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Abstract 

Low- and middle-income countries (LMICs) are undergoing a rapid dietary transition from 

traditional foods to highly processed Western diets. Conventional analyses of dietary patterns do 

not account for the level of processing of foods in the diet, yet methods of food processing and 

ingredients introduced into foods to make them more palatable, nutrient-dense, and/or shelf-

stable have been hypothesized to increase individuals’ risk for obesity, in part through 

disruptions to the gut microbiome. 

 

This dissertation implemented the use of two food processing-based indices, the Processed Food 

Dietary Index (PFDI) and NOVA, to characterize the level of processing of diets among women 

recruited from the baseline participants of a three-year longitudinal cohort study in Montero, 

Bolivia, a country experiencing a rapid dietary transition, to further examine the associations 

between the extent of processing of diets, obesity, and gut microbiome composition. With the 

linkages between the nutrition transition in LMICs and obesity best established in women, we 

collected three 24-hr dietary recalls, anthropometric measurements, and two fecal samples from 

160 women of reproductive age (18-49 years) based on the extent of processing in the diet using 

data from the aforementioned baseline assessment data of the longitudinal study.   

 

The first aim utilized both the PFDI and NOVA as a single measure of diet quality to examine 

and compare relationships between nutrient intakes and the dietary share of processing level 

groups; it also examined the distribution of nutrient means across quintiles of the dietary share of 

ultra-processed foods and drinks (UPFDs) and unprocessed/minimally processed foods. We 

found statistically significant linear relationships between various nutrient means and PFDI and 

NOVA scores, although not always in the hypothesized directions. There were also a number of 

nutrients typically associated with processing that did not exhibit statistically significant linear 

relationships with processing levels (i.e., saturated fat, trans fat, sodium).  

 



 ix 

The second aim examined the association between the processing level of the diet and measures 

of obesity (i.e., body mass index (BMI), waist circumference (WC), and waist-to-hip ratio 

(WHR)) using the PFDI and NOVA as a single measure of overall dietary quality. Although 

daily caloric intake increased across quintiles of PFDI and NOVA scores, there were no 

differences found in BMI, WC, or WHR between quintile pairs. Neither processing level of the 

diet nor the consumption of UPFDs were associated with obesity. 

 

The third aim evaluated the association between the processing level of the diet, obesity, and the 

gut microbiome. We found that the processing level of the diet, as measured by the PFDI, may 

influence the Firmicutes/Bacteroidetes (F/B) ratio and that the proportion of UPFD intake in the 

diet is associated with the diversity of microbiota present in the gut. We also observed that F/B 

ratios were not different between obese and lean individuals; however, obese individuals had a 

less diverse microbiome than those who were lean.   

 

These studies provide information regarding the use of the PFDI and NOVA classification 

systems in future studies assessing the impact of food processing on human health, as well as 

novel insight into the relationships between the level of processing in the diet, obesity, and the 

composition of the gut microbiome. 
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Chapter 1  
 

Introduction 
 

Dietary pattern analysis 

In examining the relationship between diet and the risk of chronic disease, the field of nutritional 

epidemiology has shifted from assessing diet from a single nutrient approach to one that captures 

the diet in its entirety through dietary pattern analysis. Dietary patterns can be empirically 

derived from dietary data a posteriori, utilizing exploratory data analysis methods such as factor 

analysis, cluster analysis, and reduced rank regression. Alternatively, dietary patterns can be 

theoretically derived a priori based on measures of diet quality. This dissertation will focus on a 

priori methods of diet analysis. 

 

A priori dietary pattern analysis involves utilizing pre-defined indices in which quantitative 

estimates of nutrients, foods, and/or food groups derived from diet records/diet history, food 

frequency questionnaires, or 24-hour dietary recalls are scored according to a metric of diet 

quality, such as dietary diversity, government nutrient and food intake recommendations, or 

favored dietary patterns (e.g. Mediterranean dietary pattern). It is important to note, however, 

that it is the investigator that defines “diet quality” and these definitions change over time (1). 

For example, attributes of a low-fat diet, which were emphasized in the 1980s and 1990s, would 

possibly be defined and scored differently on indices utilized during that time period than they 

would be on indices developed today given advances in our understanding of the relationship 

between fat intake and cardiometabolic outcomes (2). 

 

The most well-known and widely applied dietary index is perhaps the Healthy Eating Index 

(HEI) developed by the U.S. Department of Agriculture in 1995 (3). The HEI is a summary 

measure of diet quality based on both food groups and nutrients. Briefly, the HEI assesses: 1) 

conformity to the serving recommendations of the USDA Food Guide Pyramid (4) for grains, 

vegetables, fruits, milk, and meat; 2) the Dietary Guidelines for Americans (5) nutrient 
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recommendations for total fat, saturated fat, cholesterol, and sodium; and, 3) dietary variety (3). 

Additional examples of indices previously utilized to measure dietary quality include: the 

Healthy Diet Indicator (HDI) (6), Healthy Food Index (HFI) (7), Recommended Food Score 

(RFS) (8), Diet Quality Index (DQI) (9), Diet Quality Score (DQS) (10), and Mediterranean Diet 

Score (MDS) (11). A number of these indices, including the HEI, have been revised since their 

initial inception and have alternative versions that have been employed in more recent years as 

the paradigm of “diet quality” has shifted. For example, adapted versions of the HEI include the 

Alternative Healthy Eating Index (AHEI) (12), the Healthy Eating Index from Food Frequency 

Score (HEI-f) (13), the HEI-2005 (14), the HEI-2010 (15), and the AHEI-2010 (16). 

 

From the time the analysis of dietary patterns first began in the 1940s through the mid-1990s, a 

priori derived dietary patterns were primarily used to assess nutritional adequacy (1), but they 

are now frequently utilized to examine associations between the human diet and health outcomes 

(17), including obesity (18,19). Two recent analyses examined the association between a 

posteriori and a priori dietary patterns and the risk of obesity in adults (18,19). A meta-analysis 

of 39 a posteriori studies found a significant inverse association between “healthy/prudent 

dietary patterns” and obesity; however, no significant association was found between 

“unhealthy/Western dietary patterns” and obesity  (18). A systematic review of 34 a priori 

studies found mixed results regarding the association of dietary patterns and obesity (19). 

However, among studies that utilized the HEI or its alternate versions (n=13), 10 demonstrated a 

significant inverse relationship with obesity; this correlation was stronger in males than females 

(19). 

 

Recently, the examination of dietary patterns has focused on the role of food processing – the 

alteration of food from the point of harvest (or slaughter) to increase its shelf-stability, nutrient 

profile, palatability, and/or digestibility. The interest in food processing emerged as evidence 

concerning the relationship between the elements of food processing (e.g., sodium, trans fats, 

added sugars, refined grains, processed meats, food additives) and health outcomes has increased 

in recent years, as well as recognition regarding the speed at which global food systems and 

supplies are being transformed (20). A number of food classification indices based on processing 

have been developed and applied in various contexts around the world (21), though the extent of 
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examining industrial food processing in dietary patterns has been carried out almost exclusively 

using the NOVA classification index (22) (Appendix A). Investigators have utilized the NOVA 

to classify and score foods to examine a priori dietary patterns based on the extent of processing 

in the diet and various chronic disease outcomes. These studies have presented findings largely 

focused on the dietary share of ultra-processed foods and drinks (UPFDs) and their association 

with health-related outcomes. 

 

To the best of our knowledge, there are no published studies that have calculated an average 

NOVA score as a single measure of overall diet quality based on processing. However, a number 

of studies have asserted a positive association between the purchase or consumption of UPFDs, 

the most extreme degree of processing, and obesity (23–29). A study conducted in the UK, 

however, did not find any such relationship between UPFDs and obesity (30).  

 

As stated earlier, one of the limitations of a priori dietary pattern analysis is that the investigator 

predefines how diet quality is measured (1) and arbitrarily determines a scoring methodology 

and cut-off values (31). While dietary patterns defined a priori are generally based on current 

nutrition knowledge, the NOVA classification system is particularly novel in that there were no 

previously agreed upon “levels” or “degrees” of food processing in the scientific community 

upon which to discriminate between processing categories (32). Another limitation of a priori 

dietary pattern analysis is validation (1,31). Indices can be validated by assessing nutrient 

adequacy; biochemical, anthropometric, and/or clinical parameters of nutritional status; or health 

outcomes in relation to overall diet scores (1,31). In a review of 20 a priori diet quality indices 

that were utilized in 39 studies examining associations between overall diet scores with nutrient 

adequacy or health outcomes, the investigators found that although the indices were commonly 

associated with higher intakes of micronutrients, and lower risks of mortality and cardiovascular 

disease, the magnitudes of these effects were modest in most published studies, casting doubt on 

their validity (31).Therefore, indices based on food processing, such as NOVA, may accurately 

measure the extent to which individuals eat a range of processed foods, but this does not mean 

the index is a good predictor of morbidity or mortality associated with diet. Many issues that 

traditional diet quality indices face in regards to their construction (i.e., defining quality, cut-off 

points, scoring methodology) extend to NOVA as well. Investigators utilizing NOVA, therefore, 
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must remain cautious in regards to how NOVA is used and how associations are interpreted. 

Despite widespread use, there has been no critique of the NOVA food processing categories, the 

rationale behind the categories, or whether it accurately measures the processing level of the diet.  

 

The nutrition transition, obesity, and food processing 

The nutrition transition, characterized by rapid shifts in dietary and physical activity patterns (33) 

due to increasing national income and urbanization (34), has been implicated in the rising 

prevalence of obesity observed in low- and middle-income countries (LMICs) (35). The 

principal defining characteristic of these dietary shifts has been the rapid transformation of 

traditional dietary patterns to Western dietary patterns marked by an abundance of highly 

processed foods and beverages (33).  

 

This nutrition transition has been especially prominent in Latin America (36). In Bolivia, a lower 

middle-income country in South America and the setting of this dissertation, this nutrition 

transition began in the mid-1990’s, later than other countries in the region (37). Bolivia has 

experienced tremendous economic growth and urbanization in the last 25 years. The economy 

has grown from a GDP of 6.7 billion in 1995 to 33.0 billion USD in 2015 (38). The urban 

population proportion has similarly grown rapidly, nearly doubling between 1992 and 2009 from 

59 to 68% with rural-to-urban migration contributing to over a third of that increase (39). Bolivia 

is expected to further urbanize with 79% of its population living in urban areas by 2050 (40). 

 

Correspondingly, the prevalence of obesity more than doubled from 7.8 to 17.4% between 1994 

and 2008 (41,42). By 2013, this prevalence increased to 24.5% (43), more than tripling in a span 

of 19 years. The most recent Demographic and Health Survey (DHS) data revealed that 

overweight and obesity prevalence is highest among women living in the Bolivian lowlands (i.e., 

Department of Santa Cruz), the wealthiest part of the country, and is more prevalent in urban 

(51.4%) than rural (46.4%) areas (44) (although also notably high for what might be expected in 

rural areas). The overall overweight and obesity prevalence in Bolivia is 62.0% (43). 

 

The pathophysiology of obesity is complex and multifactorial as the state of positive energy 

balance resulting in excess body weight is a result of the interaction between genetic, hereditary 
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(e.g., parental diet, lifestyle and other exposures via epigenetic mechanisms), environmental 

(e.g., the “built” environment, viruses, the gut microbiome, social networks), and socioeconomic 

factors (e.g., income, education), as well as individual behaviors (e.g., diet, physical activity, 

sleep) (45). Figure 1.1 illustrates the mechanisms in which one factor, the processing level of the 

diet, influences obesity. 

 

“Food processing” includes one or more physical and/or chemical operations in which a plant or 

animal-based food is modified from its original state to change or preserve it (46); it also 

encompasses the combination of plant and/or animal derivatives (i.e., ingredients), possibly with 

artificial ingredients, to create new food and beverage products. Even the most minimal forms of 

food processing/preparation (e.g., applying thermal processes, removing an edible peel, grinding 

nuts or seeds) alter the nutrient content (i.e., vitamins, minerals, phytochemicals, dietary fiber) of 

raw food commodities, whereas moderate and higher levels of processing (e.g., addition or 

combination of culinary processed ingredients, refinement of grains, the use of multiple methods 

of processing (e.g., cheesemaking)) alter the nutrient content as well as add energy density and 

constituents that should be limited in the diet (i.e., added sugars, saturated fat, sodium) (47). 

UPFDs, the most extreme form of processing, are essentially industrial concoctions of numerous 

ingredients that are not typically consumed on their own or even derived from raw food 

commodities (e.g., fruit drinks, pre-packaged cookies, reconstituted meat products, candies, etc.), 

often adding substances to the diet (e.g., food extracts/derivatives, dyes, stabilizers, artificial 

flavors, artificial sweeteners, emulsifiers, humectants) that would otherwise not be consumed 

(48). 

 

The primary determinant of the global obesity epidemic has been the transformation of dietary 

patterns (33,49); specifically, the displacement of lower energy density foods (i.e., calories per 

unit weight (kJ/g)) with those of higher energy density (Figure 1.1 (Pathway A)). Foods with 

lower energy density (i.e., vegetables, fruits, legumes, whole grains) tend to be higher in water 

content (i.e., denser in volume and weight) and naturally nutrient-dense as compared to foods 

with high energy density that are more refined and contain larger quantities of fats and sugars.  

Correspondingly, foods with lower energy density tend to be foods that have been minimally 

processed (or not processed at all), whereas foods with higher energy density tend to be foods 
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that have undergone multiple or industrial forms of food processing. Studies have demonstrated 

that people generally consume a constant weight/bulk/volume of food rather than a constant 

quantity of energy (50–55); therefore, the displacement of low energy dense foods with high 

energy dense foods has been hypothesized to be a key contributor of excessive caloric intake and 

the development of obesity. A systematic review by Rouhani et al. of 37 studies that directly or 

indirectly examined this hypothesis found 18 studies with a positive association, 15 studies with 

no association, and 2 studies with a negative association between consumption of a high energy 

dense diet and obesity; 2 studies were not included (56). It is important to note, however, the 

heterogeneity of these studies in regards to study design (cross-sectional, cohort), dietary 

assessment tools (food-frequency questionnaires, dietary records, dietary recalls) utilized, age 

and sex of study participants, and the calculation of energy density (e.g., solid foods only vs. 

beverages included) (56). Rouhani et al. also performed a meta-analysis on 23 of these studies, 

stratified by study design, and found that in cohort studies, high energy dense diets were 

significantly associated with greater weight gain, adjusted mean BMI, and adiposity risk (56). No 

significant association was found between high energy dense diets and obesity measures among 

cross-sectional studies (56). 

 

The gut microbiome 

The microbial community of the large intestine, consisting of trillions of bacteria, but also 

archaea, viruses, parasites, and fungi, is relatively stable within each individual (57). The phyla 

Firmicutes and Bacteroidetes generally constitute over 90% of adult gut bacteria cells; however, 

there are over 1,000 different bacterial species present (58,59). Among the many environmental 

factors (e.g., sanitation, hygiene, climate, geography, urbanicity) that influence the relatively 

stable and diverse adult gut microbiome, habitual diet is recognized as a key regulator of its 

composition (i.e., density and diversity of taxa) (60–68). Therefore, as illustrated by Figure 1.1 

(Pathway B), as the processing level of the diet naturally influences the proportion of 

macronutrients, dietary fiber, and other dietary constituents in the diet, it consequently also 

modulates the composition of the gut microbiome. Studies examining the impact of long-term 

dietary patterns on the gut microbiome have detected taxonomic differences in gut microbiota 

related to the composition of the diet. These differences, perhaps, are most discernable when 

examining the diet and microbiota between Western and non-Western populations.  
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In a comparative study of rural Burkina Faso children who consumed a diet low in fat and animal 

protein and high in starch, fiber, and plant polysaccharides, with Italian children who consumed 

a diet high in fat, animal protein, sugar, starch, and low in fiber, significant differences of gut 

flora were found in relationship to the types of food consumed and proportion of macronutrients 

in the diet (69). The gut microbiomes of the Burkinabe children were also found to be more 

diverse and complex (69). Briefly, at the phyla level, the Firmicutes to Bacteroidetes ratio was 

significantly different, with Firmicutes twice as abundant in the Italian children, suggesting 

dramatically different bacterial colonization of the human gut (69). The microbiomes of the 

Burkinabe children were dominated by Prevotella, the Italian children by Bacteroides (69). 

Similarly, in a separate study, significant differences in the phylogenic composition of 

microbiota were discovered between US residents as compared to Malawians and Amerindians 

with complementary dietary differences (70). Analogous differences in taxonomic composition 

have been observed in additional studies examining the impact of Western and non-Western diet 

on the gut microbiome (71,72). Researchers have also suggested that long-term dietary patterns 

tend to derive one of three specific genera that dominate the composition of the gut microbiome– 

Bacteroides, Prevotella, or Ruminococcus (73), regardless of nationality, gender, age, or BMI 

(74). These genus clusters, or ‘enterotypes’ have been associated with specific diet 

characteristics similar to the Burkina Faso/Italy study (69). The Bacteroides enterotype is 

associated with a diet rich in saturated fat and protein, similar to a Western dietary pattern; 

whereas the Prevotella enterotype is rich in carbohydrates and dietary fiber and low in animal 

protein (73).  

 

The gut microbiome is also influenced by individual dietary components and food processing 

methods and processing components. Raw and unprocessed plant foods (i.e. fruits, vegetables) 

contain autochthonous, diverse bacterial communities that colonize their surfaces and tissues 

(68). Plant polyphenols, lignin, carotenoids, and tannins are also recognized for their ability to 

stimulate the growth of commensal bacteria (68,75–77). However, modern food production 

practices (e.g., heat processing, addition of preservatives) meant to decrease pathogenic and 

spoilage bacteria and thus prolong shelf-life, may decrease beneficial bacterial that aids in 

digestion, crowds out pathogens, and synthesizes vitamins as well (68). Thus, frequent 
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consumption of highly processed and preserved foods reduces the intake of these commensal, 

food-associated microbes (68). Research examining whole grains and dietary fiber (i.e., resistant 

starch, inulin, fructo- and galacto-oligosaccharies, polydextrose, arabinoxylans) suggest a 

beneficial bifidogenic effect (78–80), as well as an increased ability to fuel the growth and 

activity of butyrate-producing bacteria following an increase in consumption (67). Food 

preparation methods also influence food-associated microbes. For example, frying, more so than 

boiling, increases the abundance of pathogenic bacteria in the gut microbiome (81). Recent 

literature also suggests that certain food preservation methods, such as fermentation, beneficially 

modulate the gut microbiome (66,82). Food additives, such as artificial sweeteners (e.g., 

saccharin, sucralose, aspartame) and dietary emulsifiers (e.g., carboxymethylcellulose (CMC), 

polysorbate-80 (P80)), are ubiquitous within highly processed foods. Animal studies have found 

that artificial sweeteners promote the growth of pathogenic bacteria that are able to utilize these 

additives (83–86), whereas emulsifiers weaken the mucosal barrier of the intestinal epithelium 

and facilitate pathogenic bacteria translocation across the intestinal epithelium (87–89). Long-

term consumption of other dietary additives, including food coloring compounds, azo polymer 

coatings (90), and inorganic sulfur (e.g., sulfite and sulfate) (63) are also hypothesized to 

selectively inhibit the growth of commensal bacteria and/or promote the growth of pathogenic 

bacteria, respectively. Therefore, not only is the composition of the gut microbiome impacted by 

the nutritional quality of the diet (i.e., proportions of macronutrients), but it is also affected by 

various degrees of modern food production practices that may also alter its composition and 

function and correspondingly contribute to the pathogenesis of obesity.  

 

While specific groups of colonic bacteria can rapidly change in abundance in response to 

changes in dietary intake of carbohydrates, protein, and fat without changing the ‘enterotype’ of 

the microbiome (73), thousands of years of change and adaptation of the human diet brought on 

by the introduction of fire, cooking techniques, development of agriculture, domestication of 

animals, and food preservation methods (e.g., drying, fermentation) has led to evolutionary 

changes of human GI physiology, its corresponding microbial communities, and function over 

time (63,91). Therefore, it is plausible that the introduction of new dietary exposures (i.e., 

frequent consumption of highly- and ultra-processed foods) that become long-term dietary habits 
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for certain populations (e.g., rural-to-urban migrants in LMICs) may contribute to changing the 

‘enterotype’ in respective hosts.  

 

It is increasingly recognized that the microbial community of the large intestine (i.e., the gut 

microbiome) plays a critical role in modulating metabolism and energy balance. Numerous 

controlled and comparative studies in mice (92–97) and humans (58,59,98) have found different 

taxonomic proportions (i.e., phyla Firmicutes/Bacteroidetes) and decreased diversity (i.e., 

number of distinct species), complexity (i.e., gene richness) and function of gut microbiota 

among subjects who are obese vs. lean.  

 

A number of mechanisms have been proposed as to how an imbalance in the composition of the 

gut microbiome (e.g., 20% increase in Firmicutes with a corresponding 20% decrease in 

Bacteroidetes (99)) influences the obesogenic potential of the host (Figure 1.1 (Pathway C)), 

including: fermentation of indigestible polysaccharides; bile acid metabolism; disruption of the 

gut mucosal barrier; production of the angiopoietin-like protein 4 (ANGPTL4); and, changes in 

appetite and food intake (100). Two of these mechanisms – the fermentation of indigestible 

polysaccharides and the disruption of the gut mucosal barrier – are the most directly linked with 

the processing of foods.  

 

Gut bacteria are able to metabolize indigestible polysaccharides (e.g., cellulose, carrageenan, 

hemicellulose, polydextrose, beta-glucan, pectin, galactomannans (gums), xylans, resistant 

starch, inulin) to short-chain fatty acids (SCFAs) (i.e., butyrate, acetate, and propionate). These 

indigestible plant components, both naturally occurring and artificially produced, are available in 

a range of foods, from more minimally processed whole grains, fruits, and vegetables to food 

additives found in more highly processed food products. In normal healthy adults, SCFAs 

provide 80 – 200 kcal/day (101); dysbiosis of the gut microbiome can result in an additional 150 

kcal/day of energy harvest (99) and potentially increase fat deposition (102). SCFAs also 

modulate the secretion of gut hormones that directly influence satiety (103). 

 

It has been proposed that low-grade inflammation that is associated with obesity is initiated with 

the development of gut barrier dysfunction (104). Studies have demonstrated that dietary 
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emulsifiers weaken the gut mucosal barrier, facilitating the translocation of pathogenic microbes 

across the intestinal epithelium, which drives intestinal inflammation and changes to the gut 

microbial composition (87,105); this was seen to induce obesity/metabolic syndrome in mice 

(87). 

 

Finally, as illustrated by Figure 1.1 (Pathway D), the composition of the gut microbiome may 

mediate the association between the processing level of the diet and obesity through the 

displacement of low energy dense foods with high energy dense foods (via energy harvest from 

the diet and energy storage in the host) by modulating the expression of host genes (106). Fecal 

transplant studies in mice have demonstrated that gut microbiota alter adiposity. Gut microbiota 

from obese mice induce weight gain and increased adiposity in lean, germ-free mice (92,94). 

Furthermore, gut microbiota from lean mice induce weight loss in obese mice (107,108). 

Additional rodent students have also found that mice microbiota responds to reduced caloric 

intake (109) and that it is able to rapidly change nutrient load (110). A limited number of studies 

in humans have also demonstrated an interrelation between energy balance, diet, as well as the 

composition (59,111) and gene pool (112) of the gut microbial community (112). Significant 

changes in the gut microbial community (increases in Bacteroidetes and reductions in 

Firmicutes) have been documented after gastric bypass surgery (113) and weight loss studies 

(111,114,115) in humans; however, some human studies have failed to find differences in the 

Firmicutes/Bacteroidetes ratio between obese and lean individuals (112–117) or found a 

predominance of Bacteroidetes in overweight and obese individuals (98). Therefore, it is unclear 

whether the gut microbiota contributes to obesity in humans. 

 

This dissertation will address limitations of the NOVA food processing-based classification 

system with the development of the Processed Food Dietary Index (PFDI). Using a novel 

approach, the PFDI and NOVA will be utilized as single measures of diet quality to investigate 

and compare the dietary share of processing and nutrient means. The direction and trend of 

nutrients associated with food processing will be examined in an effort to validate the indices. 

Intrinsically linked with the nutrition transition, food processing has provided freedom from the 

daily need to process raw commodities, contributing to societal growth and development. 

However, elements of food processing have also been linked to the development of obesity 
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through the displacement of low energy dense foods with high energy dense foods, as well as the 

composition of the gut microbiome. There have been mixed results in examining the relationship 

between dietary energy density and obesity as well as the composition of the gut microbiome and 

obesity in humans. Therefore, the PFDI and NOVA will also be utilized to examine the 

association between the processing level of the diet, obesity, and the composition of the gut 

microbiome in humans. 

 

The objective of this dissertation is to examine the extent to which the processing level of diets 

of women of reproductive age (18-49 years) in Bolivia is associated with obesity and gut 

microbiome composition. The first aim assesses the nutrient adequacy of the Processed Food 

Dietary Index (PFDI) and NOVA processing classification index and characterizes the 

processing level of diets among women of reproductive age in Bolivia. The second aim explores 

the association between the processing level of the diet and obesity among these same women, 

using the PFDI and NOVA as a single measure of overall dietary quality. The third aim 

examines the association between the PFDI, obesity, and gut microbiome composition. 
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Figure 1.1 Mechanisms in which the processing level of the diet influences obesity. 
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Chapter 2  
 

Two Food Processing Classification Systems Show Heterogeneous Associations with Macro- 
and Micronutrient Intakes Among a Population of Bolivian Women of Reproductive Age 

 
Introduction  

In the last 20 years there has been an increased interest in examining associations between 

dietary patterns and health outcomes rather than focusing solely on isolated nutrients (1,2). As 

the global disease burden has shifted from undernutrition and nutritional deficiencies to 

overnutrition and chronic disease, it has become clear that studying the synergistic and 

antagonistic interactions between nutrients and other biological components of foods may 

provide the strongest epidemiological evidence for diet-health relationships (1–4). Consequently, 

observational a priori and a posteriori dietary patterns have been increasingly used to investigate 

associations with chronic disease risk (1,2). A priori dietary patterns are typically derived from 

pre-defined indices utilizing dietary recommendations as their constructs whereas a posteriori 

dietary patterns are derived from dietary data utilizing data reduction techniques such as cluster 

and factor analysis with post hoc interpretation of the dietary patterns observed (1). Recently, the 

examination of dietary patterns has focused on the role of food processing – the alteration of 

food from the point of harvest or slaughter to increase its shelf-stability, nutrient profile, 

palatability, and/or digestibility. A number of food classification indices based on processing 

have been developed and applied in various contexts around the world (5), though the extent of 

examining food processing in dietary patterns has been carried out almost exclusively using the 

NOVA classification index (6) (Appendix A).  

 

NOVA classifies foods and beverages into four groups according to the nature, extent, and 

purpose of industrial processing used in their production: Group 1: Unprocessed or minimally 

processed foods; Group 2: Processed culinary ingredients; Group 3: Processed foods; Group 4: 

Ultra-processed food and drink products (UPFDs) (7). Scrutiny of the NOVA classification 

system from the nutrition community has been absent until recently (6,8). The majority of studies 
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that have utilized NOVA have focused on associations between the consumption of ultra-

processed products, dietary nutrient profiles, and chronic diseases such as obesity (9). While 

these studies have provided important new insights that contribute to our understanding of 

dietary patterns, the NOVA classification system also has limitations (6,8), including the 

inability to account for variability of processing and to discriminate nutrient intakes across a 

spectrum of processing.  

 

To address these potential limitations of the NOVA classification system we developed an 

alternative schema named the Processed Food Dietary Index (PFDI) (Appendix B). Briefly, the 

PFDI is a food processing-based classification system built on the foundation of the NOVA 

system with some key differences in the number and nomenclature of food processing groups 

and the classification of specific foods and beverages within these groups. Appendix B provides 

a description of the five PFDI groups, as well as examples of the types of foods and beverages 

that fall within each group. In short, the PFDI classification groups are meant to incrementally 

represent a higher level of processing for distinct food groups from one classification group to 

the next. This differs from NOVA, which considers the processing group “processed culinary 

ingredients” more as a processing step needed to transform unprocessed or minimally processed 

foods to processed foods rather than a distinct processing group of foods that people directly 

consume. The PFDI processing groups are meaningful in that they more comprehensively 

consider the various methods of processing different food groups undergo, as well as the impact 

on their nutritive value.   

  

 The objective of this study was to utilize both the NOVA and PFDI classification systems to 

examine and compare the relationships between the dietary share of processing level groups and 

nutrient intakes among a population of Bolivian women of child-bearing age. We hypothesized 

that higher processing levels would be associated with higher macronutrient and sodium intakes 

and lower micronutrient intakes (except sodium) and dietary fiber. We further hypothesized that 

these associations would be attenuated with the presence of fortified and enriched foods in the 

diet. 

 

Methods 
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Study design and participant selection 

Participants for this study were recruited from the baseline participants of a three-year 

longitudinal cohort study in Montero, Bolivia—a fast-growing metropolitan area in the eastern 

lowlands of Bolivia. The cohort study examined regional changes in food environments, diets, 

and nutritional status of women of reproductive age (18-49 years). The study design and 

sampling methods used for the cohort study have been described previously (10). Briefly, the 

baseline assessment of the cohort study was conducted from August to December 2015 and 

included 1,451 women from the city of Montero. Households within purposively selected urban, 

peri-urban and rural districts were randomly selected for participation.  

 

Participants for the current study were eligible for recruitment based on the extent of processing 

in the diet using data from the 2015 baseline assessment of the longitudinal study. Our aim was 

to select groups that represented the extremes of processing in the diet. Utilizing food frequency 

data from the baseline study and the theoretical framework of the PFDI (described above), ad 

hoc scores (1: unprocessed/minimally processed; 2: moderately processed; or 3: highly/ultra-

processed), rather than scores representing the categories of the PFDI, were assigned to 50 food 

groups and items based on the frequency of their consumption due to the limited description of 

the preparation of the foods in the food frequency data. These foods included: grains, starchy 

vegetables, legumes, fruits, noodles, breads, leafy vegetables, dairy products, meats, fats and 

oils, fried foods, and sugar-sweetened beverages.  

 

Cumulative food frequency scores were then calculated by summing the processing scores of the 

food groups and items as indicated by the frequency in which they were consumed for each 

participant. Women with a cumulative food frequency score that fell in the lowest 10% of all 

scores (representing the most “minimally processed” diet) or the highest 5% of all scores in the 

sample (representing the most “highly processed” diet) were eligible for selection for the study 

and served as the sampling frame. In total, there were 127 women representing the “most 

minimally” processed diet and 269 women representing the most “highly processed” diet for a 

total of 396 women. From these, 160 women aged 18-49 years were randomly selected, 80 

representing minimally processed diets and 80 representing highly processed diets (n=160 in 

total). 
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The sample size for this study was based on detecting a difference in mean body mass index 

(BMI) between women who consumed a highly versus minimally processed diet as determined 

by the PFDI. The focus on BMI as an outcome is related to an additional aim of the study that is 

reported elsewhere (Chapter 3). Previous studies examining differences in BMI using metrics of 

dietary patterns (11–13) informed us that with an expected mean difference in BMI of 1.1 and a 

standard deviation of 3.0, an estimated 80 women would be needed in total (assuming 1-β=0.8; 

α=0.05). To ensure sufficient statistical power accounting for potential noncompliance with 

study protocols, we aimed to enroll 160 women in the study. 

 

Between August and October 2016, trained enumerators carried out in-person interviews with 

selected participants. At the time of recruitment, women who were known to be currently 

pregnant (n=7) or taking antibiotics (n=24) were excluded from participation. Women who could 

not be located at the time of recruitment or following a second contact attempt (n=108), as well 

as those who refused to participate (n=5) or were not available for all three visits (n=29), were 

replaced with another randomly selected participant. Two women began a course of antibiotics 

prior to the second interview and were also replaced.  In total, three visits to the participant’s 

home were carried out during a one-week period. All interviews were conducted in Spanish. 

 

Measurement of variables 

Recruited participants completed three in-person, non-consecutive, 24-hour dietary recall 

interviews on two weekdays and one weekend day spanning one week using the standard 

multiple pass method (14). Interviewers recorded information on the types and amounts of foods 

and beverages consumed, time and place of consumption, and where and how foods and 

beverages were prepared. For prepared foods and beverages, the enumerators used their 

knowledge of locally prepared dishes to further question participants regarding the ingredients 

used, amounts, and methods of preparation (e.g., boiled, grilled, fried). For self-contained foods 

and beverages (e.g., packaged, canned, bottled), enumerators collected information about the 

product (i.e., brand, flavor) and nutritional composition (i.e., facts from nutrition and ingredient 

labels). When available and with permission from the participant, labels of consumed 

commercial food and beverage items were photographed.  
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Reported food amounts were converted to grams or milliliters based on food portion tables 

compiled from previous work completed in Peru and Bolivia as well as commercial food product 

labels. Dietary energy and nutrient intakes were estimated based on Bolivian (15) and Peruvian 

(16) food composition tables and supplemented by the USDA National Nutrient Database for 

Standard Reference, Release 28 (SR28) (17). The following nutrients were included in the 

analysis: protein, total fat, saturated fat, polyunsaturated fat, monounsaturated fat, trans fat, 

carbohydrates, dietary fiber, vitamin A (as retinol activity equivalents), vitamin C, thiamin, 

riboflavin, niacin, calcium, iron, magnesium, phosphorus, sodium, potassium, and zinc.  

 

Reported food items were classified according to both PFDI (0 to 4) and NOVA (1 to 4) indices. 

When possible, mixed dishes prepared in the home were disaggregated into their constituent 

ingredients and scored individually. For reported mixed dishes in which recipes were not 

available, mean scores from existing recipes of mixed dishes were utilized. The scores were then 

weighed by calculating the PFDI and NOVA scores by the amount, in grams or milliliters, of 

each food item.  

 

The three 24-hour recalls collected from each participant were used to estimate their average 

energy intake and nutrient consumption. We calculated average PFDI and NOVA scores for each 

participant using the weighted PFDI and NOVA score for each item consumed. PFDI and 

NOVA scores were then categorized into quintiles. The dietary share for each PFDI and NOVA 

food group, respectively, was calculated as a percentage of total energy intake. We also 

calculated the average dietary share of each nutrient. Macronutrient intake was calculated as a 

percentage of total energy; fiber and micronutrients as mean density (g, mg, or µg/1,000 kcal).  

 

Information on the age, educational status, and physical activity level of the participating 

woman, as well as household food insecurity, wealth status, and urban residence (i.e., urban, 

peri-urban, and rural) was sourced from the baseline assessment of the longitudinal study. 

WHO’s Global Physical Activity Questionnaire (GPAQ) was used to assess physical activity 

level by calculating the total time spent in physical activity during a typical week by the intensity 

of the physical activity for a total metabolic equivalent (MET) minutes per week (18). Household 
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food security level (food secure, or mildly, moderately, severely food insecure) was measured 

using the Latin American and Caribbean Household Food Security Measurement Scale (ELCSA) 

instrument (19). Household wealth was assessed using standardized asset scores generated from 

a principal component analysis to create an index that categorized households into five wealth 

quintiles (20). Upon enrollment, the date of birth of each participant was confirmed. 

 

Statistical analyses 

All analyses were performed using the statistical software package SAS 9.4 (SAS Institute Inc., 

Cary, NC, USA). Average energy intake was calculated from the collected 24-hr dietary recall 

data in the present study. The mean percentage of energy intake was calculated for each PFDI 

and NOVA food processing group and across quintiles of PFDI and NOVA scores, respectively. 

Crude linear regression analysis was used to assess the statistical significance across said 

quintiles. The distribution of energy intake, as percent of total energy intake and kcal/day, was 

calculated for food groups within each PFDI food processing group. The average dietary share of 

each nutrient (listed previously) was calculated across quintiles of PFDI scores from women 

representing either the most minimally processed diet or the most highly processed diet from 

calculated cumulative food frequency scores. A two-sample t-test was conducted to compare 

nutrient means between the two groups that served as the sampling frame.  The average dietary 

share of each nutrient was calculated across quintiles of PFDI and NOVA scores, as well as 

across the dietary share of ultra-processed and unprocessed/minimally processed foods. Crude 

and adjusted linear regression analyses were used to assess the associations between quintiles of 

the PFDI and NOVA scores and dietary intake of macronutrients (expressed as percent of total 

energy) and micronutrients (expressed as mean density per 1,000 kcal). Adjusted analyses 

controlled for age, educational attainment, and physical activity of the participating woman, as 

well as household wealth, food insecurity, urban residence, and total energy intake. Reported 

standardized regression coefficients were calculated by standardizing all variables to a mean of 0 

and a SD of 1. Associations were considered consistent with random variation at P>0.05. 

 

Results 

The total analytical sample was 160 women. The average PFDI and NOVA scores were (mean ± 

SD) 1.56 ± 0.46 and 2.04 ± 0.40, respectively. PFDI scores ranged from 0.53 to 2.97; NOVA 
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scores ranged from 1.17 to 3.02. Both PFDI and NOVA scores were normally distributed. PFDI 

and NOVA scores were also highly correlated, r=0.94, p<.0001. The average daily energy intake 

of the women was 1,669 kcal/day.  

 

The dietary share of macro- and micronutrients across quintiles of PFDI scores from the two 

groups (minimally processed group; highly processed group) serving as the sampling frame are 

outlined in Tables 2.1 and 2.2. We were particularly interested in examining differences in mean 

nutrient intakes between the two groups, summarized in Table 2.3. There were no statistically 

significant differences between mean caloric intake or macronutrient values between the two 

groups. Mean intake of dietary fiber (p=0.002), vitamins A (p=0.003) and C (p=0.04), as well as 

magnesium (p <.0001), phosphorus (p=0.001), and potassium (<.0001) were statistically 

significantly higher in the minimally processed group. 

 

Using the PFDI, 1.9% of calories were attributed to unprocessed foods, 19.9% to minimally 

processed foods, 37.9% to moderately processed foods, 31.9% to highly processed foods, and 

9.5% to UPFDs (Table 2.4). Overall, the energy contribution from unprocessed, minimally 

processed, and moderately processed foods was lower among individuals moving from the first 

to fifth quintiles of PFDI scores. In contrast, the energy contribution from highly processed foods 

and UPFDs was higher among individuals with increasing quintiles of PFDI scores. Furthermore, 

this relationship between energy contribution and PFDI scores was observed to be monotonic 

among both unprocessed foods and UPFDs. 

 

Using the NOVA classification system, 22.6% of calories were attributed to unprocessed or 

minimally processed foods, 27.9% to culinary processed ingredients, 40.1% to processed foods, 

and 9.5% to UPFDs (Table 2.4). Overall, the energy contribution from unprocessed or 

minimally processed foods and culinary processed ingredients decreased among individuals with 

increasing quintiles of NOVA scores. In contrast, the energy contribution from processed foods 

and UPFDs increased from the first to fifth quintiles of NOVA scores. The relationship between 

energy contribution and NOVA scores was observed to be monotonic only for UPFDs. 
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The types of foods and beverages consumed by women in this sample in accordance with the 

PFDI food processing groups are described in Table 2.5. Among unprocessed foods, raw fruits 

provided twice the amount of energy (1.3%) of raw vegetables (0.6%). The majority of energy 

contributed by minimally processed foods was from simmered, boiled, and roasted meats (6.4%), 

rice (5.9%), and starchy vegetables (4.3%). Beverages in which sugar was added prior to 

consumption contributed the most energy among moderately processed foods (17.7%), followed 

by pan-fried, grilled, and barbecued meats (12.9%). Fresh breads (10.7%), homemade pastries 

(e.g., empanadas) (9.5%), French fries (4.2%), and fried chicken (3.6%) contributed the most 

energy among highly processed foods, while soft drinks (3.7%) and packaged, ready-to-eat flour-

based confections (e.g., donuts, cakes, cookies) contributed the most energy among UPFDs 

(2.0%).  

 

The dietary shares of macro- and micro-nutrients across quintiles of PFDI and NOVA scores in 

this population are outlined in Tables 2.6 and 2.7. Among macronutrients, the adjusted mean 

intake of carbohydrates decreased significantly across PFDI quintiles (first quintile: 58.8%; fifth 

quintile: 56.3%). In contrast, the adjusted mean intake of carbohydrates increased across NOVA 

quintiles (regression coefficient: 0.02, p<0.05). The adjusted mean consumption of total fat 

increased significantly across both PFDI (first quintile: 28.1%; fifth quintile: 30.1%) and NOVA 

quintiles (first quintile: 27.5%; fifth quintile: 30.3%). A decreasing linear trend in micronutrient 

intakes was observed across both PFDI and NOVA quintiles. This trend was statistically 

significant in adjusted models for dietary fiber (p<0.0001), vitamin A (p<0.0001), vitamin C 

(p<0.0001), magnesium (p<0.05), and potassium (p<0.0001); the crude models for thiamin, 

niacin, iron; and the adjusted model for riboflavin (p<0.05). This trend monotonically decreased 

for dietary fiber and vitamin A across both PFDI and NOVA quintiles, as well as for vitamin C 

across the NOVA quintiles. Mean intake of sodium was highest in the first and third PFDI and 

NOVA quintiles and decreased from the first to fifth PFDI quintiles (first quintile: 1986.8; fifth 

quintile: 1599.7 mg/1000 kcals) and NOVA quintiles (first quintile: 2059.6; fifth quintile: 1543.4 

mg/1000 kcals). 

 

We examined the distribution of nutrient means across quintiles of the dietary share of UPFDs 

(Table 2.8) and unprocessed and minimally processed foods (Tables 2.9 and 2.10). The dietary 
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share of UPFDs among the sample population ranged from a minimum of 0% to a maximum of 

51.1%; the share of unprocessed and minimally processed foods ranged from 1.2% to 63.4%. 

Opposite trends in the direction of associations were observed for a number of nutrients across 

quintiles representing the extremes of consumption of processed foods. Among macronutrients, 

mean consumption of protein decreased while total fat and saturated fat increased as the overall 

share of UPFDs in the diet increased. Concurrently, intake of protein increased and total fat and 

saturated fat decreased as the overall share of unprocessed and minimally processed foods 

increased across both PFDI and NOVA indices. Among micronutrients, mean intake of dietary 

fiber, vitamin A, vitamin C, niacin, magnesium, phosphorus, sodium and potassium decreased 

across quintiles of UPFDs while intake of these micronutrients increased across PFDI and 

NOVA quintiles of unprocessed and minimally processed foods. These trends were observed to 

be statistically significant for total fat, dietary fiber, vitamin C, and potassium. Notably, the mean 

intake of sodium decreased between the first and fifth quintiles of UPFDs and increased between 

the first and fifth quintiles of unprocessed and minimally processed foods; these trends, however, 

were not statistically significant. 

 

Discussion  

In this study, we examined the association between the PFDI and NOVA classification systems 

and the dietary share of processing level groups and nutrient intakes among a population of 

Bolivian women of child-bearing age that were initially selected based on the extent of 

processing in their diet. We investigated how the dietary share of each processing group in the 

NOVA and PFDI classification systems was associated with individual nutrient intakes to 

understand the extent to which processing level groups were consistent with dietary attributes of 

processing. Overall, we found the strongest associations between crude and adjusted models of 

PFDI and NOVA scores with total fat, dietary fiber, vitamin A, vitamin C, magnesium, and 

potassium.  

 

Upon examining the differences in nutrient means from the minimally processed and highly 

processed groups that served as the sampling frame, the finding of no statistically significant 

differences in macronutrient intakes between the two groups was expected since the PFDI scores 

for the entire sample population were normally distributed. While we did find statistically 
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significant differences in mean intake of dietary fiber, vitamin A, vitamin C, magnesium, 

phosphorus, and potassium between the two groups, these differences could have been driven by 

how the FFQ categorized foods and food groups rather than how processing was defined 

utilizing the FFQ questions. 

 

Upon analyzing the distribution of energy, we found that only 9.5% of energy intake was 

attributed to UPFDs in this population. This proportion of UPFDs is low compared to other Latin 

American middle-income countries where studies have calculated the contribution of UPFDs in 

diets to range from 21.5 to 29.8% (21–23). This difference is likely attributable to the more 

limited availability of UPFDs in lower-middle income countries such as Bolivia, as evidenced by 

lower (but rapidly increasing) per capita sales of UPFDs as compared to higher income countries 

(24). Studies utilizing the NOVA classification system have asserted that increased purchasing or 

consumption of UPFDs is associated with obesity (22,25–28); however, limitations regarding 

study design and adjustment for confounding covariates in these studies, as well as a counter 

finding in a study from the United Kingdom (29), challenge these assertions. Despite a high 

prevalence of overweight among Bolivian women of child-bearing age (62% overweight or 

obese in 2013 (30)), our study results suggest that consumption of UPFDs in Bolivia may be 

quite low. This suggests that consumption of UPFDs is not sufficient to explain changing 

patterns of overweight and obesity in low- and middle-income countries and indicates the 

importance of evaluating how each food processing group, not only UPFDs, contributes to the 

overall dietary patterns and nutritional status.  

  

In both the NOVA and PFDI classification systems, unprocessed and minimally processed food 

groups are considered “nutrient dense” (31) – contributing beneficial micronutrients with 

relatively little energy. These groups also contain the largest proportion of unrefined plant foods 

and therefore are likely to contribute the highest density of dietary fiber. As such, we 

hypothesized that the density of vitamins, minerals (excluding sodium), and dietary fiber would 

be lower with increasing PFDI and NOVA score quintiles. This trend was observed for vitamin 

A, vitamin C, magnesium, potassium, and dietary fiber, however, not for other relevant 

micronutrients, including thiamin, riboflavin, niacin, calcium, iron, and zinc. Enrichment and/or 

fortification of “processed foods” (32) may have attenuated the expected trend for these 
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nutrients. Bolivia began fortification of wheat flour with thiamin, riboflavin, niacin, folate, and 

iron in 1997 (33), though there is uncertainty regarding how widespread and to what degree other 

food products (i.e., maize flour, vegetable oils, milk products) may be fortified with various 

micronutrients in Bolivia (34). In addition, UPFD’s are often “fortified” with nutrients as a 

selling point for their consumption. 

 

Previous studies that have utilized the NOVA classification system commonly examined various 

mean nutrient intakes across quintiles of the dietary share of UPFDs. These studies found that 

adjusted intakes of dietary fiber (4 studies), potassium (2 studies), zinc (2 studies), riboflavin (2 

studies), and niacin (2 studies) were statistically significantly lower across increasing quintiles of 

UPFDs (35–38). These results are consistent with the direction of trends observed in our study, 

however, these trends were not statistically significant in our study for magnesium, phosphorus, 

zinc, and niacin. These same studies have reported mixed results regarding the statistical 

significance and direction of trend for vitamin A (4 studies), vitamin C (4 studies), iron (4 

studies), calcium (4 studies), and thiamin (2 studies) (35–38). Our study found that vitamin A 

and vitamin C decreased significantly across quintiles of UPFDs, whereas decreasing trends for 

iron and thiamin, and increasing trends for calcium were not statistically significant. It is 

important to note that the mean dietary share of UPFDs has varied widely in the studies to date, 

including our own (9.5 to 57.5% total energy intake) (35–38). These studies have also utilized 

different populations, and have not adjusted crude models for the same confounding variables, 

all of which could contribute to differences in mean nutrient intake trends across the dietary 

share of UPFDs. 

 

Highly processed foods are likely to contribute the highest density of fat, saturated fat, trans fat, 

carbohydrates (due to added sugar not measured separately), and sodium to diets. We therefore 

expected intakes of these nutrients to be higher across increasing PFDI and NOVA score 

quintiles. However, we did not consistently observe these trends. Total fat intake increased 

across quintiles of both PFDI and NOVA scores. Carbohydrate intake similarly increased across 

quintiles of NOVA scores, however it decreased across quintiles of PFDI scores. The observed 

trends for saturated fat, trans fat, and sodium were not statistically significant. Saturated fat 

intake decreased across PFDI quintiles and increased across NOVA quintiles; trans fat increased 
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across PFDI and NOVA quintiles whereas sodium decreased across PFDI and NOVA quintiles. 

Observing the trend opposite as expected for carbohydrates across PFDI quintiles and the lack of 

association with saturated fat and trans fat intakes may be attributed to the consumption trends of 

food groups within the processing level groups. For example, consumption of traditional 

beverages, teas, fresh juices, and coffee with added sugar contributed 17.7% of total energy 

intake whereas UPFDs that are high in sugar contributed less than 9.5% of total energy intake 

(percentages derived from Table 2.2). Ingredients in beverages were often classified differently 

across the PFDI and NOVA systems resulting in lower PFDI scores than NOVA scores, 

potentially resulting in observed trends that were not aligned with our hypotheses.  The lack of 

association with saturated and trans fat intake across quintiles of the PFDI and NOVA scores 

may be attributed to the higher intake of red meats in minimally and moderately processed 

groups than in highly and ultra-processed groups (i.e., minimally processed (cooked beef: 1.7% 

total energy intake), moderately processed (pan-fried/grilled/barbecued beef: 4.6% total energy 

intake), highly processed (cured and/or dried meats: 0.6%) ultra-processed (processed meats: 

0.3%)), as well as the recent decrease in availability of trans fat in the food supply. Surprisingly, 

the lowest intakes of sodium observed were among individuals in the fourth and fifth quintiles of 

the PFDI and NOVA indices. This finding contrasted with expectations and may be due to the 

addition of table salt in mixed dishes as compared to the relatively low intake of UPFDs that are 

high in sodium (~.5% of total energy intake), as well as inaccurate food composition tables. 

 

In comparing the macronutrient and sodium intakes from the previously mentioned studies 

across increasing dietary share of UPFDs, we found that protein (4 studies) was consistently 

significantly lower and saturated fat (4 studies) was consistently significantly higher across 

increasing quintiles of shares of UPFDs (35–38). There were mixed results regarding 

significance and direction of trend for carbohydrates (4 studies), total fat (4 studies), and sodium 

(3 studies) (35–38). Our findings also showed that intake of protein was significantly lower and 

saturated fat was significantly higher across increased dietary share of UPFDs. Trans fat was not 

included as a nutrient indicator in three of the four other studies. 

 

Study participants consistently had a lower average PFDI score than NOVA score. This disparity 

was likely due to the way in which foods and beverages were classified according to their 
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respective processing level groups. For example, foods and beverages considered “unprocessed” 

scored a “0” utilizing the PFDI but scored a “1” utilizing the NOVA system. However, the 

consistently lower PFDI averages were not due to consumption of a higher number of 

“unprocessed” foods as classified by the PFDI, as evidenced by raw fruits and vegetables making 

up only 1.9% of total energy intake. The majority of foods and beverages consumed in this 

population were considered “moderately processed” utilizing the PFDI classification system 

(37%), scoring a “2”; however, utilizing the NOVA system, these foods scored a “3”, and 

contributed the most to differences in PFDI and NOVA scores. The dietary pattern and 

availability of specific commodities for this particular population did not allow us to analyze 

how the reclassification of a number of food groups, notably flours/pastas and canned goods, 

affected PFDI and NOVA scores. The main sources of complex carbohydrates in this population 

were from rice (5.9% of total energy intake), starchy vegetables (10.2% of total energy intake), 

and fresh breads (10.7% of total energy intake); the use of flours in mixed dishes and the 

consumption of pasta was minimal (3.3% of total energy intake). The consumption of canned 

goods was also minimal, contributing to only 1.4% of energy intake.  

 

The key strength of this study was utilizing a 24-hr dietary recall instrument, repeated three times 

per individual, that was designed to record the specific details needed to accurately classify foods 

and beverages according to their respective processing level groups within the PFDI and NOVA 

classification systems. Therefore, we expect that misclassification of foods according to their 

processing level was limited. Yet, this study had several limitations. First, the small sample size 

provided us with limited statistical power to observe some relationships, and likely prevented a 

comprehensive comparison of classification systems. Second, intakes of added sugars were not 

analyzed in this study given that they were not included in the nutrient composition tables that 

were utilized. Third, despite rigorous training of diet assessment enumerators and strict protocols 

for implementing the multiple pass interview method with probes for snacks and all foods and 

beverages consumed, it is likely that energy and nutrient intakes were underestimated, a common 

source of measurement error with dietary recall (39). Finally, though not a concern for the 

internal validity of the study, the findings are not generalizable to the larger Bolivian population 

given our focus on women in eastern Bolivia and how participants were selected on the extent of 

processing in their diet. 
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Conclusion 

Overall, we found that the expected nutrient intake trends were not always consistent with the 

extent of processing as defined by the PFDI and NOVA classification systems; for example, a 

more highly processed diet was not necessarily higher in saturated fat, trans fat, and sodium. 

In theory, using nutrients as the main construct to distinguish levels of processing is sound, based 

on what we know regarding the impact of various methods of food processing on the loss and/or 

gain of nutrient values. However, enrichment and/or fortification of foods at various levels of 

processing and the formulation of ultra-processed foods with ingredients often meant to add an 

otherwise absent dietary benefit likely attenuates expected trends of nutrients across levels of 

processing. Our findings were consistent with other studies that also did not show expected 

nutrient trends with increased intakes of UPFDs. Inconsistencies in the direction and significance 

of nutrient trends were also found between these studies. Our findings suggest that using 

nutrients to validate classification systems based on processing, such as NOVA and the PFDI, 

requires further research. Furthermore, to the best of our knowledge, NOVA, the most widely-

used classification system based on processing, has not been validated using any metric and 

should be applied with caution. As the field of nutritional epidemiology continues to investigate 

the utilization of classification systems based on the extent of processing, it should also 

cautiously explore translating processing level groups into dietary guidelines that are easy for the 

public to understand and adopt into practice. 

 

Another important consideration from our dietary analysis is that our sample population 

consumed a very low percentage of UPFDs (9.5%) as part of their overall diet, making it difficult 

to determine whether differences in nutrient values across UPFD quintiles were objectively 

meaningful (Table 2.8). With the majority of research utilizing NOVA solely focusing on the 

role of UPFDs, it’s important recognize that it may not be an appropriate or useful tool to use in 

certain contexts, particularly in a cross-sectional setting among low- and middle-income 

populations where UPFD intake may not be a substantial part of the diet. 

 

Finally, an ancillary objective of this research was to compare the nutrient value trends across a 

spectrum of processing derived using the PFDI and NOVA, to evaluate the effect of classifying 

certain food groups in different processing level groups. Notably, there were very few 
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differences in the direction and significance of trend between the PFDI and NOVA quintiles 

(Tables 2.6 and 2.7), most likely attributable to the dietary pattern and size of the sample 

population. It would be judicious to compare the nutrient trends across processing utilizing 

NOVA and the PFDI using dietary data from a much larger, and perhaps, more industrialized 

population. Regardless, we hope that the authors of NOVA consider the suggestions regarding 

the system’s processing groups’ (Appendix A), especially if NOVA is meant to be a tool 

applicable to the global food system.  
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Table 2.1 Distribution of FFQ minimally processed group nutrient means across PFDI quintiles. Montero, Bolivian women of child-bearing age, 2016; n=80. 

 

  

   PFDI quintiles (FFQ Minimally Processed Group) Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
(n=16) 

2 
(n=16) 

3 
(n=16) 

4 
(n=16) 

5 
(n=16) Crude Adjustedb 

Macronutrients (% of total energy intake) 
Carbohydrates 56.5 50.6-63.5 59.4 58.2 54.3 53.1 56.2 -0.17 -0.03 

Protein 15.9 13.3-18.1 15.1 17.3 16.7 15.9 14.4 -0.06 0.02 
Total fat  30.0 23.3-34.5 27.4 26.1 30.6 32.4 29.4 0.16 -0.00* 

Saturated fat  8.4 6.3-10.0 8.4 7.5 9.7 8.5 8.0 0.01 -0.09 
Polyunsaturated fat 6.7 4.6-8.8 6.0 6.7 7.1 7.8 6.0 0.07 -0.06 

Monounsaturated fat 11.1 8.8-12.5 10.4 9.4 10.8 13.0 12.2 0.19* 0.10 
Trans fat 1.8 0.3-1.8 1.2 1.6 1.6 2.6 2.5 0.11 0.15 

          

Dietary fiber (g/1000 kcal) 10.9 8.0-13.2 12.4 12.4 11.0 8.9 8.5 -0.32*** -0.27* 
          

Micronutrients (mean density) 
Vitamin A (µg/1000 kcal) 583.8 324.8-762.9 685.9 669.0 539.1 572.2 338.1 -0.21* -0.32** 
Vitamin C (mg/1000 kcal) 66.0 39.6-83.6 83.6 60.5 72.4 53.9 48.7 -0.21* -0.09** 

Thiamin (mg/1000 kcal) 0.9 0.7-1.0 0.9 0.9 0.9 0.8 0.7 -0.04** -0.03 
Riboflavin (mg/1000 kcal) 0.9 0.7-1.0 0.8 1.0 1.0 0.9 0.9 0.01 -0.01 

Niacin (mg/1000 kcal) 34.9 15.8-45.0 37.8 36.2 38.9 30.5 29.3 -0.09 -0.02 
Calcium (mg/1000 kcal) 254.7 152.9-298.3 226.7 273.3 287.1 231.3 279.8 0.06 -0.02 

Iron (mg/1000 kcal) 7.1 5.8-8.1 7.4 7.6 7.2 6.8 6.3 -0.12* -0.08 
Magnesium (mg/1000 kcal) 125.4 94.0-147.2 131.5 145.0 137.3 106.6 100.0 -0.23* -0.23 
Phosphorus (mg/1000 kcal) 529.8 431.1-618.3 509.4 577.9 557.8 504.4 508.5 -0.04 -0.06 

Sodium (mg/1000 kcal) 1893.0 1362.8-2106.7 2054.6 1518.7 2560.4 1669.7 1663.2 -0.06 -0.10 
Potassium (mg/1000 kcal) 1342.1 1034.1-1541.1 1562.3 1391.4 1394.5 1129.7 1080.9 -0.32** -0.25** 

Zinc (mg/1000 kcal) 22.8 14.0-26.9 19.0 22.0 25.3 24.6 26.2 0.14 0.25* 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 2.2 Distribution of FFQ highly processed group nutrient means across PFDI quintiles. Montero, Bolivian women of child-bearing age, 
2016; n=80. 

 
  

   PFDI quintiles (FFQ Highly Processed Group) Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
(n=16) 

2 
(n=16) 

3 
(n=16) 

4 
(n=16) 

5 
(n=16) Crude Adjustedb 

Macronutrients (% of total energy intake) 
Carbohydrates 56.3 51.3-60.8 57.3 59.2 54.7 54.9 56.3 -0.08 0.02 

Protein 14.9 13.2-16.7 15.3 15.4 16.0 14.3 13.9 -0.20 -0.23 
Total fat  29.7 25.1-33.6 30.1 27.2 29.7 30.9 30.5 0.08 0.05 

Saturated fat  8.4 6.6-9.7 8.2 7.6 8.1 9.1 8.6 0.08 0.10 
Polyunsaturated fat 6.8 5.1-7.7 8.4 6.3 6.8 7.1 6.3 -0.09 -0.05 

Monounsaturated fat 11.8 9.2-13.3 12.9 11.7 11.4 11.6 11.9 -0.04 -0.01 
Trans fat 2.0 0.3-1.1 1.4 3.1 1.6 3.5 0.5 -0.09 -0.08 

          
Dietary fiber (g/1000 kcal) 9.2 7.4-11.1 11.6 10.7 9.3 8.6 7.3 -0.31*** -0.32** 

          
Micronutrients (mean density) 

Vitamin A (µg/1000 kcal) 419.0 234.3-536.1 680.2 464.4 454.8 323.6 307.6 -0.23** -0.19** 
Vitamin C (mg/1000 kcal) 53.9 33.2-67.9 74.2 62.4 66.7 33.6 41.9 -0.25** -0.22 

Thiamin (mg/1000 kcal) 1.0 0.7-0.9 2.0 1.6 0.8 0.8 0.7 0.26* -0.08* 
Riboflavin (mg/1000 kcal) 1.1 0.6-0.9 2.0 1.6 0.8 0.8 1.0 -0.19 -0.03* 

Niacin (mg/1000 kcal) 27.8 16.7-33.9 30.4 36.6 28.1 23.7 22.4 -0.14* -0.14 
Calcium (mg/1000 kcal) 243.5 159.4-302.4 199.7 289.0 259.1 235.1 218.7 -0.06 -0.00 

Iron (mg/1000 kcal) 7.6 5.8-8.1 8.1 9.3 7.5 7.6 6.0 -0.31** -0.27 
Magnesium (mg/1000 kcal) 99.2 80.7-111.0 106.2 104.5 100.5 107.1 84.0 -0.12* -0.14 
Phosphorus (mg/1000 kcal) 461.5 392.5-506.7 438.3 483.5 478.8 455.4 442.8 -0.05 -0.03 

Sodium (mg/1000 kcal) 1608.7 1344.7-1776.9 1813.6 1724.4 1666.4 1367.9 1561.6 -0.07* -0.06 
Potassium (mg/1000 kcal) 1034.6 863.3-1223.1 1177.9 1064.0 1146.7 962.6 897.8 -0.18** -0.20** 

Zinc (mg/1000 kcal) 22.9 13.3-28.2 25.4 27.8 20.6 22.1 20.6 -0.12 -0.02 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 2.3 Differences in mean nutrient intake between FFQ groups. Montero, Bolivian women of child-bearing age, 2016; n=160. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 FFQ 
Minimally Processed Group (n=80) 

FFQ 
Highly Processed Group (n=80) 

 

 Mean Range Mean Range p-value* 
PFDI score 1.46 0.53-2.63 1.66 0.78-2.97 0.008 
Energy (kcals) 1624.7 646.5-3464.2 1713.5 545.6-3940.7 0.31 
      
Macronutrients (% of total energy intake) Mean Interquartile range Mean Interquartile range  
Carbohydrates 56.5 50.6-63.5 56.3 51.3-60.8 0.83 
Protein 15.9 13.3-18.1 14.9 13.2-16.7 0.08 
Total fat  30.0 23.3-34.5 29.7 25.1-33.6 0.52 
Saturated fat  8.4 6.3-10.0 8.4 6.6-9.7 0.88 
Polyunsaturated fat 6.7 4.6-8.8 6.8 5.1-7.7 0.75 
Monounsaturated fat 11.1 8.8-12.5 11.8 9.2-13.3 0.19 
Trans fat 1.8 0.3-1.8 2.0 0.3-1.1 0.73 
      
Dietary fiber (g/1000 kcal) 10.9 8.0-13.2 9.2 7.4-11.1 0.002 
      
Micronutrients (mean density)      
Vitamin A (µg/1000 kcal) 583.8 324.8-762.9 419.0 234.3-536.1 0.003 
Vitamin C (mg/1000 kcal) 66.0 39.6-83.6 53.9 33.2-67.9 0.04 
Thiamin (mg/1000 kcal) 0.9 0.7-1.0 1.0 0.7-0.9 0.35 
Riboflavin (mg/1000 kcal) 0.9 0.7-1.0 1.1 0.6-0.9 0.25 
Niacin (mg/1000 kcal) 34.9 15.8-45.0 27.8 16.7-33.9 0.05 
Calcium (mg/1000 kcal) 254.7 152.9-298.3 243.5 159.4-302.4 0.58 
Iron (mg/1000 kcal) 7.1 5.8-8.1 7.6 5.8-8.1 0.23 
Magnesium (mg/1000 kcal) 125.4 94.0-147.2 99.2 80.7-111.0 <.0001 
Phosphorus (mg/1000 kcal) 529.8 431.1-618.3 461.5 392.5-506.7 0.0001 
Sodium (mg/1000 kcal) 1893.0 1362.8-2106.7 1608.7 1344.7-1776.9 0.12 
Potassium (mg/1000 kcal) 1342.1 1034.1-1541.1 1034.6 863.3-1223.1 <.0001 
Zinc (mg/1000 kcal) 22.8 14.0-26.9 22.9 13.3-28.2 0.98 
*p-values from two-sample t-test of FFQ group means 



 45 

Table 2.4 Distribution of total energy intake by PFDI food processing groups across PFDI quintiles and NOVA food processing groups across 
NOVA quintiles. 

 Mean (SD) 1 
(n=32) 

2 
(n=32) 

3 
(n=32) 

4 
(n=32) 

5 
(n=32) 

p-value* 
PFDI food processing groups  PFDI quintiles 

Group 1: Unprocessed foods, %  1.9 (2.5) 2.4 (2.3) 2.2 (2.7) 2.1 (3.2) 1.4 (1.5) 1.3 (2.5) 0.0443 

Group 2: Minimally processed foods, % 19.9 (10.8) 21.7 (10.7) 20.1 (10.6) 21.5 (10.0) 19.0 (11.8) 16.9 (10.8) 0.0256 

Group 3: Moderately processed foods, % 37.0 (18.3) 46.4 (18.6) 37.8 (19.4) 31.0 (17.3) 37.7 (17.0) 31.8 (15.6) 0.0056 

Group 4: Highly processed foods, % 31.8 (16.1) 23.2 (12.3) 32.6 (18.5) 36.7 (14.1) 31.1 (16.9) 35.4 (15.6) 0.0082 

Group 5: Ultra-processed foods, % 9.5 (9.3) 6.1 (8.8) 7.3 (6.7) 8.6 (9.3) 10.8 (8.0) 14.5 (11.0) < .0001 

NOVA food processing groups  NOVA quintiles 
 

Group 1: Unprocessed or minimally 
processed foods, % 22.6 (11.4) 24.2 (10.3) 24.9 (12.0) 25.9 (12.0) 19.7 (9.8) 18.3 (11.2) 0.0065 

Group 2: Culinary processed ingredients, % 27.9 (19.3) 42.7 (17.8) 29.0 (19.3) 18.7 (16.2) 25.9 (19.3) 23.1 (15.5) 0.0006 

Group 3: Processed foods, % 40.1 (17.6) 27.3 (14.1) 39.8 (17.1) 46.4 (15.9) 42.6 (18.6) 44.3 (16.2) 0.0007 

Group 4: Ultra-processed foods, % 9.5 (9.3) 5.8 (8.8) 6.3 (6.8) 9.0 (8.8) 11.8 (7.5) 14.3 (11.3) < .0001 

*p-values for linear regression of crude models 
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Table 2.5 Distribution of total energy intake by PFDI food processing groups.  
Montero, Bolivian women of child-bearing age; 2016.

Food group kcal/day % of total 
energy intake 

Unprocessed foods 31.7 1.9 
Raw fruits 21.7 1.3 
Raw vegetables 10.0 0.6 

Minimally processed foods 332.1 19.9 
100% fruit juice 4.5 0.3 
Milk 17.7 1.1 
Vegetables   

Starchy, cooked 72.5 4.3 
Non-starchy, cooked  10.4 0.6 

Dried spices/herbs 0.2 0.0 
Legumes 2.3 0.1 
Grains   

Rice 98.7 5.9 
Other (oats, quinoa, wheat) 16.0 1.0 

Cooked (e.g., simmered, boiled, roasted) meats 106.9 6.4 
Eggs, boiled 3.1 0.2 

Moderately processed foods 617.6 37.0 
Traditional beveragesa w/ added sugar 96.5 5.8 
Tea w/ added sugar 79.0 4.7 
Freshly squeezed juices w/ added sugar 72.6 4.3 
Coffee w/ added sugar 49.1 2.9 
Pan-fried/grilled/barbecued meats  216.5 12.9 
Flours and pastas 54.6 3.3 
Pan-fried/scrambled eggs 25.9 1.6 
Canned fruit (heavy syrup) 17.3 1.0 
Canned fish (packed in oil) 6.2 0.4 

Highly processed foods 530.8 31.8 
Fresh breads, tortillas  178.6 10.7 
Home-made savory or sweet pastries, may be friedb 159.4 9.5 
Shallow or deep-fried starchy vegetables/fruits   

French fries 70.7 4.2 
Other (cassava, plantains) 28.7 1.7 

Fried chicken 60.5 3.6 
Cheese 11.5 0.7 
Cured and/or dried meats 10.0 0.6 
Alcoholic beverages (beer, wine, brandy) 8.2 0.5 
Condiments (mustard, mayonnaise) 3.2 0.2 

Ultra-processed foods 158.6 9.5 
Soft drinks 61.0 3.7 
Flour-based confectionsc 33.4 2.0 
Dairy-based confectionsd 12.7 0.8 
Instant cocoa beverages 12.7 0.8 
Self-contained sugar sweetened beveragese 12.1 0.7 
Flavored yogurt, yogurt drinks 12.1 0.7 
Processed meats (hotdogs, sausages, pepperoni) 5.0 0.3 
Crackers, popcorn, plantain chips 3.1 0.2 
Ultra-processed breads 2.5 0.1 
Chocolate candies 1.2 0.1 
Otherf 2.9 0.1 

a Refresco de mocochinchi, refresco de linaza, tujure, api de maiz morado, refresco de tamarindo;           
b Empanadas, salteñas, fritos, tamales, sonso, cuñapé; c Donuts, cakes, cookies, sweet breads;                 
d Pudding, flan, dulce de leche, ice cream, milkshakes; e Juice drinks, chocolate milk, Powerade;             
f Jell-O, flavoring/coloring additives, soy-based products, cereal/cereal bars 
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Table 2.6 Distribution of nutrient means across PFDI quintiles. Montero, Bolivian women of child-bearing age, 2016; n=160. 

 

 

   PFDI quintiles Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
(n=32) 

2 
(n=32) 

3 
(n=32) 

4 
(n=32) 

5 
(n=32) Crude Adjustedb 

Macronutrients (% of total energy intake) 
Carbohydrates 56.5 51.0–62.1 58.8 58.7 54.6 54.0 56.3 -0.12* -0.02* 

Protein 15.4 13.2–17.5 15.2 16.3 16.3 15.1 14.1 -0.14 -0.13 
Total fat  29.3 24.1–34.3 28.1 26.7 30.1 31.6 30.1 0.12* 0.03** 

Saturated fat  8.4 6.6–9.8 8.4 7.6 8.8 8.8 8.4 0.04 -0.01 
Polyunsaturated fat 6.7 5.0–8.0 6.7 6.5 6.9 7.4 6.2 -0.00 -0.05 

Monounsaturated fat 11.4 9.2–13.1 11.1 10.6 11.2 12.3 12.0 0.10 0.06 
Trans fat 1.9 0.3–1.3 1.2 2.3 1.6 3.1 1.3 0.02 0.06 

          

Dietary fiber (g/1000 kcal) 10.1 7.5–11.8 12.2 11.6 10.0 8.8 7.8 -0.34*** -0.31*** 
          

Micronutrients (mean density) 
Vitamin A (µg/1000 kcal) 501.4 281.1–615.0 684.3 566.7 489.1 447.9 319.0 -0.24*** -0.37*** 
Vitamin C (mg/1000 kcal) 59.9 34.5–75.9 80.9 61.5 69.0 43.8 44.5 -0.24*** -0.15** 

Thiamin (mg/1000 kcal) 1.0 0.6–1.0 1.2 1.3 0.8 0.8 0.7 -0.13* -0.07 
Riboflavin (mg/1000 kcal) 1.0 0.6–1.0 1.1 1.3 0.9 0.8 0.9 -0.06 -0.02* 

Niacin (mg/1000 kcal) 31.3 16.2–39.2 35.7 36.4 32.5 27.1 25.0 -0.13* -0.10 
Calcium (mg/1000 kcal) 249.1 155.2–299.1 219.1 281.1 270.5 233.20 241.6 -0.00 -0.02 

Iron (mg/1000 kcal) 7.3 5.8–8.1 7.6 8.5 7.4 7.2 6.1 -0.19** -0.16 
Magnesium (mg/1000 kcal) 112.3 87.4–126.3 124.4 124.8 115.5 106.9 90.0 -0.22*** -0.22* 
Phosphorus (mg/1000 kcal) 495.7 409.2–547.3 489.4 530.7 510.9 479.9 467.4 -0.08 -0.08 

Sodium (mg/1000 kcal) 1751.3 1347.0–1936.6 1986.8 1621.5 2029.6 1518.8 1599.7 -0.08 -0.10 
Potassium (mg/1000 kcal) 1188.4 925.9–1365.6 1454.2 1227.7 1247.3 1046.1 966.5 -0.30*** -0.27*** 

Zinc (mg/1000 kcal) 22.8 13.9–27.8 20.8 24.9 22.5 23.4 22.7 0.02 0.11 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 2.7 Distribution of nutrient means across NOVA quintiles. Montero, Bolivian women of child-bearing age, 2016; n=160. 

 

   NOVA quintiles Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
(n=32) 

2 
(n=32) 

3 
(n=32) 

4 
(n=32) 

5 
(n=32) Crude Adjustedb 

Macronutrients (% of total energy intake) 
Carbohydrates 56.5 51.0–62.1 58.6 57.7 55.5 54.6 56.0 -0.10 0.02* 

Protein 15.4 13.2–17.5 15.7 16.5 16.1 14.6 14.2 -0.21** -0.21 
Total fat  29.3 24.1–34.3 27.5 27.2 30.0 31.6 30.3 0.14* 0.03** 

Saturated fat  8.4 6.6–9.8 7.8 7.8 8.8 9.0 8.6 0.09 0.03 
Polyunsaturated fat 6.7 5.0–8.0 6.4 6.9 7.0 7.2 6.3 0.00 -0.07 

Monounsaturated fat 11.4 9.2–13.1 10.7 10.6 11.6 12.4 11.8 0.11 0.04 
Trans fat 1.9 0.3–1.3 1.2 2.1 2.2 2.5 1.5 0.03 0.07 

          

Dietary fiber (g/1000 kcal) 10.1 7.5–11.8 12.6 11.5 10.1 8.3 7.7 -0.38*** -0.37*** 
          

Micronutrients (mean density) 
Vitamin A (µg/1000 kcal) 501.4 281.1–615.0 692.9 564.5 526.9 416.5 306.3 -0.26*** -0.21*** 
Vitamin C (mg/1000 kcal) 59.9 34.5–75.9 83.8 67.1 60.1 47.8 40.9 -0.28*** -0.19** 

Thiamin (mg/1000 kcal) 1.0 0.6–1.0 0.9 1.2 1.2 0.8 0.7 -0.08* -0.05 
Riboflavin (mg/1000 kcal) 1.0 0.6–1.0 0.8 1.2 1.2 0.9 0.9 -0.01 0.02* 

Niacin (mg/1000 kcal) 31.3 16.2–39.2 41.2 31.7 33.3 24.1 26.4 -0.16* -0.13 
Calcium (mg/1000 kcal) 249.1 155.2–299.1 237.7 261.1 275.0 214.5 257.2 -0.01 -0.04 

Iron (mg/1000 kcal) 7.3 5.8–8.1 8.0 8.3 7.3 7.1 6.1 -0.22** -0.22 
Magnesium (mg/1000 kcal) 112.3 87.4–126.3 134.5 127.5 107.7 100.5 91.2 -0.29*** -0.29* 
Phosphorus (mg/1000 kcal) 495.7 409.2–547.3 516.3 522.1 512.2 447.6 480.2 -0.13 -0.13 

Sodium (mg/1000 kcal) 1751.3 1347.0–1936.6 2059.6 1628.3 1961.2 1563.8 1543.4 -0.10 -0.13 
Potassium (mg/1000 kcal) 1188.4 925.9–1365.6 1507.6 1288.7 1182.6 963.1 999.7 -0.35*** -0.31*** 

Zinc (mg/1000 kcal) 22.8 13.9–27.8 18.8 22.4 27.1 23.2 22.6 0.06 0.17 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 2.8 Distribution of nutrient means across quintiles of ultra-processed foods. Montero, Bolivian women of child-bearing age, 2016; n=160. 

 

  Quintiles of ultra-processed foods and drinks (UPFDs) Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
n=32 

2 
n=32 

3 
n=32 

4 
n=32 

5 
n=32 

0-0.95% 0.96-5.6% 5.7-9.4% 9.5-15.0% 15.1-51.1% Crude Adjustedb 
Macronutrients (% of total energy intake)         

Carbohydrates 56.5 51.0–62.1 56.7 59.2 55.0 55.3 56.1 -0.06 0.34* 
Protein  15.4 13.2–17.5 17.4 15.2 15.7 14.9 13.6 -0.34*** -0.34** 

Total fat 29.3 24.1–34.3 27.7 27.0 30.9 30.6 30.3 0.13* 0.05** 
Saturated fat 8.4 6.6–9.8 7.8 7.3 8.9 9.1 8.9 0.13* 0.12* 

Polyunsaturated fat 6.7 5.0–8.0 6.7 6.2 7.4 6.6 6.7 0.06 -0.02 
Monounsaturated fat 11.4 9.2–13.1 10.7 11.6 12.0 11.5 11.4 0.04 -0.02 

Trans fat 1.9 0.3–1.3 1.6 2.6 3.0 1.4 0.8 -0.08 -0.06 
          

Dietary fiber (g/1000 kcal) 10.1 7.5–11.8 12.8 10.4 10.0 8.8 8.3 -0.31*** -0.29*** 
          

Micronutrients (mean density)         
Vitamin A (µg/1000 kcal) 501.4 281.1–615.0 719.6 562.8 423.3 415.8 385.4 -0.23*** -0.19** 
Vitamin C (mg/1000 kcal) 59.9 34.5–75.9 87.6 65.7 51.4 48.1 46.9 -0.26*** -0.20*** 

Thiamin (mg/1000kcal) 1.0 0.6–1.0 0.9 1.1 1.2 0.8 0.7 -0.07 -0.01 
Riboflavin (mg/1000 kcal) 1.0 0.6–1.0 0.9 1.2 1.3 0.9 0.8 -0.03 0.01* 

Niacin (mg/1000 kcal) 31.3 16.2–39.2 42.1 27.4 28.1 33.6 25.4 -0.12* -0.09 
Calcium (mg/1000 kcal) 249.1 155.2–299.1 243.4 235.2 258.3 229.9 278.8 0.05 0.06 

Iron (mg/1000 kcal) 7.3 5.8–8.1 8.0 8.1 7.2 6.9 6.5 -0.18** -0.16 
Magnesium (mg/1000 kcal) 112.3 87.4–126.3 142.7 102.6 111.6 104.4 100.2 -0.21** -0.19 
Phosphorus (mg/1000 kcal) 495.7 409.2–547.3 555.2 472.6 493.4 462.0 495.1 -0.11* -0.09 

Sodium (mg/1000 kcal) 1751.3 1347.0–1936.6 1892.9 1713.2 1704.9 1938.1 1507.4 -0.05 -0.04 
Potassium (mg/1000 kcal) 1188.4 925.9–1365.6 1541.9 1123.9 1162.0 1081.9 1032.0 -0.28*** -0.24*** 

Zinc (mg/1000 kcal) 22.8 13.9–27.8 24.1 25.2 21.7 21.4 21.7 -0.06 0.01 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 2.9 Distribution of nutrient means across quintiles of unprocessed and minimally processed foods according to PFDI indices. Montero, 
Bolivian women of child-bearing age, 2016; n=160. 

 

 

   Quintiles of unprocessed/minimally-processed foods (PFDI) Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
(n=32) 

2 
(n=32) 

3 
(n=32) 

4 
(n=32) 

5 
(n=32) 

1.2-13.6% 13.7-18.4% 18.5-23.6% 23.7-30.3% 30.4-64.0% Crude Adjustedb 
Macronutrients (% of total energy intake) 

Carbohydrates 56.5 51.0–62.1 56.5 55.3 57.2 55.6 57.7 0.03 -0.02* 
Protein 15.4 13.2–17.5 13.8 15.5 15.4 16.1 16.2 0.23** 0.23 

Total fat  29.3 24.1–34.3 30.2 31.0 28.8 29.2 27.4 -0.11** -0.06** 
Saturated fat  8.4 6.6–9.8 8.1 9.1 8.7 8.2 7.7 -0.06 -0.03 

Polyunsaturated fat 6.7 5.0–8.0 7.2 7.1 6.7 6.9 5.9 -0.10 -0.07 
Monounsaturated fat 11.4 9.2–13.1 12.0 12.4 11.1 11.2 10.4 -0.12* -0.09 

Trans fat 1.9 0.3–1.3 0.7 3.4 2.2 1.8 1.5 -0.00 0.03 
          

Dietary fiber (g/1000 kcal) 10.1 7.5–11.8 9.2 9.6 10.3 10.0 11.3 0.13* 0.13* 
          

Micronutrients (mean density) 
Vitamin A (µg/1000 kcal) 501.4 281.1–615.0 501.3 506.7 459.4 449.2 590.4 0.03 0.01* 
Vitamin C (mg/1000 kcal) 59.9 34.5–75.9 40.1 68.4 53.3 59.3 78.6 0.18** 0.15** 

Thiamin (mg/1000 kcal) 1.0 0.6–1.0 0.8 1.2 1.2 0.8 0.8 -0.03 -0.04 
Riboflavin (mg/1000 kcal) 1.0 0.6–1.0 0.8 1.3 1.2 0.8 1.0 0.06 -0.01* 

Niacin (mg/1000 kcal) 31.3 16.2–39.2 33.1 26.4 29.1 36.2 31.9 0.03 0.03 
Calcium (mg/1000 kcal) 249.1 155.2–299.1 240.7 238.3 247.1 254.6 264.8 0.05 0.00 

Iron (mg/1000 kcal) 7.3 5.8–8.1 6.8 7.9 8.0 6.9 7.1 -0.02 -0.02 
Magnesium (mg/1000 kcal) 112.3 87.4–126.3 101.7 106.2 107.2 114.7 131.8 0.17** 0.14 
Phosphorus (mg/1000 kcal) 495.7 409.2–547.3 462.2 482.9 483.9 523.6 525.7 0.05** 0.12 

Sodium (mg/1000 kcal) 1751.3 1347.0–1936.6 1624.3 1899.5 1655.3 1601.4 1975.9 0.04 0.06 
Potassium (mg/1000 kcal) 1188.4 925.9–1365.6 1006.8 1141.0 1123.2 1252.3 1418.5 0.24*** 0.22*** 

Zinc (mg/1000 kcal) 22.8 13.9–27.8 18.0 26.9 20.5 20.0 28.7 0.11 0.13 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 2.10 Distribution of nutrient means across quintiles of unprocessed and minimally processed foods according to NOVA indices. Montero, 
Bolivian women of child-bearing age, 2016; n=160. 

 

   Quintiles of unprocessed/minimally-processed foods (NOVA) Standardized regression 
coefficienta 

Dietary content Mean Interquartile 
range 

1 
(n=32) 

2 
(n=32) 

3 
(n=32) 

4 
(n=32) 

5 
(n=32) 

1.2-13.6% 13.7-18.4% 18.5-23.6% 23.7-30.3% 30.4-64.0% Crude Adjustedb 
Macronutrients (% of total energy intake) 

Carbohydrates 56.5 51.0–62.1 56.3 55.5 56.8 57.0 56.7 0.03 -0.01* 
Protein 15.4 13.2–17.5 14.2 15.2 15.5 15.7 16.4 0.21** 0.20 

Total fat  29.3 24.1–34.3 30.1 30.3 29.7 28.4 28.0 -0.09 -0.05** 
Saturated fat  8.4 6.6–9.8 8.5 8.4 8.8 8.2 7.9 -0.05 -0.04 

Polyunsaturated fat 6.7 5.0–8.0 6.6 7.2 7.2 6.5 6.2 -0.05 -0.04 
Monounsaturated fat 11.4 9.2–13.1 12.0 11.7 12.0 10.9 10.5 -0.11 -0.09 

Trans fat 1.9 0.3–1.3 1.0 2.9 2.2 1.9 1.4 -0.00 0.01 
          

Dietary fiber (g/1000 kcal) 10.1 7.5–11.8 8.6 9.8 10.4 10.6 10.8 0.15** 0.15* 
          

Micronutrients (mean density) 
Vitamin A (µg/1000 kcal) 501.4 281.1–615.0 544.5 438.8 483.3 471.9 568.5 0.02 -0.00* 
Vitamin C (mg/1000 kcal) 59.9 34.5–75.9 45.7 60.5 56.4 65.1 72.1 0.15** 0.12** 

Thiamin (mg/1000 kcal) 1.0 0.6–1.0 0.8 0.9 1.5 0.9 0.8 0.00 -0.03 
Riboflavin (mg/1000 kcal) 1.0 0.6–1.0 0.8 0.9 1.6 0.8 1.0 0.01 -0.02* 

Niacin (mg/1000 kcal) 31.3 16.2–39.2 29.3 28.3 30.1 37.2 31.7 0.06 0.06 
Calcium (mg/1000 kcal) 249.1 155.2–299.1 244.1 238.3 250.7 244.5 268.0 0.05 -0.01 

Iron (mg/1000 kcal) 7.3 5.8–8.1 6.6 7.8 7.9 7.5 7.0 0.02 0.00 
Magnesium (mg/1000 kcal) 112.3 87.4–126.3 94.3 110.6 107.2 118.7 130.7 0.20** 0.18 
Phosphorus (mg/1000 kcal) 495.7 409.2–547.3 468.9 481.7 484.1 512.7 531.0 0.14* 0.10 

Sodium (mg/1000 kcal) 1751.3 1347.0–1936.6 1762.4 1721.4 1728.1 1663.4 1881.1 0.02 0.04 
Potassium (mg/1000 kcal) 1188.4 925.9–1365.6 1016.9 1095.7 1191.0 1259.4 1378.8 0.23*** 0.21*** 

Zinc (mg/1000 kcal) 22.8 13.9–27.8 19.4 24.1 20.6 22.0 28.0 0.11* 0.12*** 
aThe standardized regression coefficients were derived by standardizing all nutrient variables to have a mean of 0 and an SD of 1. 
bAdjusted for age (categorical variable: 18-29, 30-39, 40-49), urbanicity (categorical variable: urban, peri-urban, rural), educational attainment (categorical variable: some 
primary, completed primary, completed secondary, some post-secondary); caloric intake (continuous), wealth quintiles (categorical variable: lowest, low, middle, high, highest), 
household food security (categorical: food secure, food insecure, moderately food insecure, extremely food insecure) and physical activity (continuous variable: total MET-
minutes/week). 
p-values for linear trend: *p < 0.05; **p < 0.01; ***p < 0.001 
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Chapter 3  
 

Neither Processing Level of the Diet nor Consumption of Ultra-Processed Foods is Associated 
with Obesity Among Women of Reproductive Age in Eastern Bolivia 

 
Introduction 

The nutrition transition, characterized by rapid shifts in dietary and physical activity patterns (1) 

due to increasing national income and urbanization (2), is especially prominent in Latin America 

(3). The principal defining characteristic of dietary change has been a shift in consumption of 

more minimally processed, traditional foods to highly processed foods that are abundant in a 

Western diet (1). This dietary transition has been implicated in the rising prevalence of obesity in 

many low- and middle-income countries (LMICs), particularly in Latin America (3–5). Bolivia, 

a lower middle-income country in this region, has experienced tremendous economic growth and 

urbanization in the last 25 years (6,7). At the same time, the national prevalence of obesity more 

than tripled from 7.8% in 1994 (8) to 24.5% in 2013 (9). 

 

Increasingly, a posteriori and a priori dietary patterns have been utilized to examine the 

relationship between the human diet and obesity. A posteriori patterns are derived from dietary 

data utilizing multivariate methods such as factor and cluster analysis (10) and reduced ranked 

regression (11), whereas a priori dietary patterns are frequently derived from pre-defined indices 

measuring diet quality (e.g., Healthy Eating Index (HEI) (12)) or adherence to specific dietary 

patterns (e.g., Mediterranean dietary pattern) or recommendations (e.g., Dietary Approaches to 

Stop Hypertension DASH diet) (13). A meta-analysis of 39 studies examining the association 

between a posteriori dietary patterns and risk of obesity in adults found a significant inverse 

association between “healthy/prudent dietary patterns” and risk of obesity, but no significant 

association between “unhealthy/Western dietary patterns” and risk of obesity (14). Additionally, 

a recent systematic review of studies (n=34) that utilized of a variety of diet indices to assess a 

priori dietary patterns found mixed results regarding the association of dietary indices with 

obesity in adults (15). Of note, the Healthy Eating Index (HEI) and its alternate versions were the 
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most frequently utilized index (n=13) (15). Among these particular studies, 10 demonstrated an 

inverse relationship with obesity related measures such that a healthier diet according to HEI 

indices was associated with a lower risk of obesity (15). 

 

Recently, the examination of dietary patterns has focused on the role of food processing utilizing 

the NOVA classification system (16). Researchers have utilized NOVA as a “scoring system” to 

examine a priori dietary patterns based on the extent of processing in the diet and various 

chronic disease outcomes. Ultra-processed foods and drink products (UPFDs), defined by 

NOVA as industrial formulations of food and drink products that undergo processes with no 

domestic equivalents to create products that are ready to heat, eat, or drink (16), are a particular 

focus of the NOVA classification system. A number of observational studies, using 

heterogeneous study designs and analytical approaches, have observed a positive association 

between the household purchase or consumption of UPFDs (the highest level of processing as 

defined by NOVA) and indicators of obesity (17–23). Two well-conducted Brazilian cross-

sectional studies found that, on average, UPFDs contributed an average of 25.5% (18) to 29.6% 

(19) of total energy intake. In the first of these studies, in analyses adjusting for 

sociodemographic characteristics, smoking, and physical activity, a statistically significant 

positive association was found between the household availability of UPFDs and BMI, as well as 

a 37.4% higher likelihood of obesity among those in the highest quartile of household 

availability of UPFDs compared to those in the lowest quartile (18). In the second of these 

studies, in analyses adjusted solely for sociodemographic characteristics, authors similarly found 

that participants that consumed the greatest proportion of UPFDs (³ 44%) had a significantly 

higher BMI (0.94 kg/m2 (95% CI=0.42,1.47)) and higher odds of obesity (1.98 (95% 

CI=1.23,3.12) than those that consumed the lowest proportion of UPFDs (£ 13%) (19). Recently, 

evidence from a cross-sectional study of US adults adjusted for sociodemographic 

characteristics, smoking, and physical activity found that consuming ≥ 74.2% versus ≤ 36.5% of 

UPFDs was associated with 53% higher odds of obesity (95% CI=1.29, 1.81); UPFDs 

≥contributed 58% of total energy intake among Americans (23). In addition to these cross-

sectional studies, three ecological studies examined the trends of UPFDs and obesity in Latin 

American, Sweden, and Europe. In the first, a time-series study adjusting for social and 

economic factors, an association between increasing annual sales of UPFDs and increasing adult 
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BMI from 2000 to 2009 was observed in 12 Latin American countries (24). In the second, sales 

of UPFDs in Sweden were observed to increase 142% from 1960 to 2010 in parallel with an 

estimated 15% increase in energy intake and the doubling of adult obesity prevalence (5 to 11%) 

from 1980 to 2010 (20). The third study among 19 European countries found the median 

household availability of UPFDs contribute 26.4% of total energy intake; after adjustment for 

national income, prevalence of physical inactivity, prevalence of smoking, obesity, and time lag 

between obesity and food budget surveys, every percentage point increase in household 

availability of UPFDs was associated with a 0.25 percentage point increase in obesity prevalence 

among adults (22). The only prospective study to examine the relationship between processing 

level of the diet and obesity, a prospective cohort study in Spain adjusting for sociodemographic 

characteristics, physical activity, smoking, BMI at baseline, and specific dietary behaviors, found 

that adults in the highest quartile of UPFD consumption were at a higher risk of developing 

overweight or obesity (1.26 (95% CI=1.10, 1.45) compared to those in the lowest quartile (21). 

However, a large cross-sectional study in the UK, also accounting for known confounders of 

obesity, observed no association between the intake of UPFDs and measures of obesity despite 

UPFDs contributing 53% of energy intake (25). To the author’s knowledge, despite increasing 

evidence of the association between consumption of UPFDs and obesity, no studies to date have 

examined the direct association of NOVA scores with obesity. Therefore, our understanding of 

how the NOVA, utilized as a single measure of overall diet quality based on processing, relates 

to obesity is not well understood. 

 

Limitations of NOVA related to how processing groups were defined and food groups were 

categorized, described previously (Appendix A), led to the development of the Processed Food 

Dietary Index (PFDI) (Appendix B). Building from the NOVA food classification system, the 

PFDI is a food processing-based index that incrementally classifies distinct food groups based on 

the various methods of processing different food groups endure. Differences in the number of 

processing groups and the incremental of nature of the PFDI led to a number of fundamental 

differences of how specific food groups were classified in the PFDI as compared to the NOVA 

system (i.e., distinguishing between unprocessed and minimally processed foods; recategorizing 

canned and packaged fruits, vegetables, legumes, meats by their packing solution; and redefining 
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flour as a processed culinary ingredient). However, the PFDI retained the NOVA definition of 

UPFDs; as such, UPFDs are classified the same according to both indices.  

 

The objective of this study was to determine the relationship between the processing level of  

diets using both the PFDI and NOVA classification systems and measures of obesity among a 

sample of women of reproductive age in Montero, Bolivia, a city located on the outskirts of 

Santa Cruz, one of the fastest growing metropolitan areas in Bolivia (7). We hypothesized that 

more highly processed diets among women would be associated with a higher BMI, waist 

circumference (WC), and waist-to-hip ratio (WHR) and higher odds of obesity. 

 

Methods 

Study design and participant selection 

The study design and sampling methods utilized for this cross-sectional sub-study have been 

described previously (Manuscript 1). Briefly, baseline participants of a three-year longitudinal 

cohort study in Montero, Bolivia, which examined regional changes in food environments, diets, 

and nutritional status of women of reproductive age (18-49 years) (26), were eligible for 

recruitment based on the extent of processing in their diet as determined from dietary data 

collected between August and December 2015 during the baseline of the longitudinal cohort 

study. In total, 160 women aged 18-49 years were randomly selected from cumulative food 

frequency scores; 80 representing minimally processed diets and 80 representing highly 

processed diets (n=160). Women with these food frequency scores were excluded from 

eligibility if they were known to be currently pregnant (n=7) or taking antibiotics (n=24). 

Between August and October 2016, trained enumerators conducted in-person interviews with 

selected participants collecting dietary and anthropometric data.  

 

Measurement of variables 

Dietary assessment  

During a one-week period on non-consecutive days, recruited participants completed three in-

person 24-hour dietary recalls on two weekdays and one weekend day using the standard 

multiple pass method (27). Information regarding the types and amounts of foods and beverages 

consumed, the methods used for preparation, and time and place of consumption were recorded 
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by the enumerators. Labels of consumed commercial food and beverage products were 

photographed when available and with permission from the participant. Food portion tables 

compiled from previous work in Bolivia and Peru were used to convert reported amounts of 

foods and beverages to grams or milliliters. Bolivian (28) and Peruvian (29) food composition 

tables, supplemented by the USDA National Nutrient Database for Standard Reference, Release 

28 (SR28) (30), were used to estimate dietary energy, total fat, carbohydrates, protein, dietary 

fiber intake, and 12 micronutrients. 

 

The PFDI and NOVA classification systems were used to classify reported food and beverage 

items on a scale from 0 to 4 and 1 to 4, respectively, as previously described (Manuscript 1). 

Culinary dishes prepared in the home were disaggregated into their constituent ingredients and 

scored individually when possible. When recipes were not available for such dishes, mean scores 

from existing recipes were utilized. The scores were then weighted by calculating each 

respective PFDI and NOVA score by the amount, in grams or milliliters, of each food and 

beverage item. Using the respective weighted PFDI and NOVA scores for each item consumed, 

we calculated average PFDI and NOVA scores for each participant. The distribution of PFDI and 

NOVA scores, respectively, were divided into five equal parts to determine quintiles.  

 

Anthropometric assessment  

The height (cm) and weight (kg) of each participant were measured in triplicate during the first 

home visit and recorded to the nearest 0.1 cm and 0.1 kg, respectively, using regularly calibrated, 

portable, digital floor scales (Seca® 874) and stadiometers (Seca® 213). Height and weight were 

used to calculate body mass index (BMI). Waist and hip circumference (cm) were also measured 

in triplicate using an ergonomic circumference measuring tape (Seca® 201) and recorded to the 

nearest 0.1cm. Waist circumference was measured at the iliac waist; hip circumference was 

measured at the broadest hip location. Waist-to-hip ratio was calculated as the waist measure 

relative to the hip measure. Waist circumference was utilized as a measure of abdominal obesity; 

waist-to-hip ratio as an additional measure of body fat distribution. 

 

Information regarding potential confounding covariates, including age, educational attainment, 

physical activity level, household food insecurity, wealth status, and urban residence (i.e., rural, 
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peri-urban, and urban) were obtained from the baseline longitudinal cohort data. Smoking was 

also examined as a potential confounder; no association was found due to the small number of 

smokers in this sample (n=4); therefore, this variable was excluded from analyses. The date of 

birth of each participant was confirmed upon enrollment. Physical activity level was calculated 

using WHO’s Global Physical Activity Questionnaire (GPAQ) by calculating the total time spent 

in physical activity during a typical week by the intensity of the physical activity for a total 

metabolic equivalent (MET) minutes per week (31). The WHO recommends ≥ 600 metabolic 

equivalent (MET) minutes of physical activity per week (31). The Latin American and Caribbean 

Household Food Security Measurement Scale (ELCSA) instrument (32) was used to measure 

household food insecurity (food secure, or mildly, moderately, severely food insecure). 

Standardized household asset scores generated from a principal component analysis were used to 

create an index of household wealth that was subsequently categorized into quintiles (33).  

 

Statistical analyses 

All analyses were performed using the statistical software package SAS 9.4 (SAS Institute Inc., 

Cary, NC, USA). Counts and means were calculated for anthropometric measures, dietary 

indicators, and sociodemographic characteristics, as well as across quintiles of PFDI and NOVA 

scores. Pearson’s chi-squared test statistics were calculated to test for differences in proportions 

of categorical characteristics across quintiles of PFDI and NOVA scores. Due to small cell 

values (< 5), Fisher’s exact tests were used to calculate exact p-values to determine associations 

between categorical covariates across PFDI and NOVA quintiles. When unable to compute a 

Fisher’s exact test p-value, a Monte Carlo approximation (10,000 simulation replicates) was 

implemented to obtain an accurate p-value without cell-count constraint. F-statistics from one-

way ANOVA were calculated to test for differences in means of covariates across PFDI, NOVA, 

and UPFD quintiles. One-way ANOVA was also used to calculate F-statistics to test for 

differences in crude and adjusted mean BMI, waist circumference, and waist-to-hip ratio across 

PFDI, NOVA, and UPFD quintiles. Post-hoc analyses were conducted using the Tukey 

procedure to test differences in means between pairs of quintiles. Estimated crude and adjusted 

odds ratios (ORs) of obesity were calculated using logistic regression. Adjusted analyses 

controlled for total energy intake, age, urban residence, educational attainment, physical activity, 
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household wealth, and food insecurity. Associations were considered consistent with random 

variation at p>0.05. 

 

Results 

Two of the 160 women enrolled in the study initiated antibiotic treatment following enrollment 

and were replaced with a randomly selected eligible replacement participant. The total analytical 

sample was 160 women. Mean BMI among women in the sample was 29.6; more than three 

quarters of the women were overweight or obese (76.9%) (Table 3.1). The average energy intake 

of the women was 1,669 kcal/day with 29.3% of energy from total fat, 56.5% from 

carbohydrates, and 15.4% from protein. Differences in proportions and means of anthropometric 

measures, dietary indicators, and sociodemographic characteristics across quintiles of PFDI and 

NOVA scores are outlined in Table 3.2 and Table 3.3, respectively. Mean BMI and categories of 

BMI were not statistically significantly different across PFDI or NOVA quintiles. Mean caloric 

intake was statistically significantly different across PFDI and NOVA quintiles (caloric intake: p 

< .0001). We observed no differences across quintiles of PFDI and NOVA scores in the 

proportion of participants meeting the WHO recommendation for minimum physical activity 

level. A larger proportion of participants in the highest quintiles of PFDI and NOVA scores lived 

in urban areas as compared to lower quintiles (p=0.05).  

 

Using ANOVA, we observed differences in mean BMI, WC, and WHR across quintiles of PFDI 

scores (BMI: p=0.0002; WC: p=0.0004; WHR: p=0.001), as well as differences in mean BMI 

and WC across quintiles of NOVA scores (BMI: p=0.001; WC: p=0.0001) (Table 3.4). Mean 

BMI and WC were higher in the first quintile (BMI: 33.1 [95% CI: 30.9, 35.3]); WC: 93.9 cm 

[95% CI: 88.6, 99.2]) as compared to the fifth quintile (BMI: 30.2 [95% CI: 28.1, 32.3]); WC: 

88.5 cm [95% CI: 83.5, 93.5]) of PFDI scores. This trend was also observed for NOVA scores, 

with higher BMI and WC values in the first quintile (BMI: 31.9 [95% CI: 29.7, 34.1]); WC: 93.6 

cm [95% CI: 88.5, 98.8]) as compared to the fifth quintile (BMI: 30.5 [95% CI: 28.4, 32.6]); 

WC: 89.7 cm [95% CI: 84.7, 94.7]). We had hypothesized that we would observe a positive 

linear relationship between mean BMI, WC, and WHR measurements with quintiles of PFDI and 

NOVA scores. However, when examining pairwise comparisons of these outcomes using a post 
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hoc Tukey test, we observed no differences in mean BMI, WC, or WHR between any pairs of 

PFDI and NOVA quintiles. 

 

We also utilized ANOVA to examine differences in BMI, WC, and WHR across quintiles of 

UPFDs (BMI: p=0.0007; WC: p=0.0002; WHR: p=0.0374) (Table 3.5), the highest level of 

processing according to both PFDI and NOVA classification systems, with the hypothesis that 

increasing intake of UPFDs would be positively associated with measures of obesity. Mean BMI 

and WC were actually highest in second quintile of UPFD intake (BMI: 31.6 [95% CI: 29.5, 

33.7]); WC: 92.6 cm [95% CI: 87.7, 97.5]) and lowest in the fifth quintile (BMI: 29.2 [95% CI: 

27.0, 31.4]); WC: 86.7 cm [95% CI: 81.5, 91.8]). Post hoc Tukey analysis showed no differences 

in mean BMI, WC, or WHR between any pairs of UPFD quintiles. 

 

Finally, we used logistic regression to calculate the odds of obesity based on the processing level 

of the diet and proportion of total energy from UPFDs (Table 3.6). Neither the PFDI (OR=0.55; 

95% CI: 0.23, 1.35; p=0.19), NOVA (OR=0.77; 95% CI: 0.28, 2.13; p=0.62), nor energy intake 

from UPFDs (OR=0.98; 95% CI: 0.94, 1.02; p=0.38) were associated with obesity among 

women in this sample.  

 

Discussion 

In this cross-sectional study we investigated the relationship between the processing level of diet 

and obesity among a population of Bolivian women of child-bearing age. We utilized an average 

PFDI and NOVA score as a single measure of overall diet quality to examine the extent to which 

an overall processed diet was associated with BMI, WC, and WHR. We also examined whether 

the share of UPFDs in the diet was associated with obesity in these women. Adjusting for 

covariates, we detected no differences in mean anthropometric outcomes (BMI, WC, and WHR) 

between any pairs of PFDI, NOVA, or UPFD quintiles. Unexpectedly, mean BMI was highest in 

both the first PFDI and NOVA quintiles and lowest in the second PFDI quintile and third NOVA 

quintiles. WC displayed a similar trend, with mean WC the highest in both the first PFDI and 

NOVA quintiles and lowest in the third PFDI and NOVA quintiles. 
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We observed that caloric intake was higher across increasing quintiles of the PFDI and NOVA. 

Utilizing the PFDI, caloric intake monotonically increased from 1359 kcal/day (quintile 1) to 

1951 kcal/day (quintile 5) (Table 3.2). Similarly, caloric intake increased from 1470 to 1997 

kcal/day between quintiles 1 and 5 of NOVA scores (Table 3.3). This may be due to the 

substitution of more energy-dense, processed foods for less energy-dense, less processed foods. 

Highly processed foods are generally more refined, lower in water content, and contain larger 

quantities of fats and/or sugars than more minimally processed foods, contributing to increased 

caloric load. People tend to consume a constant weight or volume of food rather than a constant 

quantity of energy (34–39). Therefore, substituting the consumption of more highly processed 

foods for more minimally processed foods could result in the consumption of a greater amount of 

energy. For example, 100 grams of potato chips contain 2.4 grams of water and contribute 545 

kcal (30), whereas 100 grams of baked potato contain 74.9 grams of water and contribute 93 kcal 

(30). An increase in adiposity and weight could result if excessive caloric intake is not offset 

with increased physical activity. 

 

We hypothesized that more highly processed diets would be associated with higher BMI, WC, 

and WHR. A substantial body of research has analyzed the relationship between the 

macronutrient composition of various dietary patterns (e.g., low-carbohydrate, low-fat, 

Mediterranean, low-glycemic load) and body weight regulation or weight loss (40). These 

studies have comprehensively demonstrated that caloric restriction, not macronutrient 

composition, is the key determinant of long-term weight loss (40). Thus, excessive caloric 

intake, not macronutrient composition, is likely the key dietary determinant of long-term weight 

gain that leads to obesity. Therefore, we expected to observe an association between measures of 

obesity and differences in caloric intake associated with more highly processed diets. However, 

despite higher caloric intakes among women with more highly processed diets, neither PFDI nor 

NOVA quintiles were associated with differences in BMI, WC, and WHR.  

 

There are a number of reasons why we may not have observed an association between the 

processing level of diet and the anthropometric measures we assessed. First, both NOVA and the 

PFDI are a priori dietary patterns and there have not been consistent results regarding the 

association of dietary indices and obesity in adults (15). Second, it is evident from the higher 
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caloric intake across increasing quintiles of PFDI and NOVA scores and the low energy intake 

from UPFDs in this population, that caloric displacement may not be driven solely by increased 

consumption of UPFDs, but by other degrees of processing as well (e.g., adding sugar to 

beverages, eating fried chicken in place of grilled chicken, consuming shallow or pan-fried 

starchy vegetables in place of cooked or raw vegetables). Therefore, it is important to examine 

how all levels of processing comprehensively contribute to obesity by using a single measure of 

diet quality based on processing, such as average PFDI or NOVA scores. Third, we have a very 

low mean proportion of UPFD consumed in this population (9.5%) compared to other studies 

that found an association between UPFD intake and measures of obesity (18,22,23,41). This 

difference is likely attributable to the more limited availability of UPFDs in lower-middle 

income countries such as Bolivia, as evidenced by lower (but rapidly increasing) per capita sales 

of UPFDs as compared to higher income countries (24,42). At the population level, low intake of 

UPFDs, a very large and wide-ranging food group, narrows the range of average PFDI and 

NOVA scores as well as the range of proportions of UPFDs consumed. This makes it particularly 

difficult to distinguish if, for example, an average PFDI or NOVA score of 2.3 is representative 

of a more minimally processed diet than an average score of 2.6 or if consuming 5% of energy 

intake from UPFDs is healthier than consuming 15%. Furthermore, these small differences at the 

population level make it even more difficult to detect if they are associated with differences in 

nutritional status, especially when such a large proportion of the population is obese.  

 

This study had several strengths including the application of a 24-hr dietary recall instrument 

designed to capture the details needed to accurately classify foods and beverages according to 

their respective processing level groups with the PFDI and NOVA classification systems. In 

addition, to the author’s knowledge, this study for the first time examines the association 

between the scores of a priori processed based dietary pattern indices and obesity. However, the 

study has several limitations. First, the study is cross-sectional and therefore the causal nature of 

the observed associations cannot be established. Furthermore, though we collected three days of 

dietary recall, these data may not reflect long-term dietary habits and usual food intakes. Despite 

rigorous training of survey enumerators on the dietary recall method employed, estimates of 

dietary energy intake were also likely underestimated—a common source of measurement error 

with dietary recall (43). Nonetheless, given the adaptation of our dietary recall method to 
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accurately classify foods and beverages according to their respective processing level groups, we 

expect that misclassification of foods and beverages according to processing level was limited. 

Finally, the sample size of the study may have provided limited statistical power to observe some 

relationships despite our sample size calculation suggesting sufficient power due to UPFDs not 

being as prevalent in the diet as expected.  

 
Conclusion 

Despite a high prevalence of excess weight among the Bolivian women sampled in this study 

(76.9% overweight or obese), the processing level of the diet and/or the proportion of UPFDs 

consumed was not associated with BMI or WC. Furthermore, the results indicate that caloric 

displacement in the diet may not be driven solely by increased consumption of UPFDs, but by 

other degrees of processing as well (e.g., adding sugar to beverages). This finding supports the 

importance of examining how all levels of processing, not only UPFDs, impact the diet and may 

contribute to obesity.  

 

While more highly processed diets are associated with increased caloric intake and potential 

weight gain, the types of foods and dietary patterns from which calories originate must also be 

considered. For example, fruits, vegetables, nuts, and whole grains can protect against chronic 

disease while consumption of refined grains and sugar-sweetened beverages can increase chronic 

disease risk (44). There is also evidence that these same foods can both aid in weight control as 

well as contribute to weight gain (44). Therefore, utilizing the PFDI or NOVA as a single 

measure of diet quality is as important as examining the proportion of UPFDs in the diet.  

 

The development, application, and validation of a tool (i.e., food-based index) that best measures 

overall diet quality across global food patterns is essential to understanding how to best prevent 

future chronic disease and obesity, particularly in LMICs. Whether that tool is solely based on 

processing (e.g., the PFDI or NOVA), or incorporates measures of processing with other dietary 

attributes, (e.g., components of the HEI), also warrants further consideration.  
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Table 3.1 Anthropometric measures, dietary indicators, and sociodemographic characteristics of women 
of child-bearing age in Montero, Bolivia (n=160). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 n % or mean ± SD 
Anthropometric measures    

BMI 160 29.6 ± 5.6 
   
Under-a and normal weight (BMI < 25) 37 23.1 
Overweight (≥	25 BMI < 30) 53 33.1 
Obese (BMI ≥ 30) 70 43.8 
   

Dietary indicators    
Caloric intake, kcal/day 160 1669.1 ± 553.6 
   
Total fat, % caloric intake 160 29.3 ± 7.1 
Carbohydrates, % caloric intake 160 56.5 ± 8.0 
Protein, % caloric intake 160 15.4 ± 3.3 
   
Fiber, grams/day 160 16.4 ± 6.9 

   
Sociodemographic characteristics    

Age (years) 160 32.6 ± 8.9 
18-29  63 39.4 
30-39 56 35.0 
40-49 41 25.6 

   
Parity 160 2.7 ± 2.0 

   
Physical activity, meets WHO recommendationa 88 55.0 

   
Highest attained education level (n=155)   

Attended primary 10 6.5 
Completed primary 63 40.6 
Completed secondary 66 42.6 
Some post-secondary 16 10.3 

   
Urbanicity    

Urban 71 44.4 
Peri-urban 51 31.9 
Rural 38 23.8 

   
Household food security    

Food secure 64 40.0 
Minimal food insecurity 50 31.3 
Moderate food insecurity 28 17.5 
Severe food insecurity 18 11.3 

   
Wealth quintiles    

Lowest 30 18.8 
Low 28 17.5 
Middle 42 26.3 
High 30 18.8 
Highest 30 18.8 

a Two participants had a BMI < 18.5  
b The WHO recommends ≥ 600 metabolic equivalent (MET) minutes of physical activity per 
week as calculated using the Global Physical Activity Questionnaire (GPAQ) 
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Table 3.2 Distribution of anthropometric measures, dietary indicators, and sociodemographic characteristics by quintiles of PFDI scores. 

 

  Quintiles of PFDI scores  
 1 (n=32) 2 (n=32) 3 (n=32) 4 (n=32) 5 (n=32) p-value 

Anthropometric measures n % or mean ± SD  
BMI 160 32.2 ± 6.2 29.4 ± 5.7 28.7 ± 4.1 29.4 ±	29.2 28.2 ± 5.5 0.05b 

Under-a and normal weight (BMI < 25) 37 5.4 21.6 21.6 24.3 27.0 
0.37c Overweight (≥	25 BMI < 30) 53 22.6 22.6 18.9 17.0 18.9 

Obese (BMI ≥	30) 70 25.7 17.1 20.0 20.0 17.1 
Dietary characteristics        

Caloric intake, kcal/day 160 1359.3 ±	360.7 1520.7 ± 467.8 1611.0 ± 407.1 1903.6 ± 541.6 1951.0 ± 707.0 < 0.0001b 
Sociodemographic characteristics        

Age, years 160 35.0 ± 9.2 33.1 ± 8.2 33.7 ± 9.8 30.7 ± 8.4 30.4 ± 8.4 0.17b 
18-29  63 17.5 17.5 19.0 25.4 20.6 

0.67d 30-39 56 17.9 23.2 17.9 16.1 25.0 
40-49 41 26.8 19.5 24.4 17.1 12.2 

Parity 160 3.2 ± 2.0 2.4 ± 1.7 2.7 ± 2.0 3.2 ± 2.5 2.2 ± 1.5 0.16b 

Physical activity, meets WHO guidanced 88 20.5 22.7 17.0 17.0 22.7 0.53d 
Highest attained education level 155       

Attended primary 10 40.0 10.0 10.0 30.0 10.0 

0.42e Completed primary 63 27.0 20.6 17.5 19.0 15.9 
Completed secondary 66 12.1 19.7 22.7 21.2 24.2 
Some post-secondary 16 6.3 25.0 25.0 12.5 31.3 

Urbanicity 160       
Urban 71 9.9 18.3 23.9 22.5 25.4 

0.05c Peri-urban 51 23.5 21.6 19.6 13.7 21.6 
Rural 38 34.2 21.1 13.2 23.7 7.9 

Household food insecurity 160       
Food secure 64 26.6 17.2 12.5 21.9 21.9 

0.48e Minimally food insecure 50 20.0 24.0 26.0 16.0 14.0 
Moderately food insecure 28 14.3 21.4 17.9 25.0 21.4 
Severely food insecure 18 5.6 16.7 33.3 16.7 27.8 

Wealth quintiles  160       
Lowest 30 16.7 14.3 33.3 20.0 16.7 

0.15e 
Low 28 25.0 10.7 28.6 14.3 21.4 
Middle 42 23.8 19.0 16.7 21.4 19.0 
High 30 13.3 16.7 13.3 36.7 20.0 
Highest 19 31.6 5.3 15.8 10.5 36.8 

a Two participants had a BMI < 18.5 and were in the 4th and 5th quintiles of PFDI scores; b p-value for F-statistic of one-way ANOVA; c Exact p-value determined using Fisher’s 
exact test; d p-value for chi-square test statistic; e p-value from Monte Carlo approach (10,000 simulated replications); f The WHO recommends ≥ 600 metabolic equivalent 
(MET) minutes of physical activity per week as calculated using the Global Physical Activity Questionnaire (GPAQ) 
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Table 3.3 Distribution of anthropometric measures, dietary indicators, and sociodemographic characteristics by quintiles of NOVA scores. 

 

  Quintiles of NOVA scores  
 1 (n=32) 2 (n=32) 3 (n=32) 4 (n=32) 5 (n=32) p-value 

Anthropometric measures n % or mean ± SD  
BMI 160 30.8 ±	6.0 30.6 ± 6.3 29.2 ± 4.8 28.9 ± 4.9 28.6 ± 5.7 0.39b 

Under-a and normal weight (BMI < 25) 37 18.9 8.1 24.3 18.9 29.3 
0.20c Overweight (≥	25 BMI < 30) 53 15.1 32.1 15.1 20.8 17.0 

Obese (BMI ≥	30) 70 24.3 17.1 21.4 20.0 17.1 
Dietary characteristics        

Caloric intake, kcal/day 160 1469.9 ± 402.8 1416.2 ± 421.1 1554.8 ± 383.2 1908.0 ± 540.2 1996.7 ± 709.5 < 0.0001b 
Sociodemographic characteristics        

Age, years 160 34.0 ± 8.1 34.8 ± 9.6 30.3 ± 9.1 29.9 ± 8.2 33.8 ± 8.9 0.08b 
18-29  63 19.0 14.3 19.0 23.8 23.8 

0.40c 30-39 56 19.6 25.0 14.3 17.9 23.2 
40-49 41 22.0 22.0 29.3 17.1 9.8 

Parity 160 2.5 ± 1.6 2.7 ± 2.1 3.3 ± 2.5 2.2 ± 1.5 3.0 ± 1.9 0.17b 

Physical activity, meets WHO guidanced 88 20.5 23.9 15.9 18.2 21.6 0.45d 
Highest attained education level 155       

Attended primary 10 50.0 0.0 20.0 20.0 10.0 

0.07e Completed primary 63 23.8 25.4 14.3 22.2 14.3 
Completed secondary 66 13.6 16.7 22.7 21.2 25.8 
Some post-secondary 16 6.3 18.8 37.5 6.3 31.3 

Urbanicity 160       
Urban 71 11.3 14.1 25.4 21.1 28.2 

0.05c Peri-urban 51 17.6 27.5 19.6 19.6 15.7 
Rural 38 39.5 21.1 10.5 18.4 10.5 

Household food insecurity 160       
Food secure 64 23.4 17.2 17.2 23.4 18.8 

0.14e Minimally food insecure 50 28.0 20.0 26.0 12.0 14.0 
Moderately food insecure 28 3.6 32.1 14.3 25.0 25.0 
Severely food insecure 18 11.1 11.1 22.2 22.2 33.3 

Wealth quintiles  160       
Lowest 30 6.7 30.0 23.3 23.3 16.7 

0.25e 
Low 28 17.9 25.0 14.3 28.6 14.3 
Middle 42 28.6 21.4 11.9 16.7 21.4 
High 30 16.7 10.0 23.3 26.7 23.3 
Highest 30 26.7 13.3 30.0 6.7 23.3 

a Two participants had a BMI < 18.5 and were in the 4th and 5th quintiles of PFDI scores; b p-value for F-statistic of one-way ANOVA; c Exact p-value determined using Fisher’s 
exact test; d p-value for chi-square test statistic; e p-value from Monte Carlo approach (10,000 simulated replications); f The WHO recommends ≥ 600 metabolic equivalent 
(MET) minutes of physical activity per week as calculated using the Global Physical Activity Questionnaire (GPAQ) 
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Table 3.4 Difference in mean body mass index, waist circumference, and waist-to-hip ratio across quintiles of PFDI and NOVA scores. 

 
 
 
 
 
 
 
 
 
 
 

 Mean (95% CI) Quintiles of PFDI and NOVA scores  
1 (n=32) 2 (n=32) 3 (n=32) 4 (n=32) 5 (n=32) p-valuea 

Body mass index (kg/m2) 29.6 (28.7, 30.5)       
Crude model PFDI 32.2 (30.3–34.1) 29.2 (27.3–31.2) 28.7 (26.8–30.6) 29.2 (27.2–31.1) 28.6 (26.7–30.5) 0.0539c 
 NOVA 30.8 (28.8–32.7) 30.6 (28.6–32.5) 29.2 (27.2–31.1) 28.9 (26.9–30.8) 28.6 (26.6–30.5) 0.3935c 
Multivariateb PFDI 33.1 (30.9–35.3) 29.8 (27.7–31.9) 30.2 (28.1–32.3) 30.4 (28.3–32.5) 30.2 (28.1–32.3) 0.0002c 

 NOVA 31.9 (29.7–34.1) 31.4 (29.1–33.7) 29.7 (27.6–31.8) 30.4 (28.2–32.6) 30.5 (28.4–32.6) 0.0010c 
        

Waist circumference (cm) 87.3 (85.2, 89.4)       
Crude model PFDI 91.9 (87.2–96.5) 88.5 (83.9–93.1) 85.1 (80.4–89.7) 86.1 (81.5–90.8) 84.9 (80.3- 89.5) 0.1880c 

 NOVA 90.6 (86.0–95.3) 90.3 (85.6–94.9) 84.5 (79.9–89.1) 85.6 (81.0–90.3) 85.5 (80.8–90.1) 0.1961c 
Multivariateb PFDI 93.9 (88.6–99.2) 90.2 (85.2–95.3) 87.8 (82.8–92.8) 88.6 (83.4–93.7) 88.5 (83.5–93.5) 0.0004c 

 NOVA 93.6 (88.5–98.8) 92.5 (87.1–97.9) 85.6 (80.7–90.5) 88.3 (83.2–93.4) 89.7 (84.7–94.7) 0.0001c 
        
Waist-to-hip ratio 0.83 (0.82, 0.85)       

Crude model PFDI 0.82 (0.80–0.85) 0.86 (0.83–0.89) 0.83 (0.80–0.86) 0.83 (0.80–0.86) 0.83 (0.80–0.86) 0.4420c 
 NOVA 0.83 (0.80–0.85) 0.86 (0.83–0.88) 0.84 (0.81–0.86) 0.83 (0.81–0.86) 0.82 (0.79–0.85) 0.5276c 
Multivariateb PFDI 0.82 (0.78–0.85) 0.87 (0.84–0.90) 0.84 (0.81–0.87) 0.83 (0.80–0.86) 0.85 (0.82–0.88) 0.0145c 
 NOVA 0.83 (0.79–0.86) 0.86 (0.82–0.90) 0.84 (0.81–0.87) 0.84 (0.81–0.87) 0.84 (0.81–0.87) 0.0517c 

a F-statistic 
b Adjusted caloric intake (continuous), age (categorical), parity (continuous), physical activity (categorical), education (categorical), urbanicity (categorical), 
household food insecurity (categorical), and wealth (categorical) 
c Post-hoc analysis using Tukey test revealed no statistically significant differences in mean BMI, waist circumference, or waist-to-hip ratio between pairs of 
PFDI or NOVA score quintiles 
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Table 3.5 Difference in mean body mass index, waist circumference, and waist-to-hip ratio across quintiles of UPFDs. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Table 3.6 Odds ratios of obesity by PFDI, NOVA scores, and UPFD intake. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Mean (95% CI) 
Quintiles of UPFDs 

p-valuea 1 (n=32) 2 (n=32) 3 (n=32) 4 (n=32) 5 (n=32) 
 0 – 0.95% 0.96 – 5.6% 5.7 – 9.4% 9.5 – 15.0% 15.1 – 51.1% 

Body mass index (kg/m2) 29.6 (28.7, 30.5)       
 Crude model 29.6 (27.7–31.6) 30.6 (28.6–32.5) 30.6 (28.7–32.5) 29.1 (27.1–31.0) 28.1 (26.2–30.1) 0.3509c 
 Multivariateb 30.8 (28.6–32.9) 31.6 (29.5–33.7) 31.3 (29.2–33.5) 30.2 (28.0–32.3) 29.2 (27.0–31.4) 0.0007c 

        
Waist circumference (cm) 87.3 (85.2, 89.4)       

 Crude model 87.2 (82.5–91.8) 89.3 (84.7–94.0) 90.8 (86.1–95.4) 85.8 (81.2–90.4) 83.4 (78.8-88.0) 0.1967c 
 Multivariateb 89.1 (84.0–94.1) 92.6 (87.7–97.5) 90.7 (85.7–95.8) 88.5 (83.5–93.5) 86.7 (81.5–91.8) 0.0002c 

        
Waist-to-hip ratio 0.83 (0.82, 0.85)       

 Crude model 0.83 (0.80–0.86) 0.84 (0.82–0.87) 0.83 (0.80–0.86) 0.84 (0.81–0.87) 0.83 (0.80–0.86) 0.9106c 
 Multivariateb 0.83 (0.80–0.86) 0.86 (0.83–0.89) 0.83 (0.80–0.86) 0.85 (0.82–0.88) 0.84 (0.81–0.88) 0.0374c 

a F-statistic 
b Adjusted for caloric intake (continuous), age (categorical), parity (continuous), physical activity (categorical), education (categorical), urbanicity (categorical), 
household food insecurity (categorical), and wealth (categorical) 
c Post-hoc analysis using Tukey test revealed no statistically significant differences in mean BMI, waist circumference, or waist-to-hip ratio between pairs of 
UPFDs score quintiles 

 OR 95% CI p-valuea 
PFDI    
    Crude model 0.57 0.28–1.15 0.12 
    Multivariateb 0.55 0.23–1.35 0.19 
NOVA    
    Crude model 0.74 0.34–1.63 0.46 
    Multivariateb 0.77 0.28–2.13 0.62 
UPFD    
    Crude model 0.99 0.95–1.02 0.40 
    Multivariateb 0.98 0.94–1.02 0.38 
a Z-statistic 
b Adjusted for caloric intake (continuous), age (categorical), parity (continuous), physical 
activity (categorical), education (categorical), urbanicity (categorical), household food 
insecurity (categorical), and wealth (categorical) 
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Chapter 4  
 

Processing Level of the Diet and Obesity Show Heterogenous Associations with Major Phyla 
and Diversity of the Gut Microbiome 

 
Introduction  

The gut microbiome – the trillions of bacteria, but also archaea, viruses, parasites, and fungi that 

reside in the digestive tract –  is relatively stable (1) and diverse (2) within healthy adults. Its 

composition is influenced by many factors, including: genetics, age, hygiene, sanitation, 

geography, urbanicity, climate, antibiotic use, and most importantly, diet. Habitual diet is 

recognized as the key regulator of its composition (i.e., density and diversity of taxa) (3–8), 

which plays a critical role in modulating metabolism and energy balance.  

 

Studies examining the impact of long-term dietary patterns on the gut microbiome have detected 

significant differences in taxonomy (i.e., ratio of prominent phyla Firmicutes/Bacteroidetes), 

diversity (i.e., number of distinct species), and complexity (i.e., gene richness) in gut microbiota 

related to the composition of the diet between Western and non-Western populations (9–11). 

From a nutritional standpoint, “Western” diets are typically described as higher in total fat, 

saturated fat, animal protein, and added sugar and lower in complex carbohydrates and dietary 

fiber than non-Western diets. This generally translates to a diet higher in animal products and 

more highly processed food and beverages, and lower in fruits, vegetables, and whole grains. 

Various methods and degrees of food processing – from home preparation to industrial 

manufacturing – are also known to influence the structure of the gut microbiome. This includes 

heat processing (i.e., cooking) (8,12), frying (12), fermentation (13,14), the refinement of grains 

(15,16), and the use of food preservatives and additives (e.g., emulsifiers) (6,8,17–24). 

Therefore, not only is the composition of the gut microbiome impacted by the proportions of 

macronutrients in the diet, but it is also affected by various food preparation, processing, and 

preservation practices. 
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The transition to a “Western” diet has been implicated in the rising prevalence of obesity in low- 

and middle-income countries (LMICs) (25). Dysbiosis of the gut microbiome – disruptions to the 

relative abundance and diversity of distal gut bacteria – has also been linked to obesity (26–29).  

A shift in the ratio of bacterial flora belonging to the Firmicutes and Bacteroidetes phyla, which 

jointly comprise over 90% of the adult gut microbiota, is frequently referenced as a key factor 

that differentiates obese and lean individuals, with a higher abundance of Firmicutes and a lower 

abundance of Bacteroidetes in those who are obese (26,27,30,31). However, some studies have 

failed to find statistically significant differences in the Firmicutes to Bacteroidetes (F/B) ratio 

between obese and lean individuals (32–37) or have found a predominance of Bacteroidetes in 

overweight and obese individuals (38). Low diversity of gut bacterial flora has also been linked 

to obesity (39,40). 

 

Nutrition researchers have recently begun utilizing the NOVA classification system (41) – a pre-

defined measure of diet quality based on food processing – to examine the role of food 

processing on health-related outcomes (Appendix A). In response to a number of limitations of 

how processing levels were defined using NOVA, the Processed Food Dietary Index (PFDI) was 

developed as an alternate schema (Appendix B). Both indices define a range of processing 

groups, from “unprocessed/minimally processed” to “ultra-processed”, without consideration of 

whether a food or beverage is originally from an animal or plant source. Ultra-processed foods 

and drink products (UPFDs), the highest level of processing in both the NOVA and PFDI 

classification systems, are defined as industrial formulations of food and drink products that 

undergo processes with no domestic equivalents to create products that are ready to heat, eat, or 

drink (41). UPFDs are especially unique in that these products often contain numerous types of 

additives (e.g., emulsifiers) that are known to impact the structure of the gut microbiome. 

 

To the best of our knowledge, no studies have utilized NOVA or any other classification systems 

based on food processing to examine whether the processing level of the diet influences the 

taxonomy of the gut microbiome. We identified one study that utilized a degree of difference line 

scale to differentiate individual food items as “processed” or “fresh” to quantify the food quality 

and examine associations with obesity and gut microbiota among US residents (42). This study 

found that consumption of processed foods influenced the composition of the gut microbiome 
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more so than an overweight or obesity (42). While a number of studies have examined 

differences in Western and non-Western diets and the gut microbiome, we are also unaware of 

any studies that have examined these or similar differences within the same population or solely 

within a non-Western population that is undergoing a nutrition transition. 

 

The objective of this study was to compare the gut microbiota among a population of Bolivian 

women of child-bearing age that: 1) consumed a highly processed vs. minimally processed diet 

(as measured using the PFDI classification system); 2) consumed a diet high in proportion of 

UPFDs vs. a diet in which no UPFDs were consumed, and 3) were obese vs. healthy weight. We 

hypothesized that for each comparison we would observe significant differences in the prominent 

phyla and in the amount of diversity found within the gut microbiome. Specifically, we 

hypothesized that a higher F/B ratio and less diversity in the gut microbiome would be observed 

among study participants who ate a more highly processed diet vs. a minimally processed diet, a 

high proportion of UPFDs vs. no UPFDs, and were obese vs. healthy weight.  

 

Methods 

Study design and participant selection 

The study design and participant sampling methods employed for this comparative study have 

been described previously (Chapter 2). Briefly, women of child-bearing age who were baseline 

participants of a three-year cohort study, which examined regional changes in food 

environments, diets, and nutritional status of women of child-bearing age in Montero, Bolivia 

(43), were eligible for recruitment based on the extent of processing in their diet as determined 

from dietary data. Eighty participants with minimally processed diets and 80 participants with 

highly processed diets were randomly selected from cumulative food frequency scores for a total 

of 160 women aged 18-49 years. At the time of recruitment, women who were known to be 

currently pregnant (n=7) were excluded from participation. Recognizing the short-term ability of 

antibiotic exposure to reduce the diversity of gut bacterial taxonomy in adults (44–49), women 

who took a course of antibiotics 30 days prior to or at the time of recruitment (n=24) were also 

excluded; women who began a course of antibiotics during their interview week (n=2) were 

replaced. During a 10-week period between August and October 2016, trained enumerators 

administered three in-person interviews during a one-week period with randomly selected 
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eligible participants to collect dietary recall data, anthropometric measurements, and fecal 

samples. 

 

Measurement of variables 

Dietary and anthropometric assessment 

The dietary and anthropometric assessment have been described previously (Chapter 3). Briefly, 

recruited participants completed three in-person non-consecutive 24-hour dietary recalls on two 

weekdays and one weekend day during a one-week period using the standard multiple pass 

method (50). Compiled food portion tables from previous work in Bolivia and Peru were used to 

convert reported amounts of foods and beverages to grams or milliliters. Dietary energy was 

estimated using Bolivian (51) and Peruvian (52) food composition tables, supplemented by the 

USDA National Nutrient Database for Standard Reference, Release 28 (SR28) (53). The PFDI 

and NOVA classification systems were then used to categorize reported food and beverage 

items, which were then weighted by their quantity, as described previously (Chapter 2). An 

average PFDI and NOVA score were calculated for each participant using the respectively 

weighted food and beverage item scores. Due to a high correlation between PFDI and NOVA 

scores (r=0.94, p<.0001) we only used the PFDI scores in analyses.  

 

Among the 160 participants, the average PFDI scores were normally distributed and ranged from 

0.53 to 2.97. To examine differences in microbiota between processing levels of diet we selected 

participants with a PFDI score > 2.0 to represent a more highly processed diet (n=25) and 

participants with a PFDI score < 1.0 to represent a more minimally processed diet (n=20). 

 

The percentage of energy intake from each of the PFDI processing level groups, including 

UPFDs, was calculated for each participant (n=160). The consumption of UPFDs was right-

skewed with a range of 0 to 51.1% (i.e., proportional contribution of UPFDs to total energy 

intake). To examine differences in microbiota between ranges of UPFD intake, we selected 

participants who consumed  > 20% of energy intake from UPFDs (n=22) and participants who 

consumed 0% of energy intake from UPFDs (n=19).  
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Body mass index (BMI) (weight (kg)/height (m)2) was calculated for each participant from 

height (cm) and weight (kg) measurements taken during the first in-person visit, as described 

previously (Chapter 3). BMI was used to classify participants as underweight (BMI <18), 

healthy weight (≥18 BMI <25), overweight (≥25 BMI <30), or obese (BMI ≥30). Obese 

(n=70) and healthy weight (n=35) participants were retained for analyses. 

 

Fecal sample collection and storage 

Recruited participants were provided with instructions during the first in-person interview 

regarding the collection and storage of their fecal matter using the OMNIgene GUT® Kit/OMR-

200 (DNA Genotek, Inc.; Ontario, Canada). A kit was left with each participant after the first in-

person interview to collect a sample prior to the second in-person interview, when it 

subsequently was collected. Participants were then left with an additional kit, which was 

collected during the final in-person interview. A total of two (2) kits were collected from each 

participant. Upon collection, the kits were held in cold storage (-80°C) until they were promptly 

air-couriered frozen on dry ice to the University of Michigan where they continued to be held in 

cold storage (-80°C) until they were aliquoted three days later for analysis. 

 

DNA isolation and amplification 

DNA was isolated from 320 human fecal samples with a PowerMag Microbiome RNA/DNA 

Isolation Kit (Mo Bio Laboratories, Inc.) using an epMotion 5075 liquid handling system. The 

V4 region of the 16S rRNA gene was amplified from the fecal samples by standard PCR using 

1 µl DNA as described by Seekatz et al (54). Concentrated samples that failed to amplify using 

standard PCR were diluted 1:10 (n=145), 1:50 (n=73), and 1:100 (n=30). A total of three (n=3) 

samples failed to amplify. Amplicons were then processed and sequenced on the Illumina MiSeq 

platform as described by Seekatz et al (54). 

 

Analysis of microbiota community 

The 16S rRNA gene sequence data was processed and analyzed using the software package 

mothur (m.1.40.2. and v.1.39.5) and the most recent Schloss MiSeq SOP (55,56) as of May 2018 

(56). Upon sequencing and alignment to the SILVA reference alignment (release 128) (57,58), 

sequences were binned into operational taxonomic units (OTUs) based on 97% sequence 
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similarity using the OptiClust method (59). We sub-sampled 2271 sequences per sample; due to 

non-amplification or low sequence counts, 8 samples were excluded. Each pair of samples 

originating from the same participant were pooled, that is, their sequence counts were added 

together. For the 8 cases with only one sample per participant, the corresponding composite 

sample was extrapolated from the available data (i.e., the counts were doubled), creating 160 

composite samples that were used in the subsequent analyses. 'YC distances (a metric that takes 

relative abundances of both shared and non-shared OTUs into account) (60) were calculated 

between communities. We investigated the taxonomic composition of the bacterial communities 

by classifying sequences with mothur using a modified version of the Ribosomal Database 

Project (RDP) training set (version 16) (61,62).  

 

Statistical analyses 

Inverse Simpson Diversity Index (iSDI) analyses were performed using mothur; non-parametric 

Kruskal-Wallis analyses were performed with the SciPy library (63). Values for iSDI, a measure 

of diversity which considers the number of species present (i.e., richness), as well as the relative 

abundance of each species (the higher the number, the higher the diversity), were calculated for 

each comparison group. H-statistics from the nonparametric Kruskal-Wallis test were calculated 

to test for differences in median phyla abundance, F/B ratios, and median iSDI values within 

comparison groups. Differences in median phyla abundance, F/B ratios, and median iSDI were 

considered consistent with random variation at p>0.05. 

 

Results 

Our final analytical sample included participants in the following comparison groups: PFDI 

(PFDI score >2.0 (n=25) vs. PFDI score <1.0 (n=20)); UPFD (>20% of energy intake from 

UPFDs (n=22) vs. 0% of energy intake from UPFDs (n=19)); and BMI (obese BMI (n=70) vs. 

healthy BMI (n=35)). Some participants were in more than one comparison group. For example, 

a participant could have been in the group PFDI score >2.0, >20% of energy intake from UPFDs, 

and/or obese BMI (n=70), or any combination thereof. Differences between respective 

comparison groups in median abundance percentages of major phyla, F/B ratios, and median 

iSDI values are outlined in Table 4.1.  
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We utilized the Kruskal-Wallis test to examine differences in median phyla abundance and the 

F/B ratio. The relative abundance of Firmicutes was comparable across all comparison groups. 

The relative abundance of Bacteroidetes varied between PFDI score groups (median 

(interquartile range)): 33.4% (27.5-45.6) in highly processed diet group, 46.1% (36.9-55.0) in 

minimally processed diet group; p=0.04); and BMI groups: 42.7% (34.5-56.0) in obese group, 

38% (29.0-49.9) in healthy BMI group (Table 4.1). We hypothesized that we would observe a 

higher F/B ratio among participants with a PFDI score >2.0, consumed >20% of energy intake 

from UPFDs, and were obese. While F/B ratios varied between PFDI groups: median 

(interquartile range): 1.43 (0.83-1.68) in PFDI score >2.0 group; 0.87 (0.68-1.35) in PFDI score 

<1.0 group, the ratios between the UPFD (p=0.30) and BMI groups (p=0.18) were not 

statistically significantly different.  

 

We also utilized the Kruskal-Wallis test to examine differences in median iSDI values (Table 

4.1). We observed a difference in median iSDI between participants in the UPFD groups (median 

(interquartile range): 13.8 (11.2-24.5) in >20% of energy intake from UPFDs group, 9.3 (6.2-

12.7) in 0% of energy intake from UPFDs group. A difference between participants in the BMI 

comparison groups approached significance (median (interquartile range)): 12.3 (7.3-24.4) in the 

obese group, 17.5 (11.4-32.2) in the healthy BMI group. Median iSDI was not statistically 

significantly different between participants in the PFDI comparison groups (p=0.48). 

Interestingly, the least diverse samples belonged to participants who consumed 0% energy intake 

from UPFDs (median (interquartile range): 9.3 (6.2-12.7) (p=0.009); the most diverse belonged 

to participants with a healthy BMI: 17.5 (11.4-32.2) (p=0.07). 

 

Discussion 

In this cross-sectional comparative study, we investigated compositional differences in the gut 

microbiome among a population of Bolivian women of child-bearing age related to the 

processing level of the diet and BMI. Specifically, we examined differences in the relative 

median abundance of major microbial phyla, F/B ratio, and median diversity between groups of 

participants that represented consumption of a highly or minimally processed diet as calculated 

utilizing an average PFDI score as a single measure of diet quality, extremes of UPFD energy 

intake consumption, and obese and healthy BMI. We detected differences in the median 
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abundance of Bacteroidetes between PFDI groups, which drove the differences we then observed 

between their respective F/B ratios. No differences in F/B ratios were observed between the 

UPFD or BMI comparison groups, respectively. We detected a difference in diversity between 

UPFD comparison groups but no difference was observed between BMI or PFDI comparison 

groups. 

 

While we observed a higher F/B ratio among participants with a PFDI score >2.0 and >20% of 

energy intake from UPFDs, as hypothesized, this observation only approached significance for 

participants with a PFDI score >2.0. This is intriguing because both a higher PFDI score and a 

large share of energy intake from UPFDs represent a higher level of processing in the diet.   

Participants with a PFDI score >2.0 represent those with the highest cumulative, single measure 

of processing in the diet while participants with >20% of energy intake from UPFDs represent 

those with the most ultra-processed foods in the diet. These results may imply that the overall 

level of processing in the diet more adequately reflects the macronutrient composition of the diet 

than the dietary share of UPFDs. The macronutrient composition of diets has been shown 

previously to be associated with significant differences in taxonomy and diversity in gut 

microbiota (9–11). Therefore, to the extent that these different indicators of processing level of 

the diet differentiate macronutrient intake, it is plausible that overall level of processing in the 

diet may be a greater influence on the composition of the gut microbiome than proportion of 

energy from UPFDs. It would be prudent to examine the relationship between UPFD intake and 

F/B ratio among participants along a gradient of higher percent of energy intake from UPFDs 

(e.g., >20%, >30%, >40%, etc.) to observe if and at what point the relationship becomes 

statistically significant. However, few participants in our sample had high levels of energy intake 

from UPFDs (mean UPFD energy intake was 9.5% among the entire sample) (Chapter 2). 

 

We also observed that the abundance of Firmicutes (p=0.32) and F/B ratios (p=0.18) between 

our BMI comparison groups were not statistically significantly different (p=0.18); there was not 

a higher abundance of Firmicutes among the obese study participants. A difference in the 

abundance of Bacteroidetes approached significance (p=0.08) between the BMI comparison 

groups, with a higher abundance among obese women, also in contrast to the widely accepted 

concept that obese individuals have a higher abundance of Firmicutes and lower abundance of 
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Bacteroidetes than those who are lean. These findings are supported by other studies that did not 

find statistically significant differences in the F/B ratio between obese and lean individuals (32–

37). While controlled animal studies in mice have found consistent differences in F/B ratios 

between obese and lean mice such that obese mice had a higher proportion of Firmicutes and 

lower proportion of Bacteroidetes than lean mice (26,28,64–67) conflicting findings in F/B ratios 

among human subjects may be driven by insufficient control for as of yet unidentified 

confounding factors within field studies of free-living subjects (38).  

 
We hypothesized that we would observe a less diverse gut microbiome among participants that 

consumed a more highly processed diet (PFDI score > 2.0) and a higher proportion of UPFDs 

based on previous research that found lower diversity in the gut microbiome among European 

populations consuming a Western diet as compared to African populations consuming a 

traditional diet (9,11), as well as macronutrient similarities between a “Western” diet and a 

“highly processed diet”. However, we did not observe any difference in gut microbiota diversity 

between participants in the PFDI comparison groups (p=0.48). Furthermore, the differences we 

observed between UPFD energy intake groups were the reverse of what we had hypothesized – 

participants that consumed 0% UPFDs had a less diverse microbiome than their respective 

counterparts. This difference in microbiota diversity observed between UPFD consumption 

groups was surprising, but not unprecedented. A study comparing the gut microbiota of rural 

Africans and U.S.-based African Americans found that the microbiota of African Americans was 

more diverse (10). The authors theorized that African Americans may have a more diversified 

diet (10). This theory could be extended to our study as well. A diet that contains > 20% of 

energy intake from UPFDs may reflect greater diversity in the diet than one that contains few or 

no UPFDs. Such a diet might therefore contribute to greater gut microbial diversity. We had also 

hypothesized that we would observe a less diverse gut microbiome among obese participants as 

compared to healthy weight participants. Indeed, obese participants had a less diverse gut 

microbiome (median (interquartile range)): 12.3 (7.3-24.4) in the obese group, 17.5 (11.4-32.2) 

in the healthy BMI group. This difference approached statistical significance (p=0.07). These 

results are supported by previous human gut microbial composition exploratory studies 

comparing obese and lean individuals that found reduced phylogenetic diversity (39) and lower 

bacterial richness (40) in obese individuals.  
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Upon analyzing the preceding results, there was an apparent disconnect between the findings.  

Based on the association between the transition to a ‘Western’ or more highly processed diet and 

obesity in LMICs, we had hypothesized that we would observe a higher F/B ratio and less 

diversity in the gut microbiome among participants who consumed more highly processed diets 

and were obese. However, this was not the case and could be related to a finding in a previous 

study (Chapter 3) which found no association between the processing level of the diet, dietary 

share of UPFDs, and obesity in this study population. It may be possible that the etiology of 

obesity in this population is being driven by non-diet related factors, such as epigenetics and 

changes to physical activity patterns. 

 

This study had several strengths including the application of a repeat 24-hr dietary recall 

instrument to collect detailed dietary data, the collection of two fecal samples from each 

participant to account for variability in the diet, and robust comparison groups for which to 

examine differences in the gut microbiota. To the author’s knowledge, this study for the first 

time characterizes the gut microbiome of a population of women in Bolivia, a country 

undergoing the nutrition transition, and is the first to examine differences in gut microbiota 

related to diet and obesity within a non-Western population. A limitation of this study includes 

the multiple freeze thaws the fecal samples underwent during their storage and transport between 

Bolivia and the US. These freeze thaws, while minimized to the extent possible, may have 

contributed to DNA degradation and altered the detection of bacterial taxa in our samples (68). 

 

Conclusion 

Our findings from a sample of Bolivian women of child-bearing age indicate that the processing 

level of the diet may influence the proportions of Firmicutes and Bacteroidetes at the phylum 

level present in the human gut. In addition, consistent with previous evidence, obesity is 

associated with a less diverse gut microbiome. We also found evidence that the proportion of 

UPFD intake in the diet is associated with the diversity of the gut microbiome, possibly by 

influencing the diet diversity. Overall, our results raise further questions regarding the 

relationship between processing level of the diet and gut microbiota, as well as questions 

regarding how to best measure processing - as a single measure of diet quality, or as proportion 

of UPFD intake – to analyze this relationship.  
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As obesity continues to rise globally and we advance our understanding of how the diet drives 

the composition of the gut microbiota, it will be important for researchers to have access to food-

based measurement tools in which to examine differences in dietary patterns and how each 

relates to obesity and the gut microbiome. Utilizing the PFDI or NOVA to measure processing in 

the diet, or other tools that measure diet quality, rather than comparing “Western” dietary 

patterns to “non-Western” dietary patterns, which are often not defined similarly across studies, 

will be important for advancing this research. 
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Table 4.1 Median and interquartile range of major gut microbial phyla and iSDI values across comparison groups of women of child-bearing age 
in Montero, Bolivia. 

 

 PFDI >2.0 
(n=25) 

PFDI <1.0 
(n=20) 

p-
valuea 

> 20% energy intake 
UPFDs 
(n=22) 

0% energy intake 
UPFDs 
(n=19) 

p-
valuea 

Obese 
(BMI ≥30) 

(n=70) 

Healthy weight 
(≥18 BMI <25) 

(n=35) 

p-
valuea 

Firmicutes 47.8 (38.9–54.0) 40.3 (34.0–48.0) 0.12 44.4 (38.0–51.4) 39.8 (33.6–46.4) 0.22 44.0 (35.2–51.7) 43.9 (37.8–56.7) 0.32 
Bacteroidetes 33.4 (27.5–45.6) 46.1 (36.9–55.0) 0.04 42.8 (32.9–54.1) 48.6 (37.5–55.1) 0.42 42.7 (34.5–56.0) 38.0 (29.0–49.9) 0.08 

F/B ratiob 1.43 (0.83–1.68) 0.87 (0.68–1.35) 0.06 1.04 (0.74–1.59) 0.82 (0.64–1.18) 0.30 1.03 (0.62–1.52) 1.16 (0.80–1.72) 0.18 
iSDIc 14.3 (9.9–23.1) 9.7 (6.9–24.1) 0.48 13.8 (11.2–24.5) 9.3 (6.2–12.7) 0.009 12.3 (7.3–24.4) 17.5 (11.4–32.3) 0.07 

a H-statistic from Kruskal-Wallis test 
b F/B ratio: proportion of major phyla Firmicutes to Bacteroidetes  
c iSDI: values calculated using inverse Simpson’s Diversity Index 
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Chapter 5 
 

Conclusion 
 
This dissertation examined the extent to which the processing level of diets of women of 

reproductive age (18-49 years) in Bolivia, a country undergoing the nutrition transition, is 

associated with obesity and gut microbiome composition. Evidence linking obesity to the 

nutrition transition in low-and middle-income countries (LMICs) is best established in women 

(1–5) and the gut microbiome is relatively stable in adults whereas it is still developing in young 

children (6). 

 

Chapter 2 assessed the nutrient adequacy of both NOVA and the Processed Food Dietary Index 

(PFDI), a priori food processing classification systems, and characterized the processing level of 

diets among our study population. Chapter 3 examined the association between the processing 

level of the diet and obesity, using both NOVA and the PFDI as a single measure of overall 

dietary quality. Chapter 4 assessed the association between the PFDI, obesity, and gut 

microbiome composition. 

 

Chapter 2 

In Chapter 2, we described the four processing level groups of the NOVA classification system 

(Group 1: Unprocessed or minimally processed foods; Group 2: Processed culinary ingredients; 

Group 3: Processed foods; Group 4: Ultra-processed food and drink products (UPFDs)) (7), its 

limitations, and its current application in research. To address the limitations of the NOVA 

classification system we subsequently developed the Processed Food Dietary Index (PFDI), a 

food processing-based classification system built on the foundation of NOVA. The PFDI defines 

foods and beverages into one of five processing level groups – “unprocessed”, “minimally 

processed”, “moderately processed”, “highly processed”, and “ultra-processed foods and drinks”.  
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Upon distinguishing differences among the lower processing level groups and discussing how 

the PFDI and NOVA defined the highest level of food processing, ultra-processed foods and 

drinks (UPFDs), equivalently, we utilized both the PFDI and NOVA to examine and compare the 

relationships between energy and nutrient intakes and the dietary share of processing level 

groups. Our research was unique in that it was the first to utilize both the PFDI and NOVA 

classification systems as a single measure of diet quality. The higher the PFDI or NOVA score, 

the greater degree of processing in the diet. 

 

Examining the distribution of total energy intake by PFDI food processing groups, we found that 

as the PFDI diet quality score increased, fewer calories were derived from less processed foods 

and more calories were derived from foods that were more highly processed. We observed a 

similar trend using the NOVA classification system. As the NOVA diet quality score increased, 

fewer calories were derived from unprocessed and minimally processed foods and culinary 

processed ingredients and more calories were derived from processed foods and UPFDs. 

 

Unprocessed foods and minimally processed foods contributed 1.9% and 19.9% of total energy 

intake, respectively. Moderately processed foods contributed the most energy (37%) out of the 

five PFDI food processing groups; whereas highly processed foods only contributed 31.8% of 

total energy. Unexpectedly, despite an increase in energy intake from UPFDs across both PFDI 

and NOVA quintiles, we found that the mean proportion of energy intake from UPFDs in this 

population (9.5%) was relatively small, especially when compared to other Latin American 

middle-income countries. Studies in Brazil, Chile, and Mexico estimate that UPFDs contribute 

21.5 to 29.8% of total energy intake (8–10). Although per capita sales of UPFDs are rapidly 

increasing in Bolivia, the availability of UPFDs is still lower compared to higher income 

countries (11), contributing to the relatively low intake in our study population. 

 

Utilizing both the PFDI and NOVA classification systems as single measures of diet quality, we 

examined the distribution of nutrient means across PFDI and NOVA quintiles, adjusted for  

age, educational attainment, physical activity, household wealth, food insecurity, urban 

residence, and total energy intake. We hypothesized that a more highly processed diet would 

contribute the highest density of fat, saturated fat, trans fat, carbohydrates, and sodium; and 
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conversely, the lowest density of vitamins, minerals (excluding sodium), and dietary fiber. In 

short, we observed heterogenous associations with macro- and micronutrients across quintiles of 

both PFDI and NOVA sores. Observed trends were not always in the expected direction; if they 

were, there were often not statistically significant. These trends were observed to be in the 

direction expected and statistically significant across quintiles of PFDI and NOVA scores for 

carbohydrates (NOVA scores only), total fat, dietary fiber, vitamin A, vitamin C, riboflavin, 

magnesium, and potassium. 

 

Similarly, we also examined the distribution of nutrient means across quintiles of the dietary 

share of UPFDs and unprocessed and minimally processed foods, adjusting for the same 

potential confounders from the previous analyses. Inverse directional trends of association were 

observed for a number of nutrients across both PFDI and NOVA quintiles representing the 

extremes of consumption of processed foods; these trends were observed to be in the expected 

direction and statistically significant for total fat, dietary fiber, vitamin C, and potassium.  

 

A number of previous studies also examined the distribution of nutrient means across the dietary 

share of UPFDs (12–15); in comparing these studies we found mixed results regarding the 

significance and direction of expected trend for a number of nutrients. However, the mean 

dietary share of UPFDs varied widely (9.5 to 57.5% of total energy intake) (12–15), the study 

populations were different, and crude models were not adjusted for the same confounding 

variables within these studies, all of which may have contributed to differences in mean nutrient 

intake trends. 

 

We attributed trends observed in an unexpected direction and with lack of statistical significance 

to the consumption trends of particular food groups within the processing level groups unique to 

this study population. For example, while soft drinks were the most popular UPFD consumed, 

they only contributed 3.7% of total energy intake as compared to homemade beverages 

(traditional drinks, teas, coffees, freshly squeezed juices) in which sugar was added contributing 

17.7% of total energy intake. We also attributed unexpected trends to a decrease of trans fat from 

the food supply, inaccurate food composition tables, and the enrichment and fortification of 

foods across all levels of processing. While there is uncertainty regarding how widespread and to 
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what degree food products in Bolivia are enriched or fortified (16), enrichment – replacing 

vitamins and minerals lost during processing – would attenuate expected trends of micronutrients 

in the middle and higher levels of processing (e.g., moderately processed flours enriched with B 

vitamins, highly processed products made from enriched flours), and fortification – adding extra 

nutrients to foods – would attenuate expected nutrient trends across the spectrum of processing 

(e.g., minimally processed milk fortified with vitamin D, 100% fruit juice fortified with calcium; 

UPFDs fortified with dietary fiber and a variety of micronutrients). UPFDs are often fortified or 

modified at the macronutrient level as well, as these products are often fortified with protein and 

“low-, reduced-fat, and fat-free” versions of foods are often manufactured using carbohydrates 

and additives as fillers. 

 

In conclusion, while expected energy intake trends correlated with the processing levels as 

defined by the PFDI and NOVA, expected nutrient intake trends did not. However, the low 

percentage UPFD consumption (9.5% of total energy intake) in this population brings into 

question the relevance of the calculated nutrient values across PFDI, NOVA, and UPFD 

quintiles. Utilizing the PFDI, NOVA, or any other food processing classification system with 

UPFDs, as the processing group is currently defined, may not be appropriate to use with low- 

and middle-income populations in which a UPFDs do not constitute a large share of dietary 

intake. The minimum mean threshold of UPFD intake as a proportion of the overall diet for 

nutrient intake trends to be considered relevant is undetermined. 

 

We also found that despite identifying a number of limitations regarding how processing groups 

were defined and food groups were classified according the NOVA classification system with 

the development of the PFDI, there were very few differences in the direction and significance of 

nutrient trends between the two systems, presumably due to the dietary pattern and size of the 

study population. Future research in this field should consider comparing nutrient trends utilizing 

both the PFDI and NOVA using dietary data from a much larger and Westernized population 

where the diet is more varied and a larger proportion of the diet is derived from UPFDs.  

 

Our findings, in conjunction with other studies examining nutrient intake trends across quintiles 

of UPFD intake (12–15), suggest that nutrients cannot be used at this time to validate 
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classification systems or indices based on processing, despite our knowledge of how various 

methods of processing effect the loss or addition of nutrients to foods.  

 

 

Chapter 3 

In Chapter 3, we utilized the PFDI and NOVA classification systems as a single measure of 

overall dietary quality and the dietary share of UPFDs to analyze the association between the 

processing level of the diet and measures of obesity. We hypothesized that with an increase in 

the processing level of the diet, BMI, waist circumference (WC), and waist-to-hip ratio (WHR) 

would also increase.  

 

Upon examining the distribution of mean BMI, WC, and WHR across PFDI, NOVA, and UPFD 

quintiles, adjusting for age, educational attainment, physical activity, household wealth, food 

insecurity, urban residence, and total energy intake, we detected no differences in mean 

anthropometric outcomes between any pairs of PFDI, NOVA, or UPFD quintiles. Notably, mean 

BMI was highest in the first PFDI and NOVA quintiles and second UPFD quintile and lowest in 

the second PFDI quintile, third NOVA quintile and fifth UPFD quintile. WC presented a similar 

trend, with mean WC the highest in both the first PFDI and NOVA quintiles and second UPFD 

quintile and lowest in the third PFDI and NOVA quintiles and fifth UPFD quintiles. In summary, 

values of BMI and WC were higher at the lower quintiles of processing and lower in the middle 

and higher quintiles of processing – BMI and WC did not increase with an increase in the 

processing level of the diet. 

 

Regardless of neither detecting differences in mean anthropometric outcomes between pairs of 

PFDI, NOVA, or UPFD quintiles, nor observing the expected direction of trend, we recognized 

that caloric intake was higher across increasing PFDI (quintile 1: 1359 kcal/day; quintile 5: 1951 

kcal/day) and NOVA quintiles (quintile 1: 1470 kcal/day; quintile 5: 1997 kcal/day). This 

finding is consistent with the substitution of minimally processed, less energy-dense foods with 

more highly processed, more energy-dense foods as the processing level of the diet increases. 
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Numerous studies have demonstrated that caloric restriction is the key determinant of long-term 

weight loss (17); therefore, excessive caloric intake is likely the key determinant of long-term 

weight gain that leads to obesity. Correspondingly, as caloric intake was higher across increasing 

quintiles of the PFDI and NOVA indices, we expected to observe an association between 

measures of obesity and differences in caloric intake associated with more highly processed 

diets. However, despite higher caloric intakes among women with more highly processed diets, 

the differences were not significant enough between PFDI or NOVA quintiles to be associated 

with differences in BMI, WC, or WHR. It may also be that diet is not the key factor driving 

obesity in this study population; the interaction of other genetic, environmental, and 

socioeconomic factors, as well as individual behaviors such as physical activity, may have a 

greater influence on the development of excess body weight in this population (18). 

 

Our analysis is among many a priori dietary pattern studies that failed to find associations 

between dietary indices and obesity related measures in adults (19). It may be that the current 

construct (e.g., number of processing groups, values/weights assigned to processing levels, 

averaged scores, etc.) of the PFDI and NOVA classification systems needs refinement for use as 

a single measure of dietary quality. In Chapter 2 we found that PFDI and NOVA scores in this 

population ranged from 0.53 to 2.97 and 1.17 to 3.02, respectively. While this was the first study 

to our knowledge that utilized NOVA and the PFDI as a single measure of dietary quality and we 

have no other basis on which to discern the range of scores, we were expecting a larger range, 

particularly extending on the higher end of processing (+3.0). Subsequently, we discovered that 

energy intake from UPFDs, a robust and wide-ranging processing group, was relatively low 

(9.5%) compared to other Latin American middle-income countries (8–10), but also other 

countries where studies found an association between UPFD intake and measures of obesity (20–

22). The low intake of UPFDs most likely narrowed the range of PFDI and NOVA scores 

considerably in this population, making it difficult to distinguish differences between scores and 

to interpret their meaning, as well as to detect if they are associated with differences in 

nutritional status, especially in our study population with a large prevalence of excess weight 

(76.9% overweight or obese). However, by examining the dietary share of UPFDs in relationship 

to measures of obesity in this population, we realized that caloric displacement is not driven 

solely by UPFDs in this population, but by other degrees of processing as well. Reviewing the 
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distribution of total energy intake by PFDI food processing groups in Chapter 2, we found that 

moderately processed (37.0%) and highly processed foods (31.8%) contribute a much larger 

share of total dietary energy than UPFDs (9.5%). Therefore, while the current construct of the 

PFDI and NOVA classification systems may not lend themselves to accurately portraying the 

level of processing in the diet as a single measure of diet quality, we continue to recommend that 

future research considers a measure of food processing which comprehensively evaluates how 

each level of processing contributes to the health outcome in question. 

 

Chapter 4 

In Chapter 4, we utilized the PFDI as a single measure of overall dietary quality and the dietary 

share of UPFDs to analyze the association between the processing level of the diet, obesity, and 

gut microbiota composition. Specifically, we compared the abundance of phyla Firmicutes and 

Bacteroidetes, Firmicutes/Bacteroidetes (F/B) ratio, and diversity (measured using the inverse 

Simpson Diversity Index (iSDI)) of the gut microbiota across three comparison groups: PFDI 

(PFDI score >2.0 vs. PFDI score <1.0); UPFD (>20% of energy intake from UPFDs vs. 0% of 

energy intake from UPFDs); and BMI (obese BMI vs. healthy BMI). We hypothesized that we 

would observe a higher F/B ratio and less diversity in the gut microbiome among participants 

who consumed more highly processed diets (as measured by PFDI score > 2.0 and > 20% energy 

intake from UPFDs) and were obese. 

 

Upon examination of the F/B ratios between processing groups, we observed a higher F/B ratio 

among participants with a PFDI score >2.0 and >20% of energy intake from UPFDs; however, 

this observation only approached significance for the PFDI score groups (p=0.06). While we are 

not confident in what these findings imply, these results may indicate that within this specific 

population, utilizing a single measure of diet quality (i.e., PFDI score) may more adequately 

reflect the macronutrient and dietary fiber composition of the diet – driving the composition of 

the gut microbiome – than the dietary share of UPFDs. By analyzing the distribution of 

macronutrient and dietary fiber proportions across levels of processing from Chapter 2, we 

observed that the value and differences between quintiles 1 and 5 across PFDI scores (Table 

2.6), representative of the PFDI comparison groups, (carbohydrates (Q1: 58.8%; Q5: 56.3%), 

dietary fiber (Q1: 12.2 g/1000 kcal; Q5: 7.8 g/1000 kcal), protein (Q1: 15.2%; Q5: 14.1%), and 
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total fat (Q1: 28.1%; Q5: 30.1%)) are very similar to the values and differences between 

quintiles 1 and 5 across dietary share of UPFDs (Table 2.8), representative of the UPFD 

comparison groups (carbohydrates (Q1: 56.7%; Q5: 56.1%), dietary fiber (Q1: 12.8 g/1000 kcal; 

Q5: 8.3 g/1000 kcal), protein (17.4%; Q5: 13.6%) and total fat (Q1: 27.7%; Q5: 30.3%)). The 

PFDI comparison group has a larger difference in carbohydrate proportions between quintiles 1 

and 5 than the UPFD comparison group; whether this is enough to drive the differences we 

observed in the PFDI comparison group, but not in the UPFD comparison group, remains unclear 

and requires further investigation. 

 

We may have also not observed a difference in F/B ratios between UPFD comparison groups due 

to the threshold at which we set the upper limit of energy intake from UPFDs (>20%); the 

threshold may not have been high enough to represent a “highly processed” diet and subsequent 

macronutrient profile; however, the relatively low mean energy intake from UPFDs in this 

population (9.5%) limited our sample size. Upon examining the distribution of participants 

across of UPFD quintiles in Chapter 2, only 20% (n=32) of participants consumed greater than 

15% of energy intake from UPFDs. This is a far from the average 58% of total energy intake 

UPFDs are estimated to contribute to the American diet (22), which is generally considered, 

along with other Westernized countries, highly processed. In fact, relatively low UPFD intake 

may have contributed to not observing statistically significant differences in both processing 

comparison groups but not driving differences in their macronutrient profiles. 

 

In comparing the calculated F/B ratios between the BMI comparison groups, we observed they 

were not statistically different (p=0.18), in contrast to our hypothesis based on the widely 

accepted theory, promoted by controlled animal (23–28) and human (24,29–31) studies that 

obese individuals have a higher abundance of Firmicutes and lower abundance of Bacteroidetes 

than lean individuals. However, our findings were consistent with other human studies that did 

not find statistically significant differences in F/B ratios between obese and lean individuals (32–

37). It has been proposed that the contradictory findings in F/B ratio among human studies may 

be influenced by the contrasting environments (controlled clinical studies vs. field studies with 

free-living subjects) in which human studies are conducted (38). This highlights the importance 



 98 

of testing whether clinical results, particularly in animals, translate into real-world outcomes for 

humans. 

 

Upon comparing diversity between processing groups, we found that median iSDI was not 

statistically different between participants in the PFDI comparison groups (p=0.48), but that it 

was between participants in UPFD comparison groups (p=0.009), in the direction opposite of 

which we had hypothesized. Our original theory, that a more highly processed diet would be 

associated with a less diverse microbiome was primarily based on information regarding the 

impact of various modern food production processes (e.g., heat processing, addition of 

preservatives) decreasing both pathogenic and beneficial bacteria (39), and a lack of whole 

grains and dietary fiber in the diet able to nourish and sustain butyrate-producing bacteria (40). 

As discussed earlier in this Chapter, the narrow range of PFDI scores influenced by the low 

intake of UPFDs in this population, which may have contributed to not detecting a difference in 

nutritional status between the PFDI comparison groups, may have also contributed to not 

detecting a difference in microbiota diversity between these same groups. However, based on the 

results of another study which found U.S.-based African Americans to have a more diverse 

microbiota than rural Africans (41), it may be that a diet with >20% of energy intake from 

UPFDs is more diversified than a diet without UPFDs within this population, and contribute to 

the greater gut microbial diversity that we observed. Prospective research should consider 

examining differences in gut microbial diversity in a Western population where the range of 

UPFD consumption is much greater. It may be that in populations with low UPFD intake, 

UPFDs contribute to diet diversity and higher gut microbiota diversity, but in populations with 

high UPFD intake, UPFDs contribute to a decrease in beneficial bacteria and lower gut 

microbiota diversity. 

 

We also observed that differences in microbiota diversity between obese and healthy weight 

participants approached statistical significance (p=0.07), with obese participants exhibiting a less 

diverse gut microbiome than their lean counterparts. These results support those found in 

previous studies (40, 41); however, the mechanism(s) by which this occurs is not understood and 

requires further exploration. 
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Conclusion 

The contribution of this exploratory research is significant because these studies utilized a new 

paradigm of dietary pattern analysis to investigate the extent to which the processing level of 

diets may be associated with obesity and the gut microbiome. The knowledge attained through 

this dissertation will inform future research regarding: 1) validation of food processing 

classification systems; 2) the construct and utilization of food processing classification systems 

as a single measure of diet quality; and, 3) associations between processing level of the diet, 

obesity, and the gut microbiome. 
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Appendix A: NOVA classification system processing group descriptions and limitations 

*Descriptions from Monteiro CA, Cannon G, Levy RB, et al. NOVA. The star shines bright. World Nutr. 2016;7(1–3):28–38. 

 

 NOVA Group 1: Unprocessed or  
minimally processed foods 

NOVA Group 2: 
Processed culinary ingredients 

NOVA Group 3: 
Processed foods 

NOVA Group 4: Ultra-processed  
foods and drink products (UPFDs) 

B
rie

f d
es

cr
ip

tio
n*

 

Unprocessed foods are edible parts of 
raw plants and animals. Minimally 
processed foods are edible parts of raw 
plants and animals that have been 
processed (e.g., boiled, roasted, ground, 
milled) to extend their life and diversify 
food production. No new substances, 
such as salt, sugar, oils or fats, are 
added. Examples include: fruits, leafy 
and root vegetables, legumes, fungi, 
100% fruit or vegetable juice; meat, 
poultry, fish, seafood; eggs, milk, 
yogurt; grains, flours, flakes, grits, 
pasta; seeds, tree and ground nuts; 
spices and herbs; and tea, coffee, and 
drinking water. 

Processed culinary ingredients are 
substances used to prepare, season, and 
cook Group 1 foods. Examples include: 
salt; sugar, molasses, and honey; 
vegetable oils; and, butter and lard. 

Processed foods are made by adding 
Group 2 substances to Group 1 foods. 
Examples include: fresh breads; fresh 
cheeses; canned fruits, vegetables, and 
legumes; salted, cured, and smoked 
meats; and, canned fish. 

Ultra-processed food and drink 
products are multi-ingredient industrial 
formulations that typically include 
methods, substances, and additives not 
used in culinary preparation. Examples 
include: Packaged snacks (chips, 
cookies, crackers, candy); mass 
produced bread products; breakfast 
cereals; pre-made mixes; ready-to-eat 
and ready-to-heat products; meat and 
poultry extract products; reconstituted 
meat products (e.g., hot dogs, 
“nuggets”) 
carbonated drinks, energy drinks, milk 
drinks, cocoa drinks, fruit drinks, etc. 
 

It is not logical for people to think of 
processed culinary ingredients as a 
level of processing from a food-based 
perspective. While processed culinary 
ingredients, as defined by NOVA, are 
derivatives of whole foods, they are 
typically not eaten in isolation, but are 
used as flavoring, a cooking medium, or 
as an ingredient in a dish. Rename this 
group “Moderately processed foods” to 
indicate a higher level of processing 
from minimally processed foods. 
 
Flours should be considered a culinary 
processed ingredient. Whole grains 
undergo significant processing and 
refinement resulting in the loss of 
vitamins, fiber, and other biological 
components to create flours; as such, 
there are epidemiological differences in 
those who consume whole versus 
refined grains (7). 
 
In this group include processed culinary 
ingredients and foods combined or 
cooked with these ingredients. For 
example, a boiled egg is considered a 
minimally processed food; with the use 
of a minimal amount of oil as a cooking 
medium, a fried egg is considered a 
moderately processed food. 

Rename NOVA Group 3 “Highly 
processed foods” to indicate an 
incrementally higher level of processing 
from minimally processed foods. 
 
Differences in canned foods should be 
distinguished and reclassified 
accordingly. Canned foods are cooked 
foods (1), and therefore, at a minimum, 
should be considered a ‘minimally 
processed food’ as they have undergone 
thermal processing resulting in 
chemical changes and changes in 
nutrient composition (8-15). However, 
there are stark differences in the types 
of canned foods available in the market. 
Therefore, 
• Classify canned fruits packed in their 

own juice or 100% juice; canned 
vegetables and legumes with ‘no salt 
added’; and canned fish packed in 
water as “minimally processed 
foods”; 

• Classify canned foods packed in 
syrup, oil, or with added salt should 
be classified as “moderately 
processed foods”; and, 

• Classify canned foods with additional 
ingredients other than sugar, salt, or 
oil as “highly processed foods”. 

 

Li
m

ita
tio

ns
 

NOVA Group 1 should be split into two 
separate groups. Thermal and 
mechanical processing of plants alters 
its’ structure, nutrients, and other 
bioactive compounds (1). Therefore, it 
has been hypothesized that raw and 
minimally processed fruits and 
vegetables affect human physiology and 
health outcomes differently (2-6) 
Although these research findings have 
been inconclusive, distinguishing 
unprocessed and minimally processed 
foods will provide a better 
understanding of what people consume, 
help consumers understand the 
differences and benefits of both groups, 
as well as inform public health 
recommendations. 
 
 

There are countless examples in the 
global food system in which there are 
categories of ultra-processed foods that 
undergo a higher level of industrial 
processing than others. One such 
example is with breakfast cereals. 
While most people would agree that 
ready-to-eat breakfast cereals are ultra-
processed in that they undergo 
industrial manufacturing processes for 
which there is no domestic equivalent, 
it can also be argued that not all 
breakfast cereals are nutritionally the 
same. For example, is Shredded Wheat 
nutritionally equivalent to Lucky 
Charms? Consider distinguishing ultra-
processed food and drink products into 
at least two separate categories and 
further refining their definitions. 
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Appendix B: The Processed Food Dietary Index (PFDI) 

 

 PFDI Group 0: 
Unprocessed foods 

PFDI Group 1: 
Minimally processed foods 

PFDI Group 2: 
Moderately processed foods 

PFDI Group 3: 
Highly processed foods 

PFDI Group 4: 
Ultra-processed foods 

D
es

cr
ip

tio
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Includes edible parts of plants 
and animalsa commonly 
known as “fresh”, “raw”, 
“natural”; also includes 
drinking water. 
 
These foods may be cleaned, 
sliced, diced, chopped, or 
peeled to enable consumption; 
may be refrigerated/cooled as 
a temporary means of storage. 

Includes edible parts of plants 
and animals that have been 
altered thermally (with heat or 
water only), mechanicallyb, or 
naturally (e.g., fermentation) 
without the addition of 
substances such as salt, sugar, 
oils, or fats. 

 
This group also includes canned 
and packaged fruits, vegetables, 
legumes, or fish, that are 
“packed in their own juice”, 
“packed in 100% juice”, or 
packed with “no salt added”, 
respectfully.  

Includes culinary processed 
ingredients (e.g., salt; sugar, 
molasses, and honey; 
vegetable oils; and, butter and 
lard; flours; and foods cooked 
or prepared with nominal 
amounts of these ingredients).  

 
Also includes canned and 
packaged minimally 
processed foods with added 
salt, sugar, or oil.  
 
 
 

Includes food that undergo 
method(s) of processing that 
use a higher density (as 
compared to moderately 
processed foods) of culinary 
processed ingredients (e.g., 
natural cheeses, shallow or 
deep-fried foods, pickled 
foods) or a combination of 
processed culinary ingredients 
to create a food (e.g., pasta; 
culinary-prepared breads, 
muffins, cakes, pastries, etc. 

Ultra-processed food and drink 
products – this group is 
currently the same as NOVA 
Group 4 and includes multi-
ingredient industrial 
formulations of products that 
typically use methods, 
substances, and additives not 
used in culinary preparations. 
These products are typically 
ready-to-heat, ready-to-eat, or 
ready-to-drink or consist of 
“mixes” that enable shortcuts to 
traditional culinary preparation. 

 

Ex
am

pl
es

 

Fresh fruits and vegetables, 
mushrooms 
 
Raw nuts, seeds 
 
Fresh herbs 
 
Water 
 
 

Spices, dried herbs 
 
Frozen, dried, vacuum-packed, 
canned, cooked fruits/ 
vegetables/mushrooms 
 
100% fruit juice; unsweetened 
applesauce 
 
Nut/seed butters 
 
Canned fish packed in water 
 
Cooked grains (e.g., 
brown/white rice), legumes, 
starchy roots/tubers, meat, 
poultry, fish, seafood 
 
Poached/boiled eggs 
 
Pasteurized plain milk, yogurt 

Culinary processed 
ingredients (see above) 
 
Canned vegetables, legumes, 
or fruit with added salt, sugar, 
or packed in syrup 
 
Canned fish packed in oil 
 
“Pickled” vegetables 
 
Pan fried vegetables, meats, 
eggs 
 
Nut/seed butters with added 
salt and/or sugar 
 
Beer, cider, wine 
 
 

Pasta 
 
Shallow or deep-fried foods 
 
Deli meats, rotisserie chicken 
 
Cheeses (natural) 
 
Culinary prepared flour-based 
products 
 
Whisky, gin, rum, vodka 

 
 
 

 

Packaged cookies/biscuits, 
pastries, cakes, cake mixes 
 
Breakfast cereals; 
cereal/granola/energy bars 
 
Mass-produced packaged breads 
and buns 
 
Meat and chicken extracts (e.g., 
hot dogs, chicken nuggets); 
instant sauces 
 
Powdered or ‘fortified’ 
meal/dish substitutes 
 
Processed cheeses; margarines 
and spreads 
 
Flavored yogurts/yogurt drinks 
 


