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Abstract 

 

Isogeometric Analysis (IGA) is a major advancement in computational analysis that 

bridges the gap between a computer-aided design (CAD) model, which is typically constructed 

using Non-Uniform Rational B-splines (NURBS), and a computational model (e.g., finite element 

model) that traditionally uses Lagrange polynomials to represent the geometry and solution 

variables. In IGA, the same shape functions that are used in CAD are employed in the 

computational model. The direct manipulation of CAD data eliminates approximation errors that 

emanate from the process of converting the geometry from CAD to Finite Element Analysis (FEA). 

As a result, IGA allows the exact geometry to be represented at the coarsest level and maintained 

throughout the entire analysis process. While IGA was initially introduced to streamline the design 

and analysis process, this dissertation shows that IGA can also provide improved computational 

results for complex and highly nonlinear problems in structural mechanics.  

This dissertation addresses various problems in structural mechanics in the context of IGA, 

with the use of NURBS and rational Bézier triangles for the description of the parametric and 

physical spaces. The approaches considered here show that a number of important properties (e.g., 

higher-order smoothness than standard C0 discretizations, geometric exactness (i.e., CAD model), 

reduced number of degrees of freedom, improved accuracy and efficiency, and increased 

flexibility in discretization) can be achieved, leading to improved numerical solutions. 

Specifically, using B-splines and a layer-based discretization, a distributed plasticity 

isogeometric frame model is formulated to capture the spread of plasticity in frames undergoing 

large deformations. The modeling approach includes an adaptive analysis where the structure of 
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interest is initially modeled with coarse mesh and knots are inserted based on the yielding 

information collected at the quadrature points. It is demonstrated that improvement on efficiency 

and convergence rates is attained. 

With tensor-product NURBS, an isogeometric rotation-free multi-layered plate 

formulation is developed based on a layerwise deformation theory. The derivation assumes a 

separate displacement field expansion within each layer, and considers transverse displacement 

component as C0-continuous at dissimilar material interfaces, which is enforced via knot repetition. 

The separate integration of the in-plane direction and through-thickness direction allows us to 

capture the complete 3D stress states in a 2D setting. The proposed method is used to numerically 

simulate the behavior of advanced materials such as laminated composites and functionally graded 

materials, and the results show advantages in efficiency and accuracy. 

To increase the flexibility in the discretization of geometrically complex domains, rational 

Bézier triangles for domain triangulation is studied. They are further coupled with a Delaunay-

based feature-preserving discretization algorithm for the static bending and free vibration analysis 

of Kirchhoff plates. Lagrange multipliers are employed to explicitly impose high-order continuity 

constraints and the augmented system is solved iteratively without increasing the size of the 

matrices. The resulting discretization is geometrically exact, admits small geometric features, and 

constitutes C1-continuity. 

The feature-preserving rational Bézier triangles are further applied to smeared damage 

modeling of quasi-brittle materials. Due to the ability of Lagrange multipliers to raise global 

continuity to any desired order, the implicit fourth- (C1-continuous) and sixth-order (C2-continuous) 

gradient damage models are analyzed. The inclusion of higher-order terms in the Taylor expansion 

of the nonlocal formulation improves solution accuracy. A local refinement algorithm that resolves 
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marked regions with high resolution while keeping the resulting mesh conforming and well-

conditioned is also utilized to improve efficiency. The outcome is a unified modeling framework 

where the feature-preserving discretization is able to capture the initiation and early-stage 

propagation of damage, and the local refinement technique can then be applied to adaptively refine 

the mesh in the direction of damage propagation. 
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Chapter 1 Introduction 

 

Nonlinear analysis of structural components is crucial in civil and mechanical engineering 

in determining the load-displacement response of structures under extreme loads. A large amount 

of research has been conducted over the last few decades to develop structural elements (e.g., 

beams, frames, and plates) that are capable of handling both material and geometric nonlinearities. 

In order to accurately capture the deformation path of structures under extreme loads, normally a 

very large number of elements is required for discretization. The resulting number of degrees of 

freedom (DOFs) is even larger in the context of standard continuum elements, where the 

discretization is constrained to C0 continuity and thus rotational DOFs are often needed to enforce 

inter-element smoothness. On the one hand, the use of very fine meshes throughout the entire 

domain is usually unnecessary and increases the computational demand, as structural failures 

usually occur at localized regions while the rest of the structure remains elastic. However, one 

cannot only predefine failure regions with high resolution, as these regions may not be known a 

priori. Therefore, an adaptive analysis is desirable where the analysis initiates with a relatively 

coarse mesh and automatically refines the region where significant inelastic deformation occurs. 

This requires an accurate prediction of the local quantity related to nonlinearity (such as yielding).  

On the other hand, a typical node in a frame element in 2D consists of three DOFs, i.e., 

two translational DOFs and one rotational DOF. The number of DOFs per node increases in 3D, 

where the rotation in different planes needs to be defined as well. This is also the case in plate and 

shell elements. The total number of DOFs relates directly to the size of the system matrices in 

analysis. The reason that rotational DOFs are required in standard FEA is due to the C0-continuity 
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of the underlying basis functions. In other words, it is possible to eliminate rotational DOFs with 

the use of basis functions of high-order smoothness.  

In another context, the design and analysis process requires the passing of data from 

computer-aided design (CAD) models to the analysis (i.e., finite element) models. However, it 

must be noted that the CAD geometry is most often constructed using Non-Uniform Rational B-

splines (NURBS), whereas FEA uses polynomials to interpolate the geometry and solution 

variables. This distinction in the use of shape functions introduces an approximation error when 

re-constructing geometries in standard FEA, especially in the analysis of geometrically complex 

structures. It was for this reason that isogeometric analysis (IGA) was put forward by Hughes et 

al. [1] as the first attempt to closely link CAD to FEA. The main idea of IGA is to utilize the same 

basis functions that are used in CAD to approximate the solution variables in FEA. As a result, the 

approach avoids the regeneration of the CAD geometry as well as the meshing process in FEA and 

therefore has the potential to cut the total analysis time by as much as 80% [1]. The direct 

manipulation of the CAD data also eliminates the possible approximation errors emanating from 

the process of converting the geometry from CAD to FEA. As a consequence, the exact geometry 

can be represented at the coarsest level and maintained throughout the entire analysis process. 

Besides the geometric exactness, it has been demonstrated that the use of higher-order continuous 

basis functions improves solution accuracy and efficiency [2–8]. Additionally, IGA is fully 

compatible with standard FEA codes in that a Bézier extraction operator [9] can be employed to 

provide an element structure in IGA similar to FEA. The optimal convergence of NURBS was 

observed using the classic infinite plate with a circular hole problem, as is demonstrated in 

Appendix A. 
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Although the use of IGA eliminates the approximation errors in converting the geometries 

from CAD to FEA and provides high-order continuous basis functions, NURBS-based h-

refinement deteriorates the efficiency of the method due to its global tensor-product structure. 

“Local refinement” using NURBS can be achieved by using multiple patches with complicated 

topological constraints on a common boundary, and thus subsequent patch-level refinement is 

possible [10]. However, this is cumbersome and refinement still propagates within a patch. 

Another significant drawback of NURBS is that the corresponding control mesh has to be in a 

quadrilateral shape, which hinders the flexibility and efficiency in local refinement. Moreover, the 

majority of the state-of-the-art models use trimming curves, which generally leads to gaps and 

overlaps in the geometry and further makes NURBS not analysis-suitable. In addition, in NURBS-

based geometric design and analysis, modeling complicated objects often requires a significant 

amount of patches, the interfaces of which are usually C0-continuous or worse (e.g., non-physical 

gaps and overlaps that are often referred to as non-watertight geometries). In cases where multiple 

patches need to be connected, additional refinement is required to produce a conforming interface, 

which results in an excessive number of control points that do not carry significant geometric 

information. To regain smoothness across multi-patch interfaces, special treatments (e.g., the 

bending strip method [11]) have to be performed, which unnecessarily increases the computational 

complexity. 

On the contrary, a number of local refinement techniques have been developed to 

circumvent the restrictive tensor-product structure of NURBS, including hierarchical B-splines 

[12], T-splines [13], LR B-splines [14], PHT-splines [15] and domain triangulation. Hierarchical 

B-splines achieve local refinement by successive h-refinement on the basis function level. 

However, they are still restricted to the four-sided meshgrid, and extraordinary points are also not 
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allowed. In contrast, the use of T-splines successfully handles extraordinary points and enables the 

representation of complex geometries as a single watertight object. Local refinement can be 

realized as well. Moreover, analysis-suitable T-splines [16] are both forward and backward 

compatible with NURBS, which distinguishes themselves from techniques such as subdivision 

methods [17]. However, T-spline refinement is not as local as expected because local refinement 

still propagates to satisfy topological constraints to make the resulting T-mesh analysis-suitable. 

LR B-splines are, to some extent, dual to T-splines [18] in that local refinement is achieved by 

inserting knot line segments rather than vertices. Local refinement using PHT-splines is 

completely local due to the reduced global smoothness. However, the low-order smoothness also 

hinders its application. On the other hand, spline functions constructed over triangulations 

significantly improve the flexibility in the discretization of geometrically complex spaces and local 

refinement can be naturally performed by splitting marked triangles. Such methods include 

hierarchical box splines [19], Powell-Sabin (PS) triangles [20], Bézier triangles [4,21] and Loop 

subdivision [22]. Among these methods, PS triangles and Bézier triangles are the most popular 

due to their capability in discretizing arbitrary topologies and relatively simple implementation. 

The rational Bézier triangles are adopted in addition to NURBS because they resemble the 

triangular elements of standard FEM in many ways and therefore a large number of existing tools 

both in the preprocessing and analysis phases can be immediately applied to the current study. 

In this context, the goal of the research described herein is to develop IGA-based methods 

to improve the accuracy and efficiency in modelling a wide variety of structural applications, 

including large-deformation structural frames, laminated composites with advanced material 

components, geometrically complex Kirchhoff plates, and damage propagation in brittle materials. 

Although the present study covers a wide range of topics, it essentially represents an effort in 
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addressing various modelling obstacles that are difficult to tackle using standard FEA in civil 

engineering. 

To this end, the first section of this chapter gives an overview of IGA in structural 

applications and describes the scope of the research. The organization of the thesis is provided in 

the second section. 

1.1 Overview and Scope of the Dissertation 

Nonlinear analysis of structural frames is important in civil engineering in determining the 

deformation path and failure mode of structures under extreme loads. A very limited number of 

studies has been conducted in the last decade to formulate rotation-free beam/frame elements that 

consider both geometric and material nonlinearities in the framework of IGA, which includes 

Elguedj et al. [23] who proposed the 𝐵̅  and 𝐹̅  method in the NURBS setting for nearly 

incompressible problems of both elasticity and plasticity, and Zhang and Khandelwal [24] who 

adopted a nonlocal damage theory to model plasticity growth in beams. In this context, the 

proposed research work involves the modelling of large-deformation rotation-free structural 

frames that is capable of capturing the spread of plasticity in an adaptive manner. 

Similar to the IGA beam/frame modeling, the analysis of advanced materials such as 

laminated composites and functionally graded materials can also be conducted in a rotation-free 

manner. The IGA of laminated composites has been investigated by a number of researchers [25–

29], but most of them are based on replacing a heterogeneous laminated plate with a statically 

equivalent single layer of which the stiffness is computed as a weighted average of the individual 

layer stiffness. The underlying theory is often referred to as the equivalent single-layer (ESL) 

theory. The ESL theory is simple and reduces the actual 3D problem into a 2D one, but it 

incorrectly results in a discontinuity in transverse stress at dissimilar material interfaces. The 
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correct calculation of 3D stress states is of significant importance, as the failure modes of laminated 

composites can be extremely complicated due to the fact that the majority of the dominated failure 

occurs in the inner layers of the composites. Thus, understanding how the stresses and 

deformations distribute in the full 3D is crucial in determining why, how and under which 

conditions structural failure will occur. To this end, the layerwise (LW) theories are adopted in the 

proposed study. The LW theories assume a separate displacement field expansion within each 

layer, and consider transverse displacement component as C0-continuous at layer interfaces, thus 

resulting in a layerwise continuous transverse strain states. The proposed work also involves 

modelling of sandwich plates with advanced material core such as functionally graded materials. 

Aside from the employment of NURBS for the analysis of structural frames and advanced 

materials, the proposed research is also comprised of the study of domain triangulation method 

(specifically, rational Bézier triangles) to analyze the behavior of geometrically complex spaces. 

As is previously discussed, domain triangulation is extremely flexible in the discretization of 

complicated geometries. However, the use of rational Bézier triangles in the context of IGA has 

been very rare. A set of techniques is also employed to assist the analysis of various problems, 

including Lagrange multipliers to raise global smoothness, a Delaunay-based feature-preserving 

meshing algorithm to capture small geometric features, and a local refinement technique for 

efficient discretization. The problems of interest involve the study of static and dynamics responses 

of geometrically complex Kirchhoff plates and implicit higher-order gradient damage models in 

geometrically complex domains. 

To this end, the scope of the current research focuses on improving the accuracy and 

efficiency in modelling structures and advanced materials in the framework of IGA. The tasks that 

are designed to achieve the goal are described as follows: 
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Task 1 – NURBS for the Analysis of Structural Frames and Laminated Composite Plates: 

• Employ NURBS for the discretization of the structural frame and laminated composite 

plate model; 

• Derive rotation-free formulations in the context of IGA; 

• In the analysis of structural frames, adopt a layer-based discretization to capture the spread 

of plasticity and include adaptive analysis to improve solution efficiency; 

• In the analysis of laminated composites, use Layerwise theory to predict the full 3D stress 

state and predict the behavior of advanced composites such as a sandwich plate with 

functionally graded material core; 

• Validate the numerical models by comparing the obtained results with solutions from 

standard FEA and results from existing literature. 

Task 2 – Rational Bézier Triangles for the Solution of Geometrically Complex Kirchhoff 

Plates and Implicit Higher-order Gradient Damage Models: 

• Use rational Bézier triangles to generate geometrically exact discretizations of complicated 

spaces; 

• Adopt a Delaunay-based feature-preserving meshing algorithm that admits local geometric 

features with high resolution; 

• Implement a locally refinement technique that produces well-conditioned conforming 

meshes; 

• Employ Lagrange multipliers to explicitly impose high-order continuity; 

• Use the previous work as shown in [30] for cylindrical arc-length control and implement a 

dissipation-based arc-length control due to the load-shedding behavior of damaged 

structures; 



 8 

• Investigate and verify the static and dynamic response of geometrically complex Kirchhoff 

plates with the developed modeling approach; 

• Investigate and verify higher-order gradient damage models constructed by the proposed 

modeling approach. 

1.2 Organization 

The organization of the dissertation is as follows: 

Chapter 2 is a reprint of the work entitled “Adaptive isogeometric analysis in structural 

frames using a layer-based discretization to model spread of plasticity” [2] published in Computers 

& Structures. A distributed plasticity isogeometric frame model utilizing a layer-based 

discretization is formulated to capture the plasticity growth in large-deformation frames. 

Chapter 3 is a reprint of the work entitled “Isogeometric analysis of laminated composite 

and functionally graded sandwich plates based on a layerwise displacement theory” [3] published 

in Composite Structures. The behavior of laminated composites and sandwich plates with a 

functionally graded material core is investigated in the context of IGA and a layerwise 

displacement theory. 

Chapter 4 is a reprint of the work entitled “A geometrically exact isogeometric Kirchhoff 

plate: Feature‐preserving automatic meshing and C1 rational triangular Bézier spline 

discretizations” [4] published in International Journal for Numerical Methods in Engineering. The 

analysis of the Kirchhoff plate is performed using rational Bézier triangles in IGA coupled with a 

Delaunay-based feature-preserving discretization algorithm. 

Chapter 5 is a manuscript entitled “Feature-preserving rational Bézier triangles for 

isogeometric analysis of higher-order gradient damage models” and is ready to submit for review. 
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In this chapter, the fourth- and sixth-order implicit gradient damage models are studied in the 

context of the feature-preserving rational Bézier triangulation. 

Chapter 6 summarizes the findings of this dissertation and gives future research directions. 
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Chapter 2 Adaptive Isogeometric Analysis in Structural Frames using a Layer-based 

Discretization to Model Spread of Plasticity 

 

A distributed plasticity isogeometric frame model utilizing a layer-based discretization is 

formulated to capture the plasticity growth in large-deformation frames. In our formulation, B-

spline basis functions are employed to define the deformation along the length, while a layer-based 

through-the-thickness discretization is adopted to capture the gradual plastification of the section. 

This separation of the thickness integration from the length direction enables the full 2D yielding 

development to be captured while maintaining a 1D data structure. The member-level 

geometrically nonlinear effects are also included. By introducing a continuity constraint in 

between two patches, rigid connection between two members is achieved in a multi-patch analysis 

setting. The formulation includes an adaptive analysis in which knots are inserted based on yield 

locations. In comparison to conventional layer-based finite elements, fewer degrees of freedom 

are needed to achieve the same level of accuracy due to the high-order smoothness of B-splines. 

Compared to existing isogeometric beam elements, the appealing feature is its capability of 

adaptively capturing the 2D spread of plasticity while maintaining a 1D data structure. The 

performance of the proposed model is assessed through several numerical examples involving 

gradual yielding of beams and frames under small and large deformations. 

2.1 Introduction 

Nonlinear analysis of structural frames is important in civil engineering for determining 

the load-displacement response of structures under extreme loads. A significant amount of research 

has been conducted over the past few decades to formulate beam/frame elements the can handle 
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material and geometric nonlinearities. Material nonlinearities are typically handled by either 

lumped plasticity or distributed plasticity (i.e., layer) models [31]. The former is more 

computationally efficient, whereas the latter captures the spread of plasticity in a more accurate 

manner. Corotational formulations [32] are commonly employed to handle large displacements. 

While most of the work has focused on displacement-based formulations, recent studies have 

explored force-based and mixed formulations for improved accuracy [33–38]. While offering 

improved accuracy and a reduction in the number of degrees of freedom needed to model a 

structure, force-based elements require computationally expensive state determination algorithms 

to back-calculate stresses from nodal displacements. Thus, while software for the analysis of 

structural frames is well-developed and widely used in practice, existing displacement-based, 

force-based, and mixed element formulations have considerable limitations. 

Isogeometric analysis (IGA) has gained significant attention in recent years as a novel 

computational method that integrates computer-aided design and analysis. It was first introduced 

by Hughes et al. [1] and has been applied to the analysis of solids, structures and fluids. IGA 

utilizes Non-Uniform Rational B-splines (NURBS) to represent the geometry as well as to describe 

the field variables. Thus, CAD drawings can be directly imported into finite element analyses 

without converting the geometry. While IGA was introduced to streamline the design process for 

complicated geometries, it has been shown to offer improvements in analysis for even simple 

geometries, as is shown in this paper. Readers are advised to refer to the original paper by Hughes 

et al. for a comprehensive overview of IGA. We provide a very brief review of the fundamental 

concepts for clarity.  

In FEA, Lagrange basis functions are mapped into a single element’s domain, and the finite 

elements are then assembled to arrive at the governing equilibrium equations. In IGA, however, 
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the B-spline parameter space is defined over the entire patch, which is usually comprised of 

multiple elements. The parameter space is segmented into several elements by a non-decreasing 

set of coordinates called a knot vector. When the knots are equally spaced in the parameter space, 

the knot vector is considered uniform; otherwise it is non-uniform. A B-spline basis function is 

1−pC  continuous at a single knot, and mpC −  continuous at a repeated knot, where p is the degree 

of polynomial and m is the multiplicity of knots. The B-spline basis functions are computed based 

on the Cox-de Boor recursion formula [1]. With   being the natural coordinate, the basis function 

for p=0 is 
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The B-splines that form the basis of IGA have the following properties: 

• Partition of unity, i.e., ( ) 1
1

, =
=

n

i

piN   

• Linear independence, i.e., ( ) niaNa i

n

i

pii ,...,2,1,00
1

, ===
=

  

• Non-negativity over the entire domain 

• Local support, i.e., the basis function is non-zeros only in the domain  1, ++ pii   

A B-spline curve of polynomial degree p can then be constructed by the linear combination 
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of control points iP  and its respective basis functions: 

( ) ( ) i

n

i

pi PNC 
=

=
1

,   
(2.3) 

An advantage of IGA lies in the fact that all degrees of freedom (DOFs) are displacement-

based, meaning that elements are rotation-free. This presents a significant opportunity for reducing 

the size of stiffness matrices for large structural systems, thereby offering significant savings in 

computational time. Moreover, recent studies [3,39,40] on IGA have indicated that the use of 

NURBS basis functions give improved accuracy over conventional finite element analysis (FEA) 

for certain applications. 

Isogeometric analysis of beams has been studied by a number of researchers, and related 

papers cover shape optimization of beams [41], locking-free Timoshenko beams [42–44] and 

Kirchhoff-Love space rods [45]. Recent developments include the isogeometric analysis of plane-

curved beams [46], which was based on the Timoshenko beam theory, and an isogeometric 

collocation method for thin beams and plates [47]. An implicit G1 multi-patch Kirchhoff-Love 

space rod was contributed by Greco and Cuomo [48], in which the displacements of the first and 

last control points within one patch were decomposed using polar coordinates to obtain an 

automatic non-singular stiffness matrix. More recently, a shear deformable isogeometric beam 

using a single-variable formulation was developed [49]. 

While isogeometric analysis of beams has been shown to yield accurate results, the 

majority of previous models are in the range of elastic analysis and few have applied IGA to study 

the inelastic response of beam/frame structures loaded beyond yielding. The use of IGA for 

material nonlinear problems [23,50–53] has focused on the study of 2D and 3D continuums, which 

requires a tensor product of NURBS basis functions in multiple directions and therefore an 
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excessive number of DOFs has to be introduced. Recently, a nonlocal damage theory was applied 

to study the inelastic behavior of beams [24]. However, this method involves in computing the six-

order derivative of the nonlocal integral operator, which is computationally expensive. 

Additionally, it is not able to predict the full plasticity growth of the section. 

Within this context, we propose a layer-based distributed plasticity isogeometric frame 

model based on the Euler-Bernoulli beam theory. Member-level geometrically nonlinear effects 

are accounted for through the inclusion of high-order strain terms. The formulation is therefore 

suitable for moderate deformations and rotations. The novelty and strength of this paper are: 

• Instead of using tensor-product splines, the 1D B-spline basis function is used to represent 

the parametric domain in the length direction. The separation in integrating the layer-based 

thickness direction from the length direction significantly reduces the size of system 

matrices. 

• Utilizing a layer-based discretization in the through-the-thickness direction not only allows 

the gradual localized plastification of the section to be captured accurately, but it also 

serves as a gradient-based a posteriori error estimator for adaptive analysis in the sense that 

localized yielding results in sharp curvatures which, in turn, are a perfect indication of the 

need for refinement. 

• Yielding information is collected at the integration points in the layer to guide the adaptive 

refinement process. Lobatto quadrature rule is recommended in lieu of traditional Gaussian 

quadrature because Lobatto quadrature includes integration points at the ends of elements 

where plastic hinges are most likely to occur (e.g., connections between beams and 

columns, boundary condition locations, mid-span of members). 
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• A G1 (i.e., geometrically continuous) continuity constraint is implemented in between 

patches, thereby adding rotational stiffness at beam-column connections. The constraint 

equation overlaps one control point on each side of the patch interface and only allows for 

yielding in the neighborhood of connections, rather than in the connections themselves. 

Therefore, the beam-column connection maintains rigidity throughout the analysis and 

plastic hinges are only allowed to form in beams and columns. This is rather important 

from a realistic structural point of view as yielding occurs at beam-column connections in 

traditional FE beam elements. 

• The use of B-spline basis functions yields a rotation-free discretization, which represents 

great computational saving as compared to FEA. 

2.2 Formulation 

 

Figure 2-1: Degrees of freedom of a layer-based IGA element 

In this section, the governing equations of the distributed plasticity isogeometric frame 

model are presented. The model is “rotation-free” in the sense that the displaced shape is defined 

entirely in terms of the horizontal and vertical translations, ui and vi, respectively, at the n control 

points, as illustrated in Fig. 2-1. To enable material-nonlinear analysis, the patch is discretized into 

m layers [30], as shown in Fig. 2-2. It is assumed that the thickness of each layer is relatively small 

such that stress and strain are lumped at each layer across the section. 
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Figure 2-2: Layer discretization of the cross-section 

The Euler-Bernoulli hypothesis is employed. The mechanical strain in layer j is composed 

of axial and bending deformations and is given as  






















+








+−=

22

2

2

ˆ

ˆ

ˆ

ˆ

2

1

ˆ

ˆ
ˆ

ˆ

ˆ

xd

vd

xd

ud

xd

vd
y

xd

ud
jj  (2.4) 

Here, û  is the axial deformation and v̂  is the transverse deformation in local yxˆˆ  coordinates. Note 

that the higher-order terms associated with large deformations are included. A natural coordinate 

  is defined in the longitudinal direction to facilitate the numerical integration of the stiffness 

matrix. Thus, Eq. (2.4) becomes 
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If we define dxdJ /ˆ=  as the Jacobian, Eq. (2.5) becomes 
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Displacements û  and v̂  are discretized using NURBS basis functions as  
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where iû  and iv̂  are respectively the axial and transverse displacements of the control point i, 

and piR ,  is the NURBS basis function corresponding to control point i for polynomial of order p. 

Substituting Eq. (2.7) into Eq. (2.6) gives 
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Eq. (2.8) consists of linear and nonlinear terms, which are expressed as follows: 
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The linear term in Eq. (2.10) can be written in matrix form as 

dB ˆ
j

l
j =  (2.12) 

where the strain-displacement matrix Bj for layer j and the vector of control point displacements 

d̂  in local coordinates are given as 
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The nonlinear term in Eq. (2.11) can be written in matrix form as  
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To arrive at the stiffness matrix, the method of virtual work is employed. The increment in 

internal virtual work is equated to the increment in external virtual work, i.e.,  

extint WW  =  (2.17) 

The internal virtual work is determined by summing the strain energy over the m layers, i.e.,  
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Here, jA  is the cross-sectional area associated with layer j, and L is the length of the patch. The 

variation in strain is given as 
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In the linear term in Eq. (2.18), the increment in stress is defined as 

dB ˆ== jjjjj EE   (2.20) 

Here, Ej is the tangent modulus in layer j, which is determined from the constitutive law for the 

material. In the nonlinear term, it is recognized that jjA   is the internal axial force in the layer, 

i.e., 
axial
jF . Substituting these relationships into Eq. (2.18) gives 
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It follows from Eq. (2.21) that the tangent stiffness matrix in local coordinates is  
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where the geometrically linear component of the stiffness matrix is given as  
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and the geometrically nonlinear component of the stiffness matrix is  
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Note that inelastic behavior is captured in the geometrically linear stiffness matrix through the 

evaluation of the tangent modulus Ej based on the constitutive law for the material. With the 

incremental equations formulated, the modified Newton-Raphson method is adopted to solve the 

problem iteratively, in which the internal force is derived based on the stresses calculated using 

Eq. (2.20). The solution of the governing equilibrium equations follows the same procedure as is 

used in conventional finite element analysis and therefore is not discussed here for brevity. 
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Since all DOFs are displacement-based, special treatment is required when applying moment 

as an external load. In Eq. (2.17), the external virtual work is given as 
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where ixf ,
ˆ , iyf ,

ˆ  and izm ,
ˆ  are the external loads in the local x̂  and ŷ  direction and moments, 

respectively. Rotation   is defined as the derivative of the displacement v  with respect to x . From 

Eq. (2.17),  
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Eqs. (25) and (26) yield a generalized force vector, given as: 
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Eq. (2.27) transforms external moments into generalized external forces so that rotational DOFs 

are not required when applying external moments. 

Note that the above variables are expressed in local coordinates, whereas the structural 

equilibrium equations are more conveniently written in global coordinates. For an element with 

local x̂  axis oriented at angle   from the global x axis, the relationships between displacements, 

forces, and stiffness matrices in local and global coordinates are given as 

Tdd =ˆ , Tff =ˆ
, TkTk ˆT=  

(2.28) 

where the transformation matrix T is given as 
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In Eq. (2.29), IC = cos  and IS = sin , where I is the identity matrix. The transformation is 

calculated based on the original (i.e., undeformed) configuration of the element and therefore is 

suitable for moderate displacements only. 

2.3 Continuity Constraints for Multi-patch Analysis 

To include rigidity in beam-column connections in frame structures, the basis functions 

employed must be at least C1 continuous. This is easily attained by using one-patch isogeometric 

analysis due to the inherent high-order continuity of NURBS basis functions. However, when it 

comes to multi-patch analysis, connections between two patches are C0 continuous and therefore 

additional constraints are needed to enforce slope compatibility. For this reason, we introduce a 

continuity constraint that equates the rotations at the connecting point of two patches, thus adding 

rotational stiffness where a rigid connection appears. Owing to the fact that this additional 

constraint overlaps one control point on each side of the patch interface, yielding at the joint 

between two patches is not allowed. Therefore, the beam-column connection itself maintains 

rigidity throughout the analysis and plastic hinges are only allowed to form in beams and columns.  

To enforce compatibility in slope, the constraint equation that is employed equates the rotation 

  at the ends of two elements. Because the element is rotation-free, the constraint equation needs 

to be expressed in terms of the translation vector d. Recall that the rotation at control point i in an 

element is given as 


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Eq. (2.30) can be written in the following short hand form: 

TdHdH iii == ˆ  (2.31) 

where 
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Figure 2-3: Degrees of freedom involved in a constraint representing a rigid beam-to-column connection 

For elements (1) and (2) shown in Fig. 2-3, control points i-2, i-1, i, i+1 and i+1, i+2, i+3, i+4 are 

employed to describe their deformation, respectively. The rotation at control point i+1 calculated 

within element (1) is equated to the rotation at the same control point calculated based on the 

deformation of element (2), i.e.,  

)2(

1

)1(

1 ++ = ii   (2.33) 

From Eq. (2.31), 

)2()2()2(

1

)1()1()1(
dTHdTH =n  (2.34) 

For a rigid (or fixed) support at the end of a member, the constraint equation simplifies such that 

the relative transverse displacement at the end point and first interior point are set to zero. 
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Using constraints such as those given in Eq. (2.34), degrees of freedom from the structural 

system are eliminated from the governing equations. Specifically, for structural displacements D, 

we can divide the displacement vector into eliminated (i.e., constrained) degrees of freedom De 

and free (i.e., unconstrained) degrees of freedom Df. Constraint equations such as those given in 

Eq. (2.34) are combined to give the constraint equations for the structural system, which are 

expressed as  

  0
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f

e
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(2.35) 

where Ge and Gf are the coefficients derived from Eq. (2.34). An equivalent stiffness matrix K  

and force vector P  are then calculated in terms of the reduced (i.e., unconstrained) degrees of 

freedom. If the governing equations are partitioned as follows, 
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the equivalent stiffness matrix and force vector are [54] 

( )ΓKΓKΓΓKKK eeeffeff
TT +++=  

(2.37) 

ef PΓPP
T+=  

(2.38) 

where 

fe GGΓ
1−

=  
(2.39) 

Note that, under the circumstance where three or more members frame into one rigid connection, 

the two overlapping control points in the rigid connection region cannot be chosen to be eliminated 

simultaneously in order to avoid the singularity of eG .  
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2.4 Yielding-based Adaptive Analysis 

 

Figure 2-4: Yielding data at quadrature points 

In order to reduce the total number of DOFs in the system and realize localized strategic 

refinement, an adaptive isogeometric analysis using the proposed layer model is studied in this 

section. The principal idea is to perform knot insertion in the regions of the model where yielding 

is detected. The location of the knot inserted is based on the plastic deformation data collected at 

the integration points. As shown in Fig. 2-4, the integration points are plotted at the layer level. 

The red dots indicate that yielding has occurred at the location of integration points, whereas the 

blue dots demonstrate that there is no yielding in the associated region. Conceptually, in the 

adaptive IGA, a knot is inserted near the region of yielding when yielding is detected in the model. 

Because yielding is tracked at the integration points, the rate of convergence of the adaptive 

algorithm is dependent on the integration scheme that is utilized. Lobatto quadrature rule is 
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recommended in lieu of Gaussian quadrature. This is because Lobatto quadrature includes 

integration points at the ends of the patch. The inclusion of integration points at the ends of the 

patch makes the model more suitable for the inelastic analysis of structural frames due to the fact 

that plastic hinges are most likely to occur at the ends of a member (e.g., connections between 

beams and columns, boundary condition locations, mid-span of members). The insertion of new 

knots leads to the change of control point locations, which refines the mesh in the physical domain. 

Subsequently, the recommended Lobatto quadrature rule is applied on the new elements, and then 

strains and stresses are calculated at the new integration points. 

 

Figure 2-5: Performance of Lobatto quadrature (indicated in blue) vs. Gauss quadrature (in red) 

An example is shown in Fig. 2-5 to illustrate the differences between adaptive meshing using 

Lobatto quadrature versus Gaussian quadrature. Consider a structural member (e.g., a cantilever 

beam) with load increasing to the ultimate capacity of the member. As shown in Fig. 2-5, the 

structure behaves elastically until yielding occurs at point a. At initial yield (point a), only a small 

portion of the section at the end of the member has yielded. Due to the first Gauss point being 
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located at some distance from the end of the element, yielding is not detected and the structure is 

thus modeled as elastic. Using Lobatto quadrature, however, yielding is detected at the onset (point 

a in Fig. 2-5). The model using Gauss quadrature continues to simulate linear elasticity until point 

b, where yielding at the first Gauss point is detected. However, the internal force corresponding to 

point b is likely to be greater than the actual capacity of the structure due to the fact that significant 

yielding has already occurred, which can be detected by refining the mesh. When the mesh is 

refined, however, the load increment must be cut back (point c) and the program re-runs the 

iteration, arriving at the converged solution at point d. One can see that the refinement using Gauss 

quadrature will lead to the correct solution as the mesh is refined, but requires significantly more 

computational effort due to the fact that the Gauss points do not correspond to the locations of 

yielding in the member.  

 

Figure 2-6: Error as a function of knot insertion distance 

For the insertion of knots in the adaptive algorithm, it is suggested that a new knot is inserted 

in the knot vector at a distance   to both sides of the yielded integration point (or to one side 
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for integration points that lie at the ends of the element). A parametric analysis was performed for 

a fixed-fixed beam (see the first example in numerical examples section) in order to determine the 

optimal placement of the inserted knots. Fig. 2-6 shows the percent error for increasing  , which 

is measured against the converged finite element solution. In general, it is recommended that   

be chosen as 0.1 to keep errors close to zero. Note that knot insertion is abandoned if there is a 

knot already existing within the distance of  . This is done to avoid unnecessary refinement of 

the mesh.  

With the positions decided for the new knots, the next step is to recalculate the coordinates of 

the new control points by imposing the geometry to remain unchanged. Note that since the weights 

are equal for the frame element, the displacements at the new control points are interpolated based 

on the converged deformation of the old system (i.e., the unrefined IGA model) using the previous 

B-spline basis functions. In this way, the patch is locally refined at the place of yielding. Fig. 2-7 

plots the original B-spline basis function versus the refined one. For a cantilever beam with 

yielding occurring at the left support, the original knot vector is  =[0 0 0 0.5 1 1 1]. Assume that 

three new knots are inserted at 3.0,2.0,1.0=  due to detected yielding at the left end of the 

member, which increases the number of basis functions from four to seven (as plotted in Fig. 2-7). 
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Figure 2-7: Original/Refined space in parameter and physical domain 

2.5 Numerical Examples 

This section is dedicated to verifying the formulation of the large-deformation, distributed 

plasticity frame element. The IGA frame model was programmed in Matlab, and the modified 

Newton-Raphson method is adopted to solve the problem iteratively. In order for the results to be 

accurate, n Gauss-Lobatto integration points are used for polynomials of degree 2n-3. For 

comparison purposes, the B23 element in Abaqus was selected. The B23 element is a 2D 

displacement-based element that has five integration points through the cross-section. While it is 

acknowledged that there are several advanced frame element formulations in the literature that 

give improved performance over the traditional displacement-based elements, the purpose of this 

study is to show a comparison between IGA and standard FEA. Therefore, we did not attempt to 

draw comparisons to other advanced finite element models, such as those that are force-based or 

use mixed methods.  
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2.5.1 Fixed-Fixed Beam with Point Load 

 

Figure 2-8: Dimensions of the fixed-fixed beam model 

In order to assess the proposed formulation under inelastic loading conditions, a fixed-fixed 

beam subjected to a point load P at 0.75L is chosen, as shown in Fig. 2-8. The Young’s modulus 

of the beam is 200 GPa, and the yield strength is 250 MPa. The material is defined as being elastic-

perfectly plastic. Geometric details of the beam can be found in Fig. 2-8.  

 

Figure 2-9: Load-deflection curve of the fixed-fixed beam 

The system is statically indeterminate to the second degree in regards to the modeling of the 

beam, and the expected deformation is such that three plastic hinges form before the structure 

reaches total collapse. An analytical solution based on plastic analysis (i.e., an approximate 

analysis that assumes the plastic hinges form instantaneously when the moment reaches the plastic 
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moment capacity of the section) is also obtained to verify the numerical results. Based on the 

curves in Fig. 2-9, it is observed that the IGA beam with a uniform discretization of 13 control 

points yields good agreement with the FEM beam modeled using 100 elements. Note that, in this 

problem, one control point from IGA corresponds to only one translational degree of freedom (i.e., 

since axial deformation is not considered in this structure). Similarly, one node in FEM 

corresponds to two degrees of freedom, namely, one translation and one rotation. 

 

Figure 2-10: Error ratio vs. Number of DOFs curve 

The comparison of convergence rates between isogeometric analysis and traditional finite 

element method is also studied, and results are shown in Fig. 2-10. The relative error ratio   is 

calculated as follows: 

conv

conv

v

vv −
=  

(2.40) 

where convv  is the converged displacement at the point of loading and v  denotes the displacement 

at the point of loading predicted by the model having a certain number of DOFs. 
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It is observed that IGA requires considerably fewer degrees of freedom to reach similar level 

of accuracy in comparison with the conventional finite element method. This is owing to the high-

order continuity of NURBS shape functions within one patch in isogeometric analysis so that 

compatibility is automatically satisfied without the need for rotational degrees of freedom. We 

also see an even faster convergence using the adaptive IGA, with the error ratio being 0.0009% 

for 11 DOFs. The non-adaptive IGA (i.e., the IGA with uniform mesh) requires nearly double the 

number of DOFs to achieve the same level of accuracy, as is also proved by the slopes (i.e., 

convergence rates) shown in Fig. 2-10. Thus, it is concluded that the strategic insertion of knots in 

the plastic hinge regions is a significant improvement.  

2.5.2 Inelastic Cantilever Subjected to Cyclic Load 

 

Figure 2-11: Dimensions of the inelastic cantilever model 

This section is dedicated to the further investigation of the inelastic behavior of the cantilever 

beam using isogeometric analysis. A cyclic load is added at the tip of the cantilever, as shown in 

Fig. 2-11. The Ramberg-Osgood hardening model is employed in the material definition. The yield 

strength and ultimate strength are 250 MPa and 550 MPa, respectively. The yield stress function 

is defined [55] as follows: 

( ) m

y CY  +=  (2.41) 

where y  is the yield strength,   is the equivalent plastic strain, C and m are material constants. 
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In this case, C=30 MPa, m=0.45. 

 

Figure 2-12: Load-deflection curve of the inelastic cantilever 

The hysteretic behavior of the cantilever beam is plotted in Fig. 2-12. It is observed that the 

layer-based IGA captures the spread of plasticity accurately and maintains good hysteretic 

performance in comparison to the FEM. Note that, in this example, due to the use of the Ramberg-

Osgood hardening model (i.e., Eq. (2.41)), the stress-strain relation is rather complicated compared 

to the previous elastic-perfectly plastic model. Therefore, we conclude that our layer-based IGA 

frame model is capable of modeling the nonlinear inelastic response under cyclic loading 

circumstances very well. 
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2.5.3 Column Buckling 

 

Figure 2-13: Dimensions of the inelastic column model 

In this section, the column buckling problem (as illustrated in Fig. 2-13) was investigated to 

prove the effectiveness of the geometrically nonlinear formulation. An imperfection load was 

added laterally at the mid-span of the column. Both elastic and inelastic buckling were considered. 

The Ramberg-Osgood hardening model from the previous example was again adopted for the 

inelastic analysis. We observe from Fig. 2-14 that the results from layer-based IGA matched very 

well with solutions from Abaqus/Standard, both in the elastic buckling case and the inelastic 

buckling case. 



 34 

 

Figure 2-14: (a) Elastic buckling, and (b) inelastic buckling 

In this verification case, the convergence rates among the standard FEM, layer-based IGA and 

adaptive IGA were studied. As illustrated in Fig. 2-15, due to the use of cubic B-spline basis 

functions, the layer-based IGA with uniform mesh reached a faster convergence rate than 

Abaqus/Standard while using fewer DOFs, whereas the adaptive IGA converged fastest among the 

three approaches with the fewest number of DOFs (28 DOFs in adaptive IGA, compared with 80 

DOFs in layer-based IGA with uniform mesh and 603 DOFs in Abaqus/Standard). It is indicated 

here that the adaptive IGA approach is both accurate and efficient. 
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Figure 2-15: Convergence rates in the inelastic column buckling problem 

2.5.4 Two-bay Two-story Frame 

To demonstrate the performance of the proposed element in multi-patch analysis, a more 

complicated case is investigated in which rigid connections between members and geometrically 

nonlinear effects are considered. The beam has a cross-section of mm200mm450  , while the 

column’s section is mm350mm450  . The members are oriented in such a way that their strong 

axes are used to bear the load. Material properties are the same as the first example. Detailed 

geometry and loading conditions can be found in Fig. 2-16. 
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Figure 2-16: Frame geometry and deformed configuration at failure 

It is observed from the deformed configuration in Fig. 2-16 that the beam in the first floor 

forms a mechanism due to the formation of plastic hinges at the mid-span and ends of the beam, 

while the columns maintain lateral stiffness. This is due to the fact that the beam has a smaller 

section in comparison to the column, causing a plastic hinge to form in the beam first. Thus, a soft-

story mechanism is avoided.  
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Figure 2-17: Load-lateral displacement curve for the first floor (ultimate load around 5x105N) and second floor (ultimate load 

around 10x105N) 

Results from the IGA are compared with finite element simulations in ABAQUS/Standard. In 

Fig. 2-17, the horizontal load is plotted against lateral displacements from the ABAQUS/Standard 

finite element model and the proposed layer-based IGA model, considering both the small-

deformation (i.e. geometrically linear, indicated using “SmallDisp”) model and the large-

deformation (geometrically nonlinear, indicated using “Nlgeom”) model. It is observed that the 

response from multi-patch IGA model matches very well with that from ABAQUS/Standard. Thus, 

the approach for introducing constraint equations to simulate rigid connections is effective. The 

results also show a reduced stiffness in the geometrically nonlinear model, compared to the small 

deformation model due to the member-level geometrically nonlinear effects. 
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Figure 2-18: Error ratio vs. Number of DOFs 

The relative error ratio is calculated using Eqn. (40), and results are plotted in Fig. 2-18. It is 

again illustrated that the layer-based isogeometric element leads to a faster convergence, compared 

to conventional finite element methods. It can also be seen that adaptive meshing provides a 

significant improvement over the non-adaptive IGA. 
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Figure 2-19: Adaptive meshing procedure 

To give a better understanding of the adaptive meshing procedure in a more complicated 

system, Fig. 2-19 illustrates the adaptive knot-insertion process in the frame. Initial knot locations 

are plotted in the first configuration, while the remaining configurations (i.e., configurations 2 

through 8) show the locations where yielding is detected and subsequently where knots are inserted. 

The model starts with a relatively coarse mesh, as shown in the first configuration. More knots are 

inserted to refine the mesh as the members yield. Note that the knots near the ends of the member 

aim to define the boundary conditions/additional constraints and therefore are located sufficiently 

close to the ends.  

2.6 Conclusion 

A 2D distributed plasticity isogeometric model utilizing a layer discretization was formulated. 
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The member-level geometrically nonlinear effects were included through the inclusion of high-

order strain terms. The formulation however is presently limited to problems with moderate 

displacements. The model was extended to multi-patch analysis through the introduction of 

continuity constraints between two adjacent patches, allowing for the rigid connection of members 

in a frame. The model closely represents reality as plastic hinges form in the beams or columns 

rather than at a fictitious joint region, which is rather important from a structural point of view. 

The formulation was also presented for adaptive analysis. Lobatto quadrature was employed in 

order to capture the onset of yielding at the ends of the member, and a knot insertion technique 

was introduced to capture the change in curvature associated with the formation of a plastic hinge. 

The procedure is completely automatic in that the evolution of structural deformation is fully 

governed by yielding, which can be accurately captured through knot insertion and thus no user 

intervention is required. Several verification cases involving the yielding of beams and frames 

under monotonic and cyclic loading were considered. It was observed that our layer-based IGA 

model required substantially fewer degrees of freedom to achieve similar levels of accuracy 

compared to the conventional finite element method. The reduction in degrees of freedom is due 

to the elimination of the rotational degrees of freedom and the high accuracy associated with the 

NURBS basis functions. The savings could significantly improve the computational cost of 

analyzing the inelastic response of large-scale structural systems subjected to extreme loads.  
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Chapter 3 Isogeometric Analysis of Laminated Composite and Functionally Graded 

Sandwich Plates Based on a Layerwise Displacement Theory 

 

A multi-layered shell formulation is developed based on a layerwise deformation theory 

[56] within the framework of isogeometric analysis (IGA). IGA utilizes Non-Uniform Rational B-

splines (NURBS) to represent the geometry as well as to describe the field variables [1], thus it 

offers the great opportunity of directly importing CAD designs into finite element analysis without 

converting the geometry. In this way, the gap between design and analysis is bridged. The 

derivation also follows a layerwise theory, which assumes a separate displacement field expansion 

within each layer, and considers transverse displacement component as C0-continuous at layer 

interfaces, thus resulting in a layerwise continuous transverse strain states. Since the in-plane and 

through-thickness integrations are carried out individually, this approach is capable of capturing 

the complete three-dimensional stress states in a two-dimensional setting, which improves the 

computational efficiency. A knot insertion technique is utilized for the discretization in the 

through-thickness direction, and C0-continuity is enforced by means of knot repetition at dissimilar 

material interfaces. The performance of the proposed model is demonstrated using multiple 

laminated composites and sandwich plates (including functionally graded material core) as 

examples. Numerical results prove the accuracy of the proposed formulation and show that the 

isogeometric layerwise shell is superior to its finite element counterpart. 

3.1 Introduction 

 Laminated composites are increasingly used in industries such as civil engineering, 

automotive engineering, manufacturing and aerospace engineering. This rapid popularization in 
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application is mainly owing to their characteristically high strength-to-weight ratio. Functionally 

graded material (FGM) as a special type of composite material is a mixture of two or more distinct 

materials (usually ceramic on top and metal at the bottom) with the volume fraction varying 

through one direction. It was first proposed by Bever and Duwez [57] and is well-known to provide 

high performance and multiple functions. Another appealing feature of FGM is that its material 

properties vary continuously in the thickness direction, in contrast to the traditional laminated 

composites where discontinuity exists at layer interfaces. However, the failure modes of laminated 

composites can be extremely complex, mainly because the majority of the dominated failure 

occurs in the inner layers of the composites and thus they are not easily detected a priori. Therefore, 

understanding how stresses and deformations distribute in the inner layers is of vital importance 

in determining why, how and under what loads structural failure will occur.   

 In order to understand and characterize the deformation and stress distribution, a number 

of theories have been developed for the analysis of multi-layered composite plates. The most 

propagated theoretical work for laminate composite structures is the classical laminate plate theory 

(CLPT) [56], in which it is assumed the state of stress is in-plane and in a layerwise fashion in 

addition to Kirchhoff’s classical plate theory. This theory, however, is two-dimensional and 

therefore cannot predict the out-of-plane stress state. In three-dimensional domain, perhaps the 

most dominant theories in the field of composite laminates are the equivalent-single-layer (ESL) 

theory and layerwise theories. Among the ESL-based theories, first-order shear deformation theory 

(FSDT) [58–60] and higher-order shear deformation theory (HSDT) [61–63] are frequently used. 

The essence of ESL is that it replaces a heterogeneous laminated plate/shell with a statically 

equivalent single layer whose stiffness is a weighted average of the individual layer stiffness [64]. 

Although ESL is relatively simple and reduces the actual three-dimensional problem into a two-
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dimensional one, it incorrectly assumes that the transverse strain components are continuous across 

the ply interface between dissimilar materials and thus results in a discontinuity in transverse stress 

components at the ply interfaces. In contrast to the ESL theories, the layerwise theories assume a 

separate displacement field expansion in the layer level, and consider transverse displacement 

component as C0-continuous at layer interfaces, thus resulting in a layerwise continuous transverse 

strain states [64–66]. Therefore, layerwise theories provide a better understanding of the complete 

three-dimensional stress state. 

 Functionally graded material is a type of inhomogeneous, multi-phase composite material 

with material properties changing continuously in one direction due to the gradual variation of 

volume fraction of its constituent materials. A significant amount of research [67–71] has been 

done recently to better understand the behavior of FGM and FGM-incorporated materials. Jha et 

al. [72] gave an excellent review of the recent research on functionally graded plates. A generalized 

shear deformation theory was developed by Zenkour [73], in which a correct representation of the 

transverse shear term was adopted and therefore no shear correction factor was required. Neves et 

al. [74] investigated the static, free vibration and buckling behavior of sandwich plates with a 

functionally graded material core based on a higher-order shear deformation theory and a 

collocation method with radial basis functions. The thickness stretching effect in FGM was 

evaluated through removing/keeping the transverse normal term in the kinematics assumption of 

multiple plate theories [75]. Reddy and Kim [67] presented a nonlinear third-order plate theory for 

the analysis of FGM. This method was based on a modified couple stress theory that included a 

material length scale parameter to account for the size effect in FGM. 

 Within this context, the proposed research aims at applying isogeometric analysis and a 

layerwise deformation theory to model multi-layered laminated composites and functionally 



 44 

graded sandwich plates. IGA was first proposed by Hughes et al. [1] and has been widely applied 

to the field of structural and solid mechanics. It essentially utilizes the same basis function to 

represent the geometry as well as to describe the field variables so it bridges the gap between 

computer-aided design (CAD) and analysis. The high-order smoothness associated with NURBS 

basis functions allows the prediction of highly accurate stress fields, which in turn reduces the 

required mesh size and results in great savings in computational efforts. Moreover, the knot 

insertion technique in IGA eases the difficulty in enforcing C0 continuity at layer interfaces. A 

number of studies has been done over the past a few years on laminated composite [25–27,76] and 

FGM sandwich plates [28,29,77–82] in the framework of IGA and showed that IGA offered high 

accuracy and significant computational savings. However, the majority of them rely on theories 

that are based on ESL theory (such as FSDT and HSDT) and that involve both displacement and 

rotational degrees of freedom (DOFs). Few studies have applied displacement-based layerwise 

theories to study the behavior of laminated composites with significantly different material 

properties between different layers or with material properties varying drastically through the 

thickness direction (e.g., FGM). The novelty of the present research beyond existing work lies in 

the fact that a layerwise theory in which all DOFs are displacement-based (i.e., rotation-free) is 

implemented in an isogeometric setting and C0 continuity is enforced at ease by knot repetition. 

The proposed approach is also successfully applied to study laminated composites embedding a 

FGM core and gives satisfactory results. 

3.2 A Brief Overview of Isogeometric Analysis 

 The fundamentals of IGA are stated in this section based on Hughes’s work [1]. In one 

dimension, the parametric space is discretized by a knot vector, which is a non-decreasing set of 

coordinates and is defined as follows: 
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 121 ,...,, ++= pn , 1+ ii  , i=1,…,n+p (3.1) 

where i  is the ith knot, n is the number of basis functions and p denotes the polynomial order. By 

repeating the first and last knots p times, the knot vector becomes an open one and the endpoints 

are interpolatory. The basis function is C  continuous inside a knot span and is mpC −  continuous 

at a knot location, where m is the multiplicity of the knot. 

 Given a knot vector, the corresponding B-spline basis functions are defined based on the 

Cox-de Boor recursion formula. For p=0, 
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 The B-spline curve is then constructed as, 
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where Pi is the ith control point. 

 In two dimensions, the B-spline surface is defined by a tensor product of univariate B-

spline basis functions in the following way, 
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where ( )piN ,  and ( )qjM ,  denote the B-spline basis functions defined by the knot vector 

 121 ,...,, ++= pn  and  121 ,...,, ++= qm , respectively.  

 By projecting a B-spline entity from Rd to Rd+1 using the weights associated with 

corresponding control points, the non-uniform rational B-splines (NURBS) are constructed, 
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where the denominator ( )
=
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,   is the weighting function. 

 The NURBS surface can then be defined by, 
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where ( ) ,,

,

qp

jiR  is the multiplication of univariate NURBS, 
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
 . An example of the cubic NURBS surface is shown in Fig. 

3-1. The control points and the control polygon are illustrated in black and in red, respectively. 

The control points are only interpolatory at the vertices of the surface and are otherwise not 

interpolatory, as is also indicated by the fact that the control points in general do not lie on the 

surface. 
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Figure 3-1: NURBS surface and control lattice 

3.3 Isogeometric Layerwise Formulation 

 

Figure 3-2: Layerwise kinematics 

 In our work, we adopt Reddy’s layerwise displacement theory [56] to formulate the 

isogeometric layerwise plate for the analysis of laminated composite and sandwich plates with a 

FGM core. In this theory, separate displacement field expansion from each layers is considered 

and the transverse displacement component is assumed to be C0 continuous at layer interfaces (see 

Fig. 3-2). The in-plane space is discretized by multiplication of univariate NURBS basis function 
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(see Fig. 3-3), while in the through-thickness direction, a B-spline basis function is utilized and C0 

continuity at the layer interface is enforced through repetition of knots.  

3.3.1 Layerwise Kinematics 

 

Figure 3-3: In-plane discretization of kth layer and element DOFs illustration 

 Based on Reddy’s layerwise theory, the displacements at any point of the laminated 

composite can be expanded as: 
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where Ncp   denotes the number of control points in the thickness direction, ( )iii wvu ,,   is the 

displacements at control point i  (also see Fig. 3-3), and ( )zN i
 is the B-spline basis function for 
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the discretization of the through-thickness displacements, whereas in Reddy’s work, Lagrange 

polynomial shape function is used. 

 As in Reddy’s formulation, the von Karman strain-displacement relations are adopted to 

account for geometric nonlinearity, 
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 The stresses in layer k can then be derived based on Hooke’s law. For an orthotropic layer 

k, 
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(3.10) 

where ijQ   denotes the transformed material coefficients from the material coordinates to the 

global coordinates. For details of the transformation matrix, see [56]. 
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3.3.2 Virtual Work 

 Following Reddy’s formulation, the method of virtual work is invoked to derive the 

stiffness matrix in the element level. Based on Hamilton’s principle, the variation in internal 

potential energy and external virtual work should be zero, i.e., 

0=+= VU   (3.11) 

 The variation of the internal potential energy of the laminate can be expressed in terms of 

stress and strain, 
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 Substitution of the strain-displacement equations from Eq. (9) and stress-strain relation 

from Eq. (10) gives the weak form of the variation of the internal potential energy. By rearranging 
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where the through-thickness laminate stiffnesses are integrated separately from the in-plane 

integration. These stiffnesses are given as follows, 
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 The stiffness equations in Eqs. (13)-(14) are identical to those presented by Reddy, with 

the difference that B-spline basis functions are used in place of the Lagrange polynomial shape 

functions in the original FE formulation. Nodes are replaced by control points, which usually 

provide basis functions that have control over multiple elements. Note that since the through-

thickness integration and in-plane integration are carried out separately, the layerwise model is 
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able to capture the full three-dimensional stress state while maintaining a two-dimensional data 

structure, which leads to significant savings in computational efforts. 

3.3.3 Enforcement of C0 Continuity at Layer Interfaces 

 Layerwise theories assume the transverse displacement as C0-continuous at layer 

interfaces. Recall that a B-spline is mpC −  continuous at a knot, where p is the polynomial order 

and m is the multiplicity of the knot. In this context, C0-continuity at dissimilar material interfaces 

can be implemented readily by repeating the knots at the layer interface p-1 times [27] so that the 

multiplicity of the knot becomes p. This further ensures that the continuity at the current knot is 

0=− ppC . An example of C0 enforcement is shown in Fig. 3-4. The B-spline is initially linear at (a), 

and is raised up to order 2 and 3 by p-refinement at (b) and (c), respectively. Through inserting a 

knot at 5.0=i  , the plate is discretized into two through-thickness elements at (d). By 

subsequently repeating it two times, a layer interface with C0-continuity is generated in the middle 

of the ply at (e). 

 

Figure 3-4: C0 interface continuity enforced by knot insertion 
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3.4 Numerical Verifications 

 In this section, multiple examples of laminated composite and sandwich plates including a 

FGM core are analyzed to demonstrate the performance of the proposed model. For all the cases, 

p+1 Gauss integration points are used to ensure accuracy. 

3.4.1 [0o/90o/0o] Square Plate Subjected to Double Sinusoidal Load 

 

Figure 3-5: Illustration of a square plate under double sinusoidal load 

 The classical three-layer square plate subjected to double sinusoidal load (see Fig. 3-5) is 

tested here to assess the proposed model in predicting the complete three-dimensional stress states. 

A 3D analytical solution [83] is available as reference solution to verify the obtained stress results. 

A number of researchers [84,85] have also studied this problem based on layerwise finite element 

methods. The stacking sequence is [0o/90o/0o] and the three layers are of equal thickness. The span-

to-thickness ratio is a/h=4. The plate is simply supported at the four edges and is implemented as: 

0=== wvx , at ax ,0=   

0=== wuy , at ay ,0=   
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 The double-sinusoidal pressure is loaded at the top surface of the laminate and is defined 

as, 
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 The material properties of the laminate are defined as, 
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 The non-dimensional stresses [83] are given as follows, 
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Figure 3-6: Deformed configuration of the square plate under double sinusoidal load 

The deformed configuration is plotted in Fig. 3-6. The black lines on the plate indicate the 

control mesh created from control points, whereas a uniform physical mesh can be created using 

uniformly spaced knots. The obtained stress results were compared to the 3D analytical solution 

[83], as illustrated in Fig. 3-7. As we can observe, the proposed model with cubic NURBS basis 

functions (8x8 in-plane control points) gave an excellent agreement with the exact solution, with 

barely noticeable discrepancies at layer interfaces. The use of quartic NURBS (9x9 in-plane 

control points) immediately fixed the non-physical discontinuities at dissimilar material interfaces. 

Worth mentioning is that, as opposed to the finite element models in the literature that use relatively 

fine meshes (15x15 points in [61] and 11x11 points in [85]), the mesh we adopted (in-plane 

discretization: 8x8 control points) is very coarse. 



 56 

 

Figure 3-7: Normalized through-thickness stress distribution of the [0o/90o/0o] square plate: (a) 11 , (b) 33 , (c) 13 ,(d) 

23 . 

3.4.2 [0o/core/0o] Sandwich Plate under Uniform Pressure 

 

Figure 3-8: Illustration of a sandwich plate 
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 In this example, a three-layer, simply supported, square sandwich plate (as shown in Fig. 

3-8) is studied under uniform pressure to test the performance of the isogeometric layerwise 

formulation in terms of displacement and three-dimensional stress states. Sandwich plate as a 

special case of laminated composites is investigated by a number of researchers [25,26,86] because 

the core of the plate is very soft as compared to the outside face sheets. A 3D analytical solution 

from [87] is used as the reference solution, in which the through-thickness deformation w is 

assumed to be constant and the surface-wise deformation u and v are independent of the thickness 

variable z. In the numerical implementation, the 33
Q term in the material matrix is set to be 104 so 

that the through-thickness deformation being a constant is enforced, and the rest of the terms on 

the third row and column are set to be zero to make u and v deformation independent of z. It is 

checked that ill-conditioning does not occur, as is also proved by the results obtained later. The 

uniform transverse pressure p is loaded on the top surface of the plate. The span-to-thickness ratio 

a/h is 10. The core thickness to plate thickness ratio hf/h is 0.8. 

 Due to symmetry, only a quarter of the sandwich plate is modeled. The anisotropic stress-

strain relationship of the core is defined as, 
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(3.17) 

And the material properties of the two face sheets are calculated as, 

coreface QRQ =  (3.18) 
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where R is a factor that relates the face sheet material property with the core material property. 

The normalization of the displacement and stresses of the sandwich plate [87] are defined as 

follows, 
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where the superscript j of 
j

ii  indicates the layer where the stress is evaluated. 

Table 3-1: Convergence of the normalized displacement and stresses (R=5) 

NURBS Normalized Meshes 

3x3 5x5 17x17 19x19 21x21 

Quadratic 𝑤 258.960 

(0.004%) 

258.944 

(0.010%) 

258.947 

(0.009%) 

258.947 

(0.009%) 

258.947 

(0.009%) 

Cubic 259.235 

(0.102%) 

259.238 

(0.103%) 

259.237 

(0.103%) 

259.237 

(0.103%) 

259.237 

(0.103%) 

Quartic 259.239 

(0.104%) 

259.237 

(0.103%) 

259.234 

(0.102%) 

259.234 

(0.102%) 

259.233 

(0.102%) 

Exact - - - - 258.97 
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Quadratic 𝜎𝑥
1
 60.937 

(0.968%) 

60.514 

(0.267%) 

60.297 

(0.093%) 

60.293 

(0.099%) 

60.290 

(0.104%) 

Cubic 60.338 

(0.025%) 

60.334 

(0.031%) 

60.340 

(0.022%) 

60.340 

(0.022%) 

60.340 

(0.022%) 

Quartic 60.350 

(0.005%) 

60.333 

(0.033%) 

60.339 

(0.023%) 

60.339 

(0.023%) 

60.339 

(0.023%) 

Exact - - - - 60.353 

Quadratic 𝜎𝑦
1

 38.860 

(0.959%) 

38.619 

(0.333%) 

38.518 

(0.070%) 

38.517 

(0.068%) 

38.516 

(0.065%) 

Cubic 38.537 

(0.120%) 

38.551 

(0.156%) 

38.551 

(0.156%) 

38.550 

(0.153%) 

38.550 

(0.153%) 

Quartic 38.570 

(0.205%) 

38.548 

(0.148%) 

38.550 

(0.153%) 

38.550 

(0.153%) 

38.550 

(0.153%) 

Exact - - - - 38.491 

 

 Firstly, the convergence of the model was studied using the R=5 case. The normalized 

deflection and stresses were shown in Table 3-1. The relative error between the obtained solution 

and the exact one is shown in the parenthesis. As we can observe, the proposed model was able to 

provide a very accurate solution in deflection and stresses with a very coarse mesh (mesh case: 

3x3). To get as close to the exact solution as possible, several fine meshes were studied and the 

results were in excellent agreement with the exact solution. Furthermore, various R values 

representing the difference between the face sheets and the core were investigated. The results 

were compared with solutions obtained from literature and are listed in Table 3-2. Again, the 

results from our proposed model matched very well with the exact solution regardless of the value 

for R. The use of HSDT in [88] and [61] was able to catch fairly good deflection and stresses with 

relatively small R, but resulted in relatively large errors when R became large. Similar issue was 
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reported when Grover et al. [89] presented their application of an inverse hyperbolic shear 

deformation theory and Mantari et al. [90] used a trigonometric shear deformation theory for the 

analysis of sandwich plates. Ferreira [91] adopted a layerwise theory to study the sandwich plate 

and gave very accurate results, but we were able to achieve a better accuracy with the use of 

NURBS basis functions. Thai et al. [26] used a similar approach that utilized FSDT in each layer 

and imposed displacement continuity at layer interfaces. This led to solutions of similar accuracy 

compared to our proposed model, but their model was computationally more expensive since 

rotational DOFs in the x-z and y-z planes were required in each layer. Therefore, by comparison 

of our solution with the ones found in the literature, it was concluded that our proposed approach 

outperformed its finite element counterpart. The through-thickness distribution of the stresses was 

plotted in Fig. 3-9. 

Table 3-2: The normalized displacement and stresses of a square sandwich plate under a uniform load 

R Method 𝑤 𝜎𝑥
1
 𝜎𝑥

2
 𝜎𝑥

3
 𝜎𝑦

1
 𝜎𝑦

2
 𝜎𝑦

3
 

5 Pandya-HSDT 

[88] 

256.130 (1.097%) 62.380 (3.359%) 46.910 9.382 38.930 30.330 6.065 

Ferreira-HSDT 

[61] 

257.110 (0.718%) 60.366 (0.022%) 47.003 9.401 38.456 30.242 6.048 

Ferreira-LW [91] 257.523 (0.559%) 59.968 (0.638%) 46.291 9.258 38.321 29.974 5.995 

Grover-IHSDT 

[89] 

255.644 (1.284%) 60.675 (0.534%) 47.055 9.411 38.522 30.206 6.041 

Mantari-TriSDT 

[90] 

256.706 (0.874%) 60.525 (0.285%) 47.061 9.412 38.452 30.177 6.035 

Thai-LW [26] 258.835 (0.052%) 60.254 (0.164%) 46.510 9.302 38.495 30.109 6.022 

Present-Quadratic 258.947 (0.009%) 60.290 (0.104%) 46.539 9.308 38.516 30.126 6.025 

Present-Cubic 259.237 (0.103%) 60.340 (0.022%) 46.579 9.316 38.550 30.154 6.031 

Present-Quartic 259.233 (0.102%) 60.339 (0.023%) 46.579 9.316 38.550 30.153 6.031 
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Exact 258.97 60.353 46.623 9.34 38.491 30.097 6.161 

10 Pandya-HSDT 

[88] 

152.330 (4.423%) 64.650 (1.044%) 51.310 5.131 42.830 33.970 3.397 

Ferreira-HSDT 

[61] 

154.658 (2.963%) 65.381 (0.075%) 49.973 4.997 43.240 33.637 3.364 

Ferreira-LW [91] 158.380 (0.627%) 64.846 (0.744%) 48.443 4.844 43.390 33.306 3.924 

Grover-IHSDT 

[89] 

154.550 (3.030%) 65.741 (0.626%) 49.798 4.979 43.400 33.556 3.356 

Mantari-TriSDT 

[90] 

155.498 (2.436%) 65.542 (0.321%) 49.708 4.971 43.385 33.591 3.359 

Thai-LW [26] 159.406 (0.016%) 65.230 (0.156%) 48.733 4.873 43.649 33.501 3.350 

Present-Quadratic 159.472 (0.058%) 65.271 (0.093%) 48.766 4.877 43.673 33.520 3.352 

Present-Cubic 159.555 (0.110%) 65.296 (0.055%) 48.786 4.879 43.690 33.534 3.353 

Present-Quartic 159.552 (0.108%) 65.295 (0.057%) 48.785 4.879 43.690 33.533 3.353 

Exact 159.38 65.332 48.857 4.903 43.566 33.413 3.500 

15 Pandya-HSDT 

[88] 

110.430 (9.275%) 66.620 (0.250%) 51.970 3.465 44.920 35.410 2.361 

Ferreira-HSDT 

[61] 

114.644 (5.813%) 66.919 (0.198%) 50.323 3.355 45.623 35.167 2.345 

Ferreira-LW [91] 120.988 (0.601%) 66.291 (0.743%) 47.899 3.193 46.292 34.890 2.326 

Grover-IHSDT 

[89] 

115.820 (4.847%) 67.272 (0.726%) 49.813 3.321 45.967 35.088 2.339 

Mantari-TriSDT 

[90] 

115.919 (4.766%) 67.185 (0.596%) 49.769 3.318 45.910 35.081 2.339 

Thai-LW [26] 121.776 (0.046%) 66.679 (0.162%) 48.167 3.211 46.546 35.080 2.339 

Present-Quadratic 121.823 (0.085%) 66.722 (0.097%) 48.202 3.214 46.571 35.100 2.340 

Present-Cubic 121.860 (0.115%) 66.736 (0.076%) 48.212 3.214 46.581 35.107 2.341 

Present-Quartic 121.857 (0.113%) 66.735 (0.078%) 48.211 3.214 46.580 35.107 2.340 

Exact 121.720 66.787 48.299 3.238 46.424 34.955 2.494 
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Figure 3-9: Normalized through-thickness stress distribution of the sandwich plate: (a) xx ,(b) yy , (c) xz , (d) yz . 
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3.4.3 Sandwich Plate with a FGM Core 

 

Figure 3-10: Illustration of the volume fraction through the thickness with varying power-law exponent 

 For the case of a square plate with a FGM core, the material of the core is graded gradually 

from ceramic on top to metal at the bottom with the volume fraction varying through the thickness 

direction. The volume fraction of the ceramic used in this paper follows the power-law distribution 

function [75]: 
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(3.20) 

 The effective Young’s modulus of a FGM is then computed based on the following: 

( ) ( ) ( )zVEEEzE cmcm −+=  (3.21) 

where mE   and cE   are the Young’s modulus of the metal and ceramic, respectively, ch   is the 

height of the layer, z   is the thickness coordinate, and    denotes the volume fraction exponent 

defining the gradation of material properties. Fig. 3-10 illustrates the through-thickness variation 
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of the volume fraction with different power-law exponents, which shows that the volume fraction 

changes drastically with very large/small power-law exponents. This paper is focused on the part 

where 1 . 

 

Figure 3-11: Illustration of a sandwich plate with a FGM core 

 As illustrated in Fig. 3-11, a simply supported, square sandwich plate (a = 1m) with a FGM 

core subjected to double sinusoidal load is taken as an example. Several studies [74,75,92,93] are 

available to compare in terms of the accuracy of the proposed model. The double sinusoidal 

pressure follows the Eq. (15). The height of each face sheet is 0.1h. The top and bottom face sheets 

are isotropic and are in alumina ( GPaEc 380= ) and aluminum ( GPaEm 70= ), respectively. The 

power-law function that defines the Young’s modulus in FGM follows Eq. (20) and Eq. (21). The 

Poisson’s ratio is chosen to be 0.3. We investigate a number of cases in which the span-to-thickness 

ratio a/h is equal to 4, 10 and 100, and the exponential   is equal to 1, 4 and 10, respectively. 

 The displacement and stresses are defined in normalized form [74] as follows, 
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 The normalized deflection w   and transverse stress xz   obtained from the proposed 

model along with results from the literature are listed in Table 3-3. Quartic NURBS basis functions 

were adopted. In general, a 355   mesh yielded satisfactory results. In order to get a converged 

solution, knot insertion was performed in the FGM core, resulting in five through-thickness 

elements in the core while retaining the one-element discretization in the face sheets. Similar 

solutions were reported in the literature [74,75,92,93]. Neves et al. [74,92] adopted a quasi-3D 

HSDT and sinusoidal shear deformation theory to investigate the behavior of the sandwich FGM 

plate. Carrera et al. [75] used the Carrera’s Unified Formulation (CUF) to study the effect of 

thickness stretching in FGM plate. However, they generally required a very fine mesh of grid, as 

presented in [74,92] where a 19x19 grid was used to reach convergence. On the contrary, our 

proposed model adopted an in-plane discretization of 8x8 control points, which was significantly 

less than the number of nodes used in the literature. We conclude that our solutions are very close 

to the results in the literature and that the isogeometric layerwise model is efficient in discretizing 

the in-plane space. 

Table 3-3: The normalized displacement and stresses of a square sandwich plate with FGM core ( 0zz ) 

  
 ( )6/hxz  ( )0w  

a/h 4 10 100 4 10 100 
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1 Brischetto [93] 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072 

Carrera [75] 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072 

Neves [92] 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092 

Neves [74] 0.2745 0.2789 0.2795 0.7417 0.6305 0.6092 

Present (5x5x3) 0.2613 0.2605 0.2538 0.7686 0.6338 0.6073 

Present (5x5x7) 0.2613 0.2604 0.2497 0.7642 0.6327 0.6073 

4 Brischetto [93] 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797 

Carrera [75] 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797 

Neves [92] 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784 

Neves [74] 0.2696 0.2747 0.2753 1.0371 0.8199 0.7784 

Present (5x5x3) 0.2429 0.2430 0.2389 1.0988 0.8325 0.7798 

Present (5x5x7) 0.2401 0.2401 0.2354 1.0948 0.8312 0.7797 

10 Brischetto [93] 0.2150 0.2174 0.2179 1.2232 0.8753 0.8077 

Carrera [75] 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077 

Neves [92] 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050 

Neves [74] 0.1995 0.2034 0.2039 1.1752 0.8645 0.8050 

Present (5x5x3) 0.2202 0.2228 0.2212 1.2181 0.8772 0.8079 

Present (5x5x7) 0.2246 0.2277 0.2260 1.2244 0.8755 0.8077 
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Figure 3-12: Normalized through-thickness displacement at the center of the plate 

 The through-thickness data of the normalized displacement w , in-plane stresses xx  and 

xy , through-thickness normal stress zz  and through-thickness shear stress xz  were plotted 

in Fig. 3-12 to 3-14 along with the results from the literature [74,75,92,93]. As we can see, the 

solutions of the normalized displacement w   provided by Brischetto [93] and Carrera [75] 

matched perfectly with our results, but the solution of Neves [92] lacked accuracy when   became 

large. In terms of the stresses, all the solutions seemed to do a good job in predicting the in-plane 

stresses. However, non-physical jumps in transverse normal stress zz  and transverse shear stress 

xz  were observed in Brischetto’s results [93]. It is logical to say that the normalized transverse 

normal stress zz  should be zero at the bottom of the sandwich plate and equal to one on top, 

since the double-sinusoidal load was added at the top surface, which was proved by the solution 

of Brischetto [93] and our results. However, the transverse normal stress zz  by Neves [92] and 
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Carrera [75] didn’t seem to obey this assumption. Therefore, we conclude that our solutions in 

both displacement and stresses are more accurate. 

 

Figure 3-13: Normalized through-thickness stress distribution of the sandwich plate embedding a FGM core: (a) xx , (b) 

xy . 
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Figure 3-14: Normalized through-thickness stress distribution of the sandwich plate embedding a FGM core: (a)-(c) zz , (d)-

(f) xz . 

3.5 Conclusion 

 An isogeometric layerwise model was developed for the analysis of laminated composite 

and sandwich plates embedding a FGM core. The proposed model assumed a separate 

displacement field expansion within each layer and used the knot insertion technique to enforce 

the C0-continuity at layer interfaces. Due to the fact that the through-thickness integration were 

carried out separately from the in-plane surface integration, the proposed model was able to capture 

the full three-dimensional stress states while maintaining a two-dimensional data structure, which 

significantly saved computational efforts. Multiple laminated composite and sandwich plate 

(including a FGM core) examples were tested based on the proposed isogeometric layerwise 

model. Results were verified against both 3D exact solution and results from the literature and 
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showed high accuracy of the present method. As compared to the existing finite element models, 

relative coarse meshes were used in the proposed method to get results of similar level of accuracy 

owing to the high-order smoothness of NURBS basis functions. Better accuracy in predicting the 

transverse stresses were also observed using the proposed method. The use of NURBS basis 

functions also removed the non-physical jumps in transverse stresses in layer interfaces. Therefore, 

we conclude that the proposed isogeometric layerwise model was superior in predicting the full 

3D stress states of laminated composites over existing approaches. Nevertheless, situations that 

commonly occurs in laminated composites such as delamination are not considered in the current 

model. Future work includes enabling the proposed formulation to capture the full 3D stress states 

of delaminated composite laminates. 
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Chapter 4 A Geometrically Exact Isogeometric Kirchhoff Plate: Feature-preserving 

Automatic Meshing and C1 Rational Triangular Bézier Spline Discretization 

 

The analysis of the Kirchhoff plate is performed using rational Bézier triangles in isogeometric 

analysis (IGA) coupled with a feature-preserving automatic meshing algorithm. IGA employs the 

same basis function for geometric design as well as for numerical analysis. The proposed approach 

also features an automatic meshing algorithm that admits localized geometric features (e.g., small 

geometric details, sharp corners) with high resolution. Moreover, the use of rational triangular 

Bézier splines for domain triangulation significantly increases the flexibility in discretizing spaces 

bounded by complicated NURBS curves. To raise the global continuity to C1 for the solution of 

the plate bending problem, Lagrange multipliers are leveraged to impose continuity constraints. 

The proposed approach also manipulates the control points at domain boundaries in such a way 

that the geometry is exactly described. A number of numerical examples consisting of static 

bending and free vibration analysis of thin plates bounded by complicated NURBS curves are used 

to demonstrate the advantage of the proposed approach. 

4.1 Introduction 

Numerical modeling and analysis of plates of complicated shapes has continuously been a 

popular research topic because of the widespread applications of plate structures in various fields. 

Finite element analysis (FEA) of plates can be categorized into thin plate analysis based on the 

Kirchhoff plate theory and thick plate analysis based on the Reissner-Mindlin plate theory.  The 

main difference between the two prevailing theories lies in the fact that thin plate analysis assumes 

that the vector normal to the plate mid-surface remains normal to the mid-surface during 
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deformation and thus does not take into account transverse shear deformations, whereas thick plate 

analysis does. Due to the fact that Reissner-Mindlin plate elements can be joined with C0 continuity, 

the use of very simple basis functions is allowed. On the contrary, in the Kirchhoff plate 

formulation, because of the presence of second-order derivatives, C1 continuity is demanded 

between elements which requires higher order basis functions. For this reason, the C0 shear 

deformable Reissner-Mindlin plate element is more propagated in commercial finite element codes. 

However, most of the plate structures in reality belong to thin and very thin plates, and the use of 

C0 basis functions would usually result in various shear locking problems. 

Although the numerical analysis of thin plates is already a very mature field, to exactly describe 

the plate geometry can be rather difficult and sometimes inaccurate, particularly when the 

structures have curved boundaries or complicated cutouts are involved. The main reason for this 

lack of accuracy lies in the fact that the model created from standard FEA, which is represented 

by Lagrange basis functions, is only an approximation of the original computer-aided design (CAD) 

model, which is described by Non-Uniform Rational B-spines (NURBS). About a decade ago, 

isogeometric analysis (IGA) was proposed by Hughes et al. [1] as a novel approach to bridge the 

gap between design and analysis. By employing the same basis functions used in geometric design 

to approximate field variables in an isoparametric sense, the models created using IGA possess 

geometric exactness. Other appealing features of IGA include high-order continuity of basis 

functions, which further leads to more stable numerical conditioning, faster convergence of 

solutions, and so on. NURBS-based IGA has since been applied to the analysis of thin and thick 

plates ([3,47,94–98], to name a few). 

Nevertheless, NURBS functions, which are the main tool for IGA, exhibit a number of defects. 

First of all, NURBS h-refinement propagates across the entire domain, which compromises the 
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efficiency of the method. Secondly, the control mesh generated is restricted to a quadrilateral shape 

and is therefore not flexible in discretizing domains of arbitrary topology. Moreover, the 

smoothness in multi-patch analysis using NURBS is not satisfactory. The patch interface is either 

C0-continuous or simply not closed (i.e., non-physical gaps). To regain control of the smoothness 

across the patch boundaries, additional efforts such as the imposition of geometric constraints [2] 

or the bending strip method [11] are necessary, which requires extra computational time. On the 

other hand, a variety of local refinement techniques have been developed to overcome the 

problematic tensor-product structure of NURBS, such as hierarchical B-splines [12,99], truncated 

hierarchical B-splines (THB-splines) [100], T-splines [13], locally refined splines [101] and 

polynomial splines over hierarchical T-meshes [15]. However, the construction of the 

aforementioned local refinement splines relies on complicated algorithms and the resulting mesh 

is still dependent on the four-sided geometry. On the contrary, the use of spline basis functions for 

domain triangulation increases the flexibility in discretizing complex spaces. One way to realize 

this is to use certain triangle-splitting algorithms such as the Powell-Sabin splines [20,102,103] 

and the Clough-Tocher splines [104], depending on particular macro-triangle structures. Higher-

order Powell-Sabin splines are also available to triangulate a given space [102,105,106]. However, 

for a given space for triangulation, the Powell-Sabin triangles are sometimes not unique [107]. 

Recently, NURBS have been successfully converted to the non-uniform rational Powell-Sabin 

splines (NURPS) [108]. To exactly recover the boundary NURBS curve of degree p, NURPS of 

degree p or higher should be used. For the recovery of the interior domain described by NURBS 

of bi-degree (p1, p2), NURPS of degree p1+p2 or higher should be used. Powell-Sabin B-splines 

have been applied to study Kirchhoff-Love plate problems [109] and fracture mechanics [110] 

with satisfactory results. 
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An alternative is to construct the domain triangulation through the use of rational Bézier 

triangles [111]. This approach is more general and does not depend on specific triangle-splitting 

schemes. Since rational basis functions of the Bézier-Bernstein form are used to represent the 

parametric space, it has the potential to describe the exact geometry as well. In our work, the C0 

rational Bézier triangles are employed for the representation of the triangulated space. Since the 

Kirchhoff plate formulation involves second-order derivatives of the basis function, at least C1 

continuity is required. For this reason, the global continuity of the triangular Bézier splines is raised 

to C1. Note that the approach we adopted can be used to elevate the splines to any desired 

continuity rC . Lagrange multipliers are used to impose the Dirichlet boundary conditions and the 

continuity constraints. Considering that the use of Lagrange multipliers results in an increase of 

unknowns in the system equations, which hinders efficiency, an iterative approach for the solution 

of the Lagrange multiplier augmented system is provided as well.  

As to the parameterization of the boundary and interior space of the model, we leverage on the 

recently developed algorithm TriGA [21]. Specifically, a polygonal approximation of the NURBS 

boundary is first established through h-refinement and a dynamic quadtree decomposition 

algorithm. This procedure allows us to capture sharp geometric features with very good accuracy. 

With the polygonal approximation of the original NURBS curves computed, a linear domain 

triangulation can then be constructed by resorting to the meshing package mesh2d [112] that is 

available online. After that, the linear triangular elements are raised to cubic such that there are 

sufficient control points for imposing inter-element continuity constraints. The last step is to 

replace the control points at boundary with those governing the original NURBS curves. This 

boundary replacement algorithm is also discussed in [107]. Thus, a geometrically exact domain 

triangulation admitting sharp geometric features can be established. 
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A Kirchhoff plate formulation is implemented into the algorithm. To verify our modeling 

approach, a number of plate models bounded by complicated NURBS curves are investigated in 

the context of static bending and free vibration analysis. Numerical results prove the accuracy and 

efficiency of the proposed method. 

4.2 A Brief Review of NURBS and Rational Bézier Triangles 

In this section, we give a brief review on the fundamentals of Bézier curves [113], NURBS [1] 

and the construction of rational triangular Bézier spline spaces [21]. 

4.2.1 Bézier and NURBS Curve 

In one dimension, a degree-n Bernstein polynomial is defined as follows 
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A Bézier curve ( )tS  is constructed as a linear combination of 1+n  Bernstein polynomials 
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The B-spline basis functions are related to the Bernstein basis through a Bézier extraction 

operator C [114] uniquely defined by a specified knot vector on the parametric space, and is written 

as 

( ) ( )tCBtN =  (4.3) 
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Through projection of the B-splines from d  to 1+d  using the weights associated with the 

corresponding control points, a degree-n NURBS curve is then given as 
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where ncp  denotes the number of control points used to define the curve. 

4.2.2 Rational Bézier Triangles 

A bivariate Bernstein polynomial can be constructed on a triangular domain as 
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where n  is the polynomial order, the triplet ( )kji ,,  represent the ordinate index that sum to n , and 

 321 ,, uuu=u  denote the barycentric coordinates of a point in the triangle. 

The rational form of the above Bernstein basis functions is written as 
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where w  is the weight. 

Finally, a rational triangular Bézier space can be defined as a linear combination of the rational 

Bernstein basis functions ( )u
n

ijkR  and the corresponding control points ijkb  
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Fig. 4-1 illustrates the control lattice of linear, quadratic and cubic Bézier triangles on the 

parametric domain, respectively. 

 
Figure 4-1: Control lattice of a Bézier triangle: (a) linear; (b) quadratic; and (c) cubic 

4.3 Delaunay-based Feature-preserving Automatic Mesh Generation 

Unstructured mesh generation has been a very popular field over the past a few decades and is 

by itself a very mature technique. Therefore, we leverage on the wide variety of existing meshing 

tools, such as mesh2d [112] and TriGA [4,21], for the generation of a Delaunay-based feature-

preserving domain triangulation. The utilization of such a feature-preserving meshing algorithm 

carries significant meanings in smeared damage analysis, as it is very likely that damage initiates 

at sharp curvatures or geometric imperfections due to stress concentration, and the feature-

preserving algorithm is extremely good at resolving small geometric features. The meshing 

algorithm is briefly discussed here for completeness. Readers can refer to the literature, e.g., 

[4,21,112], for more details.  

The essential idea of the mesh generation algorithm is to construct a high-quality polygon 

approximation of the original input NURBS curves as the first step. Secondly, the construction of 

a quadtree decomposition that matches the local geometry feature is performed in order to evaluate 

the element size distribution required to resolve the geometry. The algorithm optimizes the control 

point location and mesh topology via an iterative process, where a constrained Delaunay 
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triangulation with a sequence of Laplacian smoothing is performed in each iteration. After a high-

quality triangulation is obtained, the patch is converted to a cubic one and the control points at the 

domain boundary are replaced by the control points of the original NURBS to exactly recover the 

boundary. The procedure is illustrated for the domain shown in Fig. 4-2a and is described as 

follows: 

a. Construct an initial polygon approximation (Fig. 4-2b). The input NURBS curves are 

first subdivided via knot insertion. This process is governed by a measure of the relative difference 

between the length of the curve for each knot span and the length of the associated polygon formed 

by connecting the control points. The process iterates until the relative differences for all the knot 

spans are below a prescribed threshold. 

 

Figure 4-2: Construct a polygon approximation: (a) input NURBS; (b) initial polygon construction; (c) quadtree decomposition; 

(d) triangulating quadtree; and (e) final polygon approximation. 

b. Construct quadtree decomposition and refine polygon approximation (Fig. 4-2c-e). In 

this step, a quadtree background mesh is constructed and used to further refine the polygon. In 

particular, the algorithm generates a bounding box that encloses the geometry. The bounding box 

is then recursively subdivided until the dimension of each box matches the local geometry feature 

size (Fig. 4-2c). A size function is also evaluated at the quadtree vertices based on the minimum 

neighboring box dimension at the vertex. Subsequently, the quadtree mesh is triangulated so that 

we can linearly interpolate the size function at the polygon control points (Fig. 4-2d). Knot 

insertion is performed if the ratio of the edge length to the size function is above a given threshold.  
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c. Perform Delaunay-based triangulation with Laplacian smoothing. In this step, the 

polygon approximation from Step b is triangulated based on the quadtree background mesh. The 

initial nodes are taken as the fixed polygon vertices and the internal nodes from the quadtree mesh. 

The algorithm optimizes the node location and mesh topology in an iterative manner. Specifically, 

a constrained Delaunay triangulation is constructed at every iteration. Nodes are then added or 

removed from the mesh to meet the required element size distribution. In particular, the size 

functions centh  at the centroid of the triangles are computed through linear interpolation of the size 

functions at the nodes. The required triangle areas Ah are then estimated as 

2

2

1
cenh hA =  

(4.8) 

The quality of the triangles are measured in terms of the area-length ratio, with the length being 

the root-mean-square of the triangle edge lengths. Nodes are added at the centroid of the triangle 

in cases where large triangles or low-quality triangles are present. On the contrary, nodes are 

removed if the associated triangle area or edge length is too small. A Laplacian smoothing 

operation (e.g., a spring-based smoothing) is performed after the node manipulation. The iteration 

continues until all the triangles are of high quality and meet the element size constraints. This 

process is briefly illustrated in Fig. 4-3. 

 

Figure 4-3: Perform Delaunay-based triangulation with Laplacian smoothing: (a) initial nodes; (b) initial constrained Delaunay 

triangulation; (c) adding new nodes at the centroid of the marked triangles; (d) Laplacian smoothing; and (e) final Delaunay 

tessellation 
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d. Elevate polynomial degree and recover boundary. In this step, the polynomial degree is 

raised to cubic (i.e., standard degree in CAD) through linear interpolation. Moreover, knot 

insertion on the input NURBS curves is performed until the knots corresponding to the polygon 

vertices have multiplicity p (p = 3 in the case of cubic NURBS). As of now, there are four control 

points at each knot span that correspond to the edge nodes of the boundary triangles. We simply 

replace the control points at the boundary with the control points of the input NURBS curves for 

exact boundary control. Fig. 4-4 demonstrates the consequences of this step. 

 
Figure 4-4: Elevate polynomial degree and recover boundary: (a) constrained Delaunay tessellation with approximated boundary; 

and (b) constrained Delaunay tessellation with exact boundary. 

4.4 Enforcing High-order Continuity via Lagrange Multipliers 

In this section, the rC  continuity constraints for inter-element continuity are explicitly defined. 

In order to impose the continuity constraints, a number of approaches can be used: (1) the master-

slave method, (2) penalty method, (3) boundary minimum determining set (BMDS) approach, and 

(4) Lagrange multipliers. The master-slave method is inferior in handling arbitrary constraints. 

The penalty method requires careful selection of the penalty weight to avoid ill-conditioning. In 

the BMDS used in [107], solving for the reduced row echelon form is computationally expensive. 

Moreover, relaxing the constraints on the boundary vertices by restraining the internal free vertices 

that have influence on the constrained boundary vertices requires user intervention. In addition, 
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careful selection of the free internal vertices is necessary to avoid inaccurate results. On the other 

hand, the continuity constraints can be exactly enforced through the use of Lagrange multipliers, 

but this method increases the size of the problem by the number of constraint equations. In the 

following, we provide an iterative solution procedure presented in [115] that solves the Lagrange 

multiplier augmented system without increasing the system size. 

In the domain discretized by Bézier triangles, the neighboring triangles are connected with C0 

continuity. However, the formulation of Kirchhoff plate involves second order derivatives of the 

basis functions, and therefore raising the degree of continuity at the common edges is necessary. 

Assuming two adjacent triangles ( )321 ,, vvvT  and ( )234 ,,
~

vvvT  that share the edge 32vv , they 

can be joined with rC  differentiability if and only if [111]: 


=++

++=








321,,

!!!

!~
uuubb jkjk  

(4.9) 

where r 0 , nkj =++ ,  321 ,, uuu  are the barycentric coordinates of the vertex 
4v  

relative to T . An example is shown in Fig. 4-5(a) where two cubic triangles are joined with C1 

continuity and Fig. 4-5(b) where the two cubic triangles are joined with C2 continuity. 

 

Figure 4-5: Enforcing higher-order continuity with Lagrange multipliers (vertices involved in C1 and C2 continuity constraints are 

highlighted in red: (a) C1 continuity and (b-c) constrained vertices in addition to (a) for C2 continuity. 
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Collecting the continuity constraints computed in Eq. (4.9), we can write them in matrix form 

as 

GLd =  (4.10) 

where L  is the matrix containing the coefficients of the constraints, d  is the vector including the 

ordinate information, and G  is the right-hand side of the continuity constraint equations. 0G =  in 

the case of enforcing the continuity constraints. We use G  in the derivation to keep the method 

general. Note that, to avoid the ill-conditioning of the augmented stiffness matrix, in which the L  

matrix is not of full rank, a preprocessing step is recommended to sort out the linearly independent 

rows in L  to use for enforcing higher-order continuity. 

The Lagrange multiplier augmented system can be expressed as follows 









=

















G

F

λ

d

0L

LK
T

 
(4.11) 

where K  is the stiffness matrix, F  is the forcing vector, and λ  denotes the Lagrange multiplier 

vector. 

When a large number of continuity constraints are to be enforced, solving Eq. (4.11) can be 

very costly. Alternatively, an iterative approach can be used to solve the problem without 

increasing the matrix size. Consider a variant of Eq. (4.11) where the lower diagonal block of zeros 

is replaced by a diagonal matrix consisting of small numbers, termed a constraint-scaling diagonal 

matrix, i.e. 










−
=

















− λG

F

λ

d

IL

LK



T

 
(4.12) 

where   is a small number and I  is the identity matrix. 



 83 

The above system can be expressed in an iterative form as 

( ) ( )
FλLKd =+ ++ 11 iTi  

( ) ( ) ( )iii
λGλLd  −=− ++ 11  

(4.13) 

where i  indicates the thi  iteration. 

Multiplication of T
L  to the second equation in Eq. (4.13) and rearranging terms yields 

( ) ( ) ( )iTTiTiT ww λLGLLdLλL +−= ++ 11  (4.14) 

where 


1
=w  is the weight. 

Combining Eq. (4.14) with the first equation in Eq. (4.13) results in the following 

( ) ( ) ( )iTTiT ww λLGLFdLLK −+=+ +1
 

(4.15) 

Taking an initial guess of ( )
0λ =0  yields 

( ) ( ) ( )GLFLLKd
TT ww ++=

−11
 

(4.16) 

Recall from the first equation of Eq. (4.13) that ( ) ( )iTi
λLKdF += . Substituting this into Eq. 

(4.15) leads to 

( ) ( ) ( )( )GLKdLLKd
TiTi ww ++=

−+ 11
 

(4.17) 

Eq. (4.16) and Eq. (4.17) can be used to solve the augmented Lagrangian system iteratively. 

Note that this method essentially combines the penalty method with the Lagrange multiplier 

method. By solving the problem iteratively, it circumvents the problematic ill-conditioning issue 

exhibited in the penalty method. 



 84 

4.5 Governing Equations for the Kirchhoff Plate 

4.5.1 Kinematics 

Let ijm  be the bending moment of a plate and q  the external distributed load vector. The 

equilibrium equation for a Kirchhoff plate can be expressed as 

qm ijij =,  (4.18) 

where the comma indicates differentiation and i , j  are the indexes ranging from one to two, since 

the out-of-plane stresses are assumed to be zero. 

Multiplying Eq. (4.18) with the variation in transverse displacement d  and integrating over 

the entire domain   yields the following 

( ) ( )  
=+−+−+ dqddsMnmddsQndmdmd ijijiijijijij  ,,,  

(4.19) 

where ijijd =,  is the curvature The second and third terms on the left-hand side are the shear and 

moment boundary conditions on the boundary  , respectively. Neglecting the boundary terms 

yields the weak form 

 
= dqddmijij   

(4.20) 

In Eq. (4.20), the bending moments ijm  can be computed as 

−−=
2/

2/

t

t
ijij zdzm   

(4.21) 

where t  is the thickness of the plate. 

The stress-strain relationship for a homogeneous and isotropic plate is 
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(4.22) 

where E  and   represent the Young’s modulus and Poisson’s ratio, respectively. Eq. (4.22) can 

be written in shorthand as ijij  C= . The strain vector can be rewritten in terms of transverse 

displacement as 

2

2

11
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2
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22
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(4.23) 

Substituting Eq. (4.22) and Eq. (4.23) into Eq. (4.21) leads to the moment-curvature 

relationship 
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(4.24) 

Combining Eq. (4.24) and Eq. (4.20) gives 

 
= dqddijij  C  

(4.25) 

where C  is the material matrix shown in Eq. (4.24). 

4.5.2 Discretized form 

The input NURBS geometry is triangulated using the approach discussed in Section 4.3 along 

with the rational triangular Bézier splines. Recall from Section 4.2 that R  is the rational Bézier 



 86 

basis function used to represent a triangular patch. The transverse displacement in one patch can 

then be represented using the following 

Rd=d  (4.26) 

Differentiating Eq. (4.26) twice with respect to the physical coordinates results in the 

expression for the curvature 

Bd=  (4.27) 

where 

T

yxyx








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








=

RRR
B

2

2

2

2

2

2 . 

Substituting Eq. (4.26) and Eq. (4.27) into Eq. (4.25) leads to the final expression of the weak 

form 

 
= qdd TTT

RdCBdBd   
(4.28) 

From the virtual work equation (i.e., Eq. (4.28)), we obtain the stiffness K  and forcing terms 

F , i.e., 

 = dT
CBBK  

 = qdRF  

(4.29) 

4.5.3 Free Vibration Analysis 

For free vibration analysis of the Kirchhoff plate, the weak form of the elastodynamic 

equilibrium equation is written as follows: 
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0=+  
dtd TT

uuCεε   
(4.30) 

where   is the mass density, u  is the displacement tensor and u  represents the acceleration tensor. 

The displacement tensor is defined as 

  d
y

z
x

zdvu

T

T













−




−== 1u  

(4.31) 

and the acceleration tensor is obtained from Eq. (4.31) by differentiating twice in time. 

Eq. (4.30) can be concisely expressed in the form 

 0dMKd =+   (4.32) 

Based on Eq. (4.26) and integrating over the thickness, the mass matrix takes the form 

 
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jiji
jiij

1212

33

  
(4.33) 

The general solution of Eq. (4.32) is 

( ) += tsindd  (4.34) 

where   is the frequency and d  denotes the eigenmode obtained from the following eigenvalue 

problem 

( ) 0dMK =− 2  
(4.35) 

The above problem essentially amounts to a generalized constrained eigenvalue problem, the 

solution of which requires special treatment. To solve Eq. (4.35), a solution procedure presented 

in [116] is used to compute a constrained stiffness matrix incorporating Lagrange multipliers. The 
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natural frequencies and eigenmodes governing the vibration are further obtained from the 

eigenvalue analysis. 

4.6 Numerical examples 

In this section, four numerical examples of Kirchhoff plates of complicated geometries are 

demonstrated in the context of static bending and free vibration analysis. For all of the examples 

shown, a 28-point quadrature rule is used for the integration over the triangle, and a 5-point 

quadrature rule is employed for the integration over the edges to ensure the accuracy of the solution. 

The results are compared to analytical solutions, if available, or converged finite element solutions 

using Abaqus. 

4.6.1 Bending of a Simply Supported Circular Plate  

 

Figure 4-6: (a) Plate geometry and material properties, (b) deflection 

To verify the plate formulation, a simply supported circular plate subjected to uniform loading 

is analyzed. For this example, an exact solution is available in [117] and is reproduced here in Eq. 

(4.36). The geometry and material properties are illustrated in Fig. 4-6 along with the deformed 

shape.  
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where r  is the radius of the point at query and ( )2

3

112 −
=

Et
D . 

 

Figure 4-7: Automatically generated mesh with threshold: (a) %3 , (b) %1 , (c) %5.0 , and (d) %1.0 . 

Four meshes with different thresholds   are illustrated in Fig. 4-7, from which it is easy to see 

that the boundary mesh becomes finer as the threshold value   gets smaller. The relative error at 

the center of the plate and the L2 relative error norm 2L
e  are measured against the analytical 

solution. Results are also compared with uniform meshing using Abaqus linear triangular shell 

element S3 (see Table 4-1). Note that, Eq. (4.37) was used to calculate the L2 norm 2L
e . In terms 

of the relative error at the center of the plate, we observe that our solution with %3  already 

outperforms the Abaqus model with 604 nodes.  The L2 relative error norm also shows a faster 

convergence with our proposed model. Worth noting is that the Abaqus S3 element for thin plate 

analysis employs five degrees of freedom (DOF) per node, whereas our proposed element has only 

one DOF per node, which further demonstrates a significant saving in computational cost. 
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Table 4-1: Relative error in deflection using different thresholds 

Threshold 

  

%3  %1  %5.0  %1.0  Abaqus exact 

solution 

#nodes 169 481 1273 3004 37 105 237 604 - 

#DOF 169 481 1273 3004 185 525 1185 3020 - 

center 

deflection

310−  

 

-8.699 

 

-8.690 

 

-8.694 

 

-8.699 

 

-7.996 

 

-8.430 

 

-8.564 

 

-8.655 

 

-8.695 

relative 

error 

0.046% 0.058% 0.005% 0.050% 8.039% 3.048% 1.507% 0.460% - 

2L
e  

 

0.803% 

 

0.181% 

 

0.065% 

 

0.012% 

 

7.724% 

 

2.287% 

 

0.910% 

 

0.311% 

 

- 

4.6.2 Bending of a Perforated Circular Plate 

In this example, a more complicated geometry is used to demonstrate the ability of the 

proposed approach in capturing local geometric features. Specifically, a perforated circular plate 

with simply supported boundary condition is subjected to uniformly distributed load. The 

dimensions, loading condition, and the simulation results are shown in Fig. 4-8. The material 

properties are the same as in the first example. 
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Figure 4-8: (a) Plate geometry and material properties, and (b) deflection 

To illustrate the capability of the proposed approach in discretizing space bounded by 

complicated NURBS curves, four meshes of the perforated plate are shown in Fig. 4-9. As we can 

see, the holes in the plate are accurately captured. To verify the deformation, our results are 

compared with the converged solution using the Abaqus linear shell element S3, as listed in Table 

4-2. Again, we observe that the results agree very well.  

 

Figure 4-9: Automatically generated mesh with threshold: (a) %3 , (b) %1 , (c) %5.0 , and (d) %1.0 . 

Table 4-2: Relative error in deflection using different thresholds 

Threshold   %3  %1  %5.0  %1.0  Abaqus 

#DOF 2949 5154 9219 17109 162600 
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max deflection -0.007367 -0.008273 -0.008608 -0.008772 -0.008950 

relative error 17.687% 7.564% 3.821% 1.988% - 

 

Note that the relative error at %3  is fairly large, but it does not indicate that %3  is not 

a good setting for all cases. The threshold   is merely a control parameter relative to the dimension 

of the local feature. In other words, %3  is likely to result in very satisfying result if the radius 

of the holes in the plate is not very small. 

4.6.3 Free Vibration of a Square Plate with an Elliptical Hole 

In this section, the undamped free vibration analysis of a simply supported square plate with 

an elliptical hole of varying radius is investigated. The dimension of the plate is illustrated in Fig. 

4-10. The thickness of the plate is mt 05.0= . The material properties are: Young’s modulus 

211102 mNE = , Poisson’s ratio 3.0=  and mass density 
38000 mkg= . The mesh 

generated with %1  is shown in Fig. 4-11. 

 

Figure 4-10: Dimension of the plate with an elliptical hole 
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The dimensionless parameter nd  is used to measure the natural frequency and is defined as 

4

1
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=

D

ta
nd


 

(4.38) 

The solutions are compared with those modeled using the Abaqus linear shell element S4R 

and are listed in Table 4-3. As we can see, the results are in very good agreement. The first 10 

vibration modes are plotted in Fig. 4-12 for illustrative purposes. 

 

Figure 4-11: Automatically generated meshes for the plate with elliptical hole for %1 : (a) 1=ba , (b) 2=ba , (c) 

3=ba , and (d) 4=ba . 
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Table 4-3: Natural frequencies of the square plate with an elliptical hole 

 

Mode 

1=ba  2=ba  3=ba  4=ba  

Abaqus %3  %1  %5.0  Abaqus %1  %5.0  Abaqus %1  %5.0  Abaqus %1  %5.0  

#nodes 11734 585 1128 2001 11382 1314 2034 10835 1644 2505 10623 1530 2196 

1 4.3876 4.5419 4.4809 4.4423 4.3725 4.5058 4.4587 4.3550 4.5108 4.4755 4.3436 4.5455 4.4970 

2 6.9581 7.1086 6.9936 6.9669 6.6411 6.6689 6.6613 6.0098 6.0724 6.0484 5.3019 5.3728 5.3734 

3 6.9582 7.1720 6.9937 6.9683 6.9127 6.9162 6.9227 6.9298 6.9783 6.9681 6.9975 7.1451 7.0998 

4 8.7803 8.8150 8.8040 8.8067 8.6904 8.6915 8.7006 8.4595 8.4901 8.4783 7.9516 8.0177 8.0112 

5 9.7965 9.8998 9.8113 9.8027 9.6815 9.6819 9.6840 9.6498 9.6792 9.6723 9.7759 9.9202 9.8772 

6 10.0848 10.4552 10.3084 10.2298 10.3845 10.5686 10.5129 10.4431 10.5391 10.5203 10.3834 10.4428 10.4390 

7 11.2292 11.3397 11.2882 11.2987 10.8277 10.9352 10.9038 10.4642 10.5433 10.5284 10.4189 10.4877 10.4871 

8 11.2293 11.3483 11.2883 11.2994 11.2325 11.2764 11.2692 11.3071 11.3736 11.3502 10.9105 11.0077 11.0073 

9 12.7027 12.9518 12.8121 12.8005 12.0485 12.1568 12.1390 11.5094 11.5863 11.5666 11.5470 11.6823 11.6525 

10 12.7032 12.9707 12.8124 12.8012 12.9157 13.0627 13.0437 12.8471 13.0027 12.9357 12.2924 12.4050 12.4054 
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Figure 4-12: The first 10 mode shapes of the plate with an elliptical hole ( 4=ba  ) 

4.6.4 Free Vibration of a Square Plate with a Heart-shape Cutout 

In the last example, a simply supported square plate with a heart-shape cutout is used to 

demonstrate the performance of the proposed plate model. The dimension of the plate is shown in 

Fig. 4-13. The thickness of the plate is mt 05.0= . The material properties are the same as the third 

example. Free vibration analysis is conducted, for which a number of reference solutions are 

available in the literature [94,118,119]. The dimensionless parameter nd  defined in Eq. (4.38) is 

used to measure the natural frequency. 



 96 

 

Figure 4-13: Dimension of the plate with a heart-shaped hole 

 

Figure 4-14: Automatically generated meshes for the plate with a heart-shape cutout: (a) %3 , (b) %1 , and (c) 

%5.0 . 

The automatically generated meshes are shown in Fig. 4-14, in which we can observe that the 

proposed approach is able to handle sharp geometric corners fairly easily. The natural frequencies 

and mode shapes of the first 10 modes are listed and plotted in Table 4-4 and Fig. 4-15, respectively. 

As we can see, the free vibration results match very well with those in literature. 



 97 

Table 4-4: Natural frequencies of the square plate with a heart-shape cutout 

 

Mode 

Threshold   Cubic 

NURBS [94] 

Moving Kriging 

interpolation [118] 

Radial point 

interpolation [119] %3  %1  %5.0  

#nodes 384 777 1671 512 506 - 

1 5.3688 5.1618 5.0386 5.193 5.3898 4.919 

2 6.6041 6.4982 6.4205 6.579 7.5023 6.398 

3 7.1068 6.9956 6.8818 6.597 8.3470 6.775 

4 8.7629 8.6670 8.6151 7.819 10.6358 8.613 

5 9.3238 9.1539 9.0555 8.812 11.0484 9.016 

6 10.9440 10.7818 10.7140 9.420 12.8945 10.738 

7 11.1755 11.0085 10.9480 10.742 13.7100 10.930 

8 11.9959 11.7631 11.6683 10.776 14.0620 11.601 

9 13.4042 12.9533 12.8590 11.919 16.6492 12.903 

10 13.6026 13.3453 13.2412 13.200 17.3641 13.283 

 

 

Figure 4-15: The first 10 mode shapes of the plate with a heart-shape cutout 
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4.7 Concluding Remarks 

In this paper, we solved the Kirchhoff plate problem using isogeometric analysis (IGA). The 

parameter space was represented by rational Bézier triangles, and the analysis was further 

facilitated by an automatic meshing algorithm that admits local geometric features with high 

resolution. Due to the use of rational Bézier splines, the proposed model was extremely flexible 

for representing geometries comprised of complex topologies. In addition, the replacement of 

control points at domain boundaries yielded a geometrically exact model to be analyzed. By 

resorting to the Lagrange multipliers, the global continuity of the domain triangulation was 

elevated to C1, which is suitable for Kirchhoff plate analysis. Numerical examples comprised of 

static bending and free vibration analysis of plates bounded by complicated NURBS curves verify 

the accuracy and efficiency of the proposed modeling approach. In the future, we intend to 

investigate the performance of the developed plate model for stability analysis. 
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Chapter 5 Feature-preserving Rational Bézier Triangles for Isogeometric Analysis of 

Higher-order Gradient Damage Models 

 

The computational approach of modeling smeared damage with quadrilateral elements in 

isogeometric analysis (e.g., using NURBS or T-splines) has limitations in scenarios where 

complicated geometries are involved. In particular, the higher-order smoothness that emerges due 

to the inclusion of higher-order terms in the nonlocal formulation is not often easy to preserve with 

multiple NURBS patches or unstructured T-splines where reduced continuity is observed at patch 

interfaces and extraordinary points. This defect can be circumvented by the use of rational Bézier 

triangles for domain triangulation. In particular, rational Bézier triangles increase the flexibility in 

the discretization of arbitrary spaces and facilitate the handling of singular points that result from 

sharp changes in curvature. Moreover, the process of mesh generation can be completely 

automated and does not require any user intervention. A Delaunay-based feature-preserving 

discretization coupled with a local refinement technique is implemented to capture small geometric 

features and locally resolve areas of damage propagation. Additionally, we adopt an implicit 

higher-order gradient damage model in order to amend the non-physical mesh dependency issue 

exhibited in continuum damage analysis. For the solution of the fourth- and sixth-order gradient 

damage models, Lagrange multipliers are leveraged to elevate the global smoothness to any 

desired order in an explicit manner. The solution algorithm is initialized with the cylindrical arc-

length control and switches to a dissipation-based arc-length control for better numerical stability 

as the damage evolves. Numerical examples with singularities demonstrate improvements in terms 
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of efficiency and accuracy, as compared to the damage models represented by Powell-Sabin B-

splines. 

5.1 Introduction 

Continuum damage analysis [120] has limitations in approximating diffusive fracture due to 

the lack of an internal length parameter that propagates damage, thus resulting in a spurious mesh 

dependency issue. A number of approaches [121–123] have been proposed to eliminate this non-

physical phenomenon, among which the nonlocal theory [123,124] and gradient damage models 

[110,125,126] have been considered the most effective. Nonlocal damage theory incorporates 

nonlocality by introducing a damage variable and considering it as a function of the nonlocal 

quantity, which is evaluated as the volume average of the local quantity. In particular, certain 

isotropic spatial smoothing functions (such as the Gauss weighting function [126]) are often used 

to take into account the interaction in the vicinity of the point being evaluated. On the other hand, 

in order to reduce the computational effort, second-order Taylor expansion of the original form 

can be used as a substitute of the nonlocal integrals, thus leading to a system of second-order partial 

differential equations (PDEs). This formulation is attractive from a parameterization standpoint as 

it only requires basis functions of C0-continuity and therefore is suitable for standard finite element 

methods (FEM). However, it has been reported that the accuracy of using second-order gradient 

damage models is limited [127]. Thus, it is important to include higher-order terms in the Taylor 

approximation of the nonlocal integral, which has prompted the use of higher-order gradient 

damage models. 

A variety of approaches can be adopted to discretize the space of the higher-order gradient 

damage models, one being the use of mixed formulations [128,129], where an auxiliary field is 

introduced in addition to the displacement and plastic strain fields such that the requirement for 
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basis functions of C1-smoothness can be relaxed. However, this introduces a significant amount of 

additional degrees of freedom (DOF) and inevitably increases computational complexity. As an 

alternative, the Element-Free Galerkin (EFG) method [130] can be adopted since the underlying 

basis functions can be generated to a desired order of smoothness; however, its increased level of 

complexity and its incompatibility with standard FEM due to the non-element-based formulation 

impede its popularity. On the other hand, the high-order smoothness of basis functions can be 

automatically satisfied with the use of Non-Uniform Rational B-splines (NURBS) [2,3,5,7,8] and 

T-splines [13,131,132] in isogeometric analysis (IGA) [1]. IGA is also intriguing because it uses 

the same spline basis functions that are used in computer-aided design (CAD), and it is highly 

compatible with the data structures used in FEM codes [114,133]. It is important to note that a 

number of researchers have applied IGA to gradient damage analysis [24,110,126,134]. 

Nevertheless, the high-order smoothness is not always easy to preserve when it comes to the 

modeling of geometrically complex spaces when multiple NURBS patches or unstructured T-

splines are used in the process of mesh generation. Consequently, additional treatments have to be 

carried out at patch interfaces [2,11] or in the vicinity of extraordinary points [135] to retain 

smoothness, which hinders their application. In such scenarios, domain triangulation appears to be 

a more powerful tool for parameterization as it is not topologically constrained to the quadrilateral 

meshgrid, making it much more flexible in discretizing arbitrary spaces. The use of Powell-Sabin 

(PS) B-splines in fourth-order gradient damage models has already been studied in [110] and 

showed promising results. Despite the ability to maintain C1-smoothness throughout the entire 

domain of interest, a number of drawbacks are obvious. Firstly, due to the definition of PS triangles 

where they are required to contain all the associated PS points in order to obtain positive basis 

functions, the control points (i.e., the vertices of the PS triangles) are positioned in a random 
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manner. As a result, the users have no control over the location of the control points. This may be 

very inconvenient in cases where Dirichlet/Neumann boundary conditions have to be specified at 

a given point. Moreover, the definition of quintic PS triangles for C2-continuity [102] is 

complicated, compared to enforcing higher-order continuities on Bézier triangles (which will be 

discussed later in this paper). In addition, it is not clear how the PS triangles can be extended to 

three dimensions for tetrahedral mesh generation. 

As an alternative to PS triangles, rational Bézier triangles [4] can be used for domain 

triangulations. In this approach, the positioning of control points is very straightforward and does 

not depend on specific triangle-constructing rules. Moreover, the process of mesh generation starts 

from C0 Bézier triangles, meaning that one can resort to a wide variety of existing meshing tools 

and automate the entire process. To raise the global continuity to a desired order, common 

constraint-enforcing techniques such as Lagrange multipliers [4] can be easily applied to impose 

continuity constraints in an explicit manner. Due to the use of the rational form of the Bézier 

triangles, exact boundary recovery can also be fulfilled at ease. Owing to these appealing merits, 

rational Bézier triangles are employed in this study. In order to capture small geometric features 

accurately and increase the flexibility in discretizing complicated domains, a Delaunay-based 

feature-preserving domain triangulation approach is also adopted in the current project, which 

turns out to be beneficial in capturing the initiation and early-stage propagation of damage. 

In the study of gradient damage models, a very fine mesh is generally needed in order to capture 

the damage initiation and propagation. A natural solution is to resolve the space with high 

resolution uniformly, but this is computationally expensive and inefficient. Thus, we adopt in this 

study a local refinement strategy called Rivara’s method [136] that bisects marked triangles while 



 103 

keeping the resulting mesh conforming and well-conditioned. This method is used to locally refine 

regions that damage propagates into. 

In this contribution, the implicit second-, fourth- and sixth-order gradient damage models are 

considered, since the inclusion of higher-order terms has the potential to accurately approximate 

the nonlocal solution, with minimal additional computational effort. Our solution algorithm 

initializes with the cylindrical arc-length control [30] and switches to a dissipation-based arc-

length control [137] for better numerical stability as the damage evolves. Numerical examples 

demonstrate the benefits of using higher-order gradient damage models as well as the accuracy 

and ease of generalization into arbitrary high-order global smoothness in the use of the feature-

preserving rational Bézier triangles. As a short summary, the novelty of the work presented in this 

paper is mainly threefold: 

• The only work we can find that applied domain triangulation to study gradient damage 

models in an isogeometric setting is the work using PS triangles [110]. Besides the 

limitations of PS triangles discussed above, our approach is able to offer improved 

accuracy. The efficiency of the solution can be further improved by the use of the 

featuring-preserving meshing algorithm and the local refinement technique. The reason 

that feature-preserving meshing needs to be included is because damage is very likely 

to initiate at sharp curvatures or geometric imperfections due to stress concentration, 

and the feature-preserving meshing algorithm is extremely good at resolving small 

geometric features. Of course, the algorithm also provides a more accurate description 

of the geometry. A local refinement technique is included because usually very fine 

mesh is required to capture damage propagation, but it is computationally costly to 

uniformly refine the mesh. Most importantly, Bézier triangles are analogous to the 
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triangle elements in standard FEM and therefore a large number of existing tools can 

be directly applied to the discretization, such as the meshing tools in the pre-processing 

phase and Lagrange multipliers. 

• The work of PS triangles is only able to include the fourth-order term in the damage 

formulation because it is C1-continuous. The definition for C2-continuous quintic PS-

triangles [102] is completely different and also much more complicated. On the 

contrary, our method of using Lagrange multipliers to explicitly enforce higher-order 

continuity is straightforward. Our approach follows the same procedure irrespective of 

the order of continuity required. Moreover, any desired order of continuity can be 

obtained. 

• The rational form of Bézier triangles is employed and therefore the geometry is exact 

in domains bounded by high-order NURBS curves (as can be seen in the third 

numerical example in this paper). 

Generally speaking, our solution procedure [139] can be viewed as a unified modeling 

framework where the initial mesh provided by the feature-preserving meshing algorithm is able to 

capture damage initiation and early-stage damage growth, and the local refinement technique can 

be applied to adaptively refine the mesh in the direction of damage propagation, which can be 

computed from the early-stage damage growth. 

5.2 Rivara’s Method for Local Refinement 

In addition to the automated mesh generation procedure employed in Section 4.3, we also 

needed a way to locally refine the mesh while keeping the mesh conforming and of high quality 

so that damage propagation could be modeled accurately and efficiently. In this study, we adopted 

the Rivara’s method of bisecting triangles [136]. The algorithm bisects marked triangles as the 
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first step and then iteratively bisects non-conforming triangles and connects non-overlapping 

midpoints until the mesh becomes conforming. A pseudo-code is provided in Fig. 5-1. 

 

Figure 5-1: A pseudo-code for Rivara’s method of bisecting triangles for local refinement 

5.3 Higher-order Gradient Damage Formulation 

5.3.1 Continuum Formulation 

The gradient damage analysis is a coupled problem [126] where a diffusion equation 

representing the damage propagation needs to be solved in addition to the equilibrium equation. 

The stress equation can be written as 

0=




i

ij

x


 

(5.1) 

and is subjected to external Dirichlet boundary conditions ii uu =  on u  and Neumann 

boundary conditions 
ijij hn =  on h . 

In damage analysis, a scalar damage variable  1,0  is introduced to represent the damage 

growth, where 0=  represents undamaged material and 1=  fully damaged material. In 

particular, the constitutive model can be expressed as 
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( ) klijklij C  −= 1  (5.2) 

with C  representing the elasticity tensor, and   representing the infinitesimal strain tensor, i.e.,  
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The damage variable   can be fully determined by a monotonically increasing history 

parameter   and is thus expressed as a function of it, ( ) = . The evolution of   is guided by 

the Kuhn-Tucker conditions: 

,0f ,0 0=f  (5.4) 

where f  is the loading function,  −=f , and   denotes the nonlocal equivalent strain. In 

continuum damage analysis, a local equivalent strain   is often used to compute the damage 

variable, which makes the model unable to diffuse damage out into its neighboring areas and 

therefore leads to a spurious mesh dependency issue. In contrast, the nonlocal equivalent strain   

can be computed by averaging the local equivalent strain   over a predefined finite volume   
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where ( )xxg ˆ,  represents the weighting function 

( ) 











 −
−=

22

ˆ
expˆ,

cl

xx
xxg  

(5.6) 

and cl  is the internal length parameter. 
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The Taylor expansion of the local equivalent strain   is often adopted to avoid a direct 

evaluation of the volume integral, specifically 
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Substituting Eq. (5.7) into Eq. (5.5) and assuming that the integral ranges from negative infinity 

to infinity lead to an explicit gradient approximation of the nonlocal equivalent strain 
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Eq. (5.8) requires C1 continuity for the inclusion of the second-order term and C2 continuity 

for the inclusion of the fourth-order term, and is therefore not suitable for standard FEA. 

Alternatively, one can obtain an implicit gradient formulation by differentiation and multiplication 

of Eq. (5.8)  
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(5.9) 

As one can see, only C0 continuity is required for the inclusion of the second-order gradient 

term. Thus, second-order gradient damage model is suitable in the context of standard FEA, but 

the accuracy of the numerical solution suffers. In this contribution, we adopt higher-order gradient 

damage models by the inclusion of the fourth-order and sixth-order terms in Eq. (5.9). 

Eq. (5.1) and Eq. (5.9) constitute the govern equations for the higher-order gradient damage 

problem. The weak form can be derived by multiplying a perturbation term 
ju  and   to Eq. 

(5.1) and Eq. (5.9), respectively, and integrating by parts over the space of interest   
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5.3.2 Discretized Form 

Based on the Delaunay-based triangulation from Section 2, the space of interest can be 

discretized into n  elements. For each element, the displacement u , the nonlocal equivalent strain 

  and the derivatives can be expressed in terms of the Bézier basis functions R  and the 

deformation of the corresponding control points. In particular, 
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For the terms in Eq. (5.11), the following definitions hold: 
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Substitution of the discretized form into Eq. (5.10) results in the weak form 
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(5.13) 

Eq. (5.13) is essentially the discretized form of the governing equation for the implicit sixth-

order gradient damage model. To solve this, we employ the cylindrical arc-length control [30] to 

initialize the solution procedure due to the existence of a load-shedding behavior when significant 

damage occurs. As damage evolves, our solution algorithm switches to a dissipation-based arc-

length control [137] for better numerical stability, as the dissipated energy term is always positive 

once damage happens, which is an obvious conclusion from the second law of thermodynamics. 

 

5.4 Numerical Examples 

In this section, a number of numerical examples with different damage laws are demonstrated, 

including a beam under three-point bending, an L-shaped domain, and an L-shaped domain with 

a curved inside corner. For all problems, we employ a 28-point quadrature rule for integration over 

the triangle, and a 5-point quadrature rule for integration over the edges. We also use quintic 

elements in order to impose higher-order continuity. The solutions are compared with nonlocal 

solutions and other results from existing literature. 
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5.4.1 Three-point Bending Beam (TPBB) 

In the first example, we consider a three-point bending beam [138] as shown in Fig. 5-2. The 

beam is simply supported and is subjected to a distributed load at the mid-span. The thickness of 

the beam is mmt 50= . The Young’s modulus is GPaE 20=  and Poisson’s ratio is 2.0= . A 

state of plane strain is assumed. 

 

Figure 5-2: The setup of the three-point bending beam 

The local equivalent strain is defined as 
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(5.14) 

where i  denotes the principal strain and   is the Macaulay bracket, i.e., ( )0,max xx = . The 

damage law employed in this example is 
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where 4

0 101 −= , 99.0=  and 500= . The internal length parameter is set to mmlc 20= . 
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Figure 5-3: Different uniform meshes for TPBB 

First, we investigate the behavior of gradient damage model with uniform mesh refinement 

(see meshes 1, 2, and 3 in Fig. 5-3). We consider three mesh cases, with mesh2 being the 4-split 

of mesh1 and mesh3 being the 4-split of mesh2. The force-displacement curves of the different-

order gradient damage formulations for convergence study are plotted in Fig. 5-4, where a 

comparison to the nonlocal solution [138] is also provided. In our plots, the force is taken as the 

resultant force of the distributed load, and the displacement is measured at the point A of Fig. 5-2. 

In Figs. 9a, 9b, and 9c, results are shown respectively for the second-order (O=2), fourth-order 

(O=4) and sixth-order (O=6) gradient damage models for each mesh. It can be seen that the 

inclusion of higher-order terms in the gradient formulation leads to a more accurate solution if the 

mesh is suitably fine (i.e., mesh2 or mesh3). In Fig. 5-4c, it appears that the higher-order damage 

model requires a more refined mesh, as evidenced by the fact that mesh1 and mesh2 have a larger 

deviation from mesh3 than in O=2 and O=4. In Fig. 5-5, results for O=2, 4, 6 are shown only for 

the finest mesh (i.e, mesh3), and it is clear that including the higher-order terms leads to 

convergence to the published solution.  
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Figure 5-4: Force-displacement curves for the convergence of the (a) second-order (O=2), (b) fourth-order (O=4), and (c) sixth-

order (O=6) gradient damage models for the three meshes considered. 

 

Figure 5-5: Force-displacement curves of the second-, fourth- and sixth-order gradient damage models in the case of mesh3 

Based on the analysis, it is clear that a fine mesh is needed to reach convergence, but it is also 

worth mentioning that it is computationally expensive to uniformly refine the entire domain (e.g., 

Fig. 5-3). Therefore, Rivara’s method was applied to locally refine the region under the distributed 

load, with the region refined taken as  1250,750x . The resulting mesh is illustrated in Fig. 5-6, 

where the number of control points (NCP) equal to 4511. 
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Figure 5-6: Locally refined TPBB (NCP: 4511) 

The force-displacement curves obtained with the locally refined mesh (LRM) are provided in 

Fig. 5-7, along with a comparison to the nonlocal and sixth-order gradient damage solution with a 

non-uniform NURBS mesh from [138]. We observe an obvious improvement in terms of accuracy 

with the inclusion of higher-order terms in the gradient enhanced formulation. The inclusion of 

the sixth-order term in the gradient damage formulation is observed to be effective, as it provides 

a closer solution to the nonlocal one and the additional computational effort is negligible. We can 

also see that our solution reaches the same level of accuracy but with the required NCP cut by half. 

Thus, we conclude that our solution is both accurate and efficient. 

 

Figure 5-7: Force-displacement curve obtained with the sixth-order gradient damage model and the locally refined mesh (LRM) 

from Fig. 5-6 (NCP: 4511). 
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The damage propagation over time is also accurately captured, as shown in Fig. 5-8. Our model 

is able to capture the damage propagation up to the ultimate failure of the beam, which corresponds 

to the fourth plot in Fig. 5-8. 

 

Figure 5-8: Time evolution of the damage propagation in TPBB 

5.4.2 L-shaped Domain 

As the second numerical example, we consider the classical L-shaped domain problem 

[110,126]. The setup of the problem is shown in Fig. 5-9. The thickness of the plate is mmt 200= . 

The material is linear elastic, with the Young’s modulus GPaE 10=  and Poisson’s ratio is 2.0= . 

Plane stress condition is assumed. 
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Figure 5-9: The setup of the L-shaped domain 

The rotation-free ends (i.e., the two platens) of the plate are enforced through the inclusion of 

the following linear constraints in the form of Lagrange multipliers: 
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where au , bu  and 
pu  are the displacements of the two ends and any material point on the platen, 

respectively.   

The modified von Mises local equivalent strain is employed and defined as 
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where ( )1I  is the first invariant of the strain tensor 

( ) iiI  =1  
(5.18) 

( )2J  is the second invariant of the deviatoric strain tensor 
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( ) ( )( )212
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2

1
 IJ ijij −=  

(5.19) 

and k  is a parameter that takes into account the variation in strength between compression and 

tension. In this problem, 10=k . 

The same damage law given in Eq. (5.15) is used, but with the parameters set to 4

0 104 −= , 

98.0=  and 80= . The internal length parameter is set to mmlc 25= . 

In order to save computational effort, we apply Rivara’s method directly to locally refine the 

region where damage initiates and propagates (i.e., the diagonal area). Fig. 5-10 shows the 

resulting mesh after applying Rivara’s method five times to the region bounded by the two straight 

lines 75− xy  and 75+ xy , where the inside corner is taken as the origin. 

 

Figure 5-10: The resulting mesh of the L-shaped domain after applying Rivara’s method five times (NCP: 12631). 

The force-displacement curves are plotted in Fig. 5-11, along with the solutions from literature 

using T-splines [126] and Powell-Sabin (PS) triangles [110]. The displacement is measured at the 

point (and in the direction) of the applied load. In this problem, we use the nonlocal solution using 

T-splines as our reference solution. By comparing our solutions with different order gradient 
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formulations on the locally refined mesh (LRM), we observe a notable improvement in terms of 

accuracy with the inclusion of higher-order terms. By comparing to the results of the fourth-order 

gradient damage formulation, our solution appears to be more accurate than the one obtained using 

PS triangles. In terms of NCP, the solution using PS triangles employs 26,463 control points, 

whereas our LRM only has 12,631 control points, which represents significant computational 

saving. It is also worth noting that it is very easy to include the sixth-order term of the Taylor 

expansion with our modeling approach, compared to C2-continuous quintic PS triangles [102] 

where the definition is completely different from the C1-continuous quadratic PS triangles. 

 

Figure 5-11: The force-displacement curves of the L-shaped domain 

To better demonstrate the accuracy of the proposed method, the contour plots for the damage 

propagation and the maximum principal stress distribution at mmu 95.1=  are illustrated in Fig. 5-

12. 
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Figure 5-12: Control plot for the L-shaped domain at mmu 95.1=  (the deformation is amplified by a factor of 20): (a) damage 

propagation and (b) maximum principal stress distribution 

5.4.3 L-shaped Domain with Curved Inside Corner 

For the third example, only a slight change is made to the classical L-shaped domain problem, 

with the inside corner being curved instead of at a right angle (see Fig. 5-13). The purpose of this 

example is to investigate the behavior of the Delaunay-based feature-preserving triangulation on 

capturing damage initiation and the early stage of damage propagation. The material properties 

and damage law are the same as in the second numerical example. The sixth-order gradient damage 

formulation is used.  
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Figure 5-13: The setup of the L-shaped domain with curved inside corner 

The resulting mesh from the feature-preserving triangulation algorithm is compared to the 

initial mesh of the classical L-shaped domain without applying local refinement techniques (see 

Fig. 5-14). As we can see, the inside corner is resolved with high resolution (Fig. 5-14(b)). 

 

Figure 5-14: The effect of the feature-preserving triangulation: (a) the initial mesh of the classical L-shaped domain, and (b) the 

feature-preserving triangulation for the L-shaped domain with curved inside corner 

The force-displacement curves obtained from the above two mesh cases are plotted in Fig. 5-

15. In comparison to the result obtained using the Mesh in Fig. 5-14(a), we observe a more accurate 
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prediction of the solution for the entire deformation path using the mesh in Fig. 5-14(b), especially 

in the damage initiation phase as indicated by the onset of yielding. The feature-preserving mesh 

is capable of providing a very accurate solution up to around mmu 4.0= , after which the damage 

propagates into the relatively coarse mesh region and locally refinement as shown in the second 

numerical example is needed. In general, the feature-preserving triangulation can be used to predict 

early-stage damage growth, and adaptive meshing can be adopted to refine the direction of damage 

propagation. 

 

Figure 5-15: The force-displacement curves obtained using the two mesh cases in Fig. 5-14 

The contour plots of damage growth at mmu 43.0= , mmu 90.0=  and mmu 25.1=  are also 

provided in Fig. 5-16 for a better illustration of the ability of the feature-preserving triangulation 

in capturing the early stage of damage growth. 
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Figure 5-16: The contour plots of damage growth in the L-shaped domain with curved inside corner (deformation is amplified by 

a factor of 50) at (a) mmu 43.0= , (b) mmu 90.0=  and (c) mmu 25.1=  

5.5 Conclusion 

The Delaunay-based feature-preserving rational Bézier triangles are a powerful tool in 

modeling smeared damage, especially in cases where geometrically complicated domains are 

involved. They not only circumvent the reduced continuity problem at NURBS patch interfaces or 

at extraordinary points in T-splines, but they also increase the flexibility in discretization. As is 

indicated in the third numerical example, a general modeling approach can be constructed where 

the Delaunay-based feature-preserving triangulation can be used to resolve the geometry and 

predict the damage growth at an early stage. As the damage propagates, a suitable local refinement 

technique such as the Rivara’s method can be employed to further refine the mesh in the direction 

of damage propagation. Moreover, the use of Lagrange multipliers makes it possible to impose 

higher-order continuity constraints to the resulting mesh. In terms of the formulation of implicit 

gradient damage models, the inclusion of higher-order terms leads to a better prediction of the 

damage path, while the additional computational effort is negligible. The accuracy and efficiency 

of the proposed modeling approach are verified by a number of numerical examples, where 

superiority is observed over other domain triangulation methods such as Powell-Sabin triangles. 
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It must be mentioned that domain triangulation is not undisputedly advantageous over 

quadrilateral meshing techniques (e.g., T-splines). An obvious drawback of domain triangulation 

methods is the fact that typically high-order polynomials (e.g., quartic and quintic) have to be used 

in order to impose higher-order global smoothness. This also holds true for other triangulation 

methods such as Powell-Sabin splines. In contrast, C2 continuity can be easily achieved with cubic 

NURBS/T-splines. 
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Chapter 6 Conclusion 

 

The computational approaches for addressing various problems in structural engineering 

and improving the accuracy and efficiency in solutions in the framework of IGA were presented 

here. The work can be mainly categorized into two parts based on the use of spline basis functions 

(i.e., NURBS and rational Bézier triangles). A number of merits related to IGA were also achieved 

including the geometrically exact description of the models, rotation-free formulation, and high-

order smoothness. 

On the one hand, the use of NURBS was applied to study large-deformation structural 

frames and advanced material systems such as a sandwich plate with a functionally graded material 

core. The appropriate rotation-free formulations were derived. In the analysis of large-deformation 

structural frames, a layer-based discretization was adopted for the prediction of the spread of 

plasticity and the deformation was captured in an adaptive manner. In the analysis of laminated 

composites, a layerwise theory was employed that was capable of predicting the full 3D stress 

states while maintaining a 2D data structure. 

On the other hand, rational Bézier triangles were coupled with a Delaunay-based feature-

preserving discretization algorithm and a local refinement technique for the analysis of 

geometrically complex Kirchhoff plates and implicit higher-order gradient damage models. 

Lagrange multipliers were leveraged to enforce high-order continuity in an explicit fashion. The 

static and dynamic response of geometrically complex Kirchhoff plates and the performance of 

implicit higher-order gradient damage models were investigated and satisfactory results were 

observed. 



 124 

6.1 NURBS for the Analysis of Structural Frames and Laminated Composite Plates 

As shown in Chapter 2, a 2D distributed plasticity IGA frame element was formulated. The 

derivation employed a layer-based discretization in the through-thickness direction and considered 

member-level geometrically nonlinear effects through the inclusion of high-order terms in the 

strain expression. Moreover, the formulation was also extended to multi-patch analysis via the 

introduction of continuity constraints between two adjacent patches, thus allowing for a rigid 

connection of members in frame structures. The model closely represents reality as plastic hinges 

form in the beams or columns rather than at a fictitious joint region, which is rather important from 

a structural point of view. The formulation was also presented for adaptive analysis. Lobatto 

quadrature was employed in order to capture the onset of yielding at the ends of the member, and 

a knot insertion technique was introduced to capture the change in curvature associated with the 

formation of a plastic hinge. A number of numerical examples including the yielding of beams and 

frames subjected to monotonic and cyclic loading conditions were used to test the proposed model 

and significant computational saving was obtained. 

In Chapter 3, an IGA layerwise plate model was derived for the analysis of composite 

laminates and sandwich plates embedding a functionally graded material core. The proposed 

model assumed a separate displacement field expansion within each layer and used the knot 

insertion technique to enforce the C0-continuity at layer interfaces. Due to the fact that the through-

thickness integration were carried out separately from the in-plane surface integration, the 

proposed model was able to capture the full 3D stress states while maintaining a 2D data structure. 

The modeling of several numerical examples comprised of advanced materials was illustrated with 

high accuracy.  
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6.2 Rational Bézier Triangles for the Solution of Geometrically Complex Kirchhoff Plates 

and Implicit Higher-order Gradient Damage Models 

In Chapter 4, the rational Bézier triangle technique was coupled with a Delaunay-based 

feature-preserving meshing technology to study geometrically complex Kirchhoff plates. The 

replacement of control points at domain boundaries yielded a geometrically exact description of 

the model to be analyzed. By resorting to the Lagrange multipliers, the global continuity of the 

triangulation was raised to C1, which is suitable for Kirchhoff plate analysis. Numerical examples 

comprised of static bending and free vibration analysis of plates bounded by high-order NURBS 

curves verify the accuracy and efficiency of the proposed modeling approach. 

Chapter 5 demonstrated the use of the feature-preserving rational Bézier triangles in 

modeling smeared damage. A general modeling framework was proposed where the Delaunay-

based feature-preserving triangulation can be used to resolve the geometry and predict the damage 

growth at an early stage. As the damage propagates, a suitable local refinement technique such as 

the Rivara’s method can be employed to further refine the mesh in the direction of damage 

propagation. In the formulation of implicit gradient damage models, the inclusion of higher-order 

terms led to a better prediction of the damage path, while the additional computational effort was 

negligible. The accuracy and efficiency of the proposed modeling approach were verified by a 

number of numerical examples, where superiority was observed over other domain triangulation 

methods such as Powell-Sabin triangles. 

6.3 Limitations and Future Work 

The IGA rotation-free frame model presented for capturing the spread of plasticity was 

developed in Chapter 2 of the dissertation. One limitation of this model is the fact that the 

formulation is presently limited to problems with moderate displacements. For use in large-
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displacement analysis, the frame model would need to be extended to consider system-level 

geometrically nonlinear effects. A second limitation is that the number of layers (i.e., fibers) in the 

through-thickness direction was held fixed. To achieve additional computational saving, an 

adaptive analysis to automatically define the number of layers for each element should be 

considered. Additionally, the paper only consider a 2D structural response. Additional work would 

be needed to determine if the formulation, which relies on constraints to impose rotational fixity, 

would work in 3D.  

For the IGA laminated composite plate project, situations that commonly occurs in 

laminated composite materials such as delamination and crack opening are not addressed in the 

current model. Therefore, future work should consider enabling the formulation to predict the full 

3D states of stress of delaminated composites. 

To this point, both of the aforementioned projects were based on the representation using 

NURBS. The drawbacks of the tensor-product structure of NURBS have already been discussed 

in Chapter 1. Therefore, future research should also consider the use of more advanced spline 

functions for analysis. 

In the second part of the dissertation where rational Bézier triangles serve as the major tool 

for discretization, the analysis is limited to two dimensions. Future research directions should 

include extending the work to three dimensions by using tetrahedral elements in the framework of 

IGA. As it is difficult to recover exact boundary in 3D, weak enforcement of the bounding surfaces 

can be considered such as using tetrahedral finite cell method. In addition, a further concern is the 

fact that the feature-preserving discretization technique that were discussed in Chapter 4 may not 

be able to resolve regions of damage initiation in all cases (e.g., the classic L-shaped domain 

problem). Therefore, future work could consider developing more robust discretization techniques 



 127 

that allow the users to capture the onset of damage accurately and efficiently. Last but not least, 

the current work only involves the modeling of smeared damage. Future work should also apply 

the rational Bézier triangle technique to study discrete fracture models, where the author believes 

that rational Bézier triangles should outperform other triangulation approaches such as PS triangles 

because of the limitation of PS B-splines as discussed in Chapter 5. 
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Appendix A 

 

The problem considered for the convergence study here is the classic infinite plate with a 

circular hole problem, which is modeled using a finite quarter of the plate due to symmetry. The 

problem setup can be found in Fig. A-1, where the plate is subjected to a constant in-plane tension. 

A state of plane stress is assumed for this problem. 

 

Figure A-1: The infinite plate with a circular hole: problem setup 

The exact solution [1] is available for comparison, which is reproduced here for 

convenience. 
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with ( ),r  the polar coordinates whose origin is at the center of the plate. 

The plate is discretized with tensor-product NURBS in Fig. A-2, where the exact geometry 

can be described with only two elements in mesh1 (see Fig. A-2(b)).  

 

Figure A-2: Different meshes of the plate with a circular hole generated via h-refinement 

The contour plots of the displacement in x direction and stress σxx obtained using mesh3, 

mesh4 and mesh5 and bi-quadratic NURBS are illustrated in Fig. A-3 and Fig. A-4. We observe 

that the stress concentration at the point (𝑅,
3𝜋

2
) is predicted very well and a very smooth stress 

field can be captured as the mesh gets refined. 
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Figure A-3: Contour plots of the displacement in x direction obtained using different meshes 

 

Figure A-4: Contour plots of stress σxx obtained using different meshes 

The convergence study in terms of the energy norm are also plotted in Fig. A-5, where the 

mesh parameter is approximately computed as the maximum physical distance between two 

diagonally opposite knots. We observe that optimal convergence is obtained. 
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Figure A-5: Convergence of the error in the energy norm of bi-quadratic NURBS discretization 
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