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ABSTRACT

There are some problems in spacecraft systems engineering with highly non-linear charac-

teristics and noise where traditional non-linear estimation techniques fail to yield accurate

results. In this thesis, we consider approaching two such problems using kernel methods in

machine learning. First, we present a novel formulation and solution to orbit determination

of spacecraft and spacecraft groups which can be applied with very weakly observable and

highly noisy scenarios. We present a ground station network architecture that can perform

orbit determination using Doppler-only observations over the network. Second, we present a

machine learning solution to the spacecraft magnetic field interference cancellation problem

using distributed magnetometers paving the way for space magnetometry with boom-less

CubeSats.

We present an approach to orbit determination under very broad conditions that are sat-

isfied for n-body problems. We show that domain generalization and distribution regression

techniques can learn to estimate orbits of a group of satellites and identify individual satellites

especially with prior understanding of correlations between orbits and provide asymptotic

convergence conditions. The approach presented requires only observability of the dynamical

system and visibility of the spacecraft and is particularly useful for autonomous spacecraft

operations using low-cost ground stations or sensors. With the absence of linear region con-

straints in the proposed method, we are able to identify orbits that are 800 km apart and

reduce orbit uncertainty by 92.5% to under 60 km with noisy Doppler-only measurements.

xv



We present an architecture for collaborative orbit determination using networked ground

stations. We focus on clusters of satellites deployed in low Earth orbit and measurements of

their Doppler-shifted transmissions made by low-gain antenna systems in a software-defined

federated ground station network. We develop a network architecture enabling scheduling

and tracking with uncertain orbit information. For the proposed network, we also present

scheduling and coordinated tracking algorithms for tracking with the purpose of generating

measurements for orbit determination. We validate our algorithms and architecture with its

application to high fidelity simulations of different networked orbit determination scenarios.

We demonstrate how these low-cost ground stations can be used to provide accurate and

timely orbital tracking information for large satellite deployments, which is something that

remains a challenge for current tracking systems.

Last, we present a novel approach and algorithm to the problem of magnetic field inter-

ference cancellation of time-varying interference using distributed magnetometers and space-

craft telemetry with particular emphasis on the computational and power requirements of

CubeSats. The spacecraft magnetic field interference cancellation problem involves esti-

mation of noise when the number of interfering sources far exceed the number of sensors

required to decouple the noise from the signal. The proposed approach models this as a con-

textual bandit learning problem and the proposed algorithm learns to identify the optimal

low-noise combination of distributed magnetometers based on indirect information gained

on spacecraft currents through telemetry. Experimental results based on on-orbit spacecraft

telemetry shows a 50% reduction in interference compared to the best magnetometer.

xvi



CHAPTER I

Introduction

Over the past two decades, the development of Pico and Nano-satellite technologies have

drastically reduced cost and improved access to space providing platforms for low-cost space

science and exploration [3, 4]. By the very nature of the environments in which these

spacecraft operate, there are many problems in space systems with elusive solutions due to

non-linearity, weak-observability, noise, under-determined behavior etc. This thesis focuses

on two such problems - orbit determination and spacecraft noise environment estimation,

and provides learning theoretic solutions to those problems.

I.0.1 Orbit Determination

Lower-cost access to space has enabled space missions consisting of numerous high-risk,

low-cost spacecraft systems to be deployed near simultaneously in large numbers in orbits

ranging from low Earth to deep space [5, 6, 7, 8]. Requirements for successful and efficient

mission operations for such growing numbers of spacecrafts have led to the development of

ground station networks with widely varying communications and costs [9, 10, 11]. Use of

these networks for autonomous orbit determination would enhance the operational capability,

improve usefulness, and potentially lower the cost of these new missions.
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Existing orbit determination techniques provide accurate results, but have requirements

particularly cumbersome for small spacecraft and passive objects that have high initial po-

sition uncertainty. Current cooperative measurements (or observations) use transponders or

GPS receivers on spacecraft with orbit state estimation and refinement computed through

initial orbit determination approaches and Kalman filters [12, 13]. However, transponder-

based state estimation requires position uncertainty low enough to overcome link budget

constraints which implies low initial uncertainty in spacecraft position, while GPS receivers

only work near Earth. In addition, a number of Earth orbiting satellites lack direct navigation

capabilities due to absence of GPS systems or transponders [14]. Meanwhile, uncooperative

measurements such as radar and optical sitings also have requirements of low initial uncer-

tainty and resolvability which limit their use to near Earth orbits. It would be useful to

remove these above constraints, where just visibility of transmissions and identifiability of

the state through such transmissions are the only required criteria.

Two additional important and difficult orbit determination needs are for near-Earth or-

bital debris and general tracking of celestial objects. Large numbers of short life-cycle de-

ployments have resulted in slow decaying space debris whose tracking is critical for avoidance

and mission survival [15, 16, 17, 18, 19].

Due to the large and growing number of debris objects, algorithms for autonomous track-

ing using varied, statistically independent and spatially distributed sets of observations would

improve our space situational awareness. Tracking of celestial objects, such asteroids, have

different observational characteristics and observations are available only over short sections

of the trajectory.

We also consider the development of a network architecture for orbit determination. An

architecture of a ground station network (GSN) consists of the physical layer abstractions,

scheduling and tracking algorithms for tracking and operating a satellite using a network

of ground stations. In this work, we consider the problem of constructing a ground station

2



network architecture to perform orbit determination as part of mission operations. We are

interested in a GSN architecture to observe transmissions from a group or cluster of satellites

when their initial orbital parameters are uncertain and belong to a set instead of being known

with high accuracy.

The development of an architecture for orbit determination is a significant step towards

achieving autonomous spacecraft operations, particularly for launch and early operations

and for lost spacecraft tracking. For current ground station networks, scheduling and oper-

ations begin with the availability of a low uncertainty spacecraft state or orbit. This initial

spacecraft orbit may be obtained through the deployment state of the upper stage, through

two line elements generated by the Joint Space Operations Center [20, 21] and the capability

to estimate the orbit when the orbit uncertainty is large is not part the network. We consider

network architectures with the aim of extending scheduling and operational stages to include

initial orbit determination using ground station networks.

I.0.2 Magnetometer Interference Cancellation

Spacecraft noise environment estimation has received recent interest in space magnetom-

etry for analysis and understanding of space weather. Magnetic field measurements form

important source of observations for space science, navigation and monitoring resulting in

a recurring series of space missions for geomagnetic and interplanetary magnetic field anal-

ysis over the past half century [22, 23, 24, 25, 26, 27, 28]. Magnetic field measurements

using satellites are affected by time varying interference generated by the spacecraft electri-

cal environment. Historically, with large spacecraft, such noise was minimized by physically

separating the sensor from the spacecraft using a rigid boom [29, 30, 27].

Due to ease of access to space, CubeSats have become popular as a high-risk low-cost

alternative to space science measurements [4]. However, in such highly resource-constrained

3



satellites such as nano-satellites, there are additional challenges to space science magnetom-

etry. First, structural constraints limit the construction, deployment, and use of long rigid

booms, requiring sensors to be close to or inside the CubeSat. Second, for CubeSats with

multiple magnetic sensors (magnetometers), there is the additional complexity of accessibil-

ity of sensor readings. Sensitive low noise magnetometers are influenced by the time-varying

on-orbit environmental factors, such as temperature, radiation, spacecraft interference, re-

quiring recurring calibration on-orbit. Such calibration procedures are computationally ex-

pensive, and as a consequence power constrained, limiting the number of sensors that can be

calibrated at a measurement time step. Third, with distributed magnetometers or shortened

booms, the measurements are affected by time-varying currents in the spacecraft that change

based on different operational events such as data transmission, spacecraft maneuvers, power

generation, etc.

There is a need for methods to mitigate spacecraft magnetic field interference in the

CubeSat setting where the spacecraft are developed with low magnetic cleanliness, realistic

sensors and with CubeSat computational constraints.

I.1 Literature Review

As described in the preceding section, there exist challenges in orbit determination and

interference cancellation due to non-linearity and noise. Orbit determination and magnetic

field analysis has been of interest since the very beginning of space exploration. For orbit

determination, this historical development has resulted in a set of standard techniques that

are applied to observation of cooperative and uncooperative measurements. For spacecraft

magnetometry, while most historical literature has focused on magnetometry with large

spacecraft, there has been recent interest in interference mitigation both due to the sensitivity

and accuracy requirements for space science and due to a desire to use CubeSats for space

4



science analysis. These methods in literature are detailed below. The literature associated

with the machine learning solutions can be found in the respective chapters.

I.1.1 Orbit Determination

The orbit determination problem is typically treated as a non-linear filtering problem where

it is possible to use successive prediction-correction to estimate state vectors when the obser-

vations allow for good initial estimates [31, 32, 13, 33]. The standard technique for precision

orbit determination is the extended Kalman filter (EKF) [31, 12, 32]. The EKF is a sub-

optimal approximation of the Kalman filter for non-linear systems, which has been shown

to converge asymptotically when the initial state of the system is in the linear region [34].

Batch processing with equivalent Gauss-Newton methods are also used [35].

A second popular approach is using Bayesian and particle filtering approaches for orbit

determination [33], where a likelihood-conjugate prior distribution assumption is made re-

garding the filter parameters. In some approaches proposed by Lee [33], kernel methods are

also used in particle filtering. However, the dynamical models are still linearized and EKF-

based. There has been recent interest in developing methods for initial orbit determination

using Gaussian mixture models [36, 37], where the distribution generated can be used as a

prior distribution in developing a Gaussian mixture approximation of the batch least squares

approach [36].

Unfortunately, when the observations have significant noise variances or the system is

highly non-linear, successful initialization of non-linear filters may not be possible, such as

with Doppler-only orbit determination. To the best of our knowledge, there exists no method

to initialize filters through Doppler-only observations (Wright [13] concurs).

For celestial object tracking, short arc methods have become popular [38, 39, 40], where
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individual orbital elements are computed based on analytic expressions of the orbit or by

using genetic algorithms. Milani et. al [38, 41] restrict parts of initial conditions to an

admissible region of orbits for very short arcs in which identification is feasible and use

Delauney triangulations to compute the orbital parameters.

Current approaches to tracking and identifying debris are uncooperative, and are more

complex than those for functional spacecraft, and due to maintaining identifiability, short

arc methods are also used [42, 17, 43].

I.1.2 Ground Station Network Architectures

Ground station network architectures have been of particular interest over the past quarter

century beginning with the design and development of the Deep Space Network (See [44] and

the DESCANSO series for detailed descriptions of the DSN), the Air Force Satellite Control

Network (AFSCN [45]) and ESTRACK [46, 47]. Increased access to space for commercial

operations and educational institutions lead to newer ground station networks and network

architectures [9, 48, 49, 50, 51, 52, 53, 54]. The standard ground station network subsystems

required for operations and navigation consists of a set of N ground nodes which commu-

nicate through the network to a network operations and control (NOC) and Navigational

subsystems for tracking [44, 55, 11]. The nodes have signal processing for telemetry, tracking

systems (two way locked Doppler measurements, Delta-DOR, ranging etc.) and communica-

tion. The network is synchronized with a timing system such as GPS. Orbit determination

and tracking is performed in ground station networks only when the uncertainty in the orbit

of the satellite is small enough for locked tracking. A second system is required to provide

this low uncertainty estimate of the orbit to the ground station network.

Scheduling and tracking algorithms form a second domain of research of spacecraft op-

erations with networks. Over the past two decades, there has been analysis and develop-
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ment of algorithms in single satellite scheduling [56, 45, 57, 53], multiple satellite scheduling

[58, 59, 60] and on multiple satellite scheduling through inter-satellite communication links

[61, 62]. The scheduling algorithms range from linear programming solutions to maximize

data down-links [58, 57], genetic algorithm approaches [60], greedy algorithm approaches

[45, 58] and probabilistic analyses [53].

I.1.3 Magnetometer Interference Cancellation

Due to the structural and noise constraints, methods for CubeSat magnetometry has shifted

focus to shielding, usage of shorter booms, analysis using single and multiple sensors either on

or near the spacecraft to estimate spacecraft noise behavior, and to choose either a sensor or

a combination of sensors with minimum spacecraft magnetic field interference [30, 63, 64, 65].

Methods for magnetometer calibration and interference mitigation can be broadly clas-

sified into two areas of science measurements with large spacecraft and spacecraft attitude

control. For science measurement, there are a variety of approaches to time-varying non-

orthogonality corrections and spacecraft maneuver corrections for shielded spacecraft or

spacecraft with a boom [66, 67, 68] and the second involves magnetometer calibration for

spacecraft attitude control [69, 64, 70, 71, 65]. Leinweber [66] performs and updates detailed

approaches for magnetometer error modeling (offsets, non-orthogonality, spin calibration,

calibration using an EDI etc) but do not consider time-varying spacecraft interference. Re-

cent work by Bromund et. al [72] builds on [66] and takes temperature calibration into

account for magnetometer calibration.

Sheinker and Moldwin [30] present adaptive calibration with no reference magnetic field

but under the assumption that the interference in one magnetometer is C times the interfer-

ence of the other, for some constant C and assume independent and identically distributed

noise behavior and calibrated sensors.
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Crassidis et. al and Foster [65, 69] perform magnetometer calibration by considering

only magnitude variations and compute non-linear least squares estimates. Springmann and

Cutler [64] extend this approach to include time-varying bias from spacecraft currents and

apply it to RAX spacecraft data [73]. They model significant current effects assuming a

linear interference variation with dominant currents in the spacecraft and perform on-orbit

calibration using a reference magnetic field (IGRF). They also assume that the interference

is independent and identically distributed.

I.2 Thesis Statement

We propose solutions to the problems detailed in the preceding section based on a thesis on

the versatility of machine learning:

“Learning systems can be used to solve complex non-linear and stochastic problems in

space systems with elusive solutions by building precise connections to learning theory result-

ing in novel capabilities and understanding.”

I.3 Proposed Approach

Machine Learning has become a ubiquitous tool providing solutions to complex real-world

problems in many diverse areas such as health-care, climate science, financial systems, com-

munications, and fundamental physics. Taking advantage of improved predictability with

large amounts of high-dimensional data, machine learning has become a pervasive and ver-

satile method.

We take advantage of the expressive powers of kernel methods in machine learning to

provide solutions to orbit determination and interference cancellation [74]. In the orbit de-
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termination problem, we take advantage of the ability of kernels to represent probability

distributions and continuous functions. For interference cancellation, we use kernel based

bandit approaches to overcome the significant constraints associated with CubeSat magne-

tometry.

I.3.1 Orbit Determination

Thus, in this thesis, we present a novel and general approach to orbit determination that is

a batch method (all data are provided at once) which trades off computational complexity

for significantly weaker observational requirements. The only requirements imposed are

regularity of the observation and output spaces, observability over finite time and availability

of observations sufficient to guarantee observability. This approach is applicable to both

cooperative and uncooperative observational methods for orbit determination of general

objects. It can be implemented by existing measurements systems as well as low-cost ground

station networks that meet the relaxed requirements.

We propose a machine learning approach to estimate both the source of the observations

and the corresponding orbital parameters. When the dynamic system of the orbital objects

is observable, we show that the probability distribution from which the measurements are

observed has a continuous map to the orbital parameters. Recent machine learning literature

has dealt with the idea of distribution regression, where one is interested in learning a map

from probability distributions to parameters. We introduce an extension to this problem,

which we name mixture distribution regression, to estimate maps from samples of a mixture

probability distribution.
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I.3.2 Network Architecture

We construct a network architecture, scheduling and tracking algorithms to enable orbit de-

termination. The network architecture uses spectrum monitoring algorithms with software

defined ground stations to collect features of Doppler shift and signal identification that

are used for orbit determination by the machine learning algorithm. We introduce and ap-

proach the new problem of Multiple Satellite Multiple Ground Station (or Multiple Resource)

Scheduling Problem with Orbit Uncertainty (MMSP-OU) with the goal of scheduling for the

purposes of observing network measurements of Doppler shift for orbit determination. We

schedule and track to cover the set over which the initial orbital parameters can vary. We

also introduce coordinated tracking and coordinated antenna pointing for realistic ground

stations where the ground stations in the network aim to produce observations for any orbit

in the uncertainty set.

I.3.3 Magnetometer Interference Cancellation

We consider the problem of minimizing interference with distributed magnetometers and

spacecraft telemetry in the presence of interfering sources that far exceed the number of

sensors. Using distributed magnetometers provides varied points of measurement of the true

magnetic signal and noise throughout the spacecraft (see, for example the TBEx Space-

craft in Figure 1.1). All spacecraft collect some form of real-time telemetry (or context)

information containing different parameters of the spacecraft such as solar panel currents,

temperatures, momentum wheel information, real-time current consumption, etc. When the

true magnetic field is known, it is possible to use telemetry or context information to predict

the expected noise in a given sensor. We assume that there exist some points in time for

which the true magnetic field is known and learn combinations of distributed magnetometer

measurements as a function of telemetry that can minimize interference. We use this learned
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behavior to minimize noise behavior over times for which the true magnetic field is unknown.

We take CubeSat computational constraints into account by restricting the number of sen-

sor combinations that can be accessed and calibrated real time to one and implement low

complexity versions of the learning algorithm. We view this problem as a sequential decision

making problem and show that it can be modeled as a novel machine learning problem of

contextual bandits minimizing simple regret.

Figure 1.1: TBEx Small Satellite with Multiple Magnetometers [1, 2]

I.4 Contributions

This thesis introduces and solves three new problems in space systems in the two areas of

orbit determination and magnetometer interference cancellation. In this process we introduce

and solve two new problems in machine learning: mixture distribution regression and simple

regret minimization for contextual bandits.

In orbit determination (OD), we present a novel formulation of the orbit determination

problem of spacecraft clusters. We show that under broad conditions, the OD problem can be

presented as a new problem of mixture distribution regression and present a two step solution

to the problem. We present convergence properties of the algorithm and experimental results
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for on-orbit spacecraft.

For collaborative orbit determination of ground station networks, we present a ground

station network architecture for orbit determination. We also present scheduling and tracking

algorithms for spacecraft when the orbits are uncertain. For tracking, we present three types

of tracking algorithms based on the spread and evolution of the orbit uncertainties resulting

in coordinated antenna pointing between the ground stations in the network. We validate

our algorithms on synthetic data simulated for a ground station network.

We formulate the spacecraft magnetometer interference cancellation problem with Cube-

Sat constraints as a new learning problem of simple regret minimization in contextual ban-

dits. We present an algorithm for the learning problem based on theoretical results. We

present results of the learning algorithm behavior for machine learning datasets and for a

dataset based on telemetry gathered from the GRIFEX spacecraft. This work was done in

collaboration with Aniket Deshmukh, my advisors Prof. Clayton Scott and Prof. James

Cutler and my thesis committee member Prof. Mark Moldwin.

I.5 Dissertation Outline

This dissertation is organized as follows. Chapter II presents the approach, algorithm and

experimental results for orbit determination of spacecraft clusters using mixture distribution

regression. The precise development of Chapter II is presented in Appendix A. Chapter III

presents the ground station network architecture, scheduling and tracking algorithms for col-

laborative orbit determination. Chapter IV presents the analysis reducing the magnetometer

interference cancellation problem to a learning algorithm, the contextual gap algorithm for

simple regret minimization with contextual bandits and experimental results on a lab-based

experimental setup.
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CHAPTER II

Kernel Embedding Approach to Orbit Determination

of Spacecraft Clusters

II.1 Introduction

The goal of orbit determination is to estimate a vector representing a "state" of the satellite

to facilitate trajectory prediction. To estimate parameters from a spacecraft cluster using

machine learning, we have a two step approach. We first estimate the spacecraft ID from

which each observation originated using a domain generalization method [75] followed by

estimating the initial conditions of each spacecraft from the source IDs estimated using

distribution regression [76].

In machine learning research, the areas of domain generalization [77] and distribution

regression [78] have received increasing attention in the recent years. In the domain general-

ization setting, the learning system is given unlabeled data to be classified, and must do so by

learning to generalize from labeled datasets that represent similar yet distinct classification

problems. This can be done through a variety of approaches such as adaptive complex-

ity regularization [77, 79, 80], mapping to common feature spaces [81, 82, 83] and transfer
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learning through marginal distributions [75]. In distribution regression, the learning system

learns a map from a set of distributions to a separable Hilbert space where the distribution

is accessible only through its realizations [78, 76]. We will apply these methods to the orbit

determination problem.

The contributions of this chapter are as follows: (1) We present a novel model and method

using techniques recently developed in machine learning to perform orbit determination of

objects in space. (2) We provide conditions under which such a system can be applied. (3) We

present consistency analysis for the concatenated application of marginal transfer learning

and distribution regression. (4) We present experimental results of orbit determination and

classification for two low Earth orbiting satellites. (5) We compare the performance of this

system with existing EKF based orbit determination systems in the presence of noise. (6)

We present a synthetic orbit determination scenario of estimation of the orbit of a lunar

spacecraft (a chaotic system) from one observation station with direction of arrival and

range measurements.

This chapter is organized as follows. Section II.2 states the orbit determination problem,

connects it to a machine learning problem and formally states the machine learning problem

of mixture distribution regression. We present the algorithm for mixture distribution regres-

sion in Section II.3. The consistency analysis of the learning system is presented in Section

II.4. We present a overview of the sampling and estimation architecture, experimental and

synthetic data results in Section II.5. Conclusions are given in Section II.6.

Background on dynamical systems, probability and the machine learning methods used

are presented in Appendix A.1. Appendix A.2 provides a precise description of the orbit

determination problem with visibility constraints. Appendix A.3 provides the mathematical

development connecting orbit determination in the control theoretic setting to a probabilis-

tic setting. The learning theoretic analysis is presented in Appendix A.5. Proofs for the

theorems in Appendices A.3 and A.5 are presented in Appendices A.4 and A.6.
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II.2 Orbit Determination as a Learning Problem

The orbit determination (OD) problem described below with modifications for finite time

observations and measurement uncertainty can be stated as a machine learning problem. We

present the OD problem with these modifications, an analysis connecting OD in the control

theoretic setting to a pure machine learning setting, and the problem of OD of spacecraft

clusters as a machine learning problem.

II.2.1 OD Problem Setting

We consider the problem of orbit determination of a group of spacecraft, called a cluster,

consisting of nS spacecraft using observations from nG sensors (nS ,nG ≥ 1). The spacecraft

in the cluster have identification numbers (IDs) {1, 2, ...,nS } associated with them. The

nS spacecraft have orbital parameters or initial conditions, {Γi}nSi=1, where each Γi belongs

to J̃, the space of orbital parameters. The spacecraft cluster has the initial condition

Γ = [Γ1, Γ2, · · · , ΓnS ] defined on J := J̃ns . Here we assume that the Γ is a realization of

a random variable satisfying the probability distribution PΓ which is known apriori and

represents launch uncertainties, accuracy of pre-launch orbital ephemerides and in cases of

orbit determination of lost spacecraft or space debris, the error accumulation of propagation

from previously known state. With an initial condition Γ, the cluster evolves through time

and its motion can be modeled through a dynamical system1 and we denote the state of this

cluster at time t as Γ̃(t).

There are nG ground sensors that observe the spacecraft cluster over a time period T̃ ⊂

R+. Any observations at ground station j, where 1 ≤ j ≤ nG , of the spacecraft cluster
1 For a detailed description of the dynamical system with modifications for this setting see Appendix

A.1.1.
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will satisfy the system function1 of the dynamical system, defined as Uj(Γ, t) := q0,j(Γ̃(t))

where q0,j is the function that maps the state of the system to the observation. The overall

dynamical system with observations from the ground station network has the system function

U (Γ, t) := [U1(Γ, t),U2(Γ, t), · · · ,UnG (Γ, t)].

The actual measurements from the spacecraft cluster observed over T̃ will be noisy real-

izations of U (Γ, t) for some random times t ∈ T̃. We shall denote the times of measurements

with the random variable TS . The times at which these observations occur is determined by

a probability distribution PTS defined over T̃. A spacecraft i, where 1 ≤ i ≤ nS „ produces sig-

nals over the observation interval T̃ according to the probability distribution PTS ,i . Based on

this, the cluster produces observations of these signals according to the mixture probability

distribution PTS :=
∑
i

πiPTS ,i , where πi is probability of observation produced by spacecraft

i, given that an observation is produced by the cluster. We denote the support of PTS as

T ⊆ T̃.

We denote the observation generated at time TS from spacecraft i will be seen at ground

station j as X j and is a noisy version of Uj(Γi ,TS ). The source spacecraft i generating ob-

servation at time TS is not known to the sensor network and has to be identified. The

observations the sensor network produce at time TS will be denoted by the random vector X ,

for X :=

[
X̃1 X̃2 · · · X̃nG TS

]
defined over the space X. We assume that the probability

distribution of the noise generating X from U , P(X |U (Γi , t)) is known.

In the above setting, the distributions of the random variables are all known and generally,

the function U is known only through a set of differential equations (for exact forms of the

differential equations refer to Vallado [31]). The differential equations of U can be solved for

measurement times TS and hence examples of measurements for different spacecraft clusters

can be drawn.

With this scenario, the orbit determination problem is stated as follows. Given PΓ, PTS ,
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P(X |U ) over the time interval T̃, differential equations for U and nT actual measurements

{X1,X2, · · · ,XnT } from the sensor network, can we estimate {Γi}nSi=1, the orbital parameters

of the spacecraft cluster?

Remarks 1. In reality, the sensor network observations are influenced by the sensor field

of view and the horizon. For the precise problem statement taking visibility and its

effects into account see Appendix A.2.

2. We present the theory with nS = 2 and point to techniques in literature which can be

used to extend the algorithm to general nS .

3. The assumption on the absence of the spacecraft source knowledge associated with

observations is motivated by scenarios that occur with clustered spacecraft deployments

when tracking with Doppler and radar. With Doppler measurements of spacecraft

transmissions, we do not require the transmissions to be decodable nor belong to

different frequency bands (they can overlap). With radar, the individual spacecraft

measurements are not required to be tagged, and do not need to be resolved if they

are very close to one another.

4. Here we assume that the observation vectors {X1,X2, · · · ,XnT } (including the time

stamps) are independent and identically distributed (i.i.d.) from a probability distri-

bution known prior to generation of observations, even though the observations may

be generated sequentially in time. While traditional treatment of dynamic system

observations are as sample paths of random processes, we differ in two aspects: we

consider only finite time treatment and allow for multiple independent sets of sensors

to produce P(X |U ).

17



II.2.2 Observability

When observability conditions are satisfied, the orbit determination problem can be reduced

to the estimation of a map on the space of probability distributions of X. Let BX denote

the space of probability distributions on X. Given the distribution of observations P(TS )

and P(X |U ), the orbital parameter Γ induces a probability distribution P(X |Γ) ∈ BX such

that P(X |Γ) =
∑
i

πiP(X |Γi). The observations of a satellite cluster are i.i.d realizations of

X ∼ P(X |Γ). For all the orbital parameters in J, we denote the map Γ → P(X |Γ) by

µX : J → BX. The range of µX is the set RX := {P(X |Γ)|Γ ∈ J} over which PΓ induces a

distribution ρ.

We make certain assumptions to simplify the nature of the probability distributions in

the system and to avoid pathological cases. We assume the parameter space J̃ and the ob-

servation space X are closed and bounded sets. We assume that the probability distribution

PTS is a continuous probability distribution over the support T ⊆ T̃. We also assume that

the variation of the probability distribution of noise P(X |U (Γi , t)) varies continuously with

the change in the value of U (Γi , t).

The system U is said to be observable over T̃ if the state can be determined from the

output of the dynamical system U (Γ, t) for any Γ ∈ J. For a system without control vectors,

this implies that the initial state can be determined from the outputs. We can state the

following equivalence between observability and the invertibility of µX :

Theorem A. Under the assumptions stated, U is continuous and observable in T if and

only if the inverse map µ−1
X : RX → J exists and is continuous over the closed and bounded

set RX ⊆ BX.

For precise statements of the assumptions and the preceding theorem, for the proofs and

for extensions of Theorem A taking the field of view of the sensors into consideration, see
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Appendix A.3.

Since the dynamical systems under consideration for the orbit determination problem

are continuous, the above theorem states that if U is observable there exists a function

λ := µ−1
X from a subset of BX to the orbital parameters. The existence of this function holds

under broad conditions for both the input and observation space. As a consequence, this

theorem holds for all the various the formulations used for U (Lagrangian, Hamiltonian,

etc.) and their corresponding orbital parameters (Keplerian, equinoctial, position-velocity

and Poincare elements).

In the presence of a general estimator for maps from probability distributions to param-

eters that is independent of a dynamical system construction, Theorem A has significant

implications. For a general set of observations, such an estimator can be used as a black

box and would provide an experimental approach for verifying observability. Additionally,

for any non-linear dynamical system formulation for which observability can be proven, the

construction of a new estimator based on the dynamics is not necessary and the generalized

estimator can provide initial estimates of the orbital parameters that independent of geo-

metric or dynamical system considerations. Next, we propose such a general non-parametric

technique to estimate the map λ that is independent of the formulation of U , the orbital

parameters used and the type of observations.

II.2.3 Machine Learning Setting

We propose to estimate the function λ through a machine learning approach. While direct

description of the probability distributions P(X |Γ) is not possible, it is possible to generate

realizations of example orbital parameters from PΓ and generate example observations of

a spacecraft cluster propagation. Using this, we generate training data in the following

fashion: We synthetically generate J example deployment scenarios/tasks where for scenario
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j, 1 ≤ j ≤ J , we first sample the initial condition Γ(j) of the cluster, propagate the cluster

to generate observations and spacecraft IDs associated with the observation, {X (j)i ,Y
(j)
i }

nj
i=1.

Using these J scenarios, we will train a learning algorithm to estimate the initial conditions

for the test scenario ΓT using only the observations {XT
i }

nT
i=1.

Using the training data, we now consider the problem of estimating λ as a machine

learning problem. As described in the preceding subsections, we have an observation space

X and a parameter space J̃ and BX as the space of probability distributions on X. For

i, 1 ≤ i ≤ nS , the orbital parameter Γi of spacecraft i induces a distribution Pi := P(X |Γi)

on X. Given a realization (an example set of orbital parameters) Γ, there exists a mixture

distribution P(X |Γ) :=
∑
i

πiPi for which observations are seen at the sensors.

We are given J realizations of this system as training data. Specifically, we are given

Γ(j)
i.i.d∼ PΓ, 1 ≤ j ≤ J and realizations from the mixture distribution P (j) with mixture labels:

{(X (j)i ,Y
(j)
i )}

nj ,J
i=1,j=1, where Y (j)i ∈ {1, 2, · · · ,nS } is the ID of the spacecraft from which X (j)i is

produced.

Separately, we are also given observations from a test scenario, PT , {XT
i }

nT
i=1 for which the

orbital parameter ΓT is not known. We desire to learn the function r : PT → Γ̂T such that

‖ΓT − Γ̂T ‖ → 0. We assume a natural ordering in the components of the mixture distribution

PTi , 1 ≤ i ≤ nS i.e., it is possible to label each component of the mixture and identify the

labels from the mixture distribution.

The goal is to learn the function r := [r1, r2, · · · , rnS ] such that ri : BX → J̃, 1 ≤ i ≤ nS ,

to minimize the empirical error

Ê(r ) :=
1

J

J∑
j=1

nS∑
i=1

‖Γ(j)i − ri(P̂
(j))‖2J̃ +

nS∑
i=1

λ2,i ‖ri ‖2. (2.1)

Note that this problem is a distribution regression problem with additional structure present
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in the probability distributions in the form of labels or spacecraft IDs. Next, we present

an algorithm that takes advantage of this additional structure to compute the function r

through a two step process.

II.3 Algorithm

We propose a two step solution to the problem that takes advantage of the spacecraft ID

information available in the mixture distribution P(X |Γ). We name this method as mixture

distribution regression. We are given training data of the form {{X (j)i ,Y
(j)
i }

nj
i=1, Γ

(j)}Jj=1, which

is separated into two parts of sizes Jtl and Jdr with J = Jtl + Jdr . The first part of the training

set of size Jtl is used to train a learning system that can ID the spacecraft associated with

each individual observation. This identification is performed using marginal transfer learning

(also called marginal prediction) [75]. We use a modified form of the marginal predictor that

provides, for each observation, the probability that it belongs to the different spacecraft

in the cluster. We shall call these probabilities the estimated class posterior probabilities

associated with the observations. The trained marginal predictor is used to compute the

class posterior probabilities for the second part of the training data, Jdr . Spacecraft IDs or

labels are then randomly assigned based on sampling from the class posterior probabilities.

We shall use the term predicted labels or predicted IDs to distinguish the randomly sampled

versions from the true spacecraft IDs. The true labels of the second part of the training data

are discarded. In the next step, nS distribution regression learning problem is solved such

that the ith, 1 ≤ i ≤ nS regressor is trained with estimated class conditional distributions of

spacecraft ID i generated from the predicted labels.

For the rest of this chapter, we will describe the algorithm in the two class setting,

nS = 2, without loss of generality. Both marginal prediction and distribution regression learn

continuous functions using kernels.
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We define the kernel as a function k : X × X → R that is symmetric and positive

definite. When X is a compact metric space, such as a closed and bounded subset of Rd

(d-dimensional Euclidean space), it is possible to approximate continuous functions on X

and capture a probability distribution on X using functions generated by the kernel. The

functions generated by the kernel lie in a function space known as reproducing kernel Hilbert

space (RKHS). This RKHS, Hk , consists of the completion of the set of functions of the form

f (X ) =
∑
i

αik(Xi ,X ) for X ∈ X,αi ∈ R. The kernel and the functions in the RKHS satisfy a

reproducing property:

f (X ) = 〈f ,k(X , ·)〉H,∀X ∈ X.

Using the RKHS, it is possible to capture a probability distribution P on X as a function,

called the mean embedding of P , defined as

ϕ(P) :=

∫
X
k(x , ·)dP(x).

Kernels and the RKHS can be defined on more general spaces than compact subsets of Rd .

Marginal prediction and distribution regression require three particular extensions 2:

1. It is possible to define a vector extension to kernels such that the kernel describes a

function with a vector output (say Rd). Such a kernel would map to the space of linear

operators on Rd , i.e., Rd×d .

2. It is possible to define kernels on the space of embeddings of probability distribution

on X. Let ϕ(BX) be the image of BX under the map ϕ. We can define a kernel on

ϕ(BX), K : ϕ(BX) × ϕ(BX) → R with the RKHS, HK .

3. We can define a vector kernel on embeddings of BX to the space of linear operators on
2For a brief overview of transfer learning and distribution regression see Appendix A.1.3
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on Rd , i.e., Rd×d .

For the marginal predictor or transfer learning system [75] we define the three kernels:

• Kernel k : X ×X → R for embedding probability distributions on X. Hk is the RKHS

associated with k. A probability distribution P ∈ BX can be embedded in Hk as

ϕP := ϕ(P) :=

∫
X
k(·,x)dP(x)

• Kernel K : ϕ(BX)×ϕ(BX) → R a kernel operating on the embeddings of BX with RKHS

HK . We shall denote the feature vector associated with kernel K as ΨK .

• Kernel k′ : X ×X → R a kernel operating on data points in X in the extended feature

vector with RKHS Hk ′.

Using kernels K and k′, we define the product kernel kP : (BX × X) × (BX × X) → R as

kP := K · k. Let HkP be the RKHS associated with the kernel kP . Denote the finite version

of a probability distribution P as P̂ . With the first part of the training data, the marginal

predictor computes the function д̂,

д̂ = arg min
д∈HkP

1

Jtl

Jt l∑
j=1

1

nj

nj∑
i=1

`(д(P̂ (j),X (j)i ),Y
(j)
i ) + λ1‖д‖2.

We will use logistic regression as the loss function: `(t ,y) = ln(1+ exp(−yt)). Instead of hard

classification as proposed in [75], we estimate the posterior probabilities of the spacecraft

IDs for samples from the test distribution PT with samples {XT
i }

nT
i=1 as (note that nS = 2)

P̂(YT
i = 2|XT

i , P
T ) = 1

1 + exp(−д̂(PT ,XT
i ))
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and P̂(YT
i = 1|XT

i , P
T ) = 1 − P̂(YT

i = 2|XT
i , P

T ). The preceding estimate of the posterior

probability holds because marginal transfer learning can be seen as classification in the

extended feature space X × BX and the class posterior can be computed for classification

problems using logistic regression [75, 84]. Using the preceding set of equations, for each

task j in the second part of the training dataset, the posterior probabilities are sampled

to generate labels {Ŷ (j)i }
nj
i=1. The distribution regression system [76] requires two additional

kernels.

• Kernel k̄ : X × X → R for embedding the probability distributions on X with RKHS

Hk̄ .

A probability distribution P ∈ BX can be embedded in Hk̄ as

ξP := ξ (P) :=

∫
X
k̄(·,x)dP(x)

• Vector kernel K : ξ (BX) × ξ (BX) → L(J̃) for regressing from the embedding on Hk̄ . K

has the RKHS HK. We shall denote the feature vector associated with kernel K as ΨK .

The predicted labels {Ŷ (j)i }
nj
i=1 for each task j from the second part of the training data

are used to estimate the nS probability distributions. The kernel k̄ is used to compute the

mean embedding for the distribution of data estimated to be from the first spacecraft Y = 1

as

ĥ1(P̂ (j)) :=
1

n̂j,1

nj∑
i=1

1{Ŷ (j)i =1}k̄(X
(j)
i , ·),

where n̂j,1 :=

nj∑
i=1

1{Ŷ (j)i =1}.

The conditional embeddings generated from the application of transfer learning, {ĥ1(P̂ (j))}Jt l+Jdrj=Jt l+1,
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are used as training data for a distribution regression system minimizing the empirical loss

Ê(r1 ◦ ĥ1) :=
1

Jdr

J∑
j=Jt l+1

‖Γ(j)1 − r1(ĥ1(P̂ (j)))‖2J̃ + λ2,1‖r1‖2, (2.2)

to estimate the orbital parameters for the spacecraft with label 1 i.e., Γ1. The second pa-

rameter Γ2 is estimated similarly, using predicted labels of spacecraft ID 2. The detailed

algorithm is described in Algorithm 2.1.

Algorithm 2.1: Mixture Distribution Regression

Input: Training Data {{X (j)i ,Y
(j)
i }

nj
i=1, Γ

(j)}Jj=1, test data {X
T
i }

nT
i=1.

1 Train marginal predictor with training data {{X (j)i ,Y
(j)
i }

nj
i=1}

Jt l
j=1

2 for j = Jtl + 1, Jtl + 2, ..., J do

3 for i = 1, ...,nj do

4 Compute class posterior distribution

P̂ (j)
Y |X ,i := [P(Y (j)i = 1|X (j)i ), · · · , P(Y

(j)
i = nS |X

(j)
i )].

5 Sample Ŷ (j)i ∼ P̂ (j)
Y |X ,i .

6 end

7 Compute Embeddings of {P̂(X |Γ(j)y )}nSy=1

8 end

9 for y = 1, 2, ...,nS do

10 Train Distribution Regression to compute r̂y.

11 end

12 For test data {XT
i }

nT
i=1, predict labels {Ŷ

T
i }

nT
i=1.

13 Use {ŶT
i }

nT
i=1 to compute class conditional embeddings {ĥy(P̂T )}nSy=1.

14 Use Distribution regression with {ĥy(P̂T )}nSy=1 to compute (Γ̂T1 , Γ̂T2 , ..., Γ̂TnS ).
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II.4 Learning Theory

The data observed during actual measurements are not exactly represented by finite training

data (J < ∞). This approximation leads to an error in the learning behavior, known as

generalization error. We provide high probability upper bounds on the generalization error

for mixture distribution regression. We show that under certain regularity conditions, as the

amount of training data increases, the generalization error decreases under non-asymptotic

conditions and goes to zero with high probability under asymptotic conditions.

We present generalization error bounds for a soft label version of mixture distribution

regression where the estimated class posterior distributions are directly used for computing

the embeddings associated with the labels (instead of random sampling of labels as discussed

in section II.2.3). Standard probabilistic arguments can be used to show that as nj →∞, the

random sampled version approaches the soft label version of mixture distribution regression.

For generalization error bounds, we make the following boundedness and smoothness

assumptions on the parameters of the learning algorithm.

1. The observation space X and the parameter space J̃ are closed and bounded sets.

2. A kernel k is said to be universal if the functions in the RKHS associated with the

kernel can approximate any continuous function to arbitrary precision. We assume

that the kernels used for mixture distribution regression are universal, bounded and

Hölder continuous.

3. The loss ` is the logistic loss.

4. There exists a map from the marginal distribution P(X |Γ) to the class posterior distri-

bution P(Y |X ).

26



The preceding assumptions are essential to constrain the learning algorithm to operate in

well-behaved function spaces. Additionally, the assumptions that constrain the behavior of

the input and output data (Assumptions 1 and 4) are broader than those that are specific to

the OD problem stated in Section II.2.2. The observation and parameter space constraints

in Assumption 1 are required for high probability measure concentration behavior of data,

allowing learning behavior. Assumption 2 is required for accurate representation of contin-

uous functions and probability distributions using the RKHS. Assumption 3 is necessary

for accurate extraction of individual mixture components from the mixture distribution (See

self-calibrated loss functions in [84]). Assumption 4 is required for application of Assumption

3 in the marginal transfer learning setting.

We denote by Stl and Sdr , the generalization errors of marginal transfer learning and dis-

tribution regression. Blanchard et. al [75] and Szabó et. al [76] provide generalization error

bounds and consistency analysis for transfer learning and distribution regression respectively.

We provide generalization error bounds in terms of generalization errors of the the

marginal transfer learning system and distribution regression. Let h∗i denote the optimal

solution of marginal transfer learning system for spacecraft ID i, i.e., the kernel embedding

associated with the class conditional distribution P(X |Γi) and let r ∗i denote the optimal so-

lution for the distribution regressor: the map from h∗i to Γi . We show that under certain

regularity conditions that are satisfied for the orbit determination scenario, as Jtl → ∞ and

Jdr →∞, generalization error E(r̂i ◦ ĥi) − E(r ∗i ◦ h∗i ) → 0.

The novelty and complexity of the proof comes from two areas. First, there is additional

noise in the data for the distribution regression system that changes with increase in training

data for the marginal transfer learning. Second, in the marginal transfer learning system,

the logistic regression outputs are used to reconstruct embeddings of the class conditional

distributions.
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Theorem B. For the mixture distribution regression setting, under the stated assumptions,

for δ > 0,

E(r̂i ◦ ĥi) − E(r ∗i ◦ h∗i ) ≤ C1Sβtl +C2Sβ/2tl
+C3

(√
log δ−1

Jdr
+ Stl

)β
+ 4Sdr ,

holds with high probability for constants C1,C2,C3 and β.

For precise statements of the assumptions and Theorem B see Appendix A.5. For the

complete proof of Theorem B see Appendix A.6.

Theorem B states that as long as the dynamical system of spacecraft cluster is observable

by the sensor network, it is possible to estimate the orbital parameters of each spacecraft in

the cluster with high probability to arbitrarily small error with sufficient amount of training

data. Additionally, with sufficient amount of training data, this orbit determination can be

performed even under weakly observable scenarios. The only limitations on the uncertainty

distribution PΓ is that it’s support has to be bounded.

II.5 Results and Discussion

We consider four scenarios to test different aspects of the orbit determination system. The

first is based on Doppler-only orbit determination and the last three on direction of arrival

and range information. We present results with Doppler information collected by cogni-

tive radio based algorithms on software-defined ground stations from on-orbit transmissions

of MCubed-2 and GRIFEX spacecraft testing algorithmic behavior with high-noise, low-

observability conditions. We then discuss the results for a simulated on-orbit deployment

scenario of two spacecraft testing identification and orbit determination of satellites in a

TLE lottery. The third scenario considers a lunar orbit where we test algorithmic behavior

with a chaotic system. In the fourth scenario, we perform a comparison of a traditional or-
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bit determination system based on the EKF with the proposed machine learning technique.

Last, we shall discuss and provide comparisons of the different scenarios.

We present results with one and two ground stations. The mathematical theory is broad

enough to allow for networked ground stations with multiple types of sensors, however, we

shall leave this for future work. We begin with details of the system architecture for single

ground station scenarios.

II.5.1 System Architecture

The general architecture of the sampling and the orbit estimation system is shown in Figure

2.1. The prior PΓ, which represents the uncertainty of orbit parameters for learning, can be

constructed either from launch characteristics and launch sequencing or from uncertainties

in pre-launch TLEs. There are no limiting factors to PΓ other than those described in Section

II.2.2. It is necessary for the orbital elements used in this system to have parameters that

are independent of each other in order to reduce computation requirements for training in

the orbit determination step, since the kernel operator can be diagonal. The time sampling

characteristics PT |z and the noise characteristics PX |F of the measurement system z must be

estimated prior to generation of training data for the orbit determination. This estimation

will depend on the deployment scenario. We provide examples of this for the Doppler-only

orbit determination technique in Section II.5.2.

Sample generation is split into two subsystems: the propagator and the observer. The

propagator generates samples of the dynamic systems U and V at sample time points. The

dynamic system must be unbiased in its generation of data and its error must be bounded.

This holds as long as the errors in the spherical harmonic coefficients of the gravity model

are bounded and do not have a constant bias error. We present test scenarios with two prop-

agators: SGP4 and an analytical propagator with a numerical integration-based set up. The
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propagator sample time points are generated disregarding visibility and sensitivity informa-

tion of the ground station. The observer system then combines the visibility information,

the sensitivity information, and noise to generate samples X from P(X |Γ) and the spacecraft

id labeled 1, · · · ,nS as detailed in Section II.2.

The learning system depends on the number of spacecraft. In the single spacecraft

scenario, this training information is then fed to the two stage sampled regression for orbit

determination. In the multiple spacecraft scenario, Jtl orbit distributions are first used to

train the marginal predictor. The rest of the samples are then classified using the marginal

predictor and then used to train an nS bank of regressors, one for each spacecraft. As shown

in Section II.4, this is necessary in the scenarios where identification of the spacecraft is not

straightforward. Even though the marginal predictor with logistic regression is not sparse

[84], the number of training scenarios for the marginal predictor, Jtl has been observed to

be significantly lower than that of distribution regression Jdr to achieve low error for the

spacecraft cluster datasets under consideration. Except for the serial behavior in training

for the marginal predictor and the regressor, the system is entirely parallelizable. In fact,

even though training for nS regressors have to be performed, the number of kernel evaluations

are equal to that of a single large regressor with all the data points. For the transfer learning

system, to speed up evaluation, we used a random Fourier feature based transfer learning

system proposed in Blanchard et. al[85]. The distribution regression system consisted of 13

hyper parameters: 6 for the kernel bandwidths of the embeddings, 6 for higher RKHS K (as
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in equation (2.3)) and one for the regularizer.

K =



Kγ̃1 0 0 0 0 0

0 Kγ̃2 0 0 0 0

0 0 Kγ̃3 0 0 0

0 0 0 Kγ̃4 0 0

0 0 0 0 Kγ̃5 0

0 0 0 0 0 Kγ̃6



(2.3)

Grid search with 5 fold cross validation was used for training. The Michigan High-

Performance Cluster was used for training and testing. Preprocessed orbit feature vectors

can then be fed into this system to perform orbit determination of the set of spacecraft. The

preprocessing steps are dependant on the type of feature vectors used for orbit determina-

tion. In addition to the experimental results presented for the two spacecraft (MCubed-2

and GRIFEX), we also generate additional identically distributed sampling data to test per-

formance of the system. For the direction of arrival and range (DOAR) systems we provide

only synthetic results with data generated from analytical propagators.

II.5.2 Doppler-Only OD

The approach detailed in Section A.3 states that if observability criteria are satisfied, then

Doppler information alone should be sufficient to perform orbit determination of spacecraft.

While analytical verification of observability for Doppler based observations is highly com-

plex and non-trivial, the approach detailed can be used to verify observability through the
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ŷ = 2

Field Mea-
surement

Preprocessing

{γi}Ntl+Ndreg

i=1

{t} ∈ T̃

{U(γ, t)}

{V (γ, t)}

{Xij , Yij}Ntl,ni

i=1,j=1

Training

{Xij}Ndreg+Ntl,ni

i=1+Ntl,j=1Test
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1Figure 2.1: System Architecture

performance of the learning system.

We run orbit determination for two low Earth orbit spacecraft - MCubed/COVE-2 and

GRIFEX [86, 87, 88]. Their orbits were determined over an interval spanning 4 passes

for MCubed-2 and 3 passes for GRIFEX at the Ann Arbor ground station. This analy-

sis was performed using extracted Doppler data from actual passes. Both satellites have

UHF telemetry channels at 437.485 MHz and transmissions at 9600 bps, GMSK modulated

waveforms. These transmissions will only be decodable when received energy per bit over

noise crosses 13dB. However, decodability and identifiability are not a requirement for the

proposed orbit determination technique.

Cognitive radio approaches in blind cyclostationary feature extraction [89] were used to

extract Doppler, time, and data rate information. These algorithms were applied over record-

ings of raw, high-rate sampled data from an experimental, software-defined radio (SDR)

based ground station. Complex baseband recordings were made of satellite transmissions

with this SDR system for passes over Ann Arbor over a 6 hour interval starting at 23:00:00

UTC on 9 Feb. 2016. The recordings were limited to predicted intervals around passes
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based on training data due to large file sizes of the recordings. Figure 2.2 shows an example

recording for an MCubed-2 pass. Note the variation in received power is due to oscillations

in pointing attitude.

Appropriate FIR filter banks were used on the baseband signal to filter the software

defined radio harmonics and known constant frequency out of band RF transmissions such

as those seen around the 380 second marks at 437.504 MHz. Note that we do not assume the

presence of prior orbit information accurate enough to use directional antennas to decode

signals associated with the spacecraft. A low-gain wide-beam antenna can be used to collect

raw spectral information to extract parameters associated with transmissions. The raw RF

baseband signals recordings also consisted of noise due to transmissions to the spacecraft

from the ground station, which were eliminated using power thresholding (RF leakage for

500 W transmissions were at least 30 dB higher than beacons due to attenuation). CubeSat

modulated telemetry transmissions at 9.6 kbps which was used to isolate Doppler of the

spacecrafts [90]. Due to trivial classification requirements, data was manually classified

before feeding into the orbit determination system.

Bias Correction For the learning algorithm to operate as expected the experimental and

training data offsets should be identical. However, due to implementation issues, there were

specific communications system characteristics both on the spacecraft and on the ground

station which resulted in bias in the recorded data. On the satellite, temperature variations

and imperfect frequency calibration transmission center frequency led to frequency bias. On

the ground, there was a varying initial timing bias during the initialization of each recording

(one recording per pass during the 6 hour interval). This was due to coding inefficiencies

and speed in writing the large data ( 3 gigabytes for 10 minutes) to the file system.

The frequency bias was corrected with two frequency offset corrections - one for MCubed-

2 and one for GRIFEX. The offsets were corrected by computing frequency offsets of a prior
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pass with similar spacecraft temperatures. The timing bias was corrected with 7 time offset

corrections for the 7 recording intervals (4 for MCubed-2 and 3 for GRIFEX). The time offsets

were corrected by computing the time offset with respect to the TLE of the spacecrafts to

align the points of maximum Doppler. The time offset corrections varied from 0 to 8 seconds.

No other changes to the recordings were performed prior to extraction of features. Figure

2.3 shows an example of the extracted features and the JSpOC (Joint Space Operations

Command) TLE post bias correction.

We do not expect to face this bias correction issue in future deployments of the orbit

determination technique as center frequency behavior will be characterized prior to launch

and the cognitive radio algorithms will be integrated into real-time operational software

instead of being implemented over recordings in this experimental fashion.

Figure 2.2: MCubed-2 Raw RF Baseband Recordings from 02-10-2016 at 01:20:24 UTC

The dynamic system for U and V used throughout this scenario is the SGP4 propagator.

The learning systems are trained to estimate orbital elements specifically designed for TLE

generation (not classical elements) and simplified propagators. U consists only of Doppler

information and V consists of horizon information for the training data.
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GRIFEX Orbit Determination

GRIFEX orbit state was estimated from raw baseband RF transmission data observed over

3 passes and received during nominal operations. The priors were chosen to provide a

sufficiently wide region of initial states to test orbit estimation. The prior PΓ is

A ∼ Re +U (525, 555) km, e ∼ U (0.012, 0.017),

Ω ∼ U (120◦, 130◦), I ∼ U (96◦, 101◦),

ω ∼ U (185◦, 200◦), M = U (35◦, 50◦).

PΓ results in a variance in initial position of 765 km. Samples of 4000 orbits were used for

training with the two stage sampled regressor ( 1.35×106 feature points in total). For testing

purposes, in addition to the data acquired from on orbit transmissions, additional training

data was generated with 200 test orbits for evaluation of the parameters from additional

i.i.d samples. The noise distribution P(X |F ) was chosen to be uniform with a width of 200
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Hz, similar in behavior to the noise from the Doppler observations. GRIFEX produces

beacons and transmissions approximately every 10 seconds with an arbitrary initial offset

(depending on operational characteristics) along with spacecraft responses due to nominal

operations in between. We approximated the resulting transmission time-stamp distribution

with a uniform distribution over T̃.

From raw baseband signals, 534 feature vectors were extracted over 3 passes. The relevant

TLE orbital parameters for the JSpOC TLE and the estimated values are shown in Table

2.1. The 200 additional simulated test orbits were also tested for orbit determination. The

normalized errors in orbital elements for the 200 simulated test orbits for GRIFEX are shown

in Figure 2.4 (normalized by the width of the support of the prior distribution). The radial,

along-track and cross-track (RSW) and total errors for each of the test orbits are shown in

Figure 2.5. Orbital elements were estimated for the epoch 01:00:00 2016/2/10 UTC.

Table 2.1: Two Line Element Parameters of the GRIFEX spacecraft.

A(km) e I(deg) Ω(deg) ω(deg) M(deg)

True (JSpOC Est.) 537.663 0.0152 99.089 123.2705 194.6996 40.8253

Estimated 534.673 0.0167 98.43 122.709 191.4 43.7795

The error in estimated initial position for the GRIFEX spacecraft is 30.05 km. The

average error for the 200 test orbits was 47.24 km. The error magnitudes of the simulated

test orbits are of the same order as that of the experimental data indicating that the fidelity

of the training and test models mirror those of experimental data. Note that radial and

cross-track errors are significantly lower for Doppler based observations. This is expected

as along track information can be gained only through subtle changes in the Doppler curve

when working with Doppler based observations and does not change the length of the passes

or time between passes. Changes in radial information can be observed as it leads to changes

in total variation of the Doppler curves and the timing between passes, resulting significantly

better estimates. Changes in cross-track information leads to changes in the length of the
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passes and total variation of Doppler of the different passes for low Earth orbits.
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Figure 2.4: Normalized errors of orbital parameters of test orbits based on GRIFEX Priors

MCubed-2 Orbit Determination

MCubed-2 orbit determination was performed with data extracted over 4 passes. The priors

for MCubed-2 were chosen to have smaller widths compared to the GRIFEX scenario for

variations in RAAN and the argument of perigee to test for changes to estimation behavior

while keeping the number of training data points approximately equal. The prior PΓ used is
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as follows.

A ∼ Re +U (635, 665) km, e ∼ U (0.025, 0.03),

Ω ∼ U (200◦, 205◦), I ∼ U (117◦, 122◦),

ω ∼ U (65◦, 70◦), M = U (223◦, 233◦)

PΓ results in a variance in initial position of 448 km. The training and testing setups were

similar to GRIFEX. Samples of 4000 orbits were used for training the two stage sampled

regressor ( 1.31 × 106 feature points in total) and 200 additional orbits were sampled for

testing. The noise distribution P(X |F ) was chosen to be uniform with a width of 200 Hz.

The probability of sampling in time were reduced corresponding to the behavior of MCubed-

2.

MCubed-2 produces beacons approximately every 20 seconds with an arbitrary initial

offset (depending on operational characteristics). The power levels of these beacons are

modulated by the relative orientation of the antennas of the spacecraft and the ground

(this can be seen in Figure 2.2). We reduce the sampling complexity of this distribution for

training data generation by approximating it with a uniform distribution through T̃ which is

then selected by the horizon O. A total of 294 feature vectors were extracted over four passes

for orbit determination. Table 2.2 shows the TLE estimated elements versus the estimates

from the machine learning algorithm. In addition to the data acquired on orbit, additional

data was generated for 200 test orbits for evaluation of the parameters. Figure 2.6 shows

the normalized errors for each orbital element for the test orbits for MCubed-2 (normalized

by the width of the support of the prior distribution). Orbital elements were estimated for

the epoch: 23:00:00 2016/2/09 UTC.

The error in estimated initial position for the MCubed-2 spacecraft is 61.91 km. The
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Table 2.2: Keplerian elements of the MCubed-2 spacecraft.

A(km) e I(deg) Ω(deg) ω(deg) M(deg)

True (JSpOC Estimates) 644.611 0.0273 120.493 201.978 67.501 225.47

Estimated 640.892 0.031 119.26 204.26 67.96 226.23

average error over the test orbits was 22.76 km. The RSW and total errors for the test orbits

are shown in Figure 2.7. Note the improvement in estimation of the RAAN, inclination,

mean anomaly and the semi-major axis and the RSW errors as compared to the estimates in

GRIFEX. This is likely due to increased eccentricity, time of observation and decreased total

variance in the initial position of the prior. This may also point to increased observability of

parameters. Connections of observability metrics of this system to convergence bounds on

learning algorithms should be explored in future work.
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Figure 2.6: Normalized errors of orbital parameters of test orbits based on MCubed-2 Priors
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Figure 2.7: RSW Position Errors of test orbits based on MCubed-2 Priors

II.5.3 Position Based OD

We now present the results for a synthetic dataset simulating post deployment orbit determi-

nation of two spacecraft using position (direction of arrival and range data) from two ground

stations (Ann Arbor and Chicago). This scenario simulates a TLE lottery, and shows that

direction of arrival and range features from a noisy RADAR based system can be used to

perform identification of the spacecraft based on orbit injection sequence in addition to orbit

determination. It also demonstrates indirect generation of the priors of the spacecraft. The

algorithm performs both the classification and regression tasks for orbit determination of

both spacecraft. The sequence of deployment results in sample information for the classifi-

cation algorithm to identify the different spacecraft. We shall first describe the details for

generation of PΓ and the propagators used, then describe the learning system and provide

results.

Sampled Data Generation

The priors PΓ for this scenario are not directly generated and require simulation of deployment

scenarios. First, samples are drawn for a deployer spacecraft with the following distribution

on orbital parameters:
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A ∼ Re +U (650, 750) km, e ∼ U (0.03, 0.04),

Ω ∼ U (0◦, 5◦), I ∼ U (70◦, 75◦),

ω ∼ U (350◦, 360◦), M = U (300◦, 310◦)

Two spacecraft are then deployed from the deployer spacecraft. The first spacecraft is

provided with a change in velocity (∆v) of -0.5 m/s along the direction of velocity of the

deployer. The second spacecraft is inserted 200 s after the first one and is provided with a

∆v of +0.5 m/s along the direction of velocity of the deployer to allow the two spacecraft to

separate. For both spacecraft, an additional 1.25 m/s is provided in the plane perpendicular

to the velocity of the deployer in a direction drawn at random in this plane. The deployments

cones of the two spacecraft from the deployer body fixed frame are as shown in Figure 2.8.

The two spacecraft are then allowed to separate by a few km by propagation of their states

for 6 hours to simulate passes of multiple small spacecraft whose positions can be resolved

by a RADAR system. The distribution of the two spacecraft states at the 6 hour epoch is

PΓ. The training and test distributions are generated the same way.

sc1 deploy cone 

sc2 deploy cone 

Figure 2.8: Deployment cones of spacecraft 1 & 2
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The analytical propagator used to propagate the two spacecraft worked with the EGM96

gravitational model for spherical harmonics. Coefficients up to 4th order harmonics were

taken into consideration along with precession and nutation characteristics, to provide suf-

ficient model fidelity for the synthetic data. The time synchronization errors between the

two ground stations were assumed to be negligible resulting in one time-stamp per measure-

ment. The resulting feature vectors were direction of arrival and range information from

both ground stations and the time-stamps. This synthetic data generated is similar to those

generated by a bi-static RADAR, and therefore, measurements are generated only when the

two spacecraft are in the horizons of both the ground stations. Noise in measurement (PX |F )

of 0.1◦ was added for azimuth and elevation measurements and 1 km for range measurements

at both ground stations, which is generally greater than in practical systems, to test robust-

ness to noise. Data for a total of 4700 orbits were generated. Around 70 feature vectors were

generated per orbit per spacecraft for the training datasets. The total variance in initial

position was 966 km for each spacecraft. The average separation of the two spacecraft at

the epoch for orbit state estimation is 74.92 km.

Learning System

The first 500 orbit datasets were used along with identifiers for spacecraft to train the

transfer learning system. A random Fourier feature approximation based transfer learning

approach was applied to improve speed of training the data [85]. The performance of the

algorithm was contrasted against its performance with the traditional logistic regression in

which the data from all the orbits were pooled before classification (pooled classification).

The test system consisted of the remaining 4200 orbits whose datapoints had to be classified.

Traditional pooled classification systems do not work well for direction of arrival data as the

meta-distributions of the two classes can be identical between two different orbit insertion

scenarios. However, if the marginal distribution of both spacecraft is known, as it is for
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Table 2.3: Classification error comparison.

Classification Method % Training Error % Test Error

Transfer Learning 0.48 0.74

Pooled Classification 45.77 49.42

transfer learning, the identity of the spacecrafts can be learned.

The output of the classifier is then fed to the regression system for orbit determination of

both spacecraft. Note that the classified outputs are used in training to maintain consistency

between the training and test distributions as reasoned in Section II.4. Classified points from

the first 4000 orbits were used to train each regression system. The orbital elements used

were the position and velocity vectors at the epoch instead of traditional Keplerian elements

as the argument of perigee and the right ascension angles were no longer compact sets (i.e.,

it varied as [x1, 360)∪[0,x2], see Section A.3), even when the underlying space of probability

distributions were compact. Classified points from 200 orbits were used to test orbital

parameter estimates. The average error in estimation of the position of the first spacecraft

is 20.06 km. The average error in estimation of the position of the second spacecraft is 19.36

km. Note that this is less than half the average separation of the two spacecraft, so the

positions are identifiable and resolvable with information from a single pass. Figures 2.9 and

2.10 show the normalized errors of the orbital elements (normalized by the width of support

of the prior).

II.5.4 Position Based OD - Lunar Orbit

The characteristics of the system described in Section A.3 are also satisfied for an N -body

problem. In fact, if the data generation system was constructed with a general celestial

dynamical system, no changes will be required to the orbit determination system even with

N bodies. To test the empirical behavior of the algorithms we consider a lunar orbit transfer
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Figure 2.9: Normalized errors of orbital parameters of test orbits of spacecraft 1

scenario. The three body problem was the first described example of a chaotic system

[91, 92, 93] where small changes in the initial orbital parameters lead to large changes in

distributions associated with the data. We consider orbit estimation of a 4 day lunar transfer

orbit with direction of arrival and range observations from one ground system over one pass.

We first describe details of the propagation system and the orbit and prior design and then

present the results of the orbit determination scenario.

Propagation and Orbit Design

For deep space orbit propagation, the propagator used in Section II.5.3 was extended to

include accelerations from the Moon, Sun and Jupiter. To simplify and speed up computa-

tion, positions of these celestial objects were computed using JPL Ephemerides data. Further

computational simplifications were performed by limiting sampling time to 300 seconds over

a period of 4 days and interpolating for positions in between (Gaussian splines were used).

Epoch for orbit insertion in this hypothetical scenario was chosen to be 18:00:00 1/1/2016

UTC.
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Figure 2.10: Normalized errors of orbital parameters of test orbits of spacecraft 2

The prior PΓ was designed as follows. First, a 4 day direct lunar orbit [94] was designed

to obtain a specific trans-lunar injection state. This state was then perturbed in position

and velocity from samples drawn from a given set of distributions. An initial orbit using

a circular restricted 3 body problem was constructed in a synodic frame. The synodic

frame was transfered to a 3 dimensional system with the appropriate transformation. The

circular lunar orbit was then replaced with JPL Ephemerides and the initial states were

perturbed to obtain a transfer orbit. Lunar spherical harmonic coefficients were not taken

into consideration and the moon was treated as a sphere due to negligible perturbation

effects during the test period. The orbits designed were similar to the 4 day injection orbits

described in Parker [94]. The initial state of this orbit was used as initial input parameters

to the distribution PΓ. The perturbations for position and velocity were designed as compact

sets of conic sections with the following distributions (States are in spherical coordinates):

Rr ∼ Rr ,init +U (0, 0.05Rr ,init ) km, Vr ∼ Vr ,init +U (−0.02Vr ,init , 0.02Vr ,init ),

Rθ ∼ U (Rθ ,init − 2◦,Rθ ,init + 2◦), Vθ ∼ U (Vθ ,init − 1◦,Vθ ,init + 1◦),

Rϕ ∼ U (Rϕ,init − 2◦,Rϕ,init + 2◦), Vϕ ∼ U (Vϕ,init − 1◦,Vϕ,init + 1◦).
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This prior results in an effective variance of 203 km in initial position. The samples

drawn from the above distributions are then used to evaluate the orbit determination system.

Figure 2.11 shows the paths generated by the analytical propagator in the Earth Centered

Inertial (ECI) frame for 20 sample states drawn from PΓ. A uniform distribution over time

was used to generate observation vectors from one ground station. The number of samples

were chosen to result in approximately one sample every 3 minutes over one pass (<12 hour

period). Note that this 12 hour period does not begin during orbit insertion but 6 hours

after insertion (This is due to the fact that the spacecraft is not in view of the chosen ground

station during orbit insertion. Besides interpolation errors generated by the propagator, no

additional noise was added to the system to generate observations.
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Figure 2.11: Example lunar transfer orbits drawn from prior distribution

Learning System

Similar to the other scenarios, 4000 orbits were generated for training and 200 for testing.

The preprocessing step was modified to normalize time period and range variations. Besides

this no changes were performed to the learning algorithm. Figure 2.12 shows the normalized

errors in the estimates (normalized by the width of the support of the prior of each element).

The average error in position estimation was 4km. This error is lower in comparison to

similar scenarios which use direction and range information for orbit estimation. Note that

due to finite sampling and chaotic nature of the orbits, outliers will exist with very low
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Figure 2.12: Normalized errors of orbital parameters of test orbits for trans-lunar scenario

probability.

II.5.5 Position based OD - Comparison with EKF

We compare the performance of the learning technique proposed with a traditional orbit

determination system based on the EKF. The propagators used were the same as described

in Section II.5.3. We shall first describe the exact characteristics of the orbit determination

system used to compare against and then provide details of synthetic data generated for

comparison.

Sample Data Generation

The probability distribution over orbital parameters chosen for this scenario was designed

from two perspectives. First the preliminary orbit determination system’s performance with

large noise added to the observations should be sufficient to force the EKF out of its linear
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region. Second, the noise added should be admitted by the data preprocessing and 6σ editing

filters used in state of the art EKF based orbit determination algorithms [13]. Orbits with

relatively high eccentricity were chosen with the following priors:

A ∼ Re +U (5000, 5400) km, e ∼ U (0.4, 0.35),

Ω ∼ U (350◦, 5◦), I ∼ U (70◦, 75◦),

ω ∼ U (0◦, 10◦), M = U (300◦, 320◦)

The propagator described in Section II.5.3 was used to generate data over one pass.

Uniform noise with width of 0.2◦, 0.2◦, 2 km is added to the azimuth, elevation and range

measurements respectively. A total of 4200 random orbits were generated.

EKF Based OD

This orbit determination system consisted of a preliminary orbit determination system for

initialization followed by the EKF. The preliminary orbit determination system used was

Herrick-Gibbs [31]. The preliminary orbit determination was conducted on points on a

section of the orbit near the perigee and the points were chosen such that the time period

between the points was about 10 minutes, based on the results of the performance with

the ascending Molniya scenarios in Schaeperkoetter [95]. The preliminary OD system was

followed by an EKF with 6σ data editing (see Wright [13]). The dynamic system used for

propagation of the EKF is identical to the propagator used for generation of the observations.

This was done to compare the performance of the EKF in scenarios with significantly noisy

observations.

For a parity in comparison of the two techniques the same set of orbits were used for
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parameter selection for the EKF and training of the machine learning based OD system. The

first 4000 orbits were used to generate the error covariance matrices for the EKF. The 4000

orbits were also used to train the machine learning algorithm (5 fold cross validation). No

changes to the learning algorithm were made from the previous sections. Both the EKF and

the learning based OD system were tested on the data points generated from the last 200

orbits. Figure 2.13 shows the initial position errors for the 200 orbits under test. Note that

if the EKF diverges to a point where no observations lie in the 6σ range the measurement

editor will edit out all further observations limiting further updates. As can be seen, the

learning based orbit determination system has significant performance advantage over the

EKF, albeit under significantly larger computational requirements. The few outliers for the

learning based system will converge to zero in probability with increase in training data as

detailed in Section II.4.

Figure 2.13: Comparison of EKF and Learning Based OD

II.5.6 Discussion

A summary of the position error results is shown in Table 2.4. For Doppler based orbit

determination, the Along-track and Cross-track errors are larger. This is a direct consequence

of the fact that each individual point contains very little actual position information and

position can only be gained from the changes in the probability distribution that generate the
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points. Radial Errors as low as radial information can be gained from zero Doppler cross-over

points. The synthetic test data error magnitudes are of the same order as the errors produced

by the experimental datasets. If the data generation systems are not sufficiently realistic,

there can be discrepancies in the test errors and the errors produced by the experimental

datasets, as the learned system will not directly correspond to the experimental data. This

requirement also applies to the noise modeling of the Doppler measurements. While the

MC2 orbit determination position errors are larger in comparison to GRIFEX, the equivalent

comparison in terms of the orbital elements themselves produces the opposite result. This is

a consequence of the fact that the optimization to compute orbital elements does not directly

correspond to reducing position errors as the transformation between the two is not linear.

With a constant number of training orbits (4000), decreasing uncertainty and improving

observability improves accuracy. This behavior can be seen in two scenarios. The accuracy

of Doppler-only OD is lower in comparison to Position based orbit determination due to

differences in observability and noise effects. The accuracy is highest for chaotic orbits with

small initial spaces, where small changes in the initial condition produce very large changes

in the orbit. Note here that while the lunar orbit scenario observation intervals were for

10 hours, the average transmissions characteristics produced equivalently lower number of

transmissions per orbit such that the datasets of the position based orbit determination

systems had the same order of training and test data points per orbit as in the LEO case.

For position based orbit determination, the along-track errors are larger. This behavior

is expected as velocity information cannot be directly gained from the features. The sum

of average and RMS errors for the two satellites is less than the average separation between

the satellites, and the spacecraft can be resolved in the orbit insertion scenario. Note that

for the position based OD scenarios, noise of (0.1◦, 0.1◦, 1km) were added to the (Azimuth,

Elevation, Range) measurements.
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Table 2.4: Comparison of test errors

Prior Position
Std. Dev (km)

|T̃ |
(hr)

Radial Error
(km)

Along-track
Error (km)

Cross-track
Error (km)

Total Error
(km)

GRIFEX
Synthetic 765 4.5 2.96 56.6 17.49 59.31

GRIFEX
Experimental 765 4.5 6.92 7.33 -28.30 30.05

MC2
Synthetic 448 7 2.86 25.85 6.19 26.73

MC2
Experimental 448 7 13.46 28.97 -53.04 61.91

Position
Synthetic (LEO) 1 966 1 15.76 38.85 10.79 43.29

Position
Synthetic (LEO) 2 966 1 10.60 25.34 2.71 27.6

Positon
Synthetic (Lunar) 203 10 1.32 5.26 1.40 5.6

II.6 Conclusion

We presented the orbit determination problem of multiple spacecraft from a learning theo-

retic perspective. The learning system allows for estimation of spacecraft orbits over a very

broad set of conditions. The learning algorithm requires only bounded and compact space

specifications without the need for initialization in the linear region of the estimator, un-

like traditional non-linear estimators. We showed that the combined algorithm is consistent

when the mapping is continuous and the classifiers are well defined. We presented exper-

imental results for Doppler-only orbit determination scenarios with operational spacecraft

and synthetic deep space orbit scenarios. We also provide comparisons with the EKF in a

synthetic scenario with large measurement noise, where the proposed approach overcomes

the divergence limitations of the EKF. The learning approach can also be used to perform

state estimation in weakly observable, unactuated dynamic systems with random and noisy

observations over finite time periods.
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CHAPTER III

Collaborative Orbit Determination using Ground

Station Networks

III.1 Introduction

We now consider the problem of constructing a ground station network architecture to per-

form orbit determination as part of mission operations. We are interested in a GSN archi-

tecture to observe transmissions from a group or cluster of nS satellites when their initial

orbital parameters are uncertain and belong to a set J instead of being known with high

accuracy. We do not assume that these transmissions be decodable, just that they can be

observed and their Doppler shifts measured by spectrum monitoring algorithms.

In Chapter II, we showed that when the orbital parameters governing spacecraft dynamics

are observable from a large number of noisy observations which satisfy certain broad regular-

ity conditions, it is possible to estimate orbital parameters even when the orbit uncertainty

does not satisfy linear region constraints required by standard orbit determination techniques

such as the EKF. Using this technique it is possible to perform orbit determination using

Doppler only observations gained from a ground station network. In this chapter, we develop
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a network architecture that enables orbit determination with low-cost, distributed ground

stations.

This chapter is organized as follows: Section III.2 expands on the problem setup devel-

oped in [96] with design variables required for practical ground station networks and details

the requirements of the architecture. Section III.3 develops physical layer ground station

network architectures for orbit determination, Section III.4 provides resource allocation in-

formation associated with an orbit determination tracking session, Section III.5 provides

additional details of training data generation applicable to practical ground station net-

works and Section III.6 provides results for a synthetic orbit determination scenarios over a

ground station network. Section III.7 concludes the chapter.

III.2 Parameters of Architecture

For this GSN architecture, we provide formal definitions of the parameters required for its

design and control. We are interested in architectures for set of nS spacecraft orbits to be

determined using a network with nGSN ground stations over an observation period T̃. The

nS spacecrafts have orbital parameters [γ1,γ2, · · ·γnS ]. We shall view the orbital parameters

as random variables and satisfy a probability distribution PΓ for γ := [γ1,γ2, · · ·γnS ]. The

marginal probability distribution, PΓi , of a satellite i, 1 ≤ i ≤ nS , is defined over a set J̃ (for

simplicity, we assume that the sets are the same for all the satellites). The set J̃ represents

the possible set of orbital parameters that the satellites in the cluster can have.

The ith spacecraft produces transmissions at time stamps TS over a time period T̃ ac-

cording to the probability distribution Pi(TS |z), where z is a parameter that determines the

probability distribution (more on z later). The nS satellites in total produce observations

according to a mixture probability distribution P(TS |z) :=
nS∑
i=1

Pi(TS |z).
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Given PΓ and observations, the network’s goal is to perform orbit determination with a set

of nG ground stations, where nG ≤ nGSN . We define the dynamical system that describes the

motion of a spacecraft i with an observer ground station j, 1 ≤ j ≤ nG , as Uj(γi , t). Further,

let Uj(γ , t) := [Uj(γ1, t),Uj(γ2, t), · · · ,Uj(γnS , t)] be the dynamical system of the spacecraft

cluster as seen from observer j. Over any subset nG of ground stations as observers, we

describe the total the spacecraft cluster dynamic system as U (γ , t). Similarly, we define

V (γ , t) as the dynamic system describing the direction of the satellite cluster from the nG

ground stations where Vj(γi , t) gives the direction (azimuth and elevation) of satellite i from

ground station j. At time TS , spacecraft i randomly generates, according to probability

Pi(TS |z), noiseless measurement samples F = [F1, F2, · · · , FnG ,TS ] which is observed by the

ground station network, where Fj = U (γi ,TS ). Since we don’t assume decodability of the

transmissions and make no assumptions on frequencies of transmission, we do not require

that the identity of the spacecraft producing the transmission be known (it can be any of

the nS spacecraft randomly generating observations). Ground station j can observe [X j ,Tj],

a noisy version (noise both in value X j and in time synchronization Tj) of the noiseless

measurement [Fj ,TS ], only if the satellite producing the transmissions lies inside the horizon

mask of ground station j, Hj . For a given ground station j, the GS architecture determines

and controls two sets of design variables:

1. Based on hardware characteristics and coverage, the network provides a visibility region

Oj which governs when ground station j will produce observations (note Oj ⊆ Hj).

Measurement samples are obtained only if Vj(γ , t) ∈ Oj . The pointing profile is a set

of antenna pointing angles that define the visibility region Oj of spacecraft passes of

spacecraft with an initial state that belong to the support of PΓ.

2. The parameter z is network variable made up of four broad sets of parameters for

each spacecraft i: zts(i), znc(i), zsc(i) and z f v(i). zts(i) is the timing uncertainty variable

capturing the synchronization uncertainty in the network and the propagation uncer-
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tainty of measuring the signals of spacecraft i. znc(i) denotes the hyper parameters

associated with the noise characteristics for measuring signals of the spacecraft. zsc(i)

denotes the characteristics of the transmission systems of the spacecraft that are used

for measurements. z f v(i) denotes the parameters controlling identification of the cyclo-

stationary feature vectors associated with spacecraft transmissions, such as bandwidth

and coding rate identification parameters, noise and signal power thresholds required

to determine the features of a particular spacecraft by a ground station. The choice

of parameters in z f v is correlated to zsc through communication systems design (See

[97, 90, 98, 89]). Based on the network measurement system characteristics, the net-

work shall provide the system parameters zts , znc and the corresponding probability

distributions. The ground station produces measurements [Xi ,Ti]. The probability

distributions associated with the network observation measurements P([Xi ,Ti]|Fi ,TS , z)

are known to the network. For example, Xi can consist of cyclostationarity based

features of narrow band communication systems with probability distributions as de-

scribed in [97, 90] and P(Ti |TS , z) is the GS timing system uncertainty. We encapsulate

the network variables influencing the probability distributions through variable z.

The network as a whole obtains measurements [X ,T ] = [X1,X2, · · · ,XnG ,T1,T2, · · · ,TnG ] over

the time sets of observation in T̃. The design parameters of the network are optimized

for the goal of enabling orbit determination. In [96], we show that if U is observable and

continuous over the visibility regions {Oj}nGj=1 of the ground station network, it is possible to

estimate the orbital parameters of the cluster of satellites. The design variables are chosen

to satisfy these requirements of observability, continuity and visibility. For this puropse, the

global variables that need to be selected and controlled by the architecture for the orbit

determination problem are as follows:

• The selection of nG ground stations in the network over time T̃ as operational scheduling

of an orbit determination (OD) session.
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• The identification of a pointing profiles for ground stations with directional antenna

patterns.

• Variable controlling imperfect synchronization between ground stations zts , and proba-

bility distributions controlling time delays between spacecraft transmissions and mea-

surements.

The design variables and architecture need to satisfy the assumptions of the learning

system for orbit determination detailed in [96]. This results in a set of requirements for the

GSN.

III.2.1 Architecture Requirements for Orbit Determination

The physical layer design of the network, the scheduling system and tracking algorithms need

to satisfy fundamental requirements regarding the nature of the observations collected such

as compactness of the support of PΓ, Observability and continuity of the effective dynamical

system, guarantees of observations over the scheduled and tracked intervals and continuity

of the measuring system distribution over the tracking intervals.

1. Compactness of the support of PΓ: The support of the probability distribution that

governs the uncertainty in orbit parameters should be closed and bounded. This re-

quirement is guaranteed since total kinetic energy imparted for spacecraft orbit injec-

tions are finite and since we are assuming that no further propulsion occurs during

orbit determination. Construction of PΓ is discussed in Section III.5.1.

2. Observability and continuity of effective dynamic system: The effective dynamic system

presented by the observations of the ground station system when the observations can

only belong to the those that can be detected by the antennas in the GS network

nodes should satisfy observability and continuity requirements. According to the theory
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established in [96], if the effective dynamic system is observable and continuous then

there exists a continuous map from the set of observations over interval T to the

orbital parameters. The architecture presented will guarantee a continuous effective

dynamic system and we shall guarantee observability by low prediction errors of the

map learned by the learning cluster. Low prediction errors on test data implies that the

underling system is identifiable and therefore observable over T. This guarantees that

with sufficient number of observations, the orbits of the satellites can be determined.

3. Guaranteeing observations over the scheduled intervals: To guarantee sufficient number

of observations from the spacecraft during the tracking intervals, we will assume that

there exist intervals of size τ in T such that τ is much smaller than the effective pass

interval over which at-least one observation is guaranteed. In GS network terms, τ

upper bounds the time between transmission intervals of the satellite. This criteria is

generally satisfied by beacon intervals of CubeSats (more details in Section III.4).

4. Continuity of the measuring system distribution over the tracking interval: There are

two parts to satisfying this requirement: time continuity of measurement intervals

tracked and continuity of the noise distribution P(X |F , z) with respect to F . We guar-

antee time continuity through the scheduling and tracking algorithms developed in

Section III.4. The continuity in the distribution of noise is generally satisfied for all

types of measurements in orbit determination of Doppler, ranging, D-DOR etc. For

the Doppler measurements we focus on in this chapter, this condition is satisfied for

narrowband communication systems as discussed in [97, 90].

In the following sections, we present a network topology and design considerations associ-

ated with deployment of an OD session over a federated ground station network. We present

physical layer abstractions associated with a ground station network architecture for orbit

determination. Global Network architectures for orbit determination require augmentation

of the Network Operations Center with a learning cluster consisting of computing nodes.
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Node level architectures require cognitive radio approaches for spectrum monitoring with

software defined radios. Detailed network architectures are presented in Section III.3.

We develop algorithms for selection of nodes for OD, scheduling and operations at the

network level and operations of the ground stations at the node level for the purposes of orbit

determination. Orbit determination will be performed over a set of individual tracking in-

tervals which we define as an ODTrack Session. Algorithmically, there are three components

to the tracking and scheduling algorithms:

• Selection of ground stations of the network.

• Selection of time intervals of tracking (Sessions of tracking).

• Selecting a pointing direction for the GS antennas for tracking uncertain passes.

Details of the session architecture are discussed in Section III.4.

III.3 Network Architecture

We present network layouts for integration of orbit determination systems into the network

architecture. We first present global network architectures and then consider node-level

architectures.

III.3.1 Global Architecture

The global architecture is as shown in figure 3.1. The architecture augments the standard

federated ground station network architecture with a learning cluster. The instantiation and

control of the ODTrack session will be performed by the NOC with information provided

by the learning cluster. The ODTrack Session will be in operation during pass intervals in
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the session interval T̃. Prior to instantiation of the ODTrack session, state uncertainty PΓ is

calculated by using state uncertainties of spacecraft deployer along with satellite deployment

sequences or from TLE uncertainty projections. We shall consider computation of PΓ in

section III.5.1.

Learning Cluster For OD track session, the NOC scheduler initializes learning cluster

with state uncertainties J, PΓ, observation interval T̃, noise characteristics zts , znc , spacecraft

behaviors zsc , z f v and the parametrized version of the distribution P(X |F , z). This contains

sufficient information to construct datasets for scheduling, tracking and training. The NOC

instantiates an ODTrack session in learning cluster with PΓ, z and T̃. During instantiation of

the ODTrack session, the data generation system in the learning cluster determines the subset

of all available ground stations with appropriate noise level and signal strength requirements

for orbit determination. Learning Cluster then computes specific schedules for a subset of

these ground stations and provides pointing profiles {APPj}j={1,2,..nG } for the corresponding

ground stations. The pointing profiles will consist of a set of a session level elements for the

ground stations selected for spectrum monitoring. Session level elements engage the ground

station system over different intervals [9]. The NOC uses {APPj} with encoding and decoding

(codec) information to reserve nG(≤ nGSN ) nodes over interval T̃ (Session layers {Sj}). The

details of this procedure is presented in III.4.

Post instantiation, the learning cluster enters the training phase for full training data

generation and hyper-parameter estimation (cross validation). The generation and cross val-

idation phases are fully parallelizable, internally and with network data collection. Training

data generation will consist of highly accurate system models for orbit propagation and noise

sampling. It will also take uncertainties in time synchronization between ground stations.

Details of the data generation system are discussed in section III.5.

The learning cluster will also have a network interface to the nodes of the GS network.
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During the OD Track session, the GS nodes will provide the learning cluster with information

required to construct the feature vectors for orbit determination. Information from ground

station i will consist of features obtained by ground station and result from the spectrum

monitoring operations that will be performed at the nodes. The OD algorithm proposed in

Chapter II does not require ordering of the packets and it is assumed that all the packets will

be received in random order by the end of the last session layer instantiation by the ODTrack

session. The cluster will perform marginal transfer learning to determine the feature vectors

to be used for the orbit determination of the different spacecraft.

ASGS 1

TIMING
 SYSTEM

LEARNING
CLUSTER

NETWORK 
OPERATIONS 

CENTER

ASGS 2 ASGS 3 ASGS nGSN

PΓ Ť PX|F,z zfeature 

zts 

{X1,i ,T1,i }
{X2,i ,T2,i } {X3,i ,T3,i }

{XnGSN,i ,TnGSN,i }

LG1 LG2 LG3 LGnGSN

Dop 

Gj j=1,2,...,n{O }

Gj j=1,2,...,n{S }

Figure 3.1: Global architecture

III.3.2 Node Architecture

The information generated by the learning cluster can be used to track spacecraft using

Augmented Software Ground Stations (ASGS). The broad architectures of the ASGS

are shown in figure 3.2. ASGS performs spectrum monitoring for noise characterization and

identification of presence of modulated transmissions, in addition to operations. During all

session layer operations the ASGS maintains a real time noise floor estimate. The Software
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Ground Station has a series of adaptive filter-banks with variable session layer characteristics

which depend on the type of session layer instantiated. For standard operations sessions,

only the band around the center frequency of operation is under consideration and all other

information is filtered out. The system behaves as a normal software defined ground station[9,

99]. The ground station makes the noise floor estimates available to the learning cluster to

compute pointing profiles.

During ODTrack sessions, when tracking spacecraft transmissions, autonomous radio

[100] or cognitive radio approaches [89, 101] is used in obtaining modulation characteristics.

Spectral analysis is performed only when the received power is greater than the noise floor

by a threshold (Pthres). Selection of Pthres depends on link budget parameters associated with

the group of spacecraft. Pthres is determined by signal detection false alarm rates and the

probability distributions of the features being estimated. Sections of the complex baseband

samples are time stamped using the timing system. When detection of features are successful,

the average UTC time stamps of the features over the integration times are also attached to

the features. Perfect synchronization is not expected between ground stations however, the

probability distribution of timing errors are assumed to be known to the learning cluster.

The feature detection algorithm is not required to decode any unique identifications of the

transmissions. The identification of the transmissions will be performed at the learning

cluster. In the presence of multiple modulation peaks at different frequencies, multiple

identification should be performed through identification of autocorrelation peaks (See [98]).

The antenna characteristics driving the selection of the nG ground stations are 3dB beam-

widths and antenna gains sufficient to satisfy modified link budget requirements. The two

selection rules guiding antenna selection can be stated as follows:

• Ground stations which meet Pthres requirements for Antenna Gain - 3dB are first se-

lected.
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• Among these ground stations, ground stations that can capture the largest power over

the largest percentage of the passes are selected.
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Figure 3.2: ASGS architecture

III.4 Scheduling and Tracking

Scheduling and tracking with uncertainty involves session instantiation and tracking to op-

erate over passes defined over the set of orbits with initial conditions in J. For this scenario

session instantiation defines intervals over which ground stations have to be reserved and

tracking parameters are captured through a sequence of antenna pointing directions. These

algorithms do not depend on the exact nature of the prior PΓ but on its effective support

J := ∪nSi=1J̃i . We will discuss scheduling and tracking algorithms assuming that we are given

J and then discuss details of construction of PΓ in section III.5.

We use a finite approximation of J and T for computational purposes since J and T
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are closed and bounded sets consisting of a union of intervals. We approximate J using an

ϵ-net1 Jϵ to estimate the scheduling and tracking parameters. Since the dynamics of the

spacecraft are continuous with respect to the initial condition, an ϵ-net should sufficiently

approximate the scheduling parameters. A lattice (or grid) of points in J provides a sufficient

construction of the net [102]. Similarly, we define a net Tτ over T.

All ground stations in the network that are available during T are taken into consideration

for computation of reservation intervals and pointing profiles. Once pointing profiles are

selected, the number of pass intervals available for the estimation of each orbit in Jϵ are

computed. The minimum number of ground stations that provide sufficient pass intervals

for all the orbits in Jϵ are then selected for orbit determination.

Figure 3.3: ODTrack Session

The first step in scheduling involves iden-

tification of pass intervals of J required

for session level resource acquisition. The

ODTrack session is a set of ground station

contact intervals or passes (see Figure 3.3). In

the terminology specific to [9], the ODTrack

session is a group of individual sessions as

shown in figure 3.3. The reservation intervals

of ground station j, 1 ≤ j ≤ nG corresponds to

the intervals during which any object with its

orbit parameter in J will lie in the horizon of ground station j. More precisely, the ODTrack

session will be made up of a group of time intervals or pass schedules Sjl , l = 1, 2...Lj , 1 ≤ j ≤

nG where Lj is the total number of pass intervals of ground station j. The schedules are such

that the scheduled intervals at-least cover the measurement intervals (times intervals in a

pass where the spacecraft can transmit). This implies that
⋃
l

Sjl ⊇
⋃
γ∈J
{t ∈ T,V (γ , t) ∈ Hj)}

1See Appendix A.1 for the definition of ϵ-net
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where Hj is the station mask for ground station j. We compute this by first computing

the union of pass intervals for all the orbits in Jϵ ,
⋃
γ∈Jϵ
{t ∈ Tτ ,V (γ , t) ∈ Hj)} and then

identifying the pass intervals Ijl := [Istart ,jl , Iend,jl ], 1 ≤ l ≤ Lj . A correction for the net

approximation is then used to produce the reservation intervals for ground station j as

Sjl := [Istart ,jl −Ctτ −Cγϵ, Iend,jl +Ctτ +Cγϵ] where Ct ,Cγ are the lipschitz constants of V (γ , t)

with respect to time and initial conditions.

Next, we consider tracking algorithms for orbit determination. Since we are dealing with

ground stations, we define the set of pointing directions and time associated with a particular

ground station as a pointing profile.

III.4.1 Pointing Profiles

The goal of pointing profiles is to maximize identifiable (not necessarily decodable) signals

that can be picked up from spacecraft. For ground station j and pass interval l , it is a set

APPjl , of antenna pointing directions and time. It can used to construct the visibility regions

Oj for ground station j = 1, 2..nG , the region of observation over which measurements will

be observed for ground station j as Oj :=
⋃
l∈Lj

APPjl . There are different types of pointing

profiles that depends on the size of the set J in comparison to the coverage provided by

the antennas of the ground station network. When the orbit uncertainty set is small enough

that every orbit in the set can be seen the horizon coverage of the antenna, the ground

station can effectively track the full satellite cluster with it’s antennas. In this case, the

pointing profiles are dynamic. Otherwise the pointing profiles are static (Point and listen

configuration). When the uncertainty is large in the average along track direction, a simple

static antenna pointing profile is used. When the cross track uncertainty is large, complex

static pointing profiles are used.
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Figure 3.4: Antenna ellipsoid approximation
and spherical cap

We assume that the ground stations in

the network have directional antennas. We

use the ellipsoid approximation for the main

beam of the antennas in a ground station.

This results in spherical caps of coverage on

the horizon (the horizon is half a unit sphere)

whose angular widths corresponds to the 3dB

beam-width of the antennas. The spherical

cap can be rotated and translated on the half

sphere representing the horizon (Figure 3.4). The pointing profile is a set of directions of

the center of this spherical cap and the times of pointing at these directions.

We provide definitions required for description of pointing profiles. Let A(r ,ϕ) denote a

spherical cap centered at direction r ∈ S2 with angle ϕ representing the width of the spherical

cap. We denote the spherical cap for ground station j centered along rj with beam width ϕj

as Aj(rj ,ϕj) and let Are f ,j denote its spherical cap along a reference (parking) direction. For

s1, s2 ∈ S2, the geodesic distance is defined as dG(s1, s2) := arccos(〈s1, s2〉). For a closed set

W ⊆ S2, we define the geodesic width ofW as

wG(W ) := max
s1,s2∈W

dG(s1, s2),

and the minimal spherical cap AW ofW as the spherical cap with the smallest area such that

W ⊆ AW , i.e., if s∗1, s
∗
2 are such that

(s′1, s′2) := arg max
s1,s2∈W

dG(s1, s2),

then

AW = A

(
s′1 + s

′
2

‖s′1 + s′2‖
, 0.5wG(W )

)
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Dynamic Profiles Dynamic profiles provide a set of tracking sequences per pass interval

of a ground station. This profiles can be used only when the angular spread of the uncertainty

set at every pass is smaller than the antenna beam-widths of the ground station.

Consider a ground station j with a rotation controlled antenna. Let Vj(Jϵ , t) denote the

image of Jϵ at time t . The dynamic profile is chosen when the dynamic geodesic ratio defined

as

Rdynamic := max
t∈Tτ

wG(Vj(Jϵ , t)) +Cγϵ
wG(Are f ,j)

,

is less than unity over enough ground station passes to achieve observability. If this condition

is met the satellite cluster can be tracked whenever it lies over the horizon of the ground

station since the angular width of all the orbits in J at any time is smaller than the angular

width of the antenna,i.e., ∀t ∈ T,

⋃
i

{Vj(J̃i , t) ∩ Hj} ⊂ Aj(r ) ⊂ Hj (3.1)

for some r ∈ S2. At every time step, the antennas point at the center of the smallest enclosing

spherical cap that can be constructed around the set of directions for all orbits in Jϵ at a

given time t . Thus, the pointing profile is the set of centers of the minimal spherical caps of

the set {t ∈ Tτ ,Vj(Jϵ , t) ∩ Hj} and can be computed as

APPjl := {
(
s′1(t) + s′2(t)
‖s′1(t) + s′2(t)‖

, t

)
, (s′1(t), s′2(t)) := arg max

s1,s2∈Vj (Jϵ ,t)∩Hj

dG(s1, s2), t ∈ Sjl }

Static Profiles Static pointing profiles provide one orientation per pass interval of a

ground station. A disadvantage of static pointing profiles is that the pass length is lim-

ited by the antenna beam-width. Due to this, more conservative allocation is necessary. We

discuss two types of static pointing profiles. One when the average cross track uncertainty

is small and the second when footprint of J is large.
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The static pointing profiles target to center around the azimuth and elevations of the

average Doppler shift seen by orbits with initial conditions in Jϵ . Let Sjl (γ ),γ ∈ Jϵ denote

the pass interval at ground station j of orbit γ such that Sjl (γ ) ⊆ Sjl . We define the average

Doppler shift as seen during ground station pass interval Sjl as

Favд,jl (γ ) =
1

|S(γ )|
∑

t∈S jl (γ )
U (γ , t), γ ∈ Jϵ .

We first compute the time tavд,jl (γ ) at which the Doppler shift of Favд(γ ) was achieved. This

computation can either be achieved using interpolation or by directly using the propagator.

We then compute the azimuth and elevation points at which the average Doppler shifts

occurred and we compute the average direction set Davд,jl := {V (γ , tavд,jl (γ )),γ ∈ Jϵ }. This

set is then used to compute the static geodesic ratio as

Rstatic =
wG(Davд,jl )
wG(Are f ,jl )

.

The simple and complex static profiles are based on whether Rstatic is larger or smaller than

a threshold Rthres . The selection of Rstatic as the parameter for selection of static profiles is

based on its insensitivity to along-track and mean motion uncertainties. In a large number

of clustered satellite deployments, the orbits of the spacecraft are designed to separate with

time. In many cases, along track separation occurs faster than cross track separation in

such deployments as upper stage deployment sequences impart different along track ejection

velocities. The simple static profile is designed to allow a point and listen configuration for

the ground stations encountered along the orbit.

The selection of Rthres is determined based on the minimum length of the pass of a

ground station required to guarantee observation of points from the satellite cluster. It

involves a trade off between the cross-track width of J and the desired path lengths for

orbit determination. A larger threshold guarantees longer effective observation lengths with
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smaller cross-track uncertainties and a smaller threshold guarantees a larger coverage of

uncertainties but smaller effective pass lengths. Experimental results show that for typical

low cost COTS ground stations with medium gain antennas tracking LEO deployments, a

threshold value less than 0.7 is sufficient for beacon time intervals of τ = 10s to have sufficient

number of observations (See Section III.6.1).

When Rstatic < Rthres , the antenna pointing direction for parking and recording using the

ASGS is computed as the center of the minimal spherical cap of Davд,jl . For

s′1, s
′
2 = arg max

s1,s2∈Davд, jl

dG(s1, s2), (3.2)

the simple static pointing profile is computed as

APPjl =

(
s′1 + s

′
2

‖s′1 + s′2‖
, Sjl

)
.

This pointing profile allows parking the antennas at
s′1 + s

′
2

‖s′1 + s′2‖
and listening over Sjl at ground

station j, recording the observations required for orbit determination and feeding the infor-

mation back to the learning cluster for orbit determination.

When Rstatic > Rthres , the cross-track uncertainties are larger than what can be tracked

with a single directional antenna. This case occurs with large inclination, RAAN and altitude

uncertainties.

With large uncertainties, the number of solutions to the tracking problem can vary from

0 (infeasible) to an exponential number, based on the locations of ground stations and the set

J. When the number of ground stations available in the network do not provide sufficient

pass intervals for OD even with the assumption that the ground stations receive with isotropic

antennas, the problem of selecting directional antenna pointing profiles becomes infeasible.

When all the ground stations provide access to all the orbits in Jϵ , then the profile solution is
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not unique and can be stated as a case of the set-cover problem (where we are using antenna

coverage sets to cover Jϵ , which is NP Hard. We tackle this problem in two steps: first by

verifying necessary conditions for feasibility and second by using a greedy algorithm to cover

all the orbits in J.

If the solution of orbit determination with Doppler requires the observation of k pass

intervals with directional antennas, then the presence of k intervals with the assumption of

omni-directional antennas for observation has to be feasible for all orbits in Jϵ . This criteria

is computed by using the sampled data from Jϵ and measuring the minimum number of

passes over orbits in Jϵ . Once this criteria is satisfied a greedy algorithm is applied to

compute a solution. If the greedy algorithm fails to cover all the orbits, then the algorithm

can be initialized at different initial conditions and in the absence of feasibility with all

initialization, the uncertainty is deemed untrackable.

We present the greedy algorithm with two assumptions: that the prior is defined in a

classical element scenario and that J is an interval in R6. We work with classical elements

as ground station coverage of a particular orbit is most drastically affected, in terms of its

path on the horizon, due to change in inclination and the ascending node. The goal of the

algorithm is to provide nP pass intervals for all orbits in J. The first step is to perform

an ordered sorting of Jϵ , with sorting priority between elements as [RAAN , I ,a, e,ω,M]. We

initialize an empty set Iϵ := {}. The first element is used as the initialization point s. Over

all the pass intervals for orbit s, the ground stations with the largest antenna beam-widths

are chosen. The selected ground stations antenna profile is selected. The orbits that are

covered by the antenna profile are then added to Iϵ from the sorted orbit set. Note that

since the dynamical systems for the spacecraft are continuous and the antenna caps are

convex, Iϵ will cover an interval of the orbits in Jϵ . This procedure is iterated over the set

of orbits not covered (Jϵ \ Iϵ) until all the orbits are in Iϵ . The effective number of passes

seen per orbit in this scenario using the selected antenna profiles are then tabulated. The
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procedure is repeated until all orbits are covered at least nP times. If the number of ground

stations are insufficient, the procedure is declared infeasible and more ground stations have

to be added for orbit determination.

The selection of the antenna profile requires the sorted version of Jϵ and the initialization

point s. For all the orbits in Jϵ which have passes over the selected ground station, the

distance matrix Davд,jl is computed. Starting at s a minimum distance spanning tree is

constructed incrementally such that at every step, the maximum geodesic width of the set

of vertices in the tree is less than the threshold for the ground station antenna. Once this

threshold is met, the antenna is centered between the vertices meeting the maximum geodesic

width. Note that this algorithm can be implemented efficiently by maintaining a two heaps

that are updated with every vertex addition. The set of vertices covered and the antenna

pointing profile is then returned.

For a high level description of algorithms for the pointing profiles described see Appendix

B.1

III.5 Training Data Generation

The training data generation for the learning algorithm for orbit determination needs to

simulate and generate realistic samples of observations from deployment scenarios (including

changes in observations induced by the architecture such as timing uncertainty and noise).

There are two areas of design consideration in the generation of training data that have

been taken into account: the selection of the orbit distribution (PΓ) and the noise associated

with observations at the ground stations and the timing synchronization errors between the

ground stations.
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III.5.1 Orbit Distribution Selection

PΓ represents the uncertainty in orbit parameters. For Doppler based orbit determination

of spacecraft, there are two common scenarios for which orbit determination is required.

One is the post insertion early orbit phase (EOP) where the spacecraft deployed are in close

proximity, and diverge with time. The second is when prior orbit determination or TLE

errors accumulate and tracking for the purposes of nominal operations is no longer possible.

Launch and Early Orbit Phase PΓ is constructed from launch uncertainties when orbit

determination has to be performed in the absence of upper stage (deployer) state vectors.

There are at least three sources of deviation. The first is the launch vehicle orbit insertion

accuracy (for example, insertion accuracy parameters for Minotaur V [103]). The essential

advantage in our algorithms is that direct description of PΓ is not required, only a description

sufficient to draw samples are necessary. This is particularly useful as indirect distributional

modeling such as dispersion studies of both experimental and simulated launch conditions

for atmospheric ascent guidance can be used (See [104, 105, 106] and the reference therein

for launch simulation).

The other two sources of uncertainty we consider are are wind profiles of launch day

scenarios [106] and launch windows. LEO launches without RAAN correction requirements

[107] will result in a larger uncertainty distribution. Note that the probability distributions

of these parameters have to be constructed (directly or indirectly drawn) for all the orbital

parameters under consideration at a particular epoch, unlike in ascent guidance where only

3 or 4 of the orbit parameters are considered (Semi-major axis, inclination and eccentricity).

This can be performed by simply drawing different orbit initial conditions based on expected

variation of launch times and propagating to insertion as performed for dispersion studies.
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Mid-mission Orbit information degrades with time due to atmospheric uncertainties and

orbit determination/TLE inaccuracies and other perturbations [108]. If the spacecraft have

transponder or ranging capabilities, then orbit information can be updated with the stated

approaches. However, if the evolution of error is large enough that the transmissions are

no-longer decodable, then the inaccuracy information can be used to draw samples of PΓ.

Link budget limitations have to be taken into considerations while selection of the prior

and the ground stations. If there is discrepancy between the simulated training and ob-

served test data regarding the presence and absence of observations due to the link budget,

then the learning algorithm accuracies will differ while field testing. This requires that the

transmissions used in measurements satisfy link requirements of the ground station nodes

performing spectrum monitoring to identify measurements.

III.5.2 Noise Distribution

The training data generation system has certain intricacies associated with a practical GSNs

which we shall now describe. For practical ground station networks, the timing parts of the

noise distribution P(X |F , z) i.e., P(Tj |TS , z) are non-trivial. There are two points of impor-

tance here. The first is timing uncertainty associated with ground stations. With imperfect

synchronization between ground stations, exact timing behaviors are unknown. Training

data generation will characterize the probability distribution associated with imperfect time

keeping of each ground station. Samples drawn for the set of points associated with each

individual orbit and ground station will have one individual randomly drawn time profile.

Time profiles of the ground station will be different for every new orbit dataset created.

The next one is deep space propagation delay in reception of measurements. Deep space

time delays are split into two components. The first component that is orbit dependent
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(initial condition dependent) is taken into consideration in the dynamic system. This com-

ponents accounts for the propagation delay to a reference point (Eg: the center of the earth)

and is connected to TS . The second component is dependent only on TS , varies through the

rotation of the earth and is taken into account for P(Tj |TS , z).

The noise associated with Doppler observations also have to be taken into account. There

is sufficient analysis of communication system and noise behaviors that this can either be

modeled prior to launch, or using standard communication system behaviors [97, 90]. The

learning algorithm requires accurate representation of the test data during training times for

consistency in results.

III.6 Results and Discussion

We present Doppler only orbit determination results with the architecture and algorithms

proposed for three scenarios testing the different tracking profiles proposed. Since the al-

gorithms proposed are independent of the number of spacecraft in a spacecraft cluster, we

present only one scenario with spacecraft deployment. The other two scenarios are with one

satellite.

III.6.1 Scenario 1: Simple Static Profiles

This scenario considers simple static allocation. The scenario consists of 4 spacecraft de-

ployed from a deployer spacecraft. The deployer craft has an orbit uncertainty defined as

(randomly chosen)

A ∼ Re +U (450, 550) km, e ∼ U (0.04, 0.05),

Ω ∼ U (40◦, 45◦), I ∼ U (70◦, 75◦),
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ω ∼ U (55◦, 60◦), M ∼ U (250◦, 260◦),

where U (a,b) is the uniform distribution from a to b. The deployer propagates for 6 hours

and then deploys 4 spacecraft randomly along the 4 cones (Figure 3.6). The propagation is

performed using a high fidelity analytical propagator which takes into account perturbations

up to the 10th order.

Spacecraft are deployed in time intervals of 200 seconds. The four satellite were injected

with ejection velocity components of

[
−1.5 −0.5 0.5 1.5

]
m/s in a direction selected ran-

domly in the plane perpendicular to the local horizontal. A additional velocity of 1.25 m/s

in a random direction perpendicular to the ram direction was added to each deployment.

The insertion cones for the deployer spacecraft as as shown in Figure 3.6. Total uncertainty

in position of satellites is 863km. The average separation between the spacecraft at epoch

was 36km. Figure 3.5 shows the GS locations and the position uncertainty of the satel-

lites. The samples of the prior distributions for the four satellites are obtained by simulating

deployment for each orbit scenario.

Figure 3.5: Selected ground stations and
samples of initial position of the cluster
based on PΓ

Figure 3.6: Deploy cones of satellites from
deployer

Orbit determination performed with 5 ground stations ground stations which observe

over a 6 hour interval, situated in Ann Arbor, San Luis Obispo, Darmsdadt in Germany,

Wellington in New Zealand and Tokyo. The 6 hour interval contained 7 passes intervals from
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these 5 ground stations. Uniform Doppler measurement noise ∼ 2.5%∆fmax .doppler (500 Hz

at 436MHz) was added to the measurements. Time synchronization error between ground

stations was chosen as a uniform distribution : Uni f ([−1, 1])ms. Each ground station has a

rotation controllable antenna of 42◦ beam-width. An ϵ-net of size 200 was used to estimate

the scheduling and tracking parameters. Since the width of J is very large in the along

track direction (this can be seen in figure 3.5), but narrow along the cross track directions,

a simple static profile was used. A static profile threshold used was Rthres = 2. For 3 of the

7 passes, the computed estimate of Rstatic was 3 and hence a simple static profile was used.

The pointing directions were computed based on the algorithms presented. Figure 3.7 shows

the directions of arrival corresponding to the Doppler data measurements used for training

the learning cluster. It can be seen that the training data is pruned to include only those

Doppler points that can be seen by the antennas.

Figure 3.7: Directions of arrival corresponding to Doppler data observed by directional
antennas

The machine learning based orbit determination (MLOD) was performed for the data

simulated from the preceding scenario. Data for 4200 example deployments were generated

with initial conditions described previously. 4000 of these deployments were used as training

data and the rest 200 as test data, to test the performance of the MLOD algorithm with the

stated architecture. Figures 3.8 - 3.15 show the histogram of position and velocity errors of

the test orbits. The average position error is 21.44 km and the average velocity error is 20

m/s.

The uncertainty in position of the test orbits has reduced from 863 km to 21.44 km.
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Figure 3.8: Simple static allocation: dis-
tribution of test data position error for
satellite 1

Figure 3.9: Simple static allocation: dis-
tribution of test data velocity error for
satellite 1

Figure 3.10: Simple static allocation: dis-
tribution of test data position error for
satellite 2

Figure 3.11: Simple static allocation: dis-
tribution of test data velocity error for
satellite 2

Figure 3.12: Simple static allocation: dis-
tribution of test data position error for
satellite 3

Figure 3.13: Simple static allocation: dis-
tribution of test data velocity error for
satellite 3
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Figure 3.14: Simple static allocation: dis-
tribution of test data position error for
satellite 4

Figure 3.15: Simple static allocation: dis-
tribution of test data velocity error for
satellite 4

This is sufficient for a UHF ground station to track, decode, operate the spacecraft and

perform precision orbit determination with either a second phase of MLOD or by an EKF.

The estimation accuracy is also sufficient to resolve the spacecrafts deployed. The velocity

error is 20 m/s, which allows accurate propagation of the orbits to further improve estimates

using standard fine tracking measurements of transponders and standard methods such as

the EKF.

III.6.2 Scenario 2: Complex Static Profiles

This scenario demonstrates an orbit determination example for complex static allocation.

The scenario consists of orbit determination of one spacecraft using a network of 10 ground

stations. The orbit uncertainty is chosen to generate a large uncertainty with the RAAN,

with the uncertainty similar to that produced by a launch window interval of 2 hours. The

rest of the orbital parameter uncertainties, such as uncertainty in inclination are exaggerated

for demonstration of the network architecture behaviors (standard launch vehicle injection

accuracy for inclination is less than 1◦). The distribution PΓ is as follows.
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A ∼ Re +U (500, 550) km, e ∼ U (0.04, 0.045),

Ω ∼ U (270◦, 300◦), I ∼ U (45◦, 50◦),

ω ∼ U (20◦, 30◦), M ∼ U (90◦, 100◦),

Similar to Section III.6.1, an analytical orbit propagator with 100 perturbation coefficients

was used. The standard deviation of the position uncertainty is 855.68 km.

The satellite orbits were observed over a 3 hour interval using a network of ten ground

stations. All the ground stations had identical antennas with a 9 dB gain (∼ 67◦ ellipsoid

beam-width), typical of a patch antenna. The ground stations can point the antennas at

any direction in the horizon. The spacecraft Doppler measurements have a noise of 100 Hz.

The timing uncertainty between the ground stations is less than or equal to 1 ms.

A random net with 300 points was used to approximate J. Over the 3 hour interval, six

of the ten ground stations had 10 passes in total for the orbits in Jϵ . A complex static profile

was used with a threshold of Rstatic = 0.7. Since the prior distribution PΓ is very large, no

single ground station can see all the possible orbits. A minimum of 3 passes for all the orbits

in Jϵ was set as a requirement for the orbit determination algorithm. The greedy algorithm

choose 2 passes for the first cover, 3 passes for the second and 4 passes for the third and

provided corresponding antenna pointing profiles. Using this the scheduling of the network

was trimmed to only the pass intervals required by the orbit determination algorithm. The

details of the ground stations and the passes selected by the complex static profile are

provided in Table 3.1. This was then used to perform orbit determination. Training and

test data were generated from the priors and the propagators for 4000 training orbits and

400 test orbits.

The position and velocity errors are as shown in figures 3.16 and 3.17. The average error
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in position estimation is 40.11 km and the average velocity error is 46 m/s. This is larger

than the errors produced in the simple static allocation scenario because an increased RAAN

uncertainty leads to lower number of measurements visible for the test orbits. However,

a position error of 40.11 km is sufficient to continue performing tracking with high gain

resources and refine orbit determination estimates.

Table 3.1: GSN Scheduling - Complex Static Profile

Ground Station
Name

GS Location
(lat, lon, h(m))

Total Number
of Passes

Number of
Passes Selected

Ann Arbor, USA (42.27; -83.72; 230) 0 0

San Luis Obispo, USA (35.28; -120.66; 36) 0 0

Wellington, NZ (-41.3; 174.78; 34) 2 2

Tokyo, JP (35.685; 139.751; 64) 1 0

Darmstadt, GE (49.8706; 8.649; 194) 2 2

Bogota, CO (10.4; -75.283; 90) 2 2

Cape Town, SA (-33.917; 18.417; 74) 0 0

Honolulu, USA (21.307; -157.858; 19) 0 0

Salisbury, SA, AU (-34.767; 138.633; 31) 2 1

York, UK (53.967; -1.083; 63) 2 2

Figure 3.16: Complex static allocation:
distribution of test data position error

Figure 3.17: Complex static allocation:
distribution of test data velocity error
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III.6.3 Scenario 3: Dynamic Profile

We present a dynamic profile orbit determination scenario with a short observation interval

and a network of 10 ground stations. A common problem with low initial uncertainty tracking

is that the error’s tend to accumulate. This scenario analyzes error minimization under very

short intervals of Doppler observations (< 1 orbit). The variation chosen for the angular

orbital parameters was limited to one degree. The prior orbital parameters are

A ∼ Re +U (800, 825) km, e ∼ U (0.05, 0.055),

Ω ∼ 49.5◦ +U (−0.5◦, 0.5◦), I ∼ 30◦ +U (−0.5◦, 0.5◦),

ω ∼ U (60◦, 62◦), M ∼ U (45◦, 2◦),

The variance in the initial position with the preceding prior distribution was 100 km, small

enough to be tracked by a wide beam antenna. The observation rate chosen corresponds to

an observation every ∼ 10s. The number of training and test orbits were chosen similar to

the previous scenarios.

The scheduling algorithm chose 4 of the 10 ground stations for tracking. The observation

interval for this scenario was 70 minutes. Note that due to the short length of the obser-

vation interval, even the semi-major axis information has to be indirectly derived from the

Doppler shifts, unlike in multiple pass observations where the zero Doppler shift points for

two successive passes at a ground station provides the semi-major axis information. The po-

sition and velocity errors are as shown in figures 3.18 and 3.19. The average error in position

estimation is 36 km and the average velocity error is 27.9 m/s. This is sufficient to continue

tracking with dynamic allocation for further orbits and reduce the prediction errors.
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Figure 3.18: Dynamic allocation: distri-
bution of test data position error

Figure 3.19: Dynamic allocation: distri-
bution of test data velocity error

III.7 Conclusion

We present a ground station network architecture, scheduling and tracking algorithms for

tracking spacecraft clusters when the orbital parameters have a large uncertainty. The net-

work architecture is developed on the spectrum monitoring capabilities of an autonomous

software ground station. The algorithms presented perform co-ordinated tracking of space-

craft clusters where even though each ground station receives partial tracking information,

the network receives complete tracking data augmenting standard GSN architectures to in-

clude coarse and precision orbit determination capabilities through collaboration.
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CHAPTER IV

Spacecraft Magnetometer Interference Cancellation

IV.1 Introduction

In this chapter, we consider the problem of spacecraft magnetic field interference cancella-

tion. The requirements of CubeSat computational constraints, requirement of a reference

magnetic field to compute loss, the iterative and imperfect nature of identification of sen-

sor non-orthogonality (when sensor non-orthogonality is estimated in the presence of noise

and the absence of knowledge of the magnetic field) provides two main constraints to the

magnetometer interference cancellation problem: partial feedback, the absence of a perfect

understanding of the interference.

We minimize interference by adaptively selecting weighted combinations of magnetometer

measurements based on telemetry information. The adaptive sensor selection algorithm

("learner") switches between two phases. In one phase, the interference can be computed

due to the knowledge of the true magnetic field at that time step - the exploration phase. In

the second phase, the interference cannot be computed, but in this phase, the measurements

are necessary to meet scientific objectives, and the interference will affect the measurements

selected. In this phase, the algorithm selects the best sensor combination by exploiting the
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information it gained in the exploration phase. We shall name this the exploitation phase.

In a machine learning setting, this can be viewed as a contextual bandit problem. Con-

textual bandits are a variant of the Multi-Armed Bandit problem. The multi-armed bandit

(MAB) is a framework for sequential decision making where, at every time step, the learner

selects (or “pulls") one of several possible actions (or “arms"), and received a reward based

on the selected action. The performance of the learner is judged based on the notion of

regret. The regret of the learner is the difference between the maximum possible reward

and the reward resulting from the chosen action. In the classical MAB setting, the goal is

to minimize the sum of all regrets, or cumulative regret, which naturally leads to an explo-

ration/exploitation trade-off problem [109]. If the learner explores too little, it may never

find an optimal arm which will increase its cumulative regret. If the learner explores too

much, it may select suboptimal actions too often which will also increase its cumulative

regret. There are a variety of algorithms that solve this exploration/exploitation trade-off

problem [109, 110, 111, 112, 113].

Historically, adaptive sensing has been viewed in a decision process framework where the

learner takes actions on selecting the sensor based on previous data collected. There have

been many proposed solutions based on Markov decision processes (MDPs) and partially

observable MDPs, with optimality bounds for cumulative regret [114, 115, 116, 117, 118].

In fact, sensor management and sequential resource allocation was one of the original mo-

tivating settings for the MAB problem [119, 113, 114], with the goal of cumulative regret

minimization. We are interested in an adaptive sensing setting where the optimal decisions

and rewards also depend on the context, but where the actions can be separated into pure

exploration and pure exploitation phases, with no actual loss during exploration (since true

magnetic field is known), and with no feedback during pure exploitation.

The contextual bandit problem extends the classical MAB setting, with the addition of

time-varying side information, or context or telemetry, made available at every time step.
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The best arm at every time step depends on the context, and intuitively the learner seeks

to determine the best arm as a function of context. To date, work on contextual bandits

has studied cumulative regret minimization, which is motivated by applications in health

care, web advertisement recommendations and news article recommendations [120]. The

contextual bandit setting is also called associative reinforcement learning [110] and linear

bandits [112, 121].

In classical (non-contextual) MABs, the goal of the learner isn’t always to minimize the

cumulative regret. In some applications, there is a pure exploration phase during which the

learning incurs no regret (i.e., no penalty for suboptimal decisions), and performance is mea-

sured in terms of simple regret, which is the regret assessed at the end of the pure exploration

phase. For example, in top-arm identification, the learner must guess the arm with highest

expected reward at the end of the exploration phase. Simple regret minimization clearly

motivates different strategies, since there is no penalty for suboptimal decisions during the

exploration phase. Fixed budget and fixed confidence are two main theoretical frameworks

in which simple regret is generally analyzed [122, 123, 124, 125].

In this chapter, we extend the idea of simple regret minimization to contextual bandits.

In the interference cancellation setting, at times when the true magnetic field is known,

the learner can explore noise behaviors among distributed magnetometers and when the

true magnetic field is unknown, the learner has to exploit its understanding of noise to

provide accurate magnetometer measurements. In this setting, there is a pure exploration

phase during which no regret is incurred, following by a pure exploitation phase during

which regret is incurred, but there is no feedback so the learner cannot update its policy.

To our knowledge, previous work has not addressed novel algorithms for this setting. The

work of [126] provides ϵ-optimal simple regret guarantees for the policy of uniform sampling

of arms in the independent and identically distributed data (i.i.d) setting. In the work

of [127, 128, 129, 130] there is a single best arm even when contexts are observed. Our
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algorithm, Contextual Gap, generalizes the idea of [127] to the contextual bandits setting.

We make following contributions: 1. We formulate the spacecraft magnetometer interfer-

ence cancellation problem in the machine learning setting. 2. We formulate a novel machine

learning problem: that of simple regret minimization for contextual bandits. 3. We develop

an algorithm, Contextual Gap, for this setting, based on theoretical guarantees. 4. We

present experimental results on data generated based on on-orbit telemetry of the GRIFEX

CubeSat and on other machine learning datasets.

This chapter is organized as follows. In Section 2, we present the magnetic field models

for spacecraft interference and sensor calibration. In Section 3, we reduce the problem of

interference cancellation to a machine learning setting. In Section 4, we state the machine

learning problem formally and in Section 5, we propose the Contextual Gap algorithm to

solve this new problem. In Section 6, we present a brief overview of the learning theoretic

analysis and in Section 7, we present and discuss experimental results. Section 8 concludes

the chapter.

IV.2 Spacecraft Magnetic Field Model

We perform interference cancellation with a realistic spacecraft model, distributed sensors

and with computational and power constraints normally encountered with CubeSats. We are

interested in measuring the true magnetic field QT (t) = [QX (t),QY (t),QZ (t)] at measurement

times t ∈ N = {1, 2, 3, ..}.

Consider a spin-stabilized spacecraft spinning about the z axis at an angular velocity ω

and has M 3-axis magnetometers, measuring the magnetic fields QS,m(t), 1 ≤ m ≤ M. The

sensors have imperfect non-orthogonality behavior and a measurement of QT (t) by sensor

i produces GiOtQT (t) + Si where Ot ∈ SO(3) is the rotation matrix for the rotation of the
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spacecraft at time t and Gi ∈ R3×3, Si ∈ R3 are the slow varying sensor non-orthogonality

matrix and offset for sensor i [67, 66, 72]. Gi has the small signal structure

Gi =



Gi,1 Gi,1∆φi,1 Gi,1∆θi,1

−Gi,2∆φi,2 Gi,2 Gi,2∆θi,2

Gi,3∆θi,3 cos(φi,3) Gi,3∆θi,3 sin(φi,3) Gi,3


Gi , Si are unknown and can be estimated at time t by estimation of spin-harmonics and

sensor modeling [67, 72].

The sensor measurements by the spacecraft are influenced by magnetic field interference

due to currents running through the systems of the spacecraft. We denote the total number

of current loops in the spacecraft that interfere with the measurements as N , (generally N >>

M). Let IS (t) = [I1(t), I2(t), · · · , IN (t)] denote the vector of all current loops in the spacecraft

that generate magnetic field interference. Due to the additive properties of magnetic force

fields, the sensors measure the magnetic field

QS,m = Gm(OtQT (t) +Vm(t)) + Sm, 1 ≤ m ≤ M (4.1)

where Vm(t) =
N∑
n=1

vmn(In(t)) and vmn(In(t)) is the magnetic field strength of current loop n

measured by sensor m.

The spacecraft collects telemetry or context xt at each time step t to provide indirect

information about the interference such that Vm(t) = hm(xt )+ξm,t . This telemetry information

can include major supply currents, battery, reaction wheel currents or reaction wheel speeds

and torque applied, solar panel output currents, sub-system temperatures, etc. We shall

denote the telemetry space (the topological space to which xt belongs) as X. For the rest of
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this chapter, we shall refer to xt as telemetry or context interchangeably.

We assume that for some times t ∈ T ⊂ N with |T | = T , the true magnetic field QT (t)

is known and for a magnetic field measurement from sensor i, it is possible to compute the

amount of noise seen by the sensor i at telemetry state xt using the loss function ‖QT (t) −

Ĝ−1
i (t)(QS,i(t) − Ŝi(t))‖2, where Ĝi(t), Ŝi(t) are estimates of Gi , Si at time t computed without

access to the true magnetic field by computing the spin harmonics induced by non-orthogonal

sensors (as in [67]). The estimation of non-orthogonality requires storage and analysis of the

past L samples of data to extract spin components. This is computationally expensive and

requires iterative application of least-squares solutions or computation of averaging estimates

as in [67, 66]. Due to this and due to the computational constraints of CubeSats, we impose

the condition that only one sensor measurement can be accessed at a time-step.

In this setting, given the true magnetic fields for times QT (t) we would like to like to

provide accurate estimates of QT for times t ∈ N \ T.

Remarks 1. Ĝi can be recovered accurately only when the spacecraft is noiseless.

2. Generally T is known for certain non-contiguous time steps. For simplicity in expla-

nation and without loss of generality we will assume that T = {1, 2, 3, · · · ,T }.

3. We assume that using high definition geomagnetic models with Swarm data (e.g.,:

[131]), we can provide accurate estimates of the geomagnetic field at some points of

the spacecraft’s orbit.

IV.3 Interference Cancellation

We propose to adaptively select low noise combinations of sensor measurements for each axis

of measurement based on spacecraft telemetry information to generate low noise measure-
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ments of QT . The magnetic field interference is linearly additive and certain combinations

of magnetometer measurements will have lower noise estimates. The complete removal of

interference in scenarios where the number of independent interfering sources are signifi-

cantly greater than the number of magnetometers is an infeasible problem (the problem

is under-determined). However, it is feasible to evaluate combinations of magnetometer

measurements to minimize interference based on spacecraft electrical state. The spacecraft

telemetry xt provides indirect information on spacecraft currents, and therefore, on the

strength and directions of the interference. Based on this, we consider combining sensor

measurements based on the telemetry to minimize noise.

More precisely, we are interested in the magnetic field measurementsQW (t) :=
∑
m

WmQS,m(t)

such that

Wm =



wm,1 0 0

0 wm,2 0

0 0 wm,3


and

∑
m

wm,j(xt ) = 1, j = 1, 2, 3. We propose to use such combinations of measurements with

the realistic sensor calibration models proposed in Section IV.2. With the sensor model as

stated in Section IV.2, we can re-write the magnetic field measurement produced by QW (t)

as

QW (t) =
M∑

m=1

WmGm(OtQT (t) +Vm(t)) +WmSm(t)

= GW (OtQT (t) +VW (t)) + SW (t), (4.2)

where GW =
∑
m

WmGm, VW (t) = G−1
W

∑
m

WmGmVm(t) (If the small signal approximations hold,

then GW is invertible). From equation 4.2 it can be seen that with the model described in

section IV.2, sensor combinations can be treated as new sensors with calibration parame-
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ters that are unique to the combination. When the gains along the axes are comparable

among all the magnetometers, spin-calibration methods can be applied to combinations of

magnetometer measurements. For details of the small signal approximations for GW and its

applicability to spin-calibration methods see Appendix C.1.

Using standard techniques, we can provide an estimate GW , ĜW . In the presence of noise,

the calibration corrections for GW , SW are inaccurate. In particular, the larger the average

noise for a particular combination W , the larger the error in estimation of the calibration

parameters. A sensor combination W with lower average noise will lead to better non-

orthogonality and spin correction. The estimates of ĜW can be used for t ∈ T to obtain an

indirect and noisy estimate of the interference.

For times t ∈ T when an estimate of the interference can be provided, it can be shown

that for a fixed sensor combinationW , the loss lW can be decomposed into two parts as

lW = fW (xt ) − ζt

where fW : X → R is a function that maps the telemetry at time t to interference and ζt is

random variable that perturbs fW , and depends on the unobserved interference, imperfect

calibration and the true magnetic field. Of the two parts, the first part, fW , depends on the

telemetry xt and allows optimization. The exact nature of fW (xt ) depends on the construction

of the spacecraft or CubeSat and the type of telemetry under consideration. The second

part, ζt , is a random process that depends on the average magnitude of interference and the

true magnetic field. When the spin correction has low error, the unobservable interference

(the part of the interference that cannot be inferred from telemetry) dominates the random

process behavior. We will focus on the loss behavior with respect to the telemetry and denote

the loss random variable as `W (xt ) such that
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`W (xt ) = fW (xt ) − ζt

We are interested in adaptive selection of W from telemetry xt to minimize average

interference for each t ∈ N \ T. Define the action spaceW as search space for interference

minimization:

W = {(W1,W2, · · ·Wm)|
∑
m

wm,i = 1, |wm,i | ≤ CW , i = 1, 2, 3}.

We aim to estimate a function W : X → W such that for t ∈ T′, the expected loss is

minimized for any xt ∈ X, i.e.,

W (xt ) = arg min
W ′∈W

E[`W ′(xt )].

We would like to note here that even though the system being optimized is fW (xt ) a direct

optimization of `W (xt ) has to be performed as we do not have access to fW (xt ). The non-

orthogonality parameters Ĝ−1
W , ŜW (t) have to be computed for every combination W only

after selection of W by computation of QW (t) for the previous L time steps followed by the

application of spin-correction techniques.

Finite Approximation A complete search to optimize over W real-time with CubeSat

computational constraints is intractable particularly when the unobservable interference be-

havior is not independent and identically distributed. To satisfy computational constraints

we propose to optimize over a finite approximation of W. To do so we shall make the

following assumption about fW (xt ):

A-I fW (xt ) is uniformly continuous with respect to sensor combinationW for all xt .

The above assumption implies that for any δ > 0, there exists an ϵ > 0 such that
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∑
m

‖Wm −W ′m‖F ≤ ϵ implies | fW (xt ) − fW ′(xt )| < δ . With the preceding assumption we

consider an ϵ-net Wϵ = {W (1)ϵ ,W
(2)
ϵ , · · · ,W (A)ϵ } of size |Wϵ | = A such that for any W ∈ W,

min
W ′∈Wϵ

∑
m

‖Wm −W ′m‖ ≤ ϵ . With Assumption A-I, minimizing over the ϵ-net provides the δ

approximation to the optimizer:

���� min
W ′∈W

E[`W ′(xt )] − min
W ′∈Wϵ

E[`W ′(xt )]
���� ≤ δ

Wϵ can be constructed by construction of three (ϵ/3)-nets on M-dimensional simplexes

scaled by CW , offset by CW − 1 and then creating a 3D grid which will consist of values of

Wϵ . We are interested in estimation of the function

W (xt ) = arg min
W ′∈Wϵ

E[`W ′(xt )] (4.3)

The following section presents equation (4.3) in a machine learning setting as a contextual

bandit problem minimizing simple regret. At every time step t , the learning algorithm will

select an action a ∈ {1, 2, ...,A} to choose the sensor combinationW (a)ϵ .

IV.4 Machine Learning Setting

We model the interference minimization scenario as a contextual bandit problem where the

learning algorithm has to learn to identify (over times t ∈ T), the sensor combination with

the least noise. It then uses the learned behavior over the times for which magnetometer

measurements are necessary. We denote the telemetry or context space as X. Let {xt }∞t=1

denote the sequence of observed telemetry. OverWϵ the total number of sensor combinations

are A. For each xt , the learner is required to choose an action or arm a ∈ [A] (the action or
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arm is the selection of a sensor combination), where [A] := {1, 2, ...,A}.

The learning algorithm learns on the basis of a reward ra, such that ra := −l
W (a)ϵ

. Simpli-

fying notation, for arm a ∈ [A], we label fa : X → R defined as fa := −f
W (a)ϵ

as the function

that determines the expected reward for context x when action a is selected. Let at denote

the action selected at time t , from Section IV.3 the reward at time t obeys rt := fat (xt ) + ζt ,

where ζt is unobservable noise. We assume that for each a, fa belongs to a reproducing

kernel Hilbert space (RKHS) defined on X. Without loss of generality, we assume that

T = {1, 2, ...T }. We shall define the first T time steps for which the true magnetic field is

known as the exploration phase where the learner observes context xt , chooses arm at and

obtains reward rt . The time steps after T belong to an exploitation phase where the learner

observes context xt , chooses arm at and earns an implicit reward rt that is not returned to

the learner.

The telemetry and the unobservable noise are not independent and identically distributed

with time, and the unobservable noise component depends on the previous noise behavior

and previous telemetry. To handle this general behavior a general probabilistic framework

is adopted, similar to [121] and [132]. Let X be the compact space endowed with a finite

positive Borel measure. We assume that ζt is a zero mean, ρ-conditionally sub-Gaussian

random variable, i.e., ζt is such that for some ρ > 0 and ∀γ ∈ R,

E[eγζt |Ft−1] ≤ exp

(
γ 2ρ2

2

)
. (4.4)

We also define the following terms. Let Da,t be the set of all the time indices when arm

a was selected up to time t − 1 and |Da,t | = Na,t . Let Xa,t be the data matrix whose rows

are {xτ }τ∈Da,t and similarly let Ya,t denote the column vector of rewards {rτ }τ∈Da,t . Thus,

Xa,t ∈ Rd×Na,t and Ya,t ∈ RNa,t .
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IV.4.1 A Contextual Bandit Problem

At every time step t , the learner observes context xt . During the exploration phase 1, · · · ,T ,

the learner chooses a series of actions to explore and learn the mapping fa from the context

to the reward. During the evaluation phase t > T , the goal is to select the best arm that

depends on the context. We define the simple regret associated with choosing arm a ∈ [A],

given context x , as:

Ra(x) := f ∗(x) − fa(x), (4.5)

where f ∗(x) := max
i∈[A]

fi(x) is the expected reward for the best arm for context x and fa(x)

is the expected reward for selected arm a. The learner aims to minimize the simple regret

for t > T . The goal is to determine policies for exploration and exploitation such that

∀ϵ > 0,∀x , P(Rat (x) > ϵ |x) → 0 as T → ∞, where at is a selected arm at some t > T . The

following section presents an algorithm to solve this problem.

IV.5 Algorithm

Estimating functions fa,a ∈ [A] from the context space to the reward space is an important

step towards achieving the goal which allows the learner to estimate the expected reward

for given context and thereby allowing it to choose the best arm for a given context. Let

k : X×X → R be a symmetric positive definite kernel function on X, H be the corresponding

RKHS and ϕ(x) = k(·,x) be the associated canonical feature map. Let ϕ(Xa,t ) := [ϕ(xj)]j∈Da,t .

We define the kernel matrix associated with Xa,t as Ka,t := ϕ(Xa,t )Tϕ(Xa,t ) ∈ RNa,t×Na,t and

the kernel vector of context x as ka,t (x) := ϕ(Xa,t )Tϕ(x). Let Ia,t be the identity matrix of size

Na,t . To estimate the function fa at time t , we solve the following minimization problem (also

called as Kernel ridge regression): f̂a,t (x) = arg min
fa∈H

∑
j∈Da,t

(fa(xj) − rj)2 + λ‖ fa‖2. The solution
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to kernel ridge regression estimate of fa can be computed as f̂a,t (x) = ka,t (x)T (Ka,t +λIa,t )−1Ya,t

with variance in the estimate, σ̂2
a,t (x) := k(x ,x) − ka,t (x)T (Ka,t + λIa,t )−1ka,t (x) [132]. The

following theorem is a slightly modified version of Theorem 2.1 in [132] which allows us to

define high probability upper and lower confidence bounds on fa(x).

Theorem IV.1 (Restatement of Theorem 2.1 in [132]). Consider the contextual bandit

scenario described in section IV.4. For any β > 0, with probability at least 1 − e−β2
, it holds

simultaneously over all x ∈ X and all t ≤ T ,

| fa(x) − f̂a,t (x)| ≤ (C1β +C2)
σ̂a,t (x)√

λ
(4.6)

where C1 = ρ
√

2 and C2 = ρ

√√√ T∑
τ=2

ln(1 + 1

λ
σ̂a,τ−1(xτ )) +

√
λ‖ fa‖H .

We express the upper and lower confidence bounds of fa(x) as Ua,t (x) = f̂a,t (x) + (C1β +

C2)
σ̂a,t (x)√

λ
and La,t (x) = f̂a,t (x)−(C1β+C2)

σ̂a,t (x)√
λ

. The algorithm extends the Bayes Gap algo-

rithm [127] to the contextual setting. We define the contextual gap as Ba,t (x) = max
i,a

Ui,t (x) −

La,t (x) and the confidence estimates sa,t (x) = 2(C1β +C2)
σ̂a,t (x)√

λ
. After a burn-in phase where

each arm is sampled in order for some number of rounds Nλ, the algorithm works by exploring

the best and the second best arms and increasing the confidence in reward estimates during

the exploration phase. In the exploitation phase, for a given context x , the contextual gap

for all time steps in the exploration phase are evaluated. The arm with the smallest gap over

all time history for the given context x is chosen as the best arm associated with context

x . Because there is no feedback during the exploitation phase, the algorithm moves to the

next exploitation step without feedback or modification to the learning history. The exact

description is presented in Algorithm 4.1.

During the exploitation phase, looking back at all history may be computationally pro-

hibitive, in which case, in practice, we just select the best arm as JT (xt ),∀t > T . As described
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Algorithm 4.1: Contextual-Gap
Input: Number of arms A, Time Steps T , parameter β , regularization parameter λ,

burn-in phase constant Nλ.

1 for t = 1, ...,ANλ do

2 Observe context xt .

3 Choose at = t mod A.

4 Receive reward rt ∈ R.

5 end

6 for t = ANλ + 1, . . . ,T do

7 Observe context xt .

8 Learn reward estimators f̂a,t (xt ) and confidence estimators sa,t (xt ) based on history.

9 Ua,t (xt ) = f̂a,t (xt ) +
sa,t (xt )

2
, La,t (xt ) = f̂a,t (xt ) −

sa,t (xt )
2

.

10 Ba,t (xt ) = max
i,a

Ui,t (xt ) − La,t (xt ).

11 Jt (xt ) = arg min
a

Ba,t (xt ), jt (xt ) = arg max
a,Jt (xt )

Ua,t (xt ).

12 Choose at = arg max
a∈{jt (xt ),Jt (xt )}

sa,t (xt ).

13 Receive reward rt ∈ R.

14 end

15 for t > T do

16 Observe context xt .

17 for τ = ANλ + 1, . . . ,T do

18 Evaluate and collect Jτ (xt ),B Jτ (xt )(xt ).

19 end

20 ι = arg min
ANλ+1≤τ≤T

B Jτ (xt ),t (xt )

21 Choose Ωt = Jι(xt ).

22 end
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in the experimental section, this works well in practice. Let Nλ be the minimum number of

tries that arm a has to be selected prior to the guarantee of regret bounds. Theoretically, Nλ

has to be bigger than a certain number defined in Section IV.6, but for experimental results

we keep Nλ = 1. The following section details high probability bounds on the simple regret

of the contextual-gap algorithm.

IV.6 Learning Theoretic Analysis

We now analyze high probability simple regret bounds which depend on the gap quantity

∆a(x) := |max
i,a

fi(x) − fa(x)|. The bounds are presented in the non-i.i.d setting described

in Section IV.4. For the confidence interval to be useful, it needs to shrink to zero with

high probability over the feature space as each arm is pulled more and more. This requires

smallest non zero eigenvalue of sample covariance matrix of data for each arm to be lower

bounded by a certain value. The lower bound on eigenvalue of the sample covariance matrix

is used to shrink the confidence intervals with high probability under certain assumptions.

We bound the simple regret using the lower bounds on the eigenvalues, the gap quantity,

and the special exploration strategy described in the algorithm 4.1. We make additional

assumptions to the problem setting described.

A I X ⊂ Rd is a compact space endowed with a finite positive Borel measure.

A II Kernel k : X × X → R is bounded by a constant L, the canonical feature map

ϕ : X → H of k is a continuous function, and H is separable and fa ∈ H.

We denote Et−1[·] := E[·|ϕ(x1),ϕ(x2), · · · ,ϕ(xt−1)] and by λr (A) the r th largest eigenvalue

of a compact self adjoint operator A. For a context x , the operator ϕ(x)ϕ(x)T : H → H is a

compact self-adjoint operator. We define the cumulative operator Vt :=
t−1∑
s=1

Es[ϕ(xt )ϕ(xt )T ].

Based on this notation, we make the following assumption:
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A III There exists a subspace of dimension d∗ with projection P , and a constant λx > 0,

such that ∀t , λr (PTEt−1[ϕ(xt )ϕ(xt )T ]P) > λx for r ≤ d∗ and λr ((I−P)TEt−1[ϕ(xt )ϕ(xt )T ](I−

P)) = 0,∀r > 0.

Assumption A III implies that there exists a subspace of dimension d∗ such that eigenval-

ues of Vt in the subspace grow linearly with time and are zero outside the subspace. This

assumption allows us to lower bound, with high probability, the r th eigenvalue of the cu-

mulative sample covariance operator St :=
t∑

s=1

ϕ(xs)ϕ(xs)T so that it is possible to learn the

reward behavior in the low energy directions of the context at the same rate as the high

energy ones with high probability.

Let Nλ := max
(2(1 − λ)

λx
,d∗,

256

λ2
x

log(128d̃

λ2
xδ
)
)
. The condition of Na,t > Nλ in Algorithm 4.1

results in a minimum number of tries that arm a has to be selected prior to the guarantee

of regret bounds. In Nλ := max
(2(1 − λ)

λx
,d∗,

256

λ2
x

log(128d̃

λ2
xδ
)
)
, the first and third term in the

max are needed so that we can give concentration bounds on eigenvalues and prove that

confidence width shrinks. The second term is needed because one has to get at least d∗

contexts for every arm so that at least some energy is added to the lowest eigenvalues.

The high probability monotonic upper bound on the confidence estimate can be used

to upper bound the simple regret. The upper bound depends on a context-based hardness

quantity defined for each arm a (similar to [127]) as

Ha,ϵ (x) = max(1
2
(∆a(x) + ϵ), ϵ). (4.7)

Denote its lowest value as Ha,ϵ := inf
x∈X

Ha,ϵ (x). Let total hardness be defined as Hϵ :=
∑
a∈[A]

H−2
a,ϵ .

The recommended arm Ωt after time t ≥ T is defined as Ωt = Jarg minANλ+1≤τ ≤T B Jτ (xt ),t (xt )(xt )

from algorithm 4.1. We now upper bound the simple regret as follows:

Theorem IV.2. Consider a contextual bandit problem as defined in Section IV.4 with as-
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sumptions A I-A III. For 0 < δ ≤ 1

8
and Nλ := max

(2(1 − λ)
λx

,d∗,
256

λ2
x

log(128d̃

λ2
xδ
)
)
, let

β =

√
λx (T − Nλ(A − 1)) + 2Aλ

16C2
1Hϵ

− C2

C1
. (4.8)

For all t > T ,

P(RΩt (x) < ϵ |x) ≥ 1 −A(T −ANλ)e−β
2 −Aδ . (4.9)

Note that the term C2 in (4.8) grows logarithmically in T . For β to be positive, T should

be greater than
16HϵC

2
2 − 2Aλ

λx
+ Nλ(A − 1). We compare the term e−β

2
in our bound with

the one in [126]. Uniform sampling technique in [126] leads to a bound which depends on

Ce−cT
2

(d1+d ) ≤ Ce−cT
2

2+d2 , where d1 ≥ 2, d is the dimension of the context and constants C, c,

which is very slow. But in our case, it leads to C′Tec
′T for constants C′, c′. Comparing the

equations, we can conclude that our bound is superior for ∀d ≥ 1.

IV.7 Results and Discussion

We present results from three different cases and two different experimental setups, first from

online multi-class classification with partial feedback, and second from a lab generated non-

i.i.d spacecraft magnetic field as described in section 2 with direct magnetometer selection

and the third from a lab-generated non-i.i.d dataset with combinations of magnetometers

as arms. The datasets were split into cross-validation and evaluation datasets and each

of those datasets were further split into exploration and exploitation phases. Due to the

prohibitive computational complexity of the exploitation phase of the proposed algorithm,

a simplification was made to choose the best arm JT (x) as the recommended arm during the

exploitation phase instead of going back all the way in history. We use the Gaussian kernel

and tune the bandwidth of the kernel, and the regularization parameter for both our method
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and Kernel-UCB. The exploration parameter α = C1β +C2 is set to 1 for the results in this

section and we show results for different values of α in the supplementary material.

We present simple regret comparisons of the contextual gap algorithm against Kernel-

UCB [133], which is designed to optimize cumulative regret as a test both of the sub-

optimality of cumulative regret minimizations in minimizing simple regret and to test the

performance of the simple regret minimization algorithm.

IV.7.1 Multi-class Classification

We present results of contextual simple regret minimization for multiclass datasets. At

every time step, we get an example or feature vector and we need to select the class to

which example belongs. Each class is treated like an arm or action. If we select the best

arm (true class) we get a reward of one, otherwise we get a reward of zero. This setting is

different from standard online multiclass classification, because we don’t learn the true class

if our selection is wrong. We present results over three standard machine learning multi-class

datasets: MNIST [134], USPS [135] and Letter [136]. The simple regret plots for Contextual

Gap and Kernel-UCB are presented. The plots are generated by varying the length of the

exploration phase and keeping the exploitation dataset constant for evaluation of simple

regret. It can be seen that the simple regret of the contextual gap converges faster than the

simple regret of Kernel-UCB. Since the datasets are i.i.d in nature, multiple simple regret

evaluations are performed by shuffling the evaluation datasets, and the average curves are

reported.
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(a) Letter dataset (b) USPS dataset

(c) MNIST dataset

Figure 4.1: Simple regret evaluation of multi-class datasets

IV.7.2 Experimental Spacecraft Magnetic Field Dataset

Interference minimization using contextual gap algorithm was tested on a lab generated, re-

alistic spacecraft magnetic field dataset with telemetry downloaded from on-orbit spacecraft

(non-i.i.d contexts). In spacecraft magnetic field data, we are interested in identifying the

least noisy sensor or combination of sensors for every time step (see Sections IV.2 and IV.3).
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Experimental Setup

The lab-based experimental setup consisted of a combination of simulated electrical be-

havior and telemetry downloaded from the GRIFEX satellite [88, 87]. The experimental

setup consisted of 8 magnetic coils generating interference and 3 magnetometers perform-

ing measurements placed in a structure similar to a 4U CubeSat in an electromagnetically

shielded environment. The currents generating magnetic fields at the 8 coils were derived

from currents that would be generated from subsystems in a spin-stabilized CubeSat. Three

subsystems were taken into consideration: reaction wheels, solar panels and the electrical

power system (EPS).

Reaction wheel currents were simulated from a realistic spacecraft model similar to those

used for Multi-disciplinary Design Optimization (MDO) of CubeSats [137]. Angular velocity

and torque measurements were used in telemetry for the learning algorithm.

The solar panel magnetic noise was generated based on panel currents and panel tem-

peratures from GRIFEX telemetry applied to panel models. Non-ideal solar panels do not

have a deterministic uniform current density distributed across the panels [138, 139]. Each

of the four solar panels were broken down into 100 current elements with randomly chosen

densities and a small linear temperature variation was introduced for each current element

(different current elements had different temperature variations).

Electrical Power System (EPS) interference was based on 5 CubeSat current loops -

unregulated power feeds from the solar panels into EPS and unregulated battery current out

of the EPS. For EPS, the correlations between currents and the placement of the coils were

similar to the placement of the panel current loops and their correlations on GRIFEX.

In addition to the above subsystems, unobservable noise were added prior to generating

spacecraft interference from the coils. The unobservable noise was modeled as low magnitude
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(a) GRIFEX CubeSat (b) Coil and sensor setup

Figure 4.2: The GRIFEX CubeSat and the experimental setup for data generation, GRIFEX
telemetry and additional subsystem modeled data was fed into the coils to generate inter-
ference

i.i.d uniform noise.

The telemetry xt consisted of a 15 dimensional vector consisting of simulated reaction

wheel speed and torque, GRIFEX solar panel currents, solar panel temperatures and battery

currents. Magnetic field interference data were collected using three sensors (arms), and

sensor readings were downloaded for all three sensors at all times steps, although the learning

algorithm does not know these in advance and must select one action per time step.

Direct Sensor Selection

We test the behavior of the learning algorithm by restricting Wϵ to the sensors themselves

(ϵ = CW /
√
M − 1). In this scenario, the true magnetic field was computed using a magnetic

field model (POMME 11 [140]). The spin correction was assumed to be perfect (ĜW = GW )

and therefore noise in the reward process was produced only by the unobserved noise ξt .

We test algorithmic behavior in two different settings: with and without on-orbit modifi-
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cation. The underlying data is time series based with the telemetry collected from GRIFEX.

We make an on-orbit modification to simulate algorithmic behavior when the exploration

and exploitation phases do not occur on successive data-points. Due to the cyclic nature of

the spacecraft orbits and the rotations, we achieve this effect by shuffling the dataset once for

the exploration and exploitation phases while evaluating the data. The cross validation for

both datasets is done with time-series data (not shuffled) similar to what would be available

prior to deployment. Figures 4.3a and 4.3b show the simple regret minimization curves for

the spacecraft dataset with and without on-orbit modifications.

Due to the nature of the magnetic field interference, there exists large variability in reward

for certain regions of the context space, implying that consistent exploration of the best

and second best arms provides improved results. This large variability is more pronounced

without the on-orbit correction, due to the nature of the time series data (See Figures 4.7, 4.8

for the time series of interference and telemetry). Due to this, the Contextual Gap algorithm

shows jumps in simple regret evaluations when newer dimensions in contexts are explored

resulting in a temporary increase in the uncertainty estimate.

(a) Spacecraft dataset - with on-orbit modifica-
tion

(b) Spacecraft dataset - without on-orbit modifi-
cation

Figure 4.3: Simple regret of direct sensor selection with and without on-orbit modifications
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Selection of Sensor Combinations

In this scenario, we analyze interference minimization through selection of sensor combi-

nations in the presence of rotational effects and imperfect calibration. The interference

experimentally generated was added to a simulated spinning spacecraft. The spacecraft spin

was restricted along the z-axis. The true magnetic field in the body fixed frame was chosen

as constant for the dataset.

Along each dimension, ten sensor combinations were sampled from a simplex. This

resulted in a total of 1000 arms. However, among the arms selected, most of the 1000 arms

are sub-optimal (higher interference) most of the time. A subset of the arms that were the

best among the arms for more than 1.67% of the total number of evaluations were selected.

(The total dataset consists of 6000 data points, of this only those arms that were optimal

for at-least a hundred time samples were selected). This resulted in a total of 11 arms.

During pre-processing of the dataset, the true estimates of combined sensor correction

matrix GW were perturbed with random noise to test the effects of imperfect sensor correc-

tion. For testing, the rewards of all the arms were computed for the dataset. During on-orbit

operation, only the estimates of the sensor combinations selected have to be computed per

time step. Figure 4.4 shows the histogram of the minimum interference values with sensor

combinations, with individual sensors, and the interference of the individual magnetometers.

The statistics associated with the interference seen by each of the sensors and the optimal

sensor combinations are presented in Table 4.1. The cross validation and test datasets for

application of the learning algorithm were constructed similar to the direct sensor selection

scenario with and without on-orbit modifications.

The simple regret for the contextual gap algorithm is as shown in Figure 4.5b and 4.6b.

The histogram of the best arm selection among the 11 sensor combinations is shown along

with the results of the Contextual Gap algorithm for the exploitation phases for the two
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cases in Figure 4.5a and 4.6a. From Figures 4.5b, 4.6b, with increase in the exploration

phase, the simple regret decreases. A decrease in simple regret implies that the Contextual

Gap algorithm learns to adaptively chooses the sensor combination with an interference that

is the smallest among the possible combinations (arms) under consideration. Smaller the

regret, smaller the difference between the selected combinations and the lowest interference

a particular set of sensor combinations can provide.

It can be seen that with increasing training data the contextual gap algorithm learns to

identify sensor combinations with low regret. At the end of the exploration period, since

the simple regret evaluations are non-zero, the optimal sensor selection is imperfect. The

learning theoretic bounds presented in the preceding section show that this simple regret

will go to zero with an increase in the length of the exploration phase.

The time series of the interference magnitude and the telemetry used for the exploitation

phase without on-orbit correction is shown in Figure 4.7 and Figure 4.8. The interference

along individual directions in the spacecraft body fixed frame is provided in Appendix C.3.

Note that even if the magnitude of interference is low along certain directions, with the

implemented scenario, the interference along the X , Y and Z directions may be higher. This

effect can be corrected with a finer selection of sensor combinations. Selecting larger number

of combinations for the Contextual Gap algorithm to optimize over also implies a longer a

exploration phase. A trade off of the learning time versus interference with fewer number of

arms has to be analyzed prior to on-orbit implementation of the Contextual Gap algorithm.
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Table 4.1: Statistics of interference

Mean
(nT)

Median
(nT)

Std dev.
(nT)

Sensor 1 16.81 15.34 9.09

Sensor 2 36.99 33.74 18.92

Sensor 3 75.45 72.59 19.24

Sensor Minimum 15.81 14.79 7.91

Sensor Minimum Combination 7.21 6.16 4.50

Figure 4.4: Histogram of magnetic field interference from experimental setup
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(a) Histogram of interference (b) Simple regret evaluation

Figure 4.5: Evaluation of simple regret minimization with sensor combinations - with on-
orbit dataset modification

(a) Histogram of interference (b) Simple regret evaluation

Figure 4.6: Evaluation of simple regret minimization with sensor combinations - without
on-orbit dataset modification
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(a) Interference of Magnetometer 1

(b) Interference of Magnetometer 2

(c) Interference of Magnetometer 3

(d) Contextual Gap with 11 arms

Figure 4.7: Time series of magnitude of magnetic field interference

108



(a) Telemetry - angular velocity (synthetic)

(b) Telemetry - torque (synthetic)

(c) Telemetry - solar panel currents (GRIFEX)

(d) Telemetry - solar panel temperatures (GRIFEX)

(e) Telemetry - battery (EPS) current (GRIFEX)

Figure 4.8: Telemetry used in experimental setup
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IV.8 Conclusion

This chapter discussed a novel approach to the minimization of time-varying interference in

spacecraft magnetometry. We showed that the problem can be modeled as a novel machine

learning problem: one of simple regret minimization in the contextual bandit setting. We

presented an algorithm, called Contextual Gap, for simple regret minimization based on

theoretical bounds. For the proposed algorithm, we show empirical results on three multiclass

datasets and a lab-based spacecraft magnetometer dataset based on on-orbit telemetry of

the GRIFEX spacecraft.

110



CHAPTER V

Conclusion and Future Work

We have developed learning algorithms for orbit determination and spacecraft magnetometer

interference cancellation. In addition, we also developed network architecture for implemen-

tation of Doppler based orbit determination. The learning algorithms developed operate

under very general conditions. The orbit determination (OD) algorithm requires only vis-

ibility of the spacecraft cluster and observability of the dynamical system. The network

architecture provides algorithms to track spacecraft clusters under the conditions required

for OD with sufficient density of ground stations. The magnetic field interference cancella-

tion algorithm works with CubeSat computational constraints and under realistic telemetry

conditions.

In Chapter II, we provided an orbit determination algorithm for spacecraft clusters as

the solution of a new machine learning problem of mixture distribution regression. We

empirically demonstrated the generality of the orbit determination through different OD

scenarios (experimental Doppler-only scenario, position based OD, a lunar orbit scenario and

a low Earth orbit scenario for comparison with an EKF). We also demonstrated robustness

to noise and the absence of initial estimate requirements with comparisons to EKF and show

convergence of the mixture distribution regression based orbit determination algorithm when
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the EKF diverges. To authors knowledge, this is the only Doppler only algorithm for orbit

determination.

In Chapter III, we analyzed the new problem of MMSP-OU with the goal of maximizing

measurements for orbit determination. The addition of a learning cluster provides a method

for computing coordinated tracking algorithms with software defined ground stations. We

proposed algorithms that can track spacecraft clusters with the standard launch window

uncertainties in low Earth orbit.

In Chapter IV, we developed a novel way to minimize spacecraft magnetic field interfer-

ence with distributed magnetometers and spacecraft telemetry. The proposed algorithm is

a solution of the new machine learning problem of simple regret minimization in the contex-

tual bandit setting. To the authors knowledge, this is the first solution to the minimizing

spatially distributed time varying spacecraft noise under CubeSat computational constraints

and when the noise sources far exceed the number of sensors.

This thesis forms the first forays into viewing these problems in spacecraft subsystems

from a machine learning perspective and therefore opens up many different possibilities

for future work. In many CubeSat deployments, due to the orbital parameters being tied

to the dynamics of the upper stage, there exists strong correlation between the orbital

parameters. Mixture distribution regression can be modified to use vector kernel operators

to take advantage of correlation between the orbits in the spacecraft cluster. The batch

version of mixture distribution regression is limited in updating the initial estimates with

batch data. An on-line version of mixture distribution regression where data can be received

and the orbital estimates can updated with time with additional measurements is of interest.

A third direction for future work is to further study the connections between the magnitude

of observability and convergence of the learning algorithm.

There are two areas of future work related to improvements and deployment of the ground
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station network for OD. First, spectrum monitoring using software ground stations will also

pick up measurements by extraneous ground transmissions in the band of operation, which

will require adaptive selection of these transmissions for which training data generation may

not be possible. This can be achieved by extending the marginal transfer learning to an

(nS + 1)-class version where training data for one of the classes is not provided. A second

area of future work involves combining independent sensor measurements from observations

other than those provided by the ground station network, such as direction of arrival, range

and GPS measurements.

The approach developed in Chapter IV opens up areas of future work both in spacecraft

systems and in machine learning. The distributed magnetometers learn minimum interfer-

ence combinations. Since the number of interfering sources are larger than the number of

magnetometers, this minimum is non-zero. This suggests a need for spacecraft bus architec-

tures that provide regions of low magnetic field interference which complement the learning

algorithm in minimization of magnetometer interference. In addition, on-orbit testing of the

interference cancellation algorithm is required prior to field deployments of the contextual

gap algorithm. In machine learning, there is scope for extension of this setting to rein-

forcement learning with the addition of the spacecraft attitude state. Since the telemetry

and the magnetic field information already contain partial attitude information, the addi-

tion of low resolution magnetic reference and attitude estimation feedback can be used for a

reinforcement learning setting for CubeSat ADCS.

We state in this work that learning systems can be used to solve complex non-linear and

stochastic problems in space systems with elusive solutions by building precise connections

to learning theory resulting in novel capabilities and understanding. Through this thesis

we developed learning systems of mixture distribution regression, contextual bandits and

greedy algorithms. We showed that these learning systems can solve complex non-linear and

stochastic problems in space systems with elusive solutions such as orbit determination in
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weakly observable settings and magnetic field interference cancellation in the presence of a

large number of interfering sources. We showed that these solutions hold due to precise con-

nections between observability and the existence of a map for mixture distribution regression

and between the magnetic field interference and the reward in a contextual bandit setting. We

have novel capabilities of Doppler-only orbit determination using ground station networks,

a method for spacecraft magnetic field interference minimization with distributed magne-

tometers and novel algorithms for new machine learning problems of mixture distribution

regression and simple regret minimization using contextual bandits. These novel capabilities

provide a stepping stone for the integration of artificial intelligence in space technologies and

in developing solutions to some of the most complex frontiers of humankind.

It is exciting to look forward to the technological innovations in space exploration and

artificial intelligence that these methods and algorithms will help enable.
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APPENDIX A

Appendix for Chapter 2

A.1 Background for Orbit Determination

In this section we introduce theoretical concepts in dynamical systems, probability, set theory

and machine learning that are necessary for statement and analysis of the orbit determination

problem. We restrict their definitions to the setting used in the thesis.

A.1.1 Dynamical System

The motion of a satellite and the observations associated with its motion can be described

by a dynamical system. Spacecraft motion is represented as the variation of states in a

state space with time. We define the state space as a metric space (M,dM) with a smooth

manifold M and a distance metric dM (known as the Reimannian distance metric or the

geodesic distance). For a point m ∈ M, we define the tangent space TmM of M as the

set of all tangent vectors at m. We further define the tangent bundle associated with the

manifoldM as TM :=
⋃
m∈M

TmM. We define the flow of a dynamical system as the function

χ :M ×R→M which satisfies two properties:
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1. For some Γ ∈ M, χ (Γ, 0) = Γ.

2. χ (χ (Γ, t1), t2) = χ (χ (Γ, t2), t1) = χ (Γ, t1 + t2) for t1, t2 ∈ R+.

The initial condition of the dynamical system is defined as Γ ∈ M such that χ (Γ, 0) = Γ. The

state of the dynamical system at time t is defined as Γ̃(t) := χ (Γ, t).

Generally, the flow of the spacecraft motion cannot be described in closed form and its

evolution with time is described as the solution of a differential equation, defined using,

1. A vector field w0 :M ×R+ → TM such that

d Γ̃(t)
dt
= w0(Γ̃(t), t),

i.e., w0 maps a state Γ̃(t) ∈ M to a point in its tangent space TΓ̃(t)M.

2. The initial condition Γ̃(0) := Γ.

In estimation problems in control theory, the state is not directly accessible and the

evolution of the dynamical system is accessible only through an observer. We define the

observer as a function q0 :M →Z that maps a state Γ̃(t) to a measurement or observation

z(t) ∈ Z where Z is a metric space. Finally, we define the system function of the dynamical

system as U :M×R+ →Z as the overall function which maps initial condition Γ ∈ M and

time t ∈ R+ to the observation z at time t i.e., U (Γ, t) := q0(χ (Γ, t)). 1

In this thesis, we will restrict the initial conditions to lie in a compact subset J ⊂ M

and the time evolution to lie in an interval T̃ ⊂ R+. Due to continuity of the flow, the image

χ (J, T̃) ⊂ M, is compact. We will assume that q0 maps from χ (J, T̃) to a compact metric

space F̃ ⊂ Z with metric dF̃ (these assumptions will be described formally later). In this

thesis, we will work with dynamic systems with system function U restricted to the input
1 For further details of the geometric structure of mechanical systems see Arnold[141] or Appendix A of

Holm[142]. For definitions of the observation function and system function see Hermann and Krenner [143].

116



space J × T̃ and the output space F̃, i.e., U : J × T̃ → F̃. We will refer to J as the space

of initial conditions or parameter space synonymously.

The dynamic system function U is said to be observable in T ⊆ T̃ if the partial inverse

function U −1 : (T → F̃) → J such that U −1(U (Γ, ·)) = Γ exists and is unique almost

everywhere. This definition of observability is more in line with identifiability and subsumes

the definition of non-linear observability used in traditional control theory settings.

Applied here, the state Γ̃(t) of a satellite at any time t can be described by its position

and velocity at t . The dynamical system is created by the gravitational fields of celestial

objects around the spacecraft. In this formulation, the tangent space TΓ̃(t)M consists of

points of velocity and acceleration of the satellite. The observer can be a ground sensor

which measures direction f̃ ∈ F̃ = S2 (in the three dimensional sphere) of the spacecraft

from the sensor and the observer function q0 maps the state of the spacecraft to its direction

with respect to the sensor.

A.1.2 Sets and Probability

Definition A.1 (Prokhorov Metric). Let (X,dX) be a compact metric space, with compact

space X and metric dX. X is endowed with the Borel σ -algebra FX induced by dX. Let BX

be the space of probability distributions on (X,FX). For P1, P2 ∈ BX, the Prokhorov metric

dP is defined as

dP (P1, P2) := inf{a ∈ [0, 1] : P1(A) ≤ P2(Aa) + a ∀A ∈ FX and vice versa} (A.1)

where Aa = {x ∈ X :
(

inf
x ′∈X

dX(x ,x′)
)
< a}. In this setting, (BX,dP ) is a metric space and dP

is said to induce a weak topology on BX. 2

2 For further details see Section 6, ch. 1 of Billingsley[144].
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Definition A.2 (Probability kernel function). Consider two random variables X ,Y defined

on topological spaces X andY. The conditional probability distribution is a map µ : Y → BX

such that for y ∈ Y, P(X |y) := µ(y) and P(X ∈ A|Y ) := µ(Y )(X ∈ A) for A ∈ FX. We define the

functional form of the conditional distribution µ as the probability kernel function. 3

Definition A.3 (Set Distance). Let m be the Borel measure. Consider two measurable sets

A,B with symmetric difference defined as A∆B := A \ B ∪ B \ A. We define the set distance

between two measurable sets A and B to be dS (A,B) := m(A∆B),

Definition A.4 (ϵ-Ball). Let X be a compact metric space with metric dX. For any x ∈ X,

we define the ϵ-ball as the set

Bϵ (x ,dX) := {x′ ∈ X|dX(x ,x′) < ϵ}

Definition A.5 (ϵ-net). Let (J,dJ) be a compact metric space. We say that a subset

A ⊂ J is an ϵ-net of J if

inf
a∈A

dJ(a,γ ) < ϵ,

for any γ ∈ J.

A.1.3 Recent Techniques from Machine Learning

Now we present a brief background of two machine learning techniques recently proposed

in literature to solve the problem of mixture distribution regression: distribution regression

[76] and transfer learning [75].
3For more information and for construction of the probability kernel function, see Lemma 1.37 and

Chapter 5 in Kallenberg[145].
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Distribution regression and kernels Distribution regression [76] is a technique to es-

timate the mappings from the space of probability distributions on an observation space

to a parameter space, when the only access to the probability distribution is through its

observations [76].

Consider an observation space X and a parameter space J. Let BX be the set of all

probability distributions defined on X. In the distribution regression setting, we are given J

training tasks, {{X (j)i }
nj
i=1, Γ

(j)}Jj=1 where each training task ({X (j)i }
nj
i=1, Γ

(j)) consists of a set of

observations {X (j)i }
nj
i=1,X

(j)
i ∈ X and a parameter Γ(j) ∈ J. For task j, observations {X (j)i }

nj
i=1

are independent and identically distributed (i.i.d) draws from a probability distribution P (j) ∈

BX. Separate from this, we are also given a test task, {XT
i }

nT
i=1, observed from a similar but

distinct probability distribution PT ∈ BX. The parameter ΓT for the test task is unknown

and has to be estimated from the training data.

We are interested in learning a function r : BX → J using the training data such that

as the number of training tasks J → ∞, the estimated parameter, using the learnt function

r and the test observations, converges to the true parameter, i.e, ‖ΓT − r (PT )‖ → 0.

In distribution regression, the function r is learnt using kernels. When X is a compact

metric space, such as a closed and bounded subset of Rd (d-dimensional Euclidean space), it

is possible to capture a probability distribution on X using a reproducing kernel Hilbert space

(RKHS). We define the kernel as a function k̄ : X × X → R that is symmetric and positive

definite. The reproducing kernel Hilbert space (RKHS) Hk̄ , consists of the completion of

the set of functions of the form f (X ) =
∑
i

αik̄(Xi ,X ) for X ∈ X,αi ∈ R. The RKHS has a

reproducing property:

f (X ) = 〈f , k̄(X , ·)〉,∀X ∈ X.
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The kernel k̄ can also be associated with a feature vector, defined as the map Ψk̄ : X → Hk̄

such that

k̄(X1,X2) = 〈Ψk̄(X1),Ψk̄(X2)〉,

for X1,X2 ∈ X. It is possible to define a vector extension to kernels such that the kernel

describes a function with a vector output (Say Rd). Such a kernel would map to the space

of linear operators on Rd , i.e., Rd×d .

Using the RKHS, it is possible to capture a probability distribution P on X as a function,

called the mean embedding of P , defined as

ξ (P) :=

∫
X
k̄(x , ·)dP(x).

For the jth training task ({X (j)i }
nj
i=1, Γ

(j)), denote P̂ (j) as the finite reconstruction of P (j) from

{X (j)i }
nj
i=1. We can compute the empirical mean embedding as

ξ (P̂ (j)) :=
1

nj

nj∑
i=1

k̄(X (j)i , ·).

Distribution regression performs regression over the mean embeddings and computes a func-

tion in HK. Given the training data, distribution regression solves the optimization

r̂ = arg min
r∈HK

1

J

J∑
j=1

‖r (P̂ (j)) − Γ(j)‖2J + λ2‖r ‖2H,

and produces the estimate

r̂ (P̂T ) = kr (K + λ2I )−1[Γ(1), Γ(2), · · · , Γ(J )]′,
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where K := [K(ξ (P̂i), ξ (P̂j))]J ,Ji=1,j=1 is the kernel matrix, kr := [K(ξ (P̂j), ξ (P̂T ))]Jj=1 is the col-

umn vector of ξ (P̂T ) with respect to the training distribution embeddings and λ2 ∈ R is a

regularization parameter [76].

The guarantees of convergence of the estimate provided by r̂ is computed using the

generalization error,

E(r ) := E[‖ΓT − r (PT )‖],

where E is the expectation. Szabó et. al[76] show that the difference E(r̂ ) − inf
r
E(r ) → 0 as

J →∞ and nj →∞.

When the kernel functions k̄,K have a universality property [146, 147], the mean em-

bedding of k̄ is injective and the RKHS HK is dense in the space of continuous functions

(any continuous function can be approximated with high accuracy). As we show in Section

A.3, this property is particularly useful because the orbit determination setting provides a

continuous map from the distribution of observations to the orbital parameters.

Marginal Transfer Learning Marginal transfer learning [75] is a form of domain gener-

alization (DG). In the domain generalization problem, one has to learn a classifier to produce

an identity (ID) or label for the observations through labeled data provided for similar yet

distinct scenarios.

Consider an observation space X and a label or ID space Y = {1, 2, ..,nS }. Let the

space of distributions over X × Y be BX×Y and let ρXY be a probability distribution on

BX×Y . We are given training data from J tasks {X (j)i ,Y
(j)
i }

nj ,J
i=1,j=1 such that (X (j)i ,Y

(j)
i )

i.i.d∼ P (j)XY ,

P (j)XY
i.i.d∼ ρXY and we are given a loss function ` : R × Y → R+. Separately we are given

unlabeled observations from a test task {XT
i }

nT
i=1 for PTXY ∼ ρXY for which the labels {YT

i }
nT
i=1
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are not observed and we are interested in predicting an ID for each observation in the test

task.

The prediction of labels for the test task is similar but distinct from the training data,

since the underlying probability distribution over which the data is drawn is similar but dis-

tinct. Marginal transfer learning approaches this problem by learning the classifier over an

extended observation space X×BX, i.e., it includes the probability distribution of the obser-

vations. In particular, marginal transfer learning computes a function д : BX×X → R where

BX is the space of probability distributions defined on X, so that for the test task {XT
i }

nT
i=1, the

predicted labels are close to the true labels and the average loss
1

nT

nT∑
i=1

`(д(XT
i , P

T ),YT
i ) → 0.

Let k be a kernel k : X × X → R on X. Using k, we generate mean embeddings

ϕ(P) :=

∫
X
k(x , ·)dP(x), of probability distribution P defined on X. On ϕ(BX), the set of mean

embeddings associated with BX, let K be a kernel K : ϕ(BX) × ϕ(BX) → R. Additionally,

let k′ be another kernel k′ : X × X → R defined on data points x ∈ X. In marginal transfer

learning, given a loss function ` : R × Y → R+, we seek the estimate [75]

д̂ = arg min
д∈HkPX

1

J

J∑
j=1

1

nj

nj∑
i=1

`(д(ϕ(P̂ (j)X ),X
(j)
i ),Y

(j)
i ) + λ1‖д‖2HkPX

,

where P̂ (j)X is the finite reconstruction of P (j)X and HkPX is the RKHS associated with a

product kernel kPX : (ϕ(BX) × X) × (ϕ(BX) × X) → R defined as the product of kernels K

and k′ as kPX ((PX ,X )(PX ′,X ′)) := K(ϕ(PX ),ϕ(PX ′))k′(X ,X ′). The optimization problem can be

stated as a quadratic program. For further details refer to Blanchard et. al[75].

Convergence guarantees are provided through the average generalization error,

I (д, `,nT ) := EPTXY∼ρXY
E(X ,Y )T∼(PTXY )⊗nT

[
1

nT

nT∑
i=1

`(д(P̂TX ,XT
i ),YT

i )
]
.
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where E is the expectation. With an infinite test sample (nT = ∞), the average general-

ization error is equal to

I (д, `,∞) := EPXY∼ρXYE(X ,Y )∼(PXY )

[
`(д(P ,X ),Y )

]
.

Blanchard et. al[75] show that as the amount of training data increases, I (д̂, `,nT ) −

inf
д
I (д, `,∞) → 0. We will denote the optimal solution of the marginal transfer learner as д∗,

i.e.,

д∗ = arg min
д∈HkPX

I (д, `,∞)

We shall use marginal transfer learning/marginal prediction to ID the spacecraft in the

cluster that produced an observation.

A.2 Orbit Determination Problem Setting

We consider the problem of orbit determination of a group of spacecraft, called a cluster, con-

sisting of nS spacecraft using observations from nG sensors (nS ,nG ≥ 1). The spacecraft in the

cluster have IDs {1, 2, ...,nS } associated with them. There are nS instances of dynamical sys-

tem flow and nG observers. We have nS objects whose initial conditions are {Γi}nSi=1, where each

Γi belongs to the space J̃, the space of initial conditions. The spacecraft cluster has the ini-

tial condition Γ = [Γ1, Γ2, · · · , ΓnS ] defined on J := J̃ns . Here we assume that Γ is a realization

of a random variable satisfying the probability distribution PΓ, which is known prior to orbit

determination. For a cluster with initial condition Γ, the spacecraft cluster evolves through

time and at time t , the cluster has the state Γ̃(t) := χ (Γ, t) := [χ (Γ1, t), χ (Γ2, t), · · · , χ (ΓnS , t)].
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We shall use the terminology orbital parameters synonymously with initial conditions.

The nG ground sensors observe the spacecraft cluster over a time period T̃ ⊂ R+. For

each ground station j, 1 ≤ j ≤ nG and initial condition Γ, the dynamical system flow χ

and the observation function q0,j results in the system function Uj(Γ, t) := q0,j(χ (Γ, t)). The

overall dynamical system with observations from the ground station network has the system

function U (Γ, t) := [U1(Γ, t),U2(Γ, t), · · · ,UnG (Γ, t)].

The actual measurements from the spacecraft cluster that will be observed over T̃ will

be noisy realizations of U (Γ, t) for some random times t ∈ T̃. We shall denote the times of

measurements with the random variable TS . The times at which these observations will be

seen is determined by two factors: A probability distribution PTS defined over T̃ and the field

of view of the ground sensors. A spacecraft i, 1 ≤ i ≤ nS produces signals over the observation

interval T̃ according to the probability distribution PTS ,i . Based on this, the cluster produces

observations of these signals according to probability distribution PTS :=
∑
i

πiPTS ,i , where πi

is probability of observation produced by spacecraft i, given that an observation is produced

by the cluster. We denote the support of PTS as T ⊆ T̃.

The sensors (or ground stations) have a dynamic field of view due to the presence of

the Earth creating a horizon. The network can receive an observation from a satellite in

the cluster only if at least one of the ground stations has the satellite in its field of view.

The direction vectors of the cluster from ground station j is described by a second system

function Vj : J × T̃ → S2, where S2 is the three dimensional sphere. For a specific spacecraft

with initial condition Γi , Vj(Γi , t) is a vector in S2. Let Oj ⊂ S2 denote the field of view of

ground station j, 1 ≤ j ≤ nG . Ground station j can produce observations of satellite i with

initial condition Γi only if Vj(Γi , t) ∈ Oj . Based on this, we write that the measurements are

produced by the network for orbit initial state Γ according to a conditional probability that

is limited by Oj i.e., for a set B in the Borel σ− algebra FT̃ ,
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P(TS ∈ B |Γ) :=
PTS (TS ∈ B ∩

⋃nG
j=1{t ∈ T̃ : Vj(Γ, t) ∈ Oj})

PTS (TS ∈
⋃nG

j=1{t ∈ T̃ : Vj(Γ, t) ∈ Oj})
∀B ∈ FT̃ .

Taking horizon visibility into account, we define the effective observation function of the

dynamic system asW : J → (T̃ → F̃), which maps the initial conditions J to the space of

functions that map from T̃ to F̃ such that for t ∈ T̃,

W (Γ)(t) := [W1(Γ)(t),W2(Γ)(t), · · · ,WnG (Γ)(t)],

and

Wj(Γ)(t) =
[
Uj(Γ1, t)1Vj (Γ1,t)∈O j Uj(Γ2, t)1Vj (Γ2,t)∈O j · · · Uj(ΓnS , t)1Vj (ΓnS ,t)∈O j

]
.

For an observation generated at time TS from spacecraft i, the noiseless version of mea-

surements of ground station j is defined as Fj := Uj(Γi ,TS )1Vj (Γ1,TS )∈O j . The source spacecraft

i generating observation at time TS is not known to the sensor network and has to be esti-

mated. The noiseless version of the observations the sensor network produces at time TS will

be denoted by the random vector F̃ , for F̃ :=

[
F1 F2 · · · FnG

]
defined over the compact

space F̃ and the noiseless versions of the observations of the sensor network will be denoted

as F := [F̃ ,TS ]. The actual measurements of the sensor network are noisy versions of F , which

we shall denote by the random variable X defined on the observation space X and will be

generated according to the probability distribution P(X |F ) which, we shall assume, is known.

In the above setting, the distributions of the random variables are all known, the sets

Oj , 1 ≤ j ≤ nG are all known but the flow χ (and therefore U ,V ) is known only through a

set of differential equations as discussed in Section A.1.1 ( For exact forms of the differential

equations refer to Vallado[31]). The differential equations of U ,V can be solved for measure-

ment times TS and hence examples of measurements for different spacecraft clusters can be

drawn.
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With this scenario, the orbit determination problem can be stated as follows. Given

PΓ, PTS , PX |F over the time interval T̃, differential equations for U ,V and actual measurements

{X1,X2, · · · ,XnT }, can we estimate {Γi}nSi=1, the orbital parameters or initial conditions?

Example We can consider the scenario of orbit determination of one spacecraft (MCubed-

2) using one ground station (Ann Arbor, MI, USA). Over an observation interval of 6 hours,

T̃ := [epoch, epoch + 6hours], the observations will be performed by a Radio Frequency (RF)

ground station observing Doppler measurements F̃ = Doppler , from spacecraft RF trans-

missions, at transmission times TS . The Doppler system function is estimated using the

range rate differential equations U1, as seen in Figure A.1. The observations will be vis-

ible only when the spacecraft is above the horizon Elevation ∈ [0, 90◦] for V1 = Elevation

and O1 = [0, 90◦]. The effective observation function W is U limited by visibility, and the

Doppler observations are seen when the ground station measures transmissions. PTS can be

constructed based on the beacon (beacons are periodic transmissions of the satellite health)

and tumbling characteristics of the spacecraft. Figure A.1 shows the functions U1,W1, the

regions where V1(Γ, t) ∈ O1 and the observations F = [F̃ ,TS ].
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Figure A.1: Example scenario dynamical system and measurements

A.3 Observability Analysis

In this section, we present precise analysis reducing the orbit determination problem to

the estimation of a map on the space of probability distributions of X. Consider the orbit

determination scenario from Section A.2. Given the distribution of timestamps of observa-

tions P(TS ), a probability distribution on the spacecraft output vectors, F , is induced by the

set of spacecraft orbit parameters, Γ = [Γ1, Γ2, · · · , ΓnS ]. Samples of F generate samples of

measurements, X , at the sensor network.

Based on this, the probability distribution is split as

P(Γ, F ,X ) = P(Γ)P(F |Γ)P(X |F ). (A.2)
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The conditional probability distribution P(F |Γ) is shaped by the deterministic non-linear

dynamic model describing the system and operating on TS as discussed in Section A.2. Define

W (Γ)−1 as the pre-image ofW (Γ). For sets C and B in the σ -fields of F̃ and TS , the conditional

distribution P(F |Γ) of a system can now be written as

P(F ∈ C × B |Γ) = P(F̃ ∈ C,TS ∈ B |Γ) = P(TS ∈ B
⋂

W (Γ)−1(C)|Γ), (A.3)

for Γ ∈ J. The measure P(X |F ) then produces noisy observations.

Given this system, we next present mathematical analysis to provide insight into conse-

quences of observability on the system. The distribution PΓ induces a probability measure ρ

on RX, a set of probability measures on X(the set is {P(X |Γ), Γ ∈ J}). RX is a subset of BX,

the set of all Borel probability measures on X. We show that if the system is observable, there

exists a continuous map from RX ⊆ BX to J which can describe the orbital parameters. This

continuous map can be learnt from random samples of the probability distributions drawn

as random samples from the space of probability distribution BX using machine learning

techniques and can then be used to estimate initial conditions for test datasets generated by

spacecraft.

For the system defined in Appendix A.2, we make the following assumptions on the spaces

J,F,X, T̃ and the probability distributions associated with them in order to characterize

the effect ofW on the probabilistic system:

A I (F̃,dF̃ ), (X,dX ) are compact metric spaces, J̃ is a compact subset of a smooth man-

ifold defined over Rd̃ for some d̃ < ∞ and T̃ is a compact subset of R+ endowed

with the regular Borel measure m.

A II PTS is absolutely continuous over support T ⊆ T̃.
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A III The probability kernel function from F → P(X), for P(X) ⊆ BX, is a homeomor-

phism in the weak topology induced by the Prokhorov metric (BX,dP ).

Let FX be the σ -algebra induced by open (or closed) balls on X (Borel σ -algebra).

Assumption A I limits the analysis of the system to those that are most suitable to char-

acterization in terms of probability measures, which is most systems of interest. Assumption

A II requires the probability distribution of measurements over the observation time admits

a density. Assumption A III is required for noise characteristics of the system where we

assume that if the underlying noiseless parameters (such as directional of arrival, Doppler

change or RADAR measurements) change, so does the probability distribution of the mea-

surement system and this change is continuous. As a working example for assumption A

III, when one measures range rate or Doppler shift of spacecraft signal transmissions with

narrowband communication systems, it has been shown that the correlation function from

which the feature vector X is obtained can be written as the sum of a distribution depending

on Doppler shifted frequency and a residual [97, 90].

We define distance metrics dU ,p, 1 ≤ p < ∞ on the set of functions defined on T to F̃. For

two functions c1, c2 with domain T̃ and range ⊆ F̃, we define the distance dU ,p as

dU ,p(c1, c2) =
[ ∫
T
(dF̃(c1(t), c2(t)))pdm

] 1
p

(A.4)

for 1 ≤ p < ∞ and

dU ,∞(c1, c2) = sup
t∈T

dF̃(c1(t), c2(t)) (A.5)

when they exist. For a first step analysis, we ignore the effect of visibility V and consider

the case where points in U (Γ, t) for some Γ ∈ J and t ∈ T will always be observed.i.e., the

observations aren’t modulated by field of view and sensor specific horizon considerations and

observations are produced through out T i.e., P(TS |Γ) = PTS . In doing so, we can analyze the
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probability distributions {P(X |Γ) : Γ ∈ J} and the nature of the probability kernel function

associated with P(X |Γ) using the following theorem.

Theorem A.1. For the system defined by equations (A.2) - (A.3) with assumptions A I

and A III, if U is observable in T and Lipschitz continuous in dU ,∞ with respect to Γ in J

then there exists a continuous inverse mapping λ : RX → J for a compact set RX ⊆ BX on

the topology (BX,dP ).

See Appendix A.4.1 for proof.

Next, we introduce the effect of visibility only on the dynamics. We capitalize on the

continuous and differentiable behavior of V seen in most astrodynamic systems. If Vj is

differentiable and continuous then the corresponding indicator functions 1Vj (Γ,t)∈O j will be

continuous in dU ,p for some p when it exists. We consider the behavior of functions continuous

in dU ,p to study the effect of V onW .

Theorem A.2. For the system defined by equations (A.2) - (A.3) with assumptions A I, A

II and A III, W is observable in T and continuous in dU ,p for 1 ≤ p < ∞ if and only if there

exists a continuous inverse map λ : RX → J for a compact set RX ⊆ BX on the topology

(BX,dP )

See Appendix A.4.2 for proof.

Remark • We are not assuming that the dynamic system itself be Borel measurable or

in a metric topology. We are assuming that the resulting observation function have

these characteristics. This is especially true in the case of a generating system based

on Hamiltonian dynamics (using Poincaré elements for U) where the topology is locally

Lebesgue, but observations such as position and Doppler over nG ground stations are

mapped to a metric space.

• When set J is such that ‖Γ‖ ≤ CΓ as a consequence of assumption A I, the norm
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‖λ‖2ρ ≤ C2
Γ , where ρ is the probability distribution induced on BX by PΓ. This will be

useful in Appendix A.5, for convergence rate analysis.

The above two theorems state that in a system where the time intervals of observation

are independent of the initial conditions, when the system is observable and is continuous in

certain metric spaces they are also continuous in the space of probability distributions seen

by the observations BX. This allows us to work with probability distributions instead of the

observation function of the dynamic system.

In a practical implementation of this system, unless in a very constrained setting, is it

generally the case that the visibility of observations is dependent on the orbit, as the region

of observations is limited by the horizon of the ground stations or their sensitivity in parts

of the horizon. We address this scenario next.

Now, consider the scenario where the presence of observations is also governed by the

state of the visibility dynamical system V (which provides direction of arrival estimates).

Let T(Γ) denote the preimage of O with respect to a particular Gamma:

T(Γ) =
nG⋃
j=1

{t ∈ T̃ : Vj(Γ)(t) ∈ Oj}. (A.6)

It is to be noted that in this scenario all ground stations may not be able to generate observa-

tions, only the ground stations for which Vj(t) ∈ Oj , 1 ≤ j ≤ nG will produce observations. We

will assume that in the event that at least one of the ground stations generate observations,

the rest will generate an observation of zero and we shall work with the observation function

W (Γ).

Using the definition of T(Γ), we extend Theorem A.2 to work with scenarios where the

compact set of observations are a set of intervals (multiple satellite passes) where only some

ground stations produce measurements. To do this, we first modify the assumption on
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continuous distributions as follows

A II-A P(TS |Γ) is absolutely continuous over the support T(Γ) ⊆ T,∀Γ ∈ J.

Using this assumption, a corollary to Theorem A.2 can be stated as follows.

Corollary A.1. For the system defined by equations (A.2) - (A.3), (A.6) - (A.7) and assump-

tions A I, A II-A and A III, if V continuous in Γ, differentiable in t and m(
⋃

j∈{1,2,··· ,nG }
{t :

∂Vj

∂t
= 0}) = 0 then the following are equivalent

• W is observable and continuous in dU ,p, 1 ≤ p < ∞ over Γ ∈ J.

• there exists a continuous inverse map λ : RX → J for compact RX ⊆ BX on the topology

(BX,dP ).

See Appendix A.4.3 for proof.

Note that the condition of observability over T(Γ) is significantly stronger than observ-

ability over T. It is, however, a weaker assumption compared to observability at every t ∈ T.

A simple example for low Earth orbits where the system may be observable over T(Γ) but

is not observable for every t ∈ T occurs when estimating orbits with Doppler shift based

measurements. In cases when one of initial conditions (the right ascension of the ascending

nodes) differ by a small amount with all other initial conditions being identical, there will

exist regions where the measurements are identical for significant sections of T(Γ). They

will, however, be observable over T(Γ) as the point of the zero Doppler shift will differ in

time and one of the points of where the zero doppler measurements occur belong to T(Γ)

due to the low earth orbit characteristic.

Corollary A.1 essentially states that in the scenario with nG ground stations producing

observations, (observations which are generated from an i.i.d process over a time interval) a

continuous map to the initial conditions exist from a compact subset of the space of proba-
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bility distributions of the observation random variable X exists if two conditions are satisfied.

First the observation function of the dynamic system is observable over the times when the

probability of observations being generated are non-zero. Second, it is required that the rate

of change of the visibility system V is non-zero almost everywhere. For the scenario where O

represents the horizon and V (Γ, t) represents the elevation of the spacecraft with respect to

the ground station, corollary A.1 requires that for scenarios where the times of observation is

modulated by the elevation, the rate of change of elevation with respect to the ground station

is non-zero almost everywhere. This is guaranteed by Newton’s laws of gravitation for all

cases except Geostationary orbits. However, for geostationary orbits T(Γ) = T and the con-

tinuous map still exists according to theorem A.2. In an orbit determination scenario with

direction of arrival estimates, this implies that if the observability and continuity conditions

in theorem A.1, A.2 and corollary A.1 are satisfied (which is necessary for any estimator to

be consistent), then there exists a continuous mapping from the probability distributions of

the direction of arrival measurements observed to the orbital parameters. This continuous

mapping also exists even when observations are spread across multiple ground stations in

time T.

A.4 Proofs for Theorems in Appendix A.3

We shall denote the probability kernel function of P(F |Γ) as

µ(Γ)(D) := P(F̃ ∈ C,TS ∈ B |Γ) = P(TS ∈ B
⋂

W (Γ)−1(C)|TS ∈ T(Γ), Γ), (A.7)
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A.4.1 Proof of Theorem A.1

Proof. If U is observable and continuous then there exists a continuous bijective mapping

from J onto U (J, ·). For such a bijective mapping U , let the probability kernel function

associated with P(F ∈ ·|Γ) = µ(Γ). By continuity of U , for a given δ we have ϵ such that

Γ1, Γ2 ∈ J with dJ(Γ1, Γ2) < ϵ implies dF̃ (U (Γ1)(t),U (Γ2)(t)) < δ , ∀t ∈ T̃.

Consider sets C ∈ FF̃,B ∈ FTS . Let U (Γ)−1(C) := {t ∈ T|U (Γ, t) ∈ C}. From the ϵ − δ

definition of continuity, for any t ∈ U (Γ1)−1(C) we can find a point f ∈ U (Γ2,Cδ ) such that

dF̃(U (Γ1, t), f ) < δ . The probability kernel function in the absence of visibility constraints

can be written as

µ(Γ)(C × B) := P(F̃ ∈ C,TS ∈ B |Γ = Γ) = P(F̃ ∈ C,TS ∈ B)

= PTS (TS ∈ B ∩U (Γ)−1(C))

The previous continuity argument over U implies that for every set D = C × B, we have

D̃ = Cδ × B ⊆ Dδ such that µ(Γ1)(D) = µ(Γ2)(D̃) and therefore µ(Γ1)(D) ≤ µ(Γ2)(Dδ ) + δ . Using

a similar argument µ(Γ2)(D) ≤ µ(Γ1)(Dδ ) + δ . This implies that

dP (µ(Γ1), µ(Γ2)) = inf{α : µ(Γ1)(D) ≤ µ(Γ2)(Dα ) + α and µ(Γ2) ≤ µ(Γ1)(Dα ) + α , ∀D ∈ FF}
< δ

Also, as U is observable over J, if Γ1 , Γ2, then there exists D ∈ FF such that µ(Γ1)(D) ,

µ(Γ2)(D). Therefore, there exists a continuous function from R̃F to J for R̃F ⊆ BF. Since

the kernel function from F to BX is bijective and continuous from assumption A III, the

hypothesis holds.

�
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A.4.2 Proof of Theorem A.2

Proof. (⇒) Let ν (Γ) be the density function of the probability measure µ(Γ) (This exists by

assumption A II). Fix ϵ′ > 0. For ϵ′, pick δ and ϵ such that ϵ′ > [ sup
Γ∈J,t∈T

ν (Γ)(t)]ϵ > δ > 0.

By continuity of W (Γ) in dU ,p, for the given δ , ϵ , there exists δ ′ such that dJ(Γ1, Γ2) < δ ′ ⇒

dU ,p(W (Γ1),W (Γ2)) < δϵ1/p.

Let Tδ = {t ∈ T : dF̃(W (Γ1)(t),W (Γ2)(t)) > δ }. We have, for any such Γ1, Γ2 defined

previously,

dU ,p(W (Γ1),W (Γ2)) =
[ ∫
T
dF̃(W (Γ1),W (Γ2))dm

] 1
p

≥

≥
[ ∫
Tδ
dF̃(W (Γ1),W (Γ2))dm

] 1
p

≥ δm(Tδ )1/p .

Since dU ,p(W (Γ1),W (Γ2)) < δϵ1/p, this argument implies that m(Tδ ) < ϵ

Now, consider any set D = B ×C ∈ FF (B ∈ FT and C ∈ FF̃ since they are all Borel sigma

algebras). DefineW (Γ)−1(C) := {t ∈ T|W (Γ)(t) ∈ C}, the preimage ofW (Γ). When m(Tδ ) < ϵ ,

it follows from the definition of Tδ that W (Γ1)−1(C) ∩ (T \ Tδ ) ⊆ W (Γ2)−1(Cδ ) ∩ (T \ Tδ ) and

vice versa.

Additionally, we also have that

PTS (B ∩W (Γ1)−1(C) ∩ Tδ ) ≤ PTS (B ∩ Tδ ) ≤ PTS (Tδ ) ≤ PTS (Tδ ) + PTS (B ∩W (Γ2)−1(Cδ ) ∩ Tδ ).

Let ϵ̃ := PT (Tδ ). Consider µ(Γ1)(D),

µ(Γ1)(D) = PTS (B ∩W (Γ1)−1(C)).
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We split the probability into events in (T \ Tδ ) and Tδ ,

µ(Γ1)(D) = PTS (B ∩W (Γ1)−1(C) ∩ T \ Tδ ) + PTS (B ∩W (Γ1)−1(C) ∩ Tδ ).

Using the preceding argument,

µ(Γ1)(D) ≤ PTS (B ∩W (Γ2)−1(Cδ ) ∩ T \ Tδ ) + PTS (B ∩W (Γ2)−1(C) ∩ Tδ ) + PTS (Tδ ).

Using the definition of PTS (Tδ ),

µ(Γ1)(D) ≤ PTS (B ∩W (Γ2)−1(Cδ ) ∩ T \ Tδ ) + PTS (B ∩W (Γ2)−1(C) ∩ Tδ ) +
∫
Tδ
ν (Γ)(t)dm(t)

From the supremum of ν (Γ)(t) and from the previous argument that m(Tδ ) < ϵ ,

µ(Γ1)(D) ≤ PTS (B ∩W (Γ2)−1(Cδ ) ∩ T \ Tδ ) + PTS (B ∩W (Γ2)−1(C) ∩ Tδ ) + [ sup
Γ∈J,t∈T

ν (Γ)(t)]ϵ .

By construction of ϵ′ and Cδ ,

µ(Γ1)(D) ≤ PTS (B ∩W (Γ1)−1(Cδ )) + ϵ′

≤ µ(Γ2)(Dϵ ′) + ϵ′.

By a similar argument, we also have µ(Γ2)(D) ≤ µ(Γ1)(Dϵ ′)+ϵ′. Therefore dP (µ(Γ1), µ(Γ2)) < ϵ′.

Also, asW is observable over J, if Γ1 , Γ2, then there exists D ∈ FF such that µ(Γ1)(D) ,

µ(Γ2)(D) (injective map). Since J is compact, µ forms a continuous and injective map to

RF ⊆ BF and (BF,dP ) is a compact metric space (Prokhorov’s theorem), we have that the

image RF = µ(J) is compact. The existance of a continuous and injective map onto a compact

metric space implies the existance of an inverse map, therefore there exists a continuous map

λ : RX → J (see Rudin[148]) .
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(⇐) Proof by contradiction. Assume there exists a homeomorphic map λ : RF → J from

a compact metric space (RF,dP ). Additionally, assume that equations (A.2) - (A.3) hold

and λ−1 = µ almost everywhere, but U is not continuous for some particular Γ1,i.e, ∃ϵ > 0

such that for any ball Bδ (Γ1, ‖ · ‖2), W (Bδ (Γ1, ‖ · ‖2)) * Bϵ (W (Γ1),dU ,p). This also implies the

resulting mapping is not continuous in measure at Γ1, since, for some ϵ′ > 0 and for any

δ > 0, the image of Bδ (Γ1,dU ,p) under map µ, µ(Bδ (Γ1,dU ,p)) * Bϵ ′(µ(Γ1),dP ) (Following similar

arguments as in the direct case). This, however, is a contradiction as λ−1 is continuous. �

A.4.3 Proof of Corollary A.1

Proof. PTS is absolutely continuous with respect to the Lebesgue measure (limited to the

Borel σ -algebra). If T(Γ) is continuous in Γ and can be expressed as a union of inter-

vals, we have for every δ > 0, ϵ1, ϵ2 such that dJ(Γ1, Γ2) < ϵ1 ⇒ dS (T(Γ1),T(Γ2)) < ϵ2 ⇒

dP (µ(Γ1), µ(Γ2)) < δ .

Define Ti(Γ) = {t ∈ T̃ : Vi(Γ)(t) ∈ Oi} for i ∈ {1, 2, · · · ,nG}. Let Tϵi (Γ) = {t ∈ T̃ : Vi(Γ)(t) ∈

Oϵ
i } and T−ϵi (Γ) = {t ∈ T̃ : Vi(Γ)(t) ∈ O−ϵi } where Oϵ

i = {o ∈ Rn |dG(o,Oi) < ϵ} for distance

metric dG on the three dimensional sphere and O−ϵi = ((Oc
i )ϵ )c .

Since V is continuous in Γ, we have T−2ϵ
i (Γ1) ⊆ T−ϵi (Γ2) ⊆ Ti(Γ1) ⊆ Tϵi (Γ2) ⊆ T2ϵ

i (Γ1). For a

given Γ, by definition, Ti(Γ) ⊆ Tϵi (Γ). If the two sets Ti(Γ) and Tϵi (Γ) are equal for all Γ, then

the continuity condition is satisfied trivially and therefore we only need to consider the case

when Ti(Γ) ⊂ Tϵi (Γ). For a given ϵ consider T−ϵi (Γ)∆Tϵi (Γ) i.e., the pre-image of O−ϵi ∆Oϵ
i =⋃

p∈Bd(Oi )
Bϵ (p,dG). We have, from the definition of the Lebesgue measure, dS (T−ϵi (Γ),Tϵi (Γ)) ≤

m(ROi ,ϵ ) + m(
⋃
j

Cj ∩ Vi(Γ)−1(O−ϵi ∆Oϵ
i )), where ROi ,ϵ is the set where the derivative of Vi(Γ)

with respect to t is zero in O−ϵi ∆Oϵ
i and Cj is a countable covering of the set T̃ \ ROi ,ϵ over

the neighborhoods of points where the implicit function theorem can be applied.
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Therefore, we have that when m(ROi ,ϵ ) = 0, for any ϵ2 > 0, ∃ an ϵ3 such that dS (O−αi ,Oα
i ) <

ϵ3 implies dS (T−αi (Γ),Tαi (Γ)) < ϵ2, which implies continuity of Ti(Γ) and T(Γ) with respect to

Γ. The rest of the proof follows from theorem A.2. �

A.5 Learning Theory

We present generalization error bounds on the mixture distribution regression presented

in Section II.3 in terms of the generalization errors of the marginal transfer learning and

distribution regression system. We show that, as the amount of training data Jtl and Jdr

increases, the generalization error in estimation of the orbital parameters of the spacecraft

cluster goes to zero. We provide generalization error bounds for a soft label version of the

mixture distribution algorithm, where the spacecraft IDs are assigned with probabilities in

the estimated class posterior distributions, instead of sampling them from the estimated

class posterior distributions.

We denote the probability distribution on BX×J that is induced by the prior PΓ as ρ(P , Γ).

For the development of learning theoretic bounds, we will work directly with conditional

embeddings generated directly by the estimated class conditional distributions instead of

sampling the class IDs. For B ∈ FX and P ∈ BX, the estimated class conditional probability

can be written as

P̂i(X ∈ B) := P̂(X ∈ B |Y = i) :=
P̂(Y = i |X ∈ B)

π̂i
P(X ∈ B),

where π̂i =

∫
X
P̂(Y = i |X )dP(X ). Using this definition, we re-define the conditional em-

beddings generated by transfer learning in the soft label setting, for class y ∈ {1, 2, ...,nS },

as
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ĥy(P) :=

∫
X
k̄(X , ·) P̂(Y = y |X )

π̂i
dP .

Based on the definitions in Section II.3, the equivalent finite sample version of the class

conditional embeddings, for training task j, for class y, can be written as

ĥy(P̂ (j)) =
1

nj

nj∑
i=1

k̄(X (j)i , ·)
P̂(Y (j)i = y |X

(j)
i )

π̂i
,

where π̂i =
1

nj

nj∑
i=1

P̂(Y (j)i = i |X
(j)
i ).

The average error for the estimated mixture distribution regression of class i is defined

as

E(r̂i ◦ ĥi) := E(P ,Γ)∼ρ
[
‖Γi − r̂i(ĥi(P))‖

]
Denote the optimal conditional embedding for class i as h∗i and the optimal regressor for

class i as r ∗i , i.e., for P =
∑
i

πiPi ,

h∗i (P) =
∫
X
k̄(X , ·)dPi(X )

and

r ∗i = arg min
r∈HK

E(r ◦ h∗i ).

We provide error bounds on E(r̂i ◦ ĥi) − E(r ∗i ◦ h∗i ) under the following assumptions:

L I J̃ is a compact subset of a real separable Hilbert space and X is a compact metric

space.

L II Kernels k,k′, k̄,K and K are universal and bounded by constants B2
k ,B

2
k ′,B

2
k̄
,B2

K ,B
2
K
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respectively. In addition, the cannonical feature vectors associated with kernels K

and K, ΨK : Hk → HK and ΨK : Hk̄ → HK are Hölder continuous with constants α

and β and scaling factors LK ,LK . i.e.,

∀v,w ∈ Hk ‖ΨK (v) − ΨK (w)‖HK ≤ LK ‖v −w ‖αHk

and

∀v,w ∈ Hk̄ ‖ΨK(v) − ΨK(w)‖HK ≤ LK‖v −w ‖
β

Hk

L III The loss function ` is the logistic loss and is L`-Lipschitz in its first variable and

bounded by B`.

L IV Given a marginal probability distribution PX ∈ BX, the posterior conditional distri-

bution is a deterministic function of PX , i.e., P(Y |X ) = Z (PX ) for some deterministic

function Z .

Note that the assumption L I is more general thanA III. The assumption L II is satisfied

by Gaussian kernels and exponential inner product kernels. Assumption L IV is satisfied for

the orbit determination scenario due to observability and the existence of the map λ. Using

these assumptions, the generalization error is bounded by the following theorem.

Theorem A.3 (Error bound on mixture distribution regression). For the mixture distribu-

tion regression setting assume that the conditions L I - L IV are satisfied. Then, for δ > 0

and 1 ≥ δ2 > 0, with probability 1 − 2δ − δ2,

E(r̂i ◦ ĥi) − E(r ∗i ◦ h∗i ) ≤ C1Sβtl +C2Sβ/2tl
+C3

(√
log δ−1

Jdr
+ Stl

)β
+ 4Sdr ,

where

Stl := I (д̂, `,∞) − I (д∗, `,∞),
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Sdr := E(r̂i ◦ h∗i ) − E(r ∗i ◦ h∗i ),

C1 :=
2C2

ΓB
2
K
LK

λ2
2,i

(2Bk̄
cY

)2β , C2 :=
C2
ΓBK
√
LK

λ2,i

(
1 +

BK
λ2,i

) (2Bk̄
cY

)β , C3 :=
4

λ2,i

(
2 +

B4
K

λ2
2,i

)
C2
ΓLK

(
2Bk̄
cY

)2β

and cY = πi π̂i provided Jdr ≥ 64 log( 6

δ2
)BKN(λ2,i)

λ2,i
, λ2,i ≤ ‖Th∗i ‖L(HK) and cY > 0 for effective

rank N(λ2,i) and spectral operator Th∗i .

Note that cY is guaranteed to be greater than zero when the generalization error of

transfer learning Stl < πi (i.e., every class has observations so that the empirical estimate

p̂ii > 0.

The proof is presented in Appendix A.6.3.

The bounds for Stl and Sdr are provided by Blanchard et. al [75] and Szabó et. al[76]

respectively. From Theorem A.3, it can be seen that as Jtl → ∞, Jdr → ∞ and nj →

∞, 1 ≤ j ≤ J and the transfer learning and distribution regression systems converge, then the

mixture distribution regression system converges as well.

A.6 Analysis for Appendix A.5

The development of the proof of Theorem A.3 involves extensions to current learning theory

literature. This section presents definitions, background, the intermediate theorems required

for the proof of theorem A.3.

Preliminaries We define the kernel operator associated with a kernel K at point ξ (P), as

Kξ (P) and it’s adjoint as K∗ξ (P). This corresponds to the mapping Kξ (P) : J̃ → HK such that

for γ ∈ J̃

Kξ (P)γ := K(·, ξ (P))γ .
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For details and properties of the kernel operator and its adjoint see [149, 150]. We define

L2(BX × J̃, ρ, J̃) as the space of functions from BX × J̃ onto J̃ that are square integrable in

the measure ρ. Let L(L2) be the space of linear operators on L2(BX × J̃, ρ, J̃), let L(Hk̄ , J̃)

denote the space of linear operators on functions mapping from Hk̄ to J̃ and let L2(Hk̄ , J̃)

denote the space of Hilbert Schmidt operators on functions mapping from Hk̄ to J̃.

We define the linear operator Ahi : HK → L2(BX × J̃, ρ, J̃) such that for ri ∈ HK

(Ahiri)(P , Γi) = K∗hi (P)ri

This essentially implies that

(Ahiri)(P , Γi) = ri ◦ hi(P),

Ahi is the canonical injection of HK under the transformation hi . Let ρP denote the marginal

distribution of ρ with respect to P :

ρP (P) =
∫
Γ∈J

dρ(P , Γ).

We define the Hilbert-Schmidt operators Thi (P) = Khi (P)K
∗
hi (P) and

Thi =

∫
BX

Thi (P)dρP (P).

Using the spectral operator for the optimal transfer learning function h∗i , we define the

effective rank as N(λ2,i) := Tr((Th∗i + λ2,i)−1Th∗i )

The proof strategy for Theorem A.3 is as follows:

1. We first derive the conditions for convergence of Aĥi
the embedding of the classified

output in theorem A.7.

2. Next, we extend on the conditions to derive rates for the empirical version of the
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spectral operator Thi in Corollary A.2.

3. We then use these arguments in section A.6.3 to provide high probability upper bounds

for E(r̂i ◦ ĥi) − E(r ∗i ◦ h∗i ) in theorem A.3.

The proof depends on the property of the extended feature space in marginal transfer

learning and on the self-calibration property of logistic loss. In the infinite sample setting,

the marginal transfer learning system can be seen as a standard support vector machine on

the extended, infinite dimensional feature space BX × X. For the marginal transfer learning

system, let

η(X , P) := EPY |X∼ρY |X
[
P(Y = 1|X )

]
. (A.8)

In particular, when Assumption L IV holds, ρ(PY |X ) := δZ (PX ),

η(X , PX ) := EPY |X∼δZ (PX )
[
P(Y = 1|X )

]
:= Z (PX )(Y = 1|X = x).

The self calibration properties of the logistic loss (see Steinwart and Christmann[84])

when applied to the extended feature space of marginal transfer learning imply that

∫
BX

∫
X
|η(X , P) − P̂(Y = 1|X )|2dPdρP (P) ≤ I (д̂, `,∞) − I (д∗, `,∞) (A.9)

The derivation of the above equation is identical to example 3.66 in [84] with the extended

feature vector (P ,X ).

A.6.1 Useful Theorems

For the theorem below, we will assume that for the transfer learning setting nj = ntl for all

1 ≤ j ≤ Jtl .
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Theorem A.4 (Universal consistency of MTL, Cor. 5.4 of [75]). Assume that loss ` is L`

lipschitz in the first variable, is bounded by Bl and that assumptions L I, L II are satisfied for

X and kernels k,K and k′. Assume that Jtl ,ntl grow to infinity in such a way that Jtl = O(nptl )

for some p > 0. Then if λ1,j is a sequence such that λ1,j → 0 and λ1,j

√
j

log j
→ ∞, it holds

that

I (д̂, `,∞) → inf
д∈BX×X→R

I (д, `,∞)

in probability.

A.6.2 Analysis of Ah and Th

Theorem A.5. If assumptions L I and L II hold for the given system, Ahi is a bounded

operator from HK to L2(BX × J̃, ρ, J̃), the adjoint A∗hi : L2(BX × J̃, ρ, J̃) → HK is

A∗his =

∫
BX×J

Khi (P)s(P , Γi)dρ(P , Γi)

where the integral converges in HK and A∗hiAhi is the Hilbert-Schmidt operator on HK:

Thi =

∫
BX

Thi (P)dρP (P)

for Thi (P) = Khi (P)K
∗
hi (P).

Theorem A.6. If assumptions L I, L II hold, r ∗i is a minimizer of expected risk E(·) under

the composition map h∗i iff it satisfies

Th∗i r
∗
i = A∗h∗i

Γi

The proofs are straightforward and follow the same line of arguments as presented in
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[149] and [150].

We shall first present bounds on Ahi for the transfer learning system before we move on

to the bounds of the complete system.

Theorem A.7. Consider a mixture distribution regression system and assume that the con-

ditions L I - L III are satisfied. Then,

‖(Aĥi
−Ah∗i

)‖L(L2) ≤ Ch
(
I (д̂, `,∞) − I (д∗, `,∞)

)β/2
,

where Ch =
(2Bk̄
cY

)β√
LK and cY := πi π̂i .

Proof. Without loss of generality, we will provide the convergence bounds for i = 1 and the

label space Y := {0, 1}. Let Z = BX × J̃. We have

‖(Aĥ1
−Ah∗1

)r1‖2ρ =
∫
Z
‖(K∗

ĥ1(P)
− K∗h∗1(P))r1‖2J̃dρ(P , Γ1)

≤ ‖r1‖2Hk̄

∫
Z
‖(K∗

ĥ1(P)
− K∗h∗1(P))‖

2
L(HK,J̃)

dρ

= ‖r1‖2Hk̄

∫
Z
‖(Kĥ1(P) − Kh∗1(P))

∗‖2L(HK,J̃)dρ.

Using ‖ · ‖L ≤ ‖ · ‖L2 and the Hölder condition,

‖(Aĥ1
−Ah∗1

)r1‖2ρ ≤ ‖r1‖2Hk̄

∫
Z
‖(Kĥ1(P) − Kh∗1(P))‖

2
L2(J̃,HK)

dρ

≤ ‖r1‖2Hk̄
LK

∫
BX
‖ĥ1(P) − h∗1(P)‖

2β

Hk̄
dρ(PX ).
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From the definition of ĥ1 and h∗1,

‖(Aĥ1
−Ah∗1

)r1‖2ρ ≤ ‖r1‖2Hk̄
LK

∫
BX





 ∫
X
k̄(x , ·)dP̂1(x) −

∫
X
k̄(x , ·)dP1(x)





2β

Hk̄

dρP (PX )

= ‖r1‖2Hk̄
LK

∫
BX





 ∫
X
k̄(x , ·)

(
P̂(Y = i |x)
P̂(Y = i)

− P(Y = i |x)
P(Y = i)

)
dPX





2β

Hk̄

dρP (PX ).

From convexity of ‖ · ‖Hk̄
and Jensen’s inequality,

‖(Aĥ1
−Ah∗1

)r1‖2ρ ≤ ‖r1‖2Hk̄
LK

∫
BX

( ∫
X
‖k̄(x , ·)‖Hk̄

���� P̂(Y = 1|x)
P̂(Y = 1)

− P(Y = 1|x)
P(Y = 1)

����dPX )2β

dρP (PX )

≤ ‖r1‖2Hk̄
LKB

2β

k̄

∫
BX

( ∫
X

���� P̂(Y = 1|x)
P̂(Y = 1)

− P(Y = 1|x)
P(Y = 1)

����dPX )2β

dρP (PX )

≤ ‖r1‖2Hk̄
LKB

2β

k̄

∫
BX

H2βdρP (PX )

Where H :=

∫
X

���� P̂(Y = 1|x)
P̂(Y = 1)

− P(Y = 1|x)
P(Y = 1)

����dPX . We will continue to simplify H . Let cY :=

P(Y = 1)P̂(Y = 1).

H =

∫
X

|P̂(Y = 1|x)P(Y = 1) − P(Y = 1|x)P̂(Y = 1)|
cY

dPX

≤ 1

cY

∫
X

(
|P̂(Y = 1|x) − P(Y = 1|x)| + |P(Y = 1) − P̂(Y = 1)|

)
dPX

≤ 1

cY

( ∫
X
|P̂(Y = 1|x) − P(Y = 1|x)|dPX + |P(Y = 1) − P̂(Y = 1)|

)
≤ 1

cY

( ∫
X
|P̂(Y = 1|x) − P(Y = 1|x)|dPX +

���� ∫
X
P(Y = 1|x)dPX −

∫
X
P̂(Y = 1|x)dPX

����)
≤ 2

cY

∫
X
|P̂(Y = 1|x) − P(Y = 1|x)|dPX ,

where the second step comes from the fact that for 4 numbers 0 ≤ a,b, c,d ≤ 1, |ab − cd | ≤

|a − c | + |b − d |.
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Therefore we have

‖(Aĥ1
−Ah∗1

)r1‖2ρ ≤
22β ‖r1‖2Hk̄

LKB
2β

k̄

c
2β
Y

∫
BX

( ∫
X
|P̂(Y = 1|x) − P(Y = 1|x)|dPX

)2β

dρP (PX )

=
22β ‖r1‖2Hk̄

LKB
2β

k̄

c
2β
Y

∫
BX

( ∫
X

����η(X , PX ) − 1

1 + exp(−д(X , PX ))

����dPX )2β

dρP (PX )

Using cauchy-schwarz inequality,

‖(Aĥ1
−Ah∗1

)r1‖2ρ ≤
22β ‖r1‖2Hk̄

LKB
2β

k̄

c
2β
Y

∫
BX

( ∫
X

����η(X , PX ) − 1

1 + exp(−д(X , PX ))

����2dPX )β
dρP (PX )

Using the concavity of (·)β and the Jensen’s inequality,

‖(Aĥ1
−Ah∗1

)r1‖2ρ ≤
22β ‖r1‖2Hk̄

LKB
2β

k̄

c
2β
Y

( ∫
BX

∫
X

����η(X , PX ) − 1

1 + exp(−д(X , PX ))

����2dPXdρP (PX ))β
≤

22β ‖r1‖2Hk̄
LKB

2β

k̄

c
2β
Y

(
I (д̂, `,∞) − I (д∗, `,∞)

)β
The theorem follows from the definition of the norm.

�

Corollary A.2. Consider a mixture distribution regression system and assume that the

conditions L I - L III are satisfied. Then, with probability 1 − δ ,

‖(T̂ĥi − T̂h∗i )ri ‖
2 ≤ Ch,2

(√
log δ−1

Jdr
+

(
I (д̂, `,∞) − I (д∗, `,∞)

) )β

where Ch,2 :=
22+2β ‖ri ‖2B2

K
B

2β

k̄
LK

c
2β
Y

and cY := πi π̂i .

Proof. We consider the training data for the distribution regression to have Jdr tasks. With-
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out loss of generality, we will provide the convergence bounds for i = 1. The proof is similar

to that of Theorem A.7. The training dataset consists of points drawn from probability

distributions {P (j)}Jj=Jt l+1. Let [Jdr ] = {Jtl + 1, · · · , J }. We have

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

1

Jdr

∑
j∈[Jdr ]

‖(Kĥ1(P (j))K
∗
ĥ1(P (j))

− Kh∗1(P (j))K
∗
h∗1(P (j))

)r1‖2

Adding and subtracting Kĥ1(P (j))K
∗
h∗1(P (j))

and using the properties of norm,

‖(T̂ĥ1
−T̂h∗1)r1‖2 ≤

‖r1‖2
Jdr

∑
j∈[Jdr ]

‖(Kĥ1(P (j))K
∗
ĥ1(P (j))

−Kĥ1(P (j))K
∗
h∗1(P (j))

+Kĥ1(P (j))K
∗
h∗1(P (j))

−Kh∗1(P (j))K
∗
h∗1(P (j))

)‖2.

Using the inequality ‖ f1 + f2‖2 ≤ 2(‖ f1‖2 + ‖ f2‖2),

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

2‖r1‖2
Jdr

∑
j∈[Jdr ]

‖(Kĥ1(P (j))K
∗
ĥ1(P (j))

− Kĥ1(P (j))K
∗
h∗1(P (j))

‖2

+ ‖Kĥ1(P (j))K
∗
h∗1(P (j))

− Kh∗1(P (j))K
∗
h∗1(P (j))

)‖2.

Using Cauchy-Schwarz inequality and the bound on kernel K,

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

4‖r1‖2B2
K

Jdr

∑
j∈[Jdr ]

‖Kĥ1(P (j)) − Kh∗1(P (j))‖
2.

Using the hölder continuity of K,

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

4‖r1‖2B2
K
LK

Jdr

∑
j∈[Jdr ]

‖ĥ1(P (j)) − h∗1(P (j))‖2β

Following arguments identical to those presented in theorem A.7 we have

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

22+2β ‖r1‖2B2
K
B

2β

k̄
LK

Jdrc
2β
Y

∑
j∈[Jdr ]

( ∫
X

����η(X , P (j)) − P̂(Y = 1|X )
����2dP (j))β
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Using Jensen’s inequality,

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

22+2β ‖r1‖2B2
K
B

2β

k̄
LK

c
2β
Y

(
1

Jdr

∑
j∈[Jdr ]

∫
X

����η(X , P (j)) − P̂(Y = 1|X )
����2dP (j))β

Denoting the term inside the summation as H̃ we have, using Azuma-Mcdiarmid’s in-

equality, with probability 1 − δ ,

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

22+2β ‖r1‖2B2
K
B

2β

k̄
LK

c
2β
Y

(√
log δ−1

Jdr
+ EPX [H̃ ]

)β
Using equation A.9,

‖(T̂ĥ1
− T̂h∗1)r1‖2 ≤

22+2β ‖r1‖2B2
K
B

2β

k̄
LK

c
2β
Y

(√
log δ−1

Jdr
+

(
I (д̂, `,∞) − I (д∗, `,∞)

) )β
�

A.6.3 Proof of Theorem A.3

Proof. For simplification of notation, we write r̂ = r̂i and rH := r ∗i . By the definition of E,

we can write

E(r̂ ◦ ĥi) − E(rH ◦ h∗i ) = ‖Aĥi
r̂ − Γi ‖2ρ − ‖Ah∗i

rH − Γi ‖2ρ .

Completing the squares,

E(r̂ ◦ ĥi) − E(rH ◦ h∗i ) = ‖Aĥi
r̂ −Ah∗i

rH ‖2ρ + 2〈Aĥi
r̂ −Ah∗i

rH,Ah∗i
rH − Γi〉ρ .

149



Adding and subtracting Ah∗i
r̂ and then using the inequality ‖

N∑
i=1

fi ‖2 ≤ N
N∑
i=1

‖ fi ‖2,

E(r̂ ◦ ĥi) − E(rH ◦ h∗i ) = ‖Aĥi
r̂ −Ah∗i

r̂ +Ah∗i
r̂ −Ah∗i

rH ‖2ρ + 2〈Aĥi
r̂ −Ah∗i

rH,Ah∗i
rH − Γi〉ρ

≤ 2(‖Aĥi
r̂ −Ah∗i

r̂ ‖2ρ + ‖Ah∗i
r̂ −Ah∗i

rH ‖2ρ + 〈Aĥi
r̂ −Ah∗i

rH,Ah∗i
rH − Γi〉ρ)

=: 2((I ) + (I I ) + (I I I )),
(A.10)

We now provide universal consistency of (I ), (I I ) and (I I I ) using Theorems A.5, A.6 and A.7.

Bound on (I) We have from the definition of the operator norm,

(I ) ≤ ‖r̂ ‖2Hk̄
‖(Aĥi

−Ah∗i
)‖2L(L2). (A.11)

From the definition of r̂ and from the fact that ‖(T̂ĥi + λ2,i)−1‖ ≤ 1

λ2,i
,

‖r̂ ‖HK ≤ ‖(T̂ĥi + λ2,i)−1‖L(HK)‖
1

Jdr

Jdr∑
j=1

K(·, ĥi(P̂ (j)))Γ(j)i ‖

≤ 1

λ2,i

1

Jdr

Jdr∑
j=1

‖K(·, ĥi(P̂ (j)))‖‖Γ(j)i ‖

≤ 1

λ2,i
CΓBK.

(A.12)

Using the preceding argument, along with theorem A.7 we have

(I ) ≤ 1

λ2
2,i

C2
ΓB

2
K
‖(Aĥi

−Ah∗i
)‖2L(L2)

≤
C2
ΓB

2
K
LK

λ2
2,i

(2Bk̄
cY

)2β (
I (д, `,∞) − I (д∗, `,∞)

)β
.

(A.13)
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Bound on (III): Adding and subtracting Ah∗i
r̂ , and then applying the projection theorem,

(I I I ) = 〈Aĥi
r̂ −Ah∗i

r̂ ,Ah∗i
rH − Γi〉ρ + 〈Ah∗i

r̂ −Ah∗i
rH,Ah∗i

rH − Γi〉ρ

= 〈Aĥi
r̂ −Ah∗i

r̂ ,Ah∗i
rH − Γi〉ρ .

From the Cauchy-Schwarz inequality and the definition of the spectral norm,

(I I I ) ≤ ‖Aĥi
−Ah∗i

‖L(L2)‖r̂ ‖HK ‖Ah∗i
rH − Γi ‖ρ . (A.14)

From the derivation for term (I ), ‖r ‖H ≤
1

λ2,i
CΓBK. We can bound ‖Ah∗i

rH − Γi ‖J using the

convexity of the norm and equation (A.12) as

‖Ah∗rH − Γ‖ρ ≤ ‖Ah∗i
rH − Γi ‖J

≤ ‖Ah∗i
rH ‖ + ‖Γi ‖

≤ CΓ

(
1 +

BK
λ2,i

) (A.15)

Using theorem A.7 and the preceding arguments,

(I I I ) ≤
C2
ΓBK
√
LK

λ2,i

(
1 +

BK
λ2,i

) (2Bk̄
cY

)β (
I (д, l̀oдist ,∞) − I (д∗, l̀oдist ,∞)

)β/2 (A.16)

Bound on (II):

(I I ) = ‖Ah∗i
(r̂ − rHK)‖2HK

= ‖
√
Th∗(r̂ − rHK)‖2HK

Note that r̂ is trained with two stage sampled data which has been classified by ĥi and not by

h∗i . To distinguish between the two we shall make a change to the notation: r̂ĥi = r̂ and we

shall denote by r̂h∗i as the empirical two stage regressor trained using the optimal marginal
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predictor. More specifically,

r̂h∗i := (Th∗i + λ2,i)−1ŝh∗i ,

where ŝh∗i := [K(·,h∗i (P (Jt l+1))),K(·,h∗i (P (Jt l+2))), ...,K(·,h∗i (P (Jt l+Jdr )]′ and

r̂ĥi := (Tĥi + λ2,i)−1ŝĥi ,

where ŝĥi := [K(·, ĥi(P (Jt l+1))),K(·, ĥi(P (Jt l+2))), ...,K(·, ĥi(P (Jt l+Jdr ))]′. We have

(I I ) = ‖
√
Th∗i (r̂ĥi − rHK)‖

2
HK

= ‖
√
Th∗i (r̂ĥi − r̂h∗i + r̂h∗i − rH)‖

2
HK

≤ 2(‖
√
Th∗i (r̂ĥi − r̂h∗i )‖

2
HK + ‖

√
Th∗i (r̂h∗i − rH)‖

2
HK)

= (I Ia) + (I Ib),

where the inequality is due to ‖
N∑
i=1

fi ‖2 ≤ N
N∑
i=1

‖ fi ‖2. Working with the first term (IIa),

from the definitions of r̂ĥi and r̂h∗i ,

r̂ĥi − r̂h∗i = (T̂ĥi + λ2,i)−1ŝĥi − (T̂h∗i + λ2,i)−1ŝh∗i .

Adding and subtracting (T̂h∗i + λ2,i)−1ŝĥi ,

r̂ĥi − r̂h∗i = (T̂h∗i + λ2,i)−1(ŝĥi − ŝh∗i ) − ((T̂h∗i + λ2,i)−1 − (T̂ĥi + λ2,i)−1)ŝĥi .

Using the operator identity T −1
1 −T −1

2 = T −1
1 (T1 −T2)T −1

2 and the definition of r , we have

r̂ĥi − r̂h∗i = (T̂h∗i + λ2,i)−1(ŝĥi − ŝh∗i ) − (T̂h∗i + λ2,i)−1(T̂h∗i − T̂ĥi )(T̂ĥi + λ2,i)−1ŝĥi

= (T̂h∗i + λ2,i)−1(ŝĥi − ŝh∗i ) + (T̂h∗i + λ2,i)−1(T̂ĥi − T̂h∗i )r̂ĥi
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Using the definition of spectral norm and the squared sum-norm inequality,

(I Ia) ≤ 2‖
√
Th∗i (T̂h∗i + λ2,i)−1‖2L(HK)(‖ŝĥi − ŝh∗i ‖

2 + ‖T̂ĥi − T̂h∗i ‖
2
L(HK)‖r̂ĥi ‖

2
HK)

We know that for δ2 > 0, the term ‖
√
Th∗i (T̂h∗i + λ2,i)−1‖2L(HK) ≤

4

λ2,i
with probability 1 − δ2/3

provided Jdr ≥ 64 log( 6

δ2
)BKN(λ2,i)

λ2,i
and λ2,i ≤ ‖Th∗i ‖L(HK) (See bound on ‖

√
T (Tx + λ)−1‖2 in

[151]).

Next, by definition of ŝĥi , ŝh∗i and the squared sum-norm inequality,

‖ŝĥ − ŝh∗ ‖
2 =





 1

Jdr

Jdr∑
j=1

(K(ĥi (P (j)) − Kh∗i (P (j)))Γ
(j)
i





2

≤ 1

Jdr

∑
j

‖(K(ĥi (P (j)) − Kh∗i (P (j)))Γ
(j)
i ‖

2

≤
C2
Γ

Jdr

∑
j

‖K(ĥi (P (j)) − Kh∗i (P (j))‖
2

≤
C2
ΓLK

Jdr

∑
j

‖ĥi(P (j)) − h∗i (P (j))‖2β

Using the simplifications similar to those used in Corollary A.2, we have with probability

1 − δ ,

‖ŝĥ − ŝh∗ ‖
2 ≤

C2
ΓLK22βB

2β

k̄

c
2β
Y

(√
log δ−1

Jdr
+

(
I (д, l̀oдist ,∞) − I (д∗, l̀oдist ,∞)

) )β
.

Using the above bound along with Corollary A.2, we have, with probability 1 − 2δ − δ2/3,

(I Ia) ≤ 4

λ2,i

(
2C2

ΓLK + ‖r̂ĥi ‖
2B2
K
LK

) (
2Bk̄
cY

)2β (√
log δ−1

Jdr
+

(
I (д, l̀oдist ,∞) − I (д∗, l̀oдist ,∞)

) )β
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Using the fact that ‖r̂ĥi ‖ ≤
CΓBK
λ2,i

,

(I Ia) ≤ 4

λ2,i

(
2 +

B4
K

λ2
2,i

)
C2
ΓLK

(
2Bk̄
cY

)2β (√
log δ−1

Jdr
+

(
I (д, l̀oдist ,∞) − I (д∗, l̀oдist ,∞)

) )β
.

Term (I Ib) is the direct application of distribution regression on the class conditional distri-

bution for class i, therefore,

(I Ib) ≤ E(r̂ ◦ h∗i ) − E(rH ◦ h∗i ). (A.17)

Let Stl := I (д, l̀oдist ,∞) − I (д∗, l̀oдist ,∞)
)
and Sdr := E(r̂ ◦ h∗i ) − E(rH ◦ h∗i ). Then, with

probability 1 − 2δ − δ2/3,

E(r̂ ◦ ĥi) − E(rH ◦ h∗i ) ≤ C1Sβtl +C2Sβ/2tl
+C3

(√
log δ−1

Jdr
+ Stl

)β
+ 4Sdr ,

where,C1 :=
2C2

ΓB
2
K
LK

λ2
2,i

(2Bk̄
cY

)2β ,C2 :=
C2
ΓBK
√
LK

λ2,i

(
1+

BK
λ2,i

) (2Bk̄
cY

)β ,C3 :=
4

λ2,i

(
2+

B4
K

λ2
2,i

)
C2
ΓLK

(
2Bk̄
cY

)2β

�
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APPENDIX B

Appendix for Chapter 3

B.1 Algorithms for Tracking

The algorithms below provide a high level description of the tracking algorithms. Algo-

rithm B.1 describes the dynamic profile construction for the ground stations. Algorithm B.2

describes the simple static allocation when Rstatic < Rthres and Algorithm B.3 provides the

complex static profiles for antenna pointing and allocation. Note that the selection between

the profiles occur as described in Chapter III. In Algorithm B.3 if the greedy algorithm runs

out of the ground station passes, then the algorithm is run again with initializing from the

minimum inclination (instead of RAAN as described). If both procedures fail, the problem

is declared infeasible.
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Algorithm B.1: Dynamic profile
Input: Number of available ground stations nG , Uncertainty net Jϵ , net of

observation intervals Tτ , Schedules {Sjl }
Lj ,nG
l=1,j=1

, Antenna widths {wG(Are f ,jl )}.

1 for j = 1, ...,nG do

2 for l = 1, 2, ...Lj do

3 APPjl = {}

4 for t ∈ Tτ
⋂

Sjl do

5 Compute wG(Vj(Jϵ , t))

6 Compute Rdynamic,jl

7 if Rdynamic,jl < 1 then

8 APPjl ←
(
s′1(t) + s′2(t)
‖s′1(t) + s′2(t)‖

, t

)
, (s′1(t), s′2(t)) := arg max

s1,s2∈Vj (Jϵ ,t)∩Hj

dG(s1, s2)

9 end

10 end

11 end

12 end

13 if
∑
j,l

1{Rdynamic, jl<1} > nP then

14 Select nP passes of largest length and discard the rest of the schedules and profiles.

15 end
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Algorithm B.2: Simple static profile
Input: Number of available ground stations nG , Uncertainty net Jϵ , net of

observation intervals Tτ , Schedules {Sjl }
Lj ,nG
l=1,j=1

, Antenna widths {wG(Are f ,jl )}.

1 for j = 1, 2, · · · ,nG do

2 for l = 1, ...,Lj do

3 Davд,jl = {}

4 for γ ∈ Hjl := {γ ∈ Jϵ ,m(Vj(γ , Sjl ) ∈ Hj) > 0} do

5 Compute average Doppler time stamp tavд,jl (γ )

6 Davд,jl ← Vj(γ , tavд,jl (γ ))

7 end

8 Rstatic,jl =
wG(Davд,jl )
wG(Are f ,jl )

9 s′1, s
′
2 = arg max

s1,s2∈Davд, jl

dG(s1, s2)

10 APPjl =

(
s′1 + s

′
2

‖s′1 + s′2‖
, Sjl

)
.

11 end

12 end

13 Select nP passes for which Hjl = Jϵ and Rstatic,jl < Rthres .
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Algorithm B.3: Complex static profile
Input: Number of available ground stations nG , Uncertainty net Jϵ , net of

observation intervals Tτ , Schedules {Sjl }
Lj ,nG
l=1,j=1

, Antenna widths {wG(Are f ,jl )}.

1 for j = 1, 2, · · · ,nG do

2 for l = 1, ...,Lj do

3 Davд,jl = {}

4 for γ ∈ Hjl := {γ ∈ Jϵ ,m(Vj(γ , Sjl ) ∈ Hj) > 0} do

5 Compute average Doppler time stamp tavд,jl (γ ) Davд,jl ← Vj(γ , tavд,jl (γ ))

6 end

7 end

8 end

9 G = {}

10 for nn = 1, 2, ...,nP do

11 Iϵ = {}

12 while Jϵ \ Iϵ , � and |G| <
∑
j

Lj do

13 γcand = arg min
γ∈(Jϵ \Iϵ )

RAAN (s)

14 jlcand = arg min
j∈{1,2,..nG },l∈{1,2,...,Lj }:γcand∈Hjl

wG(Davд,jl )
wG(Are f ,jl )

15 Construct MWSTjlcand : Minimum Width Spanning Tree on S2 over datapoints

Davд,jlcand starting from point corresponding to γcand until maximum width less

than RthreswG(Are f ,jlcand )

16 Hcover ,jlcand = {γ ∈ Jϵ : Vjcand (γ , tavд,jlcand (γ )) ∈ MWSTjlcand }

17 Iϵ ← Iϵ
⋃

Hcover ,jlcand

18 G ← jlcand

19 end

20 end

21 Release pass intervals not used from the schedule
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APPENDIX C

Appendix for Chapter 4

C.1 Calibration of Combined Magnetometer Measure-

ments

In this section we discuss extension of calibration parameters to combined magnetometer

measurements. We show that with modified signal parameters, the non-orthogonal spin

calibration methods presented in [67, 66] can be applied directly to combined magnetometer

measurements. We will present the model in the absence of interference. For a true magnetic

field measurement of QT (t), the sensor i measures

QS (t) = GiOtQT (t) + Si ,

where

Gi =



Gi,1 sinθi,1 cosφi,1 Gi,1 sinθi,1 sinφi,1 Gi,1 cosθi,1

Gi,2 sinθi,2 cosφi,2 Gi,2 sinθi,2 sinφi,2 Gi,2 cosθi,2

Gi,3 sinθi,3 cosφi,3 Gi,3 sinθi,3 sinφi,3 Gi,3 cosθi,3


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and S =

[
Si,1 Si,2 Si,3

]′
. All the angles except for φi,3 are expected to be small and this

results in the small angle approximation [67, 66]:

Gi =



Gi,1 Gi,1∆φi,1 Gi,1∆θi,1

−Gi,2∆φi,2 Gi,2 Gi,2∆θi,2

Gi,3∆θi,3 cos(φi,3) Gi,3∆θi,3 sin(φi,3) Gi,3


For individual magnetometers, using a further simplification that Gi,2 = Gi,1 + ∆G21 and

∆φi,2 = ∆φi,1 + ∆φi,21 and ignoring the second order terms we have

Gi =



Gi,1 Gi,1∆φi,1 Gi,1∆θi,1

−Gi,1(∆φi,1 + ∆φi,21) Gi,1 + ∆Gi,21 Gi,1∆θi,2

Gi,3∆θi,3 cos(φi,3) Gi,3∆θi,3 sin(φi,3) Gi,3.


(C.1)

The parameters of equation (C.1) is computed by estimating the harmonics generated at

multiples of the spin frequency ω, 2ω (See the methods in [67, 66]). We will induce a sim-

ilar structure to equation (C.1) for combined magnetometer measurements and discuss it’s

calibration. We shall focus on extension of the method by Kepko et. al [67], and similar

extensions can be used for [66]. For a sensor combination W = (W1,W2, · · · ,WM ), the small

signal structure gives
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GW =



∑
m

wm,1Gm,1

∑
m

wm,1Gm,1∆φm,1
∑
m

wm,1Gm,1∆θm,1∑
m

wm,2Gm,2∆φm,2
∑
m

wm,2Gm,2

∑
m

wm,2Gm,1∆θm,2∑
m

wm,3Gm,3∆θm,3 cos(φm,3)
∑
m

wm,3Gm,3∆θm,3 sin(φm,3)
∑
m

wm,3Gm,3


.

For the small signal approximations of Gi ,

GW =



GW ,1 GW ,1∆φW ,1 GW ,1∆θW ,1

−GW ,2∆φW ,2 GW ,2 GW ,2∆θW ,2

GW ,3∆ρ GW ,3∆ξ GW ,3


where

GW ,1 =
∑
m

wm,1Gm,1, ∆φW ,1 =
∑
m

wm,1
Gm,1

GW ,1
∆φm,1,

GW ,2 =
∑
m

wm,2Gm,2, ∆φW ,2 =
∑
m

wm,2
Gm,2

GW ,2
∆φm,2,

GW ,3 =
∑
m

wm,3Gm,3, ∆ρ =
∑
m

wm,3
Gm,3

GW ,3
∆θm,3 cos(φm,3),

∆θW ,1 =
∑
m

wm,1
Gm,1

GW ,1
∆θm,1,

∆θW ,2 =
∑
m

wm,2
Gm,1

GW ,2
∆θm,2,

∆ξ =
∑
m

wm,3
Gm,3

GW ,3
∆θm,3 sin(φm,3),

In the above equation, direct first order small angle approximation cannot be applied.

However, by separating combined gain measurements, we can write the approximation
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GW =



GW ,1 GW ,1∆φW ,1 GW ,1∆θW ,1

−GW ,1(∆φW ,1 + ∆φW ,21) GW ,1 + ∆GW ,21 GW ,1∆θW ,2

GW ,3∆ρW GW ,3∆ξW GW ,3.


(C.2)

where

GW ,1 =
∑
m

wm,1Gm,1, GW ,3 =
∑
m

wm,3Gm,3,

∆θW ,1 =
∑
m

wm,1
Gm,1

GW ,1
∆θm,1, ∆θW ,2 =

∑
m

wm,2
Gm,2

GW ,1
∆θm,2,

∆φW ,1 =
∑
m

wm,1
Gm,1

GW ,1
∆φm,1, ∆φW ,21 =

1

GW ,1

∑
m

wm,2Gm,2∆φm,2 −wm,1Gm,1∆φm,1,

∆ρW =
∑
m

wm,3
Gm,3

GW ,3
∆θm,3 cos(φm,3), ∆ξW =

∑
m

wm,3
Gm,3

GW ,3
∆θm,3 sin(φm,3).

∆GW ,21 =
∑
m

wm,2Gm,2 −wm,1Gm,1.

It is a natural question whether small angle structure holds for all the components of GW ,

given that it holds for each of the individual sensors. We shall show that for a small angle

∆γ , if the small angle approximation also holds for 2
supmGm,1

infmGm,1
∆γ , then the small angle

approximation also holds for GW . The angle in question are ∆θW ,2 and ∆φW ,21. Using first

order approximations for each of the individual sensors,

∆θW ,2 =
∑
m

wm,2
Gm,2

GW ,1
∆θm,2

=
∑
m

wm,2
Gm,1 + ∆Gm,21

GW ,1
∆θm,2

=
Gm,1

GW ,1

∑
m

wm,2∆θm,2 + o(ϵ′)

≤ supmGm,1

infmGm,1

∑
m

wm,2∆θm,2 + o(ϵ′).
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Similarly,

∆φW ,21 =
1

GW ,1

∑
m

wm,2Gm,2∆φm,2 −wm,1Gm,1∆φm,1

=
1

GW ,1

∑
m

wm,2(Gm,1 + ∆Gm,21)∆φm,2 −wm,1Gm,1∆φm,1

=
1

GW ,1

∑
m

Gm,1(wm,2∆φm,2 −wm,1∆φm,1) + o(ϵ′)

≤ supmGm,1

GW ,1

∑
m

(wm,2∆φm,2 −wm,1∆φm,1) + o(ϵ′)

≤ 2
supmGm,1

infmGm,1
max

(∑
m

wm,2∆φm,2,
∑
m

wm,1∆φm,1

)
+ o(ϵ′).

Since the affine combinations of the small angles produced by W are also small, from the

above equations, the small angle approximation holds for GW . The estimation of parameters

using either [67] or [66] can be used for estimation of these modified small angle parameters

with a modification for ρW , ξW . In both of these variables, the individual products cannot

be resolved and they will have to be estimated directly as a sum. This modification should

not change the solution for ĜW recovered.

C.2 Decomposition of Loss

We show that under imperfect calibration due to spacecraft interference and with the space-

craft model under consideration, the loss lW can be decomposed into two parts. The first is

a function of the telemetry xt and the second is composed of historical observed telemetry,

spacecraft current loops that are not observable by the telemetry and the true magnetic

field. The calibration parameters of the spacecraft GW , SW are dependent on the past L

measurements of data.

In the spacecraft model under consideration, the interference is a function of spacecraft
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telemetry and unobserved variables. For any t ∈ T,

`W = ‖QT (t) −O′tĜ−1
W (t)(QW (t) − ŜW (t))‖

= ‖O′tG−1
W GWOtQT (t) −O′tĜ−1

W (t)(GWOtQT (t) +GWVW (t) + SW − ŜW (t))‖

= ‖(G−1
W − Ĝ−1

W (t))OtQT (t) + Ĝ−1
W (t)

∑
m

WmGmVm(t) + SW − ŜW (t)‖

= ‖Ĝ−1
W (t)

∑
m

WmGm(hm(xt ) + ξt ) + (G−1
W − Ĝ−1

W (t))OtQT (t) + SW − ŜW (t)‖

= ‖Ĝ−1
W (t)

∑
m

WmGmhm(xt ) + Ĝ−1
W (t)

∑
m

WmGmξt + (G−1
W − Ĝ−1

W (t))OtQT (t) + SW − ŜW (t)‖

= ‖G−1
W

∑
m

WmGmhm(xt )

+ Ĝ−1
W (t)

∑
m

WmGmξt + (G−1
W − Ĝ−1

W (t))
(
OtQT (t) +

∑
m

WmGmhm(xt )
)
+ SW − ŜW (t)‖

= fW (xt ) − ζt (xt−L,xt−L+1, · · · ,xt , ξt−L, ξt−L+1, · · · , ξt ,QT (t − L),QT (t − L + 1), · · · ,QT (t)),

where fW (xt ) = ‖G−1
W

∑
m

WmGmhm(xt )‖ is the component of the interference that depends only

on the telemetry at time t for a fixed sensor combinationW and ζt is the perturbation from

fW (xt ) based on unobserved parameters and imperfect calibration.

C.3 Additional Experimental Results

We present runs for the test datasets for β = 0.1, 0.5 and 2. The hyper parameters, kernel

bandwidth and regularization, used for these different tests with β were from cross validation

performed for β = 1.
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(a) Letter dataset (b) USPS dataset

(c) MNIST dataset (d) Spacecraft dataset

Figure C.1: Simple regret evaluation with β = 0.1
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(a) Letter dataset (b) USPS dataset

(c) MNIST dataset (d) Spacecraft dataset

Figure C.2: Simple regret evaluation with β = 0.5
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(a) Letter dataset (b) USPS dataset

(c) MNIST dataset (d) Spacecraft dataset

Figure C.3: Simple regret evaluation with β = 2

The following runs compare the behavior of contextual gap with a history of 25 points

and contextual gap by considering only the previous datapoint.
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(a) USPS dataset (b) MNIST dataset

(c) Spacecraft dataset

Figure C.4: Simple regret for Contextual Gap with History of 25 points

The following plots provide the time series information for the magnetic field interference

for the experimental dataset along the X ,Y and Z directions in the body fixed frame.

168



(a) Interference of Magnetometer 1

(b) Interference of Magnetometer 2

(c) Interference of Magnetometer 3

(d) Contextual Gap with 11 arms

Figure C.5: Time series of magnetic field interference - X direction
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(a) Interference of Magnetometer 1

(b) Interference of Magnetometer 2

(c) Interference of Magnetometer 3

(d) Contextual Gap with 11 arms

Figure C.6: Time series of magnetic field interference - Y direction
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(a) Interference of Magnetometer 1

(b) Interference of Magnetometer 2

(c) Interference of Magnetometer 3

(d) Contextual Gap with 11 arms

Figure C.7: Time series of magnetic field interference - Z direction

171



BIBLIOGRAPHY

[1] R. Tsunoda, “Tilts and wave structure in the bottomside of the low-latitude f layer:

Recent findings and future opportunities,” in AGU Fall Meeting Abstracts, 2016.

[2] N. England, J. W. Cutler, and S. Sharma, “Tandom beacon experiment-tbex design

overview and lessons learned,” Cubesat Developer’s Workshop, 2018.

[3] M. Swartwout, “University-class satellites: From marginal utility to’disruptive’research

platforms,” 2004.

[4] ——, “The first one hundred cubesats: A statistical look,” Journal of Small Satellites,

vol. 2, no. 2, pp. 213–233, 2013.

[5] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small satellite trends 2009-

2013,” in Proceedings of the AIAA/USU Conf. on Small Satellites, 2015.

[6] L. Berthoud and M. Schenk, “How to set up a CubeSat project-preliminary survey

results,” in Proceedings of the AIAA/USU Conf. on Small Satellites, 2016.

[7] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,

“Review of formation flying and constellation missions using nanosatellites,” Journal

of Spacecraft and Rockets, vol. 53, no. 3, pp. 567–578, 2017/09/15 2016. [Online].

Available: https://doi.org/10.2514/1.A33291

172

https://doi.org/10.2514/1.A33291


[8] J. Schoolcraft, A. Klesh, and T. Werne, “MarCO: Interplanetary mission development

on a CubeSat scale,” in Space Operations: Contributions from the Global Community.

Springer, 2017, pp. 221–231.

[9] J. W. Cutler and A. Fox, “A framework for robust and flexible ground station net-

works.” Journal of Aerospace Computing, Information and Communication, vol. 3,

March 2006.

[10] G. Minelli, “Mobile CubeSat command & control (MC3) ground stations,” in 9th An-

nual CubeSat Summer Workshop, 2012.

[11] K.-M. Cheung, D. Abraham, B. Arroyo, E. Basilio, A. Babuscia, C. Duncan, D. Lee,

K. Oudrhiri, T. Pham, R. Staehle et al., “Next-generation ground network architecture

for communications and tracking of interplanetary smallsats,” Interplanetary Network

Progress Report, vol. 202, pp. 1–44, 2015.

[12] J. R. Vetter, “Fifty years of orbit determination,” Johns Hopkins APL technical digest,

vol. 27, no. 3, p. 239, 2007.

[13] J. R. Wright, “Orbit determination tool kit: Theory and algorithms,” Analytical

Graphics Inc., Tech. Rep., 2013.

[14] T. J. Martin-Mur, E. D. Gustafson, B. T. Young, and M. C. Jesick, “Interplanetary

CubeSat navigational challenges,” in International Symposium Space Flight Dynamics,

Munich, Germany, 2016.

[15] H. Klinkrad, Space debris. Wiley Online Library, 2010.

[16] A. Rossi and G. Valsecchi, “Collision risk against space debris in earth orbits,” Periodic,

Quasi-Periodic and Chaotic Motions in Celestial Mechanics: Theory and Applications,

pp. 345–356, 2006.

173



[17] G. Tommei, A. Milani, and A. Rossi, “Orbit determination of space debris: admissible

regions,” Celestial Mechanics and Dynamical Astronomy, vol. 97, no. 4, pp. 289–304,

2007.

[18] T. Schildknecht, “Optical surveys for space debris,” The Astronomy and Astrophysics

Review, vol. 14, no. 1, pp. 41–111, 2007.

[19] H. G. Lewis, G. G. Swinerd, and R. J. Newland, “The space debris environment: future

evolution,” The Aeronautical Journal, vol. 115, no. 1166, pp. 241–247, 2011.

[20] J. S. O. Center, “Space-track. org,” The Source for Space Surveillance Data,[www.

space-track. org], USSTRATCOM, 2012.

[21] M. Morton and T. Roberts, “Joint space operations center (jspoc) mission system

(jms),” AIR FORCE SPACE COMMAND PETERSON AFB CO, Tech. Rep., 2011.

[22] N. F. Ness, “Magnetometers for space research,” Space Science Reviews, vol. 11, no. 4,

pp. 459–554, 1970.

[23] C. Russell, “The isee 1 and 2 fluxgate magnetometers,” IEEE Transactions on Geo-

science Electronics, vol. 16, no. 3, pp. 239–242, 1978.

[24] M. Kivelson, K. Khurana, J. Means, C. Russell, and R. Snare, “The galileo magnetic

field investigation,” Space Science Reviews, vol. 60, no. 1-4, pp. 357–383, 1992.

[25] F. J. Rich, “Fluxgate magnetometer (ssm) for the defense meteorological satellite pro-

gram (dmsp) block 5d-2, flight 7,” AIR FORCE GEOPHYSICS LAB HANSCOM AFB

MA, Tech. Rep., 1984.

[26] M. H. Acuna, “Space-based magnetometers,” Review of scientific instruments, vol. 73,

no. 11, pp. 3717–3736, 2002.

174



[27] C. Russell, B. Anderson, W. Baumjohann, K. Bromund, D. Dearborn, D. Fischer,

G. Le, H. Leinweber, D. Leneman, W. Magnes et al., “The magnetospheric multiscale

magnetometers,” Space Science Reviews, vol. 199, no. 1-4, pp. 189–256, 2016.

[28] D. Miles, I. Mann, M. Ciurzynski, D. Barona, B. Narod, J. Bennest, I. Pakhotin,

A. Kale, B. Bruner, C. Nokes et al., “A miniature, low-power scientific fluxgate mag-

netometer: A stepping-stone to cube-satellite constellation missions,” Journal of Geo-

physical Research: Space Physics, vol. 121, no. 12, 2016.

[29] N. F. Ness, K. W. Behannon, R. P. Lepping, and K. H. Schatten, “Use of two mag-

netometers for magnetic field measurements on a spacecraft,” Journal of Geophysical

Research, vol. 76, no. 16, pp. 3564–3573, 1971.

[30] A. Sheinker and M. B. Moldwin, “Adaptive interference cancelation using a pair of

magnetometers,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52,

no. 1, pp. 307–318, 2016.

[31] D. A. Vallado, “Fundamentals of astrodynamics and applications,” 2nd ed. El Segundo,

CA: Microcosm Press; Dordrecht: Kluwer Academic Publishers, 2001. Space technology

library; v. 12, 2001.

[32] A. Milani and G. Gronchi, Theory of orbit determination. Cambridge University

Press, 2010.

[33] D.-J. Lee, “Nonlinear bayesian filtering with applications to estimation and navigation,”

Ph.D. dissertation, Texas A&M University, 2005.

[34] A. J. Krener, “The convergence of the extended kalman filter,” in Directions in math-

ematical systems theory and optimization. Springer, 2003, pp. 173–182.

175



[35] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems. CRC press,

2011.

[36] M. L. Psiaki, R. M. Weisman, and M. K. Jah, “Gaussian mixture approximation

of angles-only initial orbit determination likelihood function,” Journal of Guidance,

Control, and Dynamics, pp. 1–13, 2017/09/13 2017. [Online]. Available: https:

//doi.org/10.2514/1.G002615

[37] K. J. DeMars and M. K. Jah, “Probabilistic initial orbit determination using gaussian

mixture models,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 5, pp.

1324–1335, 2017/09/13 2013. [Online]. Available: https://doi.org/10.2514/1.59844

[38] A. Milani, G. F. Gronchi, M. d. Vitturi, and Z. Knežević, “Orbit determination with

very short arcs. i admissible regions,” Celestial Mechanics and Dynamical Astronomy,

vol. 90, no. 1-2, pp. 57–85, 2004.

[39] L. Ansalone and F. Curti, “A genetic algorithm for initial orbit determination from

a too short arc optical observation,” Advances in Space Research, vol. 52, no. 3, pp.

477–489, 2013.

[40] D. A. Vallado and S. S. Carter, “Accurate orbit determination from short-arc dense

observational data,” The Journal of the Astronautical Sciences, vol. 46, no. 2, pp.

195–213, 1998.

[41] A. Milani, G. F. Gronchi, Z. Knežević, M. E. Sansaturio, and O. Arratia, “Orbit

determination with very short arcs: Ii. identifications,” Icarus, vol. 179, no. 2, pp.

350–374, 2005.

[42] J. Sang, J. C. Bennett, and C. Smith, “Experimental results of debris orbit predictions

using sparse tracking data from mt. stromlo,” Acta Astronautica, vol. 102, pp. 258–268,

2014.

176

https://doi.org/10.2514/1.G002615
https://doi.org/10.2514/1.G002615
https://doi.org/10.2514/1.59844


[43] D. Farnocchia, G. Tommei, A. Milani, and A. Rossi, “Innovative methods of corre-

lation and orbit determination for space debris,” Celestial Mechanics and Dynamical

Astronomy, vol. 107, no. 1-2, pp. 169–185, 2010.

[44] J. Taylor, Deep Space Communications, ser. JPL Deep-Space Communications and

Navigation series. John Wiley & Sons, 2016.

[45] L. Barbulescu, J.-P. Watson, L. D. Whitley, and A. E. Howe, “Scheduling space–ground

communications for the air force satellite control network,” Journal of Scheduling,

vol. 7, no. 1, pp. 7–34, 2004.

[46] S. Damiani, H. Dreihahn, J. Noll, M. Niézette, and G. P. Calzolari, “A planning and

scheduling system to allocate esa ground station network services,” in The Int’l Con-

ference on Automated Planning and Scheduling, 2007.

[47] G. P. Calzolari, T. Beck, Y. Doat, M. Unal, H. Dreihahn, and M. Niezette, “From the

ems concept to operations: First usage of automated planning and scheduling at esoc,”

in SpaceOps 2008 Conference, 2008, p. 3579.

[48] K. Leveque, J. Puig-Suari, and C. Turner, “Global educational network for satellite

operations (genso),” in Proceedings of the AIAA/USU Conf. on Small Satellites, 2007.

[49] K.-M. Cheung, C. Lee, S. Waldherr, M. Lanucara, B. K. Malphrus, and

W. Dove, Architecture and Concept of Operation of Next-Generation Ground

Network for Communications and Tracking of Interplanetary Smallsats. American

Institute of Aeronautics and Astronautics, 2017/10/16 2016. [Online]. Available:

https://doi.org/10.2514/6.2016-2401

[50] Y. Nakamura, S. Nakasuka, and Y. Oda, “Low-cost and reliable ground station net-

work to improve operation efficiency for micro/nano-satellites,” in 56th International

Astronautical Congress, 2005.

177

https://doi.org/10.2514/6.2016-2401


[51] C. Kitts and M. Rasay, “A university-based distributed satellite mission control network

for operating professional space missions,” Acta Astronautica, vol. 120, pp. 229–238,

2016.

[52] M. Schmidt, “Ground station networks for efficient operation of distributed small satel-

lite systems,” doctoralthesis, Universität Würzburg, 2011.

[53] A. J. Vazquez and R. S. Erwin, “On the tractability of satellite range scheduling,”

Optimization Letters, vol. 9, no. 2, pp. 311–327, feb 2015.

[54] G. Pandolfi, R. Albi, J. Puglia, Q. Berdal, R. DeGroote, M. Messina, R. Di Battista,

M. Emanuelli, D. Chiuri, T. Capitaine et al., “Solution for a ground station network

providing a high bandwidth and high accessibility data link for nano and microsatel-

lites,” in 67th international astronautical congress (IAC), Guadalajara, Mexico, 2016.

[55] G. Shirville and B. Klofas, “Genso: A global ground station network,” in AMSAT

Symposium, 2007.

[56] T. Gooley, J. Borsi, and J. Moore, “Automating air force satellite control network

(afscn) scheduling,” Mathematical and Computer Modelling: An International Journal,

vol. 24, no. 2, pp. 91–101, 1996.

[57] S. Spangelo, J. Cutler, K. Gilson, and A. Cohn, “Optimization-based scheduling for

the single-satellite, multi-ground station communication problem,” Computers & Op-

erations Research, vol. 57, pp. 1–16, 2015.

[58] J. Castaing, “Scheduling downloads for multi-satellite, multi-ground station missions,”

Proceedings of the 28th AIAA Small Satellite Conference, 2014.

[59] ——, “Scheduling under uncertainty: Applications to aviation, healthcare and

aerospace,” Ph.D. dissertation, University of Michigan, 2017.

178



[60] R. Falone and G. Corrao, “Ground station network scheduling through genetic and

deterministic combined algorithm,” in 2018 SpaceOps Conference, 2018, p. 2725.

[61] K. Cahoy and A. K. Kennedy, “Initial results from access: An autonomous cubesat

constellation scheduling system for earth observation,” Proceedings of the 31st AIAA

Small Satellite Conference, 2017.

[62] X. Jia, T. Lv, F. He, and H. Huang, “Collaborative data downloading by using inter-

satellite links in leo satellite networks.” IEEE Trans. Wireless Communications, vol. 16,

no. 3, pp. 1523–1532, 2017.

[63] D. M. Miles, “Advances in fluxgate magnetometry for space physics,” Ph.D. disserta-

tion, University of Alberta, 2017.

[64] J. C. Springmann and J. W. Cutler, “Attitude-independent magnetometer calibration

with time-varying bias,” Journal of Guidance, Control, and Dynamics, vol. 35, no. 4,

pp. 1080–1088, 2012.

[65] C. C. Foster and G. H. Elkaim, “Extension of a two-step calibration methodology to

include nonorthogonal sensor axes,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 44, no. 3, 2008.

[66] H. K. Leinweber, “In-flight calibration of space-borne magnetometers,” Ph.D. disser-

tation, Graz University of Technology, 2012.

[67] E. L. Kepko, K. K. Khurana, M. G. Kivelson, R. C. Elphic, and C. T. Russell, “Accurate

determination of magnetic field gradients from four point vector measurements. i. use

of natural constraints on vector data obtained from a single spinning spacecraft,” IEEE

Transactions on Magnetics, vol. 32, no. 2, pp. 377–385, 1996.

[68] B. J. Anderson, L. J. Zanetti, D. H. Lohr, J. R. Hayes, M. H. Acuna, C. T. Russell,

179



and T. Mulligan, “In-flight calibration of the near magnetometer,” IEEE transactions

on geoscience and remote sensing, vol. 39, no. 5, pp. 907–917, 2001.

[69] J. L. Crassidis, K.-L. Lai, and R. R. Harman, “Real-time attitude-independent three-

axis magnetometer calibration,” Journal of Guidance control and dynamics, vol. 28,

no. 1, pp. 115–120, 2005.

[70] J. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, and B. Cardeira, “Geometric ap-

proach to strapdown magnetometer calibration in sensor frame,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 47, no. 2, pp. 1293–1306, 2011.

[71] R. Alonso and M. D. Shuster, “Complete linear attitude-independent magnetometer

calibration,” Journal of the Astronautical Sciences, vol. 50, no. 4, pp. 477–490, 2002.

[72] K. Bromund, F. Plaschke, R. Strangeway, B. Anderson, B. Huang, W. Magnes, D. Fis-

cher, R. Nakamura, H. Leinweber, C. Russell et al., “In-flight calibration methods for

temperature-dependendent offsets in the mms fluxgate magnetometers,” in 6th Mag-

netometer Workshop, Insel Vielm, Germany, 2017.

[73] J. C. Springmann, A. J. Sloboda, A. T. Klesh, M. W. Bennett, and J. W. Cutler,

“The attitude determination system of the rax satellite,” Acta Astronautica, vol. 75,

pp. 120–135, 2012.

[74] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT

press, 2012.

[75] G. Blanchard, G. Lee, and C. Scott, “Generalizing from several related classification

tasks to a new unlabeled sample,” in Advances in Neural Information Processing Sys-

tems, 2011, pp. 2178–2186.

[76] Z. Szabó, B. Sriperumbudur, B. Póczos, and A. Gretton, “Learning theory for distri-

180



bution regression,” Journal of Machine Learning Research, vol. 17, no. 152, pp. 1–40,

2016.

[77] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence Re-

search, vol. 12, pp. 149–198, 2000.

[78] B. Poczos, A. Singh, A. Rinaldo, and L. Wasserman, “Distribution-free distribution

regression,” in Artificial Intelligence and Statistics, 2013, pp. 507–515.

[79] A. Maurer, “Transfer bounds for linear feature learning,” Machine learning, vol. 75,

no. 3, pp. 327–350, 2009.

[80] A. Pentina and S. Ben-David, “Multi-task and lifelong learning of kernels,” in Interna-

tional Conference on Algorithmic Learning Theory. Springer, 2015, pp. 194–208.

[81] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer

component analysis,” IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 199–

210, 2011.

[82] A. Maurer, M. Pontil, and B. Romera-Paredes, “Sparse coding for multitask and trans-

fer learning,” in Proceedings of the 30th International Conference on Machine Learning

(ICML-13), 2013, pp. 343–351.

[83] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalization via invariant fea-

ture representation,” in Proceedings of the 30th International Conference on Machine

Learning (ICML-13), 2013, pp. 10–18.

[84] I. Steinwart and A. Christmann, Support vector machines. Springer Science & Business

Media, 2008.

[85] G. Blanchard, A. A. Deshmukh, U. Dogan, G. Lee, and C. Scott, “Domain generaliza-

tion by marginal transfer learning,” arXiv preprint arXiv:1711.07910, 2017.

181



[86] C. Norton, S. Chien, P. Pingree, D. Rider, J. Bellardo, J. Cutler, and M. Pasciuto,

“NasaâĂŹs earth science technology office cubesats for technology maturation,” Pro-

ceedings of the AIAA/USU Conf. on Small Satellites, 2013.

[87] J. W. Cutler, C. Lacy, T. Rose, S.-h. Kang, D. Rider, and C. Norton, “An update on

the grifex mission,” Cubesat Developer’s Workshop, 2015.

[88] C. D. Norton, M. P. Pasciuto, P. Pingree, S. Chien, and D. Rider, “Spaceborne flight

validation of nasa esto technologies,” in Geoscience and Remote Sensing Symposium

(IGARSS), 2012 IEEE International. IEEE, 2012, pp. 5650–5653.

[89] M. Bkassiny, S. K. Jayaweera, Y. Li, and K. A. Avery, “Blind cyclostationary feature

detection based spectrum sensing for autonomous self-learning cognitive radios,” in

Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012, pp.

1507–1511.

[90] W. A. Gardner, W. Brown, and C.-K. Chen, “Spectral correlation of modulated signals:

Part ii–digital modulation,” Communications, IEEE Transactions on, vol. 35, no. 6,

pp. 595–601, 1987.

[91] Z. Musielak and B. Quarles, “The three-body problem,” Reports on Progress in Physics,

vol. 77, no. 6, p. 065901, 2014.

[92] H. Poincaré, Les méthodes nouvelles de la mécanique céleste: Méthodes de MM. New-

comb, Glydén, Lindstedt et Bohlin. 1893. Gauthier-Villars, 1892, vol. 1,2.

[93] E. Belbruno, Capture dynamics and chaotic motions in celestial mechanics: With ap-

plications to the construction of low energy transfers. Princeton University Press,

2004.

182



[94] J. S. Parker and R. L. Anderson, Low-energy lunar trajectory design, ser. JPL Deep-

Space Communications and Navigation series. John Wiley & Sons, 2014.

[95] A. V. Schaeperkoetter, “A comprehensive comparison between angles-only initial orbit

determination techniques,” Ph.D. dissertation, Texas A&M University, 2011.

[96] S. Sharma and J. W. Cutler, “Robust orbit determination and classification: A learning

theoretic approach,” Interplanetary Network Progress Report, vol. 203, pp. 1–20, 2015.

[97] W. A. Gardner, “Spectral correlation of modulated signals: Part i–analog modulation,”

Communications, IEEE Transactions on, vol. 35, no. 6, pp. 584–594, 1987.

[98] M. Bkassiny, S. K. Jayaweera, Y. Li, and K. A. Avery, “Wideband spectrum sensing

and non-parametric signal classification for autonomous self-learning cognitive radios,”

IEEE Transactions on Wireless Communications, vol. 11, no. 7, pp. 2596–2605, July

2012.

[99] J. Cutler, “Ground station virtualization,” in The fifth international symposium on

reducing the cost of spacecraft ground systems and operations, Pasadena, 2003.

[100] J. H. Yuen, J. Hamkins, and M. K. Simon, Autonomous software-defined radio receivers

for deep space applications. John Wiley & Sons, 2006, vol. 13.

[101] W. M. Jang, “Blind cyclostationary spectrum sensing in cognitive radios,” ieee com-

munications letters, vol. 18, no. 3, pp. 393–396, 2014.

[102] W. A. Sutherland, Introduction to metric and topological spaces. Oxford University

Press, 2009.

[103] S. A. Whitmore and T. Smith, “Launch and deployment analysis for a small, meo,

technology demonstration satellite,” in AIAA PAPER 2008-1131, Paper Presented at

183



46th AIAA Aerospace Sciences Meeting and Exhibit, 7-10 Jan 2008, Reno, Nevada,

2009.

[104] J. M. Hanson, D. J. Coughlin, G. A. Dukeman, J. A. Mulqueen, and J. W. McCarter,

“Ascent, transition, entry, and abort guidance algorithm design for the x-33 vehicle,”

AIAA paper, vol. 4409, p. 1998, 1998.

[105] G. A. Dukeman, “Atmospheric ascent guidance for rocket-powered launch vehicles,”

AIAA paper, vol. 4559, pp. 5–8, 2002.

[106] P. Lu and B. Pan, “Highly constrained optimal launch ascent guidance,” Journal of

guidance, control, and dynamics, vol. 33, no. 2, p. 404, 2010.

[107] U. L. Alliance, “Atlas v launch services userâĂŹs guide,” Lockheed Martin Commercial

Launch Services, 2010.

[108] S. Delavault, P. Legendre, R. Garmier, and B. Revelin, “Improvement of the tle accu-

racy model based on a gaussian mixture depending on the propagation duration,” in

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008, p. 6772.

[109] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed

bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

[110] P. Auer, “Using confidence bounds for exploitation-exploration trade-offs,” Journal of

Machine Learning Research, vol. 3, no. Nov, pp. 397–422, 2002.

[111] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multi-

armed bandit problem,” SIAM journal on computing, vol. 32, no. 1, pp. 48–77, 2002.

[112] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-armed bandit

problem,” in Conference on Learning Theory, 2012, pp. 39–1.

184



[113] S. Bubeck, N. Cesa-Bianchi et al., “Regret analysis of stochastic and nonstochastic

multi-armed bandit problems,” Foundations and Trends® in Machine Learning, vol. 5,

no. 1, pp. 1–122, 2012.

[114] A. O. Hero and D. Cochran, “Sensor management: Past, present, and future,” IEEE

Sensors Journal, vol. 11, no. 12, pp. 3064–3075, 2011.

[115] D. A. Castanon, “Approximate dynamic programming for sensor management,” in

Decision and Control, 1997., Proceedings of the 36th IEEE Conference on, vol. 2.

IEEE, 1997, pp. 1202–1207.

[116] J. Evans and V. Krishnamurthy, “Optimal sensor scheduling for hidden Markov model

state estimation,” International Journal of Control, vol. 74, no. 18, pp. 1737–1742,

2001.

[117] V. Krishnamurthy, “Algorithms for optimal scheduling and management of hidden

Markov model sensors,” IEEE Transactions on Signal Processing, vol. 50, no. 6, pp.

1382–1397, 2002.

[118] E. K. Chong, C. M. Kreucher, and A. O. Hero, “Partially observable Markov deci-

sion process approximations for adaptive sensing,” Discrete Event Dynamic Systems,

vol. 19, no. 3, pp. 377–422, 2009.

[119] A. Mahajan and D. Teneketzis, “Multi-armed bandit problems,” in Foundations and

Applications of Sensor Management. Springer, 2008, pp. 121–151.

[120] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach to

personalized news article recommendation,” in Proceedings of the 19th international

conference on World wide web. ACM, 2010, pp. 661–670.

[121] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for linear stochas-

185



tic bandits,” in Advances in Neural Information Processing Systems, 2011, pp. 2312–

2320.

[122] V. Gabillon, M. Ghavamzadeh, and A. Lazaric, “Best arm identification: A unified

approach to fixed budget and fixed confidence,” in Advances in Neural Information

Processing Systems, 2012, pp. 3212–3220.

[123] K. Jamieson and R. Nowak, “Best-arm identification algorithms for multi-armed ban-

dits in the fixed confidence setting,” in Information Sciences and Systems (CISS), 2014

48th Annual Conference on. IEEE, 2014, pp. 1–6.

[124] A. Garivier and E. Kaufmann, “Optimal best arm identification with fixed confidence,”

in Conference on Learning Theory, 2016, pp. 998–1027.

[125] A. Carpentier and M. Valko, “Simple regret for infinitely many armed bandits,” in

International Conference on Machine Learning, 2015, pp. 1133–1141.

[126] M. Y. Guan and H. Jiang, “Nonparametric stochastic contextual bandits,” in The 32nd

AAAI Conference on Artificial Intelligence, 2018.

[127] M. Hoffman, B. Shahriari, and N. Freitas, “On correlation and budget constraints in

model-based bandit optimization with application to automatic machine learning,” in

Artificial Intelligence and Statistics, 2014, pp. 365–374.

[128] M. Soare, A. Lazaric, and R. Munos, “Best-arm identification in linear bandits,” in

Advances in Neural Information Processing Systems, 2014, pp. 828–836.

[129] P. Libin, T. Verstraeten, D. M. Roijers, J. Grujic, K. Theys, P. Lemey, and A. Nowé,

“Bayesian best-arm identification for selecting influenza mitigation strategies,” arXiv

preprint arXiv:1711.06299, 2017.

186



[130] L. Xu, J. Honda, and M. Sugiyama, “Fully adaptive algorithm for pure exploration in

linear bandits,” arXiv preprint arXiv:1710.05552, 2017.

[131] T. J. Sabaka, L. Tøffner-Clausen, N. Olsen, and C. C. Finlay, “A comprehensive model

of earthâĂŹs magnetic field determined from 4 years of swarm satellite observations,”

Earth, Planets and Space, vol. 70, no. 1, p. 130, 2018.

[132] A. Durand, O.-A. Maillard, and J. Pineau, “Streaming kernel regression with provably

adaptive mean, variance, and regularization,” arXiv preprint arXiv:1708.00768, 2017.

[133] M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini, “Finite-time analysis

of kernelised contextual bandits,” in Uncertainty in Artificial Intelligence. Citeseer,

2013, p. 654.

[134] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[135] J. J. Hull, “A database for handwritten text recognition research,” IEEE Transactions

on pattern analysis and machine intelligence, vol. 16, no. 5, pp. 550–554, 1994.

[136] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector

machines,” IEEE transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.

[137] J. T. Hwang, D. Y. Lee, J. W. Cutler, and J. R. Martins, “Large-scale multidisciplinary

optimization of a small satelliteâĂŹs design and operation,” Journal of Spacecraft and

Rockets, vol. 51, no. 5, pp. 1648–1663, 2014.

[138] J. Bauer, “The origins of non-ideal current-voltage characteristics of silicon solar cells,”

Ph.D. dissertation, Martin-Luther University Halle-Wittenberg, 2009.

[139] O. Breitenstein, “Understanding the current-voltage characteristics of industrial crys-

talline silicon solar cells by considering inhomogeneous current distributions,” Opto-

187



Electronics Review, vol. 21, no. 3, pp. 259–282, 2013.

[140] S. Maus, M. Rother, C. Stolle, W. Mai, S. Choi, H. Lühr, D. Cooke, and C. Roth,

“Third generation of the potsdam magnetic model of the earth (pomme),” Geochem-

istry, Geophysics, Geosystems, vol. 7, no. 7, 2006.

[141] V. I. Arnold, Mathematical methods of classical mechanics. Springer Science & Busi-

ness Media, 2013, vol. 60.

[142] D. D. Holm, Geometric Mechanics: Part II: Rotating, Translating and Rolling. World

Scientific Publishing Company, 2008.

[143] R. Hermann and A. Krener, “Nonlinear controllability and observability,” IEEE Trans-

actions on automatic control, vol. 22, no. 5, pp. 728–740, 1977.

[144] P. Billingsley, Convergence of probability measures. John Wiley & Sons, 2013.

[145] O. Kallenberg, Foundations of modern probability. Springer, 2002.

[146] A. Christmann and I. Steinwart, “Universal kernels on non-standard input spaces,” in

Advances in Neural Information Processing Systems, 2010, pp. 406–414.

[147] I. Steinwart, “On the influence of the kernel on the consistency of support vector

machines,” The Journal of Machine Learning Research, vol. 2, pp. 67–93, 2002.

[148] W. Rudin et al., Principles of mathematical analysis. McGraw-Hill New York, 1964,

vol. 3.

[149] A. Caponnetto and E. De Vito, “Optimal rates for the regularized least-squares algo-

rithm,” Foundations of Computational Mathematics, vol. 7, no. 3, pp. 331–368, 2007.

188



[150] E. De Vito and A. Caponnetto, “Risk bounds for regularized least-squares algorithm

with operator-value kernels,” Massachusetts Institude of Technology, Cambridge, Tech-

nical Report CBCL Paper No.249/AI Memo No.2005-015, May 2005.

[151] Z. Szabó, A. Gretton, B. Póczos, and B. Sriperumbudur, “Two-stage sampled learn-

ing theory on distributions,” in AISTATS-Proceedings of the Eighteenth International

Conference on Artificial Intelligence and Statistics, vol. 38, 2015, pp. 948–957.

189


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Orbit Determination
	Magnetometer Interference Cancellation
	Literature Review
	Orbit Determination
	Ground Station Network Architectures
	Magnetometer Interference Cancellation

	Thesis Statement
	Proposed Approach
	Orbit Determination
	Network Architecture
	Magnetometer Interference Cancellation

	Contributions
	Dissertation Outline

	Kernel Embedding Approach to Orbit Determination of Spacecraft Clusters
	Introduction
	Orbit Determination as a Learning Problem
	OD Problem Setting
	Observability
	Machine Learning Setting

	Algorithm
	Learning Theory
	Results and Discussion
	System Architecture
	Doppler-Only OD
	Position Based OD
	Position Based OD - Lunar Orbit
	Position based OD - Comparison with EKF
	Discussion

	Conclusion

	Collaborative Orbit Determination using Ground Station Networks
	Introduction
	Parameters of Architecture
	Architecture Requirements for Orbit Determination

	Network Architecture
	Global Architecture
	Node Architecture

	Scheduling and Tracking
	Pointing Profiles

	Training Data Generation
	Orbit Distribution Selection
	Noise Distribution

	Results and Discussion
	Scenario 1: Simple Static Profiles
	Scenario 2: Complex Static Profiles
	Scenario 3: Dynamic Profile

	Conclusion

	Spacecraft Magnetometer Interference Cancellation
	Introduction
	Spacecraft Magnetic Field Model
	Interference Cancellation
	Machine Learning Setting
	A Contextual Bandit Problem

	Algorithm
	Learning Theoretic Analysis
	Results and Discussion
	Multi-class Classification
	Experimental Spacecraft Magnetic Field Dataset

	Conclusion

	Conclusion and Future Work
	Appendices
	Appendix for Chapter 2
	Background for Orbit Determination
	Dynamical System
	Sets and Probability
	Recent Techniques from Machine Learning

	Orbit Determination Problem Setting
	Observability Analysis
	Proofs for Theorems in Appendix A.3
	Proof of Theorem A.1
	Proof of Theorem A.2
	Proof of Corollary A.1

	Learning Theory
	Analysis for Appendix A.5
	Useful Theorems
	Analysis of Ah and Th 
	Proof of Theorem A.3


	Appendix for Chapter 3
	Algorithms for Tracking

	Appendix for Chapter 4
	Calibration of Combined Magnetometer Measurements
	Decomposition of Loss
	Additional Experimental Results

	Bibliography

