed

in this numerical investigation. Validation of the fluid and structure solutions are

performed for pressure, strain, and normal force acting on the plate. Preliminary

results and validation for Condition 1 are also presented in Mesa and Maki (2017).

Table 4.1: Summary of slamming impact conditions simulated with FSI tool
Case Forward Speed Vertical Speed Pitch Angle

U [m/s] V [m/s] θ [◦]
Condition 1 40 1.5 10
Condition 2 40 1.5 6
Condition 3 30 1.5 10

For each impact condition, the numerical results are compared to the available

experimental data. Table 4.2 compares the quantities between numerical and exper-

imental results as discussed later in the chapter.
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Table 4.2: Summary of experimental data available for numerical results comparisons

Case Force Pressure Jet Propagation Strain 2D Solution
on Plate Probes Velocity Data

Condition 1 X X X X X
Condition 2 X X X X
Condition 3 X X X

4.1.1 Guided Ditching Experimental Facility

The experimental guided plate ditching campaign was conducted at CNR-INSEAN.

The test facility is capable of performing quasi-full scale conditions, reducing the chal-

lenges of physical parameter scaling. Six elastic cords initially accelerated the test

specimens, then the guide allowed a free impact between the specimen and the calm

water surface. Due to the large mass of the system under the impact, the velocity

reduction during the impacting phase of the test is less than 2 m/s for the 10◦ pitch

angle condition. Figure 4.2 shows the guide plate on the ditching experimental facility

before impact.

(a) Suspended guide ditching system (b) plate specimen

Figure 4.2: Experimental facility: (a) shows the CNR-INSEAN towing tank equipped
with a suspended guide from Iafrati et al. (2015), (b) shows an example
of the plate specimen before impact from Iafrati and Calcagni (2013).
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4.2 Rigid Flat-Plate Slamming

In this section, the constant speed impact of a rigid flat plate is investigated.

The investigation focuses on the evaluation of the hydrodynamic solver to capture

the complex physical phenomena of the fluid flow during the slamming event. The

fluid domain setup and discretization are discussed. Then the total force acting

on the plate, local pressure, and jet root propagation velocity are compared with

experimental and theoretical results presented in Iafrati et al. (2014) and Iafrati

(2016b).

The experimentally-tested plate considered under this validation phase is alu-

minium alloy AL2024-T defined by Young’s modulus E=73.1 GPa, mass density

ρ=2,780 kg/m3 and Poisson’s ratio ν=0.33. Test plates are 1 m long, 0.50 m wide

and 0.015 m thick. The aluminium plate was clamped to a thicker frame, leaving

an impacting area of 0.850 m by 0.350 m. The plate structural response of these

cases remains in the elastic regime, allowing for separate validation of the fluid and

structural solvers.

4.2.1 Fluid-Domain Discretization Convergence

As shown in Figure 4.3 (a), the domain spatial discretization is constant in a region

that extends from the leading edge of the plate up to the end of the domain. Use of this

region gives a more accurate resolution of the free-surface. The computational domain

has a length of three meters downstream and two meters upstream. The upstream

region contains a damping relaxation zone which starts approximately 0.72 m from

the leading edge of the plate and extends to the start of the domain. The damping

relaxation zone ensures a calm-water-free-surface constraint in front of the plate. This

constraint is used to avoid roughness effects in the free surface due to the wind that

is generated as the plate reaches its final impact velocity. The total width of the

numerical domain is two meters and the plate is modeled with a symmetry plane
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at y=0. This symmetric impact condition is implemented based on the symmetry

response of the plate based on local pressure and strains presented in Iafrati et al.

(2015) for 10◦ and 4◦ pitch angles.

A grid refinement study is conducted for the coarse, medium, and fine grids in

terms of force components acting on the plate and maximum local pressure. A sum-

mary of the grid resolutions is shown in Table 4.3.

(a) Profile view of CFD mesh (b) Body plan view of CFD mesh

Figure 4.3: Fluid domain discritization for coarse grid, where L=1 m (4 mm plate
resolution).

Table 4.3: CFD grid resolution
Grid Cells Plate Cells Resolution On Plate

Coarse 3,091,567 32,629 4 mm
Medium 5,990,979 57,084 3 mm

Fine 15,496,386 128,651 2 mm

Figure 4.4 shows a comparison of the x and z force components acting on the

plate for numerical simulations and experiments for Condition 1. As illustrated in

Figure 4.4, numerical grid convergence on force components acting on the plate is

achieved. There is excellent agreement between the experimental and numerical slope

and magnitude for the z component of the force. The magnitude and slope of the x

component of force are in agreement for all numerical grids, and experimental data
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are up to t=0.0042 s. Experimental x force data displays a rapid force fluctuation

from t=0.0042 to 0.0408 s, whereas the numerical simulations maintain a constant

negative force during this period. After this period, the experimental force maintains

almost a constant negative value until the jet leaves the plate, where a positive slope

on the force is observed. All numerical simulations exhibit a similar trend. The time

difference between the change in slope for numerical and experimental results is due

to the constant impact velocity constraint that is implemented for the numerical sim-

ulations. The absolute jet root propagation velocity is maintained in the simulations,

whereas in the experiment there was a small reduction during the impact phase of

approximately 2 m/s for this impact condition.
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Figure 4.4: Time history of force components in x (top) and z (bottom) for coarse
(C), medium (M), fine (F) grids and experiment (E) for Condition 1.

Figure 4.5 shows experimental and grid convergence on the total normal force

coefficient for Condition 1. An increase in the normal force is seen until the time

when jet leaves the plate, where a sudden drop in force is observed. A similar pattern

is observed during the experiment, as shown in Figure 4.5.
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Figure 4.5: Time history of total force coefficient acting normal to the plate for coarse,
medium, fine grids and experiment (CF − E) for Condition 1

Figure 4.6 shows the comparison of the z force component for all numerical grids

and experiments for Condition 2. Similar to Condition 1 as shown in Figure 4.6,

there is excellent agreement between all numerical grids and experimental data. In

contrast with Condition 1, however, the time when the peak force drop is almost

identical for all grids and experimental data. The experimental velocity reduction in

this case during the impact is small compared to Condition 1 (below 1 m/s), keeping

the jet root absolute propagation velocity almost constant.

Figure 4.7 compares the local pressure coefficient time histories between the exper-

imental pressure probes and the coarse, medium, and fine grids along the centerline

P4-P18 for Condition 1. Local pressure is nondimensionalized by 2p/ρ(U2 + V 2),

where p is the total pressure acting on the plate, ρ is the fluid density, U is the

horizontal plate velocity, and V is the plate vertical velocity. The reference time

used in Figure 4.7 corresponds to the time where the peak pressure rise occurs at

P4 (0.125 m). There is excellent agreement between the experimental and numerical
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Figure 4.6: Time history of force component in z for coarse (C), medium (M), fine
(F) grids and experiment (E) for Condition 2.

pressure coefficients. The time difference between the numerical values and experi-

mental observations is due to the deceleration of the plate during the impact phase.

However, the numerical method underpredicts the maximum peak pressure ob-

served near the trailing edge of the plate. The experimental value for the pressure

coefficient observed at 0.125 m is 1.8, whereas the fine grid estimated a value of 1.43.

This underprediction is due to insufficient grid resolution for the pressure integration

near the trailing edge. Further grid refinement is necessary to model accuratly the

high local pressure in this region.

Furthermore, Iafrati et al. (2015) reported a pressure coefficient standard devi-

ation of σp=0.35 for P4 when the pressure reaches its maximum value for this im-

pact condition. Considering this pressure coefficient deviation magnitude for P4 and

graphically representing the deviation region of the experimental data as shown in

Figure 4.8, the minimum expected data for P4 are closer to the numerical pressure

coefficient estimate value. Figure 4.8 shows a visualization of the adjustment of the
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experimental maximum pressure coefficient based on the reported standard deviation

σp. The numerically predicted maximum pressure coefficient is shown in Figure 4.8

as a function of the number of fluid cells (N). For P4 the fine grid maximum pressure

is slightly below of the standard deviation region, whereas in P16 both the medium

and fine grids are in this region. Further details on the effects of integration points

in capturing the maximum local pressure are discussed later in this section.

The experimental pressure probes detected a significant reduction in maximum

peak pressure between the probes located at 0.125 and 0.400 m and an almost constant

peak pressure for subsequent locations as shown in Figure 4.7. A similar pattern is

observed in the numerical pressure time history.

Figure 4.7: Time history of pressure coefficient cp recorded at 0.125, 0.400, 0.600 and
0.800 m along the centerline of the plate from the trailing edge for coarse
(C), medium (M), fine (F) and experiment (Cp-E) for Condition 1.

Figure 4.9 displays the local pressure coefficient time history for Condition 2. In

contrast with Condition 1, there are considerable differences between the experimental

and numerical results. The experimental pressure probes detected more substantial

and variant pressure coefficients under Condition 2 than under Condition 1. It is im-
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(a) Pressure coefficient deviation magnitude for P4 as a function of fluid
cells

(b) Pressure coefficient deviation magnitude for P16 as a function of fluid
cells

Figure 4.8: Maximum pressure coefficient (Cpmax) deviation magnitude for experi-
ment (E), coarse (C), medium (M) and fine (Fine) grids for P4 and P16.
The dash lines bound the pressure coefficient standard deviation region
(SDR). In the horizontal axis, N is the number of integration points.
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portant to recall that for pitch angles between 4◦ and 6◦, air entrapment was observed

during the experiment. As explained in Chapter III, for the fluid solution, we assume

incompressible flow of a two-phase viscous-fluid system. Therefore, high compress-

ibility effects related to entrapped air are not captured by the FSI. An increased fluid

grid resolution may be needed to solve the complex water-air interface accurately.

Also, air entrapment and other complex phenomena can introduce challenges during

experimental measurements.

Figure 4.9: Time history of pressure coefficient cp recorded at 0.125, 0.400, 0.600 and
0.800 m along the centerline of the plate from the trailing edge for coarse
(C), medium (M), fine (F) and experiment (Cp-E) for Condition 2.

Pressure coefficient time histories for Condition 3 are shown in Figure 4.10. The

peak pressure is captured by the FSI solver for P12, P16, and P18 when compared

to the experimental pressure probes. For this impact condition, only the medium

grid resolution is performed. The underprediction of P4 is due to insufficient grid

resolution to resolve the sharp peak local pressure. As explained in Section 3.2, the

VoF approach is capable of resolving these complex fluid flow fields, but it requires

sufficient grid resolution. In this study, the main focus is the hydroelastic response
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and the FSI of the plate during impact. Medium grid FSI results are consistent with

experimental data, so the FSI methodology is found to be suitable for these types of

high-speed impact problems. Excellent agreement is observed between the numerical

and experimental results. The pressure coefficients for these conditions are similar to

the values under Condition 1, where Cp is approximately 1.5. Similar to Condition 1,

it is expected that when increasing the resolution from the medium to the fine grid,

a significant increase in pressure coefficient will be observed for P4. Also, there is

a reduction in the delay of maximum peak pressures for Condition 2 between the

experimental and numerical results when compared to Condition 1. This reduction

in time delay is due to a decrease in resistance during the impact phase caused by a

reduction in horizontal speed.

Figure 4.10: Time history of pressure coefficient cp recorded at 0.125, 0.400, 0.600
and 0.800 m along the centerline of the plate from the trailing edge for
medium (M) and experiment (Cp-E) for Condition 3.

To understand better the considerable difference between the experimental and

numerical local pressure results for Condition 2, a comparison between the unsteady

three-dimensional planing pressure distribution presented in this work and the steady
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two-dimensional planing pressure distribution presented in Kramer et al. (2013b) and

Doctors (2015) is performed. Figure 4.11 shows the pressure coefficient per unit angle

(cp/θ) as presented in Doctors (2015) and the dimensionless distance of the maximum

pressure along the plate (s/Lw). Note that for the unsteady flat plate s/Lw is de-

termined based on the occurrence of the maximum pressure. More detailed between

the steady wetted length and unsteady maximum pressure location is discussed in

Chapter V. In Figure 4.11 the steady pressure coefficient per unit angle tends to

increase when reducing the angle, meaning that for lower pitch angle the pressure

distribution is reduced. The unsteady pressure coefficient per unit angle follows a

similar trend but with higher magnitudes due to the unsteadiness of the problem.

Therefore, it is expected that when the pitch angle of the plate is reduced, the local

pressure on the plate will be reduce as well. Numerical pressure coefficients follow

this predicted reduction behavior for Condition 2 when compared to Condition 1.

Further investigation is required to define of the differences in local peak pressure

between the numerical simulations and the experimental data.

Figure 4.11: Nonlinear two-dimensional and three-dimensional planing longitudional
pressure distribution
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To ease the understanding of the local maximum pressure convergence, the effect

of the number of integration points in the fluid domain is analyzed. Figure 4.12

shows the integration length for two instances in time, were for time t=0.0125 s the

integration length is smaller compared to time t=0.0625 s.

Table 4.4 summarize the number of fluid points used for the pressure integration

based on the CFD grid resolution. Figure 4.13 shows the longitudinal pressure profile

along the plate centerline for the two instances in time described in Table 4.4. When

the number of integration points increased, the grids tend to converge to a closer

value when t=0.0625 s.

Figure 4.12: Coarse grid longitudinal pressure integration length example for
t=0.0125 s (bottom) and t=0.0625 s (top).

Table 4.4: Integration points for grid resolution
Time [s] Integration Integration Integration Integration

Distance [m] Points Coarse Points Medium Points Fine
0.0125 0.1256 31 41 63
0.0625 0.6532 163 217 326

As previously mentioned, the focus of this chapter is to develop and validate a
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(a) Longitudinal pressure profile at t=0.0125 s (b) Longitudinal pressure profile at t=0.0625 s

Figure 4.13: Longitudinal pressure profile along the centerline of the plate at two
instances in time for coarse, medium and fine grids

numerical framework to capture the FSI in high forward speed water-entry problems.

Faltinsen (2005) showed that the measurements of maximum strains are minimally

scattered for a given impact velocity and plate, even when the maximum pressure

exhibit large variations. As explained in Faltinsen (2005), phenomena occurring on

a smaller time scale than the oscillation period of the lowest mode can be neglected

in the maximum local slamming-induced strains. Therefore, it is expected that even

local maximum pressure is not fully converged between numerical grids, this will not

influence the global hydroelastic response of the plate.

Figure 4.14 shows the time delay of the peak pressure for the coarse medium and

fine grids. The time delay is the time when the peak pressure arrives at each probe

location (Sp) with a reference time corresponding to the time when the peak pressure

reaches P4 (0.125m). Figure 4.14 also shows the error bars representing the test

uncertainty analysis in Iafrati et al. (2015) for the peak pressure propagation velocity.

Numerical grids display excellent agreement among them in the time required by the

peak pressure to travel along the plate. Furthermore, Figure 4.14 shows excellent

agreement between numerical grids and experimental data, but only halfway along

the plate. A significant difference in propagation velocity for 0.600 and 0.800 m
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locations is observed for both numerical and experimental values. As previously

explained, these differences are due to the absolute plate velocity reduction during

the impact phase in the experimental. A linear trend in the propagation velocity and

a higher value than that of the geometric intersection is observed for all grids and

experimental data. This is similar to the pilling up of water seen in steady planning.
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Figure 4.14: Time delays of centerline pressure probes for the coarse, medium and fine
grids for Condition 1. Error bars represent the time delay uncertainty of
the experimental propagation velocity value. The probe location relative
to the plate trailing edge is represented by Sp.

The time needed for the jet root to travel along the plate from the trailing edge

to the leading edge is 0.0891 s, 0.0925 s, 0.0927 s for the coarse, medium and fine

grids, respectively. The jet propagation velocity convergence is achieved between the

medium and fine grids and are in accordance with the estimated time based on the

self-similar solution presented in Iafrati et al. (2015) of about 0.1 s. A detailed study

of the jet root propagation velocity as a function of the aspect ratio and comparison

with the self-similar solution is discussed in Chapter V.

Figure 4.15 shows the time delay of the peak pressure for the coarse medium and
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Figure 4.15: Time delays of centerline pressure probes for the coarse, medium and fine
grids for Condition 2. Error bars represent the time delay uncertainty of
the experimental propagation velocity value. The probe location relative
to the plate trailing edge is represented by Sp.

fine grids for Condition 2. Overall Figure 4.15 shows excellent agreement between

numerical grids and experimental along the plate with small differences at 0.600 and

0.800 m locations. The excellent agreement between the experimental propagation

velocity and the numerical is due to a reduction in the deceleration of the plate test

specimen during impact. A similar linear trend in the propagation velocity and a

higher value than that of the geometric intersection is also observed for all grids and

experimental data in Condition 2.

4.2.2 Theoretical Two-Dimensional Solution for Ditching

To initially understand the ditching phenomenon, a two-dimensional potential flow

model was developed and presented by Iafrati (2016b). This theoretical self-similar

solution was used to provide an estimation of the suspended ditching guide structural

design loads. Furthermore, this theoretical solution provides information regarding
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the time and space required for the ditching phase in each test condition. Similar

studies were conducted by Judge et al. (2004) and Faltinsen and Semenov (2008),

focusing on the wedge (geometrically simple representation of a ship section) water

entry problem with horizontal speed. However, the model developed by Judge et al.

(2004) and Faltinsen and Semenov (2008) does not hold for the range of incident

impact angle and horizontal-to-vertical speed ratios performed in the experimental

campaign and FSI validation cases. This section compares experimental and numer-

ical findings with the theoretical solution provided in Iafrati (2016b). More detail

on the development of the theoretical model can be found in Iafrati and Korobkin

(2005).

The dimensionless maximum pressure coefficient predicted by the 2D similarity

solution of Iafrati and Calcagni (2013) is γψ = 1.26. Where γψ is defined as p/ρU2.

Figure 4.16 displays γψ = 0.6853 for the fine grid and γψ = 0.6884 for the experimental

data. The period of time shown in Figure 4.16 corresponds to the peak being located

at 0.6 m forward from the trailing edge along the center line of the plate.
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Figure 4.16: Dimensionless pressure distribution along the plate for coarse, medium
and fine grids for condition 1132.
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It is worth noticing that excellent agreement on the dimensionless plate pressure

distribution is achieved between the medium and fine grids, with less than 10% and

1% of error compared with the experimental data. This behavior highlights that

there might be three-dimensional effects due to the water escaping from the sides of

the plate. A detailed investigation of three-dimensional effects during the flat-plate

slamming is covered in Chapter V. For large pitch angles, the effects are relevant and

lead to an overprediction of the pressure along the plate of approximately 50% for

the 2D theoretical solution in this particular impact condition. A detailed analysis of

this behavior for Condition 1, is discussed in Chapter V. Future investigations should

conduct further analysis to confirm a similar trend for other impact conditions while

isolating any other possible effects that may contribute to this behavior.

Figure 4.17 shows the dimensionless pressure distribution with respect to the

maximum pressure at P18 on the vertical axis, and the dimensionless probe location

with respect to P18 (0.800 m) on the horizontal axes. As shown in Figure 4.17, there

is excellent agreement between numerical and experimental results on the pressure

distribution along the plate centerline at the time when the peak arrives at 0.800 m

from the trailing edge for Condition 1. Numerical and experimental observations

agree on the pressure ratio values with the theoretical solution near the trailing edge

of the plate. The pressure ratio values diverge from the theoretical solution as the

peak pressure moves along the plate, highlighting the role of three-dimensional effects.

For Condition 2, Figure 4.18 also shows an excellent agreement between numerical

and experimental results on the pressure distribution along the plate centerline at the

time when the peak arrives at 0.800 m from the trailing edge. For Condition 2, there

is an agreement on the pressure ratio values with the theoretical solution along the

plate centerline. This agreement on the pressure ratios confirms that for higher pitch

angles, three-dimensional effects are more significant and results diverge from the

theoretical solution.
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Figure 4.17: Pressures of probes along the plate centerline at the instant of peak
pressure located at 0.800 m from the trailing edge for Condition 1. The
horizontal and vertical axes are scaled by the location and pressure of
corresponding probe. The solid black line shows the theoretical solution.
Error bars represent the experimental dispersion during the test repeats.

Figure 4.18: Pressures of probes along the plate centerline at the instant of peak
pressure located at 0.800 m from the trailing edge for Condition 2. The
horizontal and vertical axes are scaled by the location and pressure of
corresponding probe. The solid black line shows the theoretical solution.
Error bars represent the experimental dispersion during the test repeats.
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Figure 4.19: Pressures of probes along the plate centerline at the instant of peak
pressure located at 0.800 m from the trailing edge for Condition 3. The
horizontal and vertical axes are scaled by the location and pressure of
corresponding probe. The solid black line shows the theoretical solution.
Error bars represent the experimental dispersion during the test repeats.

Lastly, the pressure distribution along the centerline of the plate when the peak

arrives at 0.800 m for Condition 3 is shown in Figure 4.19. The behavior of the

pressure ratios observed in Figure 4.19 is similar to Figure 4.17. The pressure ra-

tios are below the two-dimensional solution but slightly closer than for Condition 1.

Once more, three-dimensional effects reduce the pressure ratio estimate below the

theoretical solution for larger pitch angles.

The trend of the pressure ratios observed in Figures 4.17, 4.18 and 4.19 suggest

that for large pitch angles the three-dimensional effects become more relevant com-

pared to small pitch angles. Furthermore, an increase in the horizontal speed leads to

an increase in three-dimensional effects due to the water pile-up between the plate and

the undisturbed calm water surface. The increase in three-dimensional effects leads to

a reduction in the hydrodynamic loading and solutions diverge from two-dimensional

theoretical approaches. A detailed investigation with several plate widths to assess
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three-dimensional effects is discussed in Chapter V.

4.2.3 Structural-Domain Discretization Convergence

The structural domain is discretized using Abaqus SR4 shell elements. As ex-

plained in Chapter III, the modal decomposition method is used to model the struc-

ture. Figure 4.20 displays the final spatial discretization used for the hydroelastic

plate response. A symmetry plane condition is used on y=0. As shown in Figure 4.1

the edge of the plate is bolted with a double row of bolts to a thicker aluminum

frame, to ensure a clamped condition on the plate. To mimic this condition in the

FEA model, displacement and rotations in all directions were restricted at all outer

edges of the plate. Figure 4.20 shows the clamped region defined by a width of 75 mm.

Figure 4.20: Abaqus structure mesh with symmetry boundary condition on the neg-
ative Y direction. Mesh resolution of 5280 SR4 shell elements.

To ensure structural domain convergence, two approaches were employed: a modal

element frequency convergence and a mode participation factor determined based on

a modal energy response. A summary of the natural structure frequencies is provided

in Table 4.5. The lower frequencies are mostly converged for a mesh resolution of 1,280

elements. Higher frequencies exhibit a significant reduction until a mesh resolution
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of 5,280 elements is reached. The individual modal element convergence is shown

in Figure 4.21, in which the first ten modes reach a constant frequency value after

the FEM mesh reaches 5,280 shell elements. This mesh resolution is selected for the

hydroelastic simulations and modal energy response analysis.

Table 4.5: FEA frequncy analysis summary

Number of elements
Mode 20 80 320 1,280 5,280 21,120 84,480

1 959.56 745.17 721.99 716.33 714.92 714.60 714.52
2 969.79 873.96 853.76 848.92 847.70 847.42 847.35
3 1,227.30 1,120.70 1,096.90 1,091.10 1,089.70 1,089.30 1,089.30
4 1,722.00 1,504.00 1,458.20 1,447.20 1,444.40 1,443.80 1,443.60
5 2,594.90 2,035.50 1,935.60 1,912.20 1,906.40 1905.00 1904.60
6 4,051.20 2,729.00 2,525.80 2,479.80 2,468.50 2,465.70 2,465.00
7 5,693.90 3,604.30 3,227.00 3,144.30 3,124.30 3,119.30 3118.10
8 6,597.50 4,519.10 3,747.90 3,589.50 3,550.90 3,542.10 3539.90
9 7,961.10 4,611.10 3,868.70 3,716.10 3,679.00 3,670.50 3668.40
10 10,985.00 4,688.80 4,038.60 3,901.30 3,868.30 3,860.20 3858.10

The FEA discretization convergence is described by the Grid Convergence Index

(GCI) presented in ASME (2008). The GCI is calculated using the natural frequency

of the system for a certain mesh resolution. For this analysis, the last three FEA

mesh resolutions shown in Table 4.5 are used. Table 4.6 shows a summary of the GCI

calculations. As observed, the obtained GCI is less than one percent for the fine grid

and less than 10% for the coarse grid. Furthermore, the average observed order of

accuracy estimated using ASME (2008) procedure is pave=1.87 (almost a second-order

convergence). Verifying that each grid level yields results in the asymptotic range,

the convergence between two GCI values computed over the three mesh resolutions

is evaluated. All calculations indicate the results are in the asymptotic range.

The modal energy response of the plate slamming is determined by the modal

force generated from a rigid-plate impact. Figure 4.22 displays the modal force for

the first eight modes during a constant-velocity rigid plate impact. The rigid modal
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Figure 4.21: Finite element mesh modal convergence study.

Table 4.6: FEA mesh calculations of discretization error
N1, N2, N3 Mode 1 Mode 4 Mode 6 Mode 10

r21 = r32 2 2 2 2
φ1 714.52 1,443.60 2,465 3,858.10
φ2 714.60 1,443.8 2,465.7 3,860.20
φ3 714.92 1,444.4 2,468.5 3,868.30
p 1.99 1.58 2.00 1.94
φ21
ext 714.145 1,443.50 2,464.77 3,857.37

e21
a 0.0111% 0.0138% 0.0283% 0.0544%

e21
ext 0.0037% 0.0069% 0.0095% 0.0190%

GCI21
fine 0.0047% 0.0086% 0.0118% 0.0238%

GCI21
coarse 1.87% 2.59% 4.73% 9.18%
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force is obtained in the one-way coupled simulation for the first 25 plate modes. These

forces are combined with the transfer function of a damped single degree-of-freedom

system to determine the participation energy of each mode. The modal participation

is determined based on the contained modal energy, obtained after integration of the

amplitude response spectrum. The first ten modes are sufficient to capture 99.9933%

of the total system energy as shown in Table 4.7. Table 4.7 shows the energy as a

percentage of the total energy of all investigated mode shapes.
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Figure 4.22: Modal force for 15 mm plate: modes 1-8 (rigid impact)

A second method is employed to reinforce the finding by the modal energy partici-

pation factor. This method evaluates the maximum deflection and time of occurrence

of the maximum when varying the number of modes representing the plate. Table 4.10

shows the maximum displacement and time of occurrence at location S2 (325 mm

from the trailing edge along the centerline of the plate). Figure 4.23 is a graphical

representation of Table 4.10 showing that the maximum displacement is converged

when using 10 modes. The difference between 25 and 10 modes is less than 0.36%.

Furthermore, the time of occurrence of the maximum deflection is converged using
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Table 4.7: Modal response energy - rigid plate impact

Mode # % Total Response Energy Cumulative Energy
1 96.9980 96.9980
2 1.0948 98.0927
3 0.7501 98.8429
4 1.0498 99.8927
5 0.0325 99.9952
8 0.0284 99.9911
10 0.0018 99.9933
15 0.0002 99.9980
20 0.0002 99.9995
25 0.0004 100.0000

Table 4.8: Modal convergence in maximum deflection at location S2.

# Modes tmax [s] wmax [mm]
1 0.0161 0.4578
5 0.0162 0.5206
10 0.0162 0.5084
15 0.0162 0.5058
25 0.0162 0.5066

Figure 4.23: Modal Convergence in maximum displacement and time for 15 mm plate
rigid impact at location S2
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5 modes. These results confirm the findings obtained from the modal participation

factor method. For the impact conditions under investigation, 10 modes are sufficient

to represent the plate in all hydroelastic simulations accurately. Figure 4.24 displays

the first ten modes retained for the elastic plate impact simulation.

(a) 714.92 Hz (b) 847.70 Hz (c) 1,089.7 Hz

(d) 1,444.4 Hz (e) 1,906.4 Hz (f) 2,468.5 Hz

(g) 3,124.3 Hz (h) 3,550.9 Hz (i) 3,679.0 Hz (j) 3,868.3 Hz

Figure 4.24: Mode shapes of the clamped aluminium alloy plate: impacting area of
0.850 m by 0.350 m by 0.015 m.

4.3 Hydroelastic Flat-Plate Slamming

In this section, the high horizontal velocity flat-plate slamming hydroelastic re-

sponse is presented. First, the fluid-structure domain coupling and the benefits of

the mapping technique are explained. Then, the determination of the inertial under-

relaxation factor using the methodology discussed in Section 3.5.2 is shown. Lastly,

the numerical FSI longitudinal strain validation and effects of the horizontal velocity
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component are discussed.

4.3.1 Computational Domains Coupling

The fluid domain and structural domain coupling are performed using the ap-

proach discussed in Chapter III. Figure 4.25 shows the final fluid and structure

discretizations used in the hydroelastic simulations. In Figure 4.25 the fluid grid is

represented in the positive direction of y, and the structural grid was mirrored about

the symmetry plane (y=0) to facilitate visualization. Numerical grids follow the map-

ping process presented in Maman and Farhat (1995) and Farhat et al. (1998). This

approach provides different discretizations on the mutual interface. This flexibility

in discretization provides a significant reduction in elements needed to represent the

modal basis of the structural domain.

Figure 4.25: Fluid-structure plate grid matching. The fluid mesh is in yellow (top)
and the structural mesh in brown (bottom).

This approach offers a substantial advantage since low-frequency modes tend to

converge faster when increasing the structural mesh resolution. These low-frequency

modes usually dominate the structure response; therefore a coarse mesh can be used
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providing significant computational savings. On the other hand, the fluid domains re-

quired a larger mesh resolution to capture complex features in the fluid flow accurately

for example, the maximum pressure. Therefore, the FSI approach algorithm accu-

rately models the complex water entry problem, satisfying the minimum resolution

required in each domain and maximizing the computational resources. Figure 4.26

displays an example of the fluid-structure mutual interface mapping for the first four

mode shapes. As in Figure 4.25, the structural grid in Figure 4.26 is mirrored about

the symmetry plane to visualize the mutual mapping interface.

(a) Domain Mapping Mode 1 (b) Domain Mapping Mode 2

(c) Domain Mapping Mode 3 (d) Domain Mapping Mode 4

Figure 4.26: Mode shapes mapping between fluid and structure domains
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4.3.2 Inertial Under-Relaxation Factor

Due to the segregated nature of the FSI equations, as explained in Piro (2013),

an inertial under-relaxation factor is necessary to ensure numerical method stability

and convergence. The FSI-integrated method follows a similar approach as presented

in Young et al. (2012) to avoid instability due to the added-mass from the exchange

between numerical domains. The inertial under-relaxation factor is determined using

acoustic elements as described in Chapter III. The water is simulated through an

acoustic medium in Abaqus. The medium is modeled with a non-reflecting acoustic

impedance with a cylindrical shape of radius r=1.7 m. This radius represents a

ratio between the medium and the plate width of approximately 10. The minimum

recommended ratio value when using this type of boundary condition (BC) is three.

A tie condition between the plate bottom and the acoustic surface is implemented to

account for the fluid-structure coupling. Figure 4.27 shows the structural assembly

and implemented BC’s.

(a) Abaqus acoustic model assembly (b) Plate/acoustic medium FEA mesh

Figure 4.27: Acoustic medium and plate model for wetted frequency estimations

The acoustic medium is modeled using quadratic tetrahedral finite elements. The

medium has a mesh resolution of 206,566 elements. Combining this mesh resolution

and implementing the surface-to-surface tie condition, where the acoustic medium

is the master surface, ensure the convergence in the wetted structural frequencies.
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Table 4.9 is a summary of the under-relaxation factors estimated for this simulation.

The minimum required factor for stability is γe ≥ (γ− 1)/2 . As a rule of thumb, the

determined γemin
is increased to the nearest upper half as shown in the last column of

Table 4.9 (γe). The determined values of γe’s are used as the inertia under-relaxation

factor per mode. The user can define the inertial under-relaxation γe using several

techniques. A typical approach is to assume that the added mass equals the structural

mass. In this study, the use of acoustic elements provided an intelligent initial guess

of the added-mass effects and avoided the user-iteration guess process.

Table 4.9: Plate Slamming Stability Factor

Mode Vacuo [Hz] Wetted [Hz] γ γemin
γe

1 714.92 347.41 3.23 1.11 1.50
2 847.70 461.81 2.36 0.68 1.00
3 1,089.70 637.12 1.92 0.46 1.00
4 1,444.40 933.35 1.39 0.19 0.75
5 1,9006.40 1,128.80 1.85 0.42 0.75
6 2,468.50 1,530.40 1.60 0.30 0.50
7 3,124.30 2,174.50 1.06 0.03 0.50
8 3,550.90 2,792.80 0.61 0.00 0.25
9 3,679.00 2,686.00 0.87 0.00 0.25
10 3,868.30 2,960.90 0.70 0.00 0.25

4.3.3 FSI Iteration Convergence

A similar convergence analysis performed in Section 4.2.3 for the maximum deflec-

tion at a point is employed for the elastic impact. In this case, the method evaluated

the maximum deflection and time of occurrence when varying the number of FSI

iterations for elastic simulations. Table 4.10 shown the maximum displacement and

time of occurrence at location S2. Figure 4.29 is a graphical representation of Ta-

ble 4.10 showing that the maximum displacement is converged when performing 6

FSI iterations. The number of iterations required for a converged solution agrees

with the finding of the free-vibration test performs in Section 3.5.3, were 6 iterations
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(a) 347.41 Hz (b) 461.81 Hz

(c) 637.12 Hz (d) 933.35 Hz

(e) 1,128.80 Hz (f) 1,530.40 Hz

(g) 2,174.50 Hz (h) 2,792.80 Hz

(i) 2,686.00 Hz (j) 2,960.90 Hz

Figure 4.28: Wetted mode shapes of the clamped aluminium alloy plate iterating with
acoustic medium.
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were sufficient. For all further flat-plate hydroelastic analysis, 6 FSI iterations are

performed to ensure solution convergence.

Table 4.10: FSI iteration convergence in maximum deflection at location S2.

# Iterations tmax [s] wmax [mm]
4 0.033164 0.5050
6 0.033195 0.5109
10 0.033192 0.5116

Figure 4.29: FSI iteration convergence in maximum displacement and time for 15 mm
plate elastic impact at location S2

4.3.4 Plate Slamming Elastic Response

The hydroelastic validation is performed for the quantity of strain in the axial

direction. As mentioned in the Section 4.2.3, 10 modes are retained to represent the

structure. The damping ratio used for all FSI simulations is one percent (ζ=0.01).

Figure 4.30 compares the experimental and numerical strains for four discrete points

located at the centerline and outer edge of the plate for Condition 1. The overall

elastic response is captured by the tightly-coupled FSI method. The centerline strain
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gauges S2, and S5 predicted higher deformations compared to edge gauges S3 and

S6 for both numerical and experimental results. The time delay observed on the

experimental strains is due to the reduction in the absolute propagation velocity

during the impact phase as explained in Section 4.2.1. The underprediction and

high frequency of oscillation are due to a fully clamped edge BC assumed in the

structural model. This result indicates that the physical BCs are in between pinned

and clamped conditions. The experimental set-up can be more accurately modeled

by tuning the springs and modifying their constants to mimic a condition between

pinned and clamped.

Figure 4.30: Time history of the strains in the longitudinal direction for (E) experiem-
ntal data and (M) medium CFD grid for Condition 1.

To analyze the role of edge BC, the assumption that the physical BC’s are in

between pinned and clamped, a FSI simulation with a fully pinned BC is performed.
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Figure 4.31 shows the experimental strain gage data bounded by the pinned and

clamped BC for Condition 1. These results explain the high-frequency oscillation

and underprediction of the strain when using a fully clamped condition. Due to

limitations in experimental plate frequency data, further investigation is needed in

this regard since strains are highly sensitive to the physical BC.

Figure 4.31: Time history of the strains in the longitudinal direction for (E) experiem-
ntal data, (C) medium clamped CFD grid and (P) medium pinned CFD
grid for Condition 1.

Figure 4.32 shows numerical strain comparison in the longitudinal direction for

Condition 2 with experimental data presented in Iafrati (2015). Similar results to

those obtained for Condition 1 are observed. The FSI method captures the global

hydroelasatic response of the plate with a slight underprediction. The numerical
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strain exhibits a high-frequency oscillation due to the fully-clamped condition or high

mode and low modal viscous damping (ζ = 0.01). As for Condition 1, Condition 2

displays an approximately uniform response in the strains along gauges in a longitu-

dinal direction of the plate. Centerline strain gauges S2, and S5 detected a reduction

in the strain magnitude for both experimental and numerical results. The observed

reduction is a consequence of the decrease of 10 m/s in forward speed. The forward

speed reduction leads to a reduction in longitudinal strain along the centerline of ap-

proximately 33%. These results highlight the effects of the forward speed component

in water entry problems and their importance in the global structure response.

Figure 4.32: Time history of the strains in the longitudinal direction for (E) experi-
mental data and (M) medium CFD grid for Condition 2

Figure 4.33 shows the force component in the z-direction acting on the plate

for all impact conditions. The horizontal axis represents the submerged length of

the plate, making possible a direct comparison between the three impact conditions.

Condition 1 exhibits the highest z force component acting on the plate. A noticeable

reduction is observed for Condition 3 when compared to Condition 1. Therefore,
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reducing the horizontal speed leads to a reduction in the total force acting on the

structure. For these two impact conditions, a reduction in the forward speed of 25%

leads to a reduction in force of approximately 44% in the maximum force. Now

comparing Condition 1 and 2 where all impact variables are constant, and the pitch

angle is reduced 4◦, a reduction in the z force component is observed. The reduction in

the maximum force is approximately 35% between Condition 1 and 2. As expected,

lowering the pitch angle reduces resistance during the impact phase, reducing the

total force exerted on the plate.

Figure 4.33: Hydroelastic impact time history of force components in the z direction
acting on the plate as a function of the submerged length for Condition 1,
2 and 3.

4.3.5 Summary

In this chapter, the successful validation of the tightly coupled FSI numerical

method is performed. The FSI method was compared to the three-dimensional flat

plate impact with high-forward speed experiments performed in Iafrati et al. (2015)

and Iafrati (2016b). The comparison is performed for the quantities of force com-
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ponents acting on the plate, local peak pressure, jet root propagation velocity, and

strain in the axial direction of the plate. The fluid and structure domain convergence

is performed to ensure an accurate representation of the complex water entry problem.

The numerical results show an excellent agreement with the experimental data for the

force components, local peak pressure, and peak pressure propagation velocity. The

numerical strains captured the overall hydroelastic response, but tended to underpre-

dict the experimental value slightly. This reduction is due to the fully-clamped edge

boundary condition used to model the structure. The physical boundary condition

are expected to be between a pinned and clamped condition.

Furthermore, we performed a detailed investigation of the effects of horizontal

velocity components and pitch angle. The effects of horizontal velocity are significant

since they lead to an increase in the total hydrodynamic loading with an increase

in horizontal speed. Furthermore, the numerical investigation reveals that when re-

ducing the pitch angle, the three-dimensional effects are reduced, and the results are

closer to the theoretical solutions. For impact conditions where the pitch angle is

increased, three-dimensional effects become dominant, and the theoretical solution

significantly over-predicts the hydrodynamic loading.

Finally, application of the FSI numerical tool is shown to be suitable for water-

entry problems with large forward speeds such as high-speed planing craft and aircraft

ditching. The robust numerical framework is presented, and the approach accuracy

is compared to experimental and theoretical approaches. The results show excellent

agreement between the flat-plate experimental data and the numerical framework

capturing challenging phenomena usually not consider due to their complexity in

the theoretical solutions. Also, the detailed convergence studies performed for the

fluid and structural domains served as a baseline and allow a user to set up new

problems. In Chapter VI the baseline mesh resolutions determined here are scaled to

obtain the final grid discretizations for the stiffened-panel slamming problem. Further
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convergence studies are described in Chapter VI that confirm the accuracy of these

resolutions, providing baselines for future numerical simulations.
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CHAPTER V

Finite-Span Effects on Flat-Plate Slamming

As discussed in Chapter IV, during slamming high local pressures are developed,

and their distribution changes over time. For the design of planing structures (i.e.,

high-speed vessels), the pressure magnitude, evolution and distribution of these pres-

sures are important and must be considered during the process. For this reason, in this

chapter we examine the maximum pressure distribution and evolution as functions of

time and aspect ratio (B/L). The numerical results for the full flow field are presented

and compared to experimental campaigns in Smiley (1951) and Iafrati (2016b), where

discrete sample points were reported. The present investigation provides insight into

the fundamental physics of three-dimensional high-speed water entry problems, which

can be included in reduce order models. First, the numerical transverse pressure dis-

tribution is compared to experimental data in Smiley (1951) and Iafrati (2016b) for

Condition 1 presented in Chapter IV. Then, the effects of the aspect ratio on the

water pile-up development during the slamming is discussed. Lastly, the longitudinal

pressure distribution is compared to experimental data in Smiley (1951) and Iafrati

(2016b). Finally, a detailed discussion of the three-dimensional effects is presented.
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5.1 Edge Effects on Transverse Pressure Distribution

The transverse pressure distribution of the unsteady slamming problem is not well

understood, and its effect on the problem hydrodynamics are missing in analytical

models. Some analytical solutions describe the transverse pressure distribution, but

have not yet been fully validated with high-fidelity experimental data. The Smiley

(1951) and Iafrati (2016b) experimental campaigns reported discrete sample points

along the transverse plate axis to provide some insight as to the pressure distribution

on a plate. Some discrepancies between the experiments are observed, specifically the

shape of the transverse distribution is different in the two sources. Therefore, this

numerical investigation provides further information about the problem fundamen-

tal physics and transverse pressure distribution through the full flow-field numerical

results.

Figure 5.1 shows the transverse pressure distribution for a flat-plate slamming in

6◦ and 15◦ pitch angle presented in Smiley (1951). As observed in Figure 5.1, the

transverse pressure distribution follows a concave shape which is more noticeable when

lowering the pitch angle. The experimental maximum pressure coefficient on the flat-

plate model for various trims and wetted lengths is shown in Figure 5.2. The pressure

coefficient tends to reduce when the pitch angle is reduced following the numerical

results discussed in Chapter IV, Section 4.2.1. An average pressure coefficient of 0.9

is observed for similar impact conditions simulated in this investigation.

Figures 5.3 to 5.4, display the transverse pressure distribution for Condition 1

(defined in Table 4.1) at different instances in time. In Figure 5.1, the maximum

pressure coefficient distibution as a function of the plate width for the 10◦ numerical

flat-plate simulations, Iafrati (2016b) 10◦ flat-plate ditching experiments and Smiley

(1951) average pressure coefficient (0.90) in similar impact conditions. The transverse

slice of the pressure is made non-dimensional with respect to the horizontal velocity

of the geometric intersection defined as CG
p = 2p/(ρ(uT + uaG)2, where ρ is the fluid
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(a)

(b)

Figure 5.1: Smiley (1951) transverse pressure distribution for 6◦ (a) and 15◦ (b) pitch
angle.
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(a)

(b)

Figure 5.2: Smiley (1951) experimental maximum pressure coefficient on the flat-
plate model for various trims and wetted lengths.
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density, and p is the total pressure acting on the plate, uT is the horizontal velocity,

uaG is horizontal velocity contribution of the vertical velocity component due to the

pitch angle. The horizontal velocity contribution of the vertical velocity component

is calculated as uaG = V/tan(θ), where V is the vertical velocity of the plate and

θ is the pitch angle. The figures also show a plan view of the maximum pressure

distribution. Table 5.1 shows a summary of the instances in time where the data are

show in Figures 5.3 and 5.4.

Table 5.1: Time of occurrence of maximum pressure at probe location for Condition 1

Probe row t [s]
r1 0.0125
r2 0.0225
r3 0.0325
r4 0.0550
r5 0.0750

The transverse pressure distribution follows the distribution observed by Smiley

(1951) where for small wetted-length-beam ratios the trailing edge of the model has

considerable influence in the water pile-up in front of the plate. In contrast, for

large wetted-length-beam ratios, the trailing edge of the plate is below the water

surface, and its effects are significantly reduced on the flow pattern near the front

of the plate. Therefore the water pile-up becomes almost independent of the draft

as described in Smiley (1951). Furthermore, the transverse pressure distribution

obtained by the numerical simulations for pitch angles of 10◦ are consistent with

the pressure distribution obtained by applying the 2D + t theory on the pressure

distribution developing during the flat plate slamming as described by Iafrati and

Korobkin (2008). As the plate penetrates the free surface (large instantaneous wetted-

length-beam ratios), the maximum transverse pressure moves inward as shown in

Iafrati and Korobkin (2008). The average pressure coefficient observed in Smiley

(1951) is represented by the red dash line in Figures 5.3 to 5.4. There is excellent
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Figure 5.3: Pressure coefficient distributions when the maximum pressure reaches the
centerline probes x/L= 0.125, 0.250, and 0.400 (from top to bottom)
under Condition 1.
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agreement between the experimental pressure coefficient data presented by Smiley

(1951) and the numerical pressure coefficients. The results show that for larger pitch

angles the pressure coefficients are about 0.9.
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Figure 5.4: Pressure coefficient distributions when the maximum pressure reaches the
centerline probes x/L= 0.600 and 0.800 (from top to bottom) under Con-
dition 1

5.2 Three-Dimensional Slamming Effects

This section provides a detailed analysis of the three-dimensional effects during the

slamming event and its impact on the hydrodynamic loading and structure response.

First, the maximum pressure extraction and curved parabolic fitting used to describe

the peak pressure are discussed. Then the method is validated by comparing the
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unsteady position of maximum pressure with that of the steady water rise experiments

performed by Savitsky and Neidinger (1954). Initial investigation of the finite span

effects and maximum pressure curvature during slamming of a flat-plate was presented

in Mesa and Maki (2018a). We discuss a detailed analysis of the pressure distribution

and propagation velocity for plates of different widths during the slamming event.

Lastly, the approach is used to compare and evaluate two-dimensional self-similar

mathematical models with three-dimensional CFD results.

5.3 Numerical Condition and Peak Pressure Extraction

In Chapter IV it was mentioned that the majority of the water entry models

focus on vertical speed and neglect the effect of horizontal speed. Furthermore, the

mathematical models does not account for the three-dimensional effects of the fluid

flow. The solution is therefore simplified in a two-dimensional model due to the

challenges and complexity in considering the three-dimensional components. This

simplification leads to an overprediction of the hydrodynamic loading. In contrast,

the application of the FSI algorithm can be performed to quantify and provide a more

detailed and accurate understanding of the three-dimensional effects in water entry

hydrodynamics. CFD combined with the VoF method solves the jet root curvature

and defines the complex free surface around the plate edges. Furthermore, in contrast

to experimental data, the numerical solution provides complete flow-field information

during the simulation time.

To verify the FSI method, rigid tests with different plate widths are performed

to analyze three-dimensional effects. During the numerical simulations, the length of

the plates is L=1 m. The four plate geometries considered for the three-dimensional

effect investigation are 0.125 m, 0.25 m, 0.5 m and 1.0 m plate widths, denoted by

the beam-to-length ratio B/L 0.125, 0.25, 0.5 and 1.0 respectively. Figure 5.5 shows

a plan view of the geometry for the four plates. The pressure field acting on the
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plate for six instances in time are analyzed, corresponding to the maximum peak

pressure arrival at 0.125, 0.250, 0.400, 0.600 and 0.800 m from the trailing edge, and

the maximum pressure arrival at the leading edge. Figure 5.6 shows the peak pressure

distribution along the plate approximately when the jet root reach P16 (0.600 m from

the trailing edge). All four plates impact with vertical velocity V=1.5 m/s, horizontal

velocity U=40 m/s and a pitch angle of 10◦.

Figure 5.5: Top view of half plates with different widths used for 3D effects investiga-
tion. Symmetry plane condition is implemented at the centerline of the
plates.

One of the benefits of the numerical approach is the full control of the impact

condition which has four advantages over the experimental system. First, this control

ensures the same impact condition and allows a direct interpretation of the three-
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dimensional effects. Furthermore, full control of the impact condition isolates any

other possible effects that are not desired during the investigation and eliminates ex-

perimental data uncertainty. Third, the four plate models are easily implemented in

the numerical FSI tool. Fourth, performing tests varying the plate width experimen-

tally requires a modification of the guide and the plate frame setup for each plate.

Therefore, the numerical tool provides the flexibility of modeling any geometry and

complementing mathematical and experimental results, including detailed features

not considered previously.

(a) (b)

(c) (d)

Figure 5.6: Example of peak pressure curvature at an instance in time during the
plate impact for the fine grid (a) B/L=1, (b) B/L=0.5, (C) B/L=0.25
and (D) B/L=0.125.
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5.3.1 Maximum Pressure Distribution Model

As mentioned in Section 4.2.1 to capture the local maximum pressure, high reso-

lution is required, especially near the trailing edge. Figure 5.7 displays a transverse

view of the dimensionless water surface elevation η/L, where η is the water surface el-

evation and L is the plate length, located at the plate trailing edge for all plates. The

horizontal axis is the dimensionless transverse coordinate defined as ξ = y/B. Here,

the dimensionless water surface elevation is higher for the larger beam-to-length ratio.

Furthermore, the water surface is almost completely vertical for large widths, but is

curved for smaller plate widths. Since the goal of this investigation is to provide de-

tails of the jet root, the fine grid mesh resolution is implemented for all plates widths

in this investigation. This fine grid mesh resolution permits to capture the maximum

pressure distribution and water pile-up of the water entry problem accurately as it is

discussed in Chapter IV, Section 4.2.1.
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Figure 5.7: Dimensionless transverse water surface elevation as a function of the di-
mensionless transverse coordinate at the time t=0.0625 s for all plate
widths.

To provide insight into the pressure distribution and jet root development as
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Figure 5.8: Example of maximum pressure extraction and curvature fitting

functions of time and aspect ratio, we implemented a mathematical model to describe

the location of the jet root and the peak pressure distribution. The maximum pressure

is extracted from the full-field numerical results, and then a second-degree polynomial

os fit to the data. There are two methods used to determine the maximum pressure

curve fitting coefficients, the least-square method, and the direct solution method. In

this analysis, the maximum pressure is extracted and interpolated onto a finer mesh

resolution for analysis. The mesh interpolation is performed to obtain a maximum

pressure resolution of 1 mm and increase the number of data points for the fitting

method. A parabolic equation is fit, using the least-squares method on the data

points to obtain the equation coefficients. The least-squares method is compared to

the direct method which forces the fitted curve to satisfy the edge data points to

obtain the equation coefficients. The formulation of the problem follows a similar

analysis performed by Savitsky and Neidinger (1954) who studied steady planning,
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but instead of using the wetted length of the plate, the maximum peak pressure

location on centerline is used. Figure 5.8 defines the essential parameters for the

analysis. Li denotes the distance from the trailing edge of the plate to the geometric

intersection between the undisturbed waterplane and the plate. Lp is the x coordinate

of the intersection point of the line of the peak pressure with the outer edge of the

plate, and d(y) defines the length between the maximum peak pressure intersection

with the outer edge of the plate with the maximum peak pressure at the centerline

of the plate. Figure 5.8 (a) shows the fine grid pressure field (top) and the unsteady

geometric intersection between free-surface and plate (bottom) for 0.5 m plate width

at t=0.075s. Figure 5.8 (b) shows that the fine grid maximum pressure extraction

for 0.5 m plate width is denotated by FF-Peak pressure at the same instance in time.

The plate width is used to dimensionalize the transverse and the horizontal axes. λi

is the distance from the trailing edge of the plate to the geometric intersection and

λp is the distance from the trailing edge to the maximum peak pressure edge point.

δ(ξ) is the dimensionless distance d.

The maximum pressure location is defined by:

xp(y) = Lp + d(y) (5.1)

d(y) = a0 + a2y
2 (5.2)

λi =
Li
B

(5.3)

λp =
Lp
B

(5.4)

ξ =
y

B
(5.5)

δ =
d(y)

B
(5.6)

Substituting the dimensionless variables defined in Equations 5.3-5.6, we can express
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the parabolic equation for the maximum pressure as:

δ(ξ) = α0 + α2ξ
2 (5.7)

Where the dimensionless equation coefficients are defined as:

α0 =
a0

B
(5.8)

α2 = a2B (5.9)

The second method to determine α0 and α2 uses the conditions:

∂d

∂y
= 0 at y = 0 (5.10)

d(y =
B

2
) = 0 (5.11)

Taking derivatives of Equation 5.2 we can get directly solve for α0 and α2:

∂d

∂y
= 2a2y,

∂2d

∂y2
= 2a2, therefore a2<0 (5.12)

Figure 5.9 shows the maximum pressure data and curve fits for B/L = 0.5 at the

instance in time t=0.095 s using both methods. In Figure 5.9, the least-squares fitting

method fits the data better overall, whereas the direct approach fits the data better

at the edge points, but may miss the overall trend of scattering data. Therefore, the

least-squares method is used to report the final peak pressure curvature results.

5.3.2 Unsteady Water Rise

The steady water rise in a flat plate was studied experimentally by Savitsky and

Neidinger (1954), where the experimental results were presented in terms of the di-
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Figure 5.9: Fitting strategies for maximum peak pressure coefficients. The maximum
peak pressure interpolation is represented by the blue points, the green
curve is the least-square fitting and the red curve is the direct solution.

mensionless wetted length and the immersed length. The wave rise for a flat planning

plate from their work is shown in Figure 5.10 (b), where a scatter of data points

appears on the experimental wave rise data. Figure 5.10 (a) compares the immer-

sion length and the maximum pressure location at the plate center. Note that the

water rise location (λ) of Savitsky and Neidinger (1954) is for a steady planing con-

dition. For the numerical simulations the water rise is exchange for the maximum

pressure location at the plate center (λp + δ(0)) under unsteady planing conditions.

The experimental results collapse in a curve defined by:

λ =


1.6λi − 0.30λ2

i , for 0 < λi < 1

λi + 0.30, for 1 < λi < 4

(5.13)

Figure 5.10 shows that the unsteady maximum pressure fitted model are consistent

with the experimental observations of the steady water pile-up performed by Savitsky

and Neidinger (1954). In Figure 5.10, all of the maximum peak pressure of all plate
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Figure 5.10: Numerical fitted unsteady peak pressure curvature analysis compared to
steady experimental water rise fitting for flat-plate arrangments.

widths are in agreement with the experimental water rise defined by a curve with

the form of Equation 5.13. It is worth noticing that the numerical results display a

consistent trend among the plate widths.

Figure 5.11 shows the water surface and pile-up developed during the slamming

event for all plate widths at two instances in time. For larger plate widths, the wetted

surface develops faster. As observed in Figure 5.11, for t=0.0025 s the water escaping

from the sides of the plate is more significant for lower beam-to-length ratios. For

t=0.055 s, the plates are fully wetted for higher beam-to-length ratios, as opposed to

lower beam-to-length ratios. Observations indicate that for smaller plate widths, the

water pile-up can escape easily to the sides, reducing the jet root propagation velocity.

More analysis on the jet root propagation velocity is presented in Section 5.4.1.

5.3.3 Jet Root Distribution

Figure 5.12 displays the results of the coefficients calculated by least-squares

method for the unsteady impact condition. Here, the dimensionless coefficient α0

is about 0.075 for all plates. As mentioned previously, six time instances were se-
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(a) B/L=1, t=0.0225 s (b) B/L=1, t=0.055 s

(c) B/L=0.5, t=0.0225 s (d) B/L=0.5, t=0.055 s

(e) B/L=0.25, t=0.0225 s (f) B/L=0.25, t=0.055 s

(g) B/L=0.125, t=0.0225 s (h) B/L=0.125, t=0.055 s

Figure 5.11: Front view of the water pile-up and free-surface at two instances in time
during slamming for all plate widths.
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lected for the analysis, where the first two instances were at the beginning of the

impact (this corresponds to small lambdai). At this point, the jet root has not fully

developed, so this value is different from 0.075. Furthermore, Figure 5.12 shows that

for a larger beam over length ratio (B/L), the value of the dimensionless coefficient

α0 converges faster as a function of λi.
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Figure 5.12: Analytical peak pressure curvature analysis for the four flat-plate struc-
tural arrangements. The vertical axis represents the dimensionless geo-
metric intersection for the unsteady motion. The horizontal axes are the
dimensionless coefficients as defined in Equations 5.9 and 5.9, respec-
tively.

The curvature of the maximum pressure distribution represented by the dimen-

sionless coefficient α2 is shown in Figure 5.12. For α2, curvature increases with large

λi for all plates. The curvature increases until the last instance in time, approximately

when the jet root is leaving the plate. The maximum absolute value of α2 decreases

when increasing the plate beam. This reduction in α2 shown in Figure 5.12, confirms

that when the finite span of the plate is increased, the spray-root line becomes more

linear, as assumed in two-dimensional approximations.
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5.4 Three-Dimensional Effects

This section focuses on the aspect ratio effects and their implication in the max-

imum pressure propagation velocity along the plate. Then, the three-dimensional

effects in the longitudinal pressure distribution are discussed. A comparison between

the three-dimensional and two-dimensional solutions is also performed to provide in-

sights into possible considerations to be incorporated in the development of theoretical

solutions.

5.4.1 Jet Root Propagation Velocity

A detailed analysis of the jet root propagation velocity and local pressure is per-

formed to provide a better understanding of the three-dimensional effects in the prob-

lem hydrodynamics. Figure 5.13 shows the time needed by the maximum pressure to

arrive at each probe location along the centerline with respect to the first probe (P4)

for all plates. All results follow a linear trend similar to the geometric intersection

between the plate and the undisturbed water surface, but the slope of the line de-

creases as the width of the plate is increased. As the width of the plate increases, the

time required for the maximum pressure to reach the location of the virtual pressure

probes is reduced. For the plate with beam-to-length ratio B/L = 0.125, the jet root

propagation velocity is almost the geometry intersection.

The two-dimensional numerical solution is also shown in Figure 5.13, and follows

the linear trend with the minimum slope value of all the simulations. These results

confirm that when the width of the plate increases, the three-dimensional effects

decrease and the propagation velocity of the jet root is faster. These findings suggest

that when the plate ratio B/L increases, the problem becomes more two-dimensional

and the effects of water escaping from the sides of the plate are reduced. Therefore,

the pile-up of water that is developed during water entry problems propagates faster

for larger plate widths and travels closer to the geometric intersection when the plate
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width is reduced. Furthermore, the time delay of the maximum pressure with respect

to P4 increases when the jet root moves along the plate, confirming the results from α2

that for a shorter plate width, more time is required for the jet root to fully develop.

Figure 5.13: Three-dimensional effects in jet root time delays along the centerline
pressure probes.

5.4.2 3D Effects in Pressure Distribution

Figure 5.14 shows the time history of pressure coefficients for all plate widths,

where the pressure coefficients exhibit a delay between the different plate widths.

This behavior is expected since the propagation velocity is faster for a larger plate

width as discussed in Section 5.4.1. Also, the maximum pressure coefficient is obtained

for the two-dimensional numerical simulation as expected. The jet root propagation

velocity used to generate Figure 5.13 can be observed more clearly in Figure 5.14.

The numerical solution register a constant cp of approximately 2.4 at P12 and P18 for

the two-dimensional solution as shown in Figure 5.14. The two-dimensional pressure

propagates faster along the plate compared to the three-dimensional simulations.

The difference in time of the maximum peak pressure at probe P12 compared to P18
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confirms that the velocity decreases with increasing three-dimensional effects as the

jet moves along the plate. It is interesting to see that the three-dimensional effects

not only affect the jet propagation velocity, but also reduce the peak pressure when

reducing the plate width.

Figure 5.14: Time history of pressure coefficients at P12 and P18 for all plate widths.

Figure 5.15 shows the pressure coefficient CG
p and the free surface at t=0.035 s

for all plate widths. As shown in Figure 5.15, for larger beam-to-length ratios, the

pressure coefficient CG
p is larger. One of the most interesting findings is the pres-

sure transverse profile shown in Figure 5.15. For larger beam-to-length ratios the

transverse pressure follows a similar trend to those shown in Figure 6(a,b) of Smiley

(1951).

Figure 5.16 shows the pressure coefficient CG
p and the free surface at t = 0.0625 s

for each plate widths. The transverse pressure distribution evolves and moves inward

in a convex shape as the plate penetrates the free surface. This pressure distribution

evolution is consistent with the predicted behavior described by Iafrati and Korobkin
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(a) B/L=1 (b) B/L=0.5

(c) B/L=0.25 (d) B/L=0.125

Figure 5.15: Transverse pressure coefficient CG
p and free surface elevation for all plate

widths at t=0.035 s after impact.
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(2004). A more detailed analysis of the transverse pressure distribution is presented

in Section 5.1.

(a) B/L=1 (b) B/L=0.5

(c) B/L=0.25 (d) B/L=0.125

Figure 5.16: Transverse pressure coefficient Cp − G and free surface elevation for all
plate widths at t=0.0625 s after impact.

The two-dimensional solution developed by Iafrati (2016b) (referred to as analyti-

cal), and the numerical pressure distribution for each width are shown in Figure 5.17.

In this case, when the beam of the plate increases, the pressure distribution along the

longitudinal direction clearly becomes closer to the two-dimensional solution. The

dimensionless peak pressure coefficient ψ (ψ = p/ρU2 as defined in Chapter IV) for

the plate with beam-to-length ratio B/L = 0.5 is in excellent agreement with the

experimental value. When the beam-to-length ratio is increased from B/L = 0.5 m

to B/L = 1 m, the dimensionless peak pressure coefficient ψ increases from 0.6848
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to 0.7789. The two-dimensional analytical solution estimates a ψmax value of 1.261.

Therefore, the peak pressure coefficient values obtained from B/L = 0.5 and B/L = 1

represent an underprediction of 45.7% and 38.2%, respectively, when compared to the

two-dimensional solution. The two-dimensional numerical solution displays an excel-

lent agreement with the self-similar solution derived in Iafrati (2016b) as shown in

Figure 5.17. The maximum pressure coefficient obtained from the two-dimensional

numerical solution is ψ=1.206, representing an error of less than 4.4% when compared

to the theoretical solution.

Figure 5.17: Pressure distribution along the plate for all plate widths and 2D self-
similar solution model

Figure 5.18 displays the maximum pressure coefficient as a function of the beam-

to-length ratio. Here, the maximum pressure coefficient ψMax increases as the beam-

to-length ratio increases, as previously discussed. The increase of the pressure coeffi-

cient does not follow a linear trend. The numerical and the two-dimensional analytical

solutions predict a maximum pressure coefficient ψMax in the range of 1.20-1.26. Fur-

ther investigations may be performed using a larger plate width until the theoretical
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pressure coefficient is reached. In Figure 5.18 the red circle represents the aspect ratio

condition tested by Iafrati (2016b), where excellent agreement between the numerical

simulation and experiments is achieved as shown in Figure 4.16.

Figure 5.18: Max pressure coefficient as a function of the plate beam-to-length ratio

5.5 Summary

This chapter presents a detailed investigation of the effects of the finite-span on

the solution. A parabolic fitting on the unsteady maximum pressure distibution

is presented and compared with the steady water rise experiments performed by

Savitsky and Neidinger (1954). Results agree with their maximum pressure and water

rise analysis, suggesting that the unsteady problem can be treated as a quasi-steady

problem.

The finite-span effects on the maximum pressure and jet root propagation velocity

are discussed. Increasing the beam-to-length ratio leads to an increase in maximum

local pressure and jet root propagation velocity. The results reveal that when the

beam-to-length ratio is increased, the problem becomes more two-dimensional and
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is closer to the theoretical self-similar solution. As for small beam-to-length ratios,

the local pressure is reduced, and the jet root propagates slower when compared to

higher beam-to-length ratios. For small beam-to-length ratios, the water pile-up form

during the slamming problem propagates closer to the geometric plate intersection,

since the three-dimensional effects become more significant. An interesting behavior

on the pressure coefficient as a function of the beam-to-length ratio is observed, where

the increase in beam-to-length ratio leads to an increase in the pressure coefficient

without following a linear trend.

Lastly, the transverse pressure distribution along the virtual probes is presented.

The transverse pressure follows the behavior observed by Savitsky and Neidinger

(1954) for small wetted-length-beam ratios. In this condition, the trailing adge of the

plate has a significant influence on the water pile-up that develops in front of the plate.

The transverse pressure distribution exhibits a concave shape for small wetted-length-

beam ratios and eventually evolves into a convex shape for large wetted-length-beam

ratios. The above-described behavior is in agreement with the theoretical model

described in Iafrati and Korobkin (2008).
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CHAPTER VI

Hydroelastic Assessment of High-Speed Stiffened

Panels Designs

In this chapter the hydroelastic response of the bottom panel of a high-speed craft

during slamming events is investigated with the FSI method. The majority of these

results were originally published in Mesa and Maki (2018b). The methodology is used

to investigate the design of two bottom hull stiffened panel arrangements that are

equivalent from the perspective that each meets the requirement of minimum section

modulus, shear area, and plate thickness for the selected classification society rule.

Numerical setup selection is based on the fluid and structural domains convergence for

the quantities of displacement, structure modal energy, and force. Different coupling

strategies are used and their performance is evaluated for each design.

The design of optimal planing craft structures is a challenging process that in-

cludes the interaction of several aspects, such as cost, weight, operability, mainte-

nance, manufacturing, and structural integrity. This chapter focuses on the assess-

ment and evaluation of the structural integrity for two stiffened panel designs. The

candidate structures are stiffened panels from a hard-chine planing craft. Each panel

is analyzed in an impact event with velocity with both horizontal and vertical com-

ponents. The panels impact with effective deadrise angle of 20 and 0 degrees, where

hydroelastic effects are significant and allow for a detailed comparison among different
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FSI techniques.

The structures are evaluated for the displacement during the impact, the stress,

and the strain at different points on the panel. Different coupling strategies between

the fluid and structural domains are used. A rigid-dynamic coupling solves the struc-

tural equations using hydrodynamic pressure for a rigidly impacting structure. The

last method known as one-way coupling is compared to the more accurate two-way

coupled algorithm in which the fluid and structural domains are implicitly linked at

each time step.

6.1 Candidate Stiffened Panel Designs

Many details of marine structural design are ultimately determined by the need

to comply with classification society rules. While class rules are based on theoreti-

cal solutions of idealized problems together with vast experience with real ships that

have complicated geometry and loading conditions, there is a limit to how well any

particular rule can evaluate different competing structural designs. For example, a

stiffened panel is basically sized with respect to slamming loads, according to require-

ments on shear area, section modulus, and plate thickness. This procedure allows for

a range of designs to be compliant with these requirements. The designer then con-

siders the entirety of the design with respect to cost, manufacturability, maintenance,

weight, and other factors to select a design from the range of rule-complaint possi-

bilities. While the empirical relations that rules are based on have sufficient details

to capture salient features, such as the deadrise angle, speed, and ship length, there

is still missing detailed information that is relevant to describe the loads that will be

experienced during the structure’s lifetime. The relatively coarse level of information

that the rules use to characterize a design prevents detailed comparison of designs

with respect to issues such as the detailed hydroelastic response of a panel during

a slamming event. For this purpose two designs are compared with a high-fidelity
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Table 6.1: Mark VI design characteristics
Item Value
Length L [m] 25.0
Beam B [m] 6.7
Draft T [m] 1.2
Forward Speed U [kn] 45.0
Displacement ∆ [lt] 72.0

fluid-structure interaction code to shed lights on performance advantages that are

not exposed in design rules. The two structures differ in that one has a thicker plate

and larger stiffeners that are widely spaced, and the second has a thinner plate with

smaller stiffeners that are placed more closely together.

6.1.1 High-Speed Vessel Selection

The U.S. Mark VI high-speed patrol vessel is selected to gather principal char-

acteristics for sizing the candidate panels. The Det Norske Veritas Germanischer

Lloyd (DNV GL) classification rule is chosen to size the panel components with re-

spect to slamming performance. These two choices are somewhat arbitrary, but were

selected to achieve a realistic baseline to enter into the class rules. The vessel char-

acteristics used for the bottom hull panel design are listed in Table 6.1. The stiffener

spacing is chosen as S = 400 mm for Design A, and S = 200 mm for Design B.

These two values for stiffener spacing are approximately the maximum and minimum

that are allowed for this type of vessel. The proposed design satisfies the required

section modulus and section shear area of DNV GL classification rules Ch. 3 Sec. 2

(slamming for aluminum structures). Table 6.2 summarized some of the intermedi-

ate calculations for the two candidate designs. The stiffened-panels design procedure

following the DNV GL rules can be found in Appendix B.

The maximum vertical acceleration obtained using the vessel characteristics is

52.53 m/s2. The material is aluminum alloy AL-6061, and the panel dimension is 1 m

122



Table 6.2: Stiffened panel designs
Design A Design B

Vertical Acceleration [m/s2] 52.53 52.53
Panel Pressure [kPa] 348.40 408.53
Stiffener Pressure [kPa] 348.40 397.79
Panel thickness t [mm] 16.00 9.00
Section modulus S [cm3] 473.99 144.90
Section shear area Ss [cm2] 17.00 10.71
Structural mass [kg] 161.50 113.26

long and 3 m wide. Each panel is placed into a virtual hydrodynamic test rig that

adds two rigid panel sections on each side, as shown in Figure 6.1 and 6.2. This test

rig setup allows for full development of jet root, which is important for the forcing

and for isolating boundary condition effects on the panel structure. All edges of the

panel, including both the plate and stiffeners, are assumed to be welded and modeled

with a clamped condition.

6.2 Numerical Test-Rig Assembly

The test rig is set up to impact the free surface with a θ = 10◦ pitch angle at a

constant impact velocity of (U, V ) = (23.15, 4.03) m/s. The test rig is arranged so the

panel has a deadrise angle of either α = 20◦ or 0◦. The α = 20◦ deadrise angle is the

average of the class-rule maximum and minimum allowed. The limiting α = 0◦ case

is also investigated to demonstrate the flexibility of the FSI method and to pursue

a case with more severe loading. A symmetry plane condition is applied at the fluid

domain at y = 0.

The structural domain is discretized with the commercial software Abaqus using

quadratic elements. Convergence tests are done on the structural, modal, and fluid

meshes with different approaches: the convergence of the fluid force on a rigid struc-

ture as a function of the fluid grid discretization, the convergence of resulting modal
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Figure 6.1: Design A details. Locations of virtual strain gauges are labeled Pt1-Pt8.
All units in the drawing are in mm.
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frequency as a function of finite-element size for the first 30 modes, the convergence of

cumulative system energy as a function of the number of modes, and the convergence

of the displacement in a one-way-coupled impact test as a function of the fluid-grid

resolution.

6.2.1 Fluid-Structure Mapping

Figure 6.3 shows the mapping of a structural displacement field onto the fluid

domain at the mutual interface. The structural velocity is mapped to the fluid face

centers using the structure finite-element shape functions. To transfer the fluid so-

lution to the structural domain, the pressure is integrated around the fluid points

and then the force is transferred to the structural nodes. The FSI library allows for

two different methods to satisfy the structural deformation boundary condition on

the mutual interface of the fluid domain. The first is the exact method in which the

structural velocity is used to deform the fluid boundary and fluid cells inside the fluid

domain. The second is an approximate method in which the structural velocity is

applied to the undeformed fluid boundary. The approximate velocity boundary con-

dition avoids the need to deform the mesh, which allows for a significant reduction

in computational expense. For many steel and aluminum structures the approximate

condition is accurate, see Piro and Maki (2013) for detailed validation for the wedge

impact problem. All two-way coupled simulations in this work use the approximate

boundary condition.
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(a) FEM Grid (b) CFD Grid

Figure 6.3: Illustration of mapping between the fluid (a) and the structure (b)

6.2.2 Hydrodynamic Force Convergence

Three different fluid discretizations are used to assess grid dependency. A sum-

mary of the three fluids grids is shown in Table 6.3. Figures 6.4 and 6.5 shows the

force acting on the panel for each numerical grid for the α = 20◦ and α = 0◦ impact

case respectively. Excellent agreement is observed and force components variations

are captured with small differences between all three discretizations.

Table 6.3: CFD grid resolutions. Design A and B are represented by the letters A
and B

Volume Faces on Grid
Grid Cells Plate Spacing

Coarse-A 3,427,981 9,693 12 mm
Coarse-B 3,423,237 9,682 12 mm
Medium-A 6,642,373 17,243 9 mm
Medium-B 6,637,937 17,260 9 mm
Fine-A 17,266,109 38,610 6 mm
Fine-B 17,258,908 38,621 6 mm

Fluid domain convergence is investigated using the Grid Convergence Index (GCI)

presented in ASME (2008) standards. Since no experimental data is available to

compare numerical results, the GCI provides a quantification of the uncertainty of

the numerical results. The maximum dimensionless force components defined as
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CF = 2Fx,y,z/ρV
2BL is used for the determination of the GCI. A summary of the

uncertainty analysis is presented in Tabale 6.4. The GCI for the fine grid is 0.52%,

0.60% and 0.52% for the x, y, and z maximum force coefficients. Since the apparent

order p is highly influenced by the amount of scattering in solution, it can happen

that p is larger than the theoretical order of accuracy. This behavior may lead to

underestimation of the simulation uncertainty as explained in ITTC (2017). There-

fore to estimate the numerical results uncertainty, a factor of safety approach is used.

This approach considers a safety factor of three for p greater than 2.1 and uses the

larges difference between the numerical grids. Applying the safety factor approach

presented in ITTC (2017), the Grid Convergence Index become 1.45%, 3.086% and

8.44% for the x, y and z force coefficient respectively. These results confirm the re-

liability of the numerical simulations with a maximum uncertainty between the fine

and coarse grid of less than 9% for all force components.

Table 6.4: Calculations of discritization error
CFx CFy CFz

Fluid Grid C, M, F C, M, F C, M, F
r21 1.5 1.5 1.5
r32 1.333 1.333 1.333
φ1 0.0778 0.1607 0.4415
φ2 0.0770 0.1589 0.4369
φ3 0.0729 0.1504 0.4133
p 4.36 4.21 4.37
φ21
ext 0.0780 0.1610 0.4424

e21
a 1.02% 1.09% 1.02%

e21
ext 0.21% 0.24% 0.21%

GCI21
fine 0.52% 0.60% 0.52%

128



Figure 6.4: Time history of force components in x (top), y (center) and z (bottom)
for coarse (C), medium (M) and fine (F) grids for α = 20◦ impact case.

Figure 6.5: Time history of force components in x (top) and z (bottom) for coarse
(C), medium (M) and fine (F) grids for α = 0◦ impact case.
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6.2.3 Modal Domain Convergence

Modal frequency study is shown in Figures 6.6-6.7 as a function of the number of

elements. It can be observed that the response frequency for each of the first 18 modes

is nearly converged when more than approximately 20,000 elements are used. This

minimum resolution allows for an accurate representation of traditionally expected

plate mode shapes. All further analysis is conducted with a structural model with

22,046 elements for Design A and 27,667 elements for Design B.

Figure 6.6: Design A, finite element mesh modal frequency convergence study for the
first 18 modes. Modes are listed in order of their energy participation
factor.
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Figure 6.7: Design B, finite element mesh modal frequency convergence study for the
first 18 modes. Modes are listed in order of their energy participation
factor.

The modal energy participation factor is determined using the one-way coupled

simulation algorithm. This approach assumes a rigid structure when determining the

hydrodynamic loading, and then proceeds to apply the loading to an elastic structure

to determine the response. Hence the structural equations account for the structural

mass but do not include the added-mass due to the structural acceleration. The

advantages of this approach is that the algorithm does not impose any additional

expense and the same hydrodynamic solution is used for each trial.

The modal-energy force spectrum is obtained using an FFT of the modal-force

time history. Due to the orthogonality property of the mode shapes, the problem is

simplified into a system of decoupled structural degrees-of-freedom. The excitation

energy is combined with the transfer function for a single-degree-of-freedom system to

determine the response spectrum. The integration of this response spectrum defines

the modal energy participation factor for each mode relative to the total-system

response. This factor provides an assessment of the role of each individual mode and
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the selected group of modes representing the overall system response. Tables 6.5 and

6.6 show the modal energy as a percentage of the total-system energy. The tables

are organized by mode number from the Abaqus dynamic modal analysis and their

respective energy concentration. In these simulations, the first 30 modes for both

designs are selected to represent the structures. Figures 6.8 and 6.9 show the time

history of the modal force for the higher energy concentration modes representing

approximately 95% of the system energy.
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Figure 6.8: Modal force for Design A- rigid panel slamming

Figures 6.10 and 6.11 show the first six mode shapes for designs A and B. Note

that the first six modes contain 92.45% (design A) and 90.52% (design B) of the

total energy. It is important to note that the order of the primary mode shape

changes per design. This behavior is due to the contribution of the stiffeners in the

structure frequency analysis. For Design B the modes of the typical unstiffened plate

start at higher frequencies from (Mode 15) whereas for Design A they begin at lower

frequencies (Mode 1). The energy contained in each mode highly depends on the

impact condition. For accurate modeling of the structure response, the collective
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Table 6.5: Design A modal energy participation factor- rigid panel slamming
Mode # % Total % Cumulative

Response Energy Energy
6 66.038 66.038
4 11.384 77.422
5 5.458 82.880
2 4.335 87.215
3 3.383 90.598
1 1.854 92.452
8 1.802 94.254
10 0.856 95.110
18 0.769 95.879

13-12-22-16 1.749 97.628
15-17-11-9-14 1.373 99.001

Remaining modes 0.999 100.000

Figure 6.9: Modal force for Design B- rigid panel slamming
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Table 6.6: Design B modal energy participation factor- rigid panel slamming
Mode # % Total % Cumulative

Response Energy Energy
15 68.977 68.977
17 10.845 79.822
19 3.845 83.667
16 3.512 87.179
11 1.761 88.940
18 1.588 90.528
21 1.587 92.115
13 1.270 93.385
9 1.253 94.638

20-7-23-10-12 3.096 97.734
8-22-25-5-6 1.457 99.191

Remaining modes 0.809 100.000

modes contribution the majority of the system energy must be considered during the

simulation. The determination of the minimum required modes for the simulation

is an essential step for the accurate and equivalent representation of the candidate

design response.

6.3 Rigid Stiffened Panel Slamming

Figures 6.12 and 6.13 display the displacement time history at different locations

on the structure. The structural response is calculated using the one-way coupled

algorithm.

The displacements for the coarse, medium, and fine grids for both Design A and

Design B are shown. Excellent agreement between numerical simulations is observed.

Overall Design A exhibits a displacement of approximately 38% larger than Design B.

Both structural arrangements display similar uniform maximum displacement trends

along transverse sampling points. Due to the agreement and small difference found

in displacement at all sample points between the fine and medium grids, elastic sim-

ulations are performed using the medium grid since it is sufficient for accuracy.
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(a) Mode 6: 358.10 Hz (b) Mode 4: 335.82 Hz

(c) Mode 5: 348.91 Hz (d) Mode 2: 306.27 Hz

(e) Mode 3: 320.77 Hz (f) Mode 1: 295.50 Hz

Figure 6.10: First six mode shapes of Design A ordered by decreasing energy partic-
ipation factor
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(a) Mode 15: 467.79 Hz (b) Mode 17: 477.62 Hz

(c) Mode 19: 495.34 Hz (d) Mode 16: 471.58 Hz

(e) Mode 11: 402.08 Hz (f) Mode 18: 485.59 Hz

Figure 6.11: First six mode shapes of Design B ordered by decreasing energy partic-
ipation factor.
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Figure 6.12: Design A, displacement at panel center points Pt1-Pt4 (top) and side
points Pt5-Pt8 locations (bottom)

Figure 6.13: Design B, displacement at panel center points Pt1-Pt4 (top) and side
points Pt5-Pt8 locations (bottom)

Figure 6.14 shows the maximum pressure observed on the stiffened test panel dur-

ing the slamming event for the coarse, medium, and fine grids. The slamming design
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pressured calculated from the classification rules is also shown with the horizontal

dashed lines. The convergence of the force and displacement between the three grids

is excellent as discussed before, but there are perceptible differences in the maximum

pressure. It is known that the pressure distribution has a sharp peak near the jet

root. This sharp feature requires additional grid resolution to accurately define the

peak value. Although the solution has not converged completely for the maximum

pressure, the structural response has converged because the structure acts like a low

pass filter and does not respond significantly to sharp features in the pressure distri-

bution. It is interesting to note that the design pressure from the classification rules

is very similar to that predicted by the numerical CFD analysis.

Figure 6.14: Maximum pressure on panel as a function of time during impact for
Coarse (Pmax−C), Medium (Pmax−M) and Fine (Pmax−F) grids for the
case deadrise angle α = 20◦. The design pressure calculated from the
classification rule is represented as PDesign−A for design A and PDesign−B

for design B.

Each panel is subjected to the uniform design pressure applied statically. This

approximation is used to assess a displacement and stress/strain scale to compare

with the numerical hydroelastic analysis. Figure 6.15 shows the displacement field
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for each design when subjected to uniform pressure. The maximum displacement

estimate from the static pressure is 2.105 mm and 1.763 mm for Design A and B

respectively.

(a)

(b)

Figure 6.15: Panel displacement in the vertical direction subjected to static uniform
design pressure for Design A (a) of 348.40 [kPa] and Design B (b) of
408.53 [kPa]

The maximum pressure observed on the rigid stiffened panel for all grids in the

extreme slamming condition is shown in Figure 6.16. As expected, the pressure

predicted by the CFD are higher than the classification rules design pressure by ap-

proximately 30%. As previously discussed, the classification rules design pressures are

determined for a deadrise angle α = 20◦, and a direct comparison is not intended. Fig-

ure 6.16 shows the importance of considering cases where the relative angle between

the free-surface and the bottom hull is close to zero due to the vessel dynamics.
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Figure 6.16: Maximum pressure on panel as a function of time during impact for
Coarse (Pmax−C), Medium (Pmax−M) and Fine (Pmax−F) grids for the
case deadrise angle α = 0◦. The design pressure calculated from the
classification rule is represented as PDesign−A for design A and PDesign−B

for design B.

The one-way coupled and uniform pressure solutions for the displacement are

presented to provide a baseline for comparison with the two-way coupled method.

The one-way coupled maximum displacement occurs at the center of the panel with

a maximum value of approximately 1.5 and 1 mm for Design A and B respectively as

shown in Figures 6.12 and 6.13. As discussed previously, the maximum displacement

for the uniform pressure solution is estimated to be 2.105 and 1.763 mm for Design

A and B respectively. Therefore, this means that a static application of the design

pressure results in a 40-70% increase in maximum displacement compared to the

one-way analysis.

6.4 Hydroelastic Analysis

In this section, the results for a two-way coupled analysis are shown in comparison

with the previously presented one-way coupled and uniform pressure predictions.
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The two-way coupled results represent the most accurate prediction of the structural

response since the time-dependent added-mass due to structural flexibility is fully

accounted for at each time step. This is a particularly important aspect of this

problem because the wetness of the structure changes in time from completely dry to

fully wetted after impact.

The maximum displacement is shown in Figure 6.17 for different locations on each

panel. To facilitate the comparison, the sampling point distance from the centerline is

made nondimensional with the panel beam. Figure 6.17 shows that the displacement

is weakly influenced by the location on the panel for the 20◦ impact condition. An

increase in displacement is observed for the smaller deadrise angle. Comparing the

uniform pressure and one-way coupled solutions for the 20◦ case, the uniform pressure

method overpredicts the two-way coupled displacement solution by 24-38%. The

displacement is underpredicted by 6-10% when using the one-way results compared

to the two-way results.

The time history of strain in the longitudinal direction is shown in Figure 6.18.

In this figure, two-way coupled predictions show a larger strain response for Design

A. This is probably because the larger-unsupported span in between each stiffener

yields a larger displacement, even though the plate is thicker for Design A. Another

interesting result is that Design B exhibits a significant increase in strain between

the 20◦ and 0◦ impact cases. This is due to a change in the loading time period

(shorter for the 0◦ case) relative to the structural response period that results in a

larger dynamic response.
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Figure 6.17: The top figure shows the maximum displacement for each design at trans-
verse centerline points Pt1-Pt4. The bottom figure shows the maximum
displacement at points Pt5-Pt8 near the trailing and leading edges of
the plate.

Figure 6.18: Time history of strain in the longitudinal direction along sampling points
Pt1-Pt4 for Design A and Design B.

Figure 6.19 shows the strains in the transverse direction for the 20◦ case. An
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overall increase in strain is observed when reducing the deadrise angle, but this is

more significant for Design A than it is for Design B.

Figure 6.19: Time history of strain in the transverse direction along sampling points
Pt1-Pt4 for Design A and Design B.

Lastly, an evaluation of performance of each design is made regarding dimension-

less stress at sampling points Pt1-Pt4 on the panel as shown in Figure 6.20. The

maximum stress σ∗ is made dimensionless using Equation 6.1. Where zcg is the ver-

tical distance from the centroid of the stiffened panel to the stress point location,

Ve is the absolute velocity defined as Ve =
√
U2 + V 2, ρ is the fluid density, I is the

total structure inertia per unit length along the transverse direction, E is the material

Young’s modulus, and σBmax is the maximum bending stress at the sample location.

σ∗ =
S

zcg

σBmax

Ve

√
I

ρES3
(6.1)

It can be seen that the maximum stress response depends weakly on the transverse

location where the stress is measured y/B for the 20◦ case for both designs and 0◦

for Design B. For the 0◦ impact case in Design A, the maximum stress occurs near
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the center of the panel at Pt2. A noticeable symmetric drop is observed for Pt1 and

Pt3 and a larger reduction at Pt4. In contrast with the findings in the displacement,

the maximum stress in this condition depends on the transverse location along the

panel. This behavior highlights the hydroelastic effects and how the deformation of

the structure and the interaction with the hydrodynamic loading influence the total

structure response.

Figure 6.20: Maximum dimensionless stress amplitude along the transverse sampling
points Pt1-Pt4 on the elastic panel for Design A and Design

Figure 6.21 shows the water surface and pressure field on the elastic panel at

an instant during the impact event for Design A for both impact conditions. In

Figure 6.21, it can be observed that the jet root is fully developed for the extreme

case and the water escaping from the sides of the panel is small when compared to

the 20◦ case. The maximum peak pressure that follows the jet root seems to be

uniform for the 0◦ case with the highest magnitude in the center of the panel. This

distribution of peak pressure explains the almost consistent value of maximum stress

for Pt1-3 and the reduction at sample point Pt4. For the 20◦ case, the peak pressure
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follows a diagonal path with a constant peak magnitude along the elastic panel.

(a) Top view of the water surface and pres-
sure fields at 20◦ deadrise angle case.

(b) Side view of the water surface and pres-
sure fields at 20◦ deadrise angle case.

(c) Top view of the water surface and pres-
sure fields at 0◦ deadrise angle case.

(d) Side view of the water surface and pres-
sure fields at 0◦ deadrise angle case.

Figure 6.21: Visualization of the water surface and pressure on the panel during the
impact event

6.5 Summary

In this study, the application of the FSI methodology is applied to assess two stiff-

ened panel arrangement designs for high-speed craft during slamming. The results

demonstrate the relevance of the hydroelastic effects for particular impact conditions

and limitations of traditional analysis methods to capture relevant features on struc-

ture response.

A static uniform pressure analysis is performed to be used as a baseline when

comparing the different coupling strategies. It is found that this approach overpredicts

the structural displacements for the 20◦ impact case when compared to the one or two-

way coupling results. For the limiting case of 0◦, where hydroelastic effects become

more significant, the method tends to underpredict the displacements compared to
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the two-way coupling strategy.

A detailed study of the quantities of displacement, strain, and stress is performed

using the two-way coupled FSI numerical tool. Overall Design B (S=200 mm) per-

forms better with lower values of maximum deflection, strain, and stress. Design B,

provides a significant reduction in weight of 30% when compared to Design A.

The design of optimal planning craft structures is a challenging task due to the

interdependencies of the design parameters. From the point of view of the structural

response in the two impact scenarios, Design B shows to be uniformly superior. Since

a structure does more than withstand slamming loads, it is important to recall some of

the other competing attributes of a structural design. Table 6.2 shows the structural

mass for both designs. A weight reduction is achieved for Design B of approximately

30%. This weight reduction leads to significant material cost reduction. Regarding

manufacturability, Design A may be more attractive because of the spacing is larger

and the number of elements and weld length is reduced. On the other hand, if

aluminum extrusions with friction-stir welding is used, then the manufacture cost

may be similar between each. The decision will obviously be made by experienced

engineers for their specific needs.

A wide range of designs compliant with class rules is possible, but the final se-

lection process is determine based on the designer’s experience. FSI numerical tools

can provide detailed information regarding the hydroelastic performance of designs

subjected to normal operating and special extreme conditions. The combined applica-

tion of FSI numerical tools, design classification rules, and vast design experience can

make the optimum selection of structural arrangements possible in the early stages

of design.
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CHAPTER VII

Composite Laminate Hydroelastic Analysis

This chapter focuses on the development, expansion, and validation of the FSI

tool, including the capability of performing hydroelastic analysis of composite struc-

tures. Several analytical and numerical tools are available for the analysis of compos-

ite structures in air (i.e., in the aeronautical, aerospace fields), but their application

in water (i.e., the marine industry) has not yet been validated and fully developed

due to the complexity of the hydroelastic problem and a lack of experimental data for

comparison. This chapter investigates the hydroelastic response of composite plates

under uniform pressure and the flat-plate ditching problem. The FSI simulation re-

sults are compared to the dynamic simulation using the commercial software Abaqus.

Results are discussed for the degree of vertical plate displacement and strain in both

the longitudinal and the transverse directions. The composite dry and wetted natural

frequencies are determined as discussed in Section 3.5.1 to obtain an estimate of the

added mass effects for the problem.

This study shows that the added mass effects for composite problems become even

more significant than for isotropic metallic materials due to a reduction in the fluid-

to-solid density ratio. A decrease in the fluid-to-solid ratio produces an increase in the

role of added mass instability. This study also explains the inertial under-relaxation

factor estimation and the stability of the FSI algorithm for problems where the fluid
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added mass is significantly larger than the structural mass. Finally, we present the

importance of geometric non-linearities for composite materials during the slamming

event.

The geometry used for the thin composite flat-plate simulations is shown in Figure

7.1. Similar to the aluminum flat-plate simulations described in Chapter IV, the plate

is defined based on the length L, beam B, thickness t, and pith angle β. Note that

in this chapter the plate incident pitch angle is represented with the variable β, in

contrast to Chapter IV where it was defined by the variable θ. The pitch angle

variable was changed to avoid confusion with the fiber orientation angle θ, which

is the typical notation in Classical Lamination Theory (CLT). Detailed dimensions

for the pressure probes and strain gauges on the plate can be found in Chapter IV,

Figure 4.1. In contrast with the aluminum plates, here the clamped region is smaller,

leaving an elastic region of 390 mm by 890 mm. The plate is modeled using Abaqus

shell elements (SR4) where we assume a plain strain state with the CLT for the global

and local laminate response.

7.1 Composite Material

The composite plate model is made of Carbon Fiber Reinforced Polymer (CFRP)

as in the experiments described in Iafrati (2016a) and Iafrati (2015). The basic ma-

terial is assumed to be unidirectional prepreg AS4/8552. The AS4 is a continuous,

high strength/strain carbon fiber used in structural applications due to its inter-

laminar shear properties. The 8552 matrix is a toughened epoxy resin system that

when combined with carbon/glass fibers provides high strength, stiffness and damage

tolerance.

The ply principal axes are denoted as 1 and 2, where 1 is in the ply local fiber

direction which is oriented by an angle θ with respect to the plate x − y global

axes. Where the properties in axes 2 and 3 are equivalent, the composite material is
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Figure 7.1: Composite flat-plate pressure probes and strain gauges location from the
trailing edge from Iafrati (2016a)

assumed to be transversely orthotropic. Therefore, the system is reduced and only five

properties are required to model the composite material. The five properties required

for the FEA laminate analysis are: Young’s modulus in the longitudinal direction E1,

Young’s modulus in the transverse direction E2, shear modulus in the 1-2 plane G12,

Poisson’s ratio for the 1-2 plane ν12, and shear modulus in the 2-3 plane G23.

The composite properties were determined from experimental data available in

Hexcel (2016) and Marlett (2011). (Because the composite is proprietary, the exact

composite properties are not available.) The missing material properties were esti-

mated using the rule of mixture for composite materials, and Table 7.1 lists the fiber,

matrix, composite ply and fluid properties used in this investigation. The estimation

procedure of the macro ply properties based on the micro structure properties can

be found in Appendix C. The material properties corresponding to the ply section in

Table 7.1 are used for all the hydroelastic simulations described in this chapter.
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Table 7.1: Composite and water properties

Material Constant Symbol Value Unit
ply Density ρ 1,580.000 kg/m3

Young’s modulus E1 141.000 GPa
Young’s modulus E2 10 .000 GPa
Shear modulus G12= G13 4.820 GPa
Shear modulus G23 2.920 GPa
Poisson’s ratio ν12=ν13 0.302 –

Fiber Young’s modulus Ef 231.000 GPa
Poisson’s ratio νf 0.200 –

Matrix Young’s modulus Em 4.660 GPa
Poisson’s ratio νm 0.360 –

Water Density ρw 1,000.000 kg/m3

Bulk modulus κ 2.100 GPa

7.2 Composite Response Under Uniform Pressure

To assess the new capability developed for composite structures within the FSI

numerical framework, three cases with different laminate stacking sequences are inves-

tigated. The first two cases consist of a single composite layer with fiber orientations

orientation of 0◦ and 45◦, referring to Laminate 1 and Laminate 2, respectively. For

both of these cases, the total thickness of the laminate is 2 mm. Using these two

cases, we tested the FSI capability to capture the fiber orientation effects on the

global laminate response. The third case is a composite laminate constituted of 11

layers with a stacking sequence of: [45/90/-45/0/-45/0/45/0/-45/90/45], referred to

as Laminate 3. This third case allows us to assess whether the method is capable

of capturing the combined effect of layers and the bending-twisting coupling of the

laminate in the global response. For this last case, the total thickness of the laminate

is 1.6 mm. The Laminate 3 stacking sequence and plate thickness are selected to

match the composite flat plate tested in Iafrati (2016a) and Iafrati (2015). Table 7.2

summarizes the laminate sequences that were tested in this numerical investigation.

All the test plates are 1 m long and 0.50 m wide as shown in Figure 7.1. The com-

posite plates were clamped to a thicker frame in the experimental trials, leaving an
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impacting area of 0.890 m by 0.390 m, therefore this elastic area is selected for the

three laminate cases. The composite plates are subjected to constant uniform pressure

(p=1,000 Pa) during the dynamical analysis.

Table 7.2: Summary of composite laminates tested with the FSI tool

Case Thickness [mm] # Layers Layer Sequence ◦

Laminate 1 2.0 1 0
Laminate 2 2.0 1 45
Laminate 3 1.6 11 [45/90/-45/0/-45/0/45/0/-45/90/45]

7.2.1 FEA Composite Layup

The composite structures are modeled using the commercial software Abaqus. The

laminate is defined using a composite layup tool as part of Abaqus/CAE interface.

This interface provides more tools for manipulating the plies and creating the ply

stacking sequence. The primary benefit of the layup tool is that it allows the user

to define the fiber orientation inside the composite layup, so no additional step is

required for the laminate definition. Figure 7.2 shows a ply plot of the composite

laminate plate stacking sequence for each case tested.

7.2.2 Composite Fluid-Structure Domains

The fluid and structural domain coupling in this chapter also follows the approach

discussed in Chapter III, using the approximate velocity BC is implemented at the

mutual interface of the domains. Figure 7.3 shows the uniform grid discretization used

for the fluid and structural domains. The uniform grid discretization was selected

to match the exact pressure node points between Abaqus FEA and the FSI tool. In

Figure 7.3 the fluid grid is represented in the positive direction of y, and the structural

grid was mirrored about the symmetry plane (y=0) to facilitate visualization.
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(a) Composite laminate: 1 layer, fiber orientation θ = 0◦,
t=2 mm.

(b) Composite laminate: 1 layer, fiber orientation θ = 45◦,
t=2 mm.

(c) Composite laminate: 11 layers, stacking sequence
(45/90/-45/0/-45/0/45/0/-45/90/45), t=1.6 mm.

Figure 7.2: Abaqus composite laminate layup definition
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Figure 7.3: Uniform composite fluid-structure plate grid matching. The fluid grid is
in yellow(top) and the structural grid in brown (bottom).

Since the composite plate dimensions are the same as the aluminum plate from

Chapter IV, the results of the rigid modal energy participation factors performed in

Section 4.2.3 are used in this chapter for the final mode selection. Based on this

modal energy participation analysis, the first 10 modes are selected to represent the

structure in all FSI simulations.

7.2.3 Uniform Pressure Composite Plate Validation

The FSI numerical solution is compared to the dynamical analysis performed

in Abaqus. This comparison validates the methodology implemented in the FSI

framework for composite materials.

For validation purposes, the vertical displacement (U), longitudinal strain (Sx)

and the transverse strain (Sy) field solutions are compared between the numerical

tools. Figures 7.4 to 7.6 shows the displacement and strain field results for the FSI

and Abaqus solvers. Excellent agreement among the numerical solvers is observed for

all contour fields patterns as shown in Figures 7.4 to 7.6 and discrete points as listed in

Tables 7.3 to 7.8. The FSI framework captures the fiber orientation effects (results for
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Laminate 1 and 2) and the effects of the random fiber/ply stacking sequence (results

for Laminate 3).

To quantify the differences between the models, discrete points are evaluated. The

discrete points selected were the locations of the strain gauges along the centerline of

the plate (S1, S2, S8, and S5) as shown in Figure 7.1.

The discrete point results and error analysis for Laminate 1 are shown in Tables 7.3

and 7.4, respectively. The graphical representation of Table 7.3 is shown in Figure 7.7.

Laminate 1 results show excellent agreement among all the discrete points. The

maximum error for the vertical displacement, longitudinal, and transverse strains are

1.893%, 3.086%, and 3.082% respectively. For Laminate 1 the FSI tool estimated a

maximum displacement of 3.840 mm at the center of the plate (S8). The maximum

absolute longitudinal and transverse microstrains are 370.782 at S8 and 181.322 at

S1.

Table 7.3: FSI and Abaqus discrete points field comparison for Laminate 1

Abaqus FSI
Gauge U Sx Sy U Sx Sy

Location (mm) (µ m/m) (µ m/m) (mm) (µ m/m) (µ m/m)
S1 -0.079 4.860 -179.873 -0.077 5.010 -181.322
S2 -3.045 274.461 59.000 -3.070 278.461 59.300
S8 -3.801 365.096 47.300 -3.840 370.782 48.100
S5 -2.840 250.623 58.400 -2.868 254.512 56.600

Table 7.4: Field quantities error percentage for Laminate 1

Gauge U-Error % Sx-Error % Sy-Error %
Location

S1 1.893 3.086 0.805
S2 0.983 1.4575 0.508
S8 1.021 1.557 1.691
S5 0.995 1.551 3.082

Tables 7.5 and 7.6 show the discrete point field results and error analysis for Lam-

inate 2, where there is excellent agreement among all discrete points. The maximum
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Figure 7.4: Laminate 1 displacement and strain countours field results
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Figure 7.5: Laminate 2 displacement and strain countours field results
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Figure 7.6: Laminate 3 displacement and strain countours field results
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(a) Vertical displacement (mm)

(b) Longitudinal strain Sx (µ m/m)

(c) Transverse strain Sy (µ m/m)

Figure 7.7: FSI and Abaqus discrete points comparison for Laminate 1
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error for this case is 0.652% for the vertical displacement, 1.532% for the longitudinal

strain, and 13.628% for the transverse strain. The FSI maximum displacement for

Laminate 2 is 2.999 mm at S8. The absolute maximum longitudinal and transverse

microstrains are 366.228 at S2 and 209.481 at S1.

Table 7.5: FSI and Abaqus discrete points field comparison for Laminate 2

Abaqus FSI
Gauge U Sx Sy U Sx Sy

Location (mm) (µ m/m) (µ m/m) (mm) (µ m/m) (µ m/m)
S1 -0.200 261.000 -225.579 -0.201 265.000 -209.481
S2 -2.781 360.948 47.800 -2.799 366.228 51.000
S8 -2.984 360.615 5.020 -2.999 365.811 4.720
S5 -2.560 200.244 58.700 -2.575 202.825 50.700

Table 7.6: Field quantities error percentage for Laminate 2

Gauge U-Error % Sx-Error % Sy-Error %
Location

S1 0.499 1.532 6.722
S2 0.652 1.4628 6.694
S8 0.501 1.441 5.976
S5 0.590 1.289 13.628

Lastly, the results of the discrete point and error analysis for Laminate 3 are

shown in Tables 7.7 and 7.8, and strong agreement is achieved between the numerical

solvers with a maximum error of 2.512% for the vertical displacement, 19.411% for

the longitudinal strain and 5.919% for the transverse strain. The FSI maximum

displacement for Laminate 3 is 3.760 mm at S8. The absolute maximum longitudinal

and transverse microstrains are 315.375 at S8 and 249.630 at S1. The longitudinal

strain difference at location S1 of 19.411% is due to the sensitivity of the strain point

location and the interpolation between grid cells. As in any finite-element code, the

displacement fields are expected to be closer to the real solution, whereas the strains

tend to reduce accuracy since they are based on the shape functions derivatives.

The primary the difference between the FSI and Abaqus solver, is due to the strain
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(a) Vertical displacement (mm)

(b) Longitudinal strain Sx (µ m/m)

(c) Transverse strain Sy (µ m/m)

Figure 7.8: FSI and Abaqus discrete points comparison for Laminate 2
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interpolation techniques. The FSI tool performs a linear interpolation between the

node points, whereas Abaqus performs a strain smoothing technique among cells

(i.e., 75% weighted average between Gauss points), and then cell interpolation is

performed.

Table 7.7: FSI and Abaqus discrete points field comparison for Laminate 3

Abaqus FSI
Gauge U Sx Sy U Sx Sy

Location (mm) (µ m/m) (µ m/m) (mm) (µ m/m) (µ m/m)
S1 -0.199 51.000 -246.923 -0.194 41.100 -249.630
S2 -3.539 297.935 47.300 -3.537 301.695 50.100
S8 -3.779 312.894 -1.630 -3.760 315.375 -1.900
S5 -3.404 270.112 54.100 -3.404 274.401 53.700

Table 7.8: Field quantities error percentage for Laminate 3

Gauge U-Error % Sx-Error % Sy-Error %
Location

S1 2.512 19.411 1.096
S2 0.051 1.262 5.919
S8 0.496 0.7930 3.825
S5 0.014 1.588 0.739

The FSI solver for composite laminates under uniform pressure is successfully

validated, and yields accurate results for the quantities of displacement and strains

when compared to the Abaqus dynamic solver. Small differences were observed for

the strain results due to their high sampling point location sensitivity and differences

in interpolation techniques between the numerical solvers.

7.3 Hydroelastic Composite Flat-Plate Analysis

In the previous section, the FSI numerical tool is validated for a simple case of

uniform pressure, which represents the maximum slamming pressure determined from

Classification Society Rules. However, more complex time-dependent slamming cases
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(a) Vertical displacement (mm)

(b) Longitudinal strain Sx (µ m/m)

(c) Transverse strain Sy (µ m/m)

Figure 7.9: FSI and Abaqus discrete points comparison for Laminate 3
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are important to analyze, so further validation of the composite analysis capability

is required. To achieve this further validation with more realistic slamming impact

conditions where the time-dependent wetness is essential for the analysis, a composite

flat-plate ditching case presented in Iafrati (2015) is investigated.

The fluid-structure mapping for the composite flat-plate ditching simulation is

shown in Figure 7.10, where the fluid domain discretization corresponds to the coarse

fluid grid presented in Chapter IV, Section 4.2.1, and the structural domain corre-

sponds to the selected resolution of 5,280 shell elements based on the ASME (2008)

frequency convergence analysis discussed in Chapter IV, Section 4.2.3. The fluid grid

resolution consists of 3,091,567 grid cells, with 32,629 cells to discretize the plate.

This plate discretization represents a 4-mm spatial resolution. Since the fluid domain

discretization convergence study presented in Section 4.2.1 yields excellent agreement

among simulations for the total normal force in all numerical grids, the coarse grid

resolution is selected for the composite hydroelastic simulations. Moreover, since this

chapter focuses on preliminary testing of the FSI solver for composite materials, we

expect that the resolutions is sufficient to capture the hydroelastic response of the

composite plate.

The ditching condition tested for the composite flat-plate is described in Table 7.9.

These test conditions represent the experimental ditching tested for the composite

flat-plate presented in Iafrati (2015), where the total normal force, local pressure

and strain components were reported. The impact conditions consisted of a constant

vertical speed V=1.5 m/s, a horizontal speed U=30 m/s and incident pitch angle

β = 10◦. These selected test conditions allowed us to investigate important hydroe-

lastic effects of the composite slamming such as time-dependent wetness effects in the

elastic response, modal basis assumption limitations, added mass effects for composite

materials, and nonlinear geometry effects during the impact.
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Figure 7.10: Fluid-structure composite plate grid matching.

Table 7.9: Impact conditions simulated for composite plate with FSI tool
Case Forward Speed Vertical Speed Pitch Angle

U [m/s] V [m/s] θ [◦]
Laminate

Condition 1 30 1.5 10
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7.4 One-Way Composite Flat-Plate Hydroelastic Analysis

In this section, the composite flat-plate hydroelastic responses, assuming a dry

and fully wetted structure are compared via one-way coupled FSI numerical simula-

tions. As introduced in Chapter VI, the one-way coupling method is a rigid-dynamic

coupling, where the structural equations are solved using the hydrodynamic pressure

obtained for a rigidly impacting structure. In the one-way method, the force is not

a function of the structural deflection (it is only a function of time), but it includes

the flexural mass (structural dynamics) in the structural equations. This method

is also known as Rigid-Dynamic (RDyn). A major benefit of this method is that

it provides a significant reduction in the number of iterations required between the

fluid-structure domains compared to the tightly-coupled method (two-way coupled).

Figure 7.11 shows a comparison of the z force component acting on the composite

plate for the rigid coarse grid numerical simulation and experiment for the impact

case Laminate Condition 1. The origin of the time axis is selected as the point

when the S1x reaches its maximum value. As explained in Chapter IV, Section 4.2.1,

the time difference in the force time history between numerical and experimental

results is due to the constant impact velocity maintained in the numerical simulation.

Overall the numerical z force component is consistent with the experimental recorded

z force component with a difference of 7.85% in the maximum z force. The slight

overprediction of the numerical results is due to the assumption of a rigid structure

during the slamming event. As discussed in Chapter VI, for the two stiffened-panel

designs when the elastic structure is considered during the slamming event (two-way

coupled simulation), the maximum response tends to be reduced when compared to

a one-way simulation.

Figure 7.12 compares the one-way composite strain, assuming a dry and fully

wetted structure (FEA with acoustic medium) with the experimental strains along

the center of the plate. Observing the vertical axis of the figure it can be noted that
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Figure 7.11: Time history of the force component in z for coarse (C) grid and exper-
iment (E) for Laminate Condition 1

the one-way dry (D) results are greater by a factor of 10, and the wetted one-way

(W) results lower by a factor of 10. These results show that the dry and wetted

one-way simulations bound the experimental strains. The dry frequency assumption

overestimates the maximum experimental strains by approximately 90%, whereas the

fully-wetted frequency assumption underestimates the maximum strain by around

87%. Figure 7.12 also shows that the period of oscillation for the dry one-way as-

sumption is higher than for the experimental strain period, making the numerical

strains damp out faster than the experimental strains. Regarding the fully wetted

assumption, we can observe that the oscillation period is significantly reduced when

compared to the experimental strains period, and the numerical strains are still in-

creasing at the end of the simulation, when the dry and experimental strains are

decreasing.

These findings suggested two possible causes for this significant over- and un-

derprediction of the strains: first, the consideration of time-dependent wetness, and
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(a)

(b)

Figure 7.12: Time history of the strains in the longitudinal direction for (E) experi-
mental data, (D) one-way dry and (W) one-way fully wetted coarse CFD
grid for Laminate Condition 1.
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second, structural geometric non-linear effects due to large plate deformation dur-

ing impact. Sections 7.5 and 7.6 describe in detail the added-mass effects and the

geometric-nonlinearities.

7.5 Two-Way Composite Flat-Plate Hydroelastic Analysis

In this section, the tightly-coupled (two-way) hydroelastic analysis of the com-

posite flat-plate is discussed. To investigate the two possible causes of the one-way

simulation differences found in Section 7.4, the tightly-coupled simulations isolate

the structural geometric non-linear effects and highlight the importance of time-

dependent wetness for composite materials. Furthermore, the added-mass effects

in the composite vibration frequencies and the FSI algorithm stability through the

inertial under-relaxation factor are discussed.

7.5.1 Added-mass effects in composite plate vibrations

As discussed in Chapter IV, the segregated nature of the FSI equations produce

numerical instability which is controlled through the implementation of an inertial

under-relaxation factor. The effects of the added mass become more significant for

materials with lower fluid-to-solid density (e.g., composite materials). Therefore, to

ensure method stability, the accurate determination of the inertial under-relaxation

factor for the composite structural simulations becomes even more critical than for

isotropic structures.

The wetted frequencies were determined using an acoustic medium to model the

fluid-structure interaction between the composite plate and the water surface as ex-

plained in Chapter III, Section 3.5. Table 7.10 is a summary of the inertial under-

relaxation factors determined for this simulation. For the 1.6 mm CFRP composite

plate, the user-estimated inertial under-relaxation factor γe has a maximum value of

γe=32.79 for mode 1 and a minimum value of γe=6.36 for mode 8. To ensure that
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the stability criterion of γe ≥ (γ − 1)/2 is satisfied, the determined γe is increased by

approximately one (1.) as shown in the last column of Table 7.10 (γe).

Table 7.10: Composite Plate Slamming Stability Factor

Mode Vacuo [Hz] Wetted [Hz] γ γemin
γe

1 76.427 9.366 65.590 32.790 33.75
2 90.395 13.809 41.851 20.430 21.50
3 114.310 19.958 31.804 15.402 16.25
4 148.290 28.916 25.299 12.150 13.25
5 192.150 40.830 21.150 10.070 11.50
6 245.680 56.939 17.979 8.489 9.50
7 308.680 75.524 15.705 7.352 8.25
8 380.940 99.296 13.718 6.360 7.50
9 393.780 88.407 18.840 8.920 9.75
10 409.830 95.667 17.350 8.180 9.25

The significant reduction of the frequencies between dry and fully wetted compos-

ite structures ranges between 74% to 88%. This percentage of reduction in frequencies

is consistent with the findings by Kramer et al. (2013a) where the reduction in wetted

frequency is between 40-80%. The results confirm the importance of the added-mass

effects in composite materials. It is important to note that these effects might become

more relevant depending on the composite stacking sequence and fiber orientation.

7.5.2 Two-way Coupled Slamming Composite Simulation

The two-way hydroelastic composite flat-plate slamming simulation results are

shown in Figure 7.13, where the strains of the two-way simulations tend to overpredict

the experimental strain values. This overprediction trend agrees with the findings of

the one-way results, (assuming a dry structure) but with a smaller oscillation period.

Therefore, this confirms that the two-way simulation is capturing the time-dependent

wetness and added-mass effects, but it is not sufficient to explain the overprediction

for both one and two-way simulations.

In the following section, the geometric nonlinear effects during impact are eval-
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uated in detail. Concerning the FSI algorithm stability, using the inertial under-

relaxation factor methodology per mode ensures numerical stability with a minimum

of approximately 6 iterations similar to the results found for the free vibration test

and aluminum alloy flat-plate slamming simulations presented in Chapters III and

IV.

Figure 7.13: Time history of the strains in the longitudinal direction for 4 (4-Iter), 6
(6-Iter), and 8 (8-Iter) iterations for Laminate Condition 1

7.6 Composite Plate Geometric Nonlinear Effects

In the previous section, the two-way results confirm that the time-dependent wet-

ness is vital to capture the structure response oscillation period, not sufficient to

explain the overprediction of the numerical simulations. Therefore a detailed investi-

gation of the nonlinear geometric effects is conducted to gain insight into the limita-

tions of the modal basis approach. The study started with a Rigid Quasi-Static (RQS)

simulation using the commercial software Abaqus. Similar to the RDyn, the RQS sim-

ulations assume a rigid structure for the fluid simulations (force is a function of time
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only), but in contrast to the RDyn they also neglect the flexural mass in the struc-

tural equations. The composite plate assembly with uniform pressure loading for the

quasi-static analysis performed within Abaqus/explicit solver is shown in Figure 7.14.

Figure 7.14: Abaqus assembly for composite plate under uniform pressure loading

The uniform pressure magnitude is determined from the experimental maximum

normal force acting on the test plate specimen area. The test specimen area con-

tributing to the load cell measurements in the experiments is 1 m long and 0.50 m

wide. The maximum normal force observed in the experimental trial is assumed to

be 45,000 N, as shown in Figure 7.11. Therefore, the applied uniform pressure used

is p=90,000 Pa.

As shown in Figure 7.15 the linear RQS analysis under uniform pressure predicts

a maximum deflection of 2,000 mm, whereas the nonlinear RQS predicts a maximum

displacement of 19 mm. These results highlight the nonlinear geometric effects in

the composite plate response, where the maximum response are reduced when these

effects are considered. Furthermore, these results explain why the one-way and two-

way coupled simulations significantly overpredict the plate strain responses, since the

FSI framework is based on linear modal assumptions which neglect the geometric
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Figure 7.15: Composite plate linear and nonlinear geometric static response under
uniform maximum slamming pressure
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nonlinearities. The reduction in deflections is due to a change in the plate bending

state to a membrane state. In the membrane state, the large elongation of the plate

causes an internal tensile force that stabilizes the system carrying the external loading,

where the bending carrying capacity contribution then becomes negligible. Therefore,

these nonlinear effects are important to capture the accurate plate response and

increase the fidelity of the current FSI framework.

7.6.1 Nonlinear Geometric Effects Through a Preloaded Modal Extrac-

tion State

To confirm the RQS nonlinear analysis results, we performed a two-way coupled

simulation assuming a pre-loaded state of the maximum pressure observed by the

composite plate. After performing a nonlinear RQS analysis on the composite plate

with the maximum pressure obtained in Section 7.6 of p=90,000 Pa, the deformed

state of the plate is selected to perform a modal extraction. In this pre-loaded con-

dition, the modal extraction included the maximum rigidity added by the internal

loading through the stiffness matrix when solving for the natural frequencies and

mode shapes. This approach is limited, however, in that it is only valid for time

instances closer to the maximum loading time. Therefore, adding this maximum

stiffness component during the two-way coupled simulation affects the time-accuracy

of the structural response.

Figure 7.16 shows the two-way coupled results for the pre-loaded modal extrac-

tion. This numerical simulation captures the maximum longitudinal strain values

for the centerline strain gauges. As expected, the addition of the maximum stiffness

terms due to geometric nonlinearities affects the structure response period, making

the structure an overdamped system and reducing the response time of the struc-

ture. This methodology may be a good approach if there is interest in the maximum

structure response, but it sacrifices essential information of the problem dynamics.
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Furthermore, the approach requires the pre-loaded state of the structure, which typi-

cally is not known. Even though the technique is not the best approach to model the

slamming event, it provided the necessary confirmation that non-linear effects are the

cause of the overprediction in the FSI simulations. Future research should include

the geometric nonlinearities in the FSI framework to capture these significant effects

when large structural deformations are expected.

Figure 7.16: FSI strain gauge results for preloading modal extraction conditions

7.6.2 One-Way Nonlinear Geometric Analysis

To compare the pre-loaded two-way results, a one-way nonlinear implicit dynamic

(RDyn) analysis is performed in Abaqus. The RDyn solution represents the most

accurate solution for the current FSI numerical framework. First, the pressure distri-

bution on the plate during the slamming event is obtained from the CFD simulation

assuming a rigid structure. Then, the unsteady loading is applied to an elastic struc-

ture in Abaqus, which includes nonlinear geometric effects. As explained previously,

the RDyn analysis considers the system inertia and captures the added-mass effects

174



of the rigid motion only, and does not consider the time-dependent wetness which is

essential for an accurate composite structure hydroelastic analysis.

Figure 7.17 shows a comparison between the experiment, the pre-loaded two-way,

and one-way nonlinear simulations. Good agreement is observed between the pre-

loaded two-way and one-way nonlinear results. Both methods capture the magnitude

of the strain response, but do not accurately captures the time dependence of the

event. As previously explained, in the pre-loaded simulation this is due to the inclu-

sion of the maximum in-plane loading in the system stiffness. For the nonlinear one-

way simulation, the structure is assumed to be dry and neglects the time-dependent

wetness, which is essential in slamming hydroelastic analysis. The results highlight

the importance of including time-depended wetness and nonlinear geometric effects

for composite hydroelastic problems were large deformations are expected. The next

step to extend this work is to perform a two-way coupled simulation that solves for

the updated geometry of the structure each time-step to capture nonlinear geometric

effects.

Figure 7.17: FSI strain gauge results for preloading modal extraction conditions and
one-way nonlinear simulation
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7.7 Summary

In this chapter, the validation of the FSI numerical tool for composite structures

assuming small deformations is presented. The FSI numerical solution for three com-

posite stacking sequences is compared to the Abaqus dynamical solver solution. The

comparison between the numerical tools yields excellent agreement for the quantities

of vertical displacement, longitudinal and transverse strain components. All differ-

ences in displacement results were less than 3% between the numerical tools. The

differences in strain solution results were less than 6%, except at two locations where

13% and 19% differences were found. These differences are due to the interpolation

and strain smoothing technique differences between the numerical solvers. Overall

the FSI tool is capable of capturing the individual ply fiber direction effects and the

global effects of a mix stacking sequence.

The second set of the FSI validations for composite structures is performed by com-

paring the numerical simulation with the composite flat-plate ditching experiments

performed by Iafrati (2015). These test conditions allowed us to examine the modal

basis limitation, the added-mass effects, and the structural nonlinear effects during

the high-forward speed slamming event. Findings show that the time-dependent wet-

ness becomes more significant for composite structures due to their low fluid-to-solid

density ratios. The added-mass effects lead to a natural frequency reduction between

74% to 88%, which is consistent with the 40% to 80% range findings of Kramer et al.

(2013a) for a composite cantilever plate free vibration. The one-way dry and fully

wetted structures show that the added-mass effects strongly influence the structure

response period.

Regarding the hydroelastic response, the one-way dry frequency simulation over-

predicted the maximum experimental strain response by approximately 90%, and

the one-way fully wetted simulation underpredicted the maximum strain response by

87%. The two-way simulation followed the one-way dry frequency results, signifi-
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cantly over-predicting the maximum response. These results highlight the nonlinear

geometric effects. To confirm these findings a simplified approach is implemented

to include the geometric nonlinearities in the two-way coupled simulation. In this

approach, we assume a pre-loaded state based on the maximum slamming pressure

observed during the experimental trial. The modal extraction is performed on the

deformed condition to include the stiffness components caused by the plate mem-

brane effects. Results show that the maximum strain response is captured with this

approach, but the response period is altered. The addition of the maximum stiffness

effects through the pre-loaded state cause the structure to become an overdamped

system, reducing the response period and sacrificing important dynamical effects of

the problem. Therefore to capture the nonlinear geometric effects of large structural

deformations during slamming events, the current FSI frameworks need to solve for

the structural geometry within each time step.
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CHAPTER VIII

Conclusions

8.1 Summary

A hydroelastic fluid-structure interaction numerical framework has been developed

and implemented to analyze the elastic response of high-speed planing vessels during

slamming. The numerical FSI framework couples CFD with the VoF approach to solve

for the fluid domain and a linear dynamic FEM with the modal decomposition to rep-

resent the structure. The VoF accurately tracks the nonlinear free surface approach,

and solves for the thin jet root, water rise pile-up, and three-dimensional effects of

the high-speed slamming event. The modal decomposition reduces a fully coupled

system of equations of motion to an uncoupled system of equations. The structure

is modeled using the commercial software Abaqus. This finite-element software ad-

dition expands the capability to include acoustic medium and structural nonlinear

geometry effects. The FSI solver is capable of performing the hydroelastic analysis of

a composite structure within the linear regime.

The numerical framework is validated using a high-fidelity experimental dataset

of high horizontal velocity flat-plate ditching presented in Iafrati (2016b) and Iafrati

et al. (2015). The experimental campaign was conducted on CNR-INSEAN for air-

craft ditching applications, but due to the velocity ratio and impact conditions tested

they are also suitable for high-speed marine vessels. Validation is performed in a
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separate manner for the fluid and structural domains. The numerical fluid domain

local pressure solution is compared to experimental and theoretical results. Excellent

agreement between the experimental and numerical local pressure is achieved for large

wetted-to-beam ratios with less than 0.50 % error. The FSI slightly underpredicted

the high local pressure for small wetted-to-beam ratios due to insufficient integration

points near the trailing edge, and further refinement is needed to capture the sharp

peak in this region. A time delay is found between the numerical and experimental

pressures due to a constant velocity constraint in the simulations and a slight decel-

eration of the test specimen during the experimental tests. The total normal force

acting on the plate showed excellent agreement between the experimental load cells

data and the FSI integrated body pressure. Furthermore, the jet root propagation

velocity is consistent with experimental data for all three slamming conditions in

the early stages of the impact. The absolute jet root propagation velocity for both

the experimental and numerical results followed a linear trend higher than the geo-

metric intersection for all tested conditions. In terms of deformation, the numerical

strain results in the local longitudinal plate direction were compared to experimen-

tal strain gauges data. The tightly-coupled FSI numerical framework captured the

overall elastic response of the high horizontal velocity flat-plate slamming event. The

numerical method strains oscillated at a higher frequency and slightly underpredicted

the maximum strain response due to the fully clamped BC implemented. The results

suggest that the physical BC’s are in between the pinned and clamped conditions.

Further studies can be performed to tune the numerical BC using springs until the

experimental physical BC are achieved.

The analysis of the unsteady curvature and maximum pressure location is com-

pared and validated with the steady water rise experiments performed by Savitsky and

Neidinger (1954). The maximum pressure location for all plate widths are in agree-

ment with the fitted experimental water rise data presented in Savitsky and Neidinger
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(1954), suggesting that the unsteady problem can be simplified to a quasi-steady prob-

lem. A detailed investigation of the finite-span effects on the water-entry problem is

performed. The investigation showed the importance of considering three-dimensional

effects to obtain accurate hydrodynamic loading and jet root evolution during the im-

pact phase. For small beam-to-length ratios, the local pressure is reduced and the

water pile-up propagated closer to the geometric intersection of the plate with the

undisturbed water surface. Three-dimensional effects were reduced for large beam-

to-length ratios, where the local pressure increases and the water pile-up propagates

faster than the geometric intersection. Lastly, the transverse pressure distribution

compared favorably with the experimental pressure distribution presented in Smiley

(1951) and Iafrati (2016b). The transverse pressure distribution followed the pre-

sented distribution of Smiley (1951) for small wetted-length-beam ratios and evolved

to the pressure distribution presented in Iafrati (2016b) for large wetted-length-beam

ratios. This behavior is in agreement with the theoretical model described in Iafrati

and Korobkin (2008).

The evaluation of two high-speed craft stiffened-panel designs is performed to

highlight salient features related to the structural hydroelastic response during its

lifetime. This is an example of the direct application of the FSI numerical framework

in the early stages of the design process to shed light on the performance advantages

that are not considered in design rules. The numerical method can allows the user to

compare in detail the structural integrity between the range of designs compliant with

design rule requirements, providing extra information for designers to consider in the

final design selection. Furthermore, the detailed investigation compared the uniform

pressure analysis with a one-way and two-way hydroelastic simulations. The findings

show that the estimated displacement by the uniform pressure analysis overpredict the

two-way coupled solution by 24-38%. The displacements estimated by the one-way

coupled simulation underpredict by 6-10% when compared to the two-way coupled
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results. Therefore, the accurate determination of the hydrodynamic loading and

structure response through a high-fidelity numerical tool is essential to ensure an

optimal vessel design.

The numerical FSI hydroelastic analysis of composite plates is validated with the

dynamic solver solution using the commercial software Abaqus. The results for the

two single layer (θ=0◦ and θ=45◦) and 11 layers stacking sequence showed excellent

agreement among the numerical solutions for uniform pressure loading dynamic sim-

ulations. Then, the numerical framework was applied to a thin composite flat-plate

ditching problem, where the tool limitations due to small deformations is reached.

The results highlight the importance of geometric non-linearities for the particular

study case. We implemented a simple approach that consisted of pre-loaded (i.e.,

maximum expected hydrodynamic pressure) a state modal extraction of the compos-

ite plate that includes geometric non-linearities. The results show that the maximum

response can be captured by the approach, but it sacrifices important information re-

garding the response period. The change in the response period is due to the addition

of the maximum membrane stiffness in the pre-loaded state, increasing the rigidity of

the system.

8.2 Contributions to the State-of-the-Art

The contributions of this investigation to the current state of the art and its

applications and implications in the field of hydroelasticity are as follows:

• A tightly-coupled FSI numerical framework has been developed and validated

for the analysis of high horizontal velocity water entry problems. The FSI

framework captures complex phenomena developed during the impact problem,

such as high localized pressure distributions, nonlinear free surface, hydroelas-

tic coupling, and three-dimensional effects. The capacity to capture all these
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phenomena is a significant improvement over the commonly-adopted modeling

tools for aircraft ditching and high-speed vessel slamming. Furthermore, the

validation of the method with high-fidelity flat-plate experimental data turns

the FSI framework into one of the few numerical tools fully validated that can

be used in the design and certification process of such structures.

• The numerical framework uses an inertial under-relaxation technique to ensure

the stability of the segregated FSI algorithm. This investigation developed and

demonstrated a method that accurately estimates the added mass effects of the

problem for the optimal selection of the inertial under-relaxation factor. The

inertial under-relaxation factor is determined through a relationship between

the dry and wetted frequencies of the structure using an acoustic medium, al-

lowing for a selection of the inertial factor per mode. The accurate estimation

of the inertial under-relaxation factor per mode provides for the minimum num-

ber of iterations required for a converged solution, reducing the computational

expenses of the FSI tool when compared with existing FSI numerical tools.

• The numerical framework has been used to assess and evaluate the influence

of the three-dimensional effects in the hydrodynamic loading and water pile-

up development. A detailed pioneer study of the maximum pressure curvature

is performed, providing detailed insight of the thin jet root development and

pressure distribution along the structure. Moreover, this study compared the

steady to the unsteady water entry problem, where essential information is

provided that can be considered in the development of theoretical solutions to

account for three-dimensional effects.

• The FSI method has been implemented to evaluate the hydroelastic response

of high-speed bottom-hull stiffened-panel designs during slamming events. The

high-fidelity FSI tool sheds light on the performance advantages that are not
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exposed in the classification design rules and provides detailed information re-

garding the hydroelastic performance of designs subjected to normal operating

and special extreme conditions. This investigation shows that the combined

application of FSI numerical tools, design classification rules, and vast design

experience can make the optimum selection of structural arrangements possible

in the early stages of design.

• Lastly, the FSI numerical tool capability has been develop to perform a lo-

cal and global hydroelastic analysis of composite structures. The methodol-

ogy uses a modal basis to represent the composite structure within the linear

regime, and a simplified approach is performed to include the geometric struc-

ture non-linearities and capture the maximum structure response. The FSI tool

is capable of capturing the added mass effects and obtained a convergent and

stable solution for cases where the ratio between the fluid added mass and the

physical structure mass is large.

8.3 Future Work

The FSI numerical framework has been applied and validated for several high-

speed slamming problems, but further capabilities can be added to improve the cur-

rent work. The following is a list of possible improvements and applications to expand

the current numerical framework:

1. The numerical FSI tool has been validated for only several impact conditions

for a flat-plate high horizontal velocity water entry problem. Further validation

with more complex geometries such as concave and convex plates presented in

Iafrati (2018) can be performed to study the effects of the body curvature on

the hydrodynamics. Also, the FSI can be applied to more realistic sea-state

conditions including regular and irregular waves during the slamming event.
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This will provide insight on the effects of the waves on the hydroelastic response

and motivate future experimental campaigns.

2. The current FSI numerical tool assumes small structural deflections, which are

only valid in the linear regime. The expansion of the method to include the

geometric non-linearities is essential to cover a broader range of FSI problems

in the aeronautical and marine fields. Especially, the addition of geometric non-

linearities is necessary for composite structures where larger deflections and a

strong bending-twisting coupling that increases the non-linearities are expected.

The current setup of the numerical framework with the commercial software

Abaqus makes the non-linear geometric expansion a relatively easy process.

3. The current investigation was applied to bottom-hull stiffened-panel designs

based on society classification rules. The numerical tool should be used in the

full vessel design and final selection process that designers experience. Also,

the FSI numerical framework should be combined with optimization tools to

consider all the design factors in the early stages of the design to highlight the

advantages of numerical simulations in the design process.

4. The Navier-Stokes equations govern the numerical method fluid solution con-

sidering only an incompressible flow of a two-phase viscous-fluid system. The

method can be expanded to include a compressible flow solver in the fluid do-

main solution. This expansion will allow considering complex phenomena such

as cavitation and ventilation and their effects on the problem hydrodynamics

and global structure response. These effects may be significant for specific FSI

high horizontal velocity water entry problems.

5. Lastly, future work can involve a detailed investigation of the modal coupling

through the modal added mass matrix and their effects on the FSI solution

stability. This investigation may reduce the cost of computation and reduce the
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number of required iterations needed for a convergent solution. Moreover, the

understanding of this mode coupling is an essential step for the further devel-

opment of the FSI tool composite hydroelastic analysis, where a high bending-

twisting mode coupling is expected through the extensional-bending coupling

stiffness matrix.
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APPENDIX A

Composite Lamination Theory

The matrix [S] in Equation 3.24 represents the compliance matrix, and its coeffi-

cients in terms of the engineering constants are defined as:

S11 =
1

E1

S12 = S21 = −ν12

E1

= −ν21

E2

S22 =
1

E2

S66 =
1

G12

Where the matrix [Q] in Eqution 3.25 represents the kth layer stiffness matrix,

and its coefficients in terms of the compliance coefficients are defined as:

Q11 =
S22

S11S22 − S2
12

Q12 = Q21 = − S12

S11S22 − S2
12

Q22 =
S11

S11S22 − S2
12

Q66 =
1

S66

The tensorial inverse transformation matrix [T ]−1 is:
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[
T

]−1

=


c2 s2 −2cs

s2 c2 2cs

cs −cs c2 − s2


where c= cos θ and s= sin θ.

The transform ply stiffness matrix [Q̄] is given by:

[
Q̄

]−1

=


Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


where the Q̄ij are:

Q̄11 = Q11c
4 +Q22s

4 + 2(Q12 + 2Q66)s2c2

Q̄12 = (Q11 +Q22 − 4Q66)c2s2 +Q12(s4 + c4)

Q̄22 = Q11s
4 +Q22c

4 + 2(Q12 + 2Q66)s2c2

Q̄16 = (Q11 −Q12 − 2Q66)c3s− (Q22 −Q12 − 2Q66)cs3

Q̄26 = (Q11 −Q12 − 2Q66)cs3 − (Q22 −Q12 − 2Q66)c3s

Q̄66 = (Q11 +Q12 − 2Q12 − 2Q66)c2s2 +Q66(s4 + c4)

and the S̄ij are:

S̄11 = S11c
4 + A22s

4 + 2(S12 + S66)s2c2

S̄12 = (S11 + S22 − S66)c2s2 + S12(s4 + c4)

S̄22 = S11s
4 + S22c

4 + (2S12 + S66)s2c2

S̄16 = (2S11 − 2S12 − S66)c3s− (2S22 − 2S12 − S66)cs3

S̄26 = (2S11 − 2S12 − S66)cs3 − (2S22 − 2S12 − S66)c3s

S̄66 = 2(2S11 + 2S22 − 4S12 − S66)c2s2 + S66(s4 + c4)
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The extensional stiffness matrix [A], extensional-bending coupling stiffness matrix

[B] and bending stiffness matrix [D] are calculated by:

Aij =
n∑
k=1

(Q̄ijk)(hk − hk−1)

Bij =
1

2

n∑
k=1

(Q̄ijk)(h
2
k − h2

k−1)

Dij =
1

3

n∑
k=1

(Q̄ijk)(h
3
k − h3

k−1)
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APPENDIX B

DNV-GL Classification Rule Applied to Two

High-Speed Craft Bottom Hull Stiffened-Panel

Designs

Two candidate bottom hull stiffened-panel designs were evaluated following the

DNV GL Classification Society rules for high-speed craft presented in DNV-GL (2015a)

and DNV-GL (2015b). The two choices of designs were selected to represent the max-

imum and minimum class rules allowing stiffened spacing for these types of vessels.

This appendix presents the calculations of the designs in detail.

Mark VI vessel characteristics were selected to evaluate the designs. The vessel’s

properties, already presented in Chapter VI, are reproduced below in Table B.1.

Table B.1: Mark VI design characteristics
Parameter Value
Length L [m] 25.0
Beam B [m] 6.7
Draft T [m] 1.2
Forward Speed U [kn] 45.0
Displacement ∆ [lt] 72.0

The constant parameters and type of vessels factor are listed in Table B.2:
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Table B.2: Mark VI design constants and vessel factors
Item Symbol Value Units
Gravity g0 9.81 m/s2

Hull type factor Kh 1.00 –
Significant wave height Hs 1.00 –
Greatest Moulded Breadth at L/2 BWL2 6.70 m
Dead rise angle βcg 20.00 ◦

Maximum Speed V 45.00 knots

To obtain the vertical design acceleration acg of the craft center of gravity, the

following equation from DNV-GL (2015a) was used when V/
√
L ≥ 3, using the above

parameters:

acg =
Khgo

1650
(
Hs

BWL2

+ 0.084)(50− βcg)(
V√
L

)2LB
2
WL2

∆
(m/s2)

acg = 52.5263 (m/s2)

After determining the vertical design acceleration, the slamming pressure on the

bottom of the craft was determined by:

psl =
acg ·∆

0.14 · Aref
·Kred ·Kl ·Kβ (kN/m2)

where Aref is the reference area from the impact loads, defined as:

Aref = 0.7
∆

T
= 0.7

72

1.2
= 42

Kred is the reduction factor for the design load area, determined by:

Kred = 0.445− 0.35(
u0.75 − 1.7

u0.75 + 1.7
)

u = 100 · n · A
Aref

n is the number of hulls. For the Mark VI mono hull, n=1.

n = 1
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The parameters noted below followed the standard design protocol of the DNV GL

Classification Rules for aluminium hulls. A is the design load area for the element

considered (in m2), where for plates, stiffeners, and griders A was the spacing x span

(sl), but for plates, A was not greater than 2.5s2. A was not less than 0.002∆
T

.

In this design the span was selected to be one meter (l=1 m) and the selected De-

sign A and Design B stiffener spacings were sDesign A=0.400 m and sDesign B=0.200 m.

Therefore, A is:

Design A, A = 0.400

Design A, Astiffener = 0.400

Design B, A = 0.120

Design B, Astiffener = 0.200

Substituting the respective values to determine u for each design, we obtained:

Design A, u = 0.9524

Design A, ustiffener = 0.9524

Design B, u = 0.2857

Design B, ustiffener = 0.4762

Then, calculating Kred for each design:

Design A, Kred = 0.5417

Design A, Kredstiffener
= 0.5417

Design B, Kred = 0.6642

Design B, Kredstiffener
= 0.6185

Kl is the longitudinal distribution factor provided in DNV-GL (2015a). For any

location forward of L/2, Kl= 1.0.

Lastly, the correction factor for the local deadrise angle Kβ is defined as:
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Kβ =
50− βx
50− βcg

where βx is the deadrise angle at the transverse section which is considered to be

equal to βcg. Therefore,

Kβ = 1.0

Substituting these factors into the slamming pressure equation we get:

Design A, psl = 348.40 (kN/m2)

Design A, pslstiffener
= 348.40 (kN/m2)

Design B, psl = 427.18 (kN/m2)

Design B, pslstiffener
= 397.80 (kN/m2)

Now, the bottom hull plate and stiffener member minimum required plate thick-

ness and section moduli were determined using the aluminium hull structural design

guidelines of DNV-GL (2015b).

The minimum plate thickness for the design slamming pressure was calculated as

follows:

t =
22.4krkas

√
Psl√

σsl

where ka is the correction factor for the aspect ratio of the plate field, defined as:

ka = (1.1− 0.25 s/l)2

Design A, ka = 1.0

Design B, ka = 1.1025

kr is the correction factor for curved plates:

kr = 1.0

σsl allowable slamming bending stress defined as:
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For Plates, σsl = 200f1 (N/mm2)

the welded condition factor f1 for plates is:

Plates, f1 = 0.60

therefore,

Plates, σsl = 120 (N/mm2)

Substituting the values in the minimum slamming plate thickness equation, we

get:

Design A, t = 15.3 mm

Design B, t = 9.1 mm

Since plate thicknesss are only available in integer mm’s and the DNV GL al-

lows truncation to the nearest integer if the calculated thickness deviates less than

∼0.2 mm from the integer value, the final plate thickness for Design A and Design B

are:

Design A, tDesign = 16 mm

Design B, tDesign = 9 mm

Now, the section modulus of longitudinal stiffeners supporting the bottom plating

are not less than:

Z =
ml2sPsl
σsl

In this case, m is the continuous longitudinal stiffener factor (m=85). As defined

before, the span l is equal to 1 m for both designs and the spacings are sDesign A=0.400

and sDesign B = 0.200. Psl is the slamming pressure determined per design. Lastly,

σsl is the allowable bending stress for stiffeners, defined as:
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Stiffeners, σsl = 180f1 (N/mm2)

where the welded condition factor f1 is:

Stiffeners, f1 = 0.48

and the allowable bending stress becomes,

Stiffeners, σsl = 86.4 (N/mm2)

Substituting these values to determine the minimum section modulus per design,

we get:

Design A, Z = 137.10cm3

Design B, Z = 78.27cm3

The last requirement for the stiffeners is the minimum shear area, not less than:

As =
6.7(l − s)sPsl

τsl

where the allowable slamming shear stress τsl is defined as:

τsl = 90f1 (N/mm2)

τsl = 43.2 (N/mm2)

Therefore, the minimum shear area required for each design is:

Desing A, As = 12.96 cm2

Desing B, As = 9.87 cm2

After determining the final design requirements for the plate and stiffener mem-

bers, we need to make a selection on the final plate thickness and stiffener sections.

Typically stiffener sections are standardized, and the closest section that satisfies

the minimum required shear area and section modulus is selected. In this investiga-

tion, the section described in Table B.3 was selected and verified to satisfy the rule

requirements.
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Table B.3: Mark VI design constants and vessel factors
Item Design A Design B
Web height (mm) 110.00 93.00
Web thickness (mm) 10.00 7.00
Flange length (mm) 60.00 60.00
Flange thickness (mm) 10.00 7.00
Plate thickness (mm) 16.00 9.00
Shear area cm2 17.00 10.71
Section Modulus cm3 473.99 144.91

Note that the stiffener members selected in Table B.3 are only one possible set

of selections from the standardized sections that satisfy the minimum requirements.

Multiple sections can be chosen that comply with the design rules.
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APPENDIX C

Rule of Mixture

The composite material properties were obtained from several sources and com-

bined with the rule of mixture to obtain the missing properties needed for the laminate

modal analysis.

The AS4/8552 material properties from Hexcel (2016) were:

E1 = 141GPa

E2 = 10GPa

ρ = 1, 580kg/m3

Ef = 231GPa

Em = 4.66GPa

From Marlett (2011) the AS4/8552 material properties were:

G12 = 4.82GPa

ν12 = 0.302

Finally, from Herakivich (1998) the AS4/8552 material properties were:

νf = 0.20

νm = 0.36
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Combining the above properties and applying the rule of mixture we obtained:

kf =
Ef

3(1− 2νf )
=

231× 109

3(1− 2 · 0.20)
= 1.2833× 1011 Pa

km =
Em

3(1− 2νm)
=

4.66× 109

3(1− 2 · 0.36)
= 5.548× 109 Pa

k =

[
f
kf

+ (1−f)
km

]−1

=

[
0.5742

1.2833×1011 + (1−0.5742)
5.548×109

]−1

= 1.2311× 1010 Pa

ν21 = [fνf + (1− f)νm]
E2

E1

= [0.5742 · 0.20 + (1− 0.5742) · 0.36]
10 GPa

141 GPa
= 0.019016

ν23 = 1− ν21 −
E2

3k
= 1− 0.0190− 10× 109 Pa

3(1.2311× 1010)
= 0.7102

G23 =
E2

2(1 + ν23)
=

10× 109 Pa

3(1.2311× 1010 Pa)
= 2.92 GPa
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