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ABSTRACT

Endogenous circadian clocks (period around 24 h) are self-sustained biological

oscillators that are present in many species. This rhythmic behavior is crucial for re-

liable regulation of biological activities. Disruption of circadian rhythms can decrease

fitness and survival of both prokaryotes and eukaryotes. A common theme among

the mechanisms of biological clocks is protein phosphorylation, a key regulator of the

clock’s period. This dissertation focuses on the mathematical modeling of protein

phosphorylation and investigates the connections and distinctions among various sys-

tems of circadian clocks from cyanobacteria to mammals. First, we study the simplest

circadian clock in cyanobacteria where three key clock proteins KaiA, KaiB, KaiC

have been identified. Oscillations in KaiC phosphorylation level are present with-

out any transcription or translation. KaiA activates the phosphorylation of KaiC

while KaiB attenuates this process by restricting the activity of KaiA. Here we pro-

pose a mathematical model for the post-translational cyanobacterial clock and show

that the sequestration mechanism in cyanobacteria involving KaiA, KaiB and KaiC

is mathematically equivalent to the transcription regulation in mammalian circadian

timekeeping involving the corresponding activators and repressors. We also find that

an additional negative feedback loop keeps the molar ratio of clock proteins in bal-

ance and increases the robustness of the circadian clocks, which is another similarity

shared between cyanobacteria and mammals. Therefore, similar dynamical principles

regulating molecular timekeeping may have emerged in cyanobacteria and mammals

through convergent evolution. Second, we focus on the sequential phosphorylation

process of the key clock protein PERIOD 2 (PER2) in mammalian clocks. Mutation

of a specific phosphorylation site on PER2 can shorten the period of circadian clocks,
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thus causing Familial advanced sleep phase (FASP). It is known that members of the

casein kinase 1 (CK1) family are more efficient in phosphorylating the downstream

sites of PER2 when the FASP site is already phosphorylated, yet the priming kinase

targeting the FASP site has not been identified. Here, we incorporate into our math-

ematical model the new experimental result that the CK1 is indeed the kinase that

works on both the priming FASP site and the downstream phosphorylation sites of

PER2. Our modeling result suggests a robust yet fragile design of PER2 phospho-

rylation: the period of the circadian clock is robust to environmental variations but

can be sensitive to regulatory changes in the tail behavior of CK1. Taken together,

this presents a new mechanism for regulation of circadian period that is surprisingly

divergent from that used in flies, where a separate priming kinase has been identified.

Finally, we take a step further and study a much more general model of the multi-

site phosphorylation process of proteins. One observation that motivates our study

is that individual phosphorylation events (minutes) are typically much quicker than

circadian timescales (hours), yet the changes in protein phosphorylation can affect

the period of circadian clocks. Another motivation is that many interval timers are

related to protein phosphorylation where a certain biological process can be paused

for a fixed amount of time before it resumes. In our model, we show how kinases and

phosphatases can work together to create an interval timer with a timescale much

longer than individual phosphorylation events. We also show that product inhibition

through sequestration on the kinase can be indispensable in sustaining the circadian

rhythms.
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CHAPTER I

Introduction

Endogenous circadian clocks (period ∼ 24 h) are self-sustained biological oscillators

that are present in many species including cyanobacteria, fungi, algae, plants, flies,

birds and human (Bell-Pedersen et al. 2005). This rhythmic behavior is vital for

reliable regulation of biological activities and daily events: for example, Drosophila

eggs hatch only in the morning, Neurospora, a mold begins producing spores only

in the evening. In plants, rhythmic events include leaf movement, stomata opening,

and the expression of many genes. In mammals, body temperature, blood pres-

sure, sleep/wake cycle and even hormone secretion can also be regulated by circa-

dian rhythms (Schibler and Sassone-Corsi 2002). In humans, disruption of circa-

dian rhythms due to causes such as shift work and jet lag might increase the risk

of depression, cancer and diabetes (Lie et al. 2006, Sahar and Sassone-Corsi 2009).

Disregulation of circadian rhythms can clearly decrease fitness and survival of both

prokaryotes and eukaryotes (Ouyang et al. 1998, DeCoursey and Krulas 1998). On

one hand, circadian rhythms can be entrained or reset by external signals such as light

and metabolism (food intake). One the other hand, these self-sustained rhythms can

function even in the absence of external stimuli and maintain the 24h period over

a temperature range that is physiologically relevant (Hastings and Sweeney 1957).

These properties of circadian rhythms have provided the foundation for mathemati-

cal modeling and inspired many researchers to work collaboratively in the field (Rust
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et al. 2007, Van Zon et al. 2007, Forger et al. 2007, Gonze 2011, Kim and Forger 2012,

Zhou et al. 2015, Narasimamurthy et al. 2018). Since the 1980s, the molecular biology

revolution has led to the identification of many genes and proteins constituting the

biochemical networks for circadian rhythms (Dunlap 1999, Sancar 2008). There are

also many design principles for mathematical modeling as well as guidelines for data

analysis (Novák and Tyson 2008, Forger 2011). However, despite tremendous amount

of experimental and modeling work, our understanding of the circadian rhythms is

still far from complete.

There are without doubt many complex biological networks and reactions respon-

sible for constructing circadian rhythms, but a common theme among these different

biological systems is protein phosphorylation. Protein phosphorylation is a post-

translational modification of proteins where a covalently bound phosphate group is

added to an amino acid residue (serine, threonine, and tyrosine in eukaryotes, and his-

tidine in prokaryotes and plants) with the help of a protein kinase. Phosphorylation

sometimes alters the structural conformation of a protein, causing it to become acti-

vated, deactivated, or modifying its function. Many publications have acknowledged

the significance of protein phosphorylation in circadian rhythms from cyanobacteria

to mammals. Protein phosphorylation is the key regulator of the period of circa-

dian rhythms found in almost all organisms. In Drosophila and mammals, casein

kinase 1 (CK1) sequentially phosphorylates several sites on the PERIOD (PER) pro-

teins. CK1’s combined action with phosphatases determines the circadian period

(Lee et al. 2011a). A similar mechanism exists in Neurospora and even cyanobacteria

(Synechococcus elongatus) through protein phosphorylation (Tomita et al. 2005, Rust

et al. 2011, Van Zon et al. 2007, Nishiwaki and Kondo 2012).

Studies in Drosophila have provided some of the most important breakthroughs

to help researchers understand the molecular basis of circadian clocks with the pe-

riod (per) gene being the first identified clock gene (Konopka and Benzer 1971). A
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groundbreaking result in Hardin et al. (1990) shows that the per mRNA levels can

be regulated by PER protein activity in a negative feedback loop. This breakthrough

has led to the current standard view of the transcriptional translational feedback loop

as a central part in the circadian pacemakers (Glossop et al. 1999). In fact, for many

animal clocks, PER expression oscillates at both the mRNA and protein levels. PER

can be targeted for rapid degradation by the ubiquitin/proteasome pathway (Edery

et al. 1994, Lee et al. 2001). The first clock relevant kinase DOUBLETIME (DBT)

was identified in Drosophila (Kloss et al. 1998, Price et al. 1998) and CK1δ/ε for

PER2 phosphorylation was identified in the mammalian circadian clock (Eide et al.

2005, Harms et al. 2004). On one hand, the phosphorylation process of PER2 can be

influenced by metabolic and environmental stimuli (Badura et al. 2007, Gallego and

Virshup 2007). On the other hand, PER phosphorylation plays a critical part in the

temperature compensation of the circadian clocks (Shinohara et al. 2017a, Isojima

et al. 2009). Mutations related to PER2 phosphorylation have been shown to dis-

rupt the circadian period of Drosophila (Kloss et al. 1998, Price et al. 1998), mouse

(Meng et al. 2008) and even humans (Xu et al. 2007, Lowrey et al. 2000, Toh et al.

2001). Phosphorylation also plays an indispensable role in the synchronization of

the Drosophila clock to the daily light-dark cycles through the interactions between

TIMELESS (TIM) and PER (Price et al. 1995, Naidoo et al. 1999, Ashmore and

Sehgal 2003).

In fungal clocks, the clock gene frequency (frq) is a central piece in the nega-

tive feedback loop responsible for maintaining the circadian rhythms for Neurospora

crassa (Dunlap 1999). In Neurospora, circadian rhythms have been seen in both

the abundance and the phosphorylation level of frequency (FRQ) proteins (Garceau

et al. 1997) and mutations in phosphorylation sites of the key clock proteins includ-

ing FRQ can affect the period length of the internal clock (Liu et al. 2000). Similar

to PER in mammalian clocks, the phosphorylation process of FRQ is mediated by

3



several kinases and phosphatases (Dunlap 2006). Just like PER is targeted for rapid

degradation, FRQ is targeted for degradation through the activity of SCF-ubiquitin

ligase-recruiting protein FWD-1 (Heintzen and Liu 2007).

In the cyanobacteria Synechococcus elongatus, unlike the transcription-translation

oscillator model that explains the circadian rhythms in most organisms, early exper-

iments show that even when metabolic activity including total RNA and protein

synthesis is suppressed under constant dark conditions for a few days, circadian

rhythms remain unchanged (Xu et al. 2000). Three key proteins KaiA, KaiB and

KaiC are identified as componets of the circadian clock, where KaiC protein plays a

central role. Groundbreaking results from Tomita et al. (2005) shows clear evidence of

temperature-compensated, robust circadian rhythms of KaiC phosphorylation with-

out transcription or translation. Moreover, this post-translational oscillation of the

KaiC phosphorylation is successfully constructed in vitro by Nakajima et al. (2005)

with temperature compensation. The post-translational process of KaiC phosphory-

lation also plays an important role in the transcriptional translational feedback loop.

When KaiC phosphorylation reaches its peak, SasA and RpaA work together through

interactions with KaiC phosphorylation activities to regulate the transctiption factors

(Gutu and OShea 2013, Tseng et al. 2017, Takai et al. 2006).

Phosphorylation again plays a significant role in the mechanisms of the plant cir-

cadian clock. The clock-associated protein Circadian Clock Associated 1 (CCA1) and

the Late Elongated Hypocotyl (LHY) proteins have been shown to be closely associ-

ated with clock function in Arabidopsis thaliana (Wang and Tobin 1998, Fowler et al.

1999). Both CCA1 and LHY have robust circadian oscillations in transcript as well

as protein levels under continuous light and control their own gene expression levels

through negative feedback loops. Casein Kinase 2 (CK2) can modulate CCA1 activity

either by direct interaction or phosphorylation and is also able to interact with and

phosphorylate LHY in vitro (Sugano et al. 1998, 1999). It was later confirmed that
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CCA1 phosphorylation by CK2 is indispensable for the central oscillator to function

normally (Daniel et al. 2004). Another important element of the Arabidopsis clock

is TOC1/PRR3, the phosphorylation of which may enhance the amplitude of the

circadian rhythms through inhibition of ZEITLUPE (ZTL) targeted degradation of

TOC1 (Más et al. 2003, Fujiwara et al. 2008). PRR5 is shown to regulate phos-

phorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis

circadian clock (Wang et al. 2010).

As we can see, there are many similarities among the Drosophila, mammalian and

fungal clocks. The plant clocks, on the other hand are extremely complicated and

quite different, which we will leave as future work. As a result, we focus our investi-

gation on the cyanobacterial and the mammalian circadian clocks and especially the

phosphorylation activity of the corresponding key clock proteins. We are interested in

using the tool of mathematical modeling to look at these systems of circadian clocks

and provide insights into future experimental studies.

In chapter II, we study the cyanobacterial circadian clocks, which is perhaps the

simplest circadian clock one can find. The temperature-compensated oscillation of

KaiC phosphorylation has been shown to be present in vivo as well as reconstituted

in vitro (Xu et al. 2000, Nakajima et al. 2005, Tomita et al. 2005). KaiA activates the

phosphorylation of KaiC while KaiB attenuates KaiC phosphorylation by restricting

the activity of KaiA (Iwasaki et al. 2002, Kageyama et al. 2003, Kitayama et al. 2003,

Rust et al. 2007, Nishiwaki et al. 2007). First, we established a detailed mathematical

model that can reproduce many existing experimental results including temperature

compensation and the robustness of circadian clocks under ATP variations. Then

we propose a simplified mathematical model and show that the sequestration mecha-

nism in cyanobacteria involving KaiA, KaiB and KaiC is mathematically equivalent

to the transcription regulation in the mammalian timekeeping mechanism involv-

ing BMAL1/CLOCK and the PERIOD proteins. In both systems, we find through
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mathematical analysis that, a tight binding between the activator and the repressor

is required for the sequestration mechanism to work at its most power. Additional

simulations show that the transcriptional regulation of the KaiABC system increases

the robustness of the circadian oscillations by keeping the molar ratio of clock proteins

in balance, just as it does in a secondary loop in the mammalian circadian timekeep-

ing system. Surprisingly, although these two clocks are very different in biochemical

mechanisms, they are functionally equivalent. We believe this could be a common

dynamical principle of circadian timekeeping in many different organisms.

In chapter III, we further investigate the PER2 phosphorylation of the mammalian

circadian clocks. Mutations related to PER2 phosphorylation have been shown to dis-

rupt the circadian period of Drosophila, mouse and even humans (Kloss et al. 1998,

Price et al. 1998, Meng et al. 2008, Xu et al. 2007, Lowrey et al. 2000). A mutation of

S662 (S662G) in human PER2 (S659 in mouse) can speed up the degradation of PER2

and shorten the period of circadian clocks, thus causing Familial advanced sleep phase

(FASP) (Toh et al. 2001). Another key phosphorylation region of PER2 (S477-S479

in mPER2) has been identified to be indispensable for β−TrcP-dependent degrada-

tion of PER2. It is known that the members of the casein kinase 1 (CK1) family

preferentially phosphorylate primed sites where a phosphorylated residue drives the

recognition of a downstream serine in the +3 position (Flotow et al. 1990). Multiple

studies and recent reviews have concluded that an additional but currently unidenti-

fied priming kinase is required to phosphorylate the FASP site before the downstream

serines can be phosphorylated by CK1δ and/or CK1ε (Isojima et al. 2009, Toh et al.

2001, Xu et al. 2007, Shanware et al. 2011). While the Nemo-like kinase has been

recently identified by Chiu et al. (2011) as a priming kinase for Drosophila PER, the

mammalian priming kinase responsible for the phosphorylation of S659 in mPER2 re-

mains unknown. Together with our collaborators, we find that CK1δ/ε itself is indeed

the priming kinase. Using an NMR-based assay that quantitatively probes phospho-
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rylation with site-specific resolution, we demonstrate that the phosphorylation of

S659 on mPER2 by CK1δ/ε is necessary and sufficient for the rapid phosphorylation

of downstream consensus sites. Interestingly, the previously proposed phosphoswitch

model in Zhou et al. (2015) continues to present features of the model including the

PER2 degradation pattern when CK1δ/ε is introduced as the priming kinase. Our

modeling work suggests a robust yet fragile design to PER phosphorylation that al-

lows the period of the circadian clock to be robust to environmental variations but

also allows for regulatory changes in the CK1 carboxyl terminus to have a large effect

on circadian period. This model makes the prediction that the CK1 tail preferen-

tially controls phosphorylation on the FASP site, a prediction that is experimentally

verified. Taken together, this presents a new mechanism for regulation of circadian

period that is surprisingly divergent from that used in Drosophila.

In chapter IV, we take a step further and investigate in general the multisite phos-

phorylation process of proteins to understand the role of protein phosphorylation in

the circadian clocks. Individual phosphorylation events are typically much quicker

than circadian timescales. Additionally, in the Drosophila circadian clock, multisite

phosphorylation can lead to an interval timer gating protein nuclear entry (Meyer

et al. 2006, Saez and Young 1996). In mammals, a similar interval timer was discov-

ered gating PERIOD2 degradation (Zhou et al. 2015). Based on these studies, we

would like to answer several of the most important questions in circadian research

with mathematical modeling: How could timescales on the orders of hours emerge

from phosphorylation events that are likely orders of magnitude faster, especially as

kinases are tightly bound to their products? How could changes in PER protein

affect timescales of minutes, as well as a circadian timescale? Why would kinases

and phosphatases both be bound to PER? Is the fact that PER has large disordered

regions important to these phenomena? In this chapter, we show how kinases and

phosphatases can work together to create an interval timer with a timescale much

7



longer than individual phosphorylation events. The proposed mechanism is based on

phosphate groups being rapidly shuttled on and off a protein, multiple conformational

changes to a protein allowing additional sites to be phosphorylated and at least in

PER2, an initial phosphoswitch determining protein fate. We also find that, product

inhibition through sequestration on the kinase can play a crucial role in sustaining

the circadian rhythms, which resonates with our work in chapter II.

In chapter V, we summarize the importance and contributions of our work on the

mathematical modeling of phosphorylations in circadian clocks. We also conclude

with future directions for both theoretical and experimental research to expand this

topic.
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CHAPTER II

Circadian rhythms in divergent species

evolved convergently

2.1 Abstract

Circadian clocks are vital to many organisms and adapt to environmental signals and

pressures. One of the simplest circadian clocks exists in cyanobacteria (Synechococ-

cus elongatus), where three key clock proteins KaiA, KaiB and KaiC constitute a

post-translational oscillator (Ishiura et al. 1998, Nishiwaki et al. 2000, Xu et al. 2000,

Tomita et al. 2005). Temperature-compensated oscillation of KaiC phosphorylation

was shown to be present in vivo as well as reconstituted in vitro (Tomita et al. 2005,

Nakajima et al. 2005). KaiA activates the phosphorylation of KaiC while KaiB atten-

uates this process by restricting the activity of KaiA (Iwasaki et al. 2002, Kageyama

et al. 2003, Kitayama et al. 2003, Rust et al. 2007, Nishiwaki et al. 2007). Here,

we propose a mathematical model for the post-translational cyanobacterial clock and

show that the sequestration mechanism in cyanobacteria involving KaiA, KaiB and

KaiC is mathematically equivalent to the transcription regulation in mammalian cir-

cadian timekeeping involving BMAL1/CLOCK and PER1-2/CRY1-2. We also show

that, similar to what is found in the mammalian circadian clock, an additional nega-

tive feedback loop keeps the molar ratio of the clock proteins in balance to increase

9



the robustness of circadian oscillations. Convergent evolution is observed in many or-

ganisms at all levels of biological complexity and leads to similar dynamical principles

occurring in species with very different biological mechanisms (Brazhnik and Tyson

2006). Our work suggests further that even though prokaryotes and eukaryotes are

phylogenetically unrelated and different in many ways, similar dynamical principles

regulating molecular timekeeping may have emerged through convergent evolution.

This work also raises questions about what common evolutionary pressures could

yield such similar dynamical mechanisms with such dissimilar components.

2.2 Introduction

Endogenous circadian clocks are self-sustained biological oscillators present in many

species, the period of which are roughly 24 hours. This rhythmic behavior is vital in

order for organisms to have reliable regulation of biological activities. Cyanobacteria

are the simplest organisms in which a stable circadian rhythm can be found. It has

been discovered that there are three key clock proteins in cyanobacteria, KaiA, KaiB

and KaiC (Ishiura et al. 1998). In higher organisms including most prokaryotes, the

negative feedback loop regulating gene expression is widely accepted as the main drive

for circadian rhythms. On the other hand, early experiments from Xu et al. (2003) to-

gether with the ground breaking results in Tomita et al. (2005) show clear evidence of

temperature-compensated, robust circadian rhythms of KaiC phosphorylation with-

out transcription or translation. Self-sustainable oscillation of KaiC phosphorylation

is shown to be present in vivo (Tomita et al. 2005) as well as reconstituted in vitro

(Nakajima et al. 2005). KaiC forms a hexameric ring both in vivo and in vitro, KaiA

dimers activate the phosphorylation of KaiC in addition to its autophosphorylation

while KaiB tetramers or dimers attenuates the KaiC phosphorylation by restricting

the activity of KaiA (Iwasaki et al. 2002, Kageyama et al. 2003, Kitayama et al.

2003). Two indispensable phosphorylation sites, Ser-431 (S431) and Thr-432 (T432)
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have been identified (Nishiwaki et al. 2004, Xu et al. 2004) and the KaiC phosphory-

lation cycle proceeds in an ordered pattern (Rust et al. 2007, Nishiwaki et al. 2007,

Phong et al. 2013). The KaiC protein monomer has two distinctly functioning do-

mains, an ATP binding site with high affinity in the N-terminal domain (CI) and

another ATP binding site in the C-terminal domain (CII) with low affinity (Hayashi

et al. 2004). Structural analysis by Kim et al. (2008) proposes a dynamic balance be-

tween different states of the C-terminal (A-loop) that regulates the KaiABC syetem.

Monomer exchange was proposed by Emberly and Wingreen (2006) as an innovating

mechanism to produce synchronized oscillations, which is further investigated in Ito

et al. (2007). However, this model requires the fully phosphorylated KaiC hexamers

to form higher order clusters, a hypothesis questioned in recent experiment Kageyama

et al. (2006). An allosteric model adopting similar assumption is proposed in Van Zon

et al. (2007), where KaiC hexamers go through a conformational transition at highly

phosphorylated or unphosphorylated states. A cyclic behavior in the phosphoryla-

tion process therefore stems from differentiating binding affinities of KaiC with ATP,

KaiA and KaiB. Unphosphorylated KaiC prefers to stay active and highly phospho-

rylated KaiC prefers to stay inactive. In addition, active KaiC is more stable than

inactive KaiC, leading to a uni-directional bias in conversion rates similar to the first

design principle in Jolley et al. (2012). Each KaiC monomer can be phosphorylated

or unphosphorylated independent of its active/inactive state. THe phosphorylation

level of each KaiC hexamer is then modeled through the number of phosphorylated

monomers present within each complex. Sequestration of KaiA through tight bind-

ing with the KaiBC complexes has been proposed to be the key process that enables

sustainable circadian rhythms in cyanobacteria. Modeling work has utilized different

mechanisms based on the sequestration building negative feedback that can produce

either a relaxation oscillator coupled with positive feedback (Phong et al. 2013, Rust

et al. 2007) or a delayed oscillator (Clodong et al. 2007, Van Zon et al. 2007).
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2.3 Detailed Mathematical Modeling of the Cyanobac-

terial Clock

Our mathematical model of the KaiABC system (Fig 2.1) relies on a detailed se-

questration mechanism of KaiA through KaiBC proteins revealed recently by crystal

structural analysis of protein complexes in the KaiABC system (Tseng et al. 2017):

Once the S431 site is phosphorylated (resulting KaiC-ST and KaiC-S), KaiC under-

goes a conformational change from a pre-hydrolysis state to a post-hydrolysis state

creating a hub. KaiB undergoes a fold-change transition into an active state that

is captured by the post-hydrolysis KaiC (Chang et al. 2015). We consider a model

with KaiC proteins in four different states: the unphosphorylated KaiC (denoted by

U), the S431 phosphorylated KaiC (denoted by S), the T432 phosphorylated KaiC

(denoted by T), S431 and T432 phosphorylated KaiC (denoted by ST). The nota-

tions for KaiBC complexes follow in the natural way and KaiA acts as an enzyme

to enhance the KaiC phosphorylation. The corresponding mass action dynamics are

described by Equations (2.12-2.19). Experiments suggest that KaiB interacts with

KaiC in different phosphorylation states with different binding affinities and that

phosphorylation on Ser431 is necessary for KaiC to bind with KaiB (Lin et al. 2014,

Rust et al. 2007), we propose in our models that KaiB binding only happens when

S431 site is phosphorylated in KaiC. The sequestration mechanism of KaiA works in

the following way: when the S431 site is being phosphorylated on the KaiC protein,

the KaiB complex is bound the N-terminal (CI) of KaiC and recruits KaiA proteins to

prevent KaiC activation on the C-terminal (CII). In other words, free KaiA proteins

are depleted by KaiBC complexes (See Equation 2.21). Simulations suggest that the

model can oscillate for a wide range of reaction rates. Analyzing the temporal profiles

of KaiABC oscillator, we can see that the fraction of phosphorylated KaiC oscillates

with a roughly 24h period (Fig. 2.2B). Phase analysis of the profiles suggests that the
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Figure 2.1:
The schematic for the detailed cyanobacterial clock model. Squares are
KaiABC proteins in different states, small circles indicate the phosphatase
groups on the corresponding sites. Arrows indicate reactions among pro-
teins, the width of which shows the relative strength. The KaiBC com-
plexes (KaiBC-S and KaiBC-ST) sequester KaiA through tight binding.

dynamics are indeed what we expected: unphosphorylated KaiC (U) is first activated

by KaiA; the activated KaiC first phosphorylates on the T432 site, becoming state

T, and then slowly phosphorylates the S431 site, becoming ST; the total phosphory-

lation level of KaiC increases accordingly during this phase. Meanwhile, KaiB starts

to bind with the phosphorylated KaiC and the resulting KaiBC complexes in turn

sequester KaiA through tight binding. Once enough free KaiA proteins are depleted

from the system, phosphorylation stops and dephosphorylation becomes dominant,

leading the system back to a highly unphosphorylated state. Stochastic simulations

(Fig. 2.11) and bifurcation analysis (Fig. 2.10) of our model presents a similar re-

sults as Van Zon et al. (2007) where the relative ratio of KaiA, KaiB with respect to

KaiC plays an important role in the circadian clock. Our model captures the core

mechanism necessary for reproducing interesting results both qualitatively and quan-

titatively including temperature compensation. The parameters for the simulations

are described in Table 2.2 and 2.1. Asymmetric circadian rhythms consistent with the
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previous experiment results in Rust et al. (2007) can also be observed in our system

where KaiC proteins spend less time in phosphorylation compared to dephosphory-

lation (Fig. 2.2 A-B). Compared with the circadian data from Phong et al. (2013),

our model shows a robust period around 24h with less than a 5% change in circadian

period under different ATP/ADP ratios (Fig. 2.2 C-F). The CI domain of KaiC is

responsible for binding with KaiB during night and thus sequestration of KaiA. Our

model produces simulation results confirming the importance of the CI domain of

KaiC in the cyanobacterial system (Fig. 2.2 G-H).

2.4 A Simple Mechanism Revealing Convergent

Evolution

We propose then a simplified model of the cyanobacterial clock where only the KaiA

and the KaiC proteins are explicitly included (Fig. 2.3). In our core model, the KaiA-

enhanced phosphorylation process on the T site is much faster than the autophos-

phorylation on S site. The tight binding between KaiA and the unphosphorylated

KaiC ensures that phosphorylation can proceed rapidly even with a small amount of

free KaiA. As the phosphorylation process proceeds, the KaiC proteins become phos-

phorylated on S431 and start to sequester the KaiA proteins through tight binding.

Our model shares similarities with many other existing models including Rust et al.

(2007) and Van Zon et al. (2007) (See discussion for details). We can observe in the

simulations of our detailed model that KaiA is indeed mainly sequestered by KaiC

phosphorylated on S431 with help of KaiB (Fig 2.1).

Previous experiments (Lee et al. 2001, 2011a,b) and modeling works (Kim and

Forger 2012) have provided much evidence to support a protein sequestration scheme

over the hill-type oscillators for mammalian circadian clocks (See Kim (2016) for

detailed comparisons). Here we compare our core mechanism for the cyanobacterial
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Figure 2.2:
Comparing simulations of detailed model with experiments. (A-B) Com-
parison with experimental data from Rust et al. (2007). In both results,
τ1 ≈ 9.5h is the phosphorylation phase duration and τ1 ≈ 18.5h is the de-
phosphorylation phase duration. (C-F) Comparison with circadian data
from Phong et al. (2013), our model shows a robust period around 24
h under different ATP/ADP ratios (Equations 2.22-2.23). (G-H) Com-
parison with Phong et al. (2013), where we confirmed the importance of
CI domain insustaining oscillations. We simulate the model with weak
KaiB-KaiC binding representing the KaiC muted in the CI domain (CI
cat-) and the oscillation is abolished
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circadian clock with a protein sequestration model from Kim and Forger (2012) for the

mammalian circadian clock. The system of equations for the cyanobacterial system is

written in Equations (2.1-2.4) where the total amount of KaiC protein in the system

is denote by CT and the free amount of KaiA denoted by [A] is computed under

equilibrium assumptions similar to that in Kim and Forger (2012) (See Equation

2.25-2.28 for details). In fact, we tested two models, one where KaiA only facilitates

the phosphorylation from U to T (Fig. 2.3), and another where KaiA facilites both the

U to T phosphorylation and the T to ST phosphorylation (Fig. 2.4). The difference

between these models depends on whether we use the term k2[T ] or k2[A][T ]. Both

models can oscillate for a wide range of parameters and show similar results including

molar ratio balance as well as the effects of binding affinity between KaiA and KaiC-

S. Here we focus our analysis on the model with k2[T ] for which we can show a

straightforward comparison with the mammalian clocks.

d[T ]

dt
= k1[A](CT − [T ]− [ST ]− [S])− k2[T ] (2.1)

d[ST ]

dt
= k2[T ]− k3[ST ] (2.2)

d[S]

dt
= k3[ST ]− k4[S] (2.3)

[A] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2 (2.4)

Equations (2.5 - 2.8) proposed by Kim and Forger (2012) describe a mechanism

between the activator BMAL1/CLOCK (denoted by A) and the repressor PER1-

2/CRY1-2 (denoted by P ) in the mammalian circadian clock. Comparing these two

system of equations, we can draw a connection where the activator BMAL1/CLOCK

corresponds to KaiA in our system and the repressor PER1-2/CRY1-2 corresponds
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to KaiC-S.

d[M ]

dt
= α1f(P,AT , Kd)− β1[M ] (2.5)

d[Pc]

dt
= α2[M ]− β2[Pc] (2.6)

d[P ]

dt
= α3[Pc]− β3[P ] (2.7)

f(P,AT , Kd) =
(
AT − [P ]−Kd +

√
(AT − [P ]−Kd)2 + 4KdAT

)
/(2AT ) (2.8)

Figure 2.3:
The schematic for the core cyanobacterial clock model. Squares are KaiA
and KaiC proteins in different states, small circles indicate the phos-
phatase groups on the corresponding sites. Arrows indicate reactions
among proteins, the width of which shows the relative strength. KaiA
only enhances the phosphorylation from U to T. KaiC-S sequesters KaiA
through tight binding.

Our simulations demonstrate that in this simple model, KaiA sequestration through

tight binding with KaiC-S is indispensable for generating oscillations. For each dif-

ferent value of the dissociation constant Kd, we simulate our model for a total of 105

randomly generated parameter sets. We plot the fraction of simulations with oscil-

lations against the value of Kd on a log-log plot (Fig. 2.5). These results show that

the system is more likely to generate stable oscillations when there is stronger KaiA
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Figure 2.4:
The schematic for the alternative core mechanism. Squares are KaiA and
KaiC proteins in different states, small circles indicate the phosphatase
groups on the corresponding sites. Arrows indicate reactions among pro-
teins, the width of which shows the relative strength. KaiA facilitates
both U to T and T to ST transition. KaiC-S sequesters KaiA through
tight binding.
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sequestration (smaller Kd), which is consistent with the results in mammalian clocks

(Kim and Forger 2012, Lee et al. 2011b).
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Figure 2.5:
Simulation of the core model with different values of binding affinity Kd.
The core model can generate oscillations for a higher fraction of parameter
sets as Kd decreases from 10−1 to 10−4. The parameter sets are plotted
as sample points (indicated by *) with a fitted curve on a log log plot.

Additional theoretical analysis in section 2.6.2 and simulations confirm that a

necessary condition for oscillations to occur in our model is

CT − (1 + r)AT > ε (2.9)

where r is a constant of order 1 related to the rates of phosphorylation and dephos-

phorylation and ε is a constant of small positive value. Detailed analysis along with

definition of these constants can be found in 2.6.2 (Supplement Information). Con-

sistent with existing experimental and modeling results from Kageyama et al. (2006),

Van Zon et al. (2007), our simulations suggest that a balanced molar ratio between

19



the KaiA and KaiC abundance is crucial for generating sustainable oscillations. The

observation that the KaiB abundance does not affect circadian rhythms in the same

way as KaiA does is also consistent with the model design. In our simulations, we

choose parameter values such that r = 2 and ε� 1. The condition in equation (2.9)

then turns into a linear criterion:

CT − 3AT > 0 (2.10)

Simulation results verify that parameters violating this condition rarely generate os-

cillations (Fig. 2.6). Similarly in mammalian circadian clocks, sustainable oscillations

require that the repressors and activators interact through tight binding and remain in

a balanced molar ratio (Kim and Forger 2012, Lee et al. 2011b). We also find that an

Figure 2.6:
Simulations for molar ratio condition. Any parameter set that generates
oscillations is located below the line CT = 3AT ,verifying the balanced
molar ratio condition

additional transcription translational feedback loop (TTFL) plays a significant role in
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sustaining robust circadian oscillations. Besides the KaiABC system, SasA and CikA

proteins are two important histidine kinases to regulate the output signaling from

the post translational oscillator to the transcriptional activity, which is important

when we study the in vivo oscillator. The integrated roles of SasA, CikA and RpaA

together with KaiABC in the cyanobacterial circadian clock have been summarized

recently in Swan et al. (2018). When KaiC phosphorylation reaches its peak, SasA

binds to CI domain of the ST-phosphorylated KaiC (Gutu and OShea 2013, Tseng

et al. 2017), autophosphorylates and transfers the phosphate group to RpaA, thus

turning on the transcription factor (Takai et al. 2006). During the dephosphorylation

phase, KaiB kicks off SasA from S-phosphorylated to form the KaiBC complex. CikA

is then recruited by the KaiBC complex, dephosphorylates RpaA and thus inhibiting

the transcription. In other words, transcription of the kaiBC gene is activated when

most of the KaiC proteins are at their peak phosphorylation level and inhibited when

KaiC proteins are mostly in the S state. As a result, we model the TTFL as an

inhibition scheme where KaiC-S acts like an inhibitor of the kaiBC gene (Fig. 2.7).

In this way, we can capture the dynamics without involving complicated biochemistry

or introducing additional components into our core model. This extended wild type

model is then compared with a post translational regulation (PTR) model with con-

stitutive transcription rate (Fig. 2.8). We simulate both models over 22500 randomly

generated parameter sets varying transcription rates Ks and KaiA concentrations AT .

The wild type model can produce circadian oscillations under a wide range of

parameters (98.44%, see Fig. 2.9 A) while the PTR model without the additional

feedback loop can only produce oscillations under a condition similar to the balanced

molar ratio criterion we developed above (72.41%, see Fig. 2.9 B). What’s more, the

wild type model can show oscillations with more robust period compared to the PTR

model.

We calculate the period of each oscillation by first applying Fast Fourier Transform
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Figure 2.7:
Schematic of the wild type TTFL model. Extension of the core mechanism
with both a post-translational regulation and a negative feedback of KaiC-
S on its own gene.
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Figure 2.8:
Schematic of the PTR model. Extension of the core mechanism: post-
translational regulation with a constitutive source of transcription.
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(FFT) on the time course and then identifying the strongest frequency in the spec-

trum. Here we present the FFT analysis for one parameter set in both the wild type

(Fig. 2.9 C) and the post-translational regulation model (Fig. 2.9 D). See Equation

(2.45-2.56) of section 2.6.3 for detailed equations and parameters of the two models

compared here.

Our analysis and simulations altogether suggest that the TTFL as an additional

negative feedback loop in the cyanobacterial clocks can help sustain the required

molar ratio balance through a homeostatic mechanism, which resonates with the

mammalian clock (Kim and Forger 2012, Lee et al. 2011b).

Figure 2.9:
Simulation of TTFL versus PTR model. For (A) the wild type model and
(B) the post translational regulation model, each oscillation is plotted
as a point with a scaled color representing the period length. Sample
oscillations and FFT analysis of the signals for the (C) TTFL model and
(D) the PTR model with AT = 5.034µM and Ks = 10.07/hr. See Table
2.2B for detailed description of the parameters.
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2.5 Discussion

We studied a model for the cyanobacterial circadian clock based the following mech-

anism: KaiA is required for the phosphorylation on KaiC on the T site. When the

subsequent S site of KaiC is phosphorylated, KaiC binds to KaiB and gets activated.

The ”activated” KaiC can then bind and inactivate KaiA, with the help of KaiB. We

assume that KaiC (when bound to KaiB) is very efficient in inhibiting KaiA, such that

practically all KaiA is sequestered even in the presence of a small amount of KaiC

with the S site phosphorylated. After the phosphorylation is completed and KaiC

gets dephosphorylated on the S site, there is eventually not enough KaiC to sequester

all KaiA and some KaiA is released. The free KaiA then efficiently phosphorylates

unphosphorylated KaiC, starting the cycle again. The mammalian clock works via

a similar mechanism when viewed through this lens. BMAL1/CLOCK activates the

PER1-2/CRY1-2 proteins transcriptionally in a way that is functionally similar to

KaiA activating KaiC on the T site. Subsequently the PER1−2/CRY1-2 proteins are

phosphorylated, which causes them to sequester and inactivate the BMAL1/CLOCK

complex. This is similar to the KaiC phosphorylation on the S site which allows KaiC

to sequester and inactivate KaiA. In the mammalian system, the PER1-2/CRY1-2

proteins degrade until there is not enough to sequester the BMAL1/CLOCK complex,

which allows BMAL1/CLOCK to produce more PER1-2/CRY1-2. Similarly, as KaiC

is dephosphorylated below a certain threshold, it releases KaiA which then produced

KaiC phosphorylated on the T site. Despite huge differences between the cyanobac-

terial and the mammalian clock systems, it is surprising that the core mechanisms of

both systems share similar conditions for generating stable oscillations.

These similarities extend well beyond the fact that they are both negative feedback

loops with delay. For example, in the mammalian clock, if BMAL1/CLOCK does bind

directly to DNA, the cyanobacterial and the mammalian clocks will not have the same

dynamics. For these reasons, we propose that similar evolutionary pressures may have
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caused these clocks in divergent species to have evolved convergently. Future work

should determine specifically how these evolutionary pressures may have caused the

dynamical structures we observe.

Our model can reproduce experimental data including the time courses and the

various effects of molar ratio among KaiABC proteins on the clock. Several works

have addressed the role of TTFL in cyanobacteria as making the circadian clock

more robust to biomedical noises in growing cells (Zwicker et al. 2010, Teng et al.

2013). Our analysis and simulations, on the other hand, have shown that the TTFL

as an additional negative feedback loop can sustain the required molar ratio balance

through a homeostatic mechanism, thus making the original oscillator more robust

to all perturbations of this nature.

Different models have been built upon the sequestration mechanisms including

relaxation oscillators (Phong et al. 2013, Rust et al. 2007) and delayed oscillators

(Clodong et al. 2007, Van Zon et al. 2007). Our model is different from the existing

models with delayed oscillation including that in Van Zon et al. (2007) because we dis-

tinguish KaiC protein by the number of phosphorylated sites instead of the number of

phosphorylated sub-units in a hexamer. While adopting the widely accepted ordered

phosphorylation feature of KaiC and the sequestration scheme in Rust et al. (2007),

we do not assume quasi-steady-state (QSS) to apply Michaelis-Menten dynamics.

The model in Rust et al. (2007) requires that KaiA inhibits the dephosphorylation

process from KaiC-ST to KaiC-S, while KaiA is sequestered by KaiC-S efficiently

through the help of KaiB. In this way, KaiC-S indirectly facilitates itself, forming a

positive feedback loop in the system. Our model, however, does not need this positive

feedback loop since KaiA only enhances the phosphorylation in the initial step while

activating KaiC. The model of Jolley et al. (2012) requires similar assumptions as us

by considering two distinct phosphorylation sites on the substrate to design a mul-

tisite phosphorylation oscillator. On the other hand, differences between the models
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can be observed in many aspects - their model relies on a separate phosphatase for the

dephosphorylation process and the fact that kinase activity is involved in phospho-

rylating on the two sites, both of which are not necessary in our model. Their work

is significant in that they proposed two simple design principles that can be applied

in building general PTO (post-translational oscillator) while our model specifically

draws a connection between the similar sequestration mechanisms in the Kai ABC

system and the BMAL1/CLOCK feedback loop revealing convergent evolution on a

high level.

We hope our analysis guides further experiments to reveal the mechanisms of

cyanobacterial circadian rhythms, as well as how researchers can understand the

dynamical principles of timekeeping across species on all levels.

2.6 Supplement Information

2.6.1 Detailed Mathematical Model

To describe the full model, all the reactions are listed in Equation (2.11). Consis-

tent with the main text, we consider KaiC proteins in four different states: unphos-

phorylated KaiC (denoted by U), S431 phosphorylated KaiC (denoted by S), T432

phosphorylated KaiC (denoted by T ), double phosphorylated KaiC (denoted by ST ).

The notations for KaiBC complexes follow as B · U, B · S, B · T and B · ST. See Table

2.2A for detailed description of the parameters.
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The reactions in the detailed model are:

U + A
kf

1−→AU, U
kb

1←− AU
kcat−→ T

T + A
kf

2−→AT, T
kb

2←− AT
kcat−→ ST

U
kps−→ T

kps−→ ST

U + B
kon

1

�
koff

1

B · U, S + B
kon

2

�
koff

2

B · S, ST + B
kon

3

�
koff

3

B · ST

B · ST
kdps−→ B · S

kdps−→ B · U

ST
kdps−→ S

kdps−→ U

(2.11)

The corresponding mass action equations are as follows:

d[U ]

dt
= kb

1 [AU ]− kf
1[A][U ] + koff

1 [BU ]− kon
1 [U ][B]− kps[U ] + kdps[S] (2.12)

d[AU ]

dt
= kf

1[A][U ]− (kcat + kb
1 )[AU ] (2.13)

d[T ]

dt
= kcat[AU ] + kb

2 [A][T ] + kps([U ]− [T ])− kf
2[A][T ] + kdps([ST ]− [T ]) (2.14)

d[AT ]

dt
= kcat[A][T ]− kb

2 [AT ] (2.15)

d[ST ]

dt
= kps[T ] + koff

3 [BST ]− kon
3 [ST ][B] + kf [AT ]− kdps[ST ] (2.16)

d[BST ]

dt
= −kdps[BST ]− koff

3 [BST ] + kon
3 [ST ][B] (2.17)

d[BS]

dt
= kdps[BST ]− koff

2 [BS] + kon
2 [S][B] (2.18)

d[BU ]

dt
= kdps[BS]− koff

1 [BU ] + kon
1 [U ][B] (2.19)

KaiA can be sequestered by the KaiBC complex when the S site is phosphorylated

on KaiC (BS and BST ), where n = 2 indicates the strength of sequestration.

[B] = [B]T − [UB]− [BS]− [BST ] (2.20)

[A] = max{0, [A]T − n · ([BST ] + [BS])− ([AU ] + [AT ])} n = 2 (2.21)
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To study the stability of our model under ATP variations, we adopt the competitive

inhibition among ATP, ADP and KaiC in Phong et al. (2013)

kps =
[ATP ]

[ATP ] +KI [ADP ]
k0
ps (2.22)

kcat =
[ATP ]

[ATP ] +KI [ADP ]
k0
cat (2.23)

where k0
ps and kcat are the constant rates under 100% ATP andKI is the strength of

inhibition from ADP. Simulation of the model under different [ATP]/([ATP]+[ADP])

ratios show that the cyanobacterial circadian clock is robust against ATP variations

(Fig. 3 in main text), which is consistent with previous experimental result Phong

et al. (2013).

A bifurcation diagram is generated for our model using XPP-AUTO (Fig. 2.10).

Our bifurcation diagram presents similar property as that in Van Zon et al. (2007).

Oscillations occur when the ratio between concentration of KaiA and KaiC is within

a bounded range while the relative concentration of KaiB does not have much effect

on whether there are oscillations or not in the system .

We have also simulated our model with the Gillespie algorithm (kinetic Monte

Carlo). Keeping the KaiC total concentration a constant CT = 1µM , the number of

KaiC molecules is directly related to the total volume in our simulation. We simulate

the discrete model for different V and compare the corresponding phophorylation

levels of KaiC(Fig.2.11). We notice that when the number of molecules is low (V =

10, 20, 50), the trajectory does show randomness without any sustained oscillations.

As the number of KaiC molecules increases, the corresponding oscillations become

more stable. When the number of molecules V becomes large enough, the general

shape of the profile stays almost the same even if the number is doubled from V =

5000 to V = 10000. The amplitude of the oscillations from stochastic simulation
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Figure 2.10:
Two parameter bifurcation diagram of the KaiC system. atoc is the frac-
tion of KaiA concentration to KaiC concentration. btoc is the fraction
of KaiB concentration to KaiC concentration. Points within the region
enclosed by the blue curve give initial distributions that can produce
oscillations while we expect no oscillations outside this region.
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approaches that from the deterministic model as the number of molecules increases.

Besides, the phase difference between the stochastic and deterministic simulations

decreases significantly as the number of molecules increases. We therefore predict

that in order to observe stable and synchronized oscillations, the total amount of

KaiC proteins must be above a certain threshold.

An important feature of circadian clocks, which is also true for most biological

clocks, is their ability to remain at an almost unchanged period while environmental

temperature can vary. This feature is known as temperature compensation, mean-

ing that the effect of changes in temperature is compensated through an endoge-

nous mechanism controlling the clock. A natural question to ask then is how this

temperature-compensation is realized in circadian clocks, enabling the robust regu-

lation of biological behavior essential to the survival of most organisms. Different

theories have been proposed to explain the mechanism Hastings and Sweeney (1957),

Lakin-Thomas et al. (1991).

Here we show that our model generates oscillations that can be temperature com-

pensated through a mechanism combining both theories in Ruoff (2004) and Lakin-

Thomas et al. (1991). To investigate the effects of varying reaction rates, we varied

KaiA binding rates, KaiB binding rates as well as the KaiA-activated phosphorylation

rate while keeping the rates of autokinase/phosphatase unchanged. In other words,

we constrain the slow (de)phosphorylation rates to be rather temperature-insensitive

while allowing binding rates to vary. This assumption is supported by the experiments

from Tomita et al. (2005), where they demonstrated that KaiC alone when incubated

with ATP presents temperature-compensated autokinase/phosphatase activities.

We find that varying KaiB binding rates almost does not affect the period at all,

possibly since these reactions are already fast enough and the period depend rather

weakly on these rates. On the other hand, KaiA binding rates are much slower, which

can have a more significant effect on the period. We indeed find that KaiA binding
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Figure 2.11:
Stochastic simulations of the detailed model. (A) Trajectories from
stochastic simulations for various total number of KaiC molecules are
compared side by side. The horizontal axis of all plots are ’time(h)’
while the vertical axis shows the relative phophorylation level of KaiC
protein. V = 10,20,50,100,500,1000,5000,10000. (b) Trajectories from
stochastic simulations for various total number of KaiC molecules are
compared with the deterministic simulation from the continuous model.
V = 500, 1000, 5000, 50000
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can in fact serve as a temperature compensation element (Table 2.1A).

A

kps kfi kbi kcat kon
i (koff

i ) kdps Period (h)

T0 1 1 1 1 1 1 23.54
T1 1 2 6 2 2 1 23.54
T2 1 4 27.5 5 5 1 23.53
T3 1.2 4 25 6 8 1 22.69

B

k1(/hr) k2(/hr) k3(/µMhr) k4(/µMhr) k5(/µMhr) k6(/µMhr)

Original 6.4201 0.1538 2.3317 0.1942 0.3641 1.1485
Increased 6.4201*2 0.1538*3.5 2.3317*2 0.1942*3 0.3641*1.5 1.1485*2

Effect + - + = + -

Table 2.1:
(A) Reaction rates are balanced at each hypothetical temperature to
achieve temperature compensation. The notation of reaction rates are
the same as that in Equation (2.12 - 2.19). T0 is the reference temperature
(parameters are described in Table 2.2A ), T1 and T1 are two increased
temperatures with a temperature-insensitive auto-phosphorylation rate.
T3 is a temperature at which the auto-phosphorylation rate also increases.
(B) The first two rows show the parameters we use for the corresponding
simulations. The last row shows how increasing each reaction rates affects
the dephosphorylation process. ’+’ : the process is faster when the rate
increases; ’-’: the process is slower when the rate increases; ’=’: the process
remains almost the same when the rate increases.

Here we model the dephosphorylation process as a detailed mechanism inspired

by previous experimental results. A transient increase in the ATP level during the

dephosphorylation process of KaiC KaiC was previously discovered (Nishiwaki and

Kondo 2012, Nishiwaki-Ohkawa et al. 2014). They propose that KaiC transfers a

phosphoryl group to ADP during the dephosphorylation process. Such exchange

of ADP with ATP in the CII ATPase domain is also shown to be regulated by the

level of KaiA and KaiB Nishiwaki-Ohkawa et al. (2014). In particular, the phosphoryl

group is not directly removed from the phosphorylation site, instead, KaiC binds with

ADP and the phosphoryl group is transferred. The ATP that is produced then goes

through hydrolysis to provide energy in the system. This mechanism may explain

the temperature compensation of the dephosphorylation process of KaiC. Here we
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present a model for the KaiC dephosphorylation based on these observations:

ATP
k1

�
k2

ADP · Pi

ST + ADP
k3

�
k4

S + ATP

S + ADP
k5

�
k6

U + ATP

(2.24)

In our simulations, we first choose a parameter set that shows similar quantita-

tive behavior as that in Nishiwaki and Kondo (2012). The initial conditions for the

simulations are:

[ATP/ADP ]total = 0.5106µM, [ATP ] = 0.0344 ∗ [ATP/ADP ]total,

[C]total = 1.5µM, [U ] = 0.2 ∗ [C]total, [S] = 0.5 ∗ [C]total, [ST ] = 0.3 ∗ [C]total

Indeed, our model is consistent with the experimental result where a transient

increase in the ATP level is observed during the KaiC dephosphorylation process

Nishiwaki and Kondo (2012) (Fig. 2.12). Then we vary the reaction rates individually

to find out how each of them affects the dephosphorylation process (Table 2.1B). In

the end, we find a balance among all rate changes such that temperature compensation

can be achieved (Fig. 2.12).

In conclusion, we propose the following mechanism for temperature compensation

in Cyanobacterial circadian rhythm:

1. The dephosphorylation rate is temperature compensated itself without engaging

KaiA or KaiB. We have also demonstrated how this can be realized through the

balance of several decomposed reactions.

2. The (auto)phosphorylation rate has very low sensitivity to temperature: when

temperature increases, the (auto)phosphorylation rate is first temperature-compensated

and once the temperature enters a certain region, the reaction speeds up slowly.
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Figure 2.12:
Temperature compensation of the KaiC auto-dephosphorylation process.
KaiC dephosphorylation files at a low temperature (A) and a high tem-
perature (B) with the same initial conditions. All concentrations are
normalized. The parameters corresponding to the original and increased
temperature are in Table 2.1B. (C) The phosphorylation levels of KaiC
at two different temperatures. Although the curves do not overlap com-
pletely, the differences between them are small enough compare to the
rate changes.
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3. The unbinding rate of KaiA to KaiC is rather sensitive to the temperature

and serves as the main temperature compensation element. It counteracts the

period shortening effect from increased phosphorylation rates.

4. KaiC (un)binds with KaiB fast enough so that even when the rates are increased

several folds, there is no significant effect on the period.

2.6.2 Linear Stability Analysis of the core model

Here we present a linear stability analysis of the simplified model. We continue to use

[T ], [ST ], [S] as the state variables for KaiC concentrations and [A] the concentration

of KaiA. Constants CT and AT indicate the total amount of the KaiC and KaiA

proteins respectively and Kd is the dissociation constant in the sequestration of KaiA

through KaiC-S. We assume that sequestration happens on a faster timescale, thus

reaching equilibrium quickly. Due to the different time scales and the fact that the

binding of KaiA does not impact other reactions of S, we can solve for the concen-

tration of free KaiA.

[A][Sfree] = Kd[AS] (2.25)

=⇒ (AT − [AS])([S]− [AS]) = Kd[AS] (2.26)

=⇒ [AS] =
(
AT + [S] +Kd −

√
(AT + [S] +Kd)2 − 4AT [S]

)
/2 (2.27)

=⇒ [A] = AT − [AS] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2

(2.28)

The system of equations describing the mechanism in Fig 2.1 can therefore be

written as follows. Here we reduce the number of variables by applying the following

conservation law

[U ] = CT − [T ]− [ST ]− [S]

36



.

d[T ]

dt
= k1[A](CT − [T ]− [ST ]− [S])− k2[T ] (2.29)

d[ST ]

dt
= k2[T ]− k3[ST ] (2.30)

d[S]

dt
= k3[ST ]− k4[S] (2.31)

[A] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2 (2.32)

Our simulations show that the value of Kd has to be small enough for the system

to generate sustainable oscillations. Therefore when Kd � AT , we can take limit

as Kd → 0 in [A] to get an approximation expression [A] = max{AT − [S], 0}. The

system is then simplified to:

d[T ]

dt
= k1(AT − [S])(CT − [T]− [ST]− [S])− k2[T] (2.33)

d[ST ]

dt
= k2[T ]− k3[ST ] (2.34)

d[S]

dt
= k3[ST ]− k4[S] (2.35)

Solving the system for the equilibrium solutions, we obtain [ST ] = k4

k3
[S], [T ] =

k4

k2
[S] from Equation (2.34) and Equation (2.35). With all other variables plugged in,

Equation (2.33) can be reduced to a quadratic in terms of [S].

k1(AT − [S])(CT − (1 +
k4

k2

+
k4

k3

)[S])− k4[S] = 0

In addition, we assume k4 � k1 since KaiA-enhanced phosphorylation is much faster

then (auto)phosphorylation. Hence we can drop the last term k4[S] in the quadratic
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equation by dividing k1 through all terms and find two steady state solutions:

(AT − [S])(CT − (1 +
k4

k2

+
k4

k3

)[S])− k4

k1

[S] = 0 (2.36)

=⇒ (AT − [S])(CT − (
k4

k2

+
k4

k3

)[S]) = 0 (2.37)

=⇒ [S]∗ = AT , [S]∗ =
CT

1 + r
, where r =

k4

k2

+
k4

k3

(2.38)

• First, we compute the Jacobian at the equilibrium [S]∗ = AT

J1 =


−k2 0 −k1(CT − (1 + r)AT )

k2 −k3 0

0 k3 −k4

 (2.39)

The corresponding characteristic function is then:

f1(λ) = (λ+ k2)(λ+ k3)(λ+ k4) + k1k2k3(CT − (1 + r)AT )

We conclude from the secant condition that oscillations occur when

k1k2k3(CT − (1 + r)AT )

k2k3k4

≥ (sec(
π

3
))3

CT − (1 + r)AT ≥
8k4

k1

(2.40)

In the main text, the condition is written as CT−(1+r)AT ≥ ε where r = k4

k2
+ k4

k3

and ε = 8k4

k1
. To verify our analysis, we simulate the model for k2 = k3 = k4 =

0.1 and compare our results with CT − 3AT >
0.8
k1

.

• To analyze the Jacobian matrix at the other equilibrium [S]∗ = CT

3
without

introducing too much computational details, we further assume that k2 = k3 =

k4 which means the autodephosphorylation and the autphosphorylation of KaiC

are on the same time scale. The Jacobian at [S]∗ = CT

3
can be then simplified
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J2 =


−k1(AT − CT

3
)− k2 −k1(AT − CT

3
) −k1(AT − CT

3
)

k2 −k2 0

0 k2 −k2

 (2.41)

The characteristic function of 2.41 is a cubic function:

f2(λ) = (b+ k2 + λ)(k2 + λ)2 + bk2(k2 + λ) + bk2
2

= (λ+ k2)3 + b(k2 + λ)2 + bk2(k2 + λ) + bk2
2

= λ3 + (3k2 + b)λ2 + (3k2
2 + 3bk2)λ+ k3

2 + 3bk2
2

(2.42)

where b = k1(AT − CT

3
) > 0.

The Routh-Hurwitz Stability Criterion tells us that a necessary condition for a

cubic function h(x) = x3 + a2x
2 + a1x + a0 to be stable (all of its roots have

negative real part) is a0 > 0, a2 > 0, a2a1 > a0.

Applying this to our cubic function above, we already have a0 > 0, a2 > 0 and

we compute the third one accordingly:

a1a2 − a0 = (3k2 + b)(3k2
2 + 3bk2)− k3

2 + 3bk2
2

= (3k2 + b)(3k2 + 3b)− k2
2 + 3bk2

= 8k2
2 + 9bk2 + 3b2

> 0 ∀ b, k2 > 0

(2.43)

Therefore we know that all three roots of the characteristic function always have

nagative roots, meaning the steady state is stable and there is no oscillations

around that point.

To conclude, we have found a necessary condition for the system to generate
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oscillation which is also verified by simulation in the main text.

CT − (1 + r)AT ≥
8k4

k1

(2.44)

2.6.3 Transcriptional Translational Feedback Loop versus Post

Translational Regulation

As explained in the main text, we investigated the role of the transcriptional trans-

lational feedback loop (TTFL) as an additional negative feedback loop in the KaiC

system. We simulated a modified system with an additional TTFL and another post

translational regulatory system with a constitutive source of transcription.

The corresponding equations with transcription, translation and degradation ac-

tivities for both systems are listed here (See Table 2.2B for detailed description of

parameters and the range for parameter perturbation).

TTFL

d[M ]

dt
= Vtrsp

100

1 + [S]4
− Vm[M ] (2.45)

d[U ]

dt
= Ks[M ]− k1[A][U ] + k4[S]− Vd[U ] (2.46)

d[T ]

dt
= k1[A][U ]− k2[T ]− Vd[T ] (2.47)

d[ST ]

dt
= k2[T ]− k3[ST ]− Vd[ST ] (2.48)

d[S]

dt
= k3[ST ]− k4[S]− Vd[S] (2.49)

[A] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2 (2.50)

PTR
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d[M ]

dt
= Vtrsp − Vm[M ] (2.51)

d[U ]

dt
= Ks[M ]− k1[A][U ] + k4[S]− Vd[U ] (2.52)

d[T ]

dt
= k1[A][U ]− k2[T ]− Vd[T ] (2.53)

d[ST ]

dt
= k2[T ]− k3[ST ]− Vd[ST ] (2.54)

d[S]

dt
= k3[ST ]− k4[S]− Vd[S] (2.55)

[A] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2 (2.56)
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A

Description Symbol Value

Binding rates between KaiA and unphosphorylated KaiC (U) kf
1 20.73 /µMhr

Binding rates between KaiA and T-phosphorylated KaiC (T) kf
2 87.59 /µMhr

Unbinding rates between KaiA and unphosphorylated KaiC (U) kb
1 3.338 /hr

Unbinding rates between KaiA and T-phosphorylated KaiC (T) kb
2 6.113 /hr

Binding rates between KaiB and unphosphorylated KaiC (U) kon
1 11.50 /µMhr

Binding rates between KaiB and KaiC-S kon
2 66.79 /µMhr

Binding rates between KaiA and doubly-phosphorylated KaiC (ST) kon
3 7.18 /µMhr

Uninding rates between KaiB and unphosphorylated KaiC (U) koff
1 10.72 /hr

Uninding rates between KaiB and KaiC-S koff
2 12.32 /hr

Uninding rates between KaiA and doubly-phosphorylated KaiC (ST) koff
3 13.59 /hr

KaiA-enhanced phosphorylation for KaiC kcat 28.15 /hr
Auto-phosphorylation rate for KaiC (U,T) kps 0.0384 /hr

Auto-dephosphorylation rate for KaiC (T,S,ST,BS,BST) kdps 0.1270 /hr

Total KaiC concentration CT 1 µM
Total KaiA concentration AT 1.0401 µM
Total KaiB concentration BT 1.3468 µM

B

Description Symbol Value

Phosphorylation rate from T to ST k2 0.1 /hr
Dephosphorylation rate from ST to S k3 0.1 /hr
Dephosphorylation rate from S to U k4 0.1 /hr

Transcription rate (consititutive) Vtrsp 0.05 /hr
Degradation rate for KaiC Vd 0.05 /hr

Degradation rate for mRNA Vm 0.1 /hr

Parameters perturbed for robustness Symbol Range
KaiA-enhanced phosphorylation rate of unphosphorylated U to T k1 0.1 ∼ 25/µMhr

Dissociation between KaiA and S Kd 10−4 ∼ 10−1/µM
Total KaiC concentration CT 0.01 ∼ 30 µM
Total KaiA concentration AT 0.01 ∼ 10 µM

Translation rate Ks 0.01 ∼ 10/hr

Table 2.2:
Description for parameters used in simulations for (A) detailed mathemat-
ical model and (B) the core model
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CHAPTER III

CK1δ/ε protein kinases prime the PER2

circadian phosphoswitch

3.1 Abstract

Multisite phosphorylation of the PER2 protein is the key step that determines the pe-

riod of the mammalian circadian clock. Previous studies concluded that an unidenti-

fied kinase is required to prime PER2 for subsequent phosphorylation by casein kinase

1 (CK1), an essential clock component that is conserved from algae to humans. These

subsequent phosphorylations stabilize PER2, delay its degradation and lengthen the

period of the circadian clock. A comprehensive biochemical and biophysical analysis

of mouse PER2 (mPER2) priming phosphorylation has shown that CK1δ/ε are in-

deed the priming kinases. We find that both CK1ε and a newly characterized CK1δ2

splice variant more efficiently prime mPER2 for downstream phosphorylation in cells

than the well-studied splice variant CK1δ1. While CK1 phosphorylation of PER2

was previously shown to be robust to changes in the cellular environment, our re-

vised phosphoswitch mathematical model of circadian rhythms shows that the CK1

carboxyl terminal tail can allow the period of the clock to be sensitive to cellular

signaling. Additional simulations provide the prediction that the extreme carboxyl

terminus of CK1 might have been a key regulator of circadian timing.
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3.2 Introduction

Many key features in circadian rhythms have been discovered by extensive research

including self-sustained oscillations without external stimuli, regulation by metabolic

signals, and temperature compensated response to environmental changes (Pattanayak

et al. 2015, Bass and Takahashi 2010, Hastings and Sweeney 1957). The PERIOD

(PER) proteins play a crucial role in regulating the circadian rhythms. PER was

originally discovered in Drosophila as an important regulator (Konopka and Benzer

1971) whose mutation could lead to disrupted period. This key finding has inspired

many researchers to study the mechanism of PER proteins and its significance in

circadian time keeping. In all metazoan clocks, PER2 expression oscillates at both

the mRNA and protein levels and the multisite phosphorylation of PER regulates its

accumulation through β-TrCP-dependent proteasomal degradation (Lee et al. 2001,

Edery et al. 1994). On one hand, this phosphorylation process of PER2 can be in-

fluenced by metabolic and environmental stimuli (Badura et al. 2007, Gallego and

Virshup 2007). On the other hand, PER phosphorylation plays a critical part in the

temperature compensation of the circadian clocks (Shinohara et al. 2017a, Isojima

et al. 2009).

Mutations related to PER2 phosphorylation have been shown to disrupt the cir-

cadian period of Drosophila, mouse and even humans (Kloss et al. 1998, Price et al.

1998, Meng et al. 2008, Xu et al. 2007, Lowrey et al. 2000). In particular, a mutation

of S662 (S662G) in human PER2 (S659 in mouse) can speed up the degradation of

PER2 and shorten the period of circadian clocks, thus causing Familial advanced

sleep phase (FASP) (Toh et al. 2001). Another key phosphorylation region of PER2

(S477-S479 in mPER2) has been identified to be indispensable for β-TrCP-dependent

degradation of PER2. In the casein kinase 1 (CK1) family, several kinases (CK1δ/ε)

can phosphorylate PER2 at both the FASP site and the β-TrCP binding region, yet it

remains unclear how PER2 phosphorylation interact with other parts of the system to
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regulate circadian time keeping. A phosphoswitch mathematical model was proposed

by Zhou et al. (2015) where CK1δ/ε work together with an unknown priming kinase

to regulate the stability of PER2. This phosphoswitch model not only explained the

three-stage temporal profile of PER2 degradation but also provided a mechanism for

temperature compensation.

It is known that the members of the CK1 family preferentially phosphorylate

primed sites where a phosphorylated residue drives recognition of a downstream serine

in the +3 position (Flotow et al. 1990). Multiple studies and recent reviews have

concluded that an additional but currently unidentified priming kinase is required to

phosphorylate the FASP site before the downstream serines can be phosphorylated by

CK1δ and/or CK1ε (Isojima et al. 2009, Toh et al. 2001, Xu et al. 2007, Shanware et al.

2011). While the Nemo-like kinase has been recently identified by Chiu et al. (2011) as

a priming kinase for Drosophila PER, the mammalian priming kinase responsible for

phosphorylation of S659 in mPER2 remains unknown. The priming phosphorylation

on FASP site along with the downstream serine phosphorylations can act as a delay

element creating a plateau in the PER2 degradation process. As the temperature

increases, the phosphorylation at the FASP site increases much faster compared to

the β-TrCP site, thus effectively lengthening the period and compensating the clock

(Zhou et al. 2015).

Together with our collaborators, we find that CK1δ/ε itself is the priming kinase.

Using an NMR-based assay that quantitatively probes phosphorylation with site-

specific resolution, we demonstrate that phosphorylation of mPER2 S659 by CK1δ/ε

is necessary and sufficient for the rapid phosphorylation of downstream consensus

sites. In cells, CK1ε and a newly discovered splice variant of CK1δ (CK1δ2) that

resembles CK1ε at the extreme carboxyl terminus are more efficient priming kinases

than CK1δ1. Interestingly, the previously proposed phosphoswitch model can reca-

pitulate salient features of the model including the PER2 degradation pattern when
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CK1 δ/ε is introduced as the priming kinase (Zhou et al. 2015). Our modeling work

suggests a robust yet fragile design to PER phosphorylation that allows the period of

the circadian clock to be robust to environmental variations, e.g., changes in temper-

ature, but also allows for regulatory changes in the CK1 carboxyl terminus to have a

large effect on circadian period. This model makes the prediction that the CK1 tail

preferentially controls phosphorylation on the FASP site, a prediction that is exper-

imentally verified. Taken together, this presents a new mechanism for regulation of

circadian period that is surprisingly divergent from that used in Drosophila.

3.3 Experimental Evidence Identifies the Priming

Kinase

3.3.1 CK1δ Protein is Sufficient to Phosphorylate S659 of

mPER2

As illustrated in Fig. 3.1A, phosphorylation of the FASP serine cluster of mPER2 by

CK1 follows a progressive after upstream phosphorylation of the priming site (S659

on mPER2) by an unidentified kinase. Experiments with a synthesized peptide of the

mPER2 FASP region and limiting concentration of CK1δ∆C [a constitutively active

form of recombinant CK1δ lacking its carboxyl-terminal autoregulatory domain]. As

predicted, efficient downstream phosphorylation of a primed FASP peptide phospho-

rylated on S658 (pS659) can be observed. Moreover, the unprimed wild-type peptide

(FASP-WT), despite its significant lower efficienty, can also be phosphorylated in

the presence of CK1δ∆C (Fig. 3.1B). Increasing the kinase concentration by only

10-fold led to an increased efficiency of phopshorylation on FASP-WT, but not the

S659 mutant (Fig. 3.1C). These results suggest that CK1δ∆C can act as a priming

kinase when its local concentration is increased to a level better mimicking the in
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Figure 3.1:
Processive phosphorylation of the mPER2 FASP region is dependent on
S659 phosphorylation. (A) Schematic diagram of the FASP serine cluster
phosphorylation in a synthetic peptide. Time course of representative
peptide phosphorylation assays with 20 nM (B) or 200 nM (C) CK1δ∆C.
(Narasimamurthy et al. 2018)

vivo enviroment.

Additional experiment was conducted to test whether CK1δ1 could phosphorylate

the FASP priming site of mPER2 in full-length protein. Indeed, addition of increasing

amounts of recombinant CK1δ1 protein was sufficient to increase the phosphorylation

of S659 in full-length mPER2 (Fig. 3.3). As seen in Fig. 3.2, mutation of the priming

site (S659) abolished the phosphorylation of S662, confirming the progressive nature

of FASP phosphorylation in cells.

3.3.2 CK1δ/ε is the Priming Kinase in Cells

So far, it has been established that CK1δ1 could phosphorylate the priming site in

the peptide and in the immunopurified protein, and it remains to test whether CK1δ1

could phosphorylate the mPER2 priming site in intact cells.

We conclude that CK1δ and CK1ε are both necessary and sufficient to phospho-

rylate the mPER2 FASP priming and downstream sites in vitro and in cells
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Figure 3.2: Phosphorylation of S662 is dependent on the S659 site.

Figure 3.3:
Phosphorylation of the priming site by CK1δ1. CK1δ1 phosphorylates
mPER2 in cells. mPER2 expression plasmid (1 g) was cotransfected with
10 ng (+), 25 ng (++), and 50 ng (+++) of CK1δ1 expression plasmid.
(Narasimamurthy et al. 2018)
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3.4 Revising the Phosphoswitch Mathematical Model

3.4.1 Simulations Confirm the Role of the CK1δ/ε Carboxyl

Terminus in Temperature Compensation

Preliminary experimental data suggests that the CK1 catalyzed phosphorylation rate

for the priming site (S659 of mPER2) strongly depends on the presence of CK1 tail

(carboxyl terminus), which is not the case for the β-TrCP binding site (Fig. 3.4).

In addition, the CK1 full length proteins tends to be fully (auto)phosphorylated at

the tail within 30 mins. This suggests that the activity of CK1 is inhibited via

autophosphorylation of the carboxy-terminal residue and CK1 can actively regulate

the priming phosphorylation. Further experimental data shows that truncation of

CK1δ1 at amino acid 400, removing the last 16 residues, can increase the activity of

the kinase on the priming site to a level similar to that of CK1δ2 and CK1ε (Fig. 3.5

B and C).

Here, we study a preliminary model where CKU (CK1 with unphosphorylated

tail) phosphorylates PER2 on the priming FASP site much faster than CKP (CK1

with fully phosphorylated tail) without affecting the β-TrCP binding. CK1 acts as

the priming kinase and acts differently at the two PER2 sites depending on the tail

status. After investigating the system, we find that increasing the dephosphorylation

of CK1 tail can shorten the period, which acts in balance with other cellular processes

including the phosphorylation of PER on the FASP downstream sites (Fig. 3.6).

We propose a temperature mechanism as follows: although CK1 global activity is

temperature compensated, there is a separate mechanism regulating CK1 through its

tail. As temperature increases, CK1 tail dephosphorylation is faster, driving more

CK1 into the unphosphorylated state, which in turn, slows down the clock. These

preliminary together with experimental data suggest a previously unappreciated role

for the extreme carboxyl terminus of CK1 in influencing the activity of the kinase.
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Figure 3.4:
Differentiated sensitivity of PER2 phosphorylation sites to CK1 tail. The
priming phosphorylation rate increases up to 6-fold when the tail is trun-
cated from CK1 (CK1δ∆C), while the phosphorylation rate of the β-TrCP
binding only increased by 1.4-fold.
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Figure 3.5:
The extreme carboxyl terminus of CK1 regulates priming phosphoryla-
tion. (A) Alignment of the carboxyl termini of CK1δ1, CK1δ2, and CK1ε
(B) CK1δ2 and CK1ε are more active than CK1δ1 as PER2 priming ki-
nase. mPer2 plasmid (1 µg) was cotransfected with 5 ng (+) and 10 ng
(++) of the indicated CK1 isoforms, and lysates were probed with in-
dicated antibodies. (C) Analysis of the priming kinase activity of CK1
isoforms. The ratio of pS659 to myc-PER2 was calculated after normal-
ization to CK1 expression, and the value of CK11 was taken as 1 to
express fold change. (Narasimamurthy et al. 2018)

3.4.2 A Robust Yet Fragile Mechanism Regulates the Tem-

perature Compensation

With the identification of CK1 as the priming kinase, we asked if the phosphoswitch

model was still predictive and accurate. We modified our previous phosphoswitch

model by incorporating the new finding that CK1δ1/δ2/ε functions as the priming

kinase but with different kinetic activities. This revised model continues to accurately

simulate the three stage kinetics of PER2 degradation containing a plateau (Fig. 3.7),

consistent with the result in Zhou et al. (2015).

Furthermore, the model successfully reproduces the negligible period change of

CK1ε-/- mutant mice (Etchegaray et al. 2010), the longer period of CK1δ-/- mutant

mice (Etchegaray et al. 2010, Lee et al. 2009), and the shorter period of FASP humans

and mice (Toh et al. 2001, Xu et al. 2007)(Fig. 3.8). Our results are also consistent

with Fustin et al. (2018) where they find that over expression of CK1δ2, a kinase
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Figure 3.6:
Effects of different reactions on PER2 period. Period shortens as the
phosphorylation rate of PER2 on the FASP downstream sites increases,
lengthens as the dephosphorylation on CK1 tail increases and remains
almost unchanged when global activity changes in the system.
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Figure 3.7:
Reproducing the circadian rhythms and three stage degradation. (A)
Circadian rhythms and (B) degradation profiles of PER2,PER2 unphos-
phorylated, PER2 phosphorylated on FASP prime site, PER2 phospho-
rylated completely at FASP, PER2 phophosrylated at β-TrCP binding
site. (C) Various degradation profiles of PER2 when protein translation
is inhibited by cycloheximide (CHX).

more active on the FASP site, leads to a lengthened period period in cells (Fig. 3.9).

It is proposed by Shinohara et al. (2017b) that CK1 phosphorylation of PER2 is

temperature compensated in vitro by balancing the higher dissociation constant and

higher phosphorylation rate at higher temperatures. Our model shows simulation

results consistent this temperature compensation mechanism. Increasing phosphory-

lation activity at the priming site alone lengthens the period, which acts in balance

with the effect of other cellular processes. When the dissociation constant of CK1 and

phosphorylation rates for both the priming site, downstream sites and the β-TrCP

site of PER2 increase together, the period is nearly constant in the model (Fig. 3.10).

3.5 Conclusion

Regulation of PER2 abundance controls circadian timing, yet understanding the phos-

phorylation of the key control point has been elusive. Here, we show by multiple
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Figure 3.8:
Simulation results consistent with various CK1 mutation phenotypes find-
ings.

approaches that CK1δ/ε can function as the PER2 priming kinase, resolving a long-

standing question in circadian biology.

Additionally, we find that CK1δ1 and CK1ε differ significantly in their ability to

phosphorylate the priming site. CK1δ2, which has residues at the extreme carboxyl

terminus more closely resembling CK1ε, displays increased priming kinase activity

like CK1ε (Fustin et al. 2018). These studies highlight the role of the δ/ε carboxyl

terminus to regulate priming activities as well as the circadian clock. Because CK1δ/ε

is also regulated by phosphorylation and dephosphorylation of the carboxyl terminus,

this also suggests a mechanism for cellular signaling pathways to regulate PER2

priming rates. Inspired by these results, we first propose a preliminary model with

CK1 tail phopshorylation acting as the main regulator of the priming phosphorylation.

Simulations of our model confirm the indispensable role of CK1 carboxyl terminus in

regulating the temperature compensation and proposed that the phosphorylation of

CK1 tail is the key regulator of the circadian time keeping.
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Figure 3.9:
Effect of various mutations on the PER2 circadian period. Wild type
(WT) shows a circadian period around 24h. CK1 δ-/- shows a lengthened
period, over expression of CK1δ1 shows a shortened period and CK1 δ2-/-
CK1 ε-/- mutations shows negligible change on the period.
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Figure 3.10:
Temperature compensation in the revised phosphoswitch model. Period
is robust to global changes in CK1 phosphorylation activity but sensitive
to isolated change of the phosphorylation rate on the priming site. Period
is robust to the simultaneous change of CK1 phosphorylation rate and
dissociation constant (global activity). Here, CK1 phosphorylation rate
and dissociation constant for both the priming and the β-TrCP sites are
changed in the same magnitude
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We then propose a revised phosphoswitch model incorporating the fact that CK1

δ1/CK1δ2/CK1ε is the priming kinase with differentiated kinetics. We successfully

recover the three-stage degradation of PER2 as well as the temperature compensation

feature of the circadian clocks. We also confirm that while CK1 is itself temperature

compensated, the system can be sensitive to the changes in the CK1 carboxyl termi-

nus, which regulates the clock in reaction to temperature changes and cellular signals.

3.6 Supplement Information

Here we list the differential equations to describe the preliminary model with CK1

regulating the phosphoswitch through its tail phosphorylation.
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d[m]

dt
= a0

ACt − [R]−Kd +
√

(ACt − [R]−Kd)2 + 4KdACt
2ACt

− d0[m]

d[P0]

dt
= at[m]− P0(kcfu[CKu] + kcfp[CKp]) +Kcb([P0CKp] + [P0CKu])

+ kdp[P1PP ] + kdp0[PbPP ]− b0[P0]

d[P0CKu]

dt
= kcfu[P0][CKu]− (Kcb + kpu+ kp0 + b0)[P0CKu]− kckps[P0CKu]

+ kckdps[P0CKp]

d[P0CKp]

dt
= kcfp[P0][CKp]− (Kcb +Kpp + kp0 + b0)[P0CKp] + kckps[P0CKu]

− kckdps[P0CKp]

d[Pt]

dt
= kp0(P0CKu + P0CKp)− kppf [Pt][PP ] + kppb[PtPP ]− Pt(ub+ b0)

d[PtPP ]

dt
= kppf [Pt][PP ]− [PtPP ](kppb+ ub+ b0 + kdp0)

d[P1]

dt
= (kpu[P0CKu] + kpp[P0CKp])− kppf [P1][PP ] + kppb[P1PP ]− b0[P1]

− kcf [P1]([CKu] + [CKp]) + kpb1([P1CKu] + [P1CKp]) + kdp[P2PP ]

d[P1PP ]

dt
= kppf ∗ [P1][PP ]− (kppb+ b0 + kdp)[P1PP ]

[P1CKu]

dt
= −kckps[P1CKu] + kckdps[P1CKp] + kcf [P1][CKu]

− (kpb1 + b0 + kpp)[P1CKu]

[P1CKp]

dt
= −kckdps[P1CKp] + kckps ∗ p1cku+ kcf [P1][CKp]

− (kpb1 + b0 + kpp)[P1CKp]

d[P2PP ]

dt
= kppf [P2][PP ]− (kppb+ b0 + kdp)P2PP
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d[P2]

dt
= kpp([P1CKp] + [P1CKu])− kppf [P2][PP ] + kppb[P2PP ]− b0[P2]

− kcf [P2]([CKu] + [CKp]) + kpb1([P2CKu] + [P2CKp]) + kdp[P3PP ]

d[P2CKu]

dt
= kckdps[P2CKp]− kckps[P2CKu]− (kpb1 + b0 + kpp)[P2CKu]

+ kcf [P2][CKu]

d[P2CKp]

dt
= −kckdps[P2CKp] + kckps[P2CKu]− (kpb1 + b0 + kpp)[P2CKp]

+ kcf [P2][CKp]

d[P3]

dt
= kpp[P2CKp] + kpp[P2CKu]− kppf [P3][PP ] + kppb[P3PP ]− b0[P3]

− kcf [P3]([CKu] + [CKp]) + kpb2([P3CKp] + [P3CKu]) + kdp[P4PP ]

d[P3PP ]

dt
= kppf [P3][PP ]− [P3PP ](kppb+ b0 + kdp)

d[P3CKu]

dt
= −kckp[P3CKu] + kckdps[P3CKp] + kcf [P3][CKu]

− (kpb2 + b0 + kpu)[P3CKu]

d[P3CKp]

dt
= kckp[P3CKu]− kckdps[P3CKp] + kcf [P3][CKp]

− (kpb2 + b0 + kpu)[P3CKp]

d[P4]

dt
= kpp[P3CKp] + kpu[P3CKu]− kppf [P4][PP ] + kppb[P4PP ]

− kcf [P4]([CKu] + [CKp]) + kpb2([P4CKu] + [P4CKp])− bh[P4]

d[P4CKu]

dt
= kckdps[P4CKp]− kckps[P4CKu] + kcf [P4][CKu]− (kpb2 + bh)[P4CKu]

d[P4CKp]

dt
= kckps[P4CKu]− kckdps[P4CKp] + kcf [P4][CKp]− (kpb2 + bh)[P4CKp]

d[P4PP ]

dt
= kppf [P4][PP ]− [P4PP ](kppb+ bh+ kdp)

d[Pub]

dt
= ub([Pt] + [PtPP ])− bt[Pub]
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d[CKu]

dt
= −kcf([P0] + [P1] + [P2] + [P3] + [P4])[CKu] + kcb[P0CKu]

+ kpb1([P1CKu] + [P2CKu]) + kpb2([P3CKu] + [P4CKu])

− kckps[CKu] + kckdps[CKp] + (b0 + kpu+ kp0)[P0CKu]

+ (b0 + kpu)([P1CKu] + [P2CKu] + [P3CKu]) + bh[P4CKu]

The auxiliary variables are explained in the next few equations.

[R] = [P4] + [P4PP ] + [P4CKu] + [P4CKp]

[CKp] = CKt − ([P0CKu] + [P0CKp] + [P1CKu] + [P1CKp] + [P2CKu]

+ [P2CKp] + [P3CKu] + [P3CKp] + [P4CKu] + [P4CKp])− [CKu]

[PP ] = PPt − ([PtPP ] + [P1PP ] + [P2PP ] + [P3PP ] + [P4PP ])
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(A) Variables of the model

Description Symbol

The concentration of CK1 with unphosphorylated tail [CKu]
The concentration of CK1 with phosphorylated tail [CKp]

The concentration of Per2 mRNA [m]
The concentration of unphosphorylated PER2 [P0]

The concentration of unphosphorylated PER2 bound to CK1 [P0CKu]/[P0CKp]
The concentration of PER2 phosphorylated at β-TrCP binding site [Pt]

The concentration of PER2 phosphorylated at β-TrCP site bound to phosphatase [PtPP ]
The concentration of PER2 phosphorylated at ith FASP site (i = 1, 2, 3, 4) [Pi]

The concentration of PER2 phosphorylated at ith FASP site bound to phosphatase (i = 1, 2, 3, 4) [PiPP ]
The concentration of PER2 phosphorylated at ith FASP site bound to CK1 (i = 1, 2, 3, 4) [PiCKu]/[PiCKp]

The concentration of ubiquitinated PER2 [Pub]
The concentration of phosphatase [PP ]

(B) Parameters of the model

Description Symbol Value

Phosphorylation rate of CK1 tail kckps 0.1 /hr
Dephophosrylation of CK1 tail kckdps 0.1 /hr

Transcription rate constant for Per2 mRNA a0 59.5 nM/hr
Degradation rate constant for Per2 mRNA d0 0.242 /hr

Translation rate constant for PER2 at 1 /hr
Dissociation constant between PER2 and BMAL1-CLOCK Kd 1.555 ∗ 10−5nM

Binding rate constant for unphosphorylated CK1 to unphosphorylated PER2 kcfu 4.76 /nMhr
Binding rate constant for phosphorylated CK1 to unphosphorylated PER2 kcfp 0.476 /nMhr

Binding rate constant for CK1 to primed PER2 kcf 2.38 /nMhr
Unbinding rate constant between CK1 and unphosphorylated PER2 Kcb 3.922 ∗ 10−5/hr

Unbinding rate constant between CK1 and PER2 phosphorylated at 1st & 2nd FASP sites kpb1 1.14710−4/hr
Unbinding rate constant between CK1 and PER2 phosphorylated at 3rd & 4th FASP sites kpb2 1.312−8/hr

CK1 phosphorylation rate constant for β-TrCP binding site kp0 9.11 /hr
Priming phosphorylation rate constant for PER2 at FASP binding site by unphosphorylated CK1 kpu 6.033 /hr

Phosphorylation rate constant for PER2 at FASP binding site by phosphorylated CK1 kpp 0.694 /hr
Dephosphorylation rate constant for PER2 at FASP sites kdp 9.608 /hr

Dephosphorylation rate constant for PER2 at β-TrCP binding site kdp0 28.166 /hr
Binding rate constant for phosphatase to PER2 kppf 7.31 nM/hr

Unbinding rate constant between phosphatase and PER2 kppb 0.0694 /hr

Degradation rate constant for ubiquitinated PER2 bt 73.157 /hr
Degradation rate constant for fully phosphorylated PER2 at FASP sites bh 0.339 /hr

Degradation rate constant for PER2 and related complexes b0 6.7 ∗ 10−4 /hr
Ubiquitination rate constant for PER2 phosphorylated at β-TrCP binding site ub 655.9 /hr

Total CK1 concentration CKt 146.245 nM
Total phosphatase concentration PPt 11.504 nM

Total activator (BMAL1-CLOCK) in nucleus concentration ACt 1.336 nM

Table 3.1:
Description of the variables and parameters used for the preliminary sim-
ulation with CK1 tail regulation.
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CHAPTER IV

How to time events with multi-site

phosphorylations of proteins

4.1 Abstract

Multi-site protein phosphorylation has been shown to be a key part of all circadian

clocks. Sequential phosphorylation facilitated by different kinases/phosphatases can

be found in Drosophila, Neurosphora, mammals and even cyanobacteria. Individual

phosphorylation events are typically much quicker than circadian timescales. Addi-

tionally, in the Drosophila circadian clock, multisite phosphorylation can lead to an

interval timer gating protein nuclear entry (Meyer et al. 2006, Saez and Young 1996).

In mammals, a similar interval timer was discovered gating PERIOD2 degradation

(Zhou et al. 2015). Here, we show how kinases and phosphatases can work together to

create an interval timer with a timescale much longer than individual phosphorylation

events. The proposed mechanism is based on phosphate groups being rapidly shuttled

on and off a protein, multiple conformational changes to a protein allowing additional

sites to be phosphorylated and at least in PERIOD2, an initial phosphoswitch deter-

mining protein fate. We also find that, in the mammalian circadian clocks, product

inhibition on the kinase through sequestration mechanism can play a crucial rule in

sustaining the circadian clocks. This work puts surprising constraints on the mecha-
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nisms of phosphorylation in circadian clocks and points to a possible universal design

principle for circadian timekeeping.

4.2 Introduction

Protein phosphorylation is the key regulator of the period of circadian rhythms found

in almost all organisms. In Drosophila and mammals, casein kinase 1 (CK1) sequen-

tially phosphorylates several sites on the PERIOD (PER) proteins. The combined

actions of CK1 and the phosphatases determines the circadian period (Lee et al.

2011a). A similar mechanism exists in Neurospora and even cyanobacteria (Syne-

chococcus elongatus) through protein phosphorylation (Tomita et al. 2005, Rust et al.

2011, Van Zon et al. 2007, Nishiwaki and Kondo 2012). This biochemical motif is

at the heart of several of the most important questions in circadian research: How

could timescales on the order of hours emerge from phosphorylation events that are

likely orders of magnitude faster, especially as kinases are tightly bound to their prod-

ucts? How could changes in PER affect timescales of minutes, as well as a circadian

timescale? Why would kinases and phosphatases both be bound to PER? Is the fact

that PER has large disordered regions important to these phenomena?

Results from two landmark studies on PER have yet to be fully understood. When

the Young lab expressed PER and its partner TIM in Drosophila cells, they noted that

the amount of time for these proteins to enter the nucleus was on the order of hours

and always a near fixed amount of time (interval timer). Mammalian cells do not have

this carefully gated nuclear entry (Smyllie et al. 2016), yet Kim and Forger (2012)

show that once sequential phosphorylation of PER is triggered by phosphorylation at

site 659, PER degradation is paused for a near fixed amount of time, thus creating

a plateau in protein expression. A similar sequential phosphorylation motif is found

in Drosophila. From these studies, another key question emerges from the circadian

field: How can a molecular interval timer be built? Can an efficient interval timer be
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built with just one molecule, or does it require the collective action of many? Recent

studies in Drosophila and Neurospora suggest that widely separated phosphorylation

sites on PER and FRQ interact in a temporal manner (Baker et al. 2009, Chiu et al.

2011, Garbe et al. 2013, Querfurth et al. 2011, Shanware et al. 2011), but how they

combine to regulate circadian rhythms remains elusive.

Here, we describe a mechanism whereby the time needed for sequential protein

phosphorylation grows exponentially rather than additively with the number of pro-

tein phosphorylation sites, creating long time intervals even though individual phos-

phorylation events are fast. Key to the mechanism is rapid shuttling of the phosphate

group on and off the protein by the combined action of a kinase and phosphatase.

We propose an additional mechanism where the time for this process to take becomes

fixed (an interval timer). In this mechanism, after a site is phosphorylated, the ki-

nase does not immediately move to the next phosphorylation site. Instead, several

steps (which also occur on a fast timescale) are needed for the protein to reach the

proper conformation and for the kinase and phosphatase to move to the next site.

Phosphorylation on the original site is necessary to provide the energy for these con-

formational changes. We also find that product inhibition of the kinase can play an

important role in the protein phosphorylation and degradation process. When applied

to the mammalian circadian clocks, our simulations suggest that weakened product

inhibition can lead to disrupted circadian rhythms. This or similar mechanisms could

explain the long timescales and interval timer behavior that is required for proper

functioning of circadian clocks.
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4.3 Results

4.3.1 Sequential Model

Shown in Figure 4.1 is the standard model for sequential protein phosphorylation.

The protein can be phosphorylated at any of the N sites, however, phosphorylation

must occur sequentially, e.g., phosphorylation at site X − 1 must occur before site

X. After all sites have been phosphorylated, we assume that the protein can then be

degraded. We call the rate of phosphorylation p and the rate of dephosphorylation

q, with k = q/p being the ratio of these two.

P0 P1 P2 P3 · · · PN ∅
1 p p p p

p

q q q q q

1

Figure 4.1:
A general sequential multi-site phosphorylation model with N phospho-
rylation sites, e.g., FASP sites.

In Section 4.4.3, we calculate the average time to degradation where three cases

are considered. In the case that p > q, we find that the time to degradation is O(N),

meaning that it grows linearly with the number of phosphorylation sites. This is

intuitively correct, since if the protein was only phosphorylated (q ∼ 0), then the time

to degradation would be simply the sum of the time for each of the N phosphorylation

events to occur. When p ∼ q, and the time course of the kinase and phosphatase is

similar, the time to degradation is O(N2) which grows quadratically (See. Table 4.1).

However, when q > p, the time to degradation is O(kN) giving exponential growth.

This explains how much larger timescales can be generated from faster processes. For

example, let p = 1 and n = 5. Figure 2 shows the expected time to degradation

can get very large as k increases. This can be understood intuitively in the following

way. Even if a protein is nearing full phosphorylation, high k value means stronger
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Figure 4.2: The expected protein degradation time as a function of k.

phophatase activity and dephosphorylation can quickly bring it back to the unphos-

phorylated state, losing the effects of all previous phosphorylations and increasing

the wait time. In fact, the speed and rhythmicity of PER phosphorylation (therefore

degradation) can be closely related to the period of the circadian clock. Our result

is therefore consistent with Lee et al. (2011a) where they find that the period of the

circadian oscillator can be significantly affected by the balance between the kinase

and phosphatase activity.

An additional phosphorylation site in another region of PERIOD (459 in mPER2,

x in Drosophila) also leads to degradation. We now consider the 459 (β-TrCP) site

of PER2 and modified the model so that CK1 could phosphorylate the β-TrCP site

in the same way it does the sequential phosphorylation. As shown in the supplement,

this additional β-TrCP site act as a sink. When this happens the protein does not get

delayed in the low phosphorylation states, instead it gets degraded, losing the long

timescale. Based on this result, we would predict that even though there is only one

binding site for CK1 to bind with PER2, the phosphorylation of each PER2 protein

can only proceed either on the β-TrCP site or the FASP sequential phosphorylation

sites. Narasimamurthy et al. (2018) provides experimental data supporting this claim.
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4.3.2 Network model with conformational changes

There are two additional items that this model must address to fit data on the PER

protein. First, if k is large, which is when the long timescales are generated, the

remaining PER protein in the model will spend most of its time in the states of low

phosphorylation regardless of the amount of time elapsed since it has been produced.

However, the PER protein shows increasing phosphorylation levels over time Lee

et al. (2001). Additionally, the degradation time course predicted by this model is

the standard exponential decay one typically sees in biochemical reactions, which

does not match what is seen experimentally Zhou et al. (2015).

To address these data, we considered not only the phosphorylation events, but

also the subsequent conformational changes, changes to the kinase and phosphatase

positioning etc. that occur due to phosphorylation. We first consider a standard

model shown in Figure. 4.3 where a protein can undergo conformational changes at

any time, and that phosphorylation events increase the likelihood of these changes.

Once they are completed and the protein is fully phosphorylated, the protein can be

degraded. However, we were able to show in Section 4.4.3 that this model could be

reduced to the sequential model we previously derived. In other words, adding in

conformational changes could increase the time needed for the protein to degrade,

but would not affect the degradation time course, nor build an interval timer.

4.3.3 Interval Timer

Finally, we considered a model where conformation changes must instead happen

before each new site is phosphorylated. The model is described in Figure 4.4 and

has the following structure. The kinase and likely phosphatase are always centered

around one site and the phosphate group is continually being added or removed. It

is possible the kinase both adds and removes the phosphate group. This is consistent

with cyanobacterial data from the Ueda lab. When the phosphate group is added,
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Figure 4.3:
An example model for multi-site phosphorylation with 3 micro states and
2 phosphorylation sites.

it provides energy to enable conformational changes. We call these conformational

changes microstates. The protein must progress through several microstates until the

next phosphorylation occurs. The phosphate group could also be removed, at which

time the protein will remain in its current microstate and not progress to the next

microstate until the phosphate group is added back. Such a model was simulated with

the Gillespie method, which also accounts for the randomness of molecular events.

In this system, four types of reactions can happen. First, a phosphate group

can be temporarily added to an unoccupied site of a protein molecule given that all

previous sites on that protein have been properly phosphorylated, e.g., P ∗
1

K1−→ P 0
2

or P ∗
1

K1−→ P 5
2 . Second, when a phosphate group is already added temporarily to

a protein, that protein molecule can acquire the necessary amount of energy to go

though one additional step of conformational change, e.g., P 5
2

K3−→ P 6
2 . Third, a

temporarily added phosphate group can be removed by phosphatases from a protein

and that protein molecule will remain in its current conformation, e.g., P 6
2

K2−→ P ∗
1 .
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Figure 4.4:
General model for the interval timer with m microstates (conformational
states) and n phosphorylation sites

Finally, when a protein molecule has temporarily acquired phosphate groups on a

specific site for many times and has proceeded to the final stage of the conformational

change, it will tightly bind with the next phosphate group added to that site, thus

being properly phosphorylated, e.g., Pm
1

K3−→ P ∗
1 or Pm

2
K3−→ P ∗

2 .

Surprisingly, this model gave interval timers in almost all cases (See Figure 3). It

also allows for progressively increasing phosphorylation levels. Thus, it matches the

two additional behaviors we set out to match. Figure 3 shows that even with just one

phosphorylation level, progressing from 1 to 10 microstates gives an interval timer.

This interval timer becomes more robust as further microstates are added (Figure

4.5) or additional progressive phosphorylations occur (Figure 4.6).
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Figure 4.5:
Stochastic simulations with 2 phosphorylation sites and various mi-
crostates
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Figure 4.6:
Stochastic simulations with 10 micro states and various phosphorylation
sites
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4.3.4 Product Inhibition

We now explore the substrate inhibition mechanism in the interval timer model where

the fully phosphorylated protein can inhibit the kinase. To compare different types of

inhibition scheme, we remove degradation in our model and keep track of the number

of protein molecules in the unphosphorylated state.

We consider two types of product inhibition on kinases and in both cases only

fully phosphorylated proteins can inhibit the kinase activities. First model utilizes a

hill equation to model the inhibition mechanism:

Khill =
cPt

1 + (Ptot−P0−Pt)3

Kd

The second model assumes that kinase molecules can be sequestered by protein

molecules through tight binding and the phosphorylation rate is:

Kseq = cPt(1−
Ptot − P0 − Pt

CKtot

)

where c is the original rate for a protein molecule to phosphorylate on the next site,

Kd is the dissociation constant for the hill type inhibition, Pt is the number of protein

molecules with a temporary phosphate group added and P0 are the number of proteins

without a temporary phosphate group. Ptot is the total number of protein molecules

in the system and CKtot is the total number of kinase molecules in the system.

In our simulations, we find that when the product inhibition is modeled with

a hill equation, the protein phosphorylation time course is longer than before but

can still proceed to completion (See Figure 4.7). On the other hand, if the kinase

is not abundant in the system and tightly sequestered by the fully phosphorylated

protein in a one to one molar ratio, the protein phosphorylation will not proceed

to completion (See Figure 4.8). When the product inhibition is down through a

sequestration mechanism, the final phosphorylation level of the protein is determined
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by the total concentration of the kinase.

We therefore predict that if the multisite protein phosphorylation process in mam-

malian circadian clocks can not proceed to completion in the presence of limited

amount of kinase, the fully phosphorylated protein is more likely to interact with the

kinase by a sequestration mechanism similar to that in cyanobacteria.

Figure 4.7:
Protein phosphorylation with hill type inhibition between product and
kinase.

We also find that the phosphatase activity gives rise to the initial plateau, and

the length of which depends on the dephosphorylation rate (See Fig 4.10 and 4.9).

The initial plateau as well as the entire phosphorylation timescale decreases when

the phosphatase activity is weakened. When there is no phosphatase activity in the

system, we predict that there will be no initial plateau in the protein phosphorylation

process.

In Chapter III, we have established a mathematical model for the circadian clock

in mammalian clock incorporating the new findings that CK1 δ/ε is the priming ki-

nase. Here we investigate further the effect of product inhibition on the circadian
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Figure 4.8:
Protein phosphorylation with one to one molar binding inhibition between
product and kinase.

Figure 4.9:
Protein phosphorylation with hill type inhibition between product and
kinase. The length of initial plaeau decreases from around 2100 time units
(Yellow) to 230 time units (Blue) and eventually 40 time units (Orange)
as the phosphatase activity weakens.
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Figure 4.10:
Protein phosphorylation with one to one molar binding inhibition be-
tween product and kinase. The initial plateau decreases from 2500 time
units (Blue) to 250 time units (Yellow) as the phosphatase activity weak-
ens.

rhythms with our published model in Narasimamurthy et al. (2018). In the mam-

malian clocks, PER2 proteins can be phosphorylated on both the β-TrCP and the

FASP sites and CK1 is both the priming kinase and the downstream kinase. We mod-

ify the model for mammalian circadian clock by introducing tight binding between

the kinases (CK1 δ/ε) and the fully phosphorylated PER2 proteins. In particular,

the terms kcf [c4][CK1] (i = 1, 2) is changed to kinhibition[c4][CKi] where the value

of kinhibition indicates the strength of product inhibition through tight binding. De-

tailed equations and a full description of parameters are available in the Supplement

Information from Narasimamurthy et al. (2018).

In our simulations, we change the rate of kinhibition by various factors and simulate

the model to obtain corresponding periods. We find that product inhibition may act

as a rate limiting process and play a big role in controlling the period (See Figure

4.11). When we plot the length of period versus the inhibition rate, we find that the

period increases along with the inhibition rate (See Figure 4.12).

75



Figure 4.11:
Time courses of the mammalian clock with various inhibition rate. The
numbers in the legend represent the different fold changes increased from
the original rate.

Figure 4.12:
Period of oscillation increases from 20 hr to 30 hr as the product inhibi-
tion rate increases.
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The results can be explained as follows: when the product inhibition rate increase,

the kinase activity is weakened due to the sequestration. As a result, phophatase ac-

tivities can push the equilibrium and lead to a longer phosphorylation (hence degra-

dation) process of PER2. Since PER2 phosphorylation is a key regulator of the

circadian clocks, the period also increases. In addition, the circadian rhythm can

be lost when the inhibition activity is significantly decreased (See Figure 4.13). We

therefore predict that this product inhibition mechanism is essential to the system.

Figure 4.13:
Lost of sustainable oscillation. Sustainable oscillations are lost (Orange)
when the product inhibition rate is decreased by 16 fold compared to
the original rate (Blue).

4.3.5 Discussion

The reason why our interval timer works is that phosphorylations are progressive but

also allow for rapid phosphate group shuffling. To see this clearer, let us assume

that the amount of time needed for the protein to go through all microstates is fixed.

Simulations in the supplemental information under this new assumption does not

affect the behavior of the resulting time course. It may seem strange to assume an
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interval timer in creating an interval timer but this assumption is not necessary to

build the interval timer and only used here to simplify our argument explaining the

result, and the interval timer we assume has a much shorter period with respect to

the main interval timer. A fixed time interval could occur due to the law of large

numbers when multiple conformational changing events occur sequentially. During

the time needed for the protein to proceed through all microstates, it can shuttle

back to the unphosphorylated state for a Poisson number of times. The total number

of visits approaches a fixed number (at least its fano factor approaches zero) as the

number of dephosphorylation events increases. Although the time of each shuttling is

random, the average overall is small. Thus the total time for the protein to progress

from one state to the next approaches a fixed interval.

This model generates many hypotheses that can be tested. Are phosphate groups

being shuttled on and off PER? Does each subsequent phosphorylation occur immedi-

ately, or do they require conformational changes to the protein? Does the sequential

phosphorylation of PER take fixed amounts of time, or is it variable? Can these

processes occur in individual molecules, or do they need collective behavior?

4.4 Supplement Information

We consider a single protein that goes through several phosphorylation steps before it

finally gets degraded. Inspired by the Gillespie algorithm, we can model the kinetics

with Markov Chain models, where each reaction corresponds to a step in the Markov

Chain and we want to investigate how the number of phosphorylation sites affect the

expected time to degradation under various model assumptions. This expected time

can be considered as proportional to the number of steps it takes for a single molecule

to proceed from initially unphosphorylated state to the degradation state.
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4.4.1 FASP phosphoswitch dependent degradation

The first general model we consider in Fig.4.14 resembles the FASP phosphorylation

of PER2 protein. In the diagram we denote by P0 the unphosphorylated state, Pi

the i-th phosphorylated state and ∅ the degradation state. Moreover, the forward

transition rates are identical except the first step (P0 → P1 is the only way to get

away from P0), similar with the backward transition rates, while the identity p+q = 1

holds true.

P0 P1 P2 P3 · · · PN ∅
1 p p p p

p

q q q q q

1

Figure 4.14: A multi-site phosphorylation model with N FASP sites

Now we rewrite the notations as follows: denote by Xn the state of the protein at

time n and label the different phosphorylation states as follows:

X0

1

�
q
X1

p

�
q
X2

p

�
q
· · ·

p

�
q
XN

p→ XN+1

We want to find the expected exit time from state P0 (labeled as 0) to the absorbing

state ∅ (labeled as N + 1) where the exit time to state y is defined as:

Vy = min{n ≥ 0 : Xn = y}

Here we apply the standard trick in Markov Chain and consider the following function

g(x) which represents the expected exit time from state x ∈ {0, 1, 2, · · · , N,N + 1}

to the degradation state N + 1.

g(x) = Ex(VN+1) = E(VN+1|X0 = x)
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Conditioning on the first jump for the Markov Chain, we can derive the system

of linear equations as well as the boundary conditions as follows:

g(0) = 1 + g(1) (4.1)

g(x) = 1 + q g(x− 1) + p g(x+ 1) x = 1, 2, · · · , N (4.2)

g(N + 1) = 0 (4.3)

To solve the system, we consider two cases:

1. p = q = 1
2
. This is the case where the phosphorylation rate is balanced with

the phosphatase rate.

We can rewrite the equation (4.2) and find a general expression for g(x):

g(x+ 1)− g(x) = g(x)− g(x− 1)− 2 x = 1, 2, · · · , N

= −2x+ g(1)− g(0)

= −2x− 1

g(x) = g(0) +
x−1∑
k=0

(g(k + 1)− g(k)) x = 1, 2, · · · , N + 1

= g(0) +
x−1∑
k=0

−2k − 1

= g(0)− (x− 1)x− x

= −x2 + g(0)

Recall again that g(N + 1) == −(N + 1)2 + g(0) = 0 since the exit time to

degradation is 0 if the protein is already degraded.

We therefore conclude that when the forward and backward rates are balanced,

the expected time to degradation grows quadratically with respect to the total
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number of phosphorylation sites.

g(0) = (N + 1)2 ∼ O(N2)

2. p 6= q 6= 1
2

and p + q = 1. This is a more general case where the forward and

backward rate is not the same.

Similar analysis leads to the following result:

(p+ q)g(x) = 1 + q g(x− 1) + p g(x+ 1)

g(x+ 1)− g(x) =
q

p
(g(x)− g(x− 1))− 1

p

= (
q

p
)2(g(x− 1)− g(x− 2))− 1

p
(1 +

q

p
)

= (
q

p
)x (g(1)− g(0))− 1

p

(
1 +

q

p
+ (

q

p
)2 + · · ·+ (

q

p
)x−1

)
= (

q

p
)x (g(1)− g(0))− 1

p

1− ( q
p
)x

1− q
p

= −(
q

p
)x −

1− ( q
p
)x

p− q
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We can now compute the g(x):

g(x) = g(0) +
x−1∑
k=0

(g(k + 1)− g(k))

= g(0) +
x−1∑
k=0

(
−(
q

p
)k −

1− ( q
p
)k

p− q

)

= g(0)− x

p− q
− (1− 1

p− q
)
x−1∑
k=0

(
q

p
)k

= g(0)− x

p− q
− (1− 1

p− q
)
1−

(
q
p

)x
1− q

p

= g(0)− x

p− q
+

2q

p− q

1−
(
q
p

)x
1− q

p

= g(0)− x

p− q
+ 2

q

p

1−
(
q
p

)x
(1− q

p
)2

Recall again g(N + 1) = 0, we conclude that:

g(0) =
N + 1

p− q
− 2

q

p

1−
(
q
p

)N+1

(1− q
p
)2

The expected time to degradation from state 0 consists of a linear term and an

exponential term. The overall growth pattern of the function as the number of

phosphorylation sites increases

• p > q, let p = k
1+k

, q = 1
k+1

, then we have p
q

= k > 1. Analysis reveals
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that g(0) grows like a linear function since the second term is bounded:

g(0) =
N + 1

p− q
− 2

q

p

1−
(
q
p

)N+1

(1− q
p
)2

=
k + 1

k − 1
(N + 1)− 2

k

1−
(

1
k

)N+1

(1− 1
k
)2

=
k + 1

k − 1
(N + 1)− 2k

(k − 1)2
+

2

(k − 1)2

(
1

k

)N
∼ O(N)

For any given number of phosphorylation sites N ≥ 1, we have

k + 1

k − 1
(N + 1)− 2k

(k − 1)2
≤ g(x) ≤ k + 1

k − 1
(N + 1)

• q > p, let q = k
1+k

, p = 1
k+1

, then we have q
p

= k > 1. Analysis reveals

that g(0) grows like an exponential function:

g(0) =
N + 1

p− q
− 2

q

p

1−
(
q
p

)N+1

(1− q
p
)2

= −k + 1

k − 1
(N + 1)− 2k

1− kN+1

(1− k)2

= −k + 1

k − 1
(N + 1) +

2k

(k − 1)2

(
kN+1 − 1

)
=

2k2

(k − 1)2
kN − k + 1

k − 1
(N + 1)− 2k

(k − 1)2

∼ O(kN)

4.4.2 β-TrCP and FASP phosphorylation dependent degra-

dation

The second model we consider here incorporates the phosphoswitch mechanism where

the unphosphorylated protein P0 can either phosphorylate on the β-TrCP site which

83



effectively decay rapidly, or phosphorylate on the FASP site going through similar

process as in the last section, where we denote by ∅β the degradation through β-

TrCP and all other states the same way as above.

∅β P0 P1 P2 P3 · · · PN ∅
p p p p p

p

q q q q q q

1

Figure 4.15:
A multi-site phosphorylation model with N FASP sites and one β-TrCP
site

Now we denote by Xn the state of the protein at time n and label the differ-

ent phosphorylation states similarly, except that now −1 represents the degradation

through β-TrCP phosphorylation:

Xβ
q← X0

p

�
q
X1

p

�
q
X2

p

�
q
· · ·

p

�
q
XN

p→ XN+1

The expected exit time to a set of states is defined as:

VA = min{n ≥ 0 : Xn ∈ A}

Consider again the following function g(x) which represents the expected exist time

from state x ∈ {1, 2, · · · , N} to the set of degradation states A = {−1, N + 1}.

g(x) = Ex(VA) = E(VA|X0 = x)

The system of linear equations with boundary conditions can be written similarly as

the case of a gambler’s ruin problem:
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g(−1) = 0 (4.4)

g(x) = 1 + q g(x− 1) + p g(x+ 1) x = 0, 1, 2, · · · , N (4.5)

g(N + 1) = 0 (4.6)

1. When p = q = 1
2

we have:

g(x+ 1)− g(x) = g(x)− g(x− 1)− 2 x = 0, 1, 2, · · · , N

= −2(x+ 1) + g(0)− g(−1)

= −2(x+ 1) + g(0)

g(x) = g(−1) +
x−1∑
k=−1

(g(k + 1)− g(k)) x = 1, 2, · · · , N + 1

=
x−1∑
k=−1

(−2(k + 1) + g(0))

= −(x+ 1)x+ g(0)(x+ 1)

Recall again that g(N + 1) = 0 we have g(0) = N + 1 and g(x) = (x+ 1)(N +

1 − x). It is clear that g(x) grows linearly in the number of phosphorylation

sites N .
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2. When p 6= q p+ q = 1, we carry out similar analysis to find g(x)

g(x) = 1 + q g(x− 1) + p g(x+ 1) x = 0, 1, 2, · · · , N

g(x+ 1)− g(x) =
q

p
(g(x)− g(x− 1))− 1

p

= (
q

p
)2(g(x− 1)− g(x− 2))− 1

p
(1 +

q

p
)

= (
q

p
)x+1 (g(0)− g(−1))− 1

p

(
1 +

q

p
+ (

q

p
)2 + · · ·+ (

q

p
)x
)

= g(0)(
q

p
)x+1 − 1

p

1− ( q
p
)x+1

1− q
p

= g(0)(
q

p
)x+1 − 1

p− q
+

( q
p
)x+1

p− q

We can now compute the g(x):

g(x) = g(−1) +
x−1∑
k=−1

(g(k + 1)− g(k))

=
x−1∑
k=−1

(
g(0)(

q

p
)k+1 − 1

p− q
+

( q
p
)k+1

p− q

)

= −x+ 1

p− q
+ (g(0) +

1

p− q
)
x−1∑
k=−1

(
q

p
)k+1

= −x+ 1

p− q
+ (g(0) +

1

p− q
)
1− ( q

p
)x+1

1− q
p

Recall again g(N + 1) = 0, we conclude that:

g(0) =
N + 2

p− q
1− q

p

1− ( q
p
)N+2

− 1

p− q

and generally

g(x) = −x+ 1

p− q
+
N + 2

p− q
1− ( q

p
)x+1

1− ( q
p
)N+2

Now we can analyze the growth pattern of g(0) as we increase the number of

phosphorylation states N .
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• p > q, let p = k
1+k

, q = 1
k+1

, then we have p
q

= k > 1. Analysis shows that g(0)

grows like a linear function:

g(0) =
N + 2

p− q
1− q

p

1− ( q
p
)N+2

− 1

p− q

= (N + 2)
k + 1

k − 1

1− 1
k

1− ( 1
k
)N+2

− k + 1

k − 1

= (N + 2)
k + 1

k

1

1− ( 1
k
)N+2

− k + 1

k − 1

∼ O(N)

• q > p, let q = k
1+k

, p = 1
k+1

, then we have q
p

= k > 1. Analysis shows that

g(0) is approximately a constant value when the number of phosphorylation

increases:

g(0) =
N + 2

p− q
1− q

p

1− ( q
p
)N+2

− 1

p− q

= (N + 2)
k + 1

1− k
1− k

1− kN+2
− k + 1

1− k

=
k + 1

k − 1
− (k + 1)

N + 2

kN+2 − 1

∼ O(1)

Here is a list to summarize the two different sequential models and the different

cases therein we have investigated. We can conclude that the number of phosphory-

lation sites can have a significant effect on the expected time to degradation.

1. When the protein only degrades through FASP phosphorylation and the phos-

phatase activity is balanced with the phosphorylation activity, we find that

the expected time to degradation grows quadratically in the number of sites.

2. When the protein only degrades through FASP phosphorylation and the phos-

phatase rate is slower than the phosphorylation rate, the expected time to
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degradation grows linearly in the number of sites.

3. When the protein only degrades through FASP phosphorylation and the phos-

phatase rate is faster than the phosphorylation rate,the expected time to degra-

dation grows exponentially in the number of sites.

4. When the phosphoswitch mechanism is present in the system and the phos-

phatase activity is balanced with the phosphorylation activity,the expected

time to degradation grows linearly in the number of sites.

5. When the phosphoswitch mechanism is present in the system and the phos-

phatase activity is slower than the phosphorylation activity,the expected time

to degradation grows linearly in the number of sites.

6. When the phosphoswitch mechanism is present in the system and the phos-

phatase activity is faster than the phosphorylation activity,the expected time

to degradation almost remains constant.

A summary is also presented in the following table:

Growth Rate p = q = 1
2

p > q p < q

FASP only Quadratic Linear Exponential
β-TrCP and FASP Linear Linear Constant

Table 4.1: Growth rate of the degradation time in various cases

4.4.3 Conformational change increases time to degradation

We have established so far the expected time to degradation under various assump-

tions. Here we investigate further the case where forward rate is dominated by the

backward rate (p < q) by extending the sequential multi-site phosphorylation model

into a network model including intermediate conformational changes.
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Instead of going through several downstream phosphorylation before degradation,

the protein (in any phosphorylation state) can go through several intermediate con-

formational changes. In all of our models, the subscript represents phosphorylation

state while the superscript represents the conformational state, e.g., P 1
2 means the

protein is phosphorylated on the first 2 sites and changed its conformation from state

0 into state 1.

Recall that the expected time to degradation when p = q = 1
2

grows quadratically

T = (N + 1)2 ∼ O(N2), while it grows exponentially T ∼ O(kN) if p < q, k = q
p
.

We are interested in whether this new feature in the model serves as an extra delay

element for the phosphorylation process

We start first with an extended model with three phosphorylation sites and one

extra conformational change (Fig. 4.16) and find that the expected time for such

a model is equivalent to one with three phosphorylation states. We also discovered

that this result remain valid under different rate combinations. The key is to consider

multiple states in the network as one entire state and the network model becomes

equivalent to a sequential one. Similarly in Fig. 4.17, a network model with two

phosphoryaltion sites and two additional micro states is equivalent to a sequential

model with 4 phosphorylation sites.

Generally any network model with n phosphorylation sites and m conformational

states can be shown equivalent to a sequential model with m + n phosphorylation

sites (Fig. 4.18)
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Figure 4.16:
An example model for multi-site phosphorylation with two conforma-
tional states and two sites (top) and the equivalent model with 3 phos-
phorylation sites (bottom).
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Figure 4.17:
An example model for multi-site phosphorylation with three conforma-
tional states and two sites(top) and the equivalent sequential model with
4 phosphorylation sites (bottom).
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Figure 4.18:
General Model with n phosphorylation sites and m conformational
states. (a) An example model for multi-site phosphorylation with n
phosphorylation sites and m conformational states. (b) Equivalent
model with M = m+ n sites.
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CHAPTER V

Conclusion

Circadian clocks are self-sustained biological clocks that are present in almost all

organisms. This dissertation focuses on mathematical modeling of protein phospho-

rylation because of its central role in many circadian clocks including Drosophila,

Neurosphora, mammals and even cyanobacteria. Our research goal is to investigate

the connection and distinction among the various types of circadian clocks from this

small yet crucial part of the biological processes.

In chapter II, we focus on the cyanobacterial clock and its connection with the

mammalian clocks. Our mathematical modeling and simulation suggest that the pro-

tein sequestration mechanism is shared between cyanobacteria and mammals. Even

though prokaryotes and eukaryotes are phylogenetically unrelated and different in

many ways, similar dynamical principles regulating molecular timekeeping may have

emerged through convergent evolution. We also predict that the transcriptional and

translational feedback loop serves as a homeostatic regulator that helps maintain the

balance between KaiC and KaiA proteins, thus stabilizing the post-translational os-

cillator. This work also raises questions about what common evolutionary pressures

could yield such similar mechanisms with such dissimilar components.

In chapter III, we investigate the multi-site phosphorylation of PER2 in the mam-

malian circadian clocks. Our collaborators have discovered that CK1 is indeed the

mammalian priming kinase responsible for phosphorylation of S659 in mPER2. A ro-
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bust yet fragile design is proposed as we incorporate the experimental results. With

the priming kinase being CK1 itself, our design allows the period of the circadian clock

to be robust to environmental signals while being sensitive to regulatory changes in

the CK1 carboxyl terminus. While a separate Nemo-like kinase has been recently

identified by Chiu et al. (2011) as a priming kinase for Drosophila PER, our work

suggests that the mPER2 phosphorylation is regulated through a completely diver-

gent mechanism where the CK1 extreme carboxyl terminus acts as a key regulator.

In chapter IV, we study a general model of the protein sequential phosphorylation

process. Sequential phosphorylation facilitated by different kinases/phosphatases can

be found in Drosophila, Neurosphora, mammals, plants and even cyanobacteria. Our

mathematical model proposes that the kinases and phosphatases can work together

to rapidly shuttle the phosphate groups on and off the proteins. In this way, we can

obtain protein degradation on timescales much longer than individual phosphoryla-

tion events. When conformational changes are incorporated into our model, we can

even build an interval timer from the protein phosphorylation process. In addition,

our analysis and simulations suggest that product inhibition on kinase through se-

questration mechanism may act as a rate limiting step and play a significant role in

controlling the period.

A direct extension of our work in chapter II would be to conduct experiments

on the effect of various perturbations to the molar ratio balance among KaiABC

proteins in vivo. Having established the connection between the cyanobacterial and

mammalian circadian clocks, our future work would be to perform detailed analysis

of circadian clock systems in Drosophila, Neurospora and plants. We would like to

see whether similar dynamical design principles can be found among these circadian

clocks despite the huge difference in their biological structure. As for future work ex-

tended from chapter III, the role of the CK1 carboxyl terminus proposed by our model

can be further tested in experiments, e.g., structural analysis of the CK1 protein, in
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vitro analysis of CK1 tail mutants and synthesized PER peptides. Finally, it will be

interesting to investigate applications of our mathematical modeling from chapter IV

that extend beyond the mammalian circadian clocks. To verify whether the phos-

phate groups are indeed shuttled on and off the PER2 proteins by integrated actions

of kinases and phosphatases, one possible experiment is to measure the distribution of

of PER2 proteins in different phosphorylation states by using antibody specifically to

the 4th and 5th FASP phosphorylation sites. Another interesting experiment would

be to introduce phosphatase inhibitors into the system and test whether the length

of the plateau would decrease as our model predicts.
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