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Abstract 

 

Opioid-mediated pain relief, currently the gold standard treatment for many types of pain, 

has been inextricably associated with negative side effects including analgesic tolerance and 

physical dependence. These side effects have perpetuated the rising rates of opioid addiction across 

the United States. Several investigators have shown that activating the mu opioid receptor (MOR) 

while blocking the delta opioid receptor (DOR) can provide pain relief devoid of tolerance or 

dependence, laying the foundation for the work presented here. This dissertation is focused on the 

design and synthesis of bifunctional ligands that both activate MOR and block DOR while binding 

to both targets with equal affinity. Specifically, this work investigates how substitutions at the N-

1, C-6, and C-8 positions of the tetrahydroquinoline (THQ) scaffold impact pharmacological 

activity. Through these investigations, we have identified two distinct chemical motifs that 

produce the desired MOR agonist/DOR antagonist efficacy profile. Furthermore, multiple 

analogues bearing this advantageous efficacy profile also display similar affinity for both targets, 

improve drug-like properties such as ClogP, and effectively block pain responses in mice after 

peripheral administration. Additionally, combining those chemical motifs in a hybrid ligand 

achieved optimal in vitro binding and efficacy, laying a foundation for further exploration. The 

work discussed herein has yielded 13 novel ligands displaying robust antinociceptive activity; 

evaluation of tolerance and dependence for select compounds is ongoing.  
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Chapter 1: Introduction 

 

1.1 The History of Opioids 

“Here was a panacea, a pharmakon nepenthes, for all human woes. Here was the secret of 

happiness, about which philosophers had disputed for so many ages, at once discovered.” 

— Thomas de Quincey 

“The Pleasures of Opium” in Confessions of 

an English Opium-Eater, 1856. 

 

The earliest evidence of human cultivation of the opium poppy, Papaver somniferum, was 

discovered in the submerged Neolithic settlement of La Marmotta near modern-day Rome, dating 

back to 5,700 BCE.1,2 The opium poppy appears to have been known throughout the eastern 

Mediterranean, as the Sumerian civilization of modern-day Iraq provides the first written example 

of opium preparation as early as the third millennium BCE. P. sominferum was depicted in the 

ancient Sumerian cuneiform script as “hul gil” or the “joy plant,” though this translation is the 

subject of some debate.3,4 The use of the opium poppy has appeared repeatedly throughout the 

history of the eastern Mediterranean civilizations.1,5,6 Spreading north from La Marmotta, over 33 

settlements in Switzerland and nearby France and Germany indicate cultivation of P. somniferum, 

dating back to the Neolithic, Copper, and Bronze Ages, as has been documented in a thorough 

review by ethnobotanist Mark Merlin in 2003.1 
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Galen (130 – 210 CE), in his writing De Compositione Medicamentorum Localium, 

described the “antidote of Hippocrates,” an opium-containing elixir, as a “panacea” or a cure for 

all that ails.7 Experimenting in the 16th century, the Swiss physician Paracelsus discovered that the 

active alkaloids in opium can be extracted much more effectively with alcohol than previous warm-

water preparations described by the Greeks. This tincture of opium he named “laudanum” was 

described as an effective analgesic, which was modified and popularized by English physician 

Thomas Sydenham in the 1660s in his seminal work Medical Observations Concerning the History 

and Cure of Acute Diseases. Laudanum became a popular drug of abuse in the Romantic and 

Victorian eras among both the working and artistic classes.8 Some notable opium users of this era 

include Samuel Taylor Coleridge, Thomas de Quincey, Charles Dickens, and Percy Shelley among 

others.8,9 It was around this time that opium first appeared as a public health threat, though orally 

ingested opium lacked many of the risk factors associated with modern intravenous opioid use.  

The early 1800s saw the isolation of a major active alkaloid from opium by the German 

pharmacist Friedrich Sertürner, which he named morphine after Morpheus, the Greek god of 

dreams. The isolation of morphine allowed for more standardized and predictable dosing, as 

laudanum preparations varied widely in potency.10 Sertürner’s crystallization of morphine is 

recognized as the first isolation of an active plant alkaloid. Following the invention of the 

hypodermic syringe and hollow needle in the 1850s, morphine use expanded to operating rooms 

across Europe.3 However, the advent of the hypodermic needle combined with the discovery of 

diacetylmorphine (heroin) in the late 1800s set the stage for the opioid crisis that is presently 

devastating large swaths of the United States. Other technological, legal, and cultural changes 

connecting morphine of the 1800s to the opioid crisis of 2018 are examined in depth in Johann 
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Hari’s Chasing the Scream (2015),11 Sam Quinones’ Dreamland (2015),12 and Beth Macy’s 

Dopesick (2018).13  

1.2 The Opioid Receptors 

“Pharmacological evidence for the existence of a specific opiate receptor is compelling, 

but heretofore it has not been directly demonstrated biochemically. We report here a direct 

demonstration of opiate receptor binding, its localization in nervous tissue, and a close parallel 

between the pharmacologic potency of opiates and their affinity for receptor binding.” 

— Candace B. Pert & Solomon H. Snyder 

“Opiate Receptor: Demonstration in Nervous 

Tissue” in Science, 1973. 

Throughout the 19th and 20th centuries, the library of known opioid ligands expanded 

significantly. With an increasing number of known opioid ligands, it had become apparent that 

changes in chemical structure and stereochemistry could modulate the pharmacological responses 

to these ligands. The existence of a structure-activity relationship (SAR) among the morphinan 

ligands suggested a specific binding site upon which these ligands must act.14–17 As early as the 

1950s, it had been proposed that one or multiple opioid receptors must exist,14 though they were 

not demonstrated experimentally until 1973.16–20 Due to the low concentration of opioid receptors 

in the brain and limited sensitivity for low specific activity radioligands, early [14C]-based probes 

failed to identify specific opioid binding sites.17 The implementation of [3H]naloxone by Pert and 
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Snyder,18 [3H]dihydromorphine by Terenius,19,20 and [3H]etorphine by Simon et al,21 enabled three 

laboratories to almost simultaneously identify what would later be termed the mu opioid receptor.  

Shortly after the discovery of the opioid receptors, some of the endogenous peptides for 

the opioid receptors, enkephalins and endorphins, were discovered.22,23 By the 1990s, three types 

of opioid receptors had been cloned—the mu opioid receptor (MOR),24,25 delta opioid receptor 

(DOR),26,27 and kappa opioid receptor (KOR).28,29 MOR is the most widely studied of the three 

and is the primary binding site of morphine and the endorphins. DOR is known to bind the 

endogenous enkephalin peptides and the prototypical DOR agonist SNC-80 is known to stimulate 

antinociception as well as antidepressant and anxiolytic effects.30,31 Unfortunately, SNC-80 is also 

associated with epileptic seizures in mice, limiting the therapeutic potential of selective DOR 

agonists.32 KOR, named after the synthetic benzomorphan derivative ketazocine, binds 

endogenous peptides known as dynorphins.33 Activation of KOR is associated with hallucinations 

and dysphoria, as is induced by the exogenous KOR agonist salvinorin A, found in the Salvia 

divinorum plant.34,35 The endorphins, enkephalins, and dynorphins all feature a conserved N-

terminal Tyr1-Gly2-Gly3-Phe4-X5 sequence, with the phenol and amine of Tyr1 participating in 

crucial H-bonds and ionic interactions. Most morphinan, peptide, and peptidomimetic ligands 

feature similar phenol and amine moieties, taking advantage of these endogenous H-bond partners.  

It is of note that the morphinan ligands such as morphine achieve high binding affinity by 

conformationally restricting the Tyr1 pharmacophore into a bridged phenanthrene ring system 

while truncating other pharmacophore elements of the endogenous peptides completely. The added 

rigidity of morphinan ligands reduces the entropic loss associated with binding, necessitating fewer 

receptor-ligand interactions to achieve similar affinity. Due to the conformational restriction and 
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rigidity of the morphinan scaffold, small changes often result in dramatic shifts in affinity or 

activity. Depicted in Fig. 1 are the structures, potencies, and functional activities of the highly 

homologous morphinan ligands morphine, codeine, and nalorphine as well as the enantiomeric 

pair levorphanol and dextrorphan. These data were reported by Pert and Snyder in the seminal 

work that described the first characterization of the opioid receptors.18  

Figure 1. SAR of the Morphinan Scaffold Adapted from Pert and Snyder, 1973a 

 
a Relative potencies of drugs in reducing [3H]naloxone binding to rat brain homogenate and guinea pig intestine. 

 

As demonstrated by the drastic reduction in potency induced by phenolic methylation of 

morphine (see codeine, Fig. 1), modification of the Tyr1 pharmacophore—especially at sites of 

critical H-bonds—is poorly tolerated. Additionally, extending the N-methyl group of morphine to 

an allyl substitution converts the opioid agonist activity of morphine to an antagonist profile in 

nalorphine. Other modifications to the stereochemistry of the Tyr1 moiety, as demonstrated by the 

pair of enantiomers levorphanol and dextrorphan, provides further validation that the receptors 

show preference for the endogenous tyrosine-like stereochemical orientation of levorphanol over 

the inverted orientation of the phenol and amine found in dextrorphan. This stereospecific binding 

provided some of the first concrete evidence of a specific opiate (opioid) receptor.  
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1.3  Opioid Receptor Signaling 

The opioid receptors belong to the Class A (rhodopsin-like) family of G protein-coupled 

receptors (GPCRs). GPCRs feature seven transmembrane alpha-helices and associate with a G 

protein at the intracellular surface. The opioid peptides and exogenous ligands bind to a large, 

solvent-exposed36–38 extracellular pocket and stabilize a particular conformation of the receptor. 

These are typically classified into the “inactive” and “active” states in relation to whether or not 

they stimulate the dissociation of a G protein, though there are nearly infinite conformations that 

a receptor might sample.39,40 Multiple investigators have engaged in molecular dynamics, NMR, 

and spectroscopic studies to probe the nature of events that relate the binding of an agonist to the 

dissociation of a heterotrimeric G protein from the membrane-bound GPCR.38–45 The shift from 

an inactive to an active state entails multiple translocations and rotations in domains, hydrogen 

bond network rearrangements, and ion cofactor and substrate exchanges. Simplistically speaking, 

binding of an agonist stabilizes a series of changes in the receptor that promotes G protein binding 

and subsequent dissociation of its Ga and its Gbg subunits.  

Classical ligand binding models consider two primary factors: the ligand and the receptor. 

An emerging concept in GPCR modeling and structural biology is that of a highly conserved water 

network as a third major factor (or cofactor) in ligand binding and receptor activation.40,46–52 The 

groups of Bryan Roth and Brian Kobilka, who combined have solved the crystal structures of  

MOR, DOR, and KOR at high resolution in both active and inactive states, have noted the 
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significance of water networks and their importance to GPCR activation, both in the orthosteric 

site and through the core of the receptor (see Fig. 2).40,46,47 Quoting the Kobilka group in 2018:   

The [high-resolution crystal structures] highlight the contribution of many hydrogen bonds 

in stabilizing both the inactive and active states of opioid receptors. These hydrogen bonds 

represent many low-energy molecular switches that have to be broken and reformed in a 

concerted manner to achieve the active conformation.46 

Figure 2. Active- and Inactive-State Water-Mediated Polar Networks of Opioid Receptorsa 

 

a Distinct networks of polar interactions extending through the transmembrane domains of the active- and inactive-
state crystal structures from Kobilka et al.46(Left) MOR 2.1 Å, PDB ID: 5C1M. (right) DOR 1.8 Å, PDB ID: 4N6H. 

The emerging structural biology studies in this area continue to add layers of detail to our 

understanding of how small modifications to ligands that bind at the extracellular orthosteric  

(ligand-binding) site can propagate through the transmembrane domains, facilitated by a 

membrane-spanning polar network, to modulate intracellular G protein interactions,.40,46,52–54 

Crystallographic, spectroscopic, and computational investigations into receptor activation indicate 

a critical role for an allosteric sodium ion in the inactive state,40,54 whereas the active state is more 



 8 

solvated and features a continuous channel of waters extending through the core of the GPCR.52,53 

At present, computational models of GPCRs lack a comprehensive understanding and 

incorporation of the many factors involved in the transmission of a signal from the orthosteric 

binding site to the intracellular G protein interface. Thus, a reliable in silico determination of the 

efficacy or affinity of a ligand, especially when probing minor structural changes, still eludes 

computational models. Therefore, we rely primarily on radioligand assays to accurately report a 

compound’s in vitro affinity, potency, and efficacy, which can be further explained in some 

instances through computational modeling of the active or inactive states of the opioid receptors. 

These assays measure affinity through competitive displacement of an orthosteric radioligand, 

[3H]diprenorphine, and measure potency and efficacy via incorporation of a radiolabeled GTP 

analogue, [35S]GTPgS into Ga proteins. 

As depicted in Fig 3-1 the inactive-state G protein, which holds a GDP molecule between 

its Ga and its Gbg subunits, binds to an active-state GPCR intracellularly. GDP is displaced from 

the G protein when the active-state GPCR allosterically disrupts the G protein’s nucleotide-binding 

site (Fig. 3-2).38,42,45,55 A high intracellular GTP concentration drives the binding of GTP to the 

nucleotide-free binding site on the Ga subunit of the G protein.56 With GTP bound, the Gbg 

subunits dissociate from Ga (Fig. 3-3) and both subunits go on to promote intracellular 

signaling.56,57 The GTP is hydrolyzed following activation of downstream effectors (Fig. 3-4), 

shifting Ga to an inactive GDP-bound state. The Gbg subunits then re-associate with Ga (Fig. 3-

5), recycled for further intracellular signaling. In the [35S]GTPgS assay, the hydrolysis step (Fig. 

3-4) is blocked by replacement of an oxygen on the terminal phosphate with 35S, causing an 
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accumulation of radioactivity in the membrane connected to Ga activation that can be quantified 

by scintillation counting.  

 

Figure 3. GPCR-Stimulated G Protein Activation and Signalinga 

 

a Green outline indicates an activated G protein or GPCR, while blue indicates an inactive state. GDP is depicted as 
purple and GTP is shown in light blue. 1. Agonist binds to the GPCR, recruiting GDP-bound heterotrimeric G protein; 
GPCR-binding promotes dissociation of GDP from the nucleotide-binding site. 2. GTP binds the G protein nucleotide-
binding site. 3. Ga and its Gbg subunits dissociate in activated form and interact with downstream effectors such as 
cAMP, GIRK, and Ca2+ channels 4. GTP is hydrolyzed to GDP + Pi, inactivating Ga 5. GDP-bound Ga and Gbg re-
associate.  

Of the G protein subtypes, the opioid receptors selectively interact with the inhibitory G 

protein family. The Gai/o subunit inhibits adenylyl cyclase and production of cAMP. Meanwhile, 
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the Gbg subunit activates G protein-coupled inwardly-rectifying potassium channels (see Fig. 4), 

allowing outward K+ diffusion and inducing a hyperpolarized state in the neuron.56–59 Additionally, 

the dissociated Gbg subunit interacts with Ca2+ channels following GPCR activation, reducing the 

voltage-gated pore opening of Ca2+ channels thereby decreasing the Ca2+ concentration within the 

cell. The hyperpolarizing effects of decreased intracellular K+, paired with the decreased Ca2+ 

signaling, serves to further reduce neural firing.56,57 Through these mechanisms depicted in Fig. 4, 

as well as other downstream effectors, the opioid receptors act to quiet neural transmission. 

Figure 4. Downstream Effectors Following GPCR Activation of Inhibitory G Proteina 

 

a Inhibitory Ga, following GPCR activation, GTP binding, and dissociation from Gbg, activates K+ channels while 
inhibiting adenylyl cyclase and its downstream product cAMP. Gbg acts on Ca2+ channels to reduce influx of Ca2+. 

Because the opioid receptors are often found in cell populations responsible for pain 

transmission, opioid agonists (especially MOR agonists such as morphine) function to decrease 

the afferent pain signaling, resulting in analgesia. Of note, while agonism at MOR, DOR, and KOR 

all induce some antinociception, the euphoric and rewarding effects of MOR agonists such as 

morphine are not observed for agonists of DOR and KOR. In fact, DOR agonists are established 
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to be non-rewarding and non-euphoric whereas KOR agonists are known to be aversive and 

dysphoric. As such, it may be possible to combine these differential opioid effects to mitigate some 

negative side effects associated with MOR agonists, including tolerance and dependence.  

 

1.4  Bifunctional Opioid Ligands 

The idea that the opioid receptors may interact and modulate the activities of one another 

has been a subject of interest to many researchers aiming to improve opioid treatments. Of 

particular interest in the field of pain and analgesia is the observation that DOR agonists have been 

shown to potentiate the analgesic activity of MOR agonists60–63 while DOR antagonists are 

associated with a reduction in tolerance and dependence toward MOR agonists including 

morphine.64–66 In 1991, a landmark study by Abdelhamid, Sultana, Portoghese and Takemori 

demonstrated that the selective DOR antagonist naltrindole (NTI) reduced both tolerance and 

dependence toward morphine in mice.64  

Following a single subcutaneous (s.c.) injection of morphine (100 mg/kg), mice show acute 

antinociceptive tolerance, indicated by an increase in the effective dose (ED50) of morphine, 

meaning more of the drug must be administered to elicit the same antinociceptive effect. 

Abdelhamid et al. demonstrated that when mice are pretreated with NTI intracerebroventricularly 

(i.c.v.), morphine tolerance is suppressed as illustrated in Fig. 5. Furthermore, a subcutaneous 

implantation of a morphine pellet caused a dramatic increase in chronic tolerance, which was 

similarly suppressed by once-daily injections of NTI (Fig. 6). 
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Figure 5. Acute Morphine Tolerance Following a Single Injection of Morphine Sulfatea, b 

 

a Figure taken from Abdelhamid, Sultana, Portoghese and Takemori, 1991 (reference 64). b Effect of naltrindole (NTI) 
on morphine tolerance. NTI was administered i.c.v. 5.5 hr prior and immediately preceding anti-nociceptive testing. 
Morphine (100 mg/kg) was administered 4 hr prior to testing. Bars represent 95% CI of the values. 

Figure 6. Chronic Morphine Tolerance Following Subcutaneous Implantation of Morphine 
Sulfate Pellet after 3 Daysa, b 

 

a Figure taken from Abdelhamid, Sultana, Portoghese and Takemori, 1991 (reference 64). b Effect of NTI on chronic 
morphine tolerance. Mice were implanted with placebo or morphine pellet (75 mg free base) for 3 days. NTI (10 pmol) 
was administered i.c.v. 1.5 hr before, 24 hr after, and 48 hr after pellet implantation. Bars represent 95% CI of the 
values.  

In this same study, the amount of naloxone (NLX), an opioid antagonist, required to 

precipitate withdrawal was measured under various conditions. Mice given a single s.c. injection 

(100 mg/kg) of morphine needed only 2 µmol/kg NLX to precipitate withdrawal jumping, whereas 

opioid-naïve mice demonstrated no withdrawal after 250 µmol/kg NLX. When pre-treated with 
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NTI (10 pmol, i.c.v.) 90 min before, then co-treated with morphine (100 mg/kg) and NTI again 

(10 pmol, i.c.v.), these mice showed a 45-fold increase in NLX (90 µmol/kg) required to induce 

withdrawal, suggesting a dramatic decrease in acute physical dependence. These results were 

further substantiated by studies in rats,65 with DOR-1 antisense oligonucleotides,67 and DOR-1 

knockout mice,66 implicating a role for DOR in the development of tolerance and dependence 

toward MOR agonists.  

 Based on the DOR antagonist co-administration and DOR-1 knockout studies discussed 

above, much interest has been focused on the development of a single agent that can achieve both 

the MOR agonist and DOR antagonist components.68–85 Some labs have used a bivalent ligand 

approach, predicated on the existence of MOR/DOR heterodimers, which link a MOR agonist and 

DOR antagonist through a flexible linker.72–76,86,87 While work in this area has shown some 

promise, a single-agent approach features a ligand that can reproduce the MOR agonist/DOR 

antagonist profile independent of whether or not MOR/DOR heterodimers exist in a meaningful 

context in vivo—a subject that is still contested within the field of opioid pharmacology.88 Our lab 

has been interested in developing ligands that bind to both MOR and DOR with high affinity, and 

act as an agonists at MOR and antagonists at DOR. Early work in the Mosberg lab focused on 

peptides and pseudopeptides,82,84,85,89–91 though recent work has seen the development of several 

peptidomimetic series exploring the MOR agonist/DOR antagonist profile.80,83,92–100 These 

peptidomimetic series primarily build around a tetrahydroquinoline (THQ) core, which replaces 

the cyclic peptide scaffold that was initially used to develop the structure-activity relationship 

(SAR) and pharmacophore models for the MOR agonist/DOR antagonist profile. Both series take 

key pharmacophore elements from the endogenous opioid peptides which feature the previously 

described Tyr1-Gly2-Gly3-Phe4-X5 sequence. It was determined through SAR studies and 
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computational modeling that the Tyr1 and Phe4 residues (separated by a flexible di-glycine spacer) 

are important pharmacophores to achieve high opioid affinity for flexible, peptide-like ligands. In 

contrast to the rigid morphinan scaffold, the relatively flexible peptide/peptidomimetic scaffold is 

less responsive to minute structural modifications, allowing us to fine-tune our desired 

pharmacological profile.  

In 2018, the Kobilka lab obtained a cryo-EM structure of the high-affinity, MOR selective 

peptide DAMGO (H-Tyr1-D-Ala2-Gly3-N(Me)Phe4-Gly5-ol) bound to MOR with a resolution of 

3.5Å.38 They reported the active 3D conformation for the peptide depicted in Fig. 7A. Comparison 

between the structures of DAMGO (Fig. 7B) and our lead THQ-based peptidomimetic 1 (Fig. 7C) 

suggests our small-molecule scaffold can position the key pharmacophores—Tyr1 and Phe4—

similarly to the opioid peptides while reducing flexibility and rotatable bonds through 

conformational restriction. 

Figure 7. Active 3D Conformation of the Opioid Peptide Agonist DAMGO and Comparison to 
the THQ Lead 1 
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One minor difference between DAMGO (and the endogenous peptides) and the 

peptidomimetic series is the replacement of the Tyr1 residue with a 2’,6’-dimethyl-L-tyrosine 

residue (Dmt) shown at bottom in Fig. 7C. Since its introduction in 1985,101 Dmt has been widely 

used as a mimetic of the endogenous Tyr1 residue across the field of opioid ligand design.78,97,102,103 

The Dmt residue maintains the critical phenolic H-bond donor and has demonstrated widespread 

bioavailability, and in many contexts displays superior MOR affinity relative to unsubstituted 

tyrosine. As can be seen in Fig. 7A, the bioactive conformation of the Tyr1 residue shows the ring 

to be out-of-plane with the peptide backbone, with the phenol and amine pointing in opposite 

directions. The steric influence of the methyl groups on Dmt favor this anti-planar orientation, 

reducing the entropic loss associated with binding and thus decreasing the binding energy. The 

compounds presented in this work have held constant the Dmt section of the THQ scaffold constant 

while probing modifications around the THQ core. 

Initial exploration of the peptidomimetic series focused primarily on modifications to the 1- 

and 6-positions. Chapter 2 departs from past SAR campaigns and explores the effects of 

substitutions at the 8-position of the THQ core. This previously unexplored chemical space is 

probed with a diverse set of substitutions, leading to unique in vitro SAR observations as well as 

several novel analogues displaying antinociceptive activity in vivo. Chapter 3 returns to the past 

1- and 6-position SAR campaigns, taking advantageous substitutions from both positions and 

combining them in a series of dually-substituted analogues with fine-tuned in vitro profiles. Trends 

from this campaign are visualized via a two-dimensional matrix, providing novel insights into the 

effects of various pharmacophore elements on binding and efficacy. In Chapter 4, a collection of 

short series and side-projects are presented, with concluding remarks and future direction 

presented in Chapter 5. The following chapters represent the collaborative efforts of several 
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chemists and pharmacologists spanning several years of work. In some cases, analogues designed 

and synthesized by other chemists will be presented to provide context for the novel chemical 

exploration done in this dissertation. Unless otherwise noted, compounds presented here are the 

work of the author of this dissertation.  
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Chapter 2: Exploration of the THQ Core at the C-8 Position 

 

2.1  Introduction 

 Research on opioid peptides performed by the Mosberg lab and others led to the 

development of pharmacophore models highlighting the importance of two key pharmacophores—

a tyrosine and an aryl ring—separated by an appropriate linker region.89,93 As discussed previously, 

modifications to the tyrosine functionality caused significant changes in pharmacology, though 

conversion to the Dmt analogue was well-tolerated. The second aryl pharmacophore was more 

tolerant to modification, and much peptide work went into probing the effects of various unnatural 

amino acids in the Phe4 position.82,84,85,89 To increase metabolic stability and restrict rotational 

freedom, the peptide core was cyclized through disulfide and di-thioether bridges. This peptide 

scaffold was later replaced with a more drug-like tetrahydroquinoline (THQ) core, resulting in the 

first peptidomimetic small molecule developed by our lab based on the aforementioned series of 

peptide ligands.93 Subsequent development of small molecules, which largely mirror the changes 

initially probed in the peptide series, was explored with renewed interest in 2013.83 Some of these 

early analogues showed selectivity for MOR and DOR over KOR, and these were carried forward 

for further development with the MOR agonist/DOR antagonist profile in mind.  

In vitro pharmacology data obtained by Nicholas Griggs, Thomas Fernandez, Tyler Trask, Jessica Anand, and others 
in the lab of John Traynor. In vivo data were obtained by Jessica Anand and others in the lab of Emily Jutkiewicz. 
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 Computational models and ligand overlays indicated that placement of the benzyl pendant 

at the C-6 position of the THQ ring (see Fig. 8 compound 1) offered optimal overlay with the Phe4 

residue of the peptide series of ligands that showed high affinity for MOR and DOR.83,93 Our lab 

then went on to probe the effects of linker length (Fig. 8 compound 2), ring fusion (3), connection 

point (4), and saturation (5) with regard to the C-6 aryl pharmacophore, providing some of our 

first leads for THQ-based SAR development of MOR and DOR selective ligands.83  

Figure 8. Leads for the Design of Mixed-Efficacy MOR Agonist/DOR Antagonist Ligandsa 

 
a Figure adapted from reference 83. Synthesis of analogues 1-5 was performed by L.Y.M., A.A.H., and A.M.B. 

 These ligands displayed high MOR efficacy and little to no DOR efficacy, however all five 

ligands in Fig. 8 showed 8- to 120-fold binding selectivity for MOR over DOR. As such, further 

development of the MOR agonist/DOR antagonist profile required optimization in reducing MOR 

selectivity while optimizing MOR and DOR efficacy profiles (compounds 1 and 3 displayed some 

DOR efficacy whereas 2 was only a partial MOR agonist). Furthermore, only compound 1 

displayed full antinociceptive activity in vivo after peripheral administration in mice. In order to 

determine what degree of MOR selectivity is tolerable while maintaining the favorable profile 
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established by prior DOR blocking studies,64–67 it was important to develop a library of in vivo 

active MOR agonist/DOR antagonist analogues with varying degrees of selectivity. With this goal 

in mind, further exploration about the THQ core was undertaken with the aim of maintaining 

bioavailability while varying MOR selectivity. The results of this chapter were described in part 

in a 2018 manuscript published by the journal ACS Chemical Neuroscience.96 

2.2 Translocation of the Phe4 Pharmacophore 

While prior pharmacophore and computational models suggested that the C-6 position 

offered optimal overlap with the Phe4 position of the peptide series, empirical evidence of such a 

conclusion had not yet been established. To test this hypothesis, the C-6 benzyl pendant of our 

lead peptidomimetic 1 (Table 1) was translocated to C-7 and C-8 in analogues 6 and 7 respectively. 

 

 

a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. “dns” = does not stimulate (<10% stim). “---" = not tested. 
Analogue 6 was synthesized by A.A.H.. 

Ki (nM) EC50 (nM) % stim

# R position MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

1 C-6 0.22
(0.02)

9.4
(0.8)

68
(2)

43 1.6
(0.3)

110
(6)

>500
(70)

81
(2)

16
(2)

22
(2)

6 C-7 0.8
(0.3)

26
(2)

92
(n=1)

33 25
(20)

dns --- 18
(5)

dns ---

7 C-8 48
(9)

360
(60)

1500
(400)

7.5 1200
(300)

dns dns 37
(4)

dns dns

8 C-6 & C-8 1.0
(0.1)

1.6
(0.4)

23
(5)

1.6 4
(2)

380
(80)

dns 96
(4)

42
(7)

dns

NH2

HN

N
H

OH

O

1
2
3

45
6

7
8R R = benzyl

Table 1. Probing the Effects of Translocating the Phe4

Aryl Pharmacophore to C-7 and C-8 of the THQ Corea
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Both analogues 6 (C-7 benzyl) and 7 (C-8 benzyl) showed significant decreases in efficacy 

at MOR, while compound 7 showed a 100-fold decrease in MOR potency and affinity at both 

MOR and DOR (Table 1). We then questioned whether this reduction in MOR activity was due 

to the loss of the C-6 pharmacophore, or to unfavorable ligand-receptor interactions at C-8. To 

examine this, we incorporated both the C-6 and C-8 benzyl substitutions in compound 8. The 

binding affinity as well as potency and efficacy of 8 at MOR were restored (Ki = 1 nM; EC50 = 4 

nM; 96% stimulation), while the DOR binding affinity increased 6-fold compared to 1, not only 

validating the importance of the C-6 pharmacophore for MOR activity, but also identifying a key 

role for the C-8 position in modulating DOR affinity.  The moderate loss in MOR affinity and 

increase in DOR affinity for 8 shifted the MOR/DOR binding ratio (DOR Ki/MOR Ki) from 43 

for compound 1 to a more balanced 1.6 for compound 8 (Table 1). Consequently, this 6-,8-

disubstituted THQ analogue 8 established C-8 as a region of interest for future SAR. 

2.3  Design and Synthesis of C-8 Substituted Analogues 

 The synthesis of final compounds 8-31 began with the aniline derivatives depicted in 

Schemes 1 and 2, which differ only by R-group and the presence or absence of an aryl bromide at 

C-6 (THQ numbering depicted in Table 1 is used throughout this synthesis for consistency). 

Likewise, Scheme 3 follows many of the same steps but features a benzyl C-6 substitution in the 

starting aniline.  
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Scheme 1. Synthesis of C-8 Alkyl and Trifluoromethyl Analogue Intermediates from Anilines 

 
a (A) 3-bromopropionyl chloride & K2CO3 in DCM. (B) NaOtBu in DMF. (C) TfOH in DCE. (D) NBS in DCM. 
(E) benzyl boronic acid pinacol ester, Pd(dppf)Cl2 & K2CO3 in 3:1 acetone/H2O, 80°C. 

 

 

Scheme 2. Synthesis of C-8 Ethyl and Fluoro Analogue Intermediates from 6-Bromo Anilines 

 

a (A) 3-bromopropionyl chloride & K2CO3 in DCM. (B) NaOtBu in DMF. (C) TfOH in DCE. (D) benzyl boronic 
acid pinacol ester, Pd(dppf)Cl2 & K2CO3 in 3:1 acetone/H2O, 80°C. 

 

The synthesis of the THQ core in three steps—A, B, and C in Schemes 1-3—was 

developed by Dr. Larisa Yeomans, though these transformations had been previously reported in 

the literature independently. In step A, the aniline is substituted in a simple, high-yielding amide 

formation reaction with the acid chloride 3-bromopropionyl chloride. Step B involves an 

intramolecular b-lactam cyclization, catalyzed by the powerful base sodium tert-butoxide.104 In 

step C, this b-lactam intermediate undergoes an intramolecular Friedel-Crafts-like acylation (Fries 

rearrangement) facilitated by the ring strain of the 4-membered b-lactam in the presence of the 

superacid trifluoromethanesulfonic (triflic) acid, which is proposed to both protonate the amide 

while also coordinating the carbonyl to promote acylium ion formation.105 Though breaking 
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aromaticity is energetically unfavorable, the establishment of a more conjugated, less-strained 

bicyclic 6-membered ring system (the THQ core) makes this reaction exergonic. If not already 

present as in Scheme 2, an aryl bromide was next installed with N-bromosuccinimide in a highly 

regioselective addition at the C-6 (Scheme 1) or C-8 (Scheme 3) positions, directed by the ortho-

/para-directing aniline and meta-directing ketone. The final step in Schemes 1-3 (step E in 1 and 

2, D in Scheme 3) involves palladium-catalyzed functionalization of the aryl bromide. In Schemes 

1 and 2, this involves a simple Suzuki cross-coupling with a benzyl boronic acid pinacol ester in 

the presence of potassium carbonate and heat.  

 

Scheme 3. Synthesis of C-8 Bromo, Aryl, and Carbonyl Analogue Intermediates from 6-Benzyl 
Aniline 
 
 
 

 

a (A) 3-bromopropionyl chloride & K2CO3 in DCM. (B) NaOtBu in DMF. (C) TfOH in DCE. (D) NBS in DCM. 
(E) Suzuki conditions: 3-furanyl, benzyl, ethylphenyl, or 2-benzofuranyl boronic acid pinacol ester, Pd(dppf)Cl2 & 
K2CO3 in 3:1 acetone/H2O, 80°C. Carbonylation conditions: carbon monoxide gas, Pd(dppf)Cl2 & K2CO3 in 3:1 
DMF/H2O, MeOH, or IPA, 80°C. Amide coupling conditions: amine, PyBOP & DIPEA in DMF. 

 

In Scheme 3, Suzuki conditions could be used to install the 3-furan, 2-benzofuran, benzyl, 

or ethylphenyl substitutions. However, different functionalization was required to further diversify 
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the SAR at the C-8 position beyond simple aryl modifications. Heretofore unreported on a 

heterocyclic substrate, a method was developed for aryl carbonylation at the C-8 position using 

carbon monoxide generated in situ from the decomposition of oxalyl chloride in 2M sodium 

hydroxide. The decomposition side products carbon dioxide and hydrochloric acid are readily 

absorbed in the degassed aqueous media while carbon monoxide is liberated as a gas. CO is 

cannulated or balloon-transferred to a mixture of aryl bromide, Pd(dppf)Cl2, and potassium 

carbonate in an argon-sparged solution of DMF and water or alcohol. Through a proposed Suzuki-

type mechanism shown in Fig. 9, the carboxylic acid or ester (corresponding to which alcohol is 

used) can be installed at C-8. The carboxylic acid could then be substituted with amide coupling 

conditions (using DIPEA and the peptide coupling reagent PyBOP) to achieve the carboxamide as 

well as the dimethyl, ethyl, benzyl, and phenyl amides in modest yields (Scheme 3 step E). 

Figure 9. Suzuki-Type Palladium-Catalyzed Carbonylation Mechanism 

 

 

 

 In addition to alkyl, halo, aryl and carbonyl substitutions at C-8, a series of basic amine 

heterocycles were also explored. These ligands started with a 6-bromo-8-methyl THQ 

intermediate, the synthesis of which can be found in Scheme 1 prior to Suzuki coupling. As laid 
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out in Scheme 4, the THQ amine was first substituted with a trifluoroacetyl group in step A. This 

protecting group was selected as it would be least likely to sterically inhibit subsequent benzylic 

bromination at the C-8 methyl position, yet also offered facile removal under mild conditions 

compared to the fairly robust acetyl alternative. Unprotected amines are poorly tolerated in the 

subsequent radical bromination reaction. In step B of Scheme 4, benzylic bromine insertion was 

catalyzed by the radical initiator benzoyl peroxide and heat. The benzylic bromide could then be 

substituted with a secondary amine such as piperidine, morpholine, or mono-Boc piperazine. Due 

to the use of potassium carbonate as a base, some loss of the trifluoroacetyl group was observed. 

However, the unprotected amine was sterically hindered by the C-8 substitution and caused no 

adverse side-reactions during subsequent Suzuki coupling. With the C-8 amine installed, the C-6 

aryl bromide underwent Suzuki coupling as described previously. The use of potassium carbonate 

in aqueous solvent during Suzuki coupling, heated at 80°C for several hours, provided full 

trifluoroacetyl removal affording the 6-benzyl-8-R THQ intermediate desired to begin Scheme 5. 

 

Scheme 4. Synthesis of C-8 Amine Analogue Intermediates from 6-Bromo-8-Methyl THQ 
 

 

a (A) Trifluoroacetic acid anhydride in DCM. (B) NBS & benzoyl peroxide in CCl4, 80°C. (C) amine & K2CO3 in 
DMF. (D) benzyl boronic acid pinacol ester, Pd(dppf)Cl2 & K2CO3 in 3:1 acetone/H2O, 80°C.  
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 To complete the synthesis of analogues 8-31 as shown in Scheme 5, the 6-benzyl-8-R THQ 

intermediates underwent reductive amination in step A to install the desired stereochemistry at the 

C-4 position. Using the chiral Ellman auxiliary (R)-(+)-2-methyl-2-propanesulfinamide and 

Ti(OEt)4, the ketone was converted to an N-sulfinyl imine, which was then reduced 

stereoselectively in situ with sodium borohydride to provide the (R) sulfinamide at C-4. During 

this reaction, it was observed that methyl, isopropyl, and phenyl esters were all converted to an 

ethyl ester. The excess titanium, which is used to coordinate the ketone to facilitate transamination, 

could also coordinate the ester functionality. The ester coordination catalyzed nucleophilic attack 

by excess ethoxide liberated from Ti(OEt)4 during the 48-hour reaction. To synthesize the 

isopropyl analogue 27, Ti(OiPr)4 was used instead of Ti(OEt)4. The methyl and phenyl esters were 

not re-synthesized, though use of TiCl4 or another suitable Lewis acid would likely achieve 

transamination without the unwanted nucleophilic attack. Additionally, NMR indicated 

conversion of the carboxamide to a nitrile under reductive amination conditions, demonstrated by 

a downfield shift in 13C-NMR and loss of 18 mass units for the major peak by LC-MS.  

 

Scheme 5. Completing the Synthesis of Analogues 8-31a 

 
a (A) (R)-(+)-2-methyl-2-propanesulfinamide & Ti(OEt)4 in THF, 0°C to 70°C, then NaBH4 in THF, -78°C to r.t. (e) 
HCl, 1,4-dioxane, r.t., then diBoc 2,6-dimethyl-L-tyrosine, PyBOP, DIPEA, DMF, r.t., then TFA, DCM, r.t. 

 

8 - 31

8 R = Bn
9 R = Me
10 R = Et
11 R = n-Pr

16 R = Br
17 R = 3-furan
18 R = ethylphenyl
19 R = 2-benzofuran

20 R = dimethyl amide
21 R = ethyl amide
22 R = benzyl amide
23 R = phenyl amide

28 R = piperidine
29 R = morpholine
30 R = piperazine
31 R = piperazine-Dmt

12 R = n-Bu
13 R = t-Bu
14 R = F
15 R = CF3

24 R = nitrile *
25 R = carboxylic acid
26 R = ethyl ester **
27 R = isopropyl ester
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*carboxamide was unintentionally converted to a nitrile in step B under reductive amination conditions. **methyl ester was converted to an ethyl ester
during step A via nucleophilic attack by excess ethoxide ion, catalyzed by coordination of the ester carbonyl with Ti, both effects of Ti(OEt)4 reagent.
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In step B of Scheme 5, the sulfinamide was cleaved with hydrochloric acid giving the chiral 

amine salt, which was typically carried forward without characterization. Previously, this amine 

intermediate has been fully characterized by 1D and 2D NMR as well as X-ray crystallography, 

confirming that the stereoselectivity and chirality at C-4 that results from the described reductive 

transamination. During the synthesis of analogue 30 which featured a Boc-piperazine at C-8, the 

Boc group was removed during the sulfinamide cleavage of step B. Subsequent amide coupling to 

N-,O-diBoc-2’,6’-dimethyl-L-tyrosine, followed by Boc deprotection with trifluoroacetic acid, 

gave title compounds 8-30. In the case of analogue 30, some double insertion of Dmt at both the 

C-4 and piperazine amine was observed, yielding 31 by accident. A depiction of the C-8 

substitutions analyzed in analogues 8-31 is provided below in Fig. 10. 

 
 

Figure 10. Final C-8 R Groups of Analogues 8-31  
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2.4 In Vitro Pharmacology and SAR Analysis 

Following the promise of the initial C-8 benzyl substituted analogue 8 for modulating MOR 

selectivity, the SAR around C-8 was further expanded with the diverse substitutions represented 

in Fig. 10. Subsequent compounds in the C-8 series explored the steric environment and depth of 

the C-8 binding pocket with various alkyl substitutions, ranging from methyl to t-butyl (Table 2). 

We extended this series to include halogens (F, CF3, Br), which largely fit the same trend as the 

alkyl set.  

 

a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. † indicates n=2. 

Ki (nM) EC50 (nM) % stim

# C-8 R Group MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

1 H 0.22
(0.02)

9.4
(0.8)

68
(2)

43 1.6
(0.3)

110
(6)

>500 81
(2)

16
(2)

22
(2)

9 Me 0.24
(0.08)

1.9
(0.4)

17
(0.7)

8 4.2
(1.6)

110
(24)

>500 91
(1)

71
(3)

52
(2)

10 Et 0.09
(0.04)

1.9
(0.4)

40
(5)

21 6.2
(2.9)

32
(10)

dns 74
(2)

45
(4)

dns

11 n-Pr 0.64
(0.08)

5.9
(1.5)

98
(18)

9 23
(7)

310
(30)

dns† 90
(6)

36
(3)

dns†

12 n-Bu 0.76
(0.28)

3.6
(0.5)

34
(5)

5 17
(4)

250
(39)

dns† 85
(2)

25
(4)

dns†

13 tert-Bu 0.47
(0.18)

3.8
(0.7)

48
(7)

8 9.9
(3.6)

240
(40)

dns† 83
(5)

42
(2)

dns†

14 F 0.11
(0.01)

3.0
(0.3)

9
(1)

27 1.6
(0.2)

97
(19)

>500 95
(2)

28
(3)

40
(1)

15 CF3 0.26
(0.10)

2.2
(0.7)

29
(10)

9 1.8
(0.9)

50
(14)

>500 70
(5)

42
(2)

18
(4)

16 Br 0.23
(0.14)

2.4
(0.8)

13
(1)

10 1.2
(0.5)

36
(18)

310
(95)

73
(3)

69
(4)

29
(1)

Table 2. Alkyl and Halogen Substituted C-8 Analogues
are MOR Agonists/DOR Partial Agonistsa
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The alkyl and halogenated series generally showed potent, efficacious agonism at MOR 

and partial agonism at DOR. Additionally, most alkyl-substituted analogues showed no KOR 

activation, whereas the halogenated compounds were low-potency partial agonists at KOR. In 

terms of binding, the smallest C-8 substitutions (9, 10, 14, 15, and 16) maintained high affinity for 

MOR and moderately increased affinity for DOR relative to the unsubstituted lead peptidomimetic 

1. Conversely, larger C-8 substitutions (11, 12, and 13) slightly decreased MOR affinity and 

maintained the modest increase in DOR affinity. This alkyl/halo subset provided a range of MOR 

selectivity profiles between 5 and 30, though all analogues were partial DOR agonists. 

Expanding upon the alkyl and halogen subsets, we synthesized a series of analogues 

featuring conjugated, aryl, and saturated heterocyclic substitutions, summarized in Table 3. The 

conjugated nitrile (24), furan (17), and benzofuran (19) analogues all favored MOR 10-fold or 

more, while the more flexible benzyl (8) and ethylphenyl (18) analogues displayed slightly better 

balance between MOR and DOR affinity. The flexible, saturated heterocycles offered little change 

in the MOR-selectivity profile compared to the lead compound 1. In fact, analogues 28 and 30 

were not only selective for MOR over DOR, but also displayed high affinity for KOR. Again, all 

analogues in this subset showed some DOR agonism, though these were generally less efficacious 

than the alkyl/halo subset. The lone outlier is the piperazine-Dmt analogue 31, which showed no 

DOR efficacy. Generally, analogues in Tables 2 & 3 showed only slight variation in binding 

affinities at MOR and DOR, yielding relatively flat SAR at the C-8 position. Even so, mild 

increases in DOR affinity paired with mild decreases in MOR affinity (as with compound 8) can 

serve to provide promising improvements towards balancing MOR and DOR affinities. 
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a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. † indicates n=2. 

 

As indicated by 18, 19, and 31, it may be possible to achieve the MOR agonist/DOR 

antagonist profile by increasing the size of substituents at C-8. However, due to the already high 

polar surface area of the analogues in this subset, further increasing the size of substituents at C-8 

seemed to offer diminishing returns.  

It was discovered in the following subset (see Table 4) that incorporation of a simple 

carbonyl bond at C-8 achieved the desired MOR agonist/DOR antagonist functional profile. 

Ki (nM) EC50 (nM) % stim

# C-8 R Group MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

24 nitrile 0.16
(0.06)

2.3
(0.7)

7.3
(0.7)

14 1.3
(0.5)

188
(22)

>500† 73
(6)

27
(6)

38†

(3)

17 3-furan 0.34
(0.08)

3.5
(0.6)

28
(6)

10 3.4
(0.3)

10
(4)

dns† 103
(5)

33
(5)

dns†

8 benzyl 1.0
(0.1)

1.6
(0.4)

23
(5)

2 4
(2)

380
(84)

dns 96
(4)

42
(7)

dns

18 ethylphenyl 0.37
(0.07)

1.4
(0.7)

27
(8)

4 44
(17)

33
(13) dns† 78

(1)
15
(2) dns†

19 2-benzofuran 3
(1)

71
(17)

>500 24 16
(7)

18†

(5) dns† 101
(2)

13†

(2)
dns†

28 piperidine 0.07
(0.03)

4.4
(1.0)

0.93
(0.18)

63 2.3
(0.2)

27
(2)

100
(33)

93
(2)

31
(4)

30
(6)

29 morpholine 0.15
(0.04)

2.3
(0.7)

7.3
(1.4)

15 1.8
(0.4)

180
(47)

dns 96
(2)

29
(5)

dns

30 piperazine 0.35
(0.18)

15
(3)

1.9
(0.5)

43 8.2
(3.5)

290
(100)

170
(67)

60
(2)

18
(1)

17
(1)

31 piperazine-Dmt 0.31
(0.16)

2.6
(0.5)

7
(2)

20 5.9
(0.7) dns† dns 86

(8) dns† dns
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Table 3. Increasing Size of C-8 Substitution Moderately
Decreases DOR Efficacya
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Similar to the prior subsets, MOR selectivity persisted throughout Table 4. All analogues in this 

subset were less than 20-fold selective with four of the seven analogues displaying less than 10-

fold MOR selectivity. MOR potency showed modest improvement over past subsets, with all 

analogues showing single-digit nanomolar EC50 values. It is worth noting that the carbonyl C-8 

substituents consistently reduced MOR and DOR efficacy despite having only limited effects on 

binding. Thus, despite the relatively flat binding SAR around C-8, modifications in this region 

show a distinct ability to reliably modulate efficacy at MOR and DOR.  

 

 

a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. † indicates n=2. The EC50 of 27 
is listed as N/A, as the potency values vary too widely to assert a meaningful numerical value. 

Ki (nM) EC50 (nM) % stim

# C-8 R Group MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

20 dimethyl amide 0.23
(0.08)

1.3
(0.2)

80
(50)

6 9
(3) dns >500 58

(1) dns 25
(4)

21 ethyl amide 0.20
(0.06)

1.8
(0.4)

25
(4)

9 2.1
(0.3)

dns dns 56
(5)

dns dns

22 benzyl amide 0.17
(0.03)

3.0
(0.4)

30
(2)

18 3.4
(1.4) dns dns 73

(5) dns dns

23 phenyl amide 0.32
(0.08)

5.4
(0.5)

29
(5)

17 1.2
(0.7) dns dns† 49

(4) dns dns†

25 carboxylic acid 0.47
(0.16)

2.4
(0.4)

210
(6)

5 4.4
(1.7) dns dns 67

(3) dns dns

26 ethyl ester 1.0
(0.3)

3.7
(0.3)

47
(2)

4 4.9
(0.3) dns dns† 71

(3) dns dns†

27 isopropyl ester 0.45
(0.06)

5.9
(0.6)

77
(12)

13 N/A dns dns 58
(1)

dns dns
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Table 4. Carbonyl Substituted C-8 Analogues Consistently
Display Desired MOR Agonist/DOR Antagonist Profilea
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 Based on this diverse set of substitutions, it is apparent that the C-8 position tolerates a 

wide degree of variability in terms of binding. With few exceptions, most analogues display MOR 

affinity between 0.1 and 1.0 nM and DOR affinity ranging between 1.0 and 10 nM. KOR binding 

showed greater variability than MOR or DOR, with only the basic amines 28-31, the nitrile 24, 

and the fluoro analogue 14 displaying single-digit or sub-nanomolar affinity. The rigid, conjugated 

2-benzofuran 19 and carboxylic acid 25 were both poorly tolerated. These results are consistent 

with computational models which show a non-conserved glutamate residue near C-8 in KOR 

which is likely to prefer nitrogenous substituents over acidic residues like 25. 

 Despite the C-8 substitutions only having a minor effect on binding affinity at MOR and 

DOR, the carbonyl substitutions were functionally distinct from the alkyl, halo, aryl, or amino 

groups tested in this series. The carbonyl analogues all displayed less efficacy at MOR, DOR and 

KOR compared to other subsets, consistently affording the MOR agonist/DOR antagonist profile 

that had proven elusive in Tables 1-3. While insights gained from computational models are 

retrospective and have not been experimentally validated, the models may provide an indication 

as to why the carbonyl has proven effective at reducing efficacy across all three receptors. In Fig. 

11A are the crystal structures of MOR bound to the antagonist b-FNA (MOR inactive, lavender) 

and the agonist BU72 (MOR active, green), adapted from Huang et al.46 In Fig. 11B is an 

analogous view of DOR with the partial agonist ligand 12 (DOR active, tan) and antagonist 26 

(DOR inactive, orange) docked. Labeled “Dmt” is the primary amine and carbonyl backbone of 

the Dmt moiety of each ligand. Fig. 11C shows the same ligands and coloring schemes with a 

face-on view of the THQ core and C-8 substitutions. The DOR models are based on agonist-bound 

and antagonist-bound crystal structures.40,106 Because of the 1.8 Å resolution of the antagonist-

bound (inactive) receptor, stable water molecules were able to be placed within electron density 
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maps with high confidence. Some of these DOR-inactive water molecules were included in the 

Fig. 11B and C renderings, though these were not involved in the docking models for 12 and 26. 

 

Fig. 11. Crystallographic Models of MOR and DOR in Active and Inactive States with Partial 
DOR Agonist 12 (DOR Active) and Antagonist 26 (DOR Inactive) Computationally Dockeda 

 
 

 
aPanel A adapted from Huang et al, 2015. Panels B and C use models based on structures obtained by Granier et al, 
2012 and Fenalti et al, 2014. Ligands 12 and 26 were docked by Ira Pogozheva. 
 

  As noted by the Kobilka group in Fig. 11A with a red curved arrow, the shift from the 

inactive (lavender) to the active (green) state involves a large rotation in residue N3.35 with a 

smaller translation of residue D3.32 away from the receptor core. Fig. 11B indicates a similar shift 

in residues N3.35 and D3.32 between inactive and active states. As described previously, a distinct 

water-mediated polar network in the core of the receptor is involved in the stabilization of either 

the active or inactive state for both MOR and DOR. In Fig. 11B, one can observe a network of 

hydrogen bonds that link residue D3.32 to N3.35 and a critical sodium ion, which is believed to be 

involved in stabilizing the inactive state of the receptor. Importantly, D3.32 is also critical to ligand 

binding. This residue forms a H-bond with the amine of morphinan ligands b-FNA and BU72 and 

the Dmt amine of ligands 12 and 26. A shift in ligand binding toward helix 3 may push D3.32 away 
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from the core of the receptor, which would disrupt the water-mediated interaction with N3.35 and 

facilitate its outward swing. Through loss of this coordinating network and opening of the receptor 

core, the inactive-state sodium ion can more easily dissociate, allowing further solvation of the 

receptor’s core, which is associated with the active state as proposed by Yuan et al (see Fig. 12).52  

 

Figure 12. Agonist-Bound GPCR Models Indicate Contiguous Solvation Through the Core of the 
Receptor While Antagonist-Bound Models Display Primarily Extracellular Solvationa 

 

a Molecular dynamics simulation by Yuan et al. of agonist- and antagonist-bound receptor states, with water molecules 
depicted by yellow circles. The active-state KOR model indicates a channel of water molecules extending through the 
receptor core while the inactive-state MOR excludes water molecules primarily to the extracellular orthosteric site.52 

 

 The view of analogues 12 and 26 in Fig. 11C allows one to scrutinize what effect C-8 may 

have in receptor activation. The n-butyl and ethyl ester groups are very similar in size and occupy 

similar positions in the binding pocket of DOR, but one can see that the partial agonist 12 sits 
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“higher” or more toward helix 3 than the antagonist 26. Of note, the carbonyl in the C-8 position 

is predicted to bind near a conserved lysine residue in helix 5, K5.39. Though it is out of range for 

a direct H-bond, a stable water observed in the inactive-state structure could mediate a polar 

interaction between the C-8 carbonyl and helix 5, preventing the “upward” shift toward helix 3 

associated with activation. The decrease in efficacy across all three receptors further supports the 

proposal of a key interaction with a conserved residue such as K5.39. Further mutagenesis studies 

would be needed to confirm this hypothesis, but these models suggest a potential mechanism by 

which ligand design could predictably modulate receptor activation. 

 As a caveat, it is worth noting that the changes observed in binding modes are relatively 

small (1.0 Å or less) and retrospective modeling is poorly suited for identifying causation. 

Additionally, though the carbonyl ligands are antagonists at DOR and KOR, they maintain efficacy 

at MOR despite the inactivating mechanism being conserved. This could be due to other minor 

differences in binding-site topography, but certainly merits further investigation. As such, these 

structural insights remain hypotheses and not experimental observations at present.  

2.5 In Vivo Pharmacology 

In addition to optimizing in vitro SAR, another key aim of this project was to test the effects 

that differing MOR selectivities had on in vivo tolerance and dependence. As such, only 

compounds that displayed an in vivo antinociceptive response could be evaluated in this context. 

To determine the antinociceptive effect of each compound following peripheral administration, 

compounds were tested in the mouse warm water tail withdrawal (WWTW) assay. Briefly, the 

WWTW assay measures the response to a noxious stimulus—submersion of part of the tail in 50°C 
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water—and whether latency to tail withdrawal increases in a dose-dependent manner after 

intraperitoneal (ip) administration of a test compound. Compounds were given at doses of 1.0, 3.2 

and 10 mg/kg (cumulative) in 30-minute intervals. Fully efficacious compounds such as morphine 

reach the maximal possible effect (MPE) of a 20 s latency to tail withdrawal at 10 mg/kg. 

Compounds displaying less than a 10-second latency to tail withdrawal (<50% MPE) were 

considered not to stimulate an antinociceptive response in vivo, denoted as “dns” in Table 5.  

 

 
a Results from the mouse WWTW assay after cumulative dosing of test compound up to 10 mg/kg ip. Antinociceptive 
activity represented as percent maximum possible effect (% MPE), with MPE being a 20 s latency to tail withdrawal. 
Baseline tail withdrawal latency is ~5 s, or 25% MPE. “dns” indicates no stimulation of an antinociceptive response. 
“---” indicates the compound was not tested in the WWTW assay. 

Alkyl & Halo Analogues 
(from Table 2)

# C-8 R Group % MPE

1 H 100

9 Me 100

10 Et 100

11 n-Pr dns

12 n-Bu 100

13 tert-Bu 60

14 F dns

15 CF3 dns

16 Br 50

Table 5. Antinociceptive Activity in Mouse WWTW
Assay Following Intraperitoneal Administrationa
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Conjugated & Cyclic Analogues 
(from Table 3)

# C-8 R Group % MPE

24 nitrile dns

17 3-furan dns

8 benzyl dns

18 ethylphenyl dns

19 2-benzofuran 100

28 piperidine dns

29 morpholine dns

30 piperazine ---

31 piperazine-Dmt dns

Amide, Acid & Ester Analogues 
(from Table 4)

# C-8 R Group % MPE

20 dimethyl amide 100

21 ethyl amide dns

22 benzyl amide dns

23 phenyl amide ---

25 carboxylic acid dns

26 ethyl ester 100

27 isopropyl ester 100
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 In the alkyl series, compounds 9, 10 and 12 were fully efficacious, showing dose dependent 

antinociception and reaching the cutoff latency of 20 s at 10 mg/kg after intraperitoneal (ip) 

administration, whereas 11 showed no significant antinociceptive effect at the same dose. The tert-

butyl analogue 13 was partially active in vivo, with a latency of 10 s at 10 mg/kg. The 2-benzofuran 

analogue 19 was the only analogue from Table 3 to show any activity in vivo. The smaller 

conjugated analogues 24 and 17 as well as the larger substitutions including the cyclic amines 28 

– 31 and aryl rings 8 and 18 produced no antinociception at the doses tested. Within the carbonyl 

series, the dimethyl amide analogue 20, as well as the ethyl and isopropyl esters 26 and 27, showed 

full antinociceptive activity. Of the bioactive analogues 9, 10, 12, 19, 20, 26 and 27, the duration 

of action for 12 and 26 proved to be the longest at 2.5 hours (Table 6). This is a modest 

improvement over the lead 1 (2 hours). 

 
a Duration of action was determined by administering a 10 mg/kg bolus dose of test compound, then evaluating 
animals in the WWTW assay at 30-minute intervals until latency to tail withdrawal returned to baseline.  

 

As shown in Table 5, most compounds in this series demonstrated no antinociceptive 

activity at the doses tested in vivo. While we cannot definitively attribute a loss of activity to any 

individual factor for all compounds in the series, typical physicochemical properties such as high 

molecular weight, lipophilicity, polar surface area, and hydrogen bond partners are likely to inhibit 

Table 6. Duration of Antinociceptive Action for C-8 Analoguesa

# C-8 R Group Duration (h)

1 H 2.0

9 Me 1.5

10 Et 1.0

12 n-Bu 2.5

# C-8 R Group Duration (h)

19 2-benzofuran 1.5

20 dimethyl amide 2.0

26 ethyl ester 2.5

27 isopropyl ester 1.5
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membrane permeability and access to the CNS. Accordingly, our reported in vivo SAR was 

constrained to small C-8 modifications. Small alkyl and carbonyl substitutions were best correlated 

with in vivo antinociceptive activity, with 19 being a notable exception. However, the relatively 

small fluoro-substituted compounds (14-16) showed no activity in vivo at the doses tested, 

indicating pharmacokinetic obstacles besides polar surface area. Another pair of relatively low 

molecular weight analogues with differing in vivo effects, 21 and 26, suggest other parameters 

affecting bioavailability. Although 21 and 26 are comparable in size, 21 features an hydrogen bond 

donating amide moiety, whereas 26 bears a more lipophilic ester functionality devoid of H-bond 

donating capacity. The added hydrogen bond donating amide may affect specific interactions with 

proteins that impact CNS access (e.g. active transporters, efflux proteins, metabolizing enzymes), 

or nonspecific parameters, including polarity, and by extension, passive membrane permeability. 

To test this hypothesis, the dimethylamide analogue 20 was synthesized and evaluated in vivo. The 

antinociceptive activity of 20 supported the idea that hydrogen bond donating ability and not 

polarity is a significant factor affecting bioavailability. Analogue 20 was the only bioavailable 

analogue in this series with a ClogP less than the lead compound (ClogP = 2.2 for 20 compared to 

3.1 for 1). Whether this indicates an in vivo preference for lipophilic ligands or is simply an artifact 

of the nature of the compounds explored in this series requires further exploration. 

2.6 Conclusions 

Comprehensive evaluation of this series of compounds suggests that C-8 carbonyl moieties 

block DOR activation quite effectively while bulky groups such as the 2-benzofuran, ethylphenyl, 

and piperazine attenuate DOR activation relative to smaller alkyl, aryl, and halogen-containing 

groups. We have previously shown that a bulky C-6 pendant interacts favorably with the active-
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state MOR binding pocket, yet there is a steric clash between a large C-6 pendant and the analogous 

amino acid residues in the active-state DOR.83,89 We propose from our SAR analysis that the 

active-state binding pockets of MOR and DOR likely interact with the C-8 substitutions in a similar 

manner. Additionally, as previously proposed, computational models and SAR trends suggest that 

carbonyl moieties may participate in a conserved polar interaction with K5.39 which disfavors 

movement in the binding pocket towards transmembrane helix 3 and residue D3.32, thus reducing 

opioid receptor activation. In MOR, this translates to reduced efficacy (between 50 and 75%) 

whereas DOR and KOR typically lose all activity, providing a new avenue toward the MOR 

agonist/DOR antagonist profile.  

SAR at C-8 indicates that a wide range of substitutions at this position are fairly well 

tolerated. Though rigid substitutions such as the 2-benzofuran analogue 19 negatively impact 

binding affinity, modeling and SAR data suggest that flexible substitutions like the piperazine-

Dmt moiety of 31 can flip into a solvent-exposed region of the receptors, leading to minimal impact 

on binding (see Table 3). Throughout this SAR campaign, we observed only slight changes in 

binding affinity at MOR and DOR, with most analogues binding MOR with 0.1 to 1.0 nM affinity 

and DOR with 1.0 to 10 nM affinity. As such, our ability to reliably modulate MOR selectivity 

was very limited. However, due to the fairly mild impact of C-8 substitutions on receptor binding, 

it was believed that solubilizing substituents such as the morpholine and piperazine rings might 

improve aqueous solubility and bioavailability. Those efforts were not met with the desired 

outcomes, as indicated by Table 5. 

In terms of in vivo activity, it is apparent that C-8 can indeed be modified significantly (as 

with the 2-benzofuran analogue 19) while maintaining antinociceptive activity. Seven of the 
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twenty-four analogues synthesized in this series displayed full antinociception, while two others 

were partially active. Generally speaking, small alkyl and aprotic acyl groups are best-tolerated 

for in vivo activity, whereas halogens, protic amides, and amines were less bioavailable.  All of 

the seven analogues displaying robust antinociceptive activity were fairly short-acting, with a 

duration of action ranging between one and three hours. These bioavailable analogues span a range 

of MOR selectivity profiles—4, 5, 8, 13, 21, 22, and 24—all of which are more balanced than the 

lead peptidomimetic 1 with a 43-fold MOR selectivity profile. Further in vivo studies for tolerance 

and dependence are currently underway for the dimethyl amide 20. However, despite its very poor 

aqueous solubility and high lipophilicity (ClogP = 4.3), the ethyl ester analogue 26 may also merit 

further study, as it displayed among the best potency (5 nM), lowest MOR selectivity (4-fold), 

longest duration of action (2.5 hours), and highest MOR efficacy (71% stimulation) within the 

MOR agonist/ DOR antagonist subset. Considering the propensity of esters to be hydrolyzed in 

vivo, 26 may act as a prodrug of the carboxylic acid analogue 25. Fortunately, 25 shows an almost 

equally well-balanced MOR and DOR affinity profile while maintaining the MOR agonist/DOR 

antagonist profile. Additionally, cleavage to the carboxylic acid would boost selectivity over KOR 

from 50:1 to 450:1. Thus, despite the relatively unstable nature of the ester substitution, this moiety 

could still be useful in this specific context. 

Highlights of analogues 20 and 26 are summarized in Fig. 13. It is worth noting the high 

equilibrium constant, Ke, measured for compound 26. The Ke is used to approximate antagonist 

potency (the calculation for which can be found in the experimental procedures in section 2.7 of 

this chapter). While potency at MOR and DOR for 26 is 5- to 10-fold less than the observed 

affinities reported in Table 4, analogue 26 is still less than 10-fold selective for MOR by both 

affinity and potency metrics. The Ke has not yet been determined for analogue 20. 
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Figure 13. Summary Profiles of MOR Agonist/DOR Antagonist Analogues 20 and 26 

 

 

Going forward, the C-8 carboxylic acid could serve as a useful functionality for late-stage 

derivatization, facilitating further SAR exploration or probe development. Due to the limited 

impact on receptor binding, this position could be utilized in the development of multifunctional 

fluorescent probes, lysine-targeting covalent inhibitors,37,107 bivalent ligands,78,81 or receptor-

mediated transport substrates.82,108–113 In fact, attempts were made toward developing a 

glucoserine-linked analogue (see Chapter 5 for further discussion); however, further 

methodological development is needed to bring this project to fruition. As illustrated, the C-8 

position of the THQ scaffold has been instrumental in design and synthesis of bioavailable mixed-

efficacy MOR agonist/DOR antagonist ligands, but also has significant room for further 

development. In Chapter 4, additional projects currently underway or proposed that focus on 

functionalizing the C-8 position (among others) will be discussed in greater detail.  
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2.7   Experimental Procedures  

 

Figure 10. Final C-8 R Groups of Analogues 8-31 (replicated from above for convenience) 
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Cell Lines and Membrane Preparations 

All tissue culture reagents were purchased from Gibco Life Sciences (Grand Island, NY, U.S.). 

C6-rat glioma cells stably transfected with a rat MOR (C6-MOR) or rat DOR (C6-DOR) and 

Chinese hamster ovary (CHO) cells stably expressing a human KOR (CHO-KOR) were used for 

all in vitro assays. Cells were grown to confluence at 37 °C in 5% CO2 in Dulbecco’s modified 

Eagle medium (DMEM) containing 10% fetal bovine serum and 5% penicillin/streptomycin. 

Membranes were prepared by washing confluent cells three times with ice cold phosphate buffered 

saline (0.9% NaCl, 0.61 mM Na2HPO4, 0.38 mM KH2PO4, pH 7.4). Cells were detached from the 

plates by incubation in warm harvesting buffer (20 mM HEPES, 150 mM NaCl, 0.68 mM EDTA, 

pH 7.4) and pelleted by centrifugation at 1600 rpm for 3 min. The cell pellet was suspended in ice-

cold 50 mM Tris- HCl buffer, pH 7.4, and homogenized with a Tissue Tearor (Biospec Products, 

Inc., Bartlesville, OK, U.S.) for 20 s. The homogenate was centrifuged at 15,000 rpm for 20 min 

at 4°C. The pellet was rehomogenized in 50 mM Tris-HCl with a Tissue Tearor for 10 s, followed 

by recentrifugation. The final pellet was resuspended in 50 mM Tris-HCl and frozen in aliquots at 

80°C. Protein concentration was determined via a BCA protein assay (Thermo Scientific Pierce, 

Waltham, MA, U.S.) using bovine serum albumin as the standard.  

Radioligand Competition Binding Assays 

Radiolabeled compounds were purchased from Perkin-Elmer (Waltham, MA, U.S.). Opioid ligand 

binding assays were performed by competitive displacement of 0.2 nM [3H]-diprenorphine (250 

μCi, 1.85 TBq/mmol) by the peptidomimetic from membrane preparations containing opioid 

receptors as described above. The assay mixture, containing membranes (20 μg protein/tube) in 

50 mM Tris-HCl buffer (pH 7.4), [3H]-diprenorphine, and various concentrations of test 

peptidomimetic, was incubated at room temperature on a shaker for 1 h to allow binding to reach 
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equilibrium. Samples were rapidly filtered through Whatman GF/C filters using a Brandel 

harvester (Brandel, Gaithersburg, MD, U.S.) and washed three times with 50 mM Tris-HCl buffer. 

Bound radioactivity on dried filters was determined by liquid scintillation counting, after saturation 

with EcoLume liquid scintillation cocktail, in a Wallac 1450 MicroBeta (Perkin-Elmer, Waltham, 

MA, U.S.). Nonspecific binding was determined using 10 μM naloxone. The results presented are 

the mean ± standard error (S.E.M.) from at least three separate assays performed in duplicate. Ki 

(nM) values were calculated using nonlinear regression analysis to fit a logistic equation to the 

competition data using GraphPad Prism, version 6.0c (GraphPad Software Inc., La Jolla, CA). 

[35S]-GTPgS Binding Assays 

Agonist stimulation of [35S]guanosine 5′-O-[γ- thio]triphosphate [35S]-GTPγS, 1250 Ci, 46.2 

TBq/mmol) binding to G protein was measured as described previously.114 Briefly, membranes 

(10–20 μg of protein/tube) were incubated for 1 h at 25°C in GTPγS buffer (50 mM Tris-HCl, 100 

mM NaCl, 5 mM MgCl2, pH 7.4) containing 0.1 nM [35S]-GTPγS, 30 μM guanosine diphosphate 

(GDP), and varying concentrations of test peptidomimetic. G protein activation following receptor 

activation with peptidomimetic was compared with 10 μM of the standard compounds [D-Ala2,N-

MePhe4,Gly-ol]enkephalin (DAMGO) at MOR, D-Pen2,5- enkephalin (DPDPE) at DOR, or 

U69,593 at KOR. The reaction was terminated by vacuum filtration of GF/C filters that were 

washed 10 times with GTPγS buffer. Bound radioactivity was measured as previously described. 

The results are presented as the mean ± standard error (S.E.M.) from at least three separate assays 

performed in duplicate; potency (EC50 (nM)) and percent stimulation were determined using 

nonlinear regression analysis with GraphPad Prism, as above.  
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Ke Determination 

Agonist stimulation of [35S]-GTPγS binding by the known standard agonist SNC80 at DOR was 

measured as described above. This was then compared to [35S]-GTPγS binding stimulated by 

SNC80 in the presence of test compound (1000 nM). Both conditions produced 100% stimulation 

relative to SNC80. The difference between the EC50 of SNC80 alone and in the presence of test 

antagonist is the shift in concentration response. The Ke was then calculated as Ke = (concentration 

of compound)/ (concentration response shift – 1). The results presented are the mean from at least 

three separate assays performed in duplicate. 

In Vivo Drug Preparation 

All compounds were administered by intraperitoneal (ip) injection in a volume of 10 mL/kg of 

body weight. Test compounds were dissolved in 5% DMSO (v/v) in sterile saline (0.9% NaCl w/v).  

Animals 

Male C57BL/6 wild type mice (Stock number 000664, Jackson Laboratory, Sacramento CA, USA) 

bred in-house from breeding pairs and weighing between 20-30 g at 8-16 weeks old, were used for 

behavioral experiments. Mice were group-housed with free access to food and water at all times. 

Experiments were conducted in the housing room, maintained on a 12 h light/dark cycle with lights 

on at 7:00 am; all experiments were conducted during the light cycle. Studies were performed in 

accordance with the University of Michigan Committee on the Use and Care of Animals and the 

Guide for the Care and Use of Laboratory Animals (National Research Council, 2011 publication). 

Antinociception 

Antinociceptive effects were evaluated in the mouse WWTW assay. Withdrawal latencies were 

determined by briefly placing a mouse into a cylindrical plastic restrainer and immersing 2-3 cm 
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of the tail tip into a water bath maintained at 50°C. The latency to tail withdrawal or rapidly flicking 

the tail back and forth was recorded with a maximum cutoff time of 20 s to prevent tissue damage. 

Antinociceptive effects were determined using a cumulative dosing procedure. Each mouse 

received an injection of saline ip and then 30 min later baseline withdrawal latencies were 

recorded. Following baseline determinations, cumulative doses of each test compound (1, 3.2, and 

10 mg/kg) were given ip at 30 min intervals. Thirty min after each injection, the tail withdrawal 

latency was measured as described above. To determine the duration of antinociceptive action, 

baseline latencies were determined as described above. Thirty minutes after baseline 

determination, animals were given a 10 mg/kg bolus injection of test compound ip. Latency to tail 

withdrawal was then determined at 5, 15, and 30 min after injections, and every 30 min thereafter 

until latencies returned to baseline values. 

HPLC Purification  

Purification of final compounds was performed using a Waters semipreparative HPLC with a 

Vydac protein and peptide C18 reverse phase column, using a linear gradient of 0% solvent B 

(0.1% TFA in acetonitrile) in solvent A (0.1% TFA in water) to 100% solvent B in solvent A at a 

rate 1% per minute, monitoring UV absorbance at 230 nm.  

Compound Characterization  

Final compounds were characterized by 1H NMR, electrospray ionizing mass spectrometry (ESI-

MS), and HPLC retention time. 1H NMR data for final compounds were obtained on a 500 MHz 

Varian spectrometer using CD3OD as the solvent. ESI-MS was obtained using an Agilent 6130 

LC–MS mass spectrometer in positive ion mode. The retention time and purity of final compounds 

were assessed using a Waters Alliance 2690 analytical HPLC instrument with a Vydac protein and 
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peptide C18 reverse phase column. Retention times were obtained by running a linear gradient 

starting at 0% solvent B (99.9% acetonitrile, 0.1% TFA) and 100% solvent A (99.9% water, 0.1% 

TFA) to 70% solvent B and 30% solvent A in 70 min, measuring UV absorbance at 230 nm. All 

final compounds used for testing were ≥95% pure, as determined by analytical HPLC. Intermediate 

compounds were characterized by 1H and 13C NMR on a Varian 500 MHz or 400 MHz NMR 

instrument.  

Synthesis – General Procedures 

General Procedure (A): Schotten-Bauman Acylation of a Commercially Available Aniline 

Starting Material. To a flame-dried round-bottom flask under Ar atmosphere was added aniline 

starting material (1.00 eq), followed by dichloromethane, then K2CO3 (1.2-3.0 eq.). After 10 

minutes, 3-bromopropionyl chloride (1.05 eq) was added slowly via syringe. Reaction was 

monitored by TLC in 40% ethyl acetate, 60% hexanes. Ninhydrin stain was used to help monitor 

disappearance of aniline starting material. After 1-3 h, reaction was quenched with deionized 

water. Organics were separated and dried over MgSO4, then filtered and concentrated under 

vacuum. Product was purified by crystallization or, when necessary, column chromatography.   

General Procedure (B): Intramolecular b-Lactam Cyclization. To a flame-dried round-bottom 

flask under Ar atmosphere was added sodium tert-butoxide (1.05 eq) followed by anhydrous DMF, 

then stirred 10 min before slowly adding a solution of  acyl bromide intermediate from step A 

(1.00 eq) dissolved in DMF at ambient temperature via syringe. Monitored reaction by TLC in 

40% ethyl acetate, 60% hexanes. Desired product showed a moderate decrease in Rf relative to 

starting material. After stirring 1-3 h, reaction mixture was concenctrated under vacuum, then 

resuspended in dichloromethane or ethyl acetate. Extracted reaction mixture with deionized water 
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and aqueous sodium bicarbonate, then separated organics and dried over MgSO4. Filtered and 

reconcentrated organics onto silica, then purified by flash chromatography. 

General Procedure (C): Fries Rearrangement to Synthesize the THQ Core. To a round-

bottom flask containing b-lactam intermediate (1 eq) dissolved in dichloroethane under inert 

atmosphere was slowly added TfOH (3 eq). After 1 hour, TLC in 40% ethyl acetate, 60% hexanes 

showed a decrease in Rf. Reaction was quenched with deionized water and neutralized with 

K2CO3, then diluted with dichloromethane. Separated organics and dried over MgSO4, then filtered 

and concentrated organics onto silica and purified by flash chromatography. 

General Procedure (D): Aryl Bromination of THQ Core. To a round-bottom flask containing 

THQ intermediate (1.00 eq), dissolved in dichloromethane under inert atmosphere was added N-

bromosuccinimide (1.05 eq) at ambient temperature. After 30 minutes, TLC in 40% ethyl acetate, 

60% hexanes showed complete conversion. Reaction was reconcentrated onto silica and was 

purified by flash chromatography. 

General Procedure (E): Suzuki Copuling of Aryl Bromide to Boronic Acid Pinacol Ester. To 

a round-bottom flask under Ar atmosphere was added 3:1 acetone/water and stirred under vacuum 

for 10 minutes. Next, Ar was bubbled through solvent for an additional 10 minutes before adding 

aryl bromide intermediate (1.0 eq), boronic acid (1.2-2.0 eq), K2CO3 (3 eq) and Pd(dppf)Cl2 (0.1 

eq). Reaction was heated to 80°C for 6-12 hours, after which the reaction mixture was cooled and 

diluted with ethyl acetate and aqueous NaHCO3. Organics were separated and dried over MgSO4, 

then filtered and concentrated in vacuo onto silica. Product was purified by silica chromatography. 

General Procedure (F): Reductive Amination of 6-benzyl-8-R-THQ Ketone to Sulfinamide 

Using Ellman’s Sulfinamide. To a round bottom flask already containing desiccated THQ 
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intermediate (1.0 eq) under Ar atmosphere was added (R)-2-methylpropane-2-sulfinamide (3.0 

eq). Meanwhile, a reflux condenser was flame-dried under vacuum, and then flooded with Ar. 

Next, anhydrous THF (5-10 mL) was added to the reaction vessel containing starting reagents via 

syringe. The round bottom flask was placed in an ice bath and allowed to equilibrate to 0°C. Next, 

Ti(OEt)4 (6.0 eq) was added slowly via syringe. Once addition was complete, the reaction vessel 

was taken out of ice bath and placed in oil bath at 70°C-75°C, affixed condenser, and stirred for 

16-48 h under Ar. The reaction was monitored by TLC for loss of ketone. Once sufficient 

conversion to the tert-butanesulfinyl imine was observed, reaction vessel was taken out of oil bath 

and cooled to ambient temperature. Meanwhile, an additional round bottom flask was flame-dried 

under vacuum, then flooded with Ar. NaBH4 (6.0 eq) was added quickly, and anhydrous THF was 

added (5-10 mL). The round bottom flask was placed in dry ice/acetone bath and allowed to 

equilibrate to -78°C. Contents from the round bottom flask containing the imine intermediate were 

transferred to round bottom flask containing NaBH4 via cannula. Imine-containing flask was 

washed twice with minimal THF, which was also transferred to reducing flask via cannula under 

Ar. Once contents were completely added, the reaction was taken out of dry ice/acetone bath and 

was allowed to warm to room temperature. The reaction stirred at ambient temperature for 2-3 h. 

To quench, sat. NaCl solution was added. Reaction mixture was diluted with ethyl acetate and DI 

H2O and separated, washing with H2O until both layers were clear, indicating sufficient removal 

of titanium oxide by-product. Organics were then isolated and dried over MgSO4 and filtered 

through a fritted funnel. Organic extract was then concentrated onto silica and purified by silica 

chromatography. 

General Procedure (G): Conversion of Sulfinamide to Final Compound. Step 1: To a round 

bottom flask containing sulfinamide (1.0 eq) was added 1,4-dioxane, followed by conc. HCl (6.0 
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eq), cleaving the sulfinamide to the primary amine. The reaction stirred at r.t. for up to 3 h. Solvent 

was removed under reduced, and residue was re-suspended in Et2O. The resultant white solid 

precipitate (the HCl salt of the amine) was isolated by decanting and washing with Et2O up to three 

times. After desiccation, the solid residue was used without further purification. Step 2: To a pear-

shaped flask under inert atmosphere containing amine salt (1.0 eq) was added di-Boc-Dmt (1.1 

eq), PyBOP (1.1 eq), and, when specified, 6-Cl HOBt (1.1 eq), followed by DMF and DIPEA (10 

eq) at ambient temperature. After stirring for 6 hours, solvent was removed under reduced pressure 

and residual oil was loaded onto silica. Boc-protected intermediate was purified by silica 

chromatography but was generally not characterized by NMR. Step 3: Boc-protected intermediate 

was suspended in DCM (10 mL), then TFA (3-5 mL) was added. After 1 hour, solvent was 

removed under vacuum. Product was resuspended in a solution of 99.9% acetonitrile, 0.1% TFA, 

then diluted with deionized water. Final products were purified by reverse-phase semi-preparative 

HPLC. Final yield not calculated.  

General Procedure (H): Palladium-Catalyzed Carbonylation of Aryl Bromide. For a 

schematic of the apparatus, see the synthesis of Compound 20. To a flame-dried 2-necked round-

bottom flask under Ar atmosphere was affixed a condenser to the verticle neck. Through the angled 

neck was added degassed, Ar-sparged 4:1 DMF/H2O (or alcohol in place of water) and stir bar. 

Next, 6-benzyl-8-bromo-THQ intermediate (1 eq), K2CO3 (1.5 eq) and Pd(dppf)Cl2 (0.1 eq) were 

added to the stirring solution. To a separate 30 mL pressure tube under Ar atmosphere was added 

2M NaOH (15 mL), then evacuated, flushed with Ar, and bubbled Ar through base solution for 15 

min. A cannula was added from the septum of the pressure tube leading into the reaction solution, 

and a vent was placed in the condenser septum. To the bottom of the tube containing stirring base 

solution was added, via syringe, oxalyl chloride (1 mL in aliquots of 0.1 to 0.2 mL). Carbon 
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monoxide generated in situ from the decomposition of oxalyl chloride bubbled through the vented 

reaction mixture 10 minutes. This process was repeated twice more at 30 minute intervals. Vent 

was replaced with a balloon filled with CO, and heated at 70-80°C for 6-10 hours, monitored by 

TLC. When TLC indicated conversion of starting material to new product, reaction was cooled to 

ambient temperature and reaction solvents were removed under vacuum. Residual oil was 

resuspended in ethyl acetate and water, and acid/base extraction was performed. Organics were 

isolated, dried with MgSO4, filtered, and reconcentrated onto silica in vacuo. Reaction was purified 

by flash chromatography. 

General Procedure (I): Amine Substitution of Benzylic Bromide. To a pear-shaped flask 

containing 6-benzyl-8-carboxylate-THQ intermediate (1.0 eq) dissolved in DMF under inert 

atmosphere was added PyBOP (1.2 eq), amine (1.2 eq) and DIPEA (5-10 eq), then stirred at 

ambient temperature. Reaction was monitored by TLC. After 3-12 hours, solvent was removed 

under reduced pressure and reconcentrated residue onto silica in vacuo. Purified by flash 

chromatography. Product was highly fluorescent under long-wave UV (285 nm) light. 

General Procedure (J): N-Trifluoroacetylation of the THQ core. To a round-bottom flask 

containing 6-bromo-8-methyl-THQ intermediate (1.0 eq) under Ar atmosphere was added DCM. 

Reaction flask was then cooled to 0°C before adding Et3N (1.2 eq), followed by trifluoroacetic 

anhydride (1.2 eq). When starting material showed complete conversion to product by TLC, 

solvent was removed under reduced pressure and reaction residue was purified by silica 

chromatography. 

General Procedure (K): Benzylic Bromination of the C-8 Methyl Group. To a round-bottom 

flask containing (1.00 eq) under Ar atmosphere was added degassed, Ar-sparged CCl4, followed 
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by N-bromosuccinimide (1.05 eq) and benzoyl peroxide (0.1 eq). Reaction was then heated to 

reflux, monitored by TLC. Quantitative conversion of starting material was generally not observed, 

so reaction was halted when side-product began to form. Reaction was halted by cooling to -20°C, 

and precipitate was filtered from solution (washing with additional cold CCl4). Filtrate was then 

concentrated onto silica and purified by silica chromatography.  

General Procedure (L): Substitution of Benzylic Bromide with Amine Heterocycle. To a 

round-bottom flask under inert atmosphere was added DMF, followed by K2CO3 (1.2 eq) and 

amine (1.2 eq), then benzylic bromide (1.0 eq) stirring at ambient temperature. After 6-12 hours, 

solvent was removed under reduced pressure and residual oil was resuspended in ethyl acetate and 

sat. NaHCO3. Organics were separated and dried over MgSO4, then filtered and concentrated in 

vacuo onto silica. Product was purified by silica chromatography. 
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Compound 8 (Notebook name: AFN-4) 

 

 

8-2. N-(4-benzylphenyl)-3-bromopropanamide. 8-2 was synthesized following General 

Procedure (A) from 4-benzylaniline 8-1 (3.65 g, 19.92 mmol, 1.00 eq), K2CO3 (3.56 g, 25.78 

mmol, 1.30 eq). and 3-bromopropionyl chloride (2.11 mL, 20.91 mmol, 1.05 eq). Yield: 6.37 g, 

100%. 1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 7.5 Hz, 1H), 7.20 (d, 

J = 7.3 Hz, 1H), 7.16 (dd, J = 7.9, 5.8 Hz, 4H), 3.95 (s, 2H), 3.71 (t, J = 6.6 Hz, 2H), 2.92 (t, J = 

6.6 Hz, 2H).  

 

 

8-3. 1-(4-benzylphenyl)azetidin-2-one. 8-3 was synthesized following General Procedure (B) 

from 8-2 (6.37g, 20.02 mmol, 1.00 eq) and NaOtBu (2.02 g, 21.02 mmol, 1.05 eq). Yield: 4.25 g, 

90%. 1H NMR (500 MHz, CDCl3) δ 7.29 (d, J = 8.1 Hz, 3H), 7.20 (d, J = 7.3 Hz, 1H), 7.16 (d, J 

= 8.0 Hz, 4H), 3.95 (s, 2H), 3.60 (t, J = 4.5 Hz, 2H), 3.10 (t, J = 4.5 Hz, 2H). 
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8-4 6-benzyl-2,3-dihydroquinolin-4(1H)-one. 8-4 was synthesized following General Procedure 

(C) from 8-3 (3.75 g, 15.80 mmol, 1 eq) and TfOH (4.18 mL, 47.40 mmol, 3 eq). Yield: 3.34 g, 

90%. 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 2.1 Hz, 1H), 7.30 – 7.23 (m, 2H), 7.20 – 7.15 (m, 

3H), 7.12 (dd, J = 8.4, 2.2 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H), 4.34 (s, 1H), 3.86 (s, 2H), 3.54 (td, J 

= 7.1, 2.0 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 193.92, 150.73, 141.35, 

136.19, 130.89, 128.86, 128.59, 127.37, 126.18, 119.34, 116.35, 77.16, 42.53, 41.08, 38.30.  

 

 

8-5. 6-benzyl-8-bromo-2,3-dihydroquinolin-4(1H)-one. 8-5 was synthesized following General 

Procedure (D) from 8-4 (501 mg, 2.11 mmol, 1.00 eq) and NBS (375 mg, 2.11 mmol, 1.00 eq). 

Yield: 640 mg, 96%. 1H NMR (500 MHz, CDCl3) δ 7.70 (d, J = 2.0 Hz, 1H), 7.40 (d, J = 2.0 Hz, 

1H), 7.27 (t, J = 7.5 Hz, 2H), 7.22 – 7.17 (m, 1H), 7.15 (d, J = 7.5 Hz, 2H), 4.89 (s, 1H), 3.83 (s, 

2H), 3.60 (td, J = 7.2, 2.1 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 193.10, 

147.40, 140.62, 138.57, 131.31, 128.81, 128.70, 127.07, 126.41, 120.28, 110.32, 77.16, 41.92, 

40.75, 37.55. 

 

8-6. 6,8-dibenzyl-2,3-dihydroquinolin-4(1H)-one. 8-6 was synthesized following General 

Procedure (E) from 8-5 (236 mg, 0.75 mmol, 1 eq), benzyl boronic acid pinacol ester (0.50 mL, 
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2.24 mmol, 2 eq), K2CO3 (310 mg, 2.24 mmol, 3 eq) and Pd(dppf)Cl2 (55 mg, 0.08 mmol, 0.1 eq). 

Yield: Yield: 210 mg, 86%. 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 2.0 Hz, 1H), 7.34 – 7.24 

(m, 5H), 7.19 (dd, J = 7.7, 4.7 Hz, 3H), 7.14 (d, J = 7.5 Hz, 2H), 7.07 (d, J = 2.1 Hz, 1H), 4.20 (s, 

1H), 3.89 (s, 2H), 3.86 (s, 2H), 3.43 (t, J = 7.0 Hz, 2H), 2.63 (t, J = 7.2 Hz, 2H). 13C NMR (126 

MHz, CDCl3) δ 194.17, 149.04, 141.42, 138.31, 137.54, 130.25, 128.99, 128.85, 128.60, 128.32, 

126.91, 126.20, 126.16, 125.69, 119.86, 42.25, 41.13, 37.92, 37.68.  

 

8-7. (R)-N-((R)-6,8-dibenzyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 8-

7 was synthesized following General Procedure (F) from 8-6 (70 mg, 0.21 mmol, 1 eq), (R)-2-

methyl-2-propanesulfinamide (104 mg, 0.86 mmol, 4 eq), and Ti(OEt)4 (0.27 mL, 1.28 mmol, 6 

eq), then NaBH4 (50 mg, 1.28 mmol, 6 eq). Yield: 38 mg, 41%. 1H NMR (500 MHz, CDCl3) δ 

7.31 – 7.21 (m, 4H), 7.21 – 7.11 (m, 5H), 7.06 (d, J = 2.0 Hz, 1H), 6.81 (d, J = 2.0 Hz, 1H), 4.57 

– 4.48 (m, 1H), 3.84 (d, J = 3.0 Hz, 2H), 3.77 (s, 2H), 3.25 (td, J = 11.8, 2.7 Hz, 1H), 3.15 (dt, J = 

11.7, 3.9 Hz, 1H), 2.07 – 1.97 (m, 1H), 1.81 (tt, J = 13.2, 3.9 Hz, 1H), 1.19 (s, 9H). 13C NMR(126 

MHz, CDCl3) δ 141.97, 141.31, 139.10, 131.26, 129.81, 129.21, 128.81, 128.75, 128.53, 128.46, 

126.50, 125.91, 124.70, 121.02, 77.16, 55.42, 49.86, 41.15, 37.88, 36.68, 28.28, 22.76.   
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8. (S)-2-amino-N-((R)-6,8-dibenzyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide. 8 was synthesized following General Procedure (G) from 8-7 (26 

mg, 0.06 mmol, 1 eq) and concentrated HCl (0.12 mL, excess). Carried forward without further 

purification or characterization. Step 2: Performed amide coupling using 8-7 amine salt (22 mg, 

0.06 mmol, 1 eq), di-Boc-Dmt (33 mg, 0.078 mmol, 1.3 eq), PyBOP (42 mg, 0.078 mmol, 1.3 eq), 

and 6-Cl HOBt (14 mg, 0.078 mmol, 1.3 eq), and DIPEA (0.13 mL, 0.71 mmol, 12 eq). Step 3: 

Boc-deprotected with TFA as described in General Procedure (G). Final products were purified 

by reverse-phase semi-preparative HPLC. Final yield not calculated. 1H NMR (500 MHz, 

Methanol-d4) δ 8.20 (dd, J = 8.0, 2.7 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.21 – 7.15 (m, 3H), 7.08 (ddd, 

J = 23.4, 11.4, 7.1 Hz, 5H), 6.90 (d, J = 3.0 Hz, 1H), 6.71 (d, J = 2.7 Hz, 1H), 6.47 (d, J = 2.3 Hz, 

2H), 5.02 – 4.97 (m, 1H), 3.86 (dt, J = 11.5, 3.6 Hz, 1H), 3.78 (s, 2H), 3.76 (s, 2H), 3.24 (td, J = 

12.5, 11.4, 1.9 Hz, 1H), 3.09 (dt, J = 12.4, 4.1 Hz, 1H), 3.02 (dt, J = 13.9, 3.4 Hz, 1H), 2.55 (t, J = 

12.0 Hz, 1H), 2.26 (s, 6H), 1.75 (ddt, J = 17.8, 10.7, 3.3 Hz, 1H), 1.51 (dd, J = 12.9, 5.4 Hz, 1H). 

HPLC (gradient A): retention time = 44.3 min. ESI-MS 520.3[M + H]+ and 542.3 [M + Na]+.  
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Compound 9 (Notebook reference: AFN-18 or afn-iv-75, notebook 4 p. 75) 

 

 

9-2. 3-bromo-N-(o-tolyl)propanamide. 9-2 was synthesized following General Procedure (A) 

from o-toluidine 10-1 (1.00 g, 5.38 mmol, 1.00 eq), K2CO3 (2.23 g, 16.14 mmol, 3.00 eq) and 3-

bromopropionyl chloride (0.57 mL, 5.64 mmol, 1.05 eq). Yield: 1.72 g, 100%. 1H NMR (500 

MHz, CDCl3) δ 7.57 (d, J = 7.6 Hz, 2H), 7.16 (d, J = 7.5 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 3.66 

(t, J = 6.5 Hz, 2H), 2.91 (t, J = 6.5 Hz, 2H), 2.22 (s, 3H). 13C NMR(126 MHz, CDCl3) δ 168.64, 

135.16, 130.76, 130.64, 126.63, 126.03, 124.38, 40.21, 27.57, 18.02. 

 

 

9-3. 1-(o-tolyl)azetidin-2-one. 9-3 was synthesized following General Procedure (B) from 9-2 

(1.72 g, 5.36 mmol, 1.00 eq) and NaOtBu (540 mg, 5.63 mmol, 1.05 eq). Yield: 1.18 g, 92%. 1H 

NMR (500 MHz, CDCl3) δ 7.28 (td, J = 8.6, 6.9, 0.8 Hz, 1H), 7.09 (t, J = 6.9 Hz, 2H), 7.03 (td, J 

= 7.6, 7.2, 1.5 Hz, 1H), 3.60 (t, J = 4.4 Hz, 2H), 2.97 (t, J = 4.5 Hz, 2H), 2.28 (s, 3H). 13C NMR(126 

MHz, CDCl3) δ 165.27, 136.19, 131.08, 130.79, 126.06, 125.76, 125.75, 122.03, 41.04, 35.99, 

18.87. 
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9-4. 8-methyl-2,3-dihydroquinolin-4(1H)-one. 9-4 was synthesized following General Procedure 

(iii) from 9-4 (1.18 g, 4.9 mmol, 1 eq) and TfOH (1.3 mL, 14.7 mmol, 3 eq). Yield: 606 mg, 52%. 

1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 7.1 Hz, 1H), 6.65 (t, J = 7.5 

Hz, 1H), 4.40 (s, 1H), 3.60 (t, J = 6.9 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.15 (s, 3H). 13C NMR(126 

MHz, CDCl3) δ 194.16, 150.47, 135.73, 125.61, 122.87, 119.10, 117.26, 77.16, 42.18, 37.92, 

16.95.  

 

9-5. 6-bromo-8-methyl-2,3-dihydroquinolin-4(1H)-one. 9-5 was synthesized following General 

Procedure (D) from 9-4 (120 mg, 0.74 mmol, 1.00 eq) and NBS (139 mg, 0.78 mmol, 1.05 eq). 

Yield: 170 mg, 95%. 1H NMR (500 MHz, CDCl3) δ 7.85 (d, J = 2.3 Hz, 1H), 7.28 (dd, J = 2.3, 

1.1 Hz, 1H), 4.34 (s, 1H), 3.61 (t, J = 7.0 Hz, 2H), 2.71 – 2.65 (m, 2H), 2.13 (s, 3H). 13C NMR(126 

MHz, CDCl3) δ 192.79, 149.26, 137.96, 127.94, 125.36, 120.28, 109.76, 42.07, 37.60, 16.80.   
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9-6. 6-benzyl-8-methyl-2,3-dihydroquinolin-4(1H)-one. 9-6 was synthesized following General 

Procedure (E) from 9-5 (300 mg, 1.25 mmol, 1 eq), benzyl boronic acid pinacol ester (0.56 mL, 

2.50 mmol, 2 eq), K2CO3 (518 mg, 3.75 mmol, 3 eq) and Pd(dppf)Cl2 (88 mg, 0.12 mmol, 0.1 eq). 

Yield: 223 mg, 71%. 1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 2.1 Hz, 1H), 7.30 – 7.23 (m, 2H), 

7.20 – 7.15 (m, 3H), 7.04 – 7.02 (m, 1H), 3.84 (s, 2H), 3.59 (t, J = 7.0 Hz, 2H), 2.68 (t, J = 6.9 Hz, 

2H), 2.10 (s, 3H). 13C NMR(126 MHz, CDCl3) δ 194.24, 149.08, 141.53, 136.80, 130.14, 128.86, 

128.59, 126.14, 125.32, 123.34, 119.11, 42.42, 41.17, 38.06, 25.00, 17.05. 

 

 

9-6. (R)-N-((R)-6-benzyl-8-methyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 9-6 was synthesized following General Procedure (F) from 9-5 (75 mg, 0.30 mmol, 

1 eq), (R)-2-methyl-2-propanesulfinamide (106 mg, 0.90 mmol, 3 eq), and Ti(OEt)4 (0.38 mL, 

1.80 mmol, 6 eq), then NaBH4 (68 mg, 1.80 mmol, 6 eq). Yield: not calculated. 1H NMR (500 

MHz, CDCl3) δ 7.29 – 7.22 (m, 1H), 7.20 – 7.12 (m, 3H), 7.00 (d, J = 2.0 Hz, 1H), 6.80 (d, J = 

2.5 Hz, 1H), 4.54 (q, J = 3.0 Hz, 1H), 3.82 (d, J = 2.7 Hz, 2H), 3.40 (td, J = 11.8, 2.8 Hz, 1H), 3.31 

(dt, J = 11.4, 4.0 Hz, 1H), 2.12 – 2.06 (m, 1H), 2.04 (s, 3H), 1.89 (dddd, J = 16.7, 8.1, 4.1, 2.1 Hz, 

1H), 1.21 (s, 9H). 13C NMR(126 MHz, CDCl3) δ 142.09, 141.30, 130.69, 129.79, 128.86, 128.50, 

125.94, 122.12, 120.17, 116.96, 55.42, 49.71, 41.19, 36.77, 28.34, 22.80, 22.25, 17.31. 
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9. (S)-2-amino-N-((R)-6-benzyl-8-methyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide.  9 was synthesized following General Procedures (G) from 9-7 

(0.30 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 9-7 amine salt (20 mg, 0.070 mmol, 1 

eq), di-Boc-Dmt (31 mg, 0.076 mmol, 1.1 eq), PyBOP (40 mg, 0.076 mmol, 1.1 eq), and 6-Cl 

HOBt (13 mg, 0.076 mmol, 1.1 eq), followed by DIPEA (0.12 mL, 0.70 mmol, 10 eq). Step 3: 

Boc-deprotected with TFA as described in General Procedure (G). Final yield not calculated. 1H 

NMR (500 MHz, Methanol-d4) δ 7.22 (td, J = 7.5, 2.0 Hz, 2H), 7.13 (td, J = 8.7, 4.2 Hz, 3H), 7.01 

(s, 1H), 6.94 (s, 1H), 6.49 (s, 2H), 4.98 (m, 1H), 3.90 – 3.82 (m, 1H), 3.83 (s, 2H), 3.26 (dd, J = 

13.6, 11.6 Hz, 1H), 3.25 – 3.19 (m, 1H), 3.02 (dd, J = 13.5, 5.6 Hz, 1H), 2.76 – 2.64 (m, 1H), 2.27 

(s, 6H), 2.14 (s, 3H), 1.90 – 1.78 (m, 1H), 1.63 – 1.54 (m, 1H). HPLC (gradient A): retention time 

= 28.4 min. ESI-MS 466.3 [M + Na]+. 

 

 

Compound 10 (Notebook reference: AFN-35 or afn-v-23, notebook 5 p. 23) 
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10-2. 3-bromo-N-(4-bromo-2-ethylphenyl)propanamide. 10-2 was synthesized following General 

Procedure (A) from 4-bromo-2-ethylaniline 10-1 (1.41 g, 7.05 mmol, 1.00 eq), K2CO3 (1.95 g, 

14.10 mmol, 2.00 eq) and 3-bromopropionyl chloride (0.75 mL, 7.35 mmol, 1.05 eq). Yield: 2.36 

g, 100%. 1H NMR (500 MHz, CDCl3) δ 7.67 (d, J = 8.4 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.07 (s, 

1H), 3.72 (t, J = 5.8 Hz, 2H), 2.97 (t, J = 6.3 Hz, 2H), 2.60 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 

3H). 13C NMR(126 MHz, CDCl3) δ 168.32, 137.66, 133.70, 131.62, 129.82, 125.79, 119.24, 

40.80, 27.41, 24.33, 13.93.   

 

 

10-3. 1-(4-bromo-2-ethylphenyl)azetidin-2-one. 10-3 was synthesized following General 

Procedure (B) from 10-2 (2.56 g, 7.64 mmol, 1.00 eq) and NaOtBu (734 mg, 7.64 mmol, 1.00 

eq). Yield: 1.89 g, 97%. 1H NMR (500 MHz, CDCl3) δ 7.36 (d, J = 2.1 Hz, 1H), 7.33 – 7.29 (m, 

1H), 3.75 – 3.69 (m, 2H), 3.13 (td, J = 4.5, 1.3 Hz, 2H), 2.71 (q, J = 7.5 Hz, 2H), 1.22 (td, J = 7.5, 

1.3 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 165.77, 139.73, 135.09, 132.52, 129.62, 124.88, 

119.92, 42.03, 36.81, 25.12, 14.34. 

 

10-4. 6-bromo-8-ethyl-2,3-dihydroquinolin-4(1H)-one. 10-4 was synthesized following General 

Procedure (C) from 10-3 (1.89 g, 7.42 mmol, 1 eq) and TfOH (1.31 mL, 14.85 mmol, 2 eq). 

Yield: 640 mg, 34%. 1H NMR (500 MHz, CDCl3) δ 7.88 (d, J = 2.4 Hz, 1H), 7.29 (d, J = 2.3 Hz, 
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1H), 4.40 (s, 1H), 3.61 (t, J = 7.0 Hz, 3H), 2.69 (t, J = 7.1 Hz, 3H), 2.46 (q, J = 7.5 Hz, 3H), 1.27 

(t, J = 7.5 Hz, 4H). 13C NMR(126 MHz, CDCl3) δ 192.87, 148.71, 135.93, 130.97, 127.91, 120.59, 

110.25, 42.13, 37.69, 23.30, 12.53. 

 

 

10-5. 6-benzyl-8-ethyl-2,3-dihydroquinolin-4(1H)-one. 10-5 was synthesized following General 

Procedure (E) from 10-4 (200 mg, 0.79 mmol, 1 eq), benzyl boronic acid pinacol ester (0.35 mL, 

1.57 mmol, 2 eq), K2CO3 (326 mg, 2.36 mmol, 3 eq) and Pd(dppf)Cl2 (58 mg, 0.08 mmol, 0.1 eq). 

Yield: 120 mg, 57%.1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 2.1 Hz, 1H), 7.29 – 7.23 (m, 2H), 

7.20 – 7.13 (m, 3H), 7.05 (d, J = 2.1 Hz, 1H), 4.39 – 4.31 (m, 1H), 3.86 (s, 2H), 3.57 (td, J = 7.1, 

1.7 Hz, 2H), 2.71 – 2.64 (m, 2H), 2.44 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.5 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 194.38, 148.55, 141.51, 134.74, 134.71, 130.14, 128.99, 128.81, 128.55, 126.09, 

125.24, 125.18, 119.27, 75.12, 42.38, 41.23, 38.07, 24.98, 24.94, 23.58, 12.87, 12.85.  

 

 

10-6. (R)-N-((R)-6-benzyl-8-ethyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 10-6 was synthesized following General Procedure (F) from 10-5 (100 mg, 0.38 
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mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (137 mg, 1.13 mmol, 3 eq), and Ti(OEt)4 (0.47 

mL, 2.26 mmol, 6 eq), then NaBH4 (85 mg, 2.26 mmol, 6 eq). Yield: not calculated. 1H NMR (500 

MHz, CDCl3) δ 7.28 – 7.23 (m, 2H), 7.21 – 7.16 (m, 2H), 7.16 – 7.14 (m, 1H), 6.99 (d, J = 2.0 

Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 4.54 (q, J = 2.7, 2.2 Hz, 1H), 3.84 (d, J = 2.4 Hz, 2H), 3.38 (td, 

J = 11.8, 2.8 Hz, 1H), 3.33 – 3.26 (m, 1H), 2.38 (q, J = 7.5 Hz, 2H), 2.08 (dq, J = 13.6, 3.2 Hz, 

1H), 1.89 (ttd, J = 12.1, 3.9, 1.2 Hz, 1H), 1.23 (t, J = 6.3 Hz, 3H), 1.20 (s, 9H). 13C NMR(126 

MHz, CDCl3) δ 142.10, 140.76, 129.83, 128.85, 128.52, 128.49, 128.48, 127.72, 125.92, 120.36, 

55.42, 55.31, 49.81, 47.33, 41.31, 36.72, 28.35, 24.98, 23.80, 23.73, 22.80, 22.65, 12.84.   

 

 

10. (S)-2-amino-N-((R)-6-benzyl-8-ethyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide. 10 was synthesized following General Procedure (G) from 10-6 

(0.38 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization following step 2 of General Procedure (G) from 10-6 amine salt (45 mg, 0.15 

mmol, 1 eq), di-Boc-Dmt (67 mg, 0.16 mmol, 1.1 eq), PyBOP (85 mg, 0.16 mmol, 1.1 eq), and 6-

Cl HOBt (28 mg, 0.16 mmol, 1.1 eq), followed by DIPEA (0.26 mL, 1.50 mmol, 10 eq). Step 3: 

Boc-deprotected following General Procedure (G). Final yield not calculated. 1H NMR (500 

MHz, Methanol-d4) δ 7.21 (t, J = 7.5 Hz, 2H), 7.11 (t, J = 8.8 Hz, 3H), 6.77 (d, J = 6.1 Hz, 2H), 

6.48 (s, 2H), 4.92 (t, J = 3.9 Hz, 1H), 3.84 (dd, J = 11.6, 5.1 Hz, 1H), 3.76 (s, 2H), 3.29 – 3.22 (m, 

1H), 3.09 – 3.02 (m, 1H), 2.99 (dd, J = 13.7, 5.1 Hz, 1H), 2.48 (t, J = 11.1 Hz, 1H), 2.38 (q, J = 
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7.5 Hz, 2H), 2.27 (s, 6H), 1.70 (t, J = 12.7 Hz, 1H), 1.56 – 1.48 (m, 1H), 1.11 (td, J = 7.5, 0.9 Hz, 

3H). HPLC (gradient A): retention time = 32.1. ESI-MS 480.3 [M + Na]+. 

 

 

Compound 11 (Notebook reference: AFN-7 or afn-iii-87, notebook 3 p. 87) 

 

 

11-2. 3-bromo-N-(2-propylphenyl)propanamide. 11-2 was synthesized following General 

Procedure (A) from 2-propylaniline 11-1 (1.00 g, 7.40 mmol, 1.00 eq), K2CO3 (3.07 g, 22.2 mmol, 

3.00 eq) and 3-bromopropionyl chloride (0.78 mL, 7.77 mmol, 1.05 eq). Yield: 1.73 g, 86%. 1H 

NMR (500 MHz, CDCl3) δ 7.70 (q, J = 6.9, 5.8 Hz, 1H), 7.19 (d, J = 7.8 Hz, 2H), 7.13 (t, J = 7.5 

Hz, 1H), 3.72 (td, J = 7.0, 6.5, 3.1 Hz, 2H), 2.96 (dq, J = 7.1, 3.8, 3.3 Hz, 2H), 2.56 (t, J = 7.9 Hz, 

2H), 1.62 (h, J = 7.6 Hz, 3H), 0.97 (t, J = 7.4 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 168.28, 

134.56, 129.63, 126.67, 125.91, 124.54, 40.55, 33.47, 27.46, 23.12, 14.06.  

 

 

11-3. 1-(2-propylphenyl)azetidin-2-one. 11-3 was synthesized following General Procedure (B) 

from 11-2 (1.56 g, 5.78 mmol, 1.00 eq) and NaOtBu (583 mg, 6.07 mmol, 1.05 eq). Yield: 1.10 g, 

100%. 1H NMR (500 MHz, CDCl3) δ 7.35 (dd, J = 7.5, 1.5 Hz, 1H), 7.20 (td, J = 6.2, 5.4, 2.0 Hz, 
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2H), 7.16 (dd, J = 7.2, 1.6 Hz, 1H), 3.74 – 3.69 (m, 2H), 3.14 – 3.09 (m, 2H), 2.71 – 2.63 (m, 2H), 

1.61 (h, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 165.86, 136.45, 

136.02, 130.55, 126.64, 126.62, 123.68, 42.03, 36.59, 34.35, 23.64, 14.20. 

 

 

11-4. 8-propyl-2,3-dihydroquinolin-4(1H)-one. 11-4 was synthesized following General 

Procedure (C) from 11-3 (1.10 g, 5.8 mmol, 1 eq) and TfOH (1.54 mL, 17.4 mmol, 3 eq). Yield: 

1.06 g, 100%.  1H NMR (500 MHz, CDCl3) δ 7.77 (dd, J = 8.0, 1.5 Hz, 1H), 7.18 (dd, J = 7.2, 1.5 

Hz, 1H), 6.70 (t, J = 7.6 Hz, 1H), 3.72 (s, 1H), 3.60 (dd, J = 7.6, 6.3 Hz, 2H), 2.69 (dd, J = 7.5, 6.4 

Hz, 2H), 2.46 – 2.41 (m, 2H), 1.65 (h, J = 7.4 Hz, 2H), 1.01 (t, J = 7.3 Hz, 3H). 13C NMR(126 

MHz, CDCl3) δ 194.22, 149.96, 134.78, 127.18, 125.74, 119.59, 117.47, 77.16, 42.32, 38.04, 

32.84, 21.59, 14.20.  

 

 

11-5. 6-bromo-8-propyl-2,3-dihydroquinolin-4(1H)-one. 11-5 was synthesized following General 

Procedure (D) from 11-4 (294 mg, 1.55 mmol, 1.00 eq) and NBS (282 mg, 1.58 mmol, 1.02 eq). 

Yield: 350 mg, 84%. 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 2.3 Hz, 1H), 7.26 (s, 1H), 4.42 

(s, 1H), 3.63 – 3.56 (m, 2H), 2.68 (td, J = 7.0, 1.1 Hz, 2H), 2.44 – 2.37 (m, 2H), 1.70 – 1.59 (m, 
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2H), 1.01 (td, J = 7.3, 1.1 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 192.90, 148.83, 136.97, 129.68, 

127.97, 120.67, 110.07, 77.16, 42.11, 37.68, 32.56, 21.40, 14.14.  

 

 

11-6. 6-benzyl-8-propyl-2,3-dihydroquinolin-4(1H)-one. 11-6 was synthesized following General 

Procedure (E) from 11-5 (102 mg, 0.38 mmol, 1 eq), benzyl boronic acid pinacol ester (0.17 mL, 

0.76 mmol, 2 eq), K2CO3 (157 mg, 1.14 mmol, 3 eq) and Pd(dppf)Cl2 (28 mg, 0.04 mmol, 0.1 eq), 

with the exception that the reaction was run in a microwave at 110oC for 30 minutes. Yield: 35 

mg, 32%. 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 2.1 Hz, 1H), 7.27 (dd, J = 8.5, 6.6 Hz, 2H), 

7.20 – 7.17 (m, 3H), 7.03 (d, J = 2.1 Hz, 1H), 3.86 (s, 2H), 3.58 (t, J = 7.0 Hz, 2H), 2.68 (t, J = 6.5 

Hz, 2H), 2.41 (t, J = 3.9 Hz, 2H), 1.62 (h, J = 7.5 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H). 

 

 

11-7. (R)-N-((R)-6-benzyl-8-propyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 11-7 was synthesized following General Procedure (F) from 11-6 (88 mg, 0.31 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (115 mg, 0.95 mmol, 3 eq), and Ti(OEt)4 (0.40 

mL, 1.89 mmol, 6 eq), then NaBH4 (71 mg, 1.89 mmol, 6 eq). Yield: 20 mg, 17%. 1H NMR (500 
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MHz, CDCl3) δ 7.21 – 7.18 (m, 1H), 7.16 (d, J = 2.4 Hz, 2H), 7.12 – 7.08 (m, 1H), 7.00 (d, J = 

2.3 Hz, 1H), 6.95 (s, 1H), 6.76 (d, J = 1.9 Hz, 1H), 4.45 (d, J = 3.0 Hz, 1H), 3.79 – 3.75 (m, 2H), 

3.29 (d, J = 3.0 Hz, 1H), 3.25 (dt, J = 11.5, 4.2 Hz, 2H), 2.27 (t, J = 7.8 Hz, 4H), 2.02 (dq, J = 

13.7, 3.4 Hz, 2H), 1.84 – 1.76 (m, 2H), 1.55 (qd, J = 7.2, 4.5 Hz, 3H), 1.15 (d, J = 0.9 Hz, 17H), 

0.93 (t, J = 7.3 Hz, 6H). 13C NMR(126 MHz, CDCl3) δ 141.26, 131.32, 130.35, 129.62, 128.78, 

128.67, 128.61, 128.44, 128.35, 128.26, 128.12, 125.82, 121.94, 108.32, 55.39, 49.57, 41.12, 

36.44, 32.65, 27.75, 22.64, 21.17, 14.13.   

 

 

11. (S)-2-amino-N-((R)-6-benzyl-8-propyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide.  11 was synthesized following General Procedures (G) from 11-7 

(19 mg, 0.05 mmol, 1 eq) and concentrated HCl (0.02 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 11-7 amine salt (16 mg, 0.050 mmol, 1 

eq), di-Boc-Dmt (23 mg, 0.055 mmol, 1.1 eq), PyBOP (29 mg, 0.055 mmol, 1.1 eq), and 6-Cl 

HOBt (19 mg, 0.055 mmol, 1.1 eq), followed by DIPEA (0.09 mL, 0.50 mmol, 10 eq) and stirred 

18 hours. Step 3: Boc-deprotected with TFA as described in General Procedure (G). Final yield 

not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.21 (td, J = 7.3, 1.4 Hz, 2H), 7.16 – 7.08 (m, 

3H), 6.85 (dt, J = 5.3, 2.7 Hz, 2H), 6.48 (s, 2H), 4.96 (d, J = 5.1 Hz, 1H), 3.86 (ddd, J = 11.6, 5.2, 

2.3 Hz, 1H), 3.80 (d, J = 2.4 Hz, 2H), 3.25 (t, 1H), 3.11 (d, J = 4.0 Hz, 1H), 3.01 (ddd, J = 13.5, 

5.3, 2.0 Hz, 1H), 2.58 (tt, J = 10.6, 2.5 Hz, 1H), 2.39 (td, J = 7.9, 3.0 Hz, 2H), 2.27 (s, 7H), 1.76 
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(dddd, J = 17.9, 14.1, 9.1, 5.3 Hz, 1H), 1.59 – 1.48 (m, 3H), 0.93 (td, J = 7.3, 1.4 Hz, 3H). HPLC 

(gradient A): retention time = 37.1 min. ESI-MS 494.3 [M + Na]+. 

 

 

Compound 12 (Notebook reference: AFN-8 or afn-iii-91, notebook 3 p. 91) 

 

 

12-2. 3-bromo-N-(2-butylphenyl)propanamide. 12-2 was synthesized following General 

Procedure (A) from 2-butylaniline 12-1 (1.00 g, 6.70 mmol, 1.00 eq), K2CO3 (2.78 g, 20.1 mmol, 

3.00 eq) and 3-bromopropionyl chloride (0.71 mL, 7.03 mmol, 1.05 eq). Yield: 1.725 g, 91%. 1H 

NMR (500 MHz, CDCl3) δ 7.74 (d, J = 7.9 Hz, 1H), 7.20 (d, J = 8.5 Hz, 2H), 7.17 – 7.10 (m, 2H), 

3.73 (t, J = 6.5 Hz, 2H), 2.97 (t, J = 6.5 Hz, 2H), 2.59 (t, J = 7.9 Hz, 2H), 1.57 (h, J = 9.8, 8.7 Hz, 

2H), 1.39 (h, J = 7.4 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 168.13, 

134.53, 134.36, 129.57, 126.67, 125.86, 124.31, 40.67, 32.10, 31.18, 27.42, 22.61, 13.96.  

 

 

12-3. 1-(2-butylphenyl)azetidin-2-one. 12-3 was synthesized following General Procedure (B) 

from 12-2 (1.725 g, 6.06 mmol, 1.00 eq) and NaOtBu (613 mg, 6.37 mmol, 1.05 eq). Yield: 1.23 

g, 100%. 1H NMR (500 MHz, CDCl3) δ 7.35 (dd, J = 7.6, 1.6 Hz, 1H), 7.20 (td, J = 8.4, 7.9, 2.1 
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Hz, 2H), 7.17 – 7.13 (m, 2H), 3.71 (td, J = 4.4, 0.9 Hz, 2H), 3.11 (td, J = 4.4, 1.0 Hz, 2H), 2.74 – 

2.65 (m, 2H), 1.56 (p, J = 7.9, 7.5 Hz, 2H), 1.37 (h, J = 7.3 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H). 13C 

NMR(126 MHz, CDCl3) δ 165.82, 136.71, 135.97, 130.49, 126.63, 126.57, 123.70, 42.02, 36.57, 

32.70, 32.00, 22.71, 14.08.   

 

12-4. 8-butyl-2,3-dihydroquinolin-4(1H)-one. 12-4 was synthesized following General 

Procedure (C) from 12-3 (1.23 g, 6.06 mmol, 1.00 eq) and TfOH (1.64 mL, 18.58 mmol, 3.07 

eq). Yield: 1.174 g, 95%. 1H NMR (500 MHz, CDCl3) δ 7.80 – 7.74 (m, 1H), 7.19 (t, J = 7.2 Hz, 

1H), 6.70 (q, J = 7.7 Hz, 1H), 4.44 (s, 1H), 3.61 (q, J = 7.3 Hz, 2H), 2.70 (q, J = 7.3 Hz, 2H), 2.47 

(q, J = 7.8 Hz, 2H), 1.61 (h, J = 7.6 Hz, 2H), 1.42 (hept, J = 7.5 Hz, 2H), 0.97 (q, J = 7.5 Hz, 3H). 

13C NMR(126 MHz, CDCl3) δ 194.23, 194.21, 149.95, 134.69, 134.67, 127.38, 125.71, 125.69, 

119.59, 117.49, 42.35, 42.33, 38.06, 38.04, 30.57, 30.56, 30.52, 30.51, 22.81, 22.80, 14.08, 14.07.  

 

 

12-5. 6-bromo-8-butyl-2,3-dihydroquinolin-4(1H)-one. 12-5 was synthesized following General 

Procedure (D) from 12-4 (485 mg, 2.46 mmol, 1.00 eq) and NBS (446 mg, 2.51 mmol, 1.05 eq). 

Yield: 575 mg, 85%. 1H NMR (500 MHz, CDCl3) δ 7.86 (dd, J = 2.5, 1.0 Hz, 1H), 7.26 (s, 1H), 
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4.44 (s, 1H), 3.63 – 3.55 (m, 2H), 2.68 (td, J = 7.0, 1.1 Hz, 2H), 2.47 – 2.38 (m, 2H), 1.64 – 1.54 

(m, 2H), 1.41 (h, J = 7.4 Hz, 2H), 0.96 (td, J = 7.3, 1.0 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 

193.15, 149.07, 137.11, 130.17, 128.14, 120.89, 110.31, 42.36, 37.92, 30.56, 30.51, 23.00, 14.29.   

 

 

12-6. 6-benzyl-8-butyl-2,3-dihydroquinolin-4(1H)-one. 12-6 was synthesized following General 

Procedure (E) from 12-5 (300 mg, 1.06 mmol, 1 eq), benzyl boronic acid pinacol ester (0.47 mL, 

2.12 mmol, 2 eq), K2CO3 (440 mg, 3.18 mmol, 3 eq) and Pd(dppf)Cl2 (81 mg, 0.11 mmol, 0.1 eq), 

except reaction was run in microwave at 110oC for 30 minutes. Yield: 78 mg, 25%. 1H NMR (500 

MHz, CDCl3) δ 7.64 (d, J = 2.1 Hz, 1H), 7.26 (s, 2H), 7.18 (td, J = 8.6, 7.8, 3.5 Hz, 3H), 7.03 (d, 

J = 2.1 Hz, 1H), 3.86 (s, 2H), 3.58 (d, J = 7.0 Hz, 2H), 2.70 – 2.67 (m, 2H), 2.41 (d, J = 7.8 Hz, 

2H), 1.59 – 1.52 (m, 2H), 1.41 – 1.35 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 13C NMR(126 MHz, 

CDCl3) δ 194.25, 141.53, 135.81, 134.70, 128.84, 128.58, 127.96, 126.55, 126.12, 125.76, 125.40, 

42.52, 41.23, 38.11, 30.68, 30.64, 22.83, 14.06.   

 

12-7. (R)-N-((R)-6-benzyl-8-butyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 12-7 was synthesized following General Procedure (F) from 12-6 (78 mg, 0.27 
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mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (97 mg, 0.80 mmol, 3 eq), and Ti(OEt)4 (0.34 

mL, 1.60 mmol, 6 eq), then NaBH4 (61 mg, 1.60 mmol, 6 eq). Yield: 89 mg, 84%. 1H NMR (500 

MHz, CDCl3) δ 7.20 – 7.14 (m, 1H), 7.11 (d, J = 7.3 Hz, 2H), 7.11 – 7.03 (m, 1H), 6.92 (d, J = 

2.0 Hz, 1H), 6.73 (d, J = 2.0 Hz, 1H), 6.58 (t, J = 7.5 Hz, 1H), 4.47 (q, J = 3.8, 3.3 Hz, 1H), 3.76 

(d, J = 2.3 Hz, 2H), 3.38 – 3.17 (m, 2H), 2.31 (dt, J = 21.0, 7.9 Hz, 2H), 2.02 (ddq, J = 13.3, 6.5, 

3.2 Hz, 1H), 1.89 – 1.79 (m, 1H), 1.58 – 1.41 (m, 2H), 1.41 – 1.26 (m, 2H), 1.14 (dd, J = 5.0, 1.0 

Hz, 9H), 0.88 (ddd, J = 12.4, 7.8, 6.8 Hz, 3H). 13C NMR(126 MHz, CDCl3) δ 142.12, 131.41, 

130.49, 129.57, 128.85, 128.81, 128.53, 128.49, 128.39, 125.92, 120.50, 117.03, 55.44, 49.88, 

41.28, 36.77, 30.83, 30.67, 28.42, 23.01, 22.82, 14.11.   

 

 

12. (S)-2-amino-N-((R)-6-benzyl-8-butyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide.  12 was synthesized following General Procedure (G) from 12-7 

(82 mg, 0.21 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 12-7 amine salt (68 mg, 0.21 mmol, 1 

eq), di-Boc-Dmt (93 mg, 0.23 mmol, 1.1 eq), PyBOP (118 mg, 0.23 mmol, 1.1 eq), and 6-Cl HOBt 

(38 mg, 0.23 mmol, 1.1 eq), followed by DIPEA (0.40 mL, 2.1 mmol, 10 eq) and stirred 18 hours. 

Step 3: Boc-deprotected with TFA as described in General Procedure (G). Final yield not 

calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.23 – 7.18 (m, 2H), 7.14 – 7.08 (m, 3H), 6.82 

(dq, J = 6.6, 2.2 Hz, 2H), 6.48 (s, 2H), 4.95 (d, J = 4.5 Hz, 1H), 3.86 (ddd, J = 11.6, 5.1, 1.9 Hz, 
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1H), 3.79 (d, J = 2.3 Hz, 2H), 3.25 (ddd, J = 13.3, 11.6, 1.2 Hz, 1H), 3.11 (dq, J = 12.2, 4.0 Hz, 

1H), 3.01 (ddd, J = 13.7, 5.2, 1.8 Hz, 1H), 2.56 (tt, J = 12.2, 3.0 Hz, 1H), 2.40 (td, J = 7.6, 2.6 Hz, 

2H), 2.27 (d, J = 1.2 Hz, 6H), 1.79 – 1.70 (m, 1H), 1.56 – 1.44 (m, 2H), 1.34 (hept, J = 7.2, 6.6 

Hz, 2H), 0.91 (td, J = 7.3, 1.2 Hz, 3H). HPLC (gradient A): retention time = 40.9 min. ESI-MS 

508.3 [M + Na]+. 

 

 

Compound 13 (Notebook reference: AFN-9 or afn-iii-93, notebook 3 p. 93) 

 

 

13-2. 3-bromo-N-(2-(tert-butyl)phenyl)propanamide. 13-2 was synthesized following General 

Procedure (A) from 2-(tert-butyl)aniline 13-1 (0.96 g, 6.41 mmol, 1.00 eq), K2CO3 (2.66 g, 19.2 

mmol, 3.00 eq) and 3-bromopropionyl chloride (0.68 mL, 6.73 mmol, 1.05 eq). Yield: 1.82 g, 

100%. 1H NMR (500 MHz, CDCl3) δ 7.54 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.26 – 

7.16 (m, 2H), 3.75 (t, J = 6.6 Hz, 2H), 2.98 (t, J = 6.5 Hz, 2H), 1.42 (s, 13H). 13C NMR(126 MHz, 

CDCl3) δ 168.21, 143.07, 134.64, 128.39, 127.55, 126.87, 126.65, 40.80, 34.65, 30.82, 27.24.   
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13-3. 1-(2-(tert-butyl)phenyl)azetidin-2-one. 13-3 was synthesized following General Procedure 

(B) from 13-2 (1.90 g, 6.67 mmol, 1.00 eq) and NaOtBu (673 mg, 7.00 mmol, 1.05 eq). Yield: 

1.36 g, 100%. 1H NMR (500 MHz, CDCl3) δ 7.46 (dd, J = 7.9, 1.5 Hz, 1H), 7.26 (s, 1H), 7.23 (td, 

J = 7.4, 1.5 Hz, 1H), 7.13 (dd, J = 7.6, 1.6 Hz, 1H), 3.64 (td, J = 4.3, 1.1 Hz, 2H), 3.10 (td, J = 4.3, 

1.0 Hz, 2H), 1.41 (d, J = 0.9 Hz, 9H). 13C NMR(126 MHz, CDCl3) δ 168.19, 148.84, 135.79, 

130.22, 128.65, 127.52, 127.15, 44.52, 36.68, 35.20, 31.35.   

 

 

13-4. 8-(tert-butyl)-2,3-dihydroquinolin-4(1H)-one. 13-4 was synthesized following General 

Procedure (C) from 13-3 (1.36 g, 6.71 mmol, 1.00 eq) and TfOH (1.78 mL, 20.14 mmol, 3.00 

eq). Yield: 1.02 g, 75%. 1H NMR (500 MHz, CDCl3) δ 7.83 (ddd, J = 7.8, 1.6, 0.7 Hz, 1H), 7.37 

(dd, J = 7.6, 1.7 Hz, 1H), 6.70 (td, J = 7.7, 1.6 Hz, 1H), 3.66 – 3.56 (m, 2H), 2.69 (ddd, J = 7.7, 

6.8, 1.5 Hz, 2H), 1.43 (d, J = 1.2 Hz, 9H). 13C NMR(126 MHz, CDCl3) δ 194.44, 150.68, 134.42, 

132.18, 126.36, 120.68, 117.42, 42.24, 38.03, 34.28, 30.05 
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13-5. 6-bromo-8-(tert-butyl)-2,3-dihydroquinolin-4(1H)-one. 13-5 was synthesized following 

General Procedure (D) from 13-4 (500 mg, 2.46 mmol, 1.00 eq) and NBS (460 mg, 2.58 mmol, 

1.05 eq). Yield: 570 mg, 82%. 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 2.4 Hz, 1H), 7.41 (d, J 

= 2.4 Hz, 1H), 4.73 (s, 1H), 3.61 (t, J = 7.0 Hz, 2H), 2.72 – 2.63 (m, 2H), 1.41 (s, 9H). 13C 

NMR(126 MHz, CDCl3) δ 192.86, 149.20, 136.79, 134.67, 128.30, 121.49, 110.17, 77.16, 41.78, 

37.37, 34.17, 29.59.   

 

13-6. 6-benzyl-8-(tert-butyl)-2,3-dihydroquinolin-4(1H)-one. 13-6 was synthesized following 

General Procedure (E) from 13-5 (300 mg, 1.06 mmol, 1 eq), benzyl boronic acid pinacol ester 

(0.47 mL, 2.12 mmol, 2 eq), K2CO3 (440 mg, 3.18 mmol, 3 eq) and Pd(dppf)Cl2 (81 mg, 0.11 

mmol, 0.1 eq), except reaction was run in microwave at 110oC for 2 hours. Yield: 87 mg, 28%. 1H 

NMR (500 MHz, CDCl3) δ 7.70 (d, J = 2.1 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.30 – 7.25 (m, 2H), 

7.22 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 7.7 Hz, 2H), 3.87 (s, 2H), 3.62 – 3.57 (m, 2H), 2.69 – 2.65 

(m, 2H), 1.39 (d, J = 1.0 Hz, 9H). 13C NMR(126 MHz, CDCl3) δ 194.52, 149.25, 141.50, 133.32, 

129.81, 128.83, 128.56, 126.08, 125.87, 120.60, 117.41, 42.34, 41.45, 38.10, 34.27, 30.06. 
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13-7. (R)-N-((R)-6-benzyl-8-(tert-butyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 13-7 was synthesized following General Procedure (F) from 13-6 (87 mg, 0.30 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (109 mg, 0.90 mmol, 3 eq), and Ti(OEt)4 (0.38 

mL, 1.80 mmol, 6 eq), then NaBH4 (68 mg, 1.80 mmol, 6 eq). Yield: 27 mg, 23%. 1H NMR (500 

MHz, CDCl3) δ 7.18 (s, 1H), 7.14 – 7.10 (m, 2H), 7.10 – 7.06 (m, 1H), 6.93 (s, 2H), 6.57 (tt, J = 

7.7, 2.1 Hz, 1H), 4.45 (d, J = 7.2 Hz, 1H), 3.81 – 3.72 (m, 2H), 3.34 – 3.21 (m, 2H), 2.02 – 1.95 

(m, 1H), 1.81 (tdd, J = 16.7, 8.4, 4.1 Hz, 1H), 1.31 – 1.25 (m, 9H), 1.16 – 1.11 (m, 9H). 13C 

NMR(126 MHz, CDCl3) δ 142.01, 141.55, 133.25, 131.16, 129.43, 129.16, 129.13, 128.92, 

128.84, 128.71, 128.66, 128.45, 127.33, 127.17, 126.46, 126.34, 125.88, 121.13, 116.66, 77.16, 

55.40, 50.33, 41.45, 36.56, 29.91, 29.70, 28.06, 22.80.   

 

 

13. (S)-2-amino-N-((R)-6-benzyl-8-(tert-butyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-

2,6-dimethylphenyl)propanamide. 13 was synthesized following General Procedure (G) from 

13-7 (27 mg, 0.068 mmol, 1 eq) and concentrated HCl (0.02 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 13-7 amine salt (22 mg, 0.068 mmol, 1 

eq), di-Boc-Dmt (31 mg, 0.074 mmol, 1.1 eq), PyBOP (39 mg, 0.074 mmol, 1.1 eq), 6-Cl HOBt 

(13 mg, 0.074 mmol, 1.1 eq), and DIPEA (0.12 mL, 0.67 mmol, 10 eq). Step 3: Boc-deprotected 

as described in General Procedure (G). Final yield not calculated. 1H NMR (500 MHz, Methanol-

d4) δ 7.23 – 7.17 (m, 2H), 7.14 – 7.07 (m, 3H), 6.91 (d, J = 2.2 Hz, 1H), 6.75 (d, J = 2.2 Hz, 1H), 
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6.49 (d, J = 2.1 Hz, 2H), 4.92 (s, 1H), 3.90 – 3.81 (m, 1H), 3.75 (s, 2H), 3.25 (ddd, J = 13.7, 11.6, 

2.3 Hz, 1H), 3.09 (d, J = 12.4 Hz, 1H), 2.99 (ddd, J = 13.8, 5.3, 2.2 Hz, 1H), 2.48 (t, J = 12.1 Hz, 

1H), 2.27 (d, J = 2.2 Hz, 6H), 1.67 (t, J = 13.1 Hz, 1H), 1.47 (d, J = 13.3 Hz, 1H), 1.29 (d, J = 2.3 

Hz, 9H). HPLC (gradient A): retention time = 44.7 min. ESI-MS 486.3[M + H]+ and 508.3 [M + 

Na]+. 

 

 

Compound 14 (Notebook name: AAH-58, synthesized by Dr. Aubrie Harland) 

 

 

14-2. 3-bromo-N-(4-bromo-2-fluorophenyl)propanamide. 14-2 was synthesized following 

General Procedure (A) from 4-bromo-2-fluoroaniline 14-1 (1.0 g, 5.26 mmol, 1.00 eq), K2CO3 

(1.49 g, 10.8 mmol, 2.05 eq) and 3-bromopropionyl chloride (0.54 mL, 5.37 mmol, 1.05 eq). Yield: 

1.71 g, 100%. 1H NMR (500 MHz, CDCl3) δ 8.18 (t, J = 8.5 Hz, 1H), 7.33 (s, 1H), 7.24 – 7.18 

(m, 3H), 3.63 (t, J = 6.5 Hz, 2H), 2.93 (t, J = 6.5 Hz, 2H). 13C NMR(126 MHz, CDCl3) δ 167.85, 

152.96, 127.83, 127.80, 125.13, 122.80, 118.55, 118.37, 116.22, 40.63, 26.36.    
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14-3. 1-(4-bromo-2-fluorophenyl)azetidin-2-one. 14-3 was synthesized following General 

Procedure (B) from 14-2 (1.71 g, 5.26 mmol, 1.00 eq) and NaOtBu (530 mg, 5.30 mmol, 1.05 

eq). Yield: 1.00 g, 78%. 1H NMR (500 MHz, CDCl3) δ 7.91 (t, J = 8.6 Hz, 1H), 7.25 – 7.15 (m, 

2H), 3.87 (q, J = 4.4 Hz, 2H), 3.15 (t, J = 4.6 Hz, 2H). 13C NMR(126 MHz, CDCl3) δ 165.40, 

152.52, 150.53, 127.71, 127.68, 125.66, 125.58, 122.06, 122.03, 119.69, 119.51, 115.66, 115.59, 

42.07, 42.01, 38.39, 38.38.   

 

14-4. 6-bromo-8-fluoro-2,3-dihydroquinolin-4(1H)-one. 14-4 was synthesized following General 

Procedure (C) from 14-3 (1.0 g, 4.1 mmol, 1 eq) and TfOH (1.09 mL, 12.3 mmol, 3 eq). Yield: 

508 mg, 51%. 1H NMR (500 MHz, CDCl3) δ 7.76 (t, J = 1.7 Hz, 1H), 7.27 – 7.23 (m, 1H), 4.65 

(s, 1H), 3.64 (td, J = 7.5, 7.1, 2.0 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H). 13C NMR(126 MHz, CDCl3) 

δ 191.33, 152.16, 150.20, 140.23, 140.13, 125.60, 122.79, 122.62, 121.78, 108.04, 107.97, 41.94, 

37.80. 

 

14-5. 6-benzyl-8-fluoro-2,3-dihydroquinolin-4(1H)-one. 14-5 was synthesized following General 

Procedure (E) from 14-4 (75 mg, 0.31 mmol, 1 eq), benzyl boronic acid pinacol ester (0.14 mL, 

0.61 mmol, 2 eq), K2CO3 (128 mg, 0.92 mmol, 3 eq) and Pd(dppf)Cl2 (23 mg, 0.03 mmol, 0.1 eq). 
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Yield: 29 mg, 37%. 1H NMR (500 MHz, CDCl3) δ 7.54 – 7.51 (m, 1H), 7.32 – 7.24 (m, 2H), 7.22 

– 7.19 (m, 1H), 7.18 – 7.14 (m, 2H), 6.94 (dd, J = 11.7, 1.9 Hz, 1H), 4.52 (s, 1H), 3.86 (s, 2H), 

3.61 (td, J = 7.5, 7.1, 1.8 Hz, 2H), 2.75 – 2.68 (m, 2H). 13C NMR(126 MHz, CDCl3) δ 192.90, 

152.40, 150.47, 140.70, 139.68, 139.57, 130.23, 128.89, 128.73, 126.45, 122.43, 120.44, 120.30, 

42.29, 41.10, 38.20. 

 

14-6. (R)-N-((R)-6-benzyl-8-fluoro-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 14-6 was synthesized following General Procedure (F) from 14-5 (25 mg, 0.10 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (36 mg, 0.30 mmol, 3 eq), and Ti(OEt)4 (0.12 

mL, 0.60 mmol, 6 eq), then NaBH4 (23 mg, 0.60 mmol, 6 eq). Yield: 16 mg; 53%. 1H NMR (500 

MHz, CDCl3) δ 7.27 (t, J = 7.6 Hz, 2H), 7.22 – 7.14 (m, 3H), 6.92 (s, 1H), 6.70 (dd, J = 12.0, 1.8 

Hz, 1H), 4.55 (q, J = 3.3 Hz, 1H), 4.07 (s, 1H), 3.83 (d, J = 3.7 Hz, 2H), 3.36 (td, J = 11.6, 2.9 Hz, 

1H), 3.30 (dt, J = 11.4, 4.2 Hz, 1H), 2.11 (dq, J = 13.7, 3.4 Hz, 1H), 1.97 – 1.88 (m, 1H), 1.62 (s, 

1H), 1.22 (d, J = 0.7 Hz, 9H). 13C NMR(126 MHz, CDCl3) δ 141.34, 131.91, 129.73, 128.88, 

128.62, 126.23, 125.41, 122.55, 114.87, 114.73, 110.15, 55.58, 49.28, 41.10, 36.09, 28.36, 22.79. 
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14 (S)-2-amino-N-((R)-6-benzyl-8-fluoro-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide. 14 was synthesized following General Procedure (G) from 14-6 

(19 mg, 0.05 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 14-6 amine salt (55 mg, 0.14 mmol, 1 

eq), di-Boc-Dmt (60 mg, 0.15 mmol, 1.1 eq), PyBOP (73 mg, 0.15 mmol, 1.1 eq), and 6-Cl HOBt 

(24 mg, 0.15 mmol, 1.1 eq), followed by DIPEA (0.25 mL, 1.4 mmol, 10 eq). Step 3: Boc-

deprotected as described in General Procedure (G). Final yield not calculated. 1H NMR (500 

MHz, Methanol-d4) δ 7.25 – 7.19 (m, 2H), 7.11 (d, J = 7.7 Hz, 2H), 6.70 (s, 1H), 6.63 (d, J = 12.1 

Hz, 1H), 6.48 (s, 2H), 4.93 (s, 1H), 3.84 (dd, J = 11.6, 4.7 Hz, 1H), 3.75 (s, 2H), 3.25 (t, J = 12.6 

Hz, 1H), 3.19 – 3.13 (m, 1H), 3.03 (d, J = 8.0 Hz, 1H), 3.00 (d, J = 11.7 Hz, 1H), 2.46 (t, J = 11.7 

Hz, 1H), 2.31 – 2.23 (m, 7H), 1.68 (t, J = 12.6 Hz, 1H), 1.50 (d, J = 13.4 Hz, 1H). HPLC (gradient 

A): retention time = 35.2 min. ESI-MS 470.2 [M + Na]+. 
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Compound 15 (Notebook reference: AFN-32 or afn-iv-285, notebook 4 p. 285) 

 

 

15-2. 3-bromo-N-(2-(trifluoromethyl)phenyl)propanamide. 15-2 was synthesized following 

General Procedure (A) from 2-(trifluoromethyl)aniline 15-1 (2.00 g, 12.4 mmol, 1.00 eq), K2CO3 

(5.14 g, 37.2 mmol, 3.00 eq) and 3-bromopropionyl chloride (1.31 mL, 13.0 mmol, 1.05 eq). Yield: 

3.68 g, 100%. 1H NMR (500 MHz, CDCl3) δ 8.17 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.57 

(t, J = 7.9 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 3.71 (t, J = 6.6 Hz, 2H), 2.99 (t, J = 6.5 Hz, 2H). 13C 

NMR(126 MHz, CDCl3) δ 168.31, 134.75, 133.71, 133.06, 127.45, 126.26, 125.10, 40.86, 26.53.   

 

 

15-3. 1-(2-(trifluoromethyl)phenyl)azetidin-2-one. 15-3 was synthesized following General 

Procedure (B) from 15-2 (3.38 g, 12.56 mmol, 1.00 eq) and NaOtBu (1.27 g, 13.19 mmol, 1.05 

eq). Yield: 1.62 g, 60%. 1H NMR (500 MHz, CDCl3) δ 7.98 (d, J = 8.1 Hz, 1H), 7.64 (dd, J = 8.0, 

1.4 Hz, 1H), 7.52 (td, J = 7.8, 1.5 Hz, 1H), 7.30 – 7.21 (m, 1H), 3.84 (td, J = 4.6, 1.2 Hz, 2H), 3.14 

(t, J = 4.7 Hz, 2H). 13C NMR(126 MHz, CDCl3) δ 166.86, 135.88, 135.87, 132.95, 132.94, 127.00, 

126.95, 125.58, 125.55, 124.66, 122.49, 43.89, 43.86, 43.82, 43.79, 37.24.   
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15-4. 8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. 15-4 was synthesized following 

General Procedure (C) from 15-3 (1.62 g, 7.52 mmol, 1.00 eq) and TfOH (2.00 mL, 22.56 mmol, 

3.00 eq). Yield: 850 mg, 52%. 1H NMR (500 MHz, CDCl3) δ 8.05 (ddd, J = 7.9, 1.7, 0.9 Hz, 1H), 

7.60 (ddd, J = 7.6, 1.7, 0.8 Hz, 1H), 6.77 (td, J = 7.7, 0.9 Hz, 1H), 5.06 (s, 1H), 3.69 – 3.63 (m, 

2H), 2.77 – 2.71 (m, 2H). 13C NMR(126 MHz, CDCl3) δ 192.59, 148.70, 132.75, 132.71, 132.66, 

132.62, 132.22, 125.64, 123.47, 120.74, 116.46, 41.72, 37.44. 

 

15-5. 6-bromo-8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. 15-5 was synthesized 

following General Procedure (D) from 15-4 (850 mg, 3.95 mmol, 1.00 eq) and NBS (739 mg, 

4.15 mmol, 1.05 eq). Yield: 1.00 g, 86%. 1H NMR (500 MHz, CDCl3) δ 8.13 (d, J = 2.4 Hz, 1H), 

7.68 (d, J = 2.5 Hz, 1H), 5.07 (s, 1H), 3.70 – 3.63 (m, 2H), 2.78 – 2.70 (m, 2H). 13C NMR(126 

MHz, CDCl3) δ 191.23, 147.36, 135.24, 135.19, 135.15, 135.10, 134.57, 124.64, 122.47, 122.03, 

108.56, 41.55, 37.08.   
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15-6. 6-benzyl-8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. 15-6 was synthesized 

following General Procedure (E) from 15-5 (300 mg, 1.02 mmol, 1 eq), benzyl boronic acid 

pinacol ester (0.45 mL, 2.04 mmol, 2 eq), K2CO3 (423 mg, 3.06 mmol, 3 eq) and Pd(dppf)Cl2 (73 

mg, 0.10 mmol, 0.1 eq). Yield: 110 mg, 35%. 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 2.2 Hz, 

1H), 7.44 (d, J = 2.2 Hz, 1H), 7.29 (dd, J = 8.2, 6.9 Hz, 2H), 7.23 – 7.18 (m, 1H), 7.17 – 7.14 (m, 

2H), 4.96 (s, 1H), 3.89 (s, 2H), 3.64 (td, J = 7.0, 2.3 Hz, 2H), 2.75 – 2.67 (m, 2H). 13C NMR(126 

MHz, CDCl3) δ 192.72, 147.26, 140.45, 133.27, 132.02, 129.55, 128.81, 126.54, 120.84, 41.84, 

40.82, 37.57.   

 

15-7. (R)-N-((R)-6-benzyl-8-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-

2-sulfinamide. 15-7 was synthesized following General Procedure (F) from 15-6 (110 mg, 0.36 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (132 mg, 1.08 mmol, 3 eq), and Ti(OEt)4 (0.45 

mL, 2.16 mmol, 6 eq), then NaBH4 (82 mg, 2.16 mmol, 6 eq). Yield: 128 mg, 86%. 1H NMR (500 

MHz, CDCl3) δ 7.30 – 7.24 (m, 3H), 7.20 – 7.15 (m, 4H), 4.59 (s, 1H), 4.54 (q, J = 3.3 Hz, 1H), 

3.90 – 3.79 (s, 2H), 3.41 (td, J = 12.0, 3.1 Hz, 1H), 3.34 (dt, J = 7.8, 4.0 Hz, 1H), 2.10 (dq, J = 

13.8, 3.5 Hz, 1H), 1.88 (ddt, J = 17.0, 12.9, 3.9 Hz, 1H), 1.22 (s, 9H). 13C NMR(126 MHz, CDCl3) 
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δ 141.13, 140.96, 134.78, 128.80, 128.68, 127.21, 126.30, 122.16, 55.63, 49.84, 40.86, 36.30, 

27.23, 22.77.   

 

 

15. (S)-2-amino-N-((R)-6-benzyl-8-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 15 was synthesized following General Procedure (G) 

from 15-7 (128 mg, 0.31 mmol, 1 eq) and concentrated HCl (0.05 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 15-7 amine salt (48 mg, 0.140 

mmol, 1 eq), di-Boc-Dmt (63 mg, 0.154 mmol, 1.1 eq), PyBOP (78 mg, 0.154 mmol, 1.1 eq), and 

6-Cl HOBt (26 mg, 0.154 mmol, 1.1 eq), followed by DIPEA (0.25 mL, 1.40 mmol, 10 eq). Step 

3: Boc-deprotected as described in General Procedure (G). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 8.21 (d, J = 8.0 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.17 – 7.13 (m, 1H), 7.13 

– 7.08 (m, 3H), 7.06 (d, J = 2.1 Hz, 1H), 6.50 – 6.46 (m, 2H), 4.95 (q, J = 4.2 Hz, 1H), 3.84 (dd, J 

= 11.6, 5.0 Hz, 1H), 3.79 (s, 2H), 3.25 (dd, J = 13.6, 11.6 Hz, 1H), 3.08 (dtd, J = 12.6, 4.3, 1.2 Hz, 

1H), 3.01 (dd, J = 13.7, 5.0 Hz, 1H), 2.50 – 2.41 (m, 1H), 1.70 – 1.60 (m, 1H), 1.50 (dq, J = 13.2, 

3.7 Hz, 1H). 13C NMR(126 MHz, cd3od) δ 168.36, 157.38, 142.65, 142.38, 140.00, 135.67, 129.64, 

129.48, 128.97, 127.69, 127.12, 123.27, 121.87, 116.46, 53.39, 46.76, 41.44, 37.53, 31.94, 28.05, 

20.44.  HPLC (gradient A): retention time = 42.1 min. ESI-MS 498.24 [M + H]+. 
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Compound 16 (Notebook reference: AFN-31 or afn-iv-287, notebook 4 p. 287) 

 

 

16-1. (R)-N-((R)-6-benzyl-8-bromo-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 16-1 was synthesized following General Procedure (F) from 8-5 (80 mg, 0.25 mmol, 

1 eq), (R)-2-methyl-2-propanesulfinamide (92 mg, 0.76 mmol, 3 eq), and Ti(OEt)4 (0.32 mL, 1.52 

mmol, 6 eq), then NaBH4 (58 mg, 1.52 mmol, 6 eq). Yield: 71 mg, 67%. 1H NMR (500 MHz, 

CDCl3) δ 7.29 – 7.25 (m, 2H), 7.20 – 7.15 (m, 4H), 7.06 (d, J = 1.9 Hz, 1H), 4.52 (q, J = 3.2 Hz, 

1H), 4.50 (s, 1H), 3.81 (s, 2H), 3.41 (tdd, J = 11.9, 3.0, 1.1 Hz, 1H), 3.37 – 3.32 (m, 1H), 2.98 (s, 

1H), 2.13 – 2.06 (m, 1H), 1.93 – 1.84 (m, 1H), 1.21 (s, 9H). 13C NMR(126 MHz, CDCl3) δ 141.27, 

140.26, 132.57, 130.70, 129.96, 128.85, 128.62, 126.23, 121.86, 109.13, 55.58, 49.86, 40.80, 

36.61, 27.91, 22. 

 

 

16. (S)-2-amino-N-((R)-6-benzyl-8-bromo-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide.  16 was synthesized following General Procedure (G) from 16-1 

Br
N
H

O

Br
N
H

HN
S
O

F

 8-5 16-1

Br
N
H

HN

O

NH2 OH

Br
N
H

HN
S
O

G

16-1 16



 85 

(71 mg, 0.17 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 16-1 amine salt (62 mg, 0.175 mmol, 1 

eq), di-Boc-Dmt (78 mg, 0.192 mmol, 1.1 eq), PyBOP (99 mg, 0.192 mmol, 1.1 eq), and 6-Cl 

HOBt (32 mg, 0.192 mmol, 1.1 eq), followed by DIPEA (0.31 mL, 1.75 mmol, 10 eq), stirring 18 

hours before Boc-deprotecting. Step 3: Boc-deprotected as described in General Procedure (G). 

Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 8.16 (d, J = 8.0 Hz, 1H), 7.26 – 

7.20 (m, 2H), 7.17 – 7.12 (m, 1H), 7.12 – 7.08 (m, 3H), 6.86 (d, J = 2.0 Hz, 1H), 6.48 (s, 2H), 4.91 

(dt, J = 7.9, 4.1 Hz, 1H), 3.83 (dd, J = 11.6, 5.0 Hz, 1H), 3.74 (s, 2H), 3.25 (dd, J = 13.6, 11.6 Hz, 

1H), 3.12 – 3.04 (m, 1H), 3.00 (dd, J = 13.7, 5.0 Hz, 1H), 2.46 (td, J = 12.0, 3.0 Hz, 1H), 2.27 (s, 

6H), 1.64 (ddt, J = 13.0, 11.6, 4.1 Hz, 1H), 1.50 (dq, J = 13.3, 3.8 Hz, 1H). 13C NMR(126 MHz, 

cd3od) δ 168.28, 157.38, 142.79, 141.86, 139.99, 133.41, 131.24, 130.77, 129.66, 129.43, 127.06, 

123.26, 121.64, 116.45, 109.56, 53.39, 46.91, 41.45, 37.96, 31.94, 28.75, 20.45. HPLC (gradient 

A): retention time = 39.9 min. ESI-MS 508.16[M + H]+ and 510.16 [M + Na]+. 

 

 

Compound 17 (Notebook reference: AFN-12 or afn-iii-245, notebook 3 p. 245) 

 

 

17-1. 6-benzyl-8-(furan-3-yl)-2,3-dihydroquinolin-4(1H)-one. 17-1 was synthesized following 

General Procedure (E) from 8-5 (111 mg, 0.35 mmol, 1 eq), 3-furanylboronic acid (60 mg, 0.53 

mmol, 1.5 eq), K2CO3 (145 mg, 1.05 mmol, 3 eq) and Pd(dppf)Cl2 (26 mg, 0.035 mmol, 0.1 eq). 
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Yield: 88 mg, 83%. 1H NMR (500 MHz, Chloroform-d) δ 7.74 (d, J = 2.1 Hz, 1H), 7.60 – 7.56 

(m, 1H), 7.52 (t, J = 1.5 Hz, 1H), 7.26 (t, J = 7.7 Hz, 2H), 7.21 – 7.16 (m, 3H), 7.17 – 7.13 (m, 

1H), 6.55 – 6.52 (m, 1H), 4.75 (s, 1H), 3.88 (s, 2H), 3.50 (td, J = 7.5, 7.1, 2.0 Hz, 2H), 2.69 (t, J = 

6.9 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.00, 148.40, 143.83, 141.22, 140.26, 136.20, 130.38, 

128.83, 128.62, 126.94, 126.22, 121.97, 120.04, 119.68, 111.00, 42.41, 41.09, 38.05. 

 

 

17-2. (R)-N-((R)-6-benzyl-8-(furan-3-yl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 17-2 was synthesized following General Procedure (F) from 17-1 (71 mg, 0.23 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (85 mg, 0.70 mmol, 3 eq), and Ti(OEt)4 (0.29 

mL, 1.40 mmol, 6 eq), then NaBH4 (53 mg, 1.40 mmol, 6 eq). Yield: 34 mg, 35%. 1H NMR (500 

MHz, Chloroform-d) δ 7.49 (d, J = 1.7 Hz, 1H), 7.41 (q, J = 1.7 Hz, 1H), 7.19 (td, J = 7.4, 6.4, 1.6 

Hz, 2H), 7.16 – 7.07 (m, 3H), 7.02 (d, J = 1.7 Hz, 1H), 6.85 (d, J = 1.8 Hz, 1H), 6.47 (d, J = 1.9 

Hz, 1H), 4.50 (d, J = 4.0 Hz, 1H), 3.78 (d, J = 2.6 Hz, 2H), 3.25 (ddd, J = 14.1, 11.0, 2.5 Hz, 1H), 

3.19 – 3.14 (m, 1H), 3.13 (s, 1H), 2.02 (dd, J = 13.6, 3.4 Hz, 1H), 1.91 – 1.80 (m, 1H), 1.14 (d, J 

= 1.5 Hz, 9H). 13C NMR (126 MHz, cdcl3) δ 143.42, 141.81, 140.90, 140.08, 130.29, 130.18, 

129.87, 128.86, 128.56, 126.04, 122.94, 120.89, 118.22, 111.19, 77.16, 55.49, 49.88, 41.14, 36.62, 

28.27, 22.80. 
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17. (S)-2-amino-N-((R)-6-benzyl-8-(furan-3-yl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-

2,6-dimethylphenyl)propanamide. 17 was synthesized following General Procedure (G) from 

17-2 (34 mg, 0.08 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 17-2 amine salt (0.08 mmol, 1 eq), di-

Boc-Dmt (38 mg, 0.09 mmol, 1.1 eq), PyBOP (48 mg, 0.09 mmol, 1.1 eq), and 6-Cl HOBt (16 

mg, 0.09 mmol, 1.1 eq), followed by DIPEA (0.14 mL, 0.80 mmol, 10 eq). Step 3: Boc-deprotected 

as described in General Procedure (G). Final yield not calculated. 1H NMR (500 MHz, Methanol-

d4) δ 8.19 (t, J = 6.5 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.55 (q, J = 1.9 Hz, 1H), 7.25 – 7.19 (m, 2H), 

7.16 – 7.10 (m, 3H), 6.93 – 6.87 (m, 2H), 6.53 (d, J = 2.0 Hz, 1H), 6.47 (d, J = 1.9 Hz, 2H), 4.96 

(d, J = 6.6 Hz, 1H), 3.86 (ddt, J = 11.8, 4.8, 2.0 Hz, 1H), 3.80 (d, J = 2.3 Hz, 2H), 3.25 (ddd, J = 

13.6, 11.4, 2.0 Hz, 1H), 3.07 – 2.98 (m, 2H), 2.46 (tq, J = 11.9, 2.9, 2.0 Hz, 1H), 2.27 (d, J = 1.9 

Hz, 6H), 1.73 (td, J = 12.2, 4.0 Hz, 1H), 1.56 – 1.47 (m, 1H). 13C NMR (126 MHz, cd3od) δ 168.36, 

157.29, 144.58, 143.13, 141.24, 140.00, 131.91, 131.16, 130.88, 129.66, 129.36, 126.92, 124.06, 

123.33, 121.87, 120.62, 116.44, 111.82, 53.41, 49.00, 46.92, 41.88, 38.49, 31.92, 28.87, 20.46. 

HPLC (method 20 to 70%B in 50 min): retention time = 19..3 min, or approximately 39.3 minutes 

adjusted to gradient A. ESI-MS 496.3 [M+H] and 518.3 [M+Na]+.   
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Compound 18 (Notebook reference: AFN-16 or afn-iv-3, notebook 4 p. 3) 

 

 

18-1. 6-benzyl-8-phenethyl-2,3-dihydroquinolin-4(1H)-one. 18-1 was synthesized following 

General Procedure (E) from 8-5 (130 mg, 0.41 mmol, 1 eq), phenethyl boronic acid MIDA ester 

(161 mg, 0.62 mmol, 1.5 eq), K2CO3 (171 mg, 1.24 mmol, 3 eq) and Pd(dppf)Cl2 (30 mg, 0.04 

mmol, 0.1 eq). Yield: 65 mg, 46%. 1H NMR (500 MHz, CDCl3) δ 7.67 (d, J = 2.1 Hz, 1H), 7.26 

(s, 4H), 7.24 – 7.18 (m, 2H), 7.15 (dd, J = 9.7, 7.7 Hz, 4H), 7.02 (d, J = 2.1 Hz, 1H), 3.85 (s, 2H), 

3.39 (td, J = 7.7, 7.1, 2.1 Hz, 2H), 2.93 – 2.87 (m, 2H), 2.73 (t, J = 7.7 Hz, 2H), 2.66 – 2.60 (m, 

2H). 13C NMR(126 MHz, CDCl3) δ 194.30, 148.77, 141.43, 141.25, 136.03, 130.18, 128.79, 

128.65, 128.55, 128.48, 126.93, 126.40, 126.09, 125.71, 119.56, 42.37, 41.14, 37.97, 35.30, 32.85.   

 

18-2. (R)-N-((R)-6-benzyl-8-phenethyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 18-2 was synthesized following General Procedure (F) from 18-1 (65 mg, 0.19 
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mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (70 mg, 0.57 mmol, 3 eq), and Ti(OEt)4 (0.24 

mL, 1.14 mmol, 6 eq), then NaBH4 (44 mg, 1.14 mmol, 6 eq). Yield: 61 mg, 72%. Carried forward 

without characterization. 

 

 

18. (S)-2-amino-N-((R)-6-benzyl-8-phenethyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide. 18 was synthesized following General Procedure (G) from 18-2 

(61 mg, 0.14 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 18-2 amine salt (32 mg, 0.084 mmol, 1 

eq), di-Boc-Dmt (38 mg, 0.093 mmol, 1.1 eq), PyBOP (49 mg, 0.093 mmol, 1.1 eq), and 6-Cl 

HOBt (16 mg, 0.093 mmol, 1.1 eq), followed by DIPEA (0.15 mL, 0.84 mmol, 10 eq). Step 3: 

Boc-deprotected as described in General Procedure (G). Yield after deprotection: 17 mg, 31% 

over 2 steps. 1H NMR (500 MHz, Methanol-d4) δ 8.12 (d, J = 7.9 Hz, 1H), 7.23 – 7.17 (m, 4H), 

7.16 – 7.09 (m, 4H), 7.05 – 7.02 (m, 2H), 6.79 (d, J = 2.0 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 6.49 

(s, 2H), 4.94 (q, J = 4.6 Hz, 1H), 3.86 (dd, J = 11.6, 5.0 Hz, 1H), 3.72 (s, 2H), 3.25 (dd, J = 13.6, 

11.6 Hz, 1H), 3.06 (dt, J = 12.2, 4.3 Hz, 1H), 3.01 (dd, J = 13.6, 5.1 Hz, 1H), 2.81 (t, J = 7.6 Hz, 

2H), 2.70 (td, J = 8.0, 7.5, 4.7 Hz, 2H), 2.51 (td, J = 11.8, 2.5 Hz, 1H), 2.28 (s, 6H), 1.76 – 1.67 

(m, 1H), 1.55 – 1.47 (m, 1H). HPLC (gradient A): retention time = 45.3 min. ESI-MS 556.3 [M + 

Na]+.   
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Compound 19 (Notebook reference: AFN-13 or afn-iii-247, notebook 5 p. 247) 

 

 

19-1. 8-(benzofuran-2-yl)-6-benzyl-2,3-dihydroquinolin-4(1H)-one. 19-1 was synthesized 

following General Procedure (E) from 8-5 (113 mg, 0.36 mmol, 1 eq), 2-benzofuranyl boronic 

acid MIDA ester (146 mg, 0.54 mmol, 1.5 eq), K2CO3 (148 mg, 1.07 mmol, 3 eq) and Pd(dppf)Cl2 

(27 mg, 0.036 mmol, 0.1 eq). Yield: 116 mg, 92%. 1H NMR (500 MHz, Chloroform-d) δ 7.85 – 

7.81 (m, 1H), 7.60 – 7.56 (m, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.33 – 7.23 (m, 4H), 7.19 (dd, J = 

14.5, 7.4 Hz, 3H), 6.90 (s, 1H), 3.92 (s, 2H), 3.66 – 3.59 (m, 2H), 2.74 (t, J = 6.9 Hz, 2H). 13C 

NMR (126 MHz, cdcl3) δ 193.69, 154.49, 154.18, 147.86, 141.04, 135.23, 130.26, 128.98, 128.85, 

128.69, 128.56, 126.32, 124.67, 123.45, 121.01, 120.48, 117.22, 111.24, 104.17, 77.16, 42.12, 

41.03, 37.92. 

 

19-2. (R)-N-((R)-8-(benzofuran-2-yl)-6-benzyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. 19-2 was synthesized following General Procedure (F) from 19-
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1 (97 mg, 0.27 mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (100 mg, 0.82 mmol, 3 eq), and 

Ti(OEt)4 (0.35 mL, 1.65 mmol, 6 eq), then NaBH4 (63 mg, 1.65 mmol, 6 eq). Yield: 62 mg, 52%. 

1H NMR (500 MHz, Chloroform-d) δ 7.50 – 7.45 (m, 1H), 7.45 – 7.40 (m, 1H), 7.27 (d, J = 2.2 

Hz, 1H), 7.23 – 7.14 (m, 5H), 7.14 (dd, J = 7.2, 1.5 Hz, 2H), 7.08 (t, J = 3.0 Hz, 1H), 6.78 (d, J = 

1.3 Hz, 1H), 4.51 (t, J = 3.0 Hz, 1H), 3.82 (s, 2H), 3.37 (td, J = 11.9, 3.0 Hz, 1H), 3.28 (dt, J = 

11.6, 3.8 Hz, 1H), 2.05 (dq, J = 13.6, 3.2 Hz, 1H), 1.92 – 1.82 (m, 1H), 1.15 (d, J = 3.1 Hz, 9H). 

13C NMR (126 MHz, cdcl3) δ 155.55, 154.36, 141.63, 141.04, 132.05, 129.57, 129.47, 128.84, 

128.58, 126.11, 124.15, 123.17, 121.70, 120.76, 115.16, 111.11, 103.46, 77.16, 55.54, 50.05, 

41.05, 36.40, 27.65, 22.78, 22.64. 

 

 

19. (S)-2-amino-N-((R)-8-(benzofuran-2-yl)-6-benzyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 19 was synthesized following General Procedure (G) 

from 19-2 (62 mg, 0.14 mmol, 1 eq) and concentrated HCl (0.05 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 19-2 amine salt (0.14 mmol, 1 

eq), di-Boc-Dmt (61 mg, 0.15 mmol, 1.1 eq), PyBOP (78 mg, 0.15 mmol, 1.1 eq), and 6-Cl HOBt 

(26 mg, 0.15 mmol, 1.1 eq), followed by DIPEA (0.25 mL, 1.40 mmol, 10 eq). Step 3: Boc-

deprotected as described in General Procedure (G). Final yield not calculated. 1H NMR (500 

MHz, Methanol-d4) δ 8.25 (d, J = 7.9 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.51 – 7.46 (m, 1H), 7.38 (d, 
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J = 2.0 Hz, 1H), 7.29 – 7.20 (m, 4H), 7.20 – 7.11 (m, 3H), 6.97 – 6.92 (m, 2H), 6.49 (d, J = 1.7 

Hz, 2H), 4.97 (p, J = 4.1 Hz, 1H), 3.91 – 3.84 (m, 1H), 3.83 (d, J = 1.7 Hz, 2H), 3.26 (ddd, J = 

13.4, 11.5, 1.8 Hz, 1H), 3.17 – 3.08 (m, 1H), 3.01 (ddd, J = 13.5, 5.1, 1.7 Hz, 1H), 2.56 – 2.47 (m, 

1H), 2.28 (d, J = 1.7 Hz, 6H), 1.78 – 1.68 (m, 1H), 1.60 – 1.51 (m, 1H). 13C NMR (126 MHz, 

cd3od) δ 168.32, 157.33, 156.26, 155.52, 143.09, 142.03, 140.02, 132.70, 130.52, 130.30, 129.96, 

129.68, 129.41, 126.98, 125.16, 124.07, 123.33, 121.76, 116.56, 116.47, 111.73, 104.17, 53.41, 

49.00, 47.22, 41.83, 37.96, 31.95, 28.59, 20.47. HPLC (method 20 to 70%B in 50 min): retention 

time = 29..0 min, or approximately 49.0 minutes adjusted to gradient A. ESI-MS 546.3 [M+H] 

and 568.3 [M+Na]+.   

 

 

Compound 20 (Notebook reference: AFN-54 or afn-v-295, notebook 5 p. 295) 

 

 

20-1. 6-benzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxylic acid. 20-1 was synthesized 

following General Procedure (H) using degassed 4:1 DMF:H2O, intermediate 8-5 (305 mg, 0.97 

mmol, 1 eq), K2CO3 (200 mg, 1.45 mmol, 1.5 eq), Pd(dppf)Cl2 (71 mg, 0.097 mmol, 0.1 eq), and 

added oxalyl chloride (3 mL total volume). Yield: 150 mg, 55%. 1H NMR (500 MHz, CDCl3) δ 
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8.04 (s, 1H), 8.00 (d, J = 2.4 Hz, 1H), 7.98 (d, J = 2.3 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.21 – 7.15 

(m, 3H), 3.88 (s, 2H), 3.65 (t, J = 7.1 Hz, 2H), 2.73 – 2.68 (m, 2H), 2.12 (s, 1H). 13C NMR(126 

MHz, CDCl3) δ 193.29, 172.27, 152.62, 140.82, 139.57, 134.93, 128.79, 128.75, 128.29, 126.41, 

120.42, 111.83, 40.83, 37.24.  

 

20-2. 6-benzyl-N,N-dimethyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxamide. 20-2 was 

synthesized following General Procedure (I) from intermediate 20-1 (37 mg, 0.13 mmol, 1.0 eq), 

dimethylamine hydrochloride (22 mg, 0.26 mmol, 2.0 eq), PyBOP (75 mg, 0.20 mmol, 1.1 eq) and 

DIPEA (0.32 mL, 1.81 mmol, 10 eq). Yield: quantitative. 1H NMR (500 MHz, Chloroform-d) δ 

8.02 (s, 1H), 7.79 (d, J = 2.1 Hz, 1H), 7.26 (t, J = 7.4 Hz, 2H), 7.18 (tt, J = 7.5, 1.4 Hz, 1H), 7.14 

(dd, J = 8.6, 1.3 Hz, 2H), 7.05 (d, J = 2.2 Hz, 1H), 3.87 (s, 2H), 3.54 (td, J = 7.8, 7.3, 2.1 Hz, 2H), 

2.96 (s, 3H), 2.88 (s, 3H), 2.67 (t, J = 7.0 Hz, 2H).13C NMR (126 MHz, cdcl3) δ 193.61, 170.12, 

134.94, 129.48, 128.88, 128.70, 126.37, 77.16, 41.62, 40.85, 37.72, 36.64, 31.39. 
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20-3. (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-N,N-dimethyl-1,2,3,4-tetrahydroquinoline-8-

carboxamide. 20-3 was synthesized following General Procedure (F) from 20-2 (55 mg, 0.18 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (66 mg, 0.54 mmol, 3 eq), and Ti(OEt)4 (0.22 

mL, 1.07 mmol, 6 eq), then NaBH4 (41 mg, 1.07 mmol, 6 eq). Yield: 51 mg, 69%. 1H NMR (499 

MHz, Chloroform-d) δ 7.25 (d, J = 7.6 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.16 – 7.14 (m, 2H), 7.13 (d, 

J = 2.1 Hz, 1H), 6.98 (d, J = 2.2 Hz, 0H), 6.79 (d, J = 2.1 Hz, 1H), 4.52 (q, J = 3.2 Hz, 1H), 3.83 

(d, J = 3.0 Hz, 2H), 3.36 (td, J = 12.1, 3.0 Hz, 1H), 3.21 (d, J = 11.6 Hz, 1H), 2.08 – 2.02 (m, 1H), 

1.87 (tt, J = 12.6, 3.8 Hz, 1H), 1.27 (s, 3H), 1.21 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 171.06, 

142.21, 141.48, 133.27, 132.22, 128.84, 128.73, 128.61, 128.52, 128.42, 128.29, 125.99, 121.89, 

119.13, 55.41, 49.78, 40.74, 35.94, 27.65, 22.65, 22.12. 

 

 

20. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-N,N-dimethyl-

1,2,3,4-tetrahydroquinoline-8-carboxamide. 20 was synthesized following General Procedure 

(G) from 20-3 (51 mg, 0.12 mmol, 1 eq) and concentrated HCl (0.05 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 20-3 amine salt (42 mg, 0.12 

mmol, 1 eq), di-Boc-Dmt (55 mg, 0.13 mmol, 1.1 eq), PyBOP (70 mg, 0.13 mmol, 1.1 eq), and 

DIPEA (0.21 mL, 1.21 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure 

(G). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.21 (dd, J = 8.2, 6.8 Hz, 2H), 

7.12 (ddd, J = 8.5, 7.1, 1.5 Hz, 3H), 6.94 (d, J = 2.1 Hz, 1H), 6.76 (d, J = 2.1 Hz, 1H), 6.46 (s, 
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2H), 4.91 (dt, J = 7.6, 3.9 Hz, 1H), 3.83 (dd, J = 11.6, 5.0 Hz, 1H), 3.77 (s, 2H), 3.25 (dd, J = 13.6, 

11.6 Hz, 1H), 3.02 – 2.95 (m, 3H), 2.89 (s, 3H), 2.40 (td, J = 12.0, 2.9 Hz, 1H), 2.27 (s, 6H), 1.68 

– 1.60 (m, 1H), 1.54 – 1.46 (m, 1H). HPLC (gradient A): retention time = 34.8 min. ESI-MS 

455.3[M + H]+ and 477.3 [M + Na]+. 

 

 

Compound 21 (Notebook reference: AFN-44 or afn-v-157, notebook 5 p. 157) 

 

 

21-1. 6-benzyl-N-ethyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxamide. 21-1 was synthesized 

following General Procedure (I) from intermediate 20-1 (78 mg, 0.28 mmol, 1.0 eq), PyBOP 

(172 mg, 0.33 mmol, 1.2 eq), ethylamine hydrochloride (27 mg, 0.33 mmol, 1.2 eq) and DIPEA 

(0.15 mL, 0.84 mmol, 3.0 eq). Product was highly fluorescent under long-wave UV (285 nm) light. 

Yield: 66 mg, 77%. 1H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 2.0 Hz, 1H), 7.31 – 7.27 (m, 3H), 

7.21 (t, J = 7.3 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H), 3.87 (s, 2H), 3.59 (td, J = 7.8, 7.2, 2.3 Hz, 2H), 

3.42 (p, J = 7.1, 6.5 Hz, 2H), 2.67 (t, J = 7.1 Hz, 2H), 1.23 (t, J = 7.3 Hz, 3H). 
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21-2. (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-N-ethyl-1,2,3,4-tetrahydroquinoline-8-

carboxamide. 21-2 was synthesized following General Procedure (F) from 21-1 (64 mg, 0.21 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (76 mg, 0.62 mmol, 3 eq), and Ti(OEt)4 (0.26 

mL, 1.24 mmol, 6 eq), then NaBH4 (47 mg, 1.24 mmol, 6 eq). Yield: 61 mg, 71%. 1H NMR (500 

MHz, CDCl3) δ 7.58 (s, 1H), 7.30 – 7.22 (m, 2H), 7.19 (dd, J = 7.5, 1.5 Hz, 1H), 7.15 (dd, J = 5.6, 

3.1 Hz, 3H), 7.04 (d, J = 2.0 Hz, 1H), 5.96 (s, 1H), 4.51 (q, J = 2.9 Hz, 1H), 3.83 (s, 2H), 3.39 (qd, 

J = 7.3, 4.9 Hz, 3H), 3.31 (ddd, J = 11.9, 5.8, 3.5 Hz, 1H), 3.09 (s, 1H), 2.07 (dt, J = 7.0, 3.7 Hz, 

1H), 1.83 (tt, J = 13.2, 4.1 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.20 (s, 9H). 13C NMR(126 MHz, 

CDCl3) δ 169.55, 144.90, 141.55, 134.37, 130.65, 129.68, 128.86, 128.76, 128.59, 128.49, 127.73, 

126.85, 126.18, 125.96, 121.93, 115.25, 115.01, 55.53, 50.17, 40.90, 35.53, 26.92, 22.78, 22.76, 

15.01. 

 

21. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-N-ethyl-

1,2,3,4-tetrahydroquinoline-8-carboxamide. 21 was synthesized following General Procedure 

N
H

O

N
H

HN
S
O

F

 21-1 21-2

HN OHN O

N
H

HN

O

NH2 OH

N
H

HN
S
O

G

21-2 21

HN O OHN



 97 

(G) from 21-2 (61 mg, 0.15 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 21-2 amine salt (41 mg, 0.12 

mmol, 1 eq), di-Boc-Dmt (53 mg, 0.13 mmol, 1.1 eq), PyBOP (68 mg, 0.13 mmol, 1.1 eq), and 

DIPEA (0.21 mL, 1.19 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure 

(G). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 8.21 (d, J = 7.9 Hz, 1H), 7.22 

(t, J = 7.5 Hz, 2H), 7.14 (d, J = 3.9 Hz, 1H), 7.14 – 7.11 (m, 2H), 6.94 (d, J = 2.0 Hz, 1H), 6.47 (s, 

2H), 4.92 – 4.87 (m, 0H), 3.82 (dd, J = 11.6, 5.1 Hz, 1H), 3.77 (s, 2H), 3.30 (s, 2H), 3.24 (dd, J = 

13.5, 11.6 Hz, 1H), 2.99 (dd, J = 13.4, 4.9 Hz, 2H), 2.40 (td, J = 12.0, 2.6 Hz, 1H), 2.27 (s, 6H), 

1.62 (ddt, J = 12.5, 8.3, 4.1 Hz, 1H), 1.50 (dd, J = 13.3, 3.6 Hz, 1H), 1.16 (t, J = 7.2 Hz, 3H). 

HPLC (gradient A): retention time = 32.5 min. ESI-MS 501.3[M + H]+ and 523.3 [M + Na]+. 

 

 

Compound 22 (Notebook reference: AFN-22 or afn-iv-155, notebook 4 p. 155) 

 

 

22-1. N,6-dibenzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxamide. 22-1 was synthesized 

following General Procedure (I) from intermediate 20-1 (43 mg, 0.15 mmol, 1.0 eq), 

benzylamine (0.02 mL, 0.18 mmol, 1.2 eq), PyBOP (95 mg, 0.18 mmol, 1.2 eq) and DIPEA (0.13 

mL, 0.75 mmol, 5 eq). Yield: 40 mg, 70%.  1H NMR (500 MHz, CDCl3) δ 8.06 (s, 1H), 7.86 (d, 

J = 2.1 Hz, 1H), 7.38 – 7.30 (m, 5H), 7.29 – 7.23 (m, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.15 – 7.10 (m, 
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2H), 6.51 (t, J = 5.9 Hz, 1H), 4.57 (d, J = 5.7 Hz, 2H), 3.84 (s, 2H), 3.58 (td, J = 7.6, 7.2, 2.3 Hz, 

2H), 2.66 (t, J = 7.1 Hz, 2H), 1.22 (s, 1H). 13C NMR(126 MHz, CDCl3) δ 193.62, 168.60, 151.49, 

140.78, 138.05, 133.96, 132.03, 128.91, 128.74, 128.70, 127.89, 127.77, 127.73, 126.39, 120.40, 

117.30, 43.88, 40.95, 40.78, 37.40, 22.22. 

 

22-2. (R)-N,6-dibenzyl-4-(((R)-tert-butylsulfinyl)amino)-1,2,3,4-tetrahydroquinoline-8-

carboxamide. 22-2 was synthesized following General Procedure (F) from 22-1 (40 mg, 0.11 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (40 mg, 0.32 mmol, 3 eq), and Ti(OEt)4 (0.14 

mL, 0.65 mmol, 6 eq), then NaBH4 (25 mg, 0.65 mmol, 6 eq). Yield: 43 mg, 84%. 1H NMR (500 

MHz, CDCl3) δ 7.71 – 7.65 (m, 1H), 7.38 – 7.28 (m, 5H), 7.29 – 7.23 (m, 3H), 7.18 – 7.15 (m, 

2H), 7.15 – 7.11 (m, 2H), 7.07 (d, J = 2.0 Hz, 1H), 6.26 (s, 1H), 4.56 (dd, J = 5.7, 2.7 Hz, 2H), 

4.52 (d, J = 3.1 Hz, 1H), 3.87 – 3.74 (m, 2H), 3.45 – 3.38 (m, 1H), 3.33 (dq, J = 11.9, 4.2 Hz, 1H), 

3.09 (s, 1H), 2.11 – 2.04 (m, 1H), 1.84 (ddt, J = 16.2, 12.7, 4.1 Hz, 1H), 1.21 (s, 9H). 13C NMR(126 

MHz, CDCl3) δ 169.48, 145.21, 141.45, 134.69, 128.89, 128.79, 128.62, 127.87, 127.76, 127.67, 

126.88, 126.22, 122.10, 114.50, 55.57, 50.19, 43.81, 40.87, 35.56, 26.85, 22.78.   
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22. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-N,6-dibenzyl-1,2,3,4-

tetrahydroquinoline-8-carboxamide. 22 was synthesized following General Procedure (G) from 

22-2 (43 mg, 0.090 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 22-2 amine salt (36 mg, 0.088 mmol, 1 

eq), diBoc-Dmt (40 mg, 0.097 mmol, 1.1 eq), PyBOP (51 mg, 0.097 mmol, 1.1 eq), 6-Cl HOBt 

(17 mg, 0.097 mmol, 1.1 eq), and DIPEA (0.15 mL, 0.88 mmol, 10 eq). Step 3: Boc-deprotected 

as described in General Procedure (G). Final yield not calculated. 1H NMR (500 MHz, Methanol-

d4) δ 8.20 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 5.5 Hz, 4H), 7.25 – 7.19 (m, 3H), 7.16 – 7.11 (m, 3H), 

6.95 (d, J = 2.0 Hz, 1H), 6.47 (s, 2H), 4.90 (s, 1H), 4.52 – 4.42 (m, 2H), 3.83 (dd, J = 11.6, 5.1 Hz, 

1H), 3.77 (s, 2H), 3.24 (dd, J = 13.6, 11.6 Hz, 1H), 3.01 (td, J = 13.9, 4.7 Hz, 2H), 2.45 – 2.36 (m, 

1H), 2.27 (s, 6H), 1.63 (tt, J = 12.4, 4.2 Hz, 1H), 1.55 – 1.46 (m, 1H). HPLC (gradient A): retention 

time = 42.0 min. ESI-MS 563.3[M + H]+ and 585.3 [M + Na]+. 
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Compound 23 (Notebook reference: AFN-21 or afn-iv-153, notebook 4 p. 153) 

 

 

23-1. 6-benzyl-4-oxo-N-phenyl-1,2,3,4-tetrahydroquinoline-8-carboxamide. 23-1 was synthesized 

following General Procedure (I) from intermediate 20-1 (40 mg, 0.14 mmol, 1.0 eq), aniline 

(0.02 mL, 0.18 mmol, 1.2 eq), PyBOP (94 mg, 0.18 mmol, 1.2 eq) and DIPEA (0.07 mL, 0.42 

mmol, 3.0 eq). Product was highly fluorescent under 385 nm light. Yield: 30 mg, 60%. 1H NMR 

(500 MHz, CDCl3) δ 7.89 (d, J = 1.8 Hz, 1H), 7.85 (s, 1H), 7.53 (dt, J = 8.8, 1.8 Hz, 2H), 7.46 (d, 

J = 2.0 Hz, 1H), 7.37 (t, J = 7.8 Hz, 3H), 7.27 (dd, J = 7.6, 1.3 Hz, 1H), 7.23 – 7.17 (m, 1H), 7.16 

(d, J = 7.1 Hz, 3H), 3.88 (d, J = 1.8 Hz, 2H), 3.59 (tt, J = 7.8, 1.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H). 

13C NMR(126 MHz, CDCl3) δ 193.52, 167.11, 151.49, 140.71, 137.50, 133.96, 132.34, 129.40, 

129.21, 129.02, 128.79, 128.01, 126.51, 125.05, 120.95, 120.71, 120.51, 117.83, 77.16, 40.96, 

40.85, 37.39.   
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23-2. (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-N-phenyl-1,2,3,4-tetrahydroquinoline-8-

carboxamide. 23-2 was synthesized following General Procedure (F) from 23-1 (42 mg, 0.12 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (43 mg, 0.36 mmol, 3 eq), and Ti(OEt)4 (0.15 

mL, 0.72 mmol, 6 eq), then NaBH4 (28 mg, 0.72 mmol, 6 eq). Yield: 45 mg, 81%. 1H NMR (500 

MHz, CDCl3) δ 7.52 (d, J = 1.3 Hz, 1H), 7.50 (t, J = 1.1 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.29 (t, J 

= 7.5 Hz, 2H), 7.23 – 7.21 (m, 2H), 7.21 – 7.18 (m, 2H), 7.18 – 7.16 (m, 1H), 7.13 (ddt, J = 7.6, 

6.9, 1.1 Hz, 1H), 4.53 (t, J = 2.8 Hz, 1H), 3.87 (d, J = 2.9 Hz, 2H), 3.41 (td, J = 12.2, 3.3 Hz, 1H), 

3.33 (dq, J = 7.9, 4.0 Hz, 1H), 3.11 (t, J = 1.7 Hz, 1H), 2.08 (dd, J = 13.7, 3.5 Hz, 1H), 1.86 (td, J 

= 12.9, 6.5 Hz, 1H), 1.21 (s, 9H). 13C NMR(126 MHz, CDCl3) δ 167.95, 145.34, 141.35, 137.90, 

134.96, 129.12, 128.81, 128.68, 127.81, 127.15, 126.31, 124.62, 122.25, 120.78, 114.91, 55.60, 

50.21, 40.91, 35.59, 26.80, 22.76.   

 

 

23. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-N-phenyl-

1,2,3,4-tetrahydroquinoline-8-carboxamide. 23 was synthesized following General Procedure 

(G) from 23-2 (45 mg, 0.097 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 23-2 amine salt (24 mg, 0.061 

mmol, 1 eq), di-Boc-Dmt (28 mg, 0.067 mmol, 1.1 eq), PyBOP (35 mg, 0.067 mmol, 1.1 eq), 6-
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Cl HOBt (12 mg, 0.067 mmol, 1.1 eq), and DIPEA (0.10 mL, 0.61 mmol, 10 eq). Step 3: Boc-

deprotected as described in General Procedure (G). Final yield not calculated. 1H NMR (500 

MHz, Methanol-d4) δ 8.23 (d, J = 7.8 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.42 (d, J = 2.1 Hz, 1H), 7.32 

(t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.19 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 7.00 (d, J = 

1.9 Hz, 1H), 6.48 (s, 2H), 4.96 – 4.90 (m, 1H), 3.85 (d, J = 5.1 Hz, 1H), 3.82 (s, 3H), 3.25 (dd, J 

= 13.6, 11.6 Hz, 1H), 3.09 – 2.96 (m, 2H), 2.44 (t, J = 11.7 Hz, 1H), 2.27 (s, 6H), 1.65 (tt, J = 12.2, 

4.2 Hz, 1H), 1.57 – 1.48 (m, 1H). HPLC (gradient A): retention time = 43.0 min. ESI-MS 549.3[M 

+ H]+ and 571.3 [M + Na]+. 

 

Compound 24 (Notebook reference: AFN-45 or afn-v-159, notebook 5 p. 159) 

 

 

24-1. 6-benzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carbonitrile. 24-1 was synthesized following 

General Procedure (I) from intermediate 20-1 (51 mg, 0.18 mmol, 1.0 eq), ammonium hydroxide 

(1 mL, excess), PyBOP (104 mg, 0.20 mmol, 1.1 eq) and DIPEA (0.32 mL, 1.81 mmol, 10 eq). 

Yield: 45 mg, 89%. 1H NMR (500 MHz, Chloroform-d) δ 8.20 (s, 1H), 7.91 (d, J = 2.1 Hz, 1H), 

7.35 (d, J = 2.1 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.20 (t, J = 7.5 Hz, 1H), 7.15 (dd, J = 7.0, 1.3 Hz, 

2H), 3.87 (s, 2H), 3.61 (ddd, J = 7.8, 6.7, 2.4 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H). 13C NMR (126 MHz, 
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cdcl3) δ 193.53, 170.94, 151.84, 140.75, 134.85, 132.85, 128.83, 128.79, 127.67, 126.51, 120.56, 

115.53, 40.90, 40.82, 37.39. 

 

24-2. (R)-N-((R)-6-benzyl-8-cyano-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. 24-2 was synthesized following General Procedure (F) from 24-1 (45 mg, 0.16 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (58 mg, 0.48 mmol, 3 eq), and Ti(OEt)4 (0.20 

mL, 0.96 mmol, 6 eq), then NaBH4 (36 mg, 0.96 mmol, 6 eq). Yield: 30 mg, 50%. NMR indicated 

conversion of the carboxamide to a nitrile, likely promoted by titanium and/or NaBH4 as described 

in Lehnert, W. Tetrahedron Lett. 1971, 12, 1501 and S. E. Ellzey, C. H. Mack and W. J. Connick. 

J. Org. Chem. 1967, 32, 846. Carbonyl peak at 170ppm corresponding to carboxamide of 24-1 is 

shifted downfield in 24-2. 1H NMR (500 MHz, Chloroform-d) δ 7.31 – 7.26 (m, 3H), 7.23 – 7.18 

(m, 1H), 7.16 – 7.13 (m, 2H), 7.11 (d, J = 2.0 Hz, 1H), 4.81 (s, 1H), 4.51 (q, J = 3.4 Hz, 1H), 3.81 

(s, 2H), 3.48 – 3.41 (m, 1H), 3.39 (dq, J = 11.9, 4.1 Hz, 1H), 3.11 (s, 1H), 2.13 (dq, J = 13.8, 3.6 

Hz, 1H), 1.93 – 1.84 (m, 1H), 1.22 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 145.77, 140.59, 135.63, 

132.51, 129.61, 128.85, 128.78, 126.50, 121.55, 117.77, 95.18, 55.77, 49.67, 40.61, 36.41, 27.27, 

22.76. 
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24. (S)-2-amino-N-((R)-6-benzyl-8-cyano-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide. 24 was synthesized following General Procedure (G) from 24-2 

(30 mg, 0.08 mmol, 1 eq) and concentrated HCl (0.05 mL, excess). Carried forward without 

characterization. Step 2: Performed amide coupling using 24-2 amine salt (36 mg, 0.11 mmol, 1 

eq), di-Boc-Dmt (44 mg, 0.14 mmol, 1.2 eq), PyBOP (70 mg, 0.14 mmol, 1.2 eq), and DIPEA 

(0.20 mL, 1.13 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure (G). 

Final yield not calculated. LC-MS indicated dehydration of the carboxamide to the nitrile as 

indicated above. 1H NMR (500 MHz, Methanol-d4) δ 8.17 (d, J = 7.9 Hz, 0H), 7.24 (t, J = 7.4 Hz, 

2H), 7.17 – 7.13 (m, 1H), 7.13 – 7.09 (m, 2H), 7.08 (s, 2H), 6.48 (s, 2H), 4.90 (t, J = 4.2 Hz, 1H), 

3.82 (dd, J = 11.6, 5.0 Hz, 1H), 3.75 (s, 2H), 3.28 – 3.21 (m, 1H), 3.10 (dt, J = 12.7, 4.3 Hz, 1H), 

3.00 (dd, J = 13.7, 5.1 Hz, 1H), 2.47 (td, J = 12.0, 3.2 Hz, 1H), 2.26 (s, 6H), 1.68 – 1.59 (m, 1H), 

1.55 – 1.47 (m, 1H). 13C NMR (126 MHz, cd3od) δ 168.42, 157.41, 149.36, 147.45, 142.32, 140.01, 

136.50, 133.60, 130.01, 129.65, 129.54, 127.22, 123.24, 121.51, 118.59, 116.46, 95.50, 53.37, 

46.45, 41.20, 37.61, 31.92, 27.98, 20.43, 18.71, 17.27. HPLC (gradient A): retention time = 34.8 

min. ESI-MS 455.3[M + H]+ and 477.3 [M + Na]+. 
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Compound 25 (Notebook name: AFN-30) 

 

 

25. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-1,2,3,4-

tetrahydroquinoline-8-carboxylic acid.  25 was synthesized following a modified version of 

General Procedure (G) from intermediate 26-2, the synthesis of which is described below. 25 

was synthesized from 26-2 (48 mg, 0.12 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). 

Yield of amine salt: 40 mg, 99%. 1H NMR (500 MHz, Methanol-d4) δ 7.78 (d, J = 2.2 Hz, 1H), 

7.29 – 7.24 (m, 3H), 7.20 – 7.14 (m, 3H), 4.48 (t, J = 4.2 Hz, 1H), 4.33 – 4.26 (m, 2H), 3.86 (s, 

2H), 3.56 (dtd, J = 13.1, 4.6, 1.0 Hz, 1H), 3.45 – 3.37 (m, 1H), 2.17 – 2.10 (m, 2H), 1.34 (t, J = 

7.1 Hz, 3H). 13C NMR(126 MHz, cd3od) δ 169.20, 147.37, 142.73, 136.75, 134.04, 129.74, 129.51, 

128.39, 127.14, 117.52, 111.58, 111.41, 109.38, 61.54, 41.59, 36.22, 26.03, 14.62.  Amide 

coupling was performed using 26-2 amine salt(30 mg, 0.086 mmol, 1 eq), di-Boc-Dmt (41 mg, 

0.10 mmol, 1.15 eq), PyBOP (52 mg, 0.10 mmol, 1.15 eq), 6-Cl HOBt (17 mg, 0.10 mmol, 1.15 

eq), and DIPEA (0.16 mL, 0.92 mmol, 11 eq). Boc-protected intermediate was isolated by flash 

chromatography. 1H NMR (500 MHz, Chloroform-d) δ 7.56 (s, 2H), 7.27 (t, J = 7.5 Hz, 2H), 7.20 

– 7.13 (m, 3H), 7.03 (d, J = 2.2 Hz, 1H), 6.84 (s, 2H), 5.67 (s, 1H), 5.41 (s, 1H), 4.98 (dt, J = 8.8, 

4.4 Hz, 1H), 4.24 (tt, J = 8.6, 5.3 Hz, 1H), 4.20 – 4.10 (m, 1H), 3.78 (s, 2H), 3.23 (dt, J = 12.9, 4.2 

Hz, 1H), 3.08 (d, J = 9.4 Hz, 2H), 2.55 (s, 1H), 2.38 (s, 6H), 1.72 (t, J = 11.6 Hz, 1H), 1.57 (s, 

10H), 1.44 (s, 9H), 1.31 (t, J = 7.1 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 170.01, 168.52, 155.12, 
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152.12, 149.53, 146.47, 141.51, 138.98, 135.76, 131.62, 131.35, 128.73, 128.57, 128.55, 126.45, 

126.11, 121.15, 120.57, 109.56, 83.50, 80.03, 60.44, 54.26, 45.56, 40.85, 36.43, 33.44, 28.44, 

27.86, 26.85, 20.56, 14.41. This Boc-protected intermediate was then saponified as described here: 

To a pear-shaped flask containing diBoc-26 (34 mg, 0.048 mmol, 1 eq) under inert atmosphere 

was added 1:1 THF/H2O (6 mL), followed by LiOH (6 mg, 0.25 mmol, 5 eq) at ambient 

temperature, stirring for 6 hours. Solution was titrated to pH 1 with HCl, then organics were 

extracted with ethyl acetate. Organics were dried with MgSO4, filtered, and concentrated in vacuo. 

1H NMR (499 MHz, Methanol-d4) δ 7.97 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.21 (t, J = 7.5 Hz, 2H), 

7.15 (d, J = 7.4 Hz, 2H), 7.11 (d, J = 6.1 Hz, 2H), 6.43 (s, 2H), 4.17 (dd, J = 10.1, 5.9 Hz, 1H), 

3.76 (s, 2H), 3.20 (dt, J = 11.0, 5.0 Hz, 1H), 3.04 (dd, J = 13.9, 10.2 Hz, 1H), 2.88 – 2.77 (m, 2H), 

2.26 (s, 6H), 1.60 (d, J = 37.0 Hz, 2H), 1.43 (s, 9H). 13C NMR (126 MHz, cd3od) δ 197.20, 172.02, 

139.98, 138.40, 136.09, 131.19, 128.27, 127.92, 125.41, 124.49, 120.86, 114.63, 54.34, 45.51, 

40.38, 36.33, 31.66, 27.33, 27.08, 19.16. Product was then Boc-deprotected and purified by HPLC 

as described in General Procedure (G). Final yield not calculated. 1H NMR (500 MHz, Methanol-

d4) δ 7.62 (d, J = 2.2 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.16 – 7.10 (m, 3H), 7.02 (d, J = 2.3 Hz, 1H), 

6.48 (s, 2H), 4.92 (d, J = 5.4 Hz, 1H), 3.83 (dd, J = 11.6, 5.0 Hz, 1H), 3.75 (s, 2H), 3.25 (dd, J = 

13.6, 11.6 Hz, 1H), 3.10 (dt, J = 12.2, 3.9 Hz, 1H), 3.00 (dd, J = 13.6, 5.0 Hz, 1H), 2.50 – 2.41 (m, 

1H), 2.27 (s, 6H), 1.63 (tt, J = 12.0, 4.2 Hz, 1H), 1.52 (dq, J = 13.0, 3.6 Hz, 1H). HPLC (gradient 

A): retention time = 31.1 min. ESI-MS 474.3[M + H]+ and 496.3 [M + Na]+. 
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Compound 26 (Notebook reference: AFN-20 or afn-iv-133, notebook 4 p. 133) 

 

 

26-1. methyl 6-benzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxylate. 26-1 was synthesized 

following General Procedure (H) from 8-5 (220 mg, 0.70 mmol, 1 eq), oxalyl chloride (1 mL, 

excess), K2CO3 (142 mg, 1.04 mmol, 1.5 eq) and Pd(dppf)Cl2 (51 mg, 0.07 mmol, 0.1 eq) in 1:1 

DMF:MeOH. Yield: 103 mg, 50%. 1H NMR (500 MHz, CDCl3) δ 7.93 (s, 2H), 7.30 – 7.26 (m, 

2H), 7.21 – 7.14 (m, 3H), 3.86 (s, 2H), 3.85 (s, 3H), 3.63 (td, J = 7.1, 2.4 Hz, 2H), 2.69 (t, J = 7.1 

Hz, 2H). 13C NMR(126 MHz, CDCl3) δ 192.93, 167.99, 152.05, 140.82, 133.83, 128.61, 128.55, 

127.84, 126.28, 120.14, 112.39, 51.81, 40.71, 40.70, 37.17.   

 

 

26-2. ethyl (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-1,2,3,4-tetrahydroquinoline-8-

carboxylate. 26-2 was synthesized following General Procedure (F) from 26-1 (42 mg, 0.14 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (52 mg, 0.42 mmol, 3 eq), and Ti(OEt)4 (0.18 

mL, 0.85 mmol, 6 eq), then NaBH4 (32 mg, 0.85 mmol, 6 eq). NMR indicated conversion of 26-1 

methyl ester to an ethyl ester in 26-2. Yield: 48 mg, 83%. 1H NMR (500 MHz, CDCl3) δ 7.75 (d, 
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J = 3.8 Hz, 1H), 7.62 (d, J = 2.2 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.15 – 7.07 (m, 4H), 4.44 (q, J = 

3.0 Hz, 1H), 4.21 (qd, J = 7.1, 1.5 Hz, 2H), 3.75 (s, 2H), 3.36  (m, 1H), 3.29 (dt, J = 12.0, 4.0 Hz, 

1H), 3.00 (s, 1H), 2.02 (dqd, J = 13.6, 3.3, 1.1 Hz, 1H), 1.81 – 1.71 (m, 1H), 1.27 (t, J = 7.1 Hz, 

3H), 1.12 (s, 9H). 13C NMR(126 MHz, CDCl3) δ 168.50, 146.63, 141.63, 136.18, 131.87, 128.72, 

128.54, 126.63, 126.08, 121.61, 109.73, 60.37, 55.52, 50.03, 40.89, 35.53, 26.55, 22.73, 14.47.   

 

 

26. ethyl (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-1,2,3,4-

tetrahydroquinoline-8-carboxylate. 26 was synthesized following General Procedure (G) from 

26-2 (48 mg, 0.12 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Yield: 40 mg, 99%. 1H 

NMR (500 MHz, Methanol-d4) δ 7.78 (d, J = 2.2 Hz, 1H), 7.29 – 7.24 (m, 3H), 7.20 – 7.14 (m, 

3H), 4.48 (t, J = 4.2 Hz, 1H), 4.33 – 4.26 (m, 2H), 3.86 (s, 2H), 3.56 (dtd, J = 13.1, 4.6, 1.0 Hz, 

1H), 3.45 – 3.37 (m, 1H), 2.17 – 2.10 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR(126 MHz, cd3od) 

δ 169.20, 147.37, 142.73, 136.75, 134.04, 129.74, 129.51, 128.39, 127.14, 117.52, 111.58, 111.41, 

109.38, 61.54, 41.59, 36.22, 26.03, 14.62.  Step 2: Performed amide coupling as described in 

General Procedure (G) from 26-2 amine salt (30 mg, 0.086 mmol, 1 eq), di-Boc-Dmt (41 mg, 

0.10 mmol, 1.15 eq), PyBOP (52 mg, 0.10 mmol, 1.15 eq), 6-Cl HOBt (17 mg, 0.10 mmol, 1.15 

eq), and DIPEA (0.16 mL, 0.92 mmol, 11 eq). 1H NMR (500 MHz, Chloroform-d) δ 7.56 (s, 2H), 

7.27 (t, J = 7.5 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.03 (d, J = 2.2 Hz, 1H), 6.84 (s, 2H), 5.67 (s, 1H), 

5.41 (s, 1H), 4.98 (dt, J = 8.8, 4.4 Hz, 1H), 4.24 (tt, J = 8.6, 5.3 Hz, 1H), 4.20 – 4.10 (m, 1H), 3.78 
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(s, 2H), 3.23 (dt, J = 12.9, 4.2 Hz, 1H), 3.08 (d, J = 9.4 Hz, 2H), 2.55 (s, 1H), 2.38 (s, 6H), 1.72 (t, 

J = 11.6 Hz, 1H), 1.57 (s, 10H), 1.44 (s, 9H), 1.31 (t, J = 7.1 Hz, 2H). 13C NMR (126 MHz, cdcl3) 

δ 170.01, 168.52, 155.12, 152.12, 149.53, 146.47, 141.51, 138.98, 135.76, 131.62, 131.35, 128.73, 

128.57, 128.55, 126.45, 126.11, 121.15, 120.57, 109.56, 83.50, 80.03, 60.44, 54.26, 45.56, 40.85, 

36.43, 33.44, 28.44, 27.86, 26.85, 20.56, 14.41. Boc-deprotected following General Procedure 

(G). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.61 (d, J = 2.2 Hz, 1H), 7.23 

(t, J = 7.5 Hz, 2H), 7.15 (d, J = 7.4 Hz, 1H), 7.13 – 7.09 (m, 2H), 7.03 (d, J = 2.2 Hz, 1H), 6.48 (s, 

2H), 4.92 (t, J = 4.0 Hz, 1H), 4.24 (qd, J = 7.2, 1.4 Hz, 2H), 3.83 (dd, J = 11.6, 5.0 Hz, 1H), 3.76 

(s, 2H), 3.25 (dd, J = 13.6, 11.6 Hz, 1H), 3.12 (dt, J = 12.7, 4.2 Hz, 1H), 3.00 (dd, J = 13.7, 5.1 

Hz, 1H), 2.47 (td, J = 12.2, 3.2 Hz, 1H), 2.27 (s, 6H), 1.63 (tt, J = 11.9, 4.2 Hz, 1H), 1.52 (dq, J = 

13.2, 3.8 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H). 13C NMR(126 MHz, cd3od) δ 168.25, 157.41, 147.68, 

142.95, 140.00, 137.00, 135.31, 132.61, 129.62, 129.41, 127.01, 123.26, 121.33, 116.49, 61.28, 

53.35, 47.06, 36.90, 31.94, 27.77, 20.43, 14.63. HPLC (gradient A): retention time = 43.1 min. 

ESI-MS 525.3 [M + Na]+. 

 

 

Compound 27 (Notebook name: AFN-53) 
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27-1. isopropyl 6-benzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxylate. 27-1 was synthesized 

following General Procedure (H) from 8-5 (166 mg, 0.52 mmol, 1 eq), oxalyl chloride (1 mL, 

excess), K2CO3 (109 mg, 0.79 mmol, 1.5 eq) and Pd(dppf)Cl2 (38 mg, 0.05 mmol, 0.1 eq) in 2:1 

DMF:isopropanol. Yield: 15 mg, 9%. 1H NMR (500 MHz, Chloroform-d) δ 8.11 (s, 1H), 7.93 (d, 

J = 2.4 Hz, 1H), 7.91 (d, J = 2.2 Hz, 1H), 7.28 (t, J = 7.5 Hz, 2H), 7.20 (d, J = 7.4 Hz, 1H), 7.17 

(d, J = 6.9 Hz, 2H), 5.19 (hept, J = 6.3 Hz, 1H), 3.88 (s, 2H), 3.63 (td, J = 7.1, 2.4 Hz, 2H), 2.68 

(t, J = 7.3 Hz, 2H), 1.36 (s, 3H), 1.34 (s, 3H). 13C NMR (126 MHz, cdcl3) δ 167.43, 164.97, 138.57, 

133.88, 128.76, 127.80, 126.33, 77.16, 40.84, 37.42, 22.07. 

 

 

27-2. isopropyl (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-1,2,3,4-tetrahydroquinoline-8-

carboxylate. 27-2 was synthesized following General Procedure (F) from 27-1 (33 mg, 0.10 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (38 mg, 0.31 mmol, 3 eq), and Ti(OiPr)4 (0.18 

mL, 0.61 mmol, 6 eq), then NaBH4 (23 mg, 0.61 mmol, 6 eq). Yield: 18 mg, 41%. 1H NMR (500 

MHz, Chloroform-d) δ 7.86 (d, J = 4.8 Hz, 1H), 7.69 (d, J = 2.1 Hz, 1H), 7.27 (t, J = 7.6 Hz, 2H), 

7.20 – 7.15 (m, 3H), 5.16 (hept, J = 6.2 Hz, 1H), 4.51 (q, J = 3.1 Hz, 1H), 3.84 (s, 2H), 3.44 (td, J 

= 12.2, 3.3 Hz, 1H), 3.36 (dq, J = 12.2, 4.2 Hz, 1H), 3.05 (s, 1H), 2.10 (dq, J = 13.8, 3.4 Hz, 1H), 

1.83 (tt, J = 12.8, 4.0 Hz, 1H), 1.34 (d, J = 4.8 Hz, 3H), 1.32 (d, J = 4.9 Hz, 3H), 1.20 (s, 9H). 13C 

NMR (126 MHz, cdcl3) δ 168.13, 146.68, 141.70, 136.13, 131.94, 128.76, 128.58, 126.56, 126.12, 

121.62, 110.11, 77.16, 67.79, 55.56, 50.01, 40.91, 35.53, 26.51, 22.78, 22.13. 
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27. isopropyl (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-

1,2,3,4-tetrahydroquinoline-8-carboxylate. 27 was synthesized following General Procedure (G) 

from 27-2 (18 mg, 0.04 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 27-2 amine salt (14 mg, 0.04 

mmol, 1 eq), di-Boc-Dmt (18 mg, 0.04 mmol, 1.1 eq), PyBOP (22 mg, 0.04 mmol, 1.1 eq), and 

DIPEA (0.07 mL, 0.39 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure 

(G). Final yield not calculated. HPLC (gradient A): retention time = 45.4 min. ESI-MS 516.3[M 

+ H]+ and 538.3 [M + Na]+. 1H NMR (500 MHz, Methanol-d4) δ 8.19 (d, J = 7.8 Hz, 1H), 7.58 

(d, J = 2.2 Hz, 1H), 7.22 (dd, J = 8.1, 6.8 Hz, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.12 – 7.09 (m, 2H), 

7.01 (d, J = 2.2 Hz, 1H), 6.48 (s, 2H), 5.11 (hept, J = 6.3 Hz, 1H), 4.91 (d, J = 6.1 Hz, 1H), 3.82 

(dd, J = 11.6, 5.0 Hz, 1H), 3.75 (s, 2H), 3.24 (dd, J = 13.6, 11.6 Hz, 1H), 3.11 (dt, J = 12.3, 4.0 

Hz, 1H), 2.99 (dd, J = 13.6, 5.1 Hz, 1H), 2.46 (td, J = 12.2, 3.3 Hz, 1H), 2.26 (s, 6H), 1.63 (tt, J = 

12.2, 4.2 Hz, 1H), 1.55 – 1.48 (m, 1H), 1.29 (d, J = 2.9 Hz, 3H), 1.28 (d, J = 2.9 Hz, 3H). 13C 

NMR (126 MHz, cd3od) δ 169.05, 157.40, 140.00, 136.93, 133.79, 132.56, 129.40, 127.59, 127.00, 

116.48, 115.22, 110.96, 68.78, 49.00, 47.17, 41.63, 36.87, 31.93, 27.77, 22.15, 20.44. 
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Compound 28 (Notebook reference: AFN-15 or afn-iii-303, notebook 3 p. 303, afn-iv-5, notebook 

4 p. 5, and afn-iv-81, notebook 4 p. 81) 

 

 

28-1. 6-bromo-8-methyl-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 28-1 was 

synthesized following General Procedure (J) from intermediate 9-5 (1.17 g, 4.89 mmol, 1 eq) 

and trifluoroacetic anhydride (1.37 mL, 9.78 mmol, 2 eq). Yield: 1.54 g, 95%. 1H NMR (400 MHz, 

CDCl3) δ 7.99 (d, J = 2.2 Hz, 1H), 7.63 (d, J = 2.3 Hz, 1H), 4.52 (dd, J = 14.6, 5.2 Hz, 1H), 3.88 

(td, J = 13.9, 3.9 Hz, 1H), 3.03 – 2.79 (m, 2H), 2.17 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 

191.77, 139.79, 139.42, 139.10, 136.84, 129.86, 128.58, 128.36, 121.85, 117.65, 114.79, 77.16, 

46.17, 40.13, 39.99, 18.70, 18.48.   

 

 

28-2. 6-bromo-8-(bromomethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 28-2 

was synthesized following General Procedure (K) from 28-2 (478 mg, 1.42 mmol, 1.00 eq), NBS 

(266 mg, 1.49 mmol, 1.05 eq), and benzoyl peroxide (34 mg, 0.14 mmol, 0.1 eq). Reaction was 

then concentrated in vacuo onto silica and purified by manually-packed silica column 
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chromatography using 10% ethyl acetate, 90% hexanes, as flash chromatography did not provide 

sufficient separation. Yield: 232 mg, 40%. 1H NMR (500 MHz, CDCl3) δ 8.11 (t, J = 2.6 Hz, 1H), 

7.82 (t, J = 2.8 Hz, 1H), 4.62 – 4.52 (m, 1H), 4.41 (dd, J = 11.7, 3.0 Hz, 1H), 4.32 (dd, J = 11.8, 

3.0 Hz, 1H), 3.92 (tt, J = 14.4, 3.5 Hz, 1H), 3.00 (dddd, J = 16.7, 13.7, 5.7, 3.0 Hz, 1H), 2.94 – 

2.85 (m, 1H). 13C NMR(126 MHz, CDCl3) δ 191.09, 138.90, 136.23, 134.42, 131.08, 130.77, 

129.92, 128.99, 122.30, 77.16, 46.11, 46.08, 39.92, 28.94.   

 

 

28-3 6-bromo-8-(piperidin-1-ylmethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 

28-3 was synthesized following General Procedure (L) from 28-2 (140 mg, 0.34 mmol, 1 eq), 

K2CO3 (140 mg, 1.02 mmol, 3 eq), and piperidine (0.04 mL, 0.41 mmol, 1.2 eq). N-trifluoroacetyl 

group was partially removed during reaction, so 28-3 was carried forward as a 1:1 molar eq mixture 

of N-TFA protected (60 mg, 0.14 mmol) and deprotected (45 mg, 0.14 mmol) intermediates. Net 

yield: 0.28 mmol, 82%. Unprotected: 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 2.6 Hz, 1H), 7.50 

(s, 1H), 7.17 (d, J = 2.6 Hz, 1H), 3.54 (t, J = 7.1 Hz, 2H), 3.44 (s, 2H), 2.63 (t, J = 7.1 Hz, 2H), 

2.34 (s, 4H), 1.54 (q, J = 5.8 Hz, 4H), 1.45 (s, 2H). 13C NMR(126 MHz, CDCl3) δ 192.97, 151.75, 

137.64, 128.90, 125.72, 120.35, 108.66, 77.16, 62.11, 54.04, 41.38, 37.47, 26.23, 24.28. TFA-

protected: 1H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 2.4 Hz, 1H), 7.83 (s, 1H), 4.43 (dd, J = 14.3, 

5.4 Hz, 1H), 3.77 (d, J = 15.8 Hz, 1H), 3.27 (dd, 2H), 2.96 – 2.72 (m, 2H), 2.17 (s, 4H), 1.54 – 
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1.40 (m, 4H), 1.35 (q, J = 6.1 Hz, 2H). 13C NMR(126 MHz, CDCl3) δ 191.76, 182.72, 139.46, 

138.55, 137.67, 129.98, 129.33, 121.93, 119.74, 117.45, 115.15, 112.87, 60.76, 54.74, 45.98, 

40.04, 25.82, 24.25.   

 

 

28-4. 6-benzyl-8-(piperidin-1-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. 28-4 was synthesized 

following General Procedure (E) from the mixture of 28-3 previously described (105 mg, 0.28 

mmol, 1 eq), benzyl boronic acid pinacol ester (0.10 mL, 0.43 mmol, 1.5 eq), K2CO3 (120 mg, 

0.86 mmol, 3 eq) and Pd(dppf)Cl2 (21 mg, 0.028 mmol, 0.1 eq). Yield: 88 mg, 92%.  1H NMR 

(500 MHz, CDCl3) δ 7.58 (d, J = 2.1 Hz, 1H), 7.18 (d, J = 7.0 Hz, 2H), 7.14 – 7.06 (m, 3H), 6.85 

(d, J = 2.1 Hz, 1H), 3.76 (s, 2H), 3.46 (d, J = 7.5 Hz, 2H), 3.36 (s, 2H), 2.56 (d, J = 7.0 Hz, 2H), 

2.29 – 2.20 (m, 4H), 1.46 (p, J = 5.4 Hz, 4H), 1.37 (s, 2H). 13C NMR(126 MHz, CDCl3) δ 194.42, 

151.61, 141.51, 136.59, 129.02, 128.82, 128.54, 126.33, 126.09, 119.16, 75.12, 62.58, 54.09, 

54.03, 41.75, 41.06, 37.90, 26.26, 24.97, 24.38.   
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28-5. (R)-N-((R)-6-benzyl-8-(piperidin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. 28-5 was synthesized following General Procedure (F) from 28-

4 (88 mg, 0.26 mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (96 mg, 0.79 mmol, 3 eq), and 

Ti(OEt)4 (0.33 mL, 1.58 mmol, 6 eq), then NaBH4 (60 mg, 1.58 mmol, 6 eq). Yield: 85 mg, 74%. 

Carried forward without characterization.  

 

 

28. (S)-2-amino-N-((R)-6-benzyl-8-(piperidin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 28 was synthesized following General Procedure (G) 

from 28-5 (85 mg, 0.19 mmol, 1 eq) and concentrated HCl (0.05 mL, excess). Step 2: Performed 

amide coupling using 28-5 amine salt (37 mg, 0.090 mmol, 1 eq), di-Boc-Dmt (41 mg, 0.099 

mmol, 1.1 eq), PyBOP (52 mg, 0.099 mmol, 1.1 eq), 6-Cl HOBt (17 mg, 0.099 mmol, 1.1 eq), and 

DIPEA (0.16 mL, 0.90 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure 

(G). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.25 – 7.20 (m, 2H), 7.16 – 

7.10 (m, 3H), 7.01 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.47 (s, 2H), 4.93 (dt, J = 7.9, 4.2 
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Hz, 1H), 4.15 – 4.02 (m, 2H), 3.88 (dd, J = 11.6, 5.0 Hz, 1H), 3.79 (s, 2H), 3.37 (d, J = 12.4 Hz, 

2H), 3.26 (dd, J = 13.6, 11.6 Hz, 1H), 3.07 (dt, J = 12.4, 4.2 Hz, 1H), 3.02 (dd, J = 13.7, 5.1 Hz, 

1H), 2.95 – 2.84 (m, 2H), 2.54 – 2.45 (m, 1H), 2.27 (s, 6H), 1.89 (d, J = 14.7 Hz, 2H), 1.80 (d, J 

= 12.8 Hz, 1H), 1.71 (m, 2H), 1.65 (m, 1H), 1.53 (q, J = 4.2 Hz, 1H), 1.49 (m, 1H). HPLC (gradient 

A): retention time = 27.6min. ESI-MS 527.3[M + H]+ and 549.3 [M + Na]+. 

 

 

Compound 29 (Notebook reference: AFN-17 or afn-iv-33, notebook 4 p. 33) 

 

 

29-1. 6-bromo-8-(morpholinomethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 

29-1 was synthesized following General Procedure (L) from intermediate 28-2 (250 mg, 0.60 

mmol, 1 eq), and morpholine (3 mL, excess.); K2CO3 was not used here. No loss of trifluoroacetic 

protecting group observed. Yield: 160 mg, 63% 1H NMR (500 MHz, CDCl3) δ 8.09 (d, J = 2.4 

Hz, 1H), 7.95 (d, J = 2.3 Hz, 1H), 4.53 (d, J = 14.3 Hz, 1H), 3.88 (d, J = 13.8 Hz, 1H), 3.70 (t, J = 

4.7 Hz, 4H), 3.41 (s, 2H), 2.96 (ddd, J = 18.8, 13.4, 5.5 Hz, 1H), 2.88 (ddd, J = 18.5, 3.9, 1.7 Hz, 

1H), 2.37 (s, 4H). 13C NMR(126 MHz, CDCl3) δ 191.46, 139.50, 138.53, 130.11, 129.88, 122.18, 

77.16, 66.72, 60.08, 53.72, 46.11, 40.04.  
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29-2. 6-benzyl-8-(morpholinomethyl)-2,3-dihydroquinolin-4(1H)-one. 29-2 was synthesized 

following General Procedure (E) from 29-1 (160 mg, 0.38 mmol, 1 eq), benzyl boronic acid 

pinacol ester (0.13 mL, 0.57 mmol, 1.5 eq), K2CO3 (160 mg, 1.14 mmol, 3 eq) and Pd(dppf)Cl2 

(30 mg, 0.04 mmol, 0.1 eq). Yield: 75 mg, 60%. 1H NMR (500 MHz, CDCl3) δ 7.68 (d, J = 2.1 

Hz, 1H), 7.26 (s, 2H), 7.22 – 7.13 (m, 3H), 6.96 (d, J = 2.2 Hz, 1H), 3.83 (s, 2H), 3.68 (t, J = 4.7 

Hz, 4H), 3.56 (p, J = 5.9 Hz, 2H), 3.47 (s, 2H), 2.65 (dd, J = 7.7, 6.5 Hz, 2H), 2.43 – 2.37 (m, 4H). 

13C NMR(126 MHz, CDCl3) δ 194.16, 151.08, 141.36, 136.94, 129.29, 128.78, 128.75, 128.56, 

128.53, 128.35, 126.77, 126.14, 119.35, 77.16, 67.10, 62.16, 53.22, 53.15, 41.75, 41.01, 37.83, 

24.96.   

 

 

29-3. (R)-N-((R)-6-benzyl-8-(morpholinomethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. 29-3 was synthesized following General Procedure (F) from 29-

2 (75 mg, 0.22 mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (81 mg, 0.66 mmol, 3 eq), and 

Ti(OEt)4 (0.28 mL, 1.34 mmol, 6 eq), then NaBH4 (51 mg, 1.34 mmol, 6 eq). Yield: 31 mg, 31%. 
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1H NMR (500 MHz, CDCl3) δ 7.26 (s, 2H), 7.18 – 7.13 (m, 3H), 7.07 (d, J = 2.0 Hz, 1H), 6.74 (d, 

J = 2.1 Hz, 1H), 4.52 (q, J = 3.3 Hz, 1H), 3.81 (d, J = 3.2 Hz, 2H), 3.67 (t, J = 4.7 Hz, 4H), 3.46 

(d, J = 12.8 Hz, 1H), 3.36 – 3.33 (m, 1H), 3.32 – 3.23 (m, 2H), 2.37 (t, J = 10.1 Hz, 4H), 2.10 – 

2.02 (m, 1H), 1.89 – 1.79 (m, 1H), 1.21 (s, 9H). 13C NMR(126 MHz, CDCl3) δ 143.41, 141.97, 

131.00, 129.99, 128.86, 128.79, 128.46, 125.93, 121.35, 120.64, 116.06, 67.17, 62.46, 53.22, 

49.92, 41.08, 36.19, 28.37, 22.78.   

 

 

29. (S)-2-amino-N-((R)-6-benzyl-8-(morpholinomethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 29 was synthesized following General Procedure (G) 

from 29-3 (31 mg, 0.070 mmol, 1 eq) and concentrated HCl (0.03 mL, excess). Carried forward 

without characterization. Step 2: Performed amide coupling using 29-3 amine salt (25 mg, 0.068 

mmol, 1 eq), di-Boc-Dmt (31 mg, 0.075 mmol, 1.1 eq), PyBOP (39 mg, 0.075 mmol, 1.1 eq), 6-

Cl HOBt (13 mg, 0.075 mmol, 1.1 eq), and DIPEA (0.13 mL, 0.70 mmol, 10 eq). Step 3: Boc-

deprotected as described in General Procedure (G). Final yield not calculated. 1H NMR (500 

MHz, Methanol-d4) δ 7.24 – 7.17 (m, 2H), 7.15 – 7.09 (m, 3H), 7.01 (d, J = 2.1 Hz, 1H), 6.98 (d, 

J = 2.1 Hz, 1H), 6.47 (s, 2H), 4.92 (m, 1H), 4.17 (m, 2H), 3.88 (m, 1H), 3.88 (broad s, 4H), 3.78 

(s, 2H), 3.26 (m, 1H), 3.19 (broad s, 4H), 3.07 (dt, J = 12.3, 4.3 Hz, 1H), 3.02 (dd, J = 13.7, 5.1 

Hz, 1H), 2.49 (td, J = 11.9, 2.9 Hz, 1H), 2.27 (s, 6H), 1.64 (ddt, J = 13.0, 11.4, 4.1 Hz, 1H), 1.55 

– 1.47 (m, 1H).  HPLC (gradient A): retention time = 24.2 min. ESI-MS 551.3 [M + Na]+. 
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Compound 30 (Notebook reference: AFN-41 or afn-v-113, notebook 5 p. 113) 

 

 

30-1. tert-butyl 4-((6-bromo-4-oxo-1-(2,2,2-trifluoroacetyl)-1,2,3,4-tetrahydroquinolin-8-

yl)methyl)piperazine-1-carboxylate. 30-1 was synthesized following General Procedure (L) 

from 28-1 (280 mg, 0.67 mmol, 1 eq), K2CO3 (251 mg, 1.35 mmol, 2 eq), and monoBoc-piperazine 

(187 mg, 1.35 mmol, 2 eq). Some loss of trifluoroacetic protecting group observed, but not 

isolated. Yield: 212 mg, 75%. 1H NMR (500 MHz, CDCl3) δ 7.99 (d, J = 2.2 Hz, 1H), 7.85 (d, J 

= 2.4 Hz, 1H), 4.51 – 4.38 (m, 1H), 3.77 (t, J = 14.0 Hz, 1H), 3.38 – 3.29 (m, 4H), 2.91 – 2.84 (m, 

1H), 2.79 (ddd, J = 18.6, 3.7, 1.7 Hz, 1H), 2.21 (t, J = 5.0 Hz, 4H), 1.38 (s, 9H). 13C NMR(126 

MHz, CDCl3) δ 191.48, 154.81, 139.39, 138.36, 136.59, 130.05, 129.69, 122.08, 119.68, 117.38, 

115.09, 79.88, 59.83, 53.09, 46.02, 43.33, 39.99, 28.51.  

 

 

30-2. tert-butyl 4-((6-benzyl-4-oxo-1,2,3,4-tetrahydroquinolin-8-yl)methyl)piperazine-1-

carboxylate. 30-2 was synthesized following General Procedure (E) from 30-1 (212 mg, 0.50 
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mmol, 1 eq), benzyl boronic acid pinacol ester (0.22 mL, 1.00 mmol, 2 eq), K2CO3 (207 mg, 1.50 

mmol, 3 eq) and Pd(dppf)Cl2 (37 mg, 0.05 mmol, 0.1 eq). Yield: 84 mg, 39%. 1H NMR (500 MHz, 

CDCl3) δ 7.69 (d, J = 2.1 Hz, 1H), 7.29 – 7.24 (m, 2H), 7.20 – 7.14 (m, 3H), 6.94 (d, J = 2.2 Hz, 

1H), 6.83 (s, 1H), 3.84 (s, 2H), 3.55 (ddd, J = 7.7, 5.3, 2.0 Hz, 2H), 3.48 (s, 2H), 3.45 – 3.36 (m, 

4H), 2.68 – 2.61 (m, 2H), 2.35 (s, 4H), 1.45 (s, 9H). 13C NMR(126 MHz, CDCl3) δ 194.18, 178.30, 

154.82, 151.11, 141.40, 136.90, 129.39, 128.83, 128.61, 126.84, 126.19, 122.69, 119.45, 80.00, 

61.88, 52.54, 41.79, 41.05, 37.88, 28.54.   

 

 

30-3. tert-butyl 4-(((R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-1,2,3,4-tetrahydroquinolin-8-

yl)methyl)piperazine-1-carboxylate. 30-2 was synthesized following General Procedure (F) from 

30-2 (84 mg, 0.19 mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (71 mg, 0.58 mmol, 3 eq), 

and Ti(OEt)4 (0.24 mL, 1.16 mmol, 6 eq), then NaBH4 (44 mg, 1.16 mmol, 6 eq). Yield: 83 mg, 

80%. 1H NMR (500 MHz, CDCl3) δ 7.27 – 7.23 (m, 2H), 7.20 – 7.12 (m, 3H), 7.07 (d, J = 2.0 Hz, 

1H), 6.72 (d, J = 2.0 Hz, 1H), 4.53 (q, J = 3.3 Hz, 1H), 3.82 (d, J = 3.3 Hz, 2H), 3.52 – 3.43 (m, 

1H), 3.39 (q, J = 6.7, 4.9 Hz, 4H), 3.33 (d, J = 13.1 Hz, 2H), 3.27 (ddd, J = 11.7, 8.1, 3.4 Hz, 1H), 

2.35 – 2.30 (m, 4H), 2.13 – 2.02 (m, 1H), 1.85 (tt, J = 13.0, 12.5, 4.0 Hz, 1H), 1.45 (s, 9H), 1.22 

(s, 9H). 13C NMR(126 MHz, CDCl3) δ 154.87, 143.41, 141.97, 130.94, 129.99, 128.92, 128.81, 

128.49, 125.95, 121.54, 120.68, 79.81, 62.11, 55.45, 52.53, 49.92, 41.10, 36.18, 28.52, 28.36, 

22.80, 22.63.   
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30. (S)-2-amino-N-((R)-6-benzyl-8-(piperazin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 30 was synthesized following General Procedure (G) 

from 30-3 (43 mg, 0.080 mmol, 1 eq) and concentrated HCl (0.015 mL, 0.18 mmol, 2 eq). Reaction 

was monitored by TLC for disappearance of 30-3, and solvent was removed after 12 minutes. 

Recovered 40 mg crude product. Carried forward without characterization. Step 2: Performed 

amide coupling using 30-3 amine salt (40 mg, 0.079 mmol, 1 eq), diBoc-Dmt (36 mg, 0.087 mmol, 

1.1 eq), PyBOP (46 mg, 0.087 mmol, 1.1 eq), 6-Cl HOBt (15 mg, 0.087 mmol, 1.1 eq), and DIPEA 

(0.14 mL, 0.79 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure (G). 

Final yield not calculated.  1H NMR (500 MHz, Methanol-d4) δ 7.20 (t, J = 7.4 Hz, 2H), 7.14 – 

7.07 (m, 3H), 6.88 (s, 1H), 6.74 (s, 1H), 6.48 (s, 2H), 4.94 (s, 1H), 3.84 (d, J = 10.0 Hz, 1H), 3.76 

(s, 2H), 3.47 – 3.44 (m, 2H), 3.26 (m, 1H), 3.21 – 3.15 (m, 4H), 3.09 (d, J = 12.5 Hz, 1H), 3.01 

(dd, J = 13.8, 5.0 Hz, 1H), 2.53 (m, 1H), 2.28 (s, 6H), 1.66 (t, J = 12.2 Hz, 1H), 1.56 – 1.47 (m, 

1H), 1.29 (s, 4H). HPLC (gradient A): retention time = 21.7 min. ESI-MS 528.3[M + H]+ and 

550.3 [M + Na]+. 
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Compound 31 (Notebook reference: AFN-14E or afn-iii-301, notebook 3 p. 301) 

 

 

31. (S)-2-amino-N-((R)-8-((4-((S)-2-amino-3-(4-hydroxy-2,6-

dimethylphenyl)propanoyl)piperazin-1-yl)methyl)-6-benzyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-

(4-hydroxy-2,6-dimethylphenyl)propenamide. 31 was synthesized following General Procedure 

(G) from 30-3 (65 mg, 0.14 mmol, 1 eq) and concentrated HCl (0.05 mL, excess). Boc group likely 

removed during this step. Carried forward without characterization. Step 2: Performed amide 

coupling using 30-3 amine salt (45 mg, 0.09 mmol, 1 eq), diBoc-Dmt (43 mg, 0.09 mmol, 1.1 eq), 

PyBOP (52 mg, 0.10 mmol, 1.1 eq), 6-Cl HOBt (17 mg, 0.10 mmol, 1.1 eq), and DIPEA (0.16 

mL, 0.91 mmol, 10 eq). Step 3: Boc-deprotected as described in General Procedure (G). Final 

yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.25 – 7.21 (m, 1H), 7.12 (d, J = 6.9 Hz, 

2H), 6.99 – 6.95 (m, 1H), 6.91 – 6.83 (m, 1H), 6.55 (d, J = 8.1 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 

6.46 (dd, J = 8.4, 5.7 Hz, 3H), 4.91 (d, J = 18.6 Hz, 1H), 4.54 (ddt, J = 12.4, 8.1, 4.6 Hz, 1H), 3.95 

– 3.81 (m, 1H), 3.82 – 3.74 (m, 4H), 3.75 – 3.66 (m, 0H), 3.26 – 3.20 (m, 1H), 3.23 – 3.13 (m, 

2H), 3.15 – 3.06 (m, 1H), 3.06 – 2.98 (m, 1H), 2.97 – 2.66 (m, 4H), 2.48 (d, J = 12.2 Hz, 1H), 2.31 

– 2.19 (m, 12H), 2.04 (d, J = 11.1 Hz, 1H), 1.69 (d, J = 11.5 Hz, 1H), 1.65 – 1.58 (m, 1H), 1.51 (d, 

J = 17.4 Hz, 1H), 1.49 (s, 1H).HPLC (gradient A): retention time = 25.2 min. ESI-MS 719.3[M + 

H]+ and 741.3 [M + Na]+. 
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Chapter 3: Dual Pharmacophores Explored via SAR Matrix 

3.1  Introduction 

Translating the pharmacophore models derived from bifunctional opioid peptides 

(described in Chapter 1) required replication of the Tyr1 and Phe4 moieties, separated by a spacer 

region—the THQ core. While some modifications to the Tyr1 moiety were investigated, much 

exploration went into the Phe4 binding pocket, which translates to C-6 on our peptidomimetic 

scaffold. A summary of the C-6 substitutions investigated by our lab is depicted in Fig. 14, though 

this is not a comprehensive listing. Coloring in Fig. 14 corresponds to in vivo activity, where blue 

indicates full antinociception in the previously described WWTW assay while yellow denotes 

partial activity and red denotes no activity. Those without any coloration were not tested in vivo.  

As illustrated in the first column of Fig. 14, various substitutions were probed at the ortho, 

meta, and para positions including methyl, nitro, fluoro, hydroxyl, and methoxy substitutions. The 

second column depicts other modifications to the monocyclic aryl ring, with the unsubstituted 

phenyl ring of lead peptidomimetic 1 (referred to as the benzyl pendant henceforth) being the only 

fully active compound of those tested. By expanding the size of the C-6 pendant to a bicyclic 

system, the pharmacological profile was improved, as this typically reduced DOR stimulation 

while generally maintaining MOR efficacy. Some key observations from the C-6 SAR expansion 

shown in Fig. 14 are described below. 
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1) Heteroatoms distal to the THQ core reduced MOR efficacy significantly.  

2) Basic amines near C-6 generally display high affinity and partial efficacy for KOR. 

3) Saturated rings display lower MOR efficacy and potency than aryl or semi-aryl bicyclics. 

4) Monocyclic rings sometimes elicited DOR agonism whereas bicyclics did not. 

5) All analogues displayed 10- to 200-fold MOR selectivity regardless of C-6 substitution.  

6) Antinociceptive activity was unpredictable and infrequent amongst these substitutions. 

These results suggested that aryl or semi-aryl bicyclic pendants offered the optimal MOR 

agonist/DOR antagonist profile but most displayed high MOR-selectivity and poor bioavailability. 

Figure 14. Abbreviated Catalogue of C-6 Substitutions Probing the Phe4 Binding Pocketa 

 

a Red coloration indicates no significant antinociceptive activity in the mouse WWTW assay. Yellow denotes partial 
activity whereas blue denotes full antinociception. No color indicates that the compound was not tested in the WWTW 
assay. Analogues presented here were synthesized primarily by A.M.B. and A.A.H. with help by A.F.N. and D.J.M. 
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 Concurrent with the exploration at C-6, a separate SAR project was aimed at modifying 

the N-1 position of the THQ core. The initial focus of this work was to remove or block the 

metabolic hotspot at C-2, alpha to the nitrogen atom in the THQ core. First, the nitrogen was 

replaced with a methylene unit, though this benzylic carbon could undergo radical oxidation and 

showed only partial in vivo activity. Substituting the C-1 position with a methyl group did not 

improve bioavailability, however a geminal dimethyl substitution (analogue 69) did achieve full 

antinociceptive activity. Unfortunately, this scaffold was prohibitively lipophilic (ClogP = 6.3), 

requiring us to seek out alternative methods of improving bioavailability. The core -NH- was then 

replaced with -O-, -S-, and -SO2-. The ether analogue showed 200-fold selectivity for MOR and 

was not pursued for in vivo testing. However, the thioether and sulfone—which showed 

comparable MOR selectivity to lead peptidomimetic 1—were carried forward with in vivo 

evaluation. While the thioether was fully efficacious in vivo, the sulfone showed no activity. 

Figure 15. Substitutions at the 1-Position of the Peptidomimetic Corea 

 
a Red coloration indicates no significant antinociceptive activity in the mouse WWTW assay. Yellow denotes partial 
activity whereas blue indicates full antinociception. No coloration indicates that the compound was not tested in the 
WWTW assay. Analogues presented here were synthesized by A.A.H. and A.M.B. 69 was synthesized by A.F.N.  
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 Although replacement of the THQ core -NH- with a -CH2-, -O-, -S-, or -SO2- gave 

analogues with 30- to 200-fold selectivity for MOR, it was found that acylating the N-1 position 

significantly improved DOR affinity and reduced MOR selectivity. A selection of the N-acyl 

substitutions investigated are presented in Table 7, adapted from Harland et. al., 2016.95 These 

results demonstrated a very promising approach to balanced MOR-/DOR-selective bifunctional 

ligands. However, while the N-acyl series was very effective at balancing affinities between MOR 

and DOR, all analogues except the N-benzoyl analogue showed considerable DOR efficacy. 

 

a Data table adapted from Harland et. al., 2016 (reference 95). b Binding affinities (Ki) were obtained by competitive 
displacement of radiolabeled [3H]-diprenorphine in membrane preparations. Functional data were obtained using 
agonist induced stimulation of [35S]-GTPγS binding. Potency is represented as EC50 (nM) and efficacy as percent 
maximal stimulation relative to standard agonist DAMGO (MOR), DPDPE (DOR), or U69,593 (KOR) at 10 μM. All 
values are expressed as the mean of three separate assays performed in duplicate with standard error of the mean in 
parentheses. “dns” = does not stimulate (<10% stim). c First reported in reference 93. d First reported in reference 94. 
Compounds in this table were synthesized by A.A.H. and A.M.B.  

Ki (nM) EC50 (nM) % stim

# N-1 Substitution MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

1c H 0.22
(0.02)

9.4
(0.8)

68
(2)

43 1.6
(0.3)

110
(6) >500 81

(2)
16
(2)

22
(2)

32d COCH3
0.13
(0.02)

1.8
(0.1)

87
(11)

14 6.0
(1.3)

68
(2)

>500 76
(4)

26
(3)

29
(5)

33 COOMe 0.19
(0.05)

0.51
(0.19)

29
(8)

2.7 0.78
(0.19)

14
(3)

250
(40)

95
(5)

40
(7)

28
(3)

34 COCH2OCH3
0.15
(0.04)

2.1
(0.7)

34
(4)

14 3.0
(0.5)

67
(22) >500 91

(1)
47
(8)

38
(4)

35 COiPr 0.38
(0.10)

0.53
(0.14)

76
(12)

1.7 9.6
(2.6)

25
(16) >500 95

(4)
52
(2)

41
(4)

36 COcPr 0.10
(0.03)

0.35
(0.01)

25
(5)

3.5 1.8
(0.3)

10
(2) >500 88

(3)
69
(6)

32
(1)

37 COcBu 0.23
(0.07)

0.15
(0.07)

56
(4)

0.7 2.1
(0.2)

5.1
(1.9)

dns 94
(5)

58
(4)

dns

38 COPh 0.08
(0.03)

0.24
(0.09)

40
(15)

3 2.6
(0.6)

dns >500 75
(7)

dns 16
(4)

Table 7. N-Acyl Analogues with Improved MOR/DOR
Affinity Balance, MOR Agonism/DOR Partial Agonisma, bNH2

HN

N

OH

O
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 The opposing effects of the C-6 and N-1 campaigns—MOR-selective MOR agonism/DOR 

antagonism and balanced MOR agonism/DOR partial agonism—led us to combine these 

approaches in a small sampling of dually substituted C-6/N-1 analogues. Several bicyclic 

analogues were N-acetylated with the hope of retaining both MOR agonism/DOR antagonism as 

well as high DOR affinity/decreased MOR selectivity. Two N-acetylated that succeeded in 

achieving this goal featured 2-naphthyl and 1-tetrahydroisoquinolinyl (THIQ) pendants. These 

were potent MOR agonists, displayed no DOR efficacy, were less than 10-fold selective for MOR, 

and produced a robust antinociceptive effect in vivo with a duration of action twice as long as our 

lead 1. More recently, these analogues were demonstrated to show significantly reduced analgesic 

tolerance compared to morphine. Additionally, the 2-naphthyl analogue showed no dependence 

(no naloxone-induced withdrawal symptoms) or reward (measured by conditioned place 

preference), validating this chemotype for the treatment of pain with reduced side effects.98 

These results suggested a highly promising method for achieving our desired in vitro and 

in vivo goals. Following this success, several bicyclic analogues were N-acetylated with the aim 

of reproducing the previously observed boost in bioavailability. However, the subsequent N-acetyl 

analogues were as unpredictable in vivo as the unsubstituted analogues in Fig. 14, with no others 

displaying full antinociception. At this time, chemists A.A.H. and A.M.B. left the Mosberg lab, 

leaving this chemotype open to further development. What follows is a summary of the continued 

investigation into the C-6/N-1 chemotype. At present, a manuscript describing these results in 

abbreviated form is undergoing editing and resubmission to the Journal of Medicinal Chemistry. 
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3.2  Rationale & Approach 

 As discussed, the C-6 pharmacophore had been explored fairly extensively in past SAR 

campaigns. Additionally, while position-1 heteroatom replacement did not improve the 

pharmacological profile, it was discovered the N-1 substitutions could in fact be utilized to 

modulate DOR affinity (and in some cases bioavailability), establishing this as a second 

pharmacophore worth exploiting. Prior analogues had established that some combinations of C-6 

and N-1 substitutions could achieve high-affinity, high-potency, non-selective MOR agonism and 

DOR antagonism. However, bioavailability was both uncommon and unpredictable. As such, it 

was hypothesized that more incremental changes to this validated chemotype could both fine-tune 

our understanding of the SAR resulting from both pharmacophore elements and might also deliver 

more in vivo hits around these islands of bioavailability.  

 Considering most C-6 pendants had been incorporated on the -NH- THQ core, and all N-1 

substitutions were explored in the context of the benzyl C-6 scaffold, it seemed advantageous to 

combine promising moieties from both pharmacophores into a series of dually-substituted 

analogues. In order to most reliably compare across analogues, we identified select substitutions 

from each pharmacophore and synthesized the dually-substituted analogue resulting from each 

combination. In doing so, we generated a 2D matrix of compounds, allowing us to observe trends 

in both the x and y dimensions corresponding to different C-6 and N-1 substitutions. For this 2D 

matrix, we selected six C-6 substitutions and five N-1 moieties, resulting in 30 dual-

pharmacophore analogues in the series. The C-6 substitutions were selected based on several 

criteria. Because of the delay between synthesis of a novel analogue and full pharmacological 

evaluation, all C-6 substitutions were selected from the list of previously synthesized and 

characterized analogues in Fig. 14. A similar approach was taken for the N-1 moieties, however 
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as will be discussed later, an additional (novel) N-1 substitution was incorporated into the matrix 

as well. In order to fully present the pharmacological data, tables are presented with the N-1 

substitution as the independent variable initially, and matrices of select properties are included 

later in this chapter. As a follow-up to this study, the C-6 substitutions described below were also 

incorporated into the thiochromane scaffold (where the THQ -NH- was replaced with -S-), as the 

initial analogue in that series displayed full in vivo activity as depicted in Fig. 15. That series will 

be addressed separately at the end of this chapter along with the bioavailable gem-demethyl 

analogue 69 also found in Fig. 15. 

 Selection of C-6 pendants began with the bioavailable peptidomimetic lead 1, which 

featured a benzyl pendant. The 2-naphthyl pendant (the first bicyclic pendant that displayed the 

desired MOR agonist/DOR antagonist profile in vitro and, when N-acetylated, showed activity in 

vivo) was the next clear candidate selected for inclusion in this series. In order to decrease the 

lipophilicity associated with the 2-naphthyl pendant while keeping heteroatoms near the THQ core 

for reasons discussed previously, a 3-quinolinyl pendant was selected as a naphthyl isostere. 

Additionally, despite its mild KOR activity, the THIQ pendant showed high MOR efficacy and 

was known to be bioavailable upon N-acetylation. Thus, the first four pendants explored the effects 

of ring conjugation, lipophilicity, basicity, and planarity in the context of the C-6 pendant. 

Additionally, the 6-benzo-1,4-dioxanyl pendant and 2-benzofuranyl pendants explored the effects 

of oxygen incorporation, both into a semi-saturated as well as a fully aromatic bicyclic system. 

Contrary to prior observations of distal heteroatoms reducing MOR efficacy, it was believed that 

the ethylenedioxy bridge sufficiently masked these heteroatoms as demonstrated by analogue 41 

in Table 8. Subsequent analogues featuring the benzodioxanyl pendant would prove that 

assumption to have been incorrect.  
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3.3  Synthesis of Analogues 39-69 

The synthesis of compounds presented in this work began with the commercially available 

p-toluidine. As described in Chapter 2, this aniline was acylated with a 3-bromoproprionyl 

chloride. Intramolecular cyclization to the b-lactam followed by Fries Rearrangement yielded the 

THQ core with a C-6 methyl substitution. In step D of Scheme 6, the N-1 position was acylated 

with Boc anhydride, acetic anhydride, cyclopropyl acyl chloride, or benzoyl chloride. The mesyl 

group was poorly tolerated for subsequent benzylic bromination, as was the unprotected amine, 

necessitating use of the Boc group for these syntheses. 

 

Scheme 6. Condensed Synthetic Scheme of C-6/N-1 Dual Pharmacophore Ligandsa 

 

a (A) 3-bromopropionyl chloride & K2CO3 in DCM. (B) NaOtBu in DMF. (C) TfOH in DCE. (D) Boc2O, Ac2O, 
cyclopropanecarbonyl chloride, or benzoyl chloride, DIPEA, DCM. (E) NBS, benzoyl peroxide, CCl4, reflux. (F) R2-
boronic acid pinacol ester, Pd(dppf)Cl2, K2CO3, 3:1 acetone/water, 80°C, or tetrahydroisoquinoline-HCl, K2CO3, 
DMF, r.t. (G) (R)-(+)-2-methyl-2-propanesulfinamide, Ti(OEt)4, THF, 0°C to reflux, then NaBH4, THF, -78°C to r.t. 
(H) HCl, 1,4-dioxane, r.t., then diBoc 2,6-dimethyl-L-tyrosine, PyBOP, DIPEA, DMF, r.t., then TFA, DCM, r.t. 

 

The C-6 methyl group of the 6-methyl THQ intermediate underwent radical benzylic 

bromination in step E, catalyzed by benzoyl peroxide and heat. The C-6 pharmacophore then 

replaced the benzylic bromide by either Suzuki coupling with an aryl boronic acid or via 
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nucleophilic substitution with THIQ under basic conditions. Reductive amination was performed 

as described in Chapter 2 using the chiral Ellman auxiliary115–117 (R)-(+)-2-methyl-2-

propanesulfinamide, Ti(OEt)4, and NaBH4 to achieve the desired (R) stereochemistry at C-4. The 

sulfinamide was cleaved with concentrated HCl, leaving an enantiomerically pure amine salt, 

which was carried forward without further characterization to amide coupling with Boc-protected 

L-2,6-dimethyltyrosine.97,102,118 Boc deprotection with trifluoroacetic acid gave final compounds 

described in Tables 8-12. Final compounds were purified by semi-preparative HPLC. Due to 

availability of common intermediates, the R1 group appearing in the final compound was often 

incorporated at different stages for each compound in a subset. As such, Scheme 6 offers only a 

general schematic of the synthetic steps. Full synthetic procedures can be found at the end of 

Chapter 3.    

In addition to the bicyclic analogues presented in this chapter, the synthesis of the gem-

dimethyl analogue 69 as well as a series of thiochromane analogues 65-68 (presented at the end of 

this chapter) are included here.  

Scheme 7. Synthesis of Gem-Dimethyl Analogue 69a 

 

a (A) AlCl3, benzene, 95°C. (B) NBS, H2SO4, 60°C (C) benzyl boronic acid pinacol ester, Pd(dppf)Cl2, K2CO3, 3:1 
acetone/water, 80°C (D) (R)-(+)-2-methyl-2-propanesulfinamide, Ti(OEt)4, THF, 0°C to reflux, then NaBH4, THF, -
78°C to r.t. (E) HCl, 1,4-dioxane, r.t., then diBoc 2,6-dimethyl-L-tyrosine, PyBOP, DIPEA, DMF, r.t., then TFA, 
DCM, r.t. 
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 The initial steps of Scheme 7 differ significantly from those of the prior syntheses. In step 

A of Scheme 7, a 5-membered lactone undergoes Friedel Crafts acylation with benzene, generating 

the substituted gem-dimethyl tetrahydronaphthalene (THN) core in one step. Due to the electronics 

of this core, bromination did not proceed under standard conditions (NBS in DCM). As such, this 

reaction was performed in concentrated sulfuric acid, which facilitated selective C-6 bromination 

in 53% yield. The following steps were carried out as previously described, utilizing Suzuki, 

Ellman, and amide coupling reactions to produce final compound 69.  

 

Scheme 8. Synthesis of Thiochromane Analogues 65-68a 

 

a (A) NBS, benzoyl peroxide, CCl4, reflux. (B) R2-boronic acid pinacol ester, Pd(dppf)Cl2, K2CO3, 3:1 acetone/water, 
80°C, or tetrahydroisoquinoline-HCl, K2CO3, DMF, r.t. (C) (R)-(+)-2-methyl-2-propanesulfinamide, Ti(OEt)4, THF, 
0°C to reflux, then NaBH4, THF, -78°C to r.t. (D) HCl, 1,4-dioxane, r.t., then diBoc 2,6-dimethyl-L-tyrosine, PyBOP, 
DIPEA, DMF, r.t., then TFA, DCM, r.t. 

 

 Synthesis of the thiochromane analogues in Scheme 8 followed the same steps outlined in 

Scheme 6 from a commercially available 6-methyl thiochromane core. Benzylic bromination of 

this scaffold gave lower yields than the THQ scaffold, likely due to oxidation of the thioether by 

benzoyl peroxide. Removal of benzoyl peroxide eliminated some side-reactions, providing better 

yields. Subsequent steps were carried out as previously described in Scheme 6. 
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3.4  In Vitro Pharmacology of Dual-Pharmacophore Ligands 

 

 

a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. b Reported in reference 83.             c 
Reported in reference 99. d Synthesized by A.M.B. Previously reported analogues were synthesized by those authors. 
 

 Bicyclic compounds in Table 8 featuring no N-substitution display the MOR agonist/DOR 

antagonist profile, though the monocyclic C-6 analogue 1 displays low DOR and KOR efficacy at 

relatively high concentration of ligand (EC50 = 110 nM). The primary limitation of this subset 

remains the high degree of MOR selectivity. While compounds 39 and 41 display 15:1 and 16:1 

MOR selectivities, the others in this subset are at least 40-fold selective for MOR. This selectivity 

was combatted by acylation of the N-1 position with an acetyl group in Table 9.  

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

1b 0.22
(0.02)

9.4
(0.8)

68
(2)

43 1.6
(0.3)

110
(6)

>500
(70)

81
(2)

16
(2)

22
(2)

4b 0.08
(0.01)

10
(2)

54
(7)

125 0.53
(0.08)

dns dns 96
(3)

dns dns

39c 0.10
(0.02)

1.5
(0.2)

16
(4)

15 2.2
(0.9)

dns dns 84
(6)

dns dns

40c 0.03
(0.01)

3.1
(0.2)

2.2
(0.4)

103 0.4
(0.1)

dns 90
(65)

105
(6)

dns 25
(4)

41d 0.35
(0.11)

5.5
(0.8)

116
(65)

16 7.3
(1.8)

dns dns 88
(8)

dns dns

42d 0.11
(0.03)

5
(2)

40
(20)

44 1.1
(0.5)

dns dns 98
(1)

dns dns

Table 8. Bicyclic C-6 Pendant with Unsubstituted N-1 Affords
a MOR-Selective, MOR Agonist/DOR Antagonist Profilea
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a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. b Reported in reference 93. c 
Reported in reference 99. Previously reported analogues were synthesized by those authors. 

 

 N-Acetylation of the THQ core improves binding affinity at DOR for all compounds in this 

subset. Notably, the five bicyclic analogues 43-47 all display subnanomolar affinity at both MOR 

and DOR. The drastic reduction in MOR selectivity of compounds 43 and 45 (6:1 and 5:1 

respectively) compared to their unsubstituted analogues 4 and 40 (125:1 and 103:1) was consistent 

throughout this subset, yielding very balanced profiles across Table 9. As shown in Table 7, N-

substitutions paired with monocyclic pendants generally caused low-potency, low-efficacy DOR 

agonism. However, bicyclic analogues 44 and 47 also displayed some low-efficacy DOR agonism 

but now with nanomolar potency. In fact, compound 44 was a remarkably well-balanced MOR 

agonist/DOR partial agonist in terms of both affinity and potency.  

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

32b 0.13
(0.02)

1.8
(0.1)

87
(10)

14 6
(1)

68
(2)

>500 76
(4)

26
(3)

29
(5)

43b 0.04
(0.01)

0.23
(0.02)

48
(20)

6 0.9
(0.2)

dns dns 87
(3)

dns dns

44. 0.15
(0.05)

0.20
(0.08)

53
(14)

1 1.1
(0.3)

5.8
(0.6)

dns 76
(4)

35
(4)

dns

45c 0.19
(0.08)

0.89
(0.21)

0.78
(0.10)

5 6
(2)

dns 190
(30)

96
(4)

dns 41
(6)

46 0.38
(0.11)

0.83
(0.03)

142
(23)

2 13
(5)

dns dns 45
(3)

dns dns

47 0.12
(0.03)

0.73
(0.22)

58
(9)

6 1.9
(0.3)

1.6
(0.9)

>500 86
(5)

30
(2)

33
(10)

Table 9. N-1 Acetylation Reduces MOR Selectivity, Achieves
Sub-Nanomolar DOR Affinity with Modest DOR Efficacya
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a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. b Reported in reference 93. 

 

 The third N-1 motif explored in this SAR study was a cyclopropyl acyl moiety, shown in 

Table 10. The bioavailable N-acetyl analogues 43 and 45 had each shown significant increases in 

duration of action. It was hypothesized that by sterically masking the N-1 amide bond with a 

cyclopropyl group, this duration of action and bioavailability might further be improved. 

Additionally, due to its similarity in size and electronics to the acetyl group, it was hypothesized 

that the cyclopropyl analogues would display similar increases in DOR affinity. Indeed, all 

analogues in Table 10 display subnanomolar affinity at both MOR and DOR. Compounds 49 and 

51 displayed the best binding profile yet achieved in this series, with nearly equal binding at MOR 

and DOR paired with substantial selectivity over KOR. Unfortunately, these highly optimal 

binding profiles were not paired with the desired MOR agonist/DOR antagonist functional profile. 

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

36b 0.10
(0.03)

0.35
(0.01)

25
(5)

4 1.8
(0.3)

10
(2)

>500 88
(3)

69
(6)

32
(1)

48 0.05
(0.02)

0.37
(0.20)

117
(56)

7 0.42
(0.16)

1.9
(0.9)

>500 85
(7)

32
(4)

38
(3)

49 0.05
(0.01)

0.08
(0.04)

84
(26)

2 0.34
(0.12)

0.71
(0.13)

dns 47
(4)

84
(4)

dns

50 0.12
(0.06)

0.88
(0.23)

40
(10)

7 0.52
(0.22)

dns dns 95
(5)

dns dns

51 0.28
(0.08)

0.19
(0.03)

412
(200)

0.7 6
(2)

dns dns 36
(7)

dns dns

52 0.05
(0.01)

0.26
(0.07)

98
(9)

5 0.9
(0.3)

3.7
(2.6)

dns 89
(4)

52
(7)

dns

Table 10. Cyclopropyl Acyl N-1 Substitution Further Improves
MOR and DOR Affinity, Increases DOR Efficacy & Potencya
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Both compounds were only partial agonists at MOR while compound 49 was additionally a highly-

potent, full DOR agonist (greater than 70% stimulation). In fact, all four planar, aromatic pendants 

display 30% or greater DOR efficacy. Three of these pendants also showed DOR efficacy in the 

N-acetyl subset. Taken together, these results indicate that while a bicyclic C-6 pendant is 

sufficient to prevent DOR activation in the context of the unsubstituted THQ core, the DOR-

activating propensity of some N-1 modifications reverses this trend. As such, the planar bicyclic 

pendants may revert to displaying DOR agonism, but with the increased potency associated with 

this bicyclic C-6/N-1 series. Notably, the non-planar THIQ and benzodioxanyl pendants both 

maintained the DOR antagonist profile in analogues 50 and 51 respectively. Analogue 50 

combines the favorable binding profile of the cyclopropyl acyl subset with the favorable functional 

profile of the THIQ pendant, yielding an optimal in vitro profile. Compared to its N-acetyl 

analogue, 50 shows significantly better selectivity over KOR, displays no KOR efficacy, and offers 

a 12-fold improvement in MOR potency, making this a highlight of the cyclopropyl acyl subset.  

 As illustrated by the analogues in Tables 9 and 10, small acyl substitutions at the N-1 

position do indeed drastically improve the DOR binding for all analogues in this series. Of these 

12 compounds, 11 display subnanomolar affinity for both MOR and DOR, while most are highly 

selective over KOR. However, DOR efficacy does appear in several of the planar pendant 

analogues, restricting the achievement of an optimal in vitro profile to compounds 43 and 50. 

Between these two acyl subsets, the cyclopropyl acyl group offers greater MOR potency. In the 

case of the high-efficacy DOR agonists 36 and 49, the cyclopropyl group also offers greater DOR 

potency compared to their N-acetyl analogues. For investigators aiming to design highly potent 

MOR agonist/DOR agonist ligands, one might look to combinations of the 3-quinolinyl pendant 

with the N-1 methyl carbamate, isopropyl acyl, or cyclobutyl acyl groups.  
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a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. 

 

In Table 11, the N-acyl motif is replaced with a methyl sulfone, or “mesyl” group. This 

was chosen to mimic the amide functionality while increasing stability toward amidases or 

peptidases that might otherwise cleave the amide bond. Additionally, the S=O bonds mimic the H-

bond accepting capacity of the C=O bond of the acyl analogues. While the compounds in this 

subset did show improvements in DOR affinity relative to the unsubstituted analogues, the mesyl 

group does not elicit the same DOR affinity as was observed with the cyclopropyl acyl subset. 

MOR affinity remained high throughout the series, yielding more MOR-selective compounds than 

in the previous two subsets. Notably, the mesyl group showed no DOR efficacy amongst the 

bicyclic analogues, though the monocyclic analogue 53 showed mild DOR efficacy. Additionally, 

the mesyl group boosted both MOR potency and efficacy. With the exception of 57, all analogues 

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

53 0.06
(0.02)

0.41
(0.16)

8
(4)

7 0.23
(0.06)

12
(1)

121
(24)

98
(1)

22
(2)

60
(9)

54 0.04
(0.01)

0.95
(0.25)

27
(10)

24 0.23
(0.04)

dns dns 102
(4)

dns dns

55 0.23
(0.08)

0.64
(0.24)

7
(1)

3 0.26
(0.07)

dns dns 96
(3)

dns dns

56 0.11
(0.02)

0.98
(0.13)

1.1
(0.3)

9 0.12
(0.04)

dns 45
(14)

114
(6)

dns 51
(5)

57 0.07
(0.01)

1.5
(0.5)

46
(4)

21 9
(1)

dns >500 47
(6)

dns 39
(4)

58 0.05
(0.01)

1.0
(0.2)

8
(3)

20 0.34
(0.11)

dns >500 102
(3)

dns 61
(7)

Table 11. Sulfonyl N-1 Moiety Increases MOR Selectivity,
MOR Potency & MOR Efficacy; Regains DOR Antagonisma
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in this subset displayed a MOR EC50 of less than 0.4 nM paired with a MOR efficacy of at least 

95%. Three analogues displayed over 100% efficacy at MOR. Despite its 24-fold MOR selectivity, 

analogue 54 offers a highly potent MOR agonist/DOR antagonist profile. Meanwhile, the more 

balanced 3-quinolinyl pendant maintains its MOR/DOR affinity balance in analogue 55 and also 

achieves the highly potent MOR agonist/DOR antagonist profile. Additionally, analogues 56 and 

58 both display highly potent and efficacious MOR agonism (greater than 100%) with no DOR 

efficacy, though both also have some KOR agonism at high concentrations of ligand.  

 

 

 
a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. b Reported in reference 93, 
synthesized by A.A.H. c Synthesized by D.J.M. 

 

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

38b 0.08
(0.03)

0.24
(0.09)

40
(15)

3 2.6
(0.6)

dns >500 75
(7)

dns 16
(4)

59c 0.26
(0.13)

0.46
(0.05)

160
(40)

2 7.9
(3.4)

dns dns 57
(1)

dns dns

60c 0.04
(0.02)

0.74
(0.23)

100
(10)

19 1.0
(0.2)

dns dns 43
(4)

dns dns

61c 0.37
(0.11)

4
(2)

160
(30)

11 4.2
(1.6)

dns dns 93
(2)

dns dns

62 1.5
(0.3)

0.22
(0.07)

240
(60)

0.15 dns dns >500 dns dns 60
(16)

63 0.35
(0.13)

0.64
(0.03)

100
(20)

2 12
(2)

dns dns 64
(4)

dns dns

Table 12. Benzoyl N-1 Substitution Maintains DOR
Antagonism, Reduces MOR Efficacy & Potencya
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The final substitution explored in this series was the N-benzoyl acyl group. Whereas the 

monocyclic analogues in each of the past subsets (1, 32, 36, and 53) displayed some DOR agonism, 

the monocyclic N-benzoyl analogue 38 was a DOR antagonist. Thus, the benzoyl moiety was 

selected as it was most likely to deliver the MOR agonist/DOR antagonist profile in subsequent 

bicyclic analogues. Unfortunately, the benzoyl group was also associated with a reduction in 

efficacy at MOR, as four of the analogues display only partial (less than 70%) efficacy. These 

analogues were also the least potent at MOR in the series. However, in terms of binding, these 

compounds were generally well-balanced. Four of the six compounds displayed 3-fold or less 

MOR selectivity, with one compound (62) actually favoring DOR 7-fold. Functionally, compound 

62 was an antagonist at both MOR and DOR.  

The benzoyl substitution, despite its beneficial effects on balancing MOR/DOR affinity 

and maintaining DOR antagonism, caused a significant increase in lipophilicity. In fact, 

compounds such 59 and 63 displayed a ClogP of greater than 5. Due to issues with solubility in 

aqueous media, the benzoyl moiety was the most lipophilic substitution deemed feasible for this 

study, considering the possibility of precipitation of the compound in vivo. 

 In order to more easily observe trends in SAR relating to both C-6 pendant as well as N-1 

motif, a series of 2D matrices were constructed highlighting specific trends. In these matrices, N-

1 substituents are placed on the x axis in columns 1-5 while the C-6 pendants are listed on the y 

axis in rows A-F. Desirable values are in white, while less favorable values are colored in shades 

of blue where increasingly darker shades correspond to the least favorable values. Data presented 

in these matrices are taken from Tables 8-12, wherein standard error, original references, and 

compound numbers can be found; these matrices are designed to more visually display trends in 

both the C-6 and N-1 dimensions.  
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Figure 16. SAR Matrices Highlight Trends in Potency & Efficacy at MOR & DORa 

 
aSAR matrices of potency and efficacy at MOR and DOR highlight favorable values (high MOR potency, dns at DOR) 
in white with low MOR potency and high DOR potency in increasingly darker shades of blue, corresponding to less 
favorable values. Similarly, high MOR efficacy and no DOR efficacy (dns) are most favorable, rendered in white 
while low MOR efficacy and high DOR efficacy (unfavorable) are shown in darker shades of blue.  
 

 Investigating the effects of C-6 and N-1 substitutions on MOR potency showed that 

subnanomolar potency was achieved in nine of the twelve analogues in the cyclopropyl acyl and 

mesyl subsets (Fig. 16A columns 3 and 4). Conversely, the N-acetyl and N-benzoyl substitutions 

(Fig. 16A columns 2 and 5) were generally less potent at MOR. Notably, analogues in row E of 

Fig. 16A are consistently the least potent in each subset. Looking at MOR efficacy in Fig. 16B, 

we see that row E is also consistently the least efficacious at MOR. On the other hand, analogues 

in the row above, row D, were consistently the most efficacious. In the vertical direction, column 

≤ 30 31 – 50 51 – 70 71 – 90 > 90 

B MOR Efficacy (% stim)
1 2 3 4 5

A 81 76 88 98 75

B 96 87 85 102 57

C 84 76 47 96 43

D 105 96 95 114 93

E 88 45 36 47 dns

F 98 86 89 102 58

H
O O O

S
O

O

N

N

O

O

O

≤ 30 31 – 50 51 – 70 71 – 90 > 90 

D DOR Efficacy (% stim)
1 2 3 4 5

A 16 26 69 22 dns

B dns dns 32 dns dns

C dns 35 84 dns dns

D dns dns dns dns dns

E dns dns dns dns dns

F dns 30 52 dns dns

H
O O O

S
O

O

N

N

O

O

O

≤ 1.0 1.1 – 5.0 5.1 – 10 > 10 dns

A MOR Potency, EC50 (nM)
1 2 3 4 5

A 1.6 6 1.8 0.23 2.6

B 0.53 0.9 0.42 0.23 7.9

C 2.2 1.1 0.34 0.26 1.0

D 0.4 6 0.52 0.12 4.2

E 7.3 13 6 9 dns

F 1.1 1.9 0.9 0.34 12

H
O O O

S
O

O

N

N

O

O

O

≤ 1.0 1.1 – 5.0 5.1 – 10 > 10 dns

C                 DOR Potency, EC50 (nM)
1 2 3 4 5

A 110 68 10 12 dns

B dns dns 1.9 dns dns

C dns 5.8 0.71 dns dns

D dns dns dns dns dns

E dns dns dns dns dns

F dns 1.6 3.7 dns dns

H
O O O
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O

O

N

N
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4 (the mesyl subset) is the most efficacious subset at MOR. Unsurprisingly, the analogue at the 

intersection of these two high-efficacy functionalities in square 4-D (compound 56) displays the 

highest MOR efficacy of the series (114%) as well as the best MOR potency (Fig. 16A). 

Compounds in columns 1, 2, and 3 were generally full MOR agonists, whereas column 5—the N-

benzoyl subset—displayed the lowest efficacy. The compound at the intersection of the lowest-

efficacy functionalities in square 5-E (compound 62) was the only MOR antagonist throughout 

the series.  

 Focusing on DOR potency (Fig. 16C) and efficacy (Fig. 16D), most analogues in columns 

1, 4, and 5 are antagonists, as are analogues in rows B, D, and E. Conversely, the monocyclic 

benzyl pendant of row A is most commonly associated with DOR efficacy, though rows C and F 

each feature two DOR agonist ligands as well. In the vertical direction, the acetyl and cyclopropyl 

acyl substitutions (columns 2 and 3) display some DOR efficacy. Again, the combination of the 3-

quinolinyl pendant (row C) and cyclopropyl acyl group (column 3) yield the most potent (Fig. 

16C) and efficacious (Fig. 16D) DOR analogue in the series. In terms of targeting our desired 

MOR agonist/DOR antagonist profile, column 4 (the mesyl subset) is consistently the most potent 

and efficacious at MOR while maintaining DOR antagonism. Row 4 analogues B, C, D, and F 

(54, 55, 56, and 58 respectively) all display high-potency MOR agonism and DOR antagonism 

with varying selectivity profiles between 3:1 and 24:1 in favor of MOR (see Table 11). 

 SAR analysis of two pharmacophores via 2D matrices provides useful information that 

may not have been readily apparent from individual SAR campaigns at either C-6 or N-1 alone. 

Based on our initial monocyclic series, it seemed that DOR efficacy would be a consistent issue 

for most if not all N-substituted analogues. However, combining these N-1 modifications with 

bicyclic pharmacophore elements at C-6 has shown that, contrary to initial expectations, some N-
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substitutions (namely the mesyl group) offer reliable DOR antagonism despite the mild efficacy 

of the initial analogue in the series. Additionally, the matrix setup allows us to identify 

intersections of key trends, enhancing our ability to fine-tune specific profiles. Some exemplary 

intersections are 3-C (compound 49), a potent, high-efficacy DOR agonist; 4-D (compound 56), a 

potent, high-efficacy MOR agonist/DOR antagonist; and 5E (compound 62), a dual antagonist. 

Additionally, chemists looking to replicate these results in slightly altered forms could add to 

remove a carbon atom (THIQ to isoindoline, cyclopropyl to cyclobutyl, ethylenedioxy to 

methylenedioxy benzodioxane) generating very similar profiles in vitro to those reported above. 

This could be advantageous in expanding the net of optimized in vitro candidates for in vivo 

testing. As will be described in the next section, in vivo results have thus far been fairly 

unpredictable with small modifications causing large differences in bioavailability. As such, by 

incrementally modifying past bioavailable ligands, we may be able to generate novel ligands with 

optimized in vitro profiles and in vivo antinociceptive activity. 

3.5  In Vivo Pharmacology 

To determine whether the improved in vivo activity achieved by acetylating compounds 43 

and 45 translates to other N-substituted analogues, all compounds in this series with MOR agonist 

activity in vitro were evaluated for their antinociceptive activity in mice via the WWTW assay. Of 

the 21 novel analogues presented here, four reached the maximal possible effect (100% MPE) 

while six others showed partial activity (50-75% MPE); the remaining eleven compounds showed 

no significant difference from baseline (Table 13).  

Within the -NH- subset, only the lead compound 1 showed full antinociceptive activity, 

while two others were partially active (50% MPE). The acetyl and mesyl subsets showed the 
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greatest in vivo efficacy with 2 fully active, 2 partially active, and 2 inactive analogues each. The 

benzoyl subset also contained 2 fully active analogues, though the remaining 4 analogues had no 

significant antinociceptive activity. The cyclopropyl acyl subset offered only two partially active 

analogues (50-60% MPE).  

  

 
a Results from the mouse WWTW assay after cumulative dosing of test compound up to 10 mg/kg ip. Antinociceptive 
activity represented as percent maximum possible effect (% MPE), with MPE being a 20 s latency to tail withdrawal. 
Baseline tail withdrawal latency is ~5 s, or 25% MPE. “dns” indicates no stimulation of an antinociceptive response. 
b Reported in reference 83. c Reported in reference 99. d Synthesized by A.M.B. e Reported in reference 94. f Reported in 
reference 95. g Synthesized by D.J.M.  

# R2 R1 % MPE

1b 100

4b 50

39c dns

40c dns

41d dns

42d 50

32e dns

43e 100

44. 60

45c 100

46 75

47 dns

# R2 R1 % MPE

36f 50

48 dns

49 dns

50 60

51 dns

52 dns

53 100

54 dns

55 50

56 100

57 70

58 dns

# R2 R1 % MPE

38f dns

59g 100

60g 100

61g dns

62 dns

63 dns

Duration of Action (h)

43 4.5

45 4.5

53 1.5

56 1.5

59 3.0

60 2.5
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Table 13. Antinociceptive Activity of C-6/N-1 Analogues in
WWTWAssay Following Intraperitoneal Administrationa
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In the bottom right section of Table 13, N-acetyl analogues 43 and 45 displayed a duration 

of action greater than 4 hours, whereas the mesyl derivatives 53 and 56 displayed antinociceptive 

effects lasting less than 2 hours. The benzoyl analogues 59 and 60 showed a duration of action of 

approximately 3 hours. Of note, 60 displayed only 43% efficacy in vitro at MOR, yet elicited a 

full antinociceptive effect in the WWTW assay, indicating even partial agonists may elicit full 

activity in vivo. 

As was the case with the mono-substituted C-6 and N-1 campaigns, a clear relationship 

between structure and in vivo activity was not easily detectable. We are still working toward 

developing more exact predictors of in vivo efficacy, however comparison with ClogP does offer 

some (albeit limited) insight. Fig. 17 compares ClogP for each compound with its corresponding 

in vivo activity.  

 
Figure 17. In Vivo SAR Matrix Indicates Lower ClogP is Favorable for Bioavailabilitya 

 

a Comparison of Clog P with in vivo activity shows that compounds with ClogP of 3.3 or less, denoted by blue stars, 
are all partially or fully active in vivo.  

Antinociceptive Efficacy (% MPE)

1 2 3 4 5

A 100 dns 50 100 dns

B 50 100 dns dns 100

C dns 60 dns 50 100

D dns 100 60 100 dns

E dns 75 dns 70 dns

F 50 dns dns dns dns
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≤ 30 31 – 50 51 – 70 71 – 90 > 90 ClogP
Active/Total

3.0 - 3.4
7/8

3.5 – 3.9
3/10

4.0 – 4.4
1/3

4.5 – 4.9
3/6

≥ 5.0
1/3 

ClogP

1 2 3 4 5

A 3.8 3.4 3.9 3.3 4.6

B 4.9 4.5 5.1 4.4 5.8

C 3.7 3.2 3.8 3.1 4.5

D 3.7 3.2 3.8 3.1 4.5

E 3.5 3.1 3.7 3.0 4.4

F 4.3 3.9 4.5 3.8 5.2
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 Splitting compounds into bins by their ClogP, we see that seven of eight compounds in the 

lowest ClogP bin have full or partial antinociceptive activity, where the one outlier is the highest 

ClogP analogue of the group. However, in the bins with ClogP greater than or equal to 3.5, 

approximately only one in three (8 of 22) have activity in vivo. Those low-ClogP, bioavailable 

ligands are denoted in Table 17 with a blue star. These data indicate a greater propensity for in 

vivo activity amongst low-ClogP compounds than those in the higher-ClogP bins. This effect may 

correspond to greater solubility in blood, and thus a greater ability to reach the target receptors 

(lower volume of distribution). Conversely, several analogues with high Clog P including 43, 59 

and 60 (ClogP = 4.5, 4.5, and 5.8 respectively) have a much higher ClogP and corresponding 

volume of distribution yet are still fully active in vivo. It is worth noting that the two THIQ 

compounds 45 and 56 are very similar structurally and differ by only 0.1 ClogP units yet have a 

3-hour difference in duration of action. From these data, duration of action seems most correlated 

to N-1 substitution rather than ClogP or C-6 pendant, though more data would be needed to draw 

a more meaningful conclusion.  
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Figure 18. Plotting ClogP Against In Vivo Activity 

 

 

 While in vivo activity does correlate with ClogP generally, the presence of clear outliers to 

this trend indicates the presence of other contributing factors as well (e.g., efflux, metabolism, 

distribution, elimination). Nonetheless, chemists looking to develop new, bioavailable analogues 

of this chemotype would be well-advised to strive for low ClogP, both to improve solubility but 

also to favor in vivo activity.  

3.6  SAR of the Thiochromane Analogues of the Bicyclic Series 

 As discussed previously, an additional subset of analogues built around a thiochromane 

core instead of the THQ core were designed for inclusion within this study. The thiochromane core 

replaces the THQ amine (-NH-) with a thioether (-S-). The initial analogue utilizing the 
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thiochromane core, which featured a monocyclic benzyl pendant at C-6, was one of the few 

scaffolds that maintained bioavailability in vivo. As this series was among the most recently 

synthesized, many data points are still missing, and in vivo testing has not yet been conducted. 

Nevertheless, the existing data points are included in Table 14 below. The standalone gem-

dimethyl tetrahydronaphthalene analogue 69 is also included in Table 14. 

 

 
a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR). Values are expressed as the mean of three separate assays performed in duplicate 
with standard error of the mean in parentheses. dns = does not stimulate. b Synthesized by A.M.B. † n=2 ‡ n=1. 

 

Analogues in this series are more MOR-selective than those in the substituted THQ series. 

This is to be expected, as the acyl C=O (or S=O) bond is critical to achieving subnanomolar DOR 

affinity. Analogues 64, 65 and 67 display high MOR potency and efficacy while maintaining the 

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

64b -S- 0.15
(0.04)

4.8
(1.1)

48
(23)

32 1.9
(0.5)

dns† dns 80
(8)

dns† dns

65 -S- 0.20
(0.09)

4.3†

(0.6)
--- 22 0.8

(0.6)
dns --- 79

(6)
dns ---

66 -S- 0.18
(0.09)

3.1
(0.4)

--- 17 0.7†

(0.1)
15‡

(---)
--- 57†

(6)
28‡

(---)
---

67 -S- 0.07
(0.02)

3.9
(0.7)

14
(4)

56 0.7
(0.4)

dns† 85‡

(---)
93
(2)

dns† 40‡

(---)

68 -S- 0.7
(0.2)

6.5‡

(---)
--- 9 26†

(20)
dns† --- 25†

(1)
dns† ---

69 -C(CH3)2- 0.36
(0.08)

6.5
(0.7)

27
(5)

2 16
(5)

>500 >500 75
(4)

16
(3)

75
(3)

O

O

N

N

R1

R2

HN

O

NH2 OH
Table 14. Thiochromane and Gem-Dimethyl Tetrahydro-
naphthalene Analogues Show High MOR Selectivitya



 148 

DOR antagonist profile. As was observed in some 3-quinolinyl analogues in the previous series, 

analogue 66 displayed low MOR efficacy and partial DOR efficacy. In addition to the high degree 

of MOR selectivity, a key drawback of this series is lipophilicity. Analogues in this series range 

in ClogP from 4.6 to 6.0, limiting our ability to test these compounds for antinociception due to 

solubility issues. At present, only analogue 64 (ClogP = 4.8) has been tested in vivo. Based on 

lipophilicity and in vitro profile, compound 67 (ClogP = 4.6) may be a suitable candidate for future 

in vivo screening, though its MOR selectivity could limit the positive effects of DOR antagonism. 

Due to the limiting factors of lipophilicity and MOR selectivity, this scaffold is unlikely to be 

utilized for future drug development. The standalone analogue 69 also suffered high MOR 

selectivity and lipophilicity (and associated solubility issues) while also displaying lower MOR 

potency. Due to these issues, this scaffold was not further explored despite its in vivo activity. 

3.7  Conclusions  

By combining advantageous C-6 and N-1 moieties from past SAR campaigns and 

expanding those with novel substituents at both positions, we have developed an SAR matrix of 

30 analogues that further expand the available toolkit of multifunctional opioid ligands. Although 

our goal was to explore the C-6/N-1 chemotype with a focus on the MOR agonist/DOR antagonist 

profile, this SAR study has also yielded strategies for creating highly potent multifunctional MOR 

agonists/DOR agonists as well. While most compounds in this series displayed the desired DOR 

antagonist profile, cyclopropyl acyl analogues 36 and 39 (Table 10) showed surprising DOR 

efficacy and could be useful in the study of the MOR agonist/DOR agonist profile, which also 

holds promise for reducing opioid-related tolerance while improving analgesic potency and 

efficacy.112,119 Other compounds of note include 50, 54, and 55, which reproduce the desired in 

vitro profile: subnanomolar values for MOR affinity, DOR affinity, and MOR potency as well as 
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high efficacy at MOR with no DOR or KOR activity. Four novel compounds from this series, 53, 

56, 59, and 60 (Table 13), showed full antinociceptive activity in mice, and will be carried forward 

for evaluation in tolerance and dependence models. Comparing these with the bioavailable bicyclic 

lead 43 (2-naphthyl/N-acetyl, ClogP = 4.5), we observed a significant improvement in aqueous 

solubility for analogues 53 (ClogP = 3.2) and 56 (ClogP = 3.1), while 59 (ClogP = 5.8) was 

significantly more lipophilic and 60 (ClogP = 4.5) showed no change. Duration of action in vivo 

was not positively impacted by the N-1 substitutions explored in this series, as the previously 

reported analogues 43 and 45 showed longer-lasting antinociception than 53, 56, 59 and 60.  

A key finding of this work is the development compound 56, which shows the highest 

efficacy at MOR and displays subnanomolar potency at both MOR and DOR. Additionally, 56 is 

fully efficacious in vivo after peripheral administration and has a drug-like ClogP of 3.1. However, 

selectivity over KOR and duration of action are significantly reduced compared to 43, indicating 

areas in need of further optimization. 

 

Figure 19. Summary Profiles of 2nd Generation Lead 43 and Optimized Analogue 56 

 

MOR agonist (114% stim, EC50 = 0.12 nM)
DOR antagonist (<10% stim, Ke = 0.85 nM)
MOR/DOR selectivity: 9:1
MOR/KOR selectivity: 10:1
Full antinociceptive activity (100% MPE)
Duration of action = 1.5 h; ClogP = 3.1
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In summary, we have further investigated the bicyclic C-6/N-1 chemotype established by 

43 and 45,94,99 expanding the published C-6 and N-1 chemical space. The various C-6 and N-1 

modifications reported here have been combined in an SAR matrix to further elucidate the 

chemical motifs that govern ligand binding and receptor activation in the context of the THQ 

peptidomimetic core. This SAR study reinforces previous findings and refines our ability to 

develop potent bifunctional opioid ligands with a range of mixed-efficacy profiles in order to 

further probe the unique pharmacology of the opioid receptor family. The N-acyl and N-sulfonyl 

series—when combined with a bicyclic C-6 pendant—display among the most favorable in vitro 

profiles yet discovered throughout all of our peptidomimetic investigations to date.  
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3.8  Experimental Procedures  

 

 

a Synthesis reported in reference 93. b Synthesis reported in reference 83. c Synthesis reported in 
reference 99. d Synthesis reported in reference 94. e Synthesis reported in reference 95. Syntheses of 
referenced compounds are not reproduced in this dissertation. 
 

General Procedures  153 

Syntheses of Common Intermediates 158 

Compound 41 and Preceding Intermediates 165 

Compound 42 and Preceding Intermediates 167 

Compound 44 and Preceding Intermediates 169 

Compound 46 and Preceding Intermediates 172 

Compound 47 and Preceding Intermediates 175 

R1 Moieties

C
-6

 P
en

da
nt

s

1a 32d 36e 53 38e 64 69

4b 43d 48 54 59 65 ---

39c 44. 49 55 60 66 ---

40c 45c 50 56 61 67 ---

41 46 51 57 62 68 ---

42 47 52 58 63 --- ---

N

N

O

O

O

N
H

N

O

N

O

N
S
O

O

N

O

S C

R1

R2

HN

O

NH2 OH
Table 15. Chapter 3 Compound Numbering
and Literature References
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Compound 48 and Preceding Intermediates 178 

Compound 49 and Preceding Intermediates 182 

Compound 50 and Preceding Intermediates 184 

Compound 51 and Preceding Intermediates 187 

Compound 52 and Preceding Intermediates 190 

Compound 53 and Preceding Intermediates 192 

Compound 54 and Preceding Intermediates 195 

Compound 55 and Preceding Intermediates 197 

Compound 56 and Preceding Intermediates 201 

Compound 57 and Preceding Intermediates 203 

Compound 58 and Preceding Intermediates 206 

Compound 59 and Preceding Intermediates 208 

Compound 60 and Preceding Intermediates 210 

Compound 61 and Preceding Intermediates 212 

Compound 62 and Preceding Intermediates 214 

Compound 63 and Preceding Intermediates 217 

Compound 65 and Preceding Intermediates 219 

Compound 66 and Preceding Intermediates 222 

Compound 67 and Preceding Intermediates 224 

Compound 68 and Preceding Intermediates 226 

Compound 69 and Preceding Intermediates 228  

Compound 64 was synthesized by A.M.B, the details for which can be found in his dissertation.   
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General Procedures 

General Procedure (A): Schotten-Bauman Acylation of a Commercially Available Aniline 

Starting Material. To a flame-dried round-bottom flask under Ar atmosphere was added aniline 

starting material (1.00 eq), followed by dichloromethane, then K2CO3 (1.2-3.0 eq.). After 10 

minutes, 3-bromopropionyl chloride (1.05 eq) was added slowly via syringe. Reaction was 

monitored by TLC in 40% ethyl acetate, 60% hexanes. Ninhydrin stain was used to help monitor 

disappearance of aniline starting material. After 1-3 h, reaction was quenched with deionized 

water. Organics were separated and dried over MgSO4, then filtered and concentrated under 

vacuum. Product was purified by crystallization or, when necessary, column chromatography.   

General Procedure (B): Intramolecular b-Lactam Cyclization. To a flame-dried round-bottom 

flask under Ar atmosphere was added sodium tert-butoxide (1.05 eq) followed by anhydrous DMF, 

then stirred 10 min before slowly adding a solution of  acyl bromide intermediate from step A 

(1.00 eq) dissolved in DMF at ambient temperature via syringe. Monitored reaction by TLC in 

40% ethyl acetate, 60% hexanes. Desired product showed a moderate decrease in Rf relative to 

starting material. After stirring 1-3 h, reaction mixture was concenctrated under vacuum, then 

resuspended in dichloromethane or ethyl acetate. Extracted reaction mixture with deionized water 

and aqueous sodium bicarbonate, then separated organics and dried over MgSO4. Filtered and 

reconcentrated organics onto silica, then purified by flash chromatography. 

General Procedure (C): Fries Rearrangement to Synthesize the THQ Core. To a round-

bottom flask containing b-lactam intermediate (1 eq) dissolved in dichloroethane under inert 

atmosphere was slowly added TfOH (3 eq). After 1 hour, TLC in 40% ethyl acetate, 60% hexanes 

showed a decrease in Rf. Reaction was quenched with deionized water and neutralized with 
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K2CO3, then diluted with dichloromethane. Separated organics and dried over MgSO4, then filtered 

and concentrated organics onto silica and purified by flash chromatography. 

General Procedure (D): N-Substitution of the THQ Core 

Boc protection of the tetrahydroquinoline (THQ) core. To a flame-dried round bottom flask 

under Ar was added tetrahydroquinolin-4-one intermediate (1.0 eq), Boc2O (1.5 eq), and DMAP 

(0.1 eq). The reaction vessel was placed under vacuum for 5 min, then anhydrous DCM was added 

via syringe and the solution stirred for 5 min under vacuum. The round bottom flask was flooded 

with Ar, and DIPEA (1.5 eq) was added via syringe. The reaction vessel was equipped with a 

condenser and placed in oil bath at 60°C. The reaction stirred at reflux for 12-16 h under Ar and 

was monitored by TLC. Once significant conversion to product was seen, the reaction was 

quenched using dI H2O (20 mL) and the layers were separated. The organic layer was washed with 

sat. NaHCO3 and sat. NaCl solutions then dried over MgSO4. Organics were filtered and 

concentrated under reduced pressure, then purified using silica gel chromatography.  

N-Acylation or Mesylation of the THQ core. To a round-bottom flask containing THQ 

intermediate (1.0 eq) under Ar atmosphere was added DCM. Reaction flask was then cooled to 

0°C before adding Et3N (1.2 eq), followed by acyl or sulfonyl chloride (1.2 eq). When starting 

material showed complete conversion to product by TLC, solvent was removed under reduced 

pressure and reaction mixture was purified by silica chromatography. 

General Procedure (E): Benzylic Bromination of the C-6 Methyl Group. To a round-bottom 

flask containing N-protected 6-methyl THQ intermediate (1.00 eq) under Ar atmosphere was 

added degassed, Ar-sparged CCl4, followed by N-bromosuccinimide (1.05 eq) and benzoyl 

peroxide (0.1 eq). Reaction was then heated to reflux, monitored by TLC. Quantitative conversion 
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of starting material was generally not observed, so reaction was halted when side-product began 

to form. Reaction was halted by cooling to -20°C, and precipitate was filtered from solution 

(washing with additional cold CCl4). Filtrate was then concentrated onto silica and purified by 

silica chromatography.  

General Procedure (F): Substitution of C-6 Benzylic Bromide with R2 

Suzuki Coupling of Benzylic Bromide to R2-Boronic Acid. To a round-bottom flask under Ar 

atmosphere was added 3:1 acetone/water and stirred under vacuum for 10 minutes. Next, Ar was 

bubbled through solvent for an additional 10 minutes before adding benzylic bromide intermediate 

(1.0 eq), boronic acid (1.2-2.0 eq), K2CO3 (3 eq) and Pd(dppf)Cl2 (0.1 eq). Reaction was heated to 

80°C for 6-12 hours, after which the reaction mixture was cooled and diluted with ethyl acetate 

and aqueous NaHCO3. Organics were separated and dried over MgSO4, then filtered and 

concentrated in vacuo onto silica. Product was purified by silica chromatography. 

Substitution of Benzylic Bromide with Tetrahydroisoquinline (THIQ). To a round-bottom 

flask under inert atmosphere was added DMF, followed by K2CO3 (1.2 eq) and THIQ (1.2 eq), 

then benzylic bromide (1.0 eq) stirring at ambient temperature. After 6-12 hours, solvent was 

removed under reduced pressure and residual oil was resuspended in ethyl acetate and sat. 

NaHCO3. Organics were separated and dried over MgSO4, then filtered and concentrated in vacuo 

onto silica. Product was purified by silica chromatography. 

General Procedure (G): Reductive Amination of THQ Ketone to Sulfinamide Using Ellman’s 

Sulfinamide. To a round bottom flask already containing desiccated THQ intermediate (1.0 eq) 

under Ar atmosphere was added (R)-2-methylpropane-2-sulfinamide (3.0 eq). Meanwhile, a reflux 

condenser was flame-dried under vacuum, and then flooded with Ar. Next, anhydrous THF (5-10 
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mL) was added to the reaction vessel containing starting reagents via syringe. The round bottom 

flask was placed in an ice bath and allowed to equilibrate to 0°C. Next, Ti(OEt)4 (6.0 eq) was 

added slowly via syringe. Once addition was complete, the reaction vessel was taken out of ice 

bath and placed in oil bath at 70°C-75°C, affixed condenser, and stirred for 16-48 h under Ar. The 

reaction was monitored by TLC for loss of ketone. Once sufficient conversion to the tert-

butanesulfinyl imine was observed, reaction vessel was taken out of oil bath and cooled to ambient 

temperature. Meanwhile, an additional round bottom flask was flame-dried under vacuum, then 

flooded with Ar. NaBH4 (6.0 eq) was added quickly, and anhydrous THF was added (5-10 mL). 

The round bottom flask was placed in dry ice/acetone bath and allowed to equilibrate to -78°C. 

Contents from the round bottom flask containing the imine intermediate were transferred to round 

bottom flask containing NaBH4 via cannula. Imine-containing flask was washed twice with 

minimal THF, which was also transferred to reducing flask via cannula under Ar. Once contents 

were completely added, the reaction was taken out of dry ice/acetone bath and was allowed to 

warm to room temperature. The reaction stirred at ambient temperature for 2-3 h. To quench, sat. 

NaCl solution was added. Reaction mixture was diluted with ethyl acetate and DI H2O and 

separated, washing with H2O until both layers were clear, indicating sufficient removal of titanium 

oxide by-product. Organics were then isolated and dried over MgSO4 and filtered through a fritted 

funnel. Organic extract was then concentrated onto silica and purified by silica chromatography. 

General Procedure (H): Conversion of Sulfinamide to Final Compound – Step 1: 

Sulfinamide Cleavage. To a round bottom flask containing sulfinamide (1.0 eq) was added 1,4-

dioxane, followed by conc. HCl (6.0 eq), cleaving the sulfinamide to the primary amine. The 

reaction stirred at RT for up to 3 h. Solvent was removed under reduced, and residue was re-

suspended in Et2O. The resultant white solid precipitate (the HCl salt of the amine) was isolated 
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by decanting and washing with Et2O up to three times. After desiccation, the solid residue was 

used without further purification. Step 2: Amide Coupling. To a pear-shaped flask under inert 

atmosphere containing amine salt (1.0 eq) was added di-Boc-Dmt (1.1 eq), PyBOP (1.1 eq), and, 

when specified, 6-Cl HOBt (1.1 eq), followed by DMF (10 mL) and DIPEA (10 eq) at ambient 

temperature. After stirring for 6 hours, solvent was removed under reduced pressure and residual 

oil was loaded onto silica. Boc-protected intermediate was purified by silica chromatography but 

was generally not characterized by NMR. Step 3: Boc Deprotection. Boc-protected intermediate 

was suspended in DCM (10 mL), then TFA (3-5 mL) was added. After 1 hour, solvent was 

removed under vacuum. Product was resuspended in a solution of 99.9% acetonitrile, 0.1% TFA, 

then diluted with deionized water. Final products were purified by reverse-phase semi-preparative 

HPLC. Final yield not calculated.  

General Procedure (I): Boc-Deprotection Boc-protected intermediate was suspended in DCM 

(10 mL), then TFA (3-5 mL) was added. After 1 hour, solvent was removed in vacuo, resuspended 

in DCM, then dry-loaded onto silica in vacuo and purified by flash chromatography. 
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Common Intermediates: Step A – 6-Methyl beta-Bromide 

 

6-Me beta-bromide. 3-bromo-N-(p-tolyl)propanamide. 6-Me beta-bromide intermediate was 

synthesized following General Procedure (A) from p-toluidine (5.0 g, 46.7 mmol, 1.00 eq), 

K2CO3 (19.4 g, 140.1 mmol, 3.0 eq). and 3-bromopropionyl chloride (4.94 mL, 49.0 mmol, 1.05 

eq). Yield: 10.76 g, 95%. 1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.05 (d, J = 8.1 Hz, 

2H), 3.63 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 6.6 Hz, 2H), 2.24 (s, 3H). 13C NMR (126 MHz, CDCl3) 

δ 167.85, 134.78, 134.37, 129.49, 120.21, 40.58, 27.17, 20.86. 

 

Common Intermediates: Step B – 6-Methyl Beta-Lactam 

 

6-Me beta-lactam. 1-(p-tolyl)azetidin-2-one. 6-Me beta-lactam intermediate was synthesized 

following General Procedure (B) from 6-Me beta-bromide (10.76, 44.4 mmol, 1.00 eq) and 

NaOtBu (4.48 g, 46.7 mmol, 1.05 eq). Yield: 7.07 g, 99%. 1H NMR (400 MHz, CDCl3) δ 7.25 (d, 

J = 8.2 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 3.60 (m, 2H), 3.12 – 3.06 (m, 2H), 2.31 (s, 3H). 13C 

NMR (126 MHz, CDCl3) δ 164.22, 136.12, 133.36, 129.56, 116.03, 37.95, 35.97, 20.87. 
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Common Intermediates: Step C – 6-Methyl THQ 

 

6-Me THQ 6-methyl-2,3-dihydroquinolin-4(1H)-one. 6-Me THQ intermediate was synthesized 

following General Procedure (C) from 6-Me beta-lactam (7.07 g, 43.9 mmol, 1 eq) and TfOH 

(11.6 mL, 131.6 mmol, 3 eq). Yield: 4.23 g, 60%. 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 2.1 

Hz, 1H), 7.13 (dd, J = 8.3, 2.1 Hz, 1H), 6.61 (d, J = 8.3 Hz, 1H), 3.58 – 3.52 (m, 2H), 2.68 (dd, J 

= 7.5, 6.4 Hz, 2H), 2.24 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 193.85, 149.95, 136.34, 127.41, 

127.12, 119.34, 115.92, 42.55, 38.22, 20.24. 

 
Common Intermediates: Step D – N-Substituted THQ Cores 

 

6-Me N-Boc THQ tert-butyl 6-methyl-4-oxo-3,4-dihydroquinoline-1(2H)-carboxylate. 

Intermediate 6-Me N-Boc THQ was synthesized following General Procedure (D) from 6-Me 

THQ (2.25 g, 13.96 mmol, 1.0 equiv), Boc2O (6.09 g, 27.92 mmol, 2.0 eq), DMAP (171 mg, 1.40 

mmol, 0.1 eq), and DIPEA (4.88 mL, 27.92 mmol, 2.0 eq). Yield: 3.06 g, 84%. 1H-NMR (400 

MHz, CDCl3) δ 8.00 (d, J = 2.3 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.53 (dd, J = 8.7, 2.4 Hz, 1H), 

4.48 (s, 2H), 4.15 (t, J = 6.4 Hz, 2H), 2.77 (t, J = 6.4 Hz, 2H), 1.56 (s, 9H); 13C-NMR (101 MHz, 
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CDCl3) δ 193.66, 152.68, 144.20, 134.70, 133.40, 127.75, 124.87, 124.30, 82.64, 44.36, 38.90, 

32.49, 28.40. 

 

6-Me N-Ac THQ 1-acetyl-6-methyl-2,3-dihydroquinolin-4(1H)-one. Intermediate 6-Me N-Ac 

THQ was synthesized following a modified version of General Procedure (D) from intermediate 

6-Me THQ: To a round-bottom flask containing 6-Me THQ (318 mg, 1.97 mmol, 1.0 eq) under 

inert atmosphere was added acetic anhydride (10 mL, excess), then reaction was heated to 80°C. 

After 5 hours, solvent was removed under reduced pressure and reaction mixture was purified by 

flash chromatography. Yield: 355 mg, 89%. 1H NMR (500 MHz, Chloroform-d) δ 7.81 (s, 1H), 

7.36 (dd, J = 8.1, 2.2 Hz, 1H), 7.30 (br s, 1H), 4.22 (t, J = 6.3 Hz, 2H), 2.78 (t, J = 6.2 Hz, 2H), 

2.37 (s, 3H), 2.32 (s, 3H). 13C NMR (126 MHz, cdcl3) δ 135.07, 127.87, 124.13, 39.70, 23.21, 

20.91. 

 

6-Me N-cPr THQ 1-(cyclopropanecarbonyl)-6-methyl-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 6-Me N-cPr THQ was synthesized following General Procedure (D) from 6-Me 

THQ (950 mg, 5.9 mmol, 1.0 eq), Et3N (1.64 mL, 11.8 mmol, 2.0 eq), and cyclopropanecarbonyl 
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chloride (1.07 mL, 11.8 mmol, 2.0 eq). Yield: 1.24 g, 92%. 1H NMR (500 MHz, Chloroform-d) δ 

7.81 (d, J = 2.2 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.34 (dd, J = 8.3, 2.1 Hz, 1H), 4.26 (t, J = 6.3 

Hz, 2H), 2.77 (td, J = 6.3, 1.9 Hz, 2H), 2.37 (d, J = 1.9 Hz, 3H), 2.01 (tt, J = 8.0, 4.5 Hz, 1H), 1.19 

(ddd, J = 4.7, 3.0, 1.8 Hz, 2H), 0.87 (dq, J = 7.1, 3.8 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.71, 

173.10, 141.97, 135.28, 134.90, 127.91, 125.85, 123.91, 43.65, 39.82, 20.85, 13.74, 9.80. 

 

 

6-Me N-Bz THQ 1-benzoyl-6-methyl-2,3-dihydroquinolin-4(1H)-one. Intermediate 6-Me N-Bz 

THQ was synthesized following General Procedure (D) from intermediate 6-Me THQ (1.0 g, 

6.20 mmol, 1.0 eq), Et3N (0.86 mL, 7.44 mmol, 1.2 eq), and benzoyl chloride (1.25 mL, 7.44 

mmol, 1.2 eq). Reaction mixture was purified by silica chromatography. Yield: 1.63 g, 99%. 1H 

NMR (500 MHz, Chloroform-d) δ 7.81 (d, J = 2.2 Hz, 1H), 7.48 (dd, J = 8.1, 1.3 Hz, 2H), 7.44 (t, 

J = 7.7 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.06 (dd, J = 8.4, 2.1 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 

4.31 (t, J = 6.3 Hz, 2H), 2.87 (t, J = 6.3 Hz, 2H), 2.31 (s, 3H).  
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Common Intermediates: Step E – Benzyl Bromides 

 

6-MeBr N-Boc THQ tert-butyl 6-(bromomethyl)-4-oxo-3,4-dihydroquinoline-1(2H)-carboxylate. 

Intermediate 6-MeBr N-Boc THQ was synthesized following General Procedure (E) from 

intermediate 6-Me N-Boc THQ (588 mg, 2.25 mmol, 1.00 eq), NBS (420 mg, 2.36 mmol, 1.05 

eq) and benzoyl peroxide (55 mg, 0.23 mmol, 0.10 eq). Yield: 596 mg, 78%. 1H- NMR (400 MHz, 

CDCl3) δ 8.49 (d, J = 1.5 Hz, 1H), 8.47 (dd, J = 4.8, 1.6 Hz, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.72 

(d, J = 8.6 Hz, 1H), 7.46 (dt, J = 7.9, 2.0 Hz, 1H), 7.30 (dd, J = 8.6, 2.3 Hz, 1H), 7.21 (ddd, J = 

7.8, 4.8, 0.9 Hz, 1H), 4.14 (t, J = 6.4 Hz, 2H), 3.96 (s, 2H), 2.75 (t, J = 6.4 Hz, 2H), 1.55 (s, 9H); 

13C-NMR (101 MHz, CDCl3) δ 194.18, 152.79, 150.18, 147.99, 142.84, 136.35, 135.93, 135.56, 

134.55, 127.23, 124.98, 124.21, 123.60, 82.33, 44.37, 39.04, 38.37, 28.39. 

 

6-MeBr N-Ac THQ 1-acetyl-6-(bromomethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 6-

Me N-Ac THQ was synthesized following General Procedure (E) from intermediate 6-MeBr 

N-Ac THQ (350 mg, 1.72 mmol, 1.00 eq), NBS (338 mg, 1.89 mmol, 1.10 eq) and benzoyl 

peroxide (42 mg, 0.17 mmol, 0.10 eq). Reaction was heated at reflux for 2 hours. Yield: 200 mg, 
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41%. 1H NMR (500 MHz, Chloroform-d) δ 8.00 (d, J = 2.2 Hz, 1H), 7.57 (dd, J = 8.4, 2.3 Hz, 

1H), 7.48 (s, 1H), 4.47 (s, 2H), 4.20 (t, J = 6.2 Hz, 2H), 2.78 (t, J = 6.3 Hz, 2H), 2.34 (s, 3H). 13C 

NMR (126 MHz, cdcl3) δ 193.38, 169.39, 143.77, 135.23, 134.73, 128.06, 126.01, 124.77, 44.20, 

39.39, 32.02, 23.33. 

 

8 6-(bromomethyl)-1-(cyclopropanecarbonyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 8 

was synthesized following General Procedure (C) from intermediate 4 (836 mg, 3.65 mmol, 1.00 

eq), NBS (714 mg, 4.01 mmol, 1.10 eq) and benzoyl peroxide (88 mg, 0.37 mmol, 0.10 eq). 

Reaction time: 3 hours. Yield: 460 mg, 41%. 1H NMR (500 MHz, Chloroform-d) δ 8.03 (d, J = 

1.9 Hz, 1H), 7.57 (d, J = 2.7 Hz, 2H), 4.50 (s, 2H), 4.29 (t, J = 6.3 Hz, 2H), 2.81 (t, J = 6.4 Hz, 

2H), 2.05 – 1.97 (m, 1H), 1.23 (dt, J = 6.7, 3.4 Hz, 2H), 0.93 (dq, J = 7.1, 3.8 Hz, 2H). 13C NMR 

(126 MHz, cdcl3) δ 193.82, 173.28, 144.23, 134.95, 134.65, 128.30, 125.88, 124.50, 43.69, 39.65, 

32.13, 14.07, 10.11. 

 

6-MeBr N-Bz THQ 1-benzoyl-6-(bromomethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 6-

MeBr N-Bz THQ was synthesized following General Procedure (E) from intermediate 6-Me N-
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Bz THQ (1.20 g, 4.52 mmol, 1.0 eq), N-bromosuccinimide (821 mg, 4.61 mmol, 1.02 eq) and 

benzoyl peroxide (55 mg, 0.23 mmol, 0.05 eq). Reaction was heated for 4 hours at reflux. Yield: 

685 mg, 44%. 1H NMR (500 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.53 – 7.47 (m, 2H), 7.47 (dd, J 

= 7.0, 1.5 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.31 (dt, J = 8.5, 2.0 Hz, 1H), 6.98 (d, J = 8.6 Hz, 1H), 

4.43 (d, J = 3.7 Hz, 2H), 4.31 (t, J = 6.0 Hz, 2H), 2.87 (t, J = 6.3 Hz, 2H).  

 

6-MeBr Thiochromane 6-(bromomethyl)thiochroman-4-one. Intermediate 6-MeBr 

Thiochromane was synthesized following General Procedure (E) from intermediate 6-Me 

Thiochromane (1.00 g, 5.61 mmol, 1.00 eq) and NBS (1.05 g, 5.89 mmol, 1.05 eq). Yield: 559 

mg, 39%. 1H NMR (500 MHz, Chloroform-d) δ 8.11 (d, J = 1.7 Hz, 1H), 7.42 (dd, J = 8.3, 2.1 Hz, 

1H), 7.28 (d, J = 8.2 Hz, 1H), 4.47 (s, 2H), 3.25 (td, J = 6.6, 1.0 Hz, 2H), 2.99 (t, J = 6.5 Hz, 2H). 

13C NMR (126 MHz, cdcl3) δ 193.67, 133.98, 133.89, 130.34, 129.52, 128.64, 128.48, 39.48, 

32.64, 26.69. 

 

  

S

O

S

Br

O
E

6-Me Thiochromane 6-MeBr Thiochormane



 165 

Compound 41 

 

41-1 tert-butyl 6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-4-oxo-3,4-dihydroquinoline-

1(2H)-carboxylate. 41-1 was synthesized following General Procedure (F) from intermediate 6-

MeBr N-Boc THQ (300 mg, 0.88 mmol, 1.0 eq), 1,4-benzodioxane-6-boronic acid (238 mg, 1.32 

mmol, 1.5 eq), K2CO3 (365 mg, 2.64 mmol, 3.0 eq) and Pd(dppf)Cl2 (65 mg, 0.09 mmol, 0.1 eq). 

Reaction was heated 12 hours. Yield: 266 mg, 76%. 1H-NMR (500 MHz, CDCl3) δ 7.81 (d, J = 

2.2 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.30 (dd, J = 8.6, 2.3 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.67 

– 6.62 (m, 2H), 4.21 (s, 4H), 4.13 (t, J = 6.3 Hz, 2H), 3.84 (s, 2H), 2.74 (t, J = 6.3 Hz, 2H), 1.54 

(s, 9H); 13C-NMR (126 MHz, CDCl3) δ 194.34, 152.86, 143.53, 142.45, 142.12, 137.18, 134.68, 

133.86, 127.16, 124.90, 123.93, 121.81, 117.60, 117.34, 82.16, 64.47, 64.39, 44.38, 40.50, 39.10, 

28.40. 

 

41-2 tert-butyl (R)-4-(((R)-tert-butylsulfinyl)amino)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-

yl)methyl)-3,4-dihydroquinoline-1(2H)-carboxylate. 41-2 was synthesized following General 

Procedure (G) from 41-1 (78 mg, 0.20 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (72 

mg, 0.59 mmol, 3.0 eq), and Ti(OEt)4 (0.31 mL, 1.18 mmol, 6.0 eq), then NaBH4 (45 mg, 1.18 

mmol, 6.0 eq). Yield: 60 mg, 61%. 1H-NMR (500 MHz, CDCl3) δ 7.68 (d, J = 8.5 Hz, 1H), 7.15 
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(d, J = 2.1 Hz, 1H), 7.06 (dd, J = 8.6, 2.2 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.68 – 6.63 (m, 2H), 

4.52 (q, J = 3.6 Hz, 1H), 4.22 (s, 4H), 3.94 (dt, J = 12.9, 4.5 Hz, 1H), 3.80 (s, 2H), 3.57 (ddd, J = 

12.9, 11.3, 3.9 Hz, 1H), 3.29 (d, J = 1.1 Hz, 1H), 2.20 (dq, J = 14.0, 4.0 Hz, 1H), 2.00 – 1.89 (m, 

1H), 1.51 (s, 9H), 1.20 (s, 9H); 13C-NMR (126 MHz, CDCl3) δ 153.68, 143.48, 142.01, 136.92, 

136.63, 134.36, 128.99, 128.73, 128.69, 124.15, 121.85, 117.62, 117.25, 81.20, 64.47, 64.41, 

55.76, 50.48, 40.54, 40.15, 29.50, 28.46, 22.73. 

 

 

41 (S)-2-amino-N-((R)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. 41 was synthesized 

following General Procedure (H) from intermediate 41-2. Step 1: Sulfinamide cleavage was 

carried out with 41-2 (60 mg, 0.12 mmol, 1.0 eq) and excess concentrated HCl (0.06 mL) 

precipitating product as a white solid (35 mg total, 23 mg of which was carried forward) which 

was used without further purification. Step 2: Amide coupling was performed with the aminium 

chloride salt of 41-2 (23 mg, 0.053 mmol, 1.0 eq), di-Boc-Dmt (22 mg, 0.053 mmol, 1.0 eq), 

PyBOP (28 mg, 0.053 mmol, 1.0 eq), and 6-Cl HOBt (9 mg, 0.053 mmol, 1.0 eq), followed by 

DIPEA (0.09 mL, 0.53 mmol, 10 eq). After purification by silica chromatography, product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H-NMR 

(126 MHz, CD3OD) δ 6.96 (d, J = 2.0 Hz, 1H), 6.93 (dd, J = 8.2, 2.0 Hz, 1H), 6.67 (dd, J = 8.1, 
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6.8 Hz, 2H), 6.58 – 6.54 (m, 2H), 6.48 (s, 2H), 4.96 (t, J = 4.6 Hz, 1H), 4.17 (s, 4H), 3.86 (dd, J = 

11.5, 5.1 Hz, 1H), 3.69 (s, 2H), 3.25 (dd, J = 13.6, 11.5 Hz, 1H), 3.07 (dt, J = 12.4, 4.5 Hz, 1H), 

3.02 (dd, J = 13.6, 5.1 Hz, 1H), 2.58 (td, J = 11.7. 2.7 Hz, 1H), 2.27 (s, 6H), 1.83 – 1.74 (m, 1H), 

1.58 – 1.50 (m, 1H). Calculated [M+H]+: 488.3. ESI-MS mass observed: 488.3 (M+H). Analytical 

HPLC retention time: 24.49 min. 

 

Compound 42 

 

42-1 tert-butyl 6-(benzofuran-2-ylmethyl)-4-oxo-3,4-dihydroquinoline-1(2H)-carboxylate. 42-1 

was synthesized following General Procedure (F) from intermediate 6-MeBr N-Boc THQ (300 

mg, 0.88 mmol, 1.0 eq), 2-benzofuranylboronic acid MIDA ester (360 mg, 1.32 mmol, 1.5 eq), 

K2CO3 (365 mg, 2.64 mmol, 3.0 eq) and Pd(dppf)Cl2 (65 mg, 0.09 mmol, 0.1 eq). Reaction was 

heated 12 hours. Yield: 245 mg, 74%. 1H-NMR (500 MHz, CDCl3) δ 7.95 (d, J = 2.3 Hz, 1H), 

7.75 (d, J = 8.9 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.39 (d, J = 7.7 Hz, 1H), 7.24 – 7.13 (m, 2H), 6.41 

(s, 1H), 4.14 (t, J = 6.2 Hz, 2H), 4.08 (s, 2H), 2.76 (t, J = 6.2 Hz, 2H), 1.56 (s, 9H); 13C-NMR (126 

MHz, CDCl3) δ 194.06, 156.92, 154.98, 152.72, 142.93, 134.55, 132.95, 128.68, 127.37, 124.89, 

123.99, 123.56, 122.59, 120.49, 110.91, 103.56, 82.20, 44.27, 38.93, 34.19, 28.30. 
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42-2 tert-butyl (R)-6-(benzofuran-2-ylmethyl)-4-(((R)-tert-butylsulfinyl)amino)-3,4-

dihydroquinoline-1(2H)-carboxylate. 42-2 was synthesized following General Procedure (G) 

from 42-1 (88 mg, 0.23 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (85 mg, 0.70 mmol, 

3.0 eq), and Ti(OEt)4 (0.30 mL, 1.40 mmol, 6.0 eq), then NaBH4 (53 mg, 1.40 mmol, 6.0 eq). 

Yield: 78 mg, 70%. 1H-NMR (500 MHz, CDCl3) δ 7.74 (d, J = 8.5 Hz, 1H), 7.46 (d, J = 7.8 Hz, 

1H), 7.38 (d, J = 8.2 Hz, 1H), 7.30 (s, 1H), 7.22 – 7.12 (m, 3H), 6.41 (s, 1H), 4.55 (q, J = 3.7 Hz, 

1H), 4.04 (s, 2H), 3.95 (dt, J = 13.1, 5.0 Hz, 1H), 3.64 – 3.50 (m, 1H), 3.30 (s, 1H), 2.22 – 2.15 

(m, 1H), 2.02 – 1.92 (m, 1H), 1.51 (s, 9H), 1.19 (s, 9H); 13C-NMR (126 MHz, CDCl3) δ 157.38, 

154.93, 153.53, 137.16, 132.62, 129.10, 128.78, 128.75, 128.61, 124.16, 123.39, 122.49, 120.42, 

110.88, 103.34, 81.22, 55.66, 50.44, 40.12, 34.19, 29.50, 28.33, 22.58. 

 

42 (S)-2-amino-N-((R)-6-(benzofuran-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-

2,6-dimethylphenyl)propenamide. 42 was synthesized following General Procedure (H) from 42-

2. Step 1: Sulfinamide cleavage was carried out with 42-2 (78 mg, 0.16 mmol, 1.0 eq) and excess 

concentrated HCl (0.08 mL), precipitating product as a white solid (79 mg crude yield, 40 mg of 
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which was carried forward), which was used without further purification. Step 2: Amide coupling 

was performed with the aminium chloride salt of 42-2 (40 mg, 0.096 mmol, 1.0 eq), di-Boc-Dmt 

(39 mg, 0.096 mmol, 1.0 eq), PyBOP (50 mg, 0.096 mmol, 1.0 eq), and 6-Cl HOBt (16 mg, 0.096 

mmol, 1.0 eq), followed by DIPEA (0.17 mL, 0.96 mmol, 10 eq). After purification by silica 

chromatography, product was carried forward to Step 3: TFA deprotection, followed by 

purification by reverse-phase semi-preparative HPLC, as described in General Procedure (H). 

Final yield not calculated. 1H-NMR (500 MHz, CD3OD) δ 8.13 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 

6.6 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.20 – 7.10 (m, 2H), 7.00 (s, 1H), 6.98 (d, J = 2.1 Hz, 1H), 

6.57 (d, J = 8.1 Hz, 1H), 6.48 (s, 2H), 6.34 (s, 1H), 4.97 – 4.93 (m, 1H), 3.98 – 3.87 (m, 2H), 3.85 

(dd, J = 11.5, 5.0 Hz, 1H), 3.25 (dd, J = 13.6, 11.6 Hz, 1H), 3.04 – 2.96 (m, 2H), 2.52 (td, J = 11.7, 

2.5 Hz, 1H), 2.27 (s, 6H), 1.77 – 1.69 (m, 1H), 1.56 – 1.49 (m, 1H). Calculated [M+H]+: 469.2. 

ESI-MS mass observed: 492.2 (M+Na). Analytical HPLC retention time: 30.3 min. 

 

Compound 44 

 

44-1 1-acetyl-6-(quinolin-3-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 44-1 was 

synthesized following General Procedure (F) from intermediate 6-MeBr N-Ac THQ (200 mg, 

0.71 mmol, 1.0 eq), 3-quinoline boronic acid (246 mg, 1.42 mmol, 2.0 eq), K2CO3 (240 mg, 2.13 

mmol, 3.0 eq) and Pd(dppf)Cl2 (52 mg, 0.07 mmol, 0.1 eq). Reaction was heated 18 hours. Yield: 

N

Br

O

N

O
F

6-MeBr N-Ac THQ 44-1

N

OO



 170 

122 mg, 52%. 1H NMR (500 MHz, Chloroform-d) δ 8.79 (d, J = 2.2 Hz, 1H), 8.07 (dt, J = 8.5, 1.0 

Hz, 1H), 7.93 – 7.89 (m, 2H), 7.75 (dd, J = 8.1, 1.4 Hz, 1H), 7.68 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 

7.53 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.42 – 7.38 (m, 1H), 4.22 (t, J = 6.2 Hz, 2H), 4.18 (s, 2H), 

2.79 (t, J = 6.2 Hz, 2H), 2.32 (s, 3H). 13C NMR (126 MHz, cdcl3) δ 169.40, 151.87, 147.16, 142.66, 

137.52, 135.10, 134.70, 132.91, 129.35, 129.27, 128.15, 127.88, 127.59, 127.03, 126.26, 124.73, 

39.60, 38.72, 23.27. 

 

44-2 (R)-N-((R)-1-acetyl-6-(quinolin-3-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. 44-2 was synthesized following General Procedure (G) from 

intermediate 44-1 (112 mg, 0.34 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (123 mg, 1.01 

mmol, 3.0 eq), and Ti(OEt)4 (0.42 mL, 2.03 mmol, 6.0 eq), then NaBH4 (77 mg, 2.03 mmol, 6.0 

eq). Yield: 47 mg, 32%. 1H NMR (500 MHz, Chloroform-d) δ 8.78 (dd, J = 6.1, 2.1 Hz, 1H), 8.07 

(dd, J = 8.6, 4.6 Hz, 1H), 7.96 – 7.92 (m, 1H), 7.76 (t, J = 7.9 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.53 

(dtd, J = 8.1, 6.5, 5.8, 2.5 Hz, 1H), 7.35 (s, 1H), 7.15 (tq, J = 5.8, 3.8, 2.9 Hz, 1H), 4.52 (q, J = 4.6 

Hz, 1H), 4.14 (s, 2H), 3.88 (q, J = 6.4 Hz, 1H), 3.75 (td, J = 8.9, 4.6 Hz, 1H), 2.22 (s, 3H), 2.18 

(dd, J = 10.9, 6.1 Hz, 1H), 2.15 – 2.04 (m, 1H), 1.17 (d, J = 1.3 Hz, 9H). 13C NMR (126 MHz, 

cdcl3) δ 169.95, 151.88, 135.02, 134.33, 133.31, 129.08, 128.81, 128.61, 128.09, 127.49, 126.82, 

126.43, 125.35, 125.04, 124.71, 55.85, 51.33, 38.72, 30.69, 23.35, 22.55. 

N

O

N

HN
G

44-1 44-2

NN

S
O

OO



 171 

 

44 (S)-N-((R)-1-acetyl-6-(quinolin-3-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 44 was synthesized following General Procedure (H) 

from intermediate 44-2. Step 1: Sulfinamide cleavage was carried out with excess concentrated 

HCl  precipitating product as a white solid which was carried forward without further purification. 

Step 2: Amide coupling was performed with the aminium chloride salt of 44-2 (39 mg, 0.11 mmol, 

1.0 eq), di-Boc-Dmt (48 mg, 0.12 mmol, 1.1 eq), PyBOP (60 mg, 0.12 mmol, 1.1 eq), and 6-Cl 

HOBt (20 mg, 0.12 mmol, 1.1 eq), followed by DIPEA (0.19 mL, 1.06 mmol, 10 eq). After 

purification by silica chromatography, product was carried forward to Step 3: TFA deprotection, 

followed by purification by reverse-phase semi-preparative HPLC, as described in General 

Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 9.01 (s, 1H), 8.72 

(s, 1H), 8.21 (d, J = 8.3 Hz, 1H), 8.19 (d, J = 8.3 Hz, 1H), 8.15 (t, J = 9.1 Hz, 2H), 8.05 (ddd, J = 

8.3, 6.9, 1.3 Hz, 1H), 8.02 (ddd, J = 8.5, 7.0, 1.4 Hz, 1H), 7.89 (t, J = 7.6 Hz, 1H), 7.87 – 7.83 (m, 

1H), 6.51 (s, 2H), 4.95 (d, J = 6.1 Hz, 1H), 4.29 (s, 2H), 3.91 (dt, J = 11.3, 5.3 Hz, 2H), 3.30 – 

3.27 (m, 1H), 3.27 – 3.22 (m, 1H), 3.03 (ddd, J = 25.6, 13.8, 4.7 Hz, 2H), 2.27 (s, 6H), 2.20 (s, 

3H), 1.87 (ddt, J = 13.5, 8.1, 5.3 Hz, 1H), 1.47 (m, 1H). Calculated [M+H]+: 523.3. ESI-MS mass 

observed: 523.3 (M+H) and 545.3 (M+Na). Analytical HPLC retention time: 20.9 min. 
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Compound 46 

 

46-1 6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-2,3-dihydroquinolin-4(1H)-one. 46-1 was 

synthesized following Genera Procedure (I) from intermediate 41-1 (266 mg, 0.67 mmol, 1.0 

eq). Clean product 46-1 crystallized and was not purified by chromatograpy. Yield: 199 mg, 100%. 

1H NMR (500 MHz, Chloroform-d) δ 7.68 (d, J = 2.1 Hz, 1H), 7.11 (dd, J = 8.4, 2.2 Hz, 1H), 6.75 

(d, J = 8.1 Hz, 1H), 6.65 – 6.61 (m, 2H), 6.59 (d, J = 8.4 Hz, 1H), 4.21 (s, 4H), 3.74 (s, 2H), 3.54 

(t, J = 7.4, 6.7 Hz, 2H), 2.68 (t, J = 7.7, 6.9 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 193.96, 150.72, 

143.47, 141.97, 136.19, 134.75, 131.12, 127.30, 121.75, 119.36, 117.52, 117.28, 116.34, 64.51, 

64.43, 42.56, 40.32, 38.31. 

 

46-2 1-acetyl-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 46-2 was synthesized following General Procedure (D) from intermediate 46-1 (97 

mg, 0.33 mmol, 1.0 eq). After removal of solvent, clean product crystallized and thus was not 

purified by chromatography. Yield: 107 mg, 98%. 1H NMR (500 MHz, Chloroform-d) δ 7.83 (s, 

1H), 7.35 (dt, J = 6.0, 2.3, 2.1 Hz, 1H), 7.29 (br s, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 7.9 

Hz, 2H), 4.23 (s, 4H), 4.22 (t, J = 5.9 Hz, 2H), 3.87 (s, 2H), 2.77 (t, J = 6.2 Hz, 2H), 2.32 (s, 3H). 
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13C NMR (126 MHz, cdcl3) δ 169.49, 143.63, 142.29, 134.73, 133.47, 127.71, 124.37, 121.89, 

117.66, 117.50, 64.52, 64.44, 40.62, 39.67, 23.22. 

 

46-3 (R)-N-((R)-1-acetyl-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. Intermediate 46-3 was synthesized 

following General Procedure (G) from 46-2 (102 mg, 0.30 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (110 mg, 0.91 mmol, 3.0 eq), and Ti(OEt)4 (0.38 mL, 1.82 mmol, 6.0 eq), then 

NaBH4 (69 mg, 1.82 mmol, 6.0 eq). Yield: 103 mg, 77%. 1H NMR (500 MHz, Chloroform-d) δ 

7.22 (d, J = 1.9 Hz, 1H), 7.09 (dd, J = 8.2, 2.0 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 8.4 

Hz, 2H), 4.52 (q, J = 4.1 Hz, 1H), 4.22 (d, J = 0.8 Hz, 4H), 3.87 (dt, J = 11.8, 5.4 Hz, 1H), 3.83 (s, 

2H), 3.76 (ddd, J = 13.1, 9.4, 5.3 Hz, 1H), 3.30 (d, J = 3.2 Hz, 1H), 2.24 (dt, J = 13.9, 4.9 Hz, 1H), 

2.21 (s, 3H), 2.07 – 1.96 (m, 1H), 1.19 (d, J = 0.8 Hz, 9H). 13C NMR (126 MHz, cdcl3) δ 170.05, 

143.55, 142.15, 133.93, 128.71, 128.66, 124.93, 121.92, 117.66, 117.38, 110.12, 77.16, 64.50, 

60.51, 55.87, 40.68, 30.46, 22.70, 22.24. 
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46 (S)-N-((R)-1-acetyl-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. 46 was 

synthesized following General Procedure (H) from intermediate 46-3. Step 1: Sulfinamide 

cleavage was carried out with 46-3 (103 mg, 0.23 mmol, 1.0 eq) and excess concentrated HCl 

(0.10 mL), precipitating product as a white solid, which was used without further purification. 

Step 2: Amide coupling was performed with the aminium chloride salt of 46-3 (87 mg, 0.23 mmol, 

1.0 eq), di-Boc-Dmt (104 mg, 0.26 mmol, 1.1 eq), and PyBOP (132 mg, 0.26 mmol, 1.1 eq), 

followed by DIPEA (0.41 mL, 2.32 mmol, 10 eq). After purification by silica chromatography, 

product was carried forward to Step 3: TFA deprotection, followed by purification by reverse-

phase semi-preparative HPLC, as described in General Procedure (H). Final yield not calculated. 

1H NMR (500 MHz, Methanol-d4) δ 7.37 (s, 1H), 7.12 – 7.09 (m, 1H), 7.04 (d, J = 8.3 Hz, 1H), 

6.69 (d, J = 8.1 Hz, 1H), 6.63 – 6.56 (m, 2H), 6.50 (s, 2H), 4.94 (d, J = 6.1 Hz, 1H), 4.16 (d, J = 

0.8 Hz, 4H), 3.87 (dt, J = 11.6, 3.2 Hz, 1H), 3.78 (s, 2H), 3.25 (dd, J = 13.7, 11.5 Hz, 1H), 3.03 

(dd, J = 13.7, 5.1 Hz, 1H), 2.27 (s, 6H), 2.18 (s, 3H), 1.89 – 1.81 (m, 1H), 1.45 (s, 1H). 13C NMR 

(126 MHz, cd3od) δ 172.54, 157.45, 144.85, 143.43, 140.07, 135.44, 129.28, 125.76, 123.25, 

122.55, 118.34, 118.05, 116.48, 111.42, 65.63, 65.53, 53.50, 49.00, 47.07, 41.38, 31.97, 20.43. 

Calculated [M+H]+: 530.3. ESI-MS mass observed: 530.3 (M+H) and 552.3 (M+Na). Analytical 

HPLC retention time: 31.1 min. 
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Compound 47 

 

47-1 6-(benzofuran-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 47-1 was 

synthesized follow General Procedure (I) from 42-1 (245 mg, 0.65 mmol, 1.0 eq) and 1:1 

DCM/TFA (10 mL, excess), yielding clean product 47-1 without further purification. Yield: 180 

mg, 100%. 1H NMR (500 MHz, Chloroform-d) δ 7.80 (d, J = 2.1 Hz, 1H), 7.46 (dd, J = 7.3, 1.7 

Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.25 (dd, J = 6.4, 2.0 Hz, 1H), 7.20 (td, J = 7.6, 1.6 Hz, 1H), 

7.16 (td, J = 7.3, 1.3 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.36 (t, J = 0.9 Hz, 1H), 3.99 (s, 2H), 3.56 

(td, J = 7.1, 6.2, 1.4 Hz, 3H), 2.69 (t, J = 6.9 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 193.78, 157.97, 

155.08, 151.10, 136.05, 128.92, 127.71, 123.50, 122.62, 120.53, 116.41, 111.02, 103.32, 42.47, 

38.22, 34.14, 28.41. 

 

47-2 1-acetyl-6-(benzofuran-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 47-2 was 

synthesized following General Procedure (G) from intermediate 47-1 (100 mg, 0.36 mmol, 1.0 

eq) and neat Ac2O (5 mL, excess) yielding clean product 47-1. Yield: 112 mg, 97%. 1H NMR (500 

MHz, Chloroform-d) δ 7.96 (d, J = 2.1 Hz, 1H), 7.49 (td, J = 7.6, 6.8, 1.9 Hz, 2H), 7.40 (d, J = 8.0 

Hz, 1H), 7.22 (td, J = 7.7, 1.6 Hz, 1H), 7.18 (tt, J = 7.4, 0.9 Hz, 1H), 6.44 (t, J = 0.9 Hz, 1H), 4.23 
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(t, J = 6.3 Hz, 2H), 4.12 (s, 2H), 2.79 (t, J = 6.2 Hz, 2H), 2.33 (s, 3H). 13C NMR (126 MHz, cdcl3) 

δ 194.01, 169.46, 156.51, 155.14, 142.81, 134.73, 128.72, 127.98, 124.56, 123.85, 122.82, 120.70, 

111.09, 103.88, 39.63, 34.43, 23.27. 13C NMR (126 MHz, cdcl3) δ 170.08, 157.03, 155.09, 128.79, 

125.08, 123.68, 122.73, 120.63, 111.05, 103.68, 60.53, 55.93, 51.06, 34.47, 30.64, 22.70, 22.24. 

 

47-3 (R)-N-((R)-1-acetyl-6-(benzofuran-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. 47-3 was synthesized following General Procedure (G) from 47-

2 (110 mg, 0.34 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (125 mg, 1.03 mmol, 3.0 eq), 

and Ti(OEt)4 (0.43 mL, 2.07 mmol, 6.0 eq), then NaBH4 (78 mg, 2.07 mmol, 6.0 eq). Yield: 90 

mg, 62%. 1H NMR (500 MHz, Chloroform-d) δ 7.48 (dd, J = 7.3, 1.7 Hz, 1H), 7.39 (dd, J = 8.3, 

1.1 Hz, 1H), 7.38 – 7.37 (m, 1H), 7.23 (dd, J = 8.2, 2.3 Hz, 1H), 7.20 (dd, J = 7.8, 1.8 Hz, 1H), 

7.17 (td, J = 7.4, 1.3 Hz, 1H), 6.45 (s, 1H), 4.55 (q, J = 4.3 Hz, 1H), 4.08 (s, 2H), 3.90 (dt, J = 

11.7, 5.4 Hz, 1H), 3.76 (ddd, J = 12.9, 9.4, 5.3 Hz, 1H), 3.34 (d, J = 3.4 Hz, 1H), 2.23 (s, 3H), 2.28 

– 2.18 (m, 1H), 2.11 – 2.00 (m, 2H), 1.19 (s, 9H). 
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47 (S)-N-((R)-1-acetyl-6-(benzofuran-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-(4-

hydroxy-2,6-dimethylphenyl)propenamide. 47 was synthesized following General Procedure (H) 

from intermediate 47-3. Step 1: Sulfinamide cleavage was carried out with 47-3 (90 mg, 0.21 

mmol, 1.0 eq) and excess concentrated HCl (0.10 mL) precipitating product as a white solid, which 

was used without further purification. Step 2: Amide coupling was performed with the aminium 

chloride salt of 47-3 (76 mg, 0.21 mmol, 1.0 eq), di-Boc-Dmt (94 mg, 0.23 mmol, 1.1 eq), and 

PyBOP (122 mg, 0.23 mmol, 1.1 eq), followed by DIPEA (0.37 mL, 2.13 mmol, 10 eq). After 

purification by silica chromatography, product was carried forward to Step 3: TFA deprotection, 

followed by purification by reverse-phase semi-preparative HPLC, as described in General 

Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.46 – 7.43 (m, 

1H), 7.32 (dq, J = 8.4, 0.9 Hz, 1H), 7.23 (s, 1H), 7.20 (dd, J = 8.1, 1.8 Hz, 1H), 7.17 (dd, J = 7.9, 

1.6 Hz, 1H), 7.14 (td, J = 7.4, 1.2 Hz, 1H), 6.51 (s, 2H), 6.42 (d, J = 1.0 Hz, 1H), 4.96 (t, J = 6.1 

Hz, 1H), 4.07 – 4.05 (m, 2H), 3.87 (dd, J = 11.5, 5.0 Hz, 1H), 3.78 (s, 1H), 3.25 (dd, J = 13.7, 11.6 

Hz, 1H), 3.21 – 3.12 (m, 2H), 3.04 (dd, J = 13.7, 5.1 Hz, 1H), 2.27 (s, 6H), 2.19 (s, 3H), 1.86 (ddt, 

J = 13.5, 8.0, 5.3 Hz, 1H), 1.46 (s, 1H). 13C NMR (126 MHz, cd3od) δ 172.56, 158.85, 157.42, 

156.35, 140.07, 130.10, 129.34, 125.90, 124.61, 123.67, 123.29, 121.49, 116.46, 111.52, 104.22, 

53.50, 49.00, 46.99, 34.99, 31.93, 23.38, 20.42. Calculated [M+H]+: 512.2. ESI-MS mass 

observed: 512.2 (M+H) and 534.2 (M+Na). Analytical HPLC retention time: 35.3 min. 
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Compound 48 

 

48-1 tert-butyl 6-(naphthalen-2-ylmethyl)-4-oxo-3,4-dihydroquinoline-1(2H)-carboxylate. 

Intermediate 48-1 was synthesized following General Procedure (F) from intermediate 6-MeBr 

N-Boc THQ (500 mg, 1.47 mmol, 1.0 eq), naphthalene-2-boronic acid (505 mg, 2.94 mmol, 2.0 

eq), K2CO3 (609 mg, 0.82 mmol, 3.0 eq) and Pd(dppf)Cl2 (100 mg, 0.15 mmol, 0.1 eq). Reaction 

was heated 18 hours. Yield: 471 mg, 83%. 1H NMR (500 MHz, Chloroform-d) δ 7.90 (d, J = 2.2 

Hz, 1H), 7.81 – 7.73 (m, 3H), 7.69 (d, J = 8.7 Hz, 1H), 7.63 (s, 1H), 7.49 – 7.40 (m, 2H), 7.35 (dt, 

J = 8.6, 1.8 Hz, 1H), 7.30 (dt, J = 8.4, 1.5 Hz, 1H), 4.16 – 4.10 (m, 4H), 2.75 (t, J = 6.4 Hz, 2H), 

1.54 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 194.26, 152.75, 142.47, 137.89, 136.72, 134.71, 133.58, 

132.13, 128.24, 127.61, 127.54, 127.35, 127.31, 127.25, 127.08, 126.78, 126.05, 125.46, 124.82, 

123.87, 82.12, 77.25, 77.20, 77.00, 76.75, 44.28, 41.33, 38.99, 28.29. 

 

48-2 6-(naphthalen-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 48-2 was 

synthesized following General Procedure (I) from intermediate 48-1 (220 mg, 0.57 mmol, 1.0 

eq) and 1:1 DCM/TFA (10 mL, excess). Yield: 135 mg, 83%. 1H NMR (500 MHz, Chloroform-

d) δ 7.80 – 7.72 (m, 4H), 7.61 (d, J = 1.8 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.30 (dd, J = 8.4, 1.8 Hz, 
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1H), 7.15 (dd, J = 8.4, 2.2 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 4.31 (s, 1H), 4.02 (s, 2H), 3.59 – 3.51 

(m, 2H), 2.72 – 2.66 (m, 2H). 13C NMR (126 MHz, cdcl3) δ 193.66, 138.64, 136.34, 136.11, 

133.56, 132.05, 128.11, 127.58, 127.51, 127.40, 127.36, 127.20, 126.87, 125.95, 125.31, 77.00, 

42.41, 41.14, 38.08. 

 

48-3 1-(cyclopropanecarbonyl)-6-(naphthalen-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 48-3 was synthesized following General Procedure (D) from intermediate 48-2 (100 

mg, 0.35 mmol, 1.0 eq), Et3N (0.10 mL, 0.70 mmol, 2.0 eq), and cyclopropanecarbonyl chloride 

(0.06 mL, 0.70 mmol, 2.0 eq). Yield: 65 mg, 52%. 1H NMR (500 MHz, Chloroform-d) δ 7.95 (d, 

J = 2.2 Hz, 1H), 7.83 – 7.76 (m, 3H), 7.65 (s, 1H), 7.49 – 7.42 (m, 3H), 7.38 (dd, J = 8.3, 2.2 Hz, 

1H), 7.31 (dd, J = 8.4, 1.8 Hz, 1H), 4.28 (t, J = 6.3 Hz, 2H), 4.15 (s, 2H), 3.48 (s, 1H), 2.78 (t, J = 

6.3 Hz, 2H), 2.00 (tt, J = 7.9, 4.6 Hz, 1H), 1.21 – 1.16 (m, 2H), 0.87 (dq, J = 7.2, 3.8 Hz, 2H). 13C 

NMR (126 MHz, cdcl3) δ 194.56, 173.16, 142.61, 138.55, 137.69, 134.67, 133.71, 132.30, 128.53, 

127.90, 127.78, 127.66, 127.42, 127.31, 126.31, 125.97, 125.73, 124.22, 43.63, 41.56, 39.80, 

21.09, 13.85, 9.88, 7.57. 
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48-4 (R)-N-((R)-1-(cyclopropanecarbonyl)-6-(naphthalen-2-ylmethyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 48-4 was synthesized following 

General Procedure (G) from intermediate 48-3 (65 mg, 0.18 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (66 mg, 0.55 mmol, 3.0 eq), and Ti(OEt)4 (0.23 mL, 1.10 mmol, 6.0 eq), then 

NaBH4 (42 mg, 1.10 mmol, 6.0 eq). Yield: 41 mg, 49%. 1H NMR (500 MHz, Chloroform-d) δ 

7.79 (td, J = 8.2, 7.6, 5.7 Hz, 3H), 7.68 – 7.64 (m, 1H), 7.49 – 7.40 (m, 2H), 7.39 – 7.31 (m, 3H), 

7.13 (dd, J = 8.3, 2.0 Hz, 1H), 4.56 (q, J = 4.3 Hz, 1H), 4.12 (s, 2H), 3.97 (ddd, J = 12.8, 6.2, 4.9 

Hz, 1H), 3.75 (ddd, J = 12.9, 9.3, 5.6 Hz, 1H), 3.32 (d, J = 3.6 Hz, 1H), 2.23 (dq, J = 14.8, 5.1 Hz, 

1H), 2.10 – 1.99 (m, 1H), 1.92 (tt, J = 7.9, 4.7 Hz, 1H), 1.65 (s, 2H), 1.18 (s, 9H), 1.16 – 1.04 (m, 

2H), 0.80 – 0.73 (m, 2H). 13C NMR (126 MHz, cdcl3) δ 173.47, 138.51, 138.22, 136.97, 133.74, 

132.27, 128.78, 128.63, 128.40, 127.76, 127.69, 127.63, 127.28, 126.23, 125.62, 125.01, 55.94, 

51.31, 41.74, 39.93, 30.80, 22.70, 13.70, 9.36. 

 

48 (R)-N-((R)-1-(cyclopropanecarbonyl)-6-(naphthalen-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-

4-yl)-2-methylpropane-2-sulfinamide. Final compound 48 was synthesized following General 
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Procedure (H) from intermediate 48-4. Step 1: Sulfinamide cleavage was carried out with 48-4 

(41 mg, 0.09 mmol, 1.0 eq) and excess concentrated HCl (0.06 mL) precipitating product as a 

white solid, which was used without further purification. Step 2: Amide coupling was performed 

with the aminium chloride salt of 48-4 (35 mg, 0.09 mmol, 1.0 eq), di-Boc-Dmt (40 mg, 0.10 

mmol, 1.1 eq), PyBOP (51 mg, 0.10 mmol, 1.1 eq), and 6-Cl HOBt (17 mg, 0.10 mmol, 1.1 eq), 

followed by DIPEA (0.16 mL, 0.89 mmol, 10 eq). After purification by silica chromatography, 

product was carried forward to Step 3: TFA deprotection, followed by purification by reverse-

phase semi-preparative HPLC, as described in General Procedure (H). Final yield not calculated. 

1H NMR (500 MHz, Methanol-d4) δ 7.81 – 7.76 (m, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.61 (s, 1H), 

7.46 – 7.38 (m, 3H), 7.29 (dd, J = 8.4, 1.7 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 7.14 (dd, J = 8.2, 2.1 

Hz, 1H), 6.51 (s, 2H), 4.97 (t, J = 6.3 Hz, 1H), 4.10 (s, 2H), 3.94 – 3.83 (m, 2H), 3.30 – 3.21 (m, 

2H), 3.04 (dd, J = 13.7, 5.1 Hz, 1H), 2.27 (s, 6H), 1.96 (td, J = 8.2, 4.2 Hz, 1H), 1.86 (dq, J = 13.0, 

6.0 Hz, 1H), 1.43 (dq, J = 12.9, 6.4 Hz, 1H), 1.37 (dd, J = 6.7, 4.1 Hz, 2H), 1.09 – 0.91 (m, 1H), 

0.91 – 0.78 (m, 2H). Calculated [M+H]+: 548.3. ESI-MS mass observed: 548.3 (M+H) and 570.3 

(M+Na). Analytical HPLC retention time: 42.9 min. 
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Compound 49 

 

49-1 1-(cyclopropanecarbonyl)-6-(quinolin-3-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 49-1 was synthesized following General Procedure (F) from 6-MeBr N-cPr THQ 

(85 mg, 0.28 mmol, 1.0 eq), 3-quinoline boronic acid (72 mg, 0.41 mmol, 1.5 eq), K2CO3 (113 

mg, 0.82 mmol, 3.0 eq) and Pd(dppf)Cl2 (22 mg, 0.03 mmol, 0.1 eq). Yield: 53 mg, 54%. 1H NMR 

(500 MHz, Chloroform-d) δ 8.79 (d, J = 2.1 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.93 (dd, J = 6.4, 

2.0 Hz, 2H), 7.76 (dd, J = 8.2, 1.4 Hz, 1H), 7.68 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.56 – 7.53 (m, 

1H), 7.53 – 7.48 (m, 1H), 7.38 (dd, J = 8.4, 2.2 Hz, 1H), 7.26 (s, 0H), 4.28 (t, J = 6.3 Hz, 2H), 4.19 

(s, 2H), 2.79 (t, J = 6.3 Hz, 2H), 2.00 (tt, J = 8.1, 4.7 Hz, 1H), 1.69 (s, 1H), 1.19 (dt, J = 6.5, 3.5 

Hz, 2H), 0.88 (dq, J = 7.1, 3.9 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.39, 173.17, 151.89, 

142.98, 137.18, 135.11, 134.53, 132.99, 129.37, 129.28, 127.99, 127.59, 127.05, 126.09, 124.48, 

112.06, 96.17, 43.67, 39.79, 38.75, 13.90, 9.94. 

 

49-2 (R)-N-((R)-1-(cyclopropanecarbonyl)-6-(quinolin-3-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-

yl)-2-methylpropane-2-sulfinamide. Intermediate 49-2 was synthesized following General 
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Procedure (G) from intermediate 49-1 (53 mg, 0.15 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (54 mg, 0.45 mmol, 3.0 eq), and Ti(OEt)4 (0.19 mL, 0.90 mmol, 6.0 eq), then 

NaBH4 (34 mg, 0.90 mmol, 6.0 eq). Yield: 32 mg, 46%. 1H NMR (500 MHz, Chloroform-d) δ 

8.09 (d, J = 8.4 Hz, 1H), 8.01 (s, 1H), 7.87 (dd, J = 8.3, 6.5 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.73 

– 7.66 (m, 1H), 7.58 – 7.51 (m, 1H), 7.44 – 7.37 (m, 2H), 7.12 (dt, J = 8.4, 2.6 Hz, 1H), 4.54 (q, J 

= 4.6 Hz, 1H), 4.15 (s, 2H), 3.98 (dt, J = 12.1, 5.7 Hz, 1H), 3.75 (ddd, J = 13.5, 8.9, 5.8 Hz, 1H), 

2.21 (dq, J = 15.5, 5.3 Hz, 1H), 2.08 (dq, J = 13.9, 5.5, 4.1 Hz, 1H), 1.90 (tq, J = 8.3, 4.4 Hz, 1H), 

1.18 (s, 9H), 1.13 – 1.07 (m, 2H), 0.78 (dd, J = 7.9, 3.0 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 

173.50, 140.00, 136.94, 133.60, 131.75, 129.42, 128.87, 128.82, 128.63, 128.55, 128.46, 128.01, 

127.67, 127.13, 125.21, 56.00, 51.62, 40.08, 38.87, 31.01, 22.71, 22.69, 13.72, 9.35. 

 

49 (S)-2-amino-N-((R)-1-(cyclopropanecarbonyl)-6-(quinolin-3-ylmethyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. Final compound 49 was 

synthesized following General Procedure (H) from intermediate 49=2. Step 1: Sulfinamide 

cleavage was carried out with 49-2 (32 mg, 0.07 mmol, 1.0 eq) and excess concentrated HCl (0.06 

mL) precipitating product as a white solid, which was used without further purification. Step 2: 

Amide coupling was performed with the aminium chloride salt of 49-2 (28 mg, 0.07 mmol, 1.0 

eq), di-Boc-Dmt (40 mg, 0.10 mmol, 1.3 eq), PyBOP (47 mg, 0.09 mmol, 1.3 eq), and 6-Cl HOBt 

(16 mg, 0.09 mmol, 1.3 eq), followed by DIPEA (0.14 mL, 0.81 mmol, 12 eq). Yield not 
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calculated. After purification by silica chromatography, product was carried forward to Step 3: 

TFA deprotection, followed by purification by reverse-phase semi-preparative HPLC, as described 

in General Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 9.02 

(d, J = 1.8 Hz, 1H), 8.73 (d, J = 5.8 Hz, 1H), 8.19 – 8.13 (m, 2H), 8.02 (tq, J = 8.4, 7.1, 1.4 Hz, 

1H), 7.89 – 7.83 (m, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 2.0 Hz, 1H), 7.20 (dd, J = 8.4, 2.1 

Hz, 1H), 6.51 (s, 2H), 4.97 (q, J = 6.2 Hz, 1H), 4.30 (s, 2H), 3.96 – 3.87 (m, 2H), 3.30 – 3.22 (m, 

2H), 3.07 (dd, J = 13.7, 5.0 Hz, 1H), 2.28 (s, 6H), 1.96 (ddd, J = 7.8, 6.2, 3.9 Hz, 1H), 1.86 (ddt, 

J = 13.1, 7.3, 5.5 Hz, 1H), 1.44 (tt, J = 13.1, 6.2 Hz, 1H), 1.09 – 1.01 (m, 1H), 0.98 – 0.92 (m, 1H), 

0.92 – 0.79 (m, 2H). 13C NMR (500 MHz, CD3OD) δ 175.52, 157.43, 140.55, 140.05, 138.42, 

137.14, 134.40, 130.61, 130.26, 129.77, 129.41, 126.25, 123.31, 121.22, 118.90, 116.45, 53.57, 

47.11, 42.38, 38.73, 31.93, 31.32, 20.42, 14.43, 9.90, 9.48. Calculated [M+H]+: 549.3. ESI-MS 

mass observed: 549.3 (M+H) and 571.3 (M+Na). Analytical HPLC retention time: 24.6 min. 

 

Compound 50 

 

50-1 1-(cyclopropanecarbonyl)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-2,3-

dihydroquinolin-4(1H)-one. Intermediate 50-1 was synthesized following General Procedure (F) 

from intermediate 6-MeBr N-cPr THQ (140 mg, 0.45 mmol, 1.0 eq), K2CO3 (76 mg, 0.55 mmol, 

1.2 eq) and THIQ (0.07 mL, 0.55 mmol, 1.2 eq). Yield: 145 mg, 88%. 1H NMR (500 MHz, 
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Chloroform-d) δ 7.99 (d, J = 2.1 Hz, 1H), 7.64 (dd, J = 8.4, 2.1 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 

7.14 – 7.07 (m, 3H), 6.99 – 6.95 (m, 1H), 4.30 (t, J = 6.3 Hz, 2H), 3.69 (s, 2H), 3.63 (s, 2H), 2.91 

(t, J = 5.9 Hz, 2H), 2.78 (dt, J = 16.0, 6.1 Hz, 4H), 2.07 – 2.00 (m, 1H), 1.24 – 1.19 (m, 2H), 0.90 

(dq, J = 7.1, 3.8 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.52, 173.18, 143.40, 135.96, 134.78, 

134.65, 134.31, 128.82, 128.12, 126.64, 126.32, 125.75, 125.69, 124.11, 61.92, 56.07, 50.88, 

43.67, 39.80, 29.24, 13.90, 9.92. 

 

50-2 (R)-N-((R)-1-(cyclopropanecarbonyl)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 50-2 was synthesized following 

General Procedure (G) from 50-1 (120 mg, 0.33 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (121 mg, 1.00 mmol, 3.0 eq), and Ti(OEt)4 (0.42 mL, 2.00 mmol, 6.0 eq), then 

NaBH4 (76 mg, 2.00 mmol, 6.0 eq). Yield: 91 mg, 59%. Characterized by NMR after sulfinamide 

cleavage in next step (see Final Compound 50 Step 1). 
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50 (S)-2-amino-N-((R)-1-(cyclopropanecarbonyl)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-

1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propanamide. Final 

compound 50 was synthesized following General Procedure (H) from intermediate 50-2. Step 

1: Sulfinamide cleavage was carried out with 50-2 (91 mg, 0..20 mmol, 1.0 eq) and excess 

concentrated HCl, precipitating product as a white solid, which was used without further 

purification. 1H NMR (500 MHz, Methanol-d4) δ 7.87 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.69 (td, 

J = 8.1, 2.4 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.28 – 7.23 (m, 2H), 7.21 (t, J = 7.5 Hz, 1H), 4.72 (q, J 

= 6.6 Hz, 1H), 4.59 (s, 2H), 4.47 (s, 2H), 4.07 (ddd, J = 12.9, 7.6, 5.1 Hz, 1H), 3.99 (ddd, J = 13.1, 

7.1, 5.1 Hz, 1H), 3.52 – 3.46 (m, 4H), 2.46 (tq, J = 12.8, 7.2 Hz, 1H), 2.22 – 2.14 (m, 1H), 2.09 

(dtd, J = 26.0, 7.8, 4.0 Hz, 1H), 1.09 (dq, J = 8.4, 4.7, 4.1 Hz, 2H), 0.95 (qd, J = 8.0, 7.3, 3.2 Hz, 

2H). 13C NMR (126 MHz, cd3od) δ 175.70, 141.71, 133.22, 132.59, 132.21, 130.39, 129.84, 

129.41, 128.84, 128.18, 127.88, 127.02, 126.82, 60.07, 53.91, 53.64, 50.80, 48.20, 41.82, 29.55, 

14.80, 10.07. Step 2: Amide coupling was performed with the aminium chloride salt of 50-2 (76 

mg, 0.17 mmol, 1.0 eq), di-Boc-Dmt (78 mg, 0.19 mmol, 1.1 eq), PyBOP (99 mg, 0.19 mmol, 1.1 

eq), and 6-Cl HOBt (32 mg, 0.19 mmol, 1.1 eq), followed by DIPEA (0.30 mL, 1.74 mmol, 10 

eq). Yield not calculated. After purification by silica chromatography, product was carried forward 

to Step 3: TFA deprotection, followed by purification by reverse-phase semi-preparative HPLC, 

as described in General Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-

d4) δ 7.70 (d, J = 8.4 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.34 – 7.29 (m, 1H), 7.29 – 7.24 (m, 2H), 7.16 

(d, J = 7.6 Hz, 1H), 6.53 (s, 2H), 5.01 (t, J = 5.8 Hz, 1H), 4.46 – 4.39 (m, 2H), 4.39 – 4.32 (m, 

4H), 3.94 (dt, J = 12.6, 5.9 Hz, 1H), 3.88 (dd, J = 11.6, 5.0 Hz, 1H), 3.30 – 3.25 (m, 1H), 3.17 (s, 

1H), 3.07 (dd, J = 13.7, 5.1 Hz, 1H), 2.29 (s, 6H), 2.00 (td, J = 8.0, 3.9 Hz, 1H), 1.92 – 1.85 (m, 

1H), 1.52 (d, J = 7.4 Hz, 1H), 1.28 (d, J = 10.3 Hz, 1H), 1.05 (m, 2H), 0.97 – 0.85 (m, 2H). 
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Calculated [M+H]+: 553.3. ESI-MS mass observed: 553.3 (M+H) and 575.3 (M+Na). Analytical 

HPLC retention time: 24.6 min. 

 

Compound 51 

 

51-1 1-(cyclopropanecarbonyl)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-2,3-

dihydroquinolin-4(1H)-one. Intermediate 51-1 was synthesized following General Procedure (F) 

from 6-MeBr N-cPr THQ (100 mg, 0.32 mmol, 1.0 eq), 1,4-benzodioxane-6-boronic acid (88 

mg, 0.49 mmol, 1.5 eq), K2CO3 (133 mg, 0.96 mmol, 3.0 eq) and Pd(dppf)Cl2 (24 mg, 0.03 mmol, 

0.1 eq). Reaction was heated 18 hours. Yield: 109 mg, 92%. 1H NMR (500 MHz, Chloroform-d) 

δ 7.85 (d, J = 2.2 Hz, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.34 (dd, J = 8.4, 2.2 Hz, 1H), 6.81 – 6.77 (m, 

1H), 6.66 (d, J = 7.5 Hz, 2H), 4.27 (t, J = 6.3 Hz, 2H), 4.23 (s, 4H), 3.87 (s, 2H), 2.77 (t, J = 6.3 

Hz, 2H), 2.02 (tt, J = 7.8, 5.2 Hz, 1H), 1.22 – 1.17 (m, 2H), 0.88 (dq, J = 7.1, 3.8 Hz, 2H). 13C 

NMR (126 MHz, cdcl3) δ 194.61, 173.16, 143.64, 142.53, 142.30, 138.87, 134.56, 133.55, 127.81, 

125.98, 124.17, 121.91, 117.66, 117.51, 64.54, 64.44, 43.62, 40.63, 39.84, 13.85, 9.90. 
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51-2 (R)-N-((R)-1-(cyclopropanecarbonyl)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-

1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. Intermediate 51-2 was 

synthesized following General Procedure (G) from 51-1 (104 mg, 0.29 mmol, 1.0 eq), (R)-2-

methyl-2-propanesulfinamide (104 mg, 0.87 mmol, 3.0 eq), and Ti(OEt)4 (0.36 mL, 1.72 mmol, 

6.0 eq), then NaBH4 (65 mg, 1.72 mmol, 6.0 eq). Yield: 123 mg, 92%. 1H NMR (500 MHz, 

Chloroform-d) δ 7.34 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 1.9 Hz, 1H), 7.08 (dd, J = 8.1, 2.0 Hz, 1H), 

6.78 (dt, J = 7.7, 1.1 Hz, 1H), 6.68 (d, J = 1.4 Hz, 1H), 4.54 (q, J = 4.2 Hz, 1H), 4.22 (d, J = 1.5 

Hz, 4H), 3.99 – 3.91 (m, 1H), 3.83 (s, 2H), 3.74 (ddd, J = 14.9, 10.0, 6.3 Hz, 1H), 3.32 (d, J = 3.3 

Hz, 1H), 2.24 (dq, J = 14.7, 5.1 Hz, 1H), 1.97 – 1.89 (m, 1H), 1.84 (d, J = 13.6 Hz, 1H), 1.19 (d, 

J = 1.3 Hz, 9H), 1.12 – 1.08 (m, 2H), 0.80 – 0.74 (m, 2H). 13C NMR (500 MHz, cdcl3) δ 173.43, 

143.54, 142.14, 138.74, 136.85, 133.99, 128.61, 128.52, 124.96, 121.92, 117.65, 117.38, 64.50, 

64.41, 55.90, 51.18, 40.71, 39.83, 30.60, 22.70, 13.66, 9.31. 

 

51 (S)-2-amino-N-((R)-1-(cyclopropanecarbonyl)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-

yl)methyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propanamide. Final 
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compound 51 was synthesized following General Procedure (H) from intermediate 51-2. Step 

1: Sulfinamide cleavage was carried out with 51-2 (123 mg, 0..26 mmol, 1.0 eq) and excess 

concentrated HCl, precipitating product as a white solid, which was used without further 

purification. Step 2: Amide coupling was performed with the aminium chloride salt of 51-2 105 

mg, 0.26 mmol, 1.0 eq), di-Boc-Dmt (118 mg, 0.29 mmol, 1.1 eq), and PyBOP (151 mg, 0.29 

mmol, 1.1 eq), followed by DIPEA (0.46 mL, 2.62 mmol, 10 eq). After purification by silica 

chromatography (Yield: 121 mg, 61%), uncharacterized product was carried forward to Step 3: 

TFA deprotection, followed by purification by reverse-phase semi-preparative HPLC, as described 

in General Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 8.18 

(d, J = 8.2 Hz, 0H), 7.36 (d, J = 8.3 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 7.03 (dd, J = 8.2, 2.0 Hz, 

1H), 6.68 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 10.0, 1.6 Hz, 2H), 6.50 (s, 2H), 4.94 (t, J = 6.3 Hz, 

1H), 4.15 (s, 4H), 3.89 (dt, J = 12.9, 5.3 Hz, 2H), 3.78 (s, 2H), 3.29 – 3.21 (m, 2H), 3.06 (dd, J = 

13.7, 5.1 Hz, 1H), 2.27 (s, 6H), 1.95 (tt, J = 8.1, 4.6 Hz, 1H), 1.84 (dq, J = 13.1, 5.8 Hz, 1H), 1.40 

(dq, J = 12.9, 6.8 Hz, 1H), 1.06 – 1.00 (m, 1H), 0.94 (tt, J = 9.0, 4.1 Hz, 1H), 0.87 (qd, J = 7.6, 

6.4, 4.0 Hz, 1H), 0.81 (qd, J = 9.0, 8.1, 2.8 Hz, 1H). 13C NMR (500 MHz, cd3od) δ 175.46, 157.41, 

144.83, 143.41, 140.05, 137.45, 135.46, 129.25, 129.16, 125.66, 123.27, 122.56, 118.33, 118.04, 

116.45, 65.61, 65.51, 53.52, 47.03, 42.23, 41.40, 31.98, 31.51, 20.44, 14.44. Calculated [M+H]+: 

556.3. ESI-MS mass observed: 556.3 (M+H) and 578.3 (M+Na). Analytical HPLC retention time: 

35.8 min. 
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Compound 52 

 

52-1 6-(benzofuran-2-ylmethyl)-1-(cyclopropanecarbonyl)-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 52-1 was synthesized following General Procedure (F) from 6-MeBr N-cPr THQ 

(110 mg, 0.36 mmol, 1.0 eq), 2-benzofuranylboronic acid MIDA ester (146 mg, 0.54 mmol, 1.5 

eq), K2CO3 (149 mg, 1.08 mmol, 3.0 eq) and Pd(dppf)Cl2 (27 mg, 0.04 mmol, 0.1 eq). Reaction 

was heated 18 hours. Yield: 99 mg, 80%. 1H NMR (500 MHz, Chloroform-d) δ 7.98 (d, J = 2.0 

Hz, 1H), 7.53 – 7.45 (m, 3H), 7.40 (d, J = 8.0 Hz, 1H), 7.24 – 7.16 (m, 2H), 6.45 (s, 1H), 4.28 (t, 

J = 6.3 Hz, 2H), 4.13 (s, 2H), 2.79 (t, J = 6.3 Hz, 2H), 2.02 (dd, J = 8.0, 4.2 Hz, 1H), 1.23 – 1.18 

(m, 2H), 0.89 (dq, J = 7.2, 3.9 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.34, 173.17, 156.57, 

155.13, 143.09, 134.72, 134.52, 128.72, 128.06, 126.03, 124.29, 123.83, 122.81, 120.69, 111.07, 

103.85, 43.64, 39.78, 34.40, 13.89, 9.94. 

 

52-2 (R)-N-((R)-6-(benzofuran-2-ylmethyl)-1-(cyclopropanecarbonyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. Intermediate 52-2 was synthesized 

following General Procedure (G) from 52-1 (85 mg, 0.25 mmol, 1.0 eq), (R)-2-methyl-2-
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propanesulfinamide (90 mg, 0.74 mmol, 3.0 eq), and Ti(OEt)4 (0.31 mL, 1.48 mmol, 6.0 eq), then 

NaBH4 (56 mg, 1.48 mmol, 6.0 eq). Yield: 90 mg, 81%. 1H NMR (500 MHz, Chloroform-d) δ 

7.49 (dd, J = 7.3, 1.8 Hz, 1H), 7.43 – 7.39 (m, 3H), 7.23 (dd, J = 8.7, 1.9 Hz, 2H), 7.21 – 7.16 (m, 

1H), 6.47 (d, J = 1.1 Hz, 1H), 4.58 (q, J = 4.3 Hz, 1H), 4.10 (s, 2H), 3.99 (ddd, J = 12.8, 6.2, 4.9 

Hz, 1H), 3.76 (ddd, J = 12.9, 9.3, 5.6 Hz, 1H), 3.34 (d, J = 3.6 Hz, 1H), 2.25 (dq, J = 14.7, 5.1 Hz, 

1H), 1.94 (tt, J = 7.9, 4.6 Hz, 1H), 1.68 (d, J = 11.3 Hz, 1H), 1.20 (s, 9H), 1.17 – 1.08 (m, 1H), 

0.79 (dq, J = 7.9, 1.8 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 173.51, 157.10, 155.10, 137.51, 

134.63, 128.84, 128.80, 128.61, 125.10, 123.69, 122.75, 120.65, 111.06, 103.67, 55.96, 51.30, 

39.95, 34.50, 30.79, 22.71, 13.73, 9.41, 9.37. 

 

52 (S)-2-amino-N-((R)-6-(benzofuran-2-ylmethyl)-1-(cyclopropanecarbonyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. Final compound 52 was 

synthesized following General Procedure (H) from intermediate 52-2. Step 1: Sulfinamide 

cleavage was carried out with 52-2 (90 mg, 0.20 mmol, 1.0 eq) and excess concentrated HCl (0.09 

mL) precipitating product as a white solid, which was used without further purification. Step 2: 

Amide coupling was performed with the aminium chloride salt of 52-2 (75 mg, 0.20 mmol, 1.0 

eq), di-Boc-Dmt (90 mg, 0.22 mmol, 1.1 eq), and PyBOP (114 mg, 0.22 mmol, 1.1 eq), followed 

by DIPEA (0.34 mL, 1.96 mmol, 10 eq). After purification by silica chromatography, product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-
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preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 8.21 (d, J = 8.2 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.32 (dq, J = 8.3, 0.9 Hz, 

1H), 7.27 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.3, 2.1 Hz, 1H), 7.17 (td, J = 7.7, 1.6 Hz, 1H), 7.14 

(td, J = 7.4, 1.3 Hz, 1H), 6.50 (s, 2H), 6.43 (d, J = 1.0 Hz, 1H), 4.97 (t, J = 6.2 Hz, 1H), 4.07 (s, 

2H), 3.93 – 3.86 (m, 2H), 3.29 – 3.22 (m, 2H), 3.05 (dd, J = 13.7, 5.0 Hz, 1H), 2.27 (s, 6H), 1.96 

(tt, J = 7.9, 4.7 Hz, 1H), 1.86 (ddt, J = 13.1, 7.4, 5.4 Hz, 1H), 1.42 (tt, J = 13.0, 6.1 Hz, 1H), 1.28 

(s, 1H), 1.05 (dddd, J = 9.7, 6.6, 4.6, 3.1 Hz, 1H), 0.95 (dddd, J = 9.5, 6.8, 4.7, 3.2 Hz, 1H), 0.91 

– 0.85 (m, 1H), 0.82 (qd, J = 9.2, 8.3, 3.0 Hz, 1H). 13C NMR (500 MHz, cd3od) δ 175.51, 169.39, 

158.87, 157.43, 156.35, 140.05, 138.12, 136.00, 130.11, 129.52, 129.26, 125.82, 124.61, 123.67, 

123.26, 121.50, 116.45, 111.52, 104.24, 53.55, 47.10, 42.29, 35.02, 31.97, 31.47, 20.43, 14.47, 

9.91, 9.50. Calculated [M+H]+: 538.3. ESI-MS mass observed: 538.3 (M+H) and 560.3 (M+Na). 

Analytical HPLC retention time: 40.1 min. 

 

Compound 53 

 

53-1 6-benzyl-1-(methylsulfonyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 53-1 was 

synthesized from intermediate 8-4, the synthesis of which can be found in Chapter 2. Intermediate 

53-1 was synthesized following General Procedure (D) with intermediate 8-4 (200 mg, 0.84 

mmol, 1.0 eq), Et3N (0.23 mL, 1.68 mmol, 2.0 eq), and methanesulfonyl chloride (0.13 mL, 1.68 
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mmol, 2.0 eq). Yield: 178 mg, 67%. 1H NMR (400 MHz, Chloroform-d) δ 7.91 (d, J = 2.3 Hz, 

1H), 7.64 (d, J = 8.5 Hz, 1H), 7.38 (dd, J = 8.5, 2.3 Hz, 1H), 7.30 (tt, J = 6.9, 1.0 Hz, 2H), 7.26 (s, 

1H), 7.26 – 7.18 (m, 1H), 7.18 (d, J = 8.0 Hz, 1H), 4.17 (t, J = 6.5 Hz, 2H), 3.98 (s, 2H), 3.04 (s, 

3H), 2.84 (dd, J = 7.0, 5.9 Hz, 2H). 13C NMR (101 MHz, cdcl3) δ 192.71, 148.67, 140.72, 140.11, 

138.45, 135.74, 133.96, 128.95, 128.81, 128.36, 126.60, 124.99, 122.19, 46.12, 41.23, 40.10, 

38.16. 

 

53-2  (R)-N-((R)-6-benzyl-1-(methylsulfonyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-

2-sulfinamide. Intermediate 53-2 was synthesized following General Procedure (G) from 53-1 

(104 mg, 0.33 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (120 mg, 0.99 mmol, 3.0 eq), 

and Ti(OEt)4 (0.42 mL, 1.98 mmol, 6.0 eq), then NaBH4 (75 mg, 1.98 mmol, 6.0 eq). Yield: 61 

mg, 43%. 1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 8.8 Hz, 1H), 7.31 – 7.25 (m, 3H), 7.23 

– 7.16 (m, 3H), 7.12 (dd, J = 8.6, 2.2 Hz, 1H), 4.57 (q, J = 3.5 Hz, 1H), 4.09 (dt, J = 13.3, 3.7 Hz, 

1H), 3.93 (s, 2H), 3.67 (ddd, J = 13.6, 11.4, 2.9 Hz, 1H), 2.93 (d, J = 0.8 Hz, 3H), 2.18 (dq, J = 

14.3, 3.9 Hz, 1H), 2.09 – 1.98 (m, 1H), 1.20 (d, J = 0.8 Hz, 9H). 13C NMR (101 MHz, cdcl3) δ 

140.65, 138.03, 135.31, 130.73, 129.84, 128.95, 128.72, 127.67, 126.42, 121.72, 55.84, 49.91, 

41.76, 41.21, 38.88, 28.77, 22.71. 
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53 (S)-2-amino-N-((R)-6-benzyl-1-(methylsulfonyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. Final compound 53 was synthesized following 

General Procedure (H) from intermediate 53-2. Step 1: Sulfinamide cleavage was carried out 

with 53-2 (61 mg, 0.15 mmol, 1.0 eq) and excess concentrated HCl (0.08 mL) precipitating product 

as a white solid, which was used without further purification. Step 2: Amide coupling was 

performed with the aminium chloride salt of 53-2 (45 mg, 0.13 mmol, 1.0 eq), di-Boc-Dmt (58 

mg, 0.14 mmol, 1.1 eq), PyBOP (73 mg, 0.14 mmol, 1.1 eq), and 6-Cl HOBt (24 mg, 0.14 mmol, 

1.1 eq), followed by DIPEA (0.23 mL, 1.30 mmol, 10 eq). After purification by silica 

chromatography, product was carried forward to Step 3: TFA deprotection, followed by 

purification by reverse-phase semi-preparative HPLC, as described in General Procedure (H). 

Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.60 (d, J = 8.6 Hz, 1H), 7.27 – 

7.21 (m, 2H), 7.18 – 7.11 (m, 4H), 7.06 (dd, J = 8.6, 2.2 Hz, 1H), 6.50 (s, 2H), 4.98 (t, J = 4.9 Hz, 

1H), 3.88 (s, 2H), 3.86 – 3.76 (m, 2H), 3.25 (dd, J = 13.6, 11.6 Hz, 1H), 3.02 (dd, J = 13.7, 5.2 Hz, 

1H), 2.93 (ddd, J = 13.5, 10.6, 2.7 Hz, 1H), 2.86 (s, 3H), 2.27 (s, 6H), 1.89 (dddd, J = 14.0, 10.6, 

5.2, 3.5 Hz, 1H), 1.56 – 1.48 (m, 1H). 13C NMR (500 MHz, cd3od) δ 140.02, 138.89, 138.40, 

136.72, 130.27, 129.76, 129.50, 127.98, 127.20, 122.91, 116.48, 46.65, 43.64, 41.91, 38.82, 31.88, 

29.21, 20.45. Calculated [M+H]+: 508.3. ESI-MS mass observed: 508.3 (M+H) and 530.3 

(M+Na). Analytical HPLC retention time: 34.8 min. 
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Compound 54 

 

54-1 1-(methylsulfonyl)-6-(naphthalen-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 

54-1 was synthesized following General Procedure (D) from intermediate 48-2 (120 mg, 0.42 

mmol, 1.0 eq), Et3N (0.12 mL, 0.84 mmol, 2.0 eq), and methanesulfonyl chloride (0.06 mL, 0.84 

mmol, 2.0 eq). Yield: 100 mg, 66%. 1H NMR (500 MHz, Chloroform-d) δ 7.96 (d, J = 2.2 Hz, 

1H), 7.78 (ddd, J = 13.2, 8.0, 2.5 Hz, 3H), 7.67 – 7.62 (m, 2H), 7.49 – 7.40 (m, 3H), 7.29 (dd, J = 

8.5, 1.7 Hz, 1H), 4.16 (t, J = 5.8 Hz, 2H), 4.13 (s, 2H), 3.02 (d, J = 1.1 Hz, 3H), 2.83 (t, J = 6.5 

Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 192.66, 140.80, 138.28, 137.59, 135.80, 133.69, 132.28, 

128.52, 128.39, 127.76, 127.66, 127.36, 127.27, 126.31, 125.73, 125.01, 122.21, 46.09, 41.40, 

40.05, 38.14. 

 

54-2  (R)-2-methyl-N-((R)-1-(methylsulfonyl)-6-(naphthalen-2-ylmethyl)-1,2,3,4-

tetrahydroquinolin-4-yl)propane-2-sulfinamide. Intermediate 54-2 was synthesized following 

General Procedure (G) from 54-1 (100 mg, 0.27 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (100 mg, 0.82 mmol, 3.0 eq), and Ti(OEt)4 (0.35 mL, 1.64 mmol, 6.0 eq), then 
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NaBH4 (62 mg, 1.64 mmol, 6.0 eq). Yield: 74 mg, 57%. 1H NMR (500 MHz, Chloroform-d) δ 

7.81 – 7.74 (m, 3H), 7.70 (d, J = 8.6 Hz, 1H), 7.65 – 7.63 (m, 1H), 7.47 – 7.40 (m, 2H), 7.33 (d, J 

= 2.2 Hz, 1H), 7.31 (dd, J = 8.4, 1.8 Hz, 1H), 7.16 (dd, J = 8.6, 2.2 Hz, 1H), 4.57 (q, J = 3.7 Hz, 

1H), 4.08 (s, 2H), 4.06 (td, J = 4.0, 2.0 Hz, 1H), 3.68 (ddd, J = 13.2, 11.3, 2.9 Hz, 1H), 3.25 (d, J 

= 2.4 Hz, 1H), 2.92 (s, 3H), 2.18 (dddd, J = 14.3, 4.9, 3.8, 2.9 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.18 

(s, 9H). 13C NMR (126 MHz, cdcl3) δ 138.16, 137.89, 135.39, 133.71, 132.24, 130.81, 129.87, 

128.36, 127.78, 127.73, 127.66, 127.49, 127.17, 126.20, 125.60, 121.75, 55.83, 50.04, 41.84, 

41.41, 38.86, 28.88, 22.68. 

 

54 (S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)-N-((R)-1-(methylsulfonyl)-6-(naphthalen-2-

ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)propenamide. Final compound 54 was synthesized 

following General Procedure (H) from 54-2. Step 1: Sulfinamide cleavage was carried out with 

54-2 (74 mg, 0.16 mmol, 1.0 eq) and excess concentrated HCl (0.09 mL) precipitating product as 

a white solid, which was used without further purification. Step 2: Amide coupling was performed 

with the aminium chloride salt of 54-2 (60 mg, 0.15 mmol, 1.0 eq), di-Boc-Dmt (67 mg, 0.16 

mmol, 1.1 eq), PyBOP (85 mg, 0.16 mmol, 1.1 eq), and 6-Cl HOBt (28 mg, 0.16 mmol, 1.1 eq), 

followed by DIPEA (0.26 mL, 1.49 mmol, 10 eq). Yield: 102 mg, 90%. Carried forward without 

characterization. Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 
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(500 MHz, Methanol-d4) δ 7.78 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.65 – 7.59 (m, 2H), 

7.46 – 7.38 (m, 2H), 7.28 (dd, J = 8.6, 1.6 Hz, 1H), 7.18 (d, J = 2.0 Hz, 1H), 7.16 – 7.13 (m, 1H), 

6.50 (s, 2H), 4.99 (t, J = 5.0 Hz, 1H), 4.06 (s, 2H), 3.80 (td, J = 10.6, 9.7, 4.4 Hz, 2H), 3.24 (dd, J 

= 13.6, 11.6 Hz, 1H), 3.01 (dd, J = 13.7, 5.3 Hz, 1H), 2.95 (ddd, J = 13.0, 10.5, 2.3 Hz, 1H), 2.87 

(d, J = 1.0 Hz, 3H), 2.26 (s, 6H), 1.94 – 1.85 (m, 1H), 1.58 – 1.49 (m, 1H). Calculated [M+H]+: 

558.3. ESI-MS mass observed: 558.3 (M+H) and 580.3 (M+Na). Analytical HPLC retention time: 

41.4 min. 

 

Compound 55 

 

55-1 tert-butyl 4-oxo-6-(quinolin-3-ylmethyl)-3,4-dihydroquinoline-1(2H)-carboxylate. 

Intermediate 55-1 was synthesized following General Procedure (F) from intermediate 6-MeBr 

N-Boc THQ (250 mg, 0.73 mmol, 1.0 eq), 3-quinoline boronic acid (190 mg, 1.10 mmol, 1.5 eq), 

K2CO3 (302 mg, 2.19 mmol, 3.0 eq) and Pd(dppf)Cl2 (51 mg, 0.07 mmol, 0.1 eq). Reaction was 

heated 24 hours. Yield: 248 mg, 87%. 1H NMR (500 MHz, Chloroform-d) δ 8.80 (d, J = 2.2 Hz, 

1H), 8.09 – 8.05 (m, 1H), 7.90 – 7.88 (m, 2H), 7.76 – 7.71 (m, 2H), 7.67 (ddd, J = 8.4, 6.9, 1.5 Hz, 

1H), 7.52 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.35 (dd, J = 8.6, 2.3 Hz, 1H), 4.16 (s, 2H), 4.15 (t, J = 

6.6, 6.0 Hz, 2H), 2.76 (dd, J = 6.8, 5.8 Hz, 2H), 1.54 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 192.68, 
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152.86, 152.01, 142.96, 135.01, 134.69, 129.38, 129.14, 127.62, 127.48, 126.94, 125.11, 124.29, 

82.42, 44.43, 39.10, 38.66, 28.44. 

 

55-2 6-(quinolin-3-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 55-2 was synthesized 

following General Procedure (I) from intermediate 55-1 (248 mg, 0.64 mmol, 1.0 eq) and 1:3 

TFA/DCM (12 mL, excess). Yield: 184 mg, 100%. 1H NMR (500 MHz, Chloroform-d) δ 8.79 (d, 

J = 2.2 Hz, 1H), 8.08 (dd, J = 8.5, 1.1 Hz, 1H), 7.96 (d, J = 2.2 Hz, 1H), 7.90 (dd, J = 2.3, 1.0 Hz, 

1H), 7.80 (s, 1H), 7.75 (dd, J = 8.2, 1.3 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.54 (ddd, J = 8.1, 6.9, 1.2 

Hz, 1H), 7.49 (dd, J = 8.5, 2.3 Hz, 1H), 4.24 – 4.20 (m, 4H), 2.89 (t, J = 6.2 Hz, 2H).13C NMR 

(126 MHz, cdcl3) δ 192.05, 151.81, 147.24, 135.14, 134.99, 132.64, 129.41, 129.33, 128.15, 

127.99, 127.61, 127.08, 126.77, 45.70, 39.40, 38.80. 

 

55-3 1-(methylsulfonyl)-6-(quinolin-3-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 55-

2 was synthesized following General Procedure (D) from intermediate 55-2 (184 mg, 0.64 mmol, 

1.0 eq), Et3N (0.27 mL, 1.92 mmol, 3.0 eq), and methanesulfonyl chloride (0.10 mL, 1.28 mmol, 

2.0 eq). Yield: 151 mg, 65%. 1H NMR (500 MHz, Chloroform-d) δ 8.76 (t, J = 1.8 Hz, 1H), 8.05 

(d, J = 8.4 Hz, 1H), 7.92 (d, J = 2.2 Hz, 1H), 7.88 (d, J = 2.1 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.68 – 
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7.63 (m, 2H), 7.50 (ddt, J = 7.8, 6.6, 1.5 Hz, 1H), 7.40 (dt, J = 8.6, 2.0 Hz, 1H), 4.14 (t, J = 6.5 

Hz, 2H), 4.14 (s, 2H), 3.03 (d, J = 1.6 Hz, 3H), 2.82 (t, J = 6.4 Hz, 2H). 13C NMR (126 MHz, 

cdcl3) δ 192.43, 151.77, 147.07, 141.09, 136.82, 135.57, 134.97, 132.85, 129.25, 129.19, 128.37, 

128.06, 127.53, 126.96, 125.04, 122.30, 46.01, 40.04, 38.48, 38.06. 

 

55-4 (R)-2-methyl-N-((R)-1-(methylsulfonyl)-6-(quinolin-3-ylmethyl)-1,2,3,4-tetrahydroquinolin-

4-yl)propane-2-sulfinamide. Intermediate 55-4 was synthesized following General Procedure 

(G) from intermediate 55-3 (70 mg, 0.19 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (70 

mg, 0.57 mmol, 3.0 eq), and Ti(OEt)4 (0.24 mL, 1.15 mmol, 6.0 eq), then NaBH4 (44 mg, 1.15 

mmol, 6.0 eq). Yield: 47 mg, 52%. Intermediate 55-4 not characterized by NMR until after 

sulfinamide cleavage (see Final Compound 55 Step 1). 

 

55 (S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)-N-((R)-1-(methylsulfonyl)-6-(quinolin-3-

ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)propenamide. Final compound 55 was synthesized 

following General Procedure (H) from intermediate 55-4. Step 1: Sulfinamide cleavage was 

carried out with 55-4 (47 mg, 0.10 mmol, 1.0 eq) and excess concentrated HCl (0.06 mL) 
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precipitating product as a white solid, which was used without further purification. 1H NMR (500 

MHz, Methanol-d4) δ 9.25 (d, J = 2.0 Hz, 1H), 9.14 – 9.11 (m, 1H), 8.35 – 8.32 (m, 1H), 8.26 (d, 

J = 8.7 Hz, 1H), 8.15 (ddd, J = 8.5, 7.0, 1.3 Hz, 1H), 7.97 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.79 (d, 

J = 8.7 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.43 (dd, J = 8.7, 2.2 Hz, 1H), 4.65 (t, J = 5.7 Hz, 1H), 4.44 

(s, 2H), 4.03 (ddd, J = 13.9, 6.9, 3.6 Hz, 1H), 3.86 – 3.78 (m, 1H), 3.09 (s, 2H), 2.46 – 2.33 (m, 

1H), 2.23 – 2.15 (m, 1H). Step 2: Amide coupling was performed with the aminium chloride salt 

of 55-4 (40 mg, 0.10 mmol, 1.0 eq), di-Boc-Dmt (49 mg, 0.12 mmol, 1.2 eq), and PyBOP (63 mg, 

0.12 mmol, 1.2 eq), followed by DIPEA (0.18 mL, 1.00 mmol, 10 eq). Yield: 102 mg, 90%. Carried 

forward without characterization. Step 3: TFA deprotection, followed by purification by reverse-

phase semi-preparative HPLC, as described in General Procedure (H). Final yield not calculated. 

1H NMR (500 MHz, Methanol-d4) δ 8.85 (d, J = 3.9 Hz, 1H), 8.45 (s, 1H), 8.07 (d, J = 8.7 Hz, 

1H), 8.02 (d, J = 9.1 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 8.7 

Hz, 1H), 7.24 (d, J = 2.2 Hz, 1H), 7.18 (dd, J = 8.7, 2.2 Hz, 1H), 6.50 (s, 2H), 5.01 (t, J = 5.1 Hz, 

1H), 4.20 (s, 2H), 3.87 – 3.76 (m, 2H), 3.25 (dd, J = 13.6, 11.6 Hz, 1H), 3.06 – 2.94 (m, 2H), 2.90 

(s, 3H), 2.26 (s, 6H), 1.89 (ddt, J = 14.2, 9.4, 4.3 Hz, 1H), 1.53 (dt, J = 13.8, 7.0 Hz, 1H). Calculated 

[M+H]+: 559.3. ESI-MS mass observed: 559.3 (M+H) and 581.3 (M+Na). Analytical HPLC 

retention time: 23.6 min. 
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Compound 56 

 

56-1 tert-butyl 6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-4-oxo-3,4-dihydroquinoline-1(2H)-

carboxylate. 56-1 was synthesized following General Procedure (F) from intermediate 6-MeBr 

N-Boc THQ (500 mg, 1.47 mmol, 1.0 eq), K2CO3 (243 mg, 1.76 mmol, 1.2 eq) and THIQ (0.23 

mL, 1.76 mmol, 1.2 eq). Yield: 519 mg, 90%. 1H NMR (500 MHz, Chloroform-d) δ 7.95 (d, J = 

2.2 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.59 (dd, J = 8.6, 2.2 Hz, 1H), 7.10 (tdd, J = 8.8, 4.6, 2.4 

Hz, 3H), 6.97 (dd, J = 7.8, 1.7 Hz, 1H), 4.19 – 4.14 (m, 2H), 3.66 (s, 2H), 3.62 (s, 2H), 2.89 (t, J 

= 5.9 Hz, 2H), 2.80 – 2.71 (m, 4H), 1.56 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 194.41, 152.92, 

143.39, 134.95, 134.85, 134.43, 128.83, 127.68, 126.70, 126.27, 125.73, 124.70, 123.88, 82.34, 

61.97, 56.15, 50.74, 44.48, 39.14, 29.27, 28.46. 

 

56-2 tert-butyl (R)-4-(((R)-tert-butylsulfinyl)amino)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-

3,4-dihydroquinoline-1(2H)-carboxylate. Intermediate 56-2 was synthesized following General 

Procedure (G) from 56-1 (244 mg, 0.62 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (225 

mg, 1.86 mmol, 3.0 eq), and Ti(OEt)4 (0.78 mL, 3.73 mmol, 6.0 eq), then NaBH4 (141 mg, 3.73 
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mmol, 6.0 eq). Yield: 281 mg, 91%. 1H NMR (500 MHz, Chloroform-d) δ 7.82 (dd, J = 12.9, 8.6 

Hz, 1H), 7.43 (dd, J = 4.8, 2.1 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.19 – 7.14 (m, 2H), 7.05 – 6.98 (m, 

1H), 4.57 (dq, J = 7.2, 3.7 Hz, 1H), 4.06 – 3.88 (m, 5H), 3.58 (ddt, J = 12.8, 11.2, 3.7 Hz, 1H), 

3.30 – 3.19 (m, 2H), 3.15 – 2.94 (m, 2H), 2.21 (tq, J = 12.5, 4.2 Hz, 1H), 1.99 (tt, J = 10.3, 3.2 Hz, 

1H), 1.52 (d, J = 1.3 Hz, 9H), 1.22 (d, J = 4.2 Hz, 9H). 13C NMR (126 MHz, cdcl3) δ 139.11, 

138.45, 136.54, 134.47, 132.41, 132.18, 131.16, 128.61, 127.28, 126.72, 125.92, 123.11, 63.64, 

62.69, 57.30, 54.85, 50.36, 40.26, 29.25, 28.30, 24.72, 22.60. 

 

56 (S)-2-amino-N-((R)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-1-(methylsulfonyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propanamide. 56 was synthesized 

following General Procedures (I), (H) and (D) from intermediate 56-2. Intermediate 56-2 (150 

mg, 0.30 mmol) was Boc deprotected with 1:1 TFA/DCM (15 mL) as described in General 

Procedure (I). Crude product was carried forward without further characterization. General 

Procedure (H) Step 1: Sulfinamide cleavage was carried out with Boc-deprotected 56-2 and 

excess concentrated HCl, precipitating product as a white solid, a portion of which was used 

without further purification in subsequent steps. Step 2: Amide coupling was performed with the 

aminium chloride salt of 56-2 (29 mg, 0.08 mmol, 1.0 eq), di-Boc-Dmt (39 mg, 0.10 mmol, 1.2 

eq), and PyBOP (50 mg, 0.10 mmol, 1.2 eq), followed by DIPEA (0.14 mL, 0.78 mmol, 10 eq). 

Product was purified by silica chromatography, yielding 22 mg (0.03 mmol) of amide-coupled 

N

N

HN

O

NH2 OH
N

N

HN

56-2

S
O

Boc

I, H, D

56
S OO



 203 

product, which was then sulfonylated following General Procedure (D) with methanesulfonyl 

chloride (0.03 mL, 0.04 mmol, 1.2 eq) and Et3N (0.06 mL, 0.04 mmol, 1.2 eq). Sulfonylated, di-

Boc-Dmt coupled product was then purified by silica chromatography before Step 3: Boc-

deprotecting with 1:1 TFA/DCM (5 mL). Final compound 56 was purified by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 7.81 (d, J = 8.7 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.40 (dd, J = 8.7, 2.2 Hz, 

1H), 7.33 – 7.28 (m, 1H), 7.28 – 7.23 (m, 2H), 7.15 (d, J = 7.7 Hz, 1H), 6.51 (s, 2H), 5.04 (t, J = 

5.3 Hz, 1H), 4.41 (s, 2H), 4.37 (s, 2H), 3.89 – 3.80 (m, 2H), 3.29 – 3.23 (m, 1H), 3.18 (s, 2H), 3.11 

– 3.01 (m, 2H), 3.00 (s, 3H), 2.28 (s, 6H), 1.90 (ddt, J = 14.3, 9.3, 4.7 Hz, 1H), 1.60 – 1.52 (m, 

1H). Calculated [M+H]+: 563.3. ESI-MS mass observed: 563.3 (M+H) and 585.3 (M+Na). 

Analytical HPLC retention time: 23.9 min. 

 

Compound 57 

 

57-1 6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1-(methylsulfonyl)-2,3-dihydroquinolin-

4(1H)-one. 57-1 was synthesized following General Procedure (D) from 46-1 (100 mg, 0.34 

mmol, 1.0 eq), Et3N (0.10 mL, 0.68 mmol, 2.0 eq), and methanesulfonyl chloride (0.05 mL, 0.68 

mmol, 2.0 eq). Yield: 70 mg, 56%. 1H NMR (500 MHz, Chloroform-d) δ 7.88 (d, J = 2.3 Hz, 1H), 

7.64 (d, J = 8.5 Hz, 1H), 7.37 (dd, J = 8.6, 2.3 Hz, 1H), 6.78 (d, J = 8.9 Hz, 1H), 6.65 (s, 1H), 4.23 
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(s, 4H), 4.17 (t, J = 6.4 Hz, 2H), 3.86 (s, 2H), 3.04 (s, 3H), 2.84 (t, J = 6.5 Hz, 2H). 13C NMR (126 

MHz, cdcl3) δ 192.70, 142.31, 140.71, 138.70, 135.76, 133.46, 128.30, 125.03, 122.24, 121.88, 

117.65, 117.51, 64.54, 64.45, 46.16, 40.49, 40.11, 38.18. 

 

57-2 (R)-N-((R)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1-(methylsulfonyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. Intermediate 57-2 was synthesized 

following General Procedure (G) from 57-1 (70 mg, 0.19 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (66 mg, 0.56 mmol, 3.0 eq), and Ti(OEt)4 (0.23 mL, 1.12 mmol, 6.0 eq), then 

NaBH4 (42 mg, 1.12 mmol, 6.0 eq). Yield: 65 mg, 72%. 1H NMR (500 MHz, Chloroform-d) δ 

7.69 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.6, 2.2 Hz, 1H), 6.77 (d, J = 8.9 

Hz, 1H), 6.68 – 6.62 (m, 2H), 4.57 (q, J = 4.4 Hz, 3H), 4.23 (s, 4H), 4.09 (dt, J = 13.2, 4.3 Hz, 

1H), 3.81 (s, 2H), 3.66 (ddd, J = 13.6, 11.5, 2.9 Hz, 1H), 2.93 (s, 3H), 2.23 – 2.14 (m, 1H), 2.09 – 

1.98 (m, 1H), 1.21 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 143.56, 138.19, 135.30, 133.99, 130.66, 

129.85, 127.63, 124.34, 121.87, 121.72, 117.62, 117.39,  64.45, 55.85, 49.90, 41.76, 40.43, 38.87, 

28.72, 22.74. 
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57 (S)-2-amino-N-((R)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1-(methylsulfonyl)-

1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. 57 was 

synthesized following General Procedure (H) from intermediate 57-2. Step 1: Sulfinamide 

cleavage was carried out with 57-2 (65 mg, 0.13 mmol, 1.0 eq) and excess concentrated HCl (0.06 

mL) precipitating product as a white solid, which was used without further purification. Step 2: 

Amide coupling was performed with the aminium chloride salt of 57-2 (56 mg, 0.14 mmol, 1.0 

eq), di-Boc-Dmt (61 mg, 0.15 mmol, 1.1 eq), and PyBOP (78 mg, 0.15 mmol, 1.1 eq), followed 

by DIPEA (0.24 mL, 1.36 mmol, 10 eq). After purification by silica chromatography, product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 7.58 (d, J = 8.6 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.02 (dd, J = 8.6, 2.2 

Hz, 1H), 6.70 – 6.67 (m, 1H), 6.59 (d, J = 7.7 Hz, 2H), 6.49 (s, 2H), 4.97 (q, J = 5.1 Hz, 1H), 4.16 

(s, 4H), 3.85 (dd, J = 11.5, 5.1 Hz, 1H), 3.77 (ddd, J = 14.0, 6.1, 3.6 Hz, 1H), 3.74 (s, 2H), 3.25 

(dd, J = 13.6, 11.6 Hz, 1H), 3.04 (dd, J = 13.7, 5.2 Hz, 1H), 2.93 (ddd, J = 13.5, 10.5, 2.7 Hz, 1H), 

2.84 (s, 3H), 2.26 (s, 6H), 1.87 (dddd, J = 14.0, 10.6, 5.4, 3.5 Hz, 1H), 1.51 (dddd, J = 13.7, 5.9, 

4.6, 2.7 Hz, 1H). 13C NMR (500 MHz, cd3od) δ 168.91, 168.83, 157.41, 144.81, 143.40, 140.04, 

139.18, 136.58, 135.40, 131.53, 130.15, 127.93, 123.27, 122.83, 122.54, 118.32, 118.05, 116.44, 

111.39, 65.60, 65.50, 53.37, 49.00, 46.65, 43.67, 41.13, 38.76, 31.84, 29.18, 20.45. Calculated 

[M+H]+: 566.2. ESI-MS mass observed: 566.2 (M+H) and 588.2 (M+Na). Analytical HPLC 

retention time: 34.1 min. 
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Compound 58 

 

58-1 6-(benzofuran-2-ylmethyl)-1-(methylsulfonyl)-2,3-dihydroquinolin-4(1H)-one. 58-1 was 

synthesized following General Procedure (D) from 47-1 (80 mg, 0.29 mmol, 1.0 eq), Et3N (0.09 

mL, 0.58 mmol, 2.0 eq), and methanesulfonyl chloride (0.05 mL, 0.58 mmol, 2.0 eq). Yield: 31 

mg, 30%. 1H NMR (500 MHz, Chloroform-d) δ 8.01 (d, J = 2.3 Hz, 1H), 7.70 (d, J = 8.6 Hz, 1H), 

7.52 (dd, J = 8.6, 2.4 Hz, 1H), 7.48 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.21 (dd, J 

= 7.9, 1.6 Hz, 1H), 7.19 (dd, J = 7.4, 1.2 Hz, 1H), 6.44 (s, 1H), 4.19 (t, J = 6.3 Hz, 2H), 4.11 (s, 

2H), 3.06 (s, 3H), 2.86 (t, J = 6.5 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 192.49, 176.33, 156.49, 

141.30, 135.74, 134.54, 128.60, 125.08, 123.86, 122.83, 122.27, 120.71, 111.09, 103.87, 46.15, 

40.15, 38.17, 34.31, 28.43. 

 

 

58-2 (R)-N-((R)-6-(benzofuran-2-ylmethyl)-1-(methylsulfonyl)-1,2,3,4-tetrahydroquinolin-4-yl)-

2-methylpropane-2-sulfinamide. 58-2 was synthesized following General Procedure (G) from 

58-1 (31 mg, 0.09 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (32 mg, 0.26 mmol, 3.0 eq), 
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and Ti(OEt)4 (0.11 mL, 0.52 mmol, 6.0 eq), then NaBH4 (20 mg, 0.52 mmol, 6.0 eq). Yield: 38 

mg, 95%. 1H NMR (500 MHz, Chloroform-d) δ 7.74 (d, J = 8.6 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.38 

(q, J = 2.9, 1.7 Hz, 2H), 7.24 (dd, J = 8.6, 2.2 Hz, 1H), 7.20 (td, J = 7.7, 1.7 Hz, 1H), 7.18 (dd, J 

= 7.4, 1.3 Hz, 1H), 6.43 (d, J = 1.0 Hz, 1H), 4.59 (q, J = 3.7 Hz, 1H), 4.09 (dt, J = 13.3, 4.4 Hz, 

1H), 4.06 (s, 2H), 3.68 (ddd, J = 13.2, 11.4, 2.9 Hz, 1H), 2.94 (s, 3H), 2.19 (ddd, J = 14.3, 7.8, 3.4 

Hz, 1H), 2.05 (ddt, J = 14.8, 11.1, 4.0 Hz, 1H), 1.20 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 157.00, 

155.08, 135.93, 134.04, 130.89, 129.88, 128.80, 127.82, 123.69, 122.74, 121.78, 120.64, 115.06, 

111.03, 103.60, 77.16, 55.89, 50.03, 41.82, 38.90, 34.23, 28.84, 22.25. 

 

58 (S)-2-amino-N-((R)-6-(benzofuran-2-ylmethyl)-1-(methylsulfonyl)-1,2,3,4-tetrahydroquinolin-

4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. 58 was synthesized following General 

Procedure (H) from intermediate 58-2. Step 1: Sulfinamide cleavage was carried out with 58-2 

(38 mg, 0.08 mmol, 1.0 eq) and excess concentrated HCl (0.05 mL) precipitating product as a 

white solid, which was used without further purification. Step 2: Amide coupling was performed 

with the aminium chloride salt of 58-2 (32 mg, 0.081 mmol, 1.0 eq), di-Boc-Dmt (37 mg, 0.089 

mmol, 1.1 eq), and PyBOP (47 mg, 0.089 mmol, 1.1 eq), followed by DIPEA (0.14 mL, 0.81 

mmol, 10 eq). After purification by silica chromatography, product was carried forward to Step 3: 

TFA deprotection, followed by purification by reverse-phase semi-preparative HPLC, as described 

in General Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.66 
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(d, J = 8.5 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.22 (s, 1H), 7.20 (dd, J = 8.4, 

2.0 Hz, 1H), 7.17 (dd, J = 7.9, 1.6 Hz, 1H), 7.14 (td, J = 7.4, 1.1 Hz, 1H), 6.49 (s, 2H), 6.43 (d, J 

= 1.0 Hz, 1H), 5.01 (t, J = 5.0 Hz, 1H), 4.03 (d, J = 5.0 Hz, 2H), 3.81 (td, J = 10.9, 10.4, 4.3 Hz, 

2H), 3.26 – 3.21 (m, 1H), 3.02 (dd, J = 13.7, 5.2 Hz, 1H), 2.96 (ddd, J = 13.4, 10.4, 2.7 Hz, 1H), 

2.88 (s, 3H), 2.26 (s, 6H), 1.89 (ddd, J = 14.2, 9.4, 4.6 Hz, 1H), 1.56 – 1.50 (m, 1H). Calculated 

[M+H]+: 548.2. ESI-MS mass observed: 548.2 (M+H) and 570.2 (M+Na). Analytical HPLC 

retention time: 38.7 min. 

 

Compound 59 

 

59-1 1-benzoyl-6-(naphthalen-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 59-1 was 

synthesized following General Procedure (D) from intermediate 48-2 (45 mg, 0.158 mmol, 1.0 

eq) and benzoyl chloride (0.04 mL, 0.31 mmol, 2.0 eq). Yield: 38 mg, 62%. 1H NMR (500 MHz, 

CDCl3) δ 7.92 (d, J = 2.2 Hz, 1H), 7.79 (dd, J = 7.5, 1.7 Hz, 1H), 7.76 (d, J = 7.9 Hz, 2H), 7.60 (s, 

1H), 7.49 (m, 2H), 7.43 (m, 3H), 7.36 (m, 2H), 7.26 (dd, J = 8.3, 2.0 Hz, 1H), 7.13 (dd, J = 8.5, 

2.2 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 4.30 (t, J = 6.1 Hz, 2H), 4.09 (s, 2H), 2.85 (t, J = 6.4 Hz, 

2H). 13C NMR (126 MHz, CDCl3) δ 193.88, 170.23, 142.81, 138.09, 137.62, 135.18, 134.52, 

133.66, 132.26, 131.17, 128.63, 128.61, 128.43, 127.74, 127.63, 127.61, 127.37, 127.26, 126.25, 

125.67, 125.00, 124.83, 45.44, 41.43, 39.64. 
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59-2 (R)-N-((R)-1-benzoyl-6-(naphthalen-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. Intermediate 59-2 was synthesized following General Procedure 

(G) from intermediate 59-1 (38 mg, 0.10 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (35 

mg, 0.29 mmol, 3.0 eq), and Ti(OEt)4 (0.12 mL, 0.58 mmol, 6.0 eq), then NaBH4 (15 mg, 0.04 

mmol, 4.0 eq). Yield: 25 mg, 52%. 1H NMR (500 MHz, CDCl3) δ 7.78 (m, 3H), 7.61 (s, 1H), 7.45 

(m, 2H), 7.39 (m, 3H), 7.32 (m, 3H), 7.28 (dd, J = 8.6, 1.7 Hz, 1H), 6.89 (m, 2H), 4.62 (q, J = 4.1 

Hz, 1H), 4.06 (s, 2H), 4.01 (dt, J = 12.9, 5.1 Hz, 1H), 3.81 (ddd, J = 13.0, 10.0, 4.9 Hz, 1H), 3.45 

(m, 1H), 2.29 (dq, J = 14.0, 4.7 Hz, 1H), 2.10 (ddt, J = 14.5, 10.0, 5.1 Hz, 1H), 1.18 (s, 9H). 13C 

NMR (126 MHz, CDCl3) δ 170.44, 138.20, 138.11, 136.95, 136.11, 133.70, 132.22, 130.55, 

130.12, 128.98, 128.60, 128.53, 128.43, 128.30, 127.73, 127.66, 127.57, 127.21, 126.81, 125.57, 

55.96,50.88, 41.56, 41.57, 30.41, 22.70 

 

59 (S)-2-amino-N-((R)-1-benzoyl-6-(naphthalen-2-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-

(4-hydroxy-2,6-dimethylphenyl)propenamide. Final compound 59 was synthesized following 
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General Procedure (H) from intermediate 59-2. Step 1: Sulfinamide cleavage was carried out 

with 59-2 (25 mg, 0.05 mmol, 1.0 eq) and excess concentrated HCl, precipitating product as a 

white solid, which was used without further purification. Step 2: Amide coupling was performed 

with the aminium chloride salt of 59-2 (21 mg, 0.05 mmol, 1.0 eq), di-Boc-Dmt (21 mg, 0.05 

mmol, 1.05 eq), 6-Cl HOBt (8 mg, 0.05 mmol, 1.0 eq), and PyBOP (25 mg, 0.05 mmol, 1.0 eq), 

followed by DIPEA (0.07 mL, 0.49 mmol, 10 eq). After purification by silica chromatography, 

uncharacterized product was carried forward to Step 3: TFA deprotection, followed by purification 

by reverse-phase semi-preparative HPLC, as described in General Procedure (H). Final yield not 

calculated. 1H NMR (500 MHz, Methanol-d4) δ 8.26 (d, J = 8.3 Hz, 1H), 7.78 (dd, J = 7.6, 1.2 Hz, 

1H), 7.73 (d, J = 8.8 Hz, 2H), 7.55 (s, 1H), 7.40 (m, 7H), 7.25 (dd, J = 8.3, 1.5 Hz, 1H), 7.21 (s, 

1H), 6.87 (br. s, 2H), 6.49 (s, 2H), 5.05 (m, 1H), 4.04 (s, 2H), 3.87 (m, 2H), 3.36 (m, 1H), 3.25 

(dd, J = 13.7, 11.7 Hz, 1H), 3.05 (dd, J = 13.7, 5.4 Hz, 1H), 2.27 (s, 6H), 1.94 (m, 1H), 1.50 (m, 

1H). Calculated [M+H]+: 584.3. ESI-MS mass observed: 584.3. (M+H). Analytical HPLC 

retention time: 45.0 min. 

 

Compound 60 

 

60-1 tert-butyl (R)-4-(((R)-tert-butylsulfinyl)amino)-6-(quinolin-3-ylmethyl)-3,4-

dihydroquinoline-1(2H)-carboxylate. Intermediate 60-1 was synthesized following General 
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Procedure (G) from intermediate 55-1 (135 mg, 0.35 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (127 mg, 1.04 mmol, 3.0 eq), and Ti(OEt)4 (0.44 mL, 2.09 mmol, 6.0 eq), then 

NaBH4 (53 mg, 1.39 mmol, 4.0 eq). Yield: 11 mg, 8%. 1H NMR (500 MHz, Chloroform-d) δ 9.05 

– 9.01 (m, 1H), 8.90 (d, J = 8.9 Hz, 1H), 8.24 (d, J = 2.1 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.78 (d, J 

= 8.7 Hz, 1H), 7.69 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.29 (d, J = 2.1 Hz, 1H), 7.09 (dd, J = 8.6, 2.2 

Hz, 1H), 4.54 (q, J = 4.0 Hz, 1H), 4.13 (d, J = 1.6 Hz, 2H), 3.95 (dt, J = 12.9, 4.7 Hz, 1H), 3.61 

(ddd, J = 13.1, 10.9, 4.0 Hz, 1H), 2.17 (dq, J = 13.4, 4.4 Hz, 1H), 2.00 (ddt, J = 14.4, 10.0, 4.3 Hz, 

1H), 1.52 (s, 9H), 1.19 (s, 9H).  

 

60 (S)-2-amino-N-((R)-1-benzoyl-6-(quinolin-3-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 60 was synthesized following General Procedures 

(H) and (D) from intermediate 60-1. Step 1: Sulfinamide cleavage was carried out with 60-1 (11 

mg, 0.028 mmol) and excess concentrated HCl, precipitating product as a white solid, which was 

used without further purification. Step 2: Amide coupling was performed with the aminium 

chloride salt of 60-1 (9 mg, 0.028 mmol, 1.00 eq), di-Boc-Dmt (12 mg, 0.029 mmol, 1.05 eq), 6-

Cl HOBt (5 mg, 0.028 mmol, 1.00 eq), and PyBOP (15 mg, 0.028 mmol, 1.00 eq), followed by 

DIPEA (0.04 mL, 0.28 mmol, 10 eq). Product was benzoylated as described in General Procedure 

(D). Crude product was carried forward to Step 3: Boc-deprotection with 1:1 TFA/DCM (2 mL), 

followed by purification by reverse-phase semi-preparative HPLC, as described in General 
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Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 8.70 (s, 1H), 8.15 

(s, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.64 (t, J = 7.5 

Hz, 1H), 7.45 (t, J = 7.0 Hz, 1H), 7.41 – 7.34 (m, 4H), 7.24 (s, 1H), 6.93 (s, 2H), 6.49 (s, 2H), 5.06 

(t, J = 6.2 Hz, 1H), 4.14 (s, 2H), 3.86 (dt, J = 14.1, 6.9 Hz, 2H), 3.36 (dd, J = 1.0, 0.5 Hz, 1H), 

3.29 – 3.22 (m, 1H), 3.04 (dd, J = 13.7, 5.1 Hz, 1H), 2.27 (s, 6H), 2.00 – 1.90 (m, 1H), 1.49 (dt, J 

= 12.9, 6.4 Hz, 1H). Calculated [M+H]+: 584.3. ESI-MS mass observed: 584.3 (M+H). Analytical 

HPLC retention time: 27.9 min. 

 

Compound 61 

 

61-1 1-benzoyl-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 61-1 was synthesized following General Procedure (F) from intermediate 6-MeBr 

N-Bz THQ (100 mg, 0.29 mmol, 1.0 eq), K2CO3 (48 mg, 0.35 mmol, 1.2 eq), and THIQ (0.044 

mL, 0.35 mmol, 1.2 eq). Yield: 112 mg, 97%. 1H NMR (500 MHz, Chloroform-d) δ 7.98 (d, J = 

2.0 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.47 – 7.42 (m, 1H), 7.36 (td, J = 6.8, 5.7, 3.1 Hz, 3H), 7.10 (d, 

J = 6.4 Hz, 2H), 6.95 (t, J = 7.3 Hz, 2H), 4.32 (td, J = 6.1, 1.8 Hz, 2H), 3.61 (d, J = 25.1 Hz, 2H), 

2.87 (t, J = 6.2 Hz, 4H), 2.72 (dd, J = 6.7, 5.0 Hz, 2H).  
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61-2 (R)-N-((R)-1-benzoyl-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. Intermediate 61-2 was synthesized 

following General Procedure (G) from intermediate 61-1 (112 mg, 0.28 mmol, 1.0 eq), (R)-2-

methyl-2-propanesulfinamide (103 mg, 0.85 mmol, 3.0 eq), and Ti(OEt)4 (0.36 mL, 1.69 mmol, 

6.0 eq), then NaBH4 (43 mg, 1.13 mmol, 4.0 eq). Yield: 123 mg, 87%. 1H NMR (500 MHz, 

Chloroform-d) δ 7.43 (d, J = 1.9 Hz, 1H), 7.40 – 7.35 (m, 3H), 7.29 (t, J = 7.5 Hz, 2H), 7.10 – 7.03 

(m, 4H), 6.95 – 6.89 (m, 2H), 4.63 (q, J = 4.3 Hz, 1H), 4.01 (dt, J = 12.9, 5.2 Hz, 1H), 3.87 – 3.77 

(m, 1H), 3.59 (dd, J = 23.3, 11.8 Hz, 4H), 2.86 (t, J = 5.9 Hz, 2H), 2.71 (q, J = 6.0, 4.6 Hz, 2H), 

2.27 (dq, J = 14.3, 4.9 Hz, 1H), 2.10 (ddt, J = 14.3, 9.8, 5.5 Hz, 1H), 1.18 (d, J = 1.4 Hz, 9H).  

 

61 (S)-2-amino-N-((R)-1-benzoyl-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. Final compound 61 was 

synthesized following General Procedure (H) from intermediate 61-2. Step 1: Sulfinamide 

cleavage was carried out with intermediate 61-2 (123 mg, 0.25 mmol) and excess concentrated 
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HCl (0.50 mL), precipitating product as a white solid, a portion of which was used without further 

purification in subsequent steps. Step 2: Amide coupling was performed with the aminium 

chloride salt of 61-2 (36 mg, 0.077 mmol, 1.00 eq), di-Boc-Dmt (33 mg, 0.081 mmol, 1.05 eq), 6-

Cl HOBt (13 mg, 0.77 mmol, 1.00 eq), and PyBOP (40 mg, 0.077 mmol, 1.00 eq), followed by 

DIPEA (0.11 mL, 0.77 mmol, 10 eq). Crude product was carried forward to Step 3: Boc-

deprotection with 1:1 TFA/DCM (3 mL), followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 7.68 (s, 1H), 7.51 – 7.43 (m, 4H), 7.42 – 7.37 (m, 2H), 7.31 (t, J = 7.3, 

5.9 Hz, 1H), 7.26 (t, J = 7.1 Hz, 2H), 7.20 (t, J = 11.6, 10.5 Hz, 1H), 7.14 (t, J = 7.4 Hz, 2H), 6.49 

(s, 2H), 5.07 (t, J = 6.3 Hz, 1H), 4.42 (d, J = 25.6 Hz, 2H), 4.35 (d, J = 22.3 Hz, 2H), 3.90 (dd, J 

= 11.7, 4.9 Hz, 1H), 3.88 – 3.79 (m, 1H), 3.42 (d, J = 17.8 Hz, 1H), 3.26 (d, J = 12.2 Hz, 1H), 3.18 

(s, 2H), 3.07 (dd, J = 13.7, 4.9 Hz, 1H), 2.28 (s, 6H), 1.94 (q, J = 7.1, 6.5 Hz, 1H), 1.51 (td, J = 

12.0, 6.9 Hz, 1H). Calculated [M+H]+: 589.3. ESI-MS mass observed: 589.3 (M+H). Analytical 

HPLC retention time: 27.7 min. 

 

Compound 62 

 

62-1 1-benzoyl-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-2,3-dihydroquinolin-4(1H)-one. 

Intermediate 62-1 was synthesized following General Procedure (D) from intermediate 46-1 (101 
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mg, 0.34 mmol, 1.0 eq), Et3N (0.10 mL, 0.68 mmol, 2.0 eq), and benzoyl chloride (0.08 mL, 0.68 

mmol, 2.0 eq). After 12 hours, added additional equivalents of Et3N (0.15 mL, 1.08 mmol, 3.2 eq) 

and benzoyl chloride (0.10 mL, 0.86 mmol, 2.5 eq). After another two hours, TLC indicated 

complete consumption of product. Yield: 128 mg, 94%. 1H NMR (500 MHz, Chloroform-d) δ 7.83 

(d, J = 2.1 Hz, 1H), 7.49 – 7.46 (m, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.07 

(dd, J = 8.5, 2.2 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 6.61 (d, J = 8.3 Hz, 

2H), 4.30 (t, J = 6.3 Hz, 2H), 4.22 (s, 4H), 3.82 (s, 2H), 2.85 (t, J = 6.3 Hz, 2H). 13C NMR (126 

MHz, cdcl3) δ 193.75, 170.01, 142.61, 142.09, 138.28, 135.12, 134.27, 133.33, 131.00, 128.51, 

128.50, 127.33, 124.83, 124.62, 121.71, 117.50, 117.28, 64.36, 64.28, 45.26, 40.36, 39.55. 

 

62-2 (R)-N-((R)-1-benzoyl-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1,2,3,4-

tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 62-2 was synthesized following 

General Procedure (G) from intermediate 62-1 (125 mg, 0.31 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (114 mg, 0.94 mmol, 3.0 eq), and Ti(OEt)4 (0.39 mL, 1.88 mmol, 6.0 eq), then 

NaBH4 (71 mg, 1.88 mmol, 6.0 eq). Yield: 130 mg, 82%. 1H NMR (500 MHz, Chloroform-d) δ 

7.39 (td, J = 5.4, 4.9, 2.6 Hz, 3H), 7.34 – 7.29 (m, 2H), 7.20 (s, 1H), 6.83 (s, 2H), 6.76 (d, J = 7.9 

Hz, 1H), 6.62 (d, J = 8.4 Hz, 2H), 4.62 (q, J = 3.9 Hz, 1H), 4.23 (s, 4H), 4.01 (dt, J = 12.8, 5.1 Hz, 

1H), 3.85 – 3.79 (m, 1H), 3.79 (s, 2H), 2.30 (dq, J = 13.9, 4.6 Hz, 1H), 2.09 (ddt, J = 14.5, 10.0, 

5.0 Hz, 1H), 1.21 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 170.40, 138.44, 136.89, 136.20, 133.99, 
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130.52, 130.07, 128.74, 128.54, 128.44, 125.54, 121.91, 117.68, 117.34, 77.16, 64.52, 64.45, 

55.91, 50.75, 41.56, 40.59, 30.29, 22.75. 

 

62 (S)-2-amino-N-((R)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-1-(methylsulfonyl)-

1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-dimethylphenyl)propenamide. 62 was 

synthesized following General Procedure (H) from intermediate 62-2. Step 1: Sulfinamide 

cleavage was carried out with 62-2 (130 mg, 0.26 mmol, 1.0 eq) and excess concentrated HCl, 

precipitating product as a white solid, which was used without further purification. Step 2: Amide 

coupling was performed with the aminium chloride salt of 62-2 (113 mg, 0.26 mmol, 1.0 eq), di-

Boc-Dmt (115 mg, 0.28 mmol, 1.1 eq), and PyBOP (146 mg, 0.28 mmol, 1.1 eq), followed by 

DIPEA (0.45 mL, 2.59 mmol, 10 eq). After purification by silica chromatography, which yielded 

99 mg (48% yield), uncharacterized product was carried forward to Step 3: TFA deprotection, 

followed by purification by reverse-phase semi-preparative HPLC, as described in General 

Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.44 (tt, J = 6.0, 

2.7 Hz, 1H), 7.36 (d, J = 6.0 Hz, 4H), 7.11 (d, J = 1.8 Hz, 1H), 6.78 (t, J = 11.4 Hz, 2H), 6.67 (d, 

J = 8.2 Hz, 1H), 6.59 – 6.51 (m, 2H), 6.49 (s, 2H), 5.04 (t, J = 6.2 Hz, 1H), 4.16 (s, 4H), 3.88 (dd, 

J = 11.5, 5.2 Hz, 1H), 3.84 (dd, J = 7.8, 4.8 Hz, 1H), 3.73 (s, 2H), 3.38 – 3.33 (m, 1H), 3.26 (dd, 

J = 13.7, 11.5 Hz, 1H), 3.05 (dd, J = 13.7, 5.1 Hz, 1H), 2.27 (s, 6H), 1.94 (dq, J = 13.8, 5.7 Hz, 

1H), 1.47 (dtd, J = 13.7, 7.2, 4.3 Hz, 1H). 13C NMR (126 MHz, cd3od) δ 157.49, 140.04, 135.41, 
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131.73, 129.51, 129.40, 128.93, 126.25, 123.17, 122.49, 118.27, 118.01, 116.46, 65.63, 65.53, 

53.55, 49.00, 46.87, 41.31, 31.99, 31.43, 20.45. Calculated [M+H]+: 592.3. QTOF high-resolution 

MS mass observed: 592.2795 (M+H). Analytical HPLC retention time: 38.0 min. 

Compound 63 

 

63-1 6-(benzofuran-2-ylmethyl)-1-benzoyl-2,3-dihydroquinolin-4(1H)-one. Intermediate 63-1 was 

synthesized following General Procedure (D) from intermediate 47-1 (87 mg, 0.31 mmol, 1.0 

eq), Et3N (0.09 mL, 0.63 mmol, 2.0 eq), and BzCl (0.07 mL, 0.63 mmol, 2.0 eq). After 12 hours, 

added additional equivalents of Et3N (0.15 mL, 1.08 mmol, 3.5 eq) and BzCl (0.10 mL, 0.86 mmol, 

2.8 eq). After another two hours, TLC indicated complete consumption of product. Yield: 117 mg, 

98%. 1H NMR (500 MHz, Chloroform-d) δ 7.96 (d, J = 2.2 Hz, 1H), 7.51 – 7.43 (m, 4H), 7.37 (dt, 

J = 8.6, 6.5 Hz, 3H), 7.21 (ddt, J = 8.0, 3.6, 2.2 Hz, 2H), 7.17 (td, J = 7.4, 1.2 Hz, 1H), 6.92 (d, J 

= 8.5 Hz, 1H), 6.39 (d, J = 1.0 Hz, 1H), 4.31 (t, J = 6.3 Hz, 2H), 4.07 (s, 2H), 2.86 (t, J = 6.3 Hz, 

2H). 13C NMR (126 MHz, cdcl3) δ 193.69, 170.24, 156.60, 155.13, 143.36, 135.19, 134.37, 134.30, 

131.26, 128.74, 128.72, 128.68, 127.77, 125.08, 124.93, 123.81, 122.80, 120.67, 111.07, 103.84, 

77.16, 45.48, 39.67, 34.35. 
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63-2 (R)-N-((R)-6-(benzofuran-2-ylmethyl)-1-benzoyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide. Intermediate 63-2 was synthesized following General Procedure 

(G) from 63-1 (115 mg, 0.30 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (110 mg, 0.90 

mmol, 3.0 eq), and Ti(OEt)4 (0.38 mL, 1.80 mmol, 6.0 eq), then NaBH4 (68 mg, 1.80 mmol, 6.0 

eq). Yield: 89 mg, 60%. 1H NMR (500 MHz, Chloroform-d) δ 7.50 – 7.45 (m, 1H), 7.42 – 7.39 

(m, 3H), 7.37 (dd, J = 8.6, 1.9 Hz, 2H), 7.32 (dd, J = 8.4, 6.7 Hz, 2H), 7.19 (dtd, J = 18.0, 7.3, 1.3 

Hz, 2H), 6.97 (dd, J = 8.5, 2.0 Hz, 1H), 6.40 (d, J = 1.1 Hz, 1H), 4.65 (q, J = 3.8 Hz, 1H), 4.07 – 

3.99 (m, 4H), 3.81 (ddd, J = 13.1, 10.0, 4.9 Hz, 1H), 2.29 (dq, J = 14.1, 4.8 Hz, 1H), 2.11 (ddt, J 

= 14.6, 10.1, 5.1 Hz, 1H), 1.20 (s, 10H). 13C NMR (126 MHz, cdcl3) δ 137.54, 136.09, 134.30, 

130.63, 128.95, 128.56, 128.50, 125.67, 123.67, 122.72, 120.62, 111.05, 103.64, 77.16, 64.12, 

60.54, 55.95, 50.86, 41.65, 34.43, 30.46, 22.74. 

 

63 (S)-2-amino-N-((R)-6-(benzofuran-2-ylmethyl)-1-benzoyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-

(4-hydroxy-2,6-dimethylphenyl)propenamide. 63 was synthesized following General Procedure 
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(H) from intermediate 63-2. Step 1: Sulfinamide cleavage was carried out with 63-2 (89 mg, 0.18 

mmol, 1.0 eq) and excess concentrated HCl, precipitating product as a white solid, which was used 

without further purification. Step 2: Amide coupling was performed with the aminium chloride 

salt of 63-2 (77 mg, 0.18 mmol, 1.0 eq), di-Boc-Dmt (82 mg, 0.20 mmol, 1.1 eq), and PyBOP (104 

mg, 0.20 mmol, 1.1 eq), followed by DIPEA (0.32 mL, 1.84 mmol, 10 eq). After purification by 

silica chromatography, which yielded 76 mg (54% yield), uncharacterized product was carried 

forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-preparative 

HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR (500 MHz, 

Methanol-d4) δ 7.46 – 7.43 (m, 2H), 7.42 – 7.33 (m, 4H), 7.34 – 7.28 (m, 1H), 7.24 (d, J = 1.9 Hz, 

1H), 7.18 (td, J = 7.7, 1.6 Hz, 1H), 7.14 (td, J = 7.4, 1.2 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.90 (s, 

1H), 6.49 (s, 2H), 6.37 (d, J = 1.0 Hz, 1H), 5.07 (t, J = 6.3 Hz, 1H), 4.01 (d, J = 4.2 Hz, 2H), 3.88 

(d, J = 5.0 Hz, 1H), 3.86 (d, J = 5.3 Hz, 1H), 3.34 (h, J = 1.7 Hz, 1H), 3.26 (dd, J = 13.7, 11.5 Hz, 

1H), 3.04 (dd, J = 13.7, 5.2 Hz, 1H), 2.27 (s, 6H), 1.98 – 1.91 (m, 1H), 1.53 – 1.45 (m, 1H). 

Calculated [M+H]+: 574.3. QTOF high-resolution MS mass observed: 574.2692 (M+H).  

Analytical HPLC retention time: 42.1 min. 

 

Compound 65 

 

65-1 6-(naphthalen-2-ylmethyl)thiochroman-4-one. Intermediate 65-1 was synthesized following 

General Procedure (F) from 6-MeBr Thiochromane (103 mg, 0.40 mmol, 1.0 eq), 2-
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naphthylboronic acid (138 mg, 0.80 mmol, 2.0 eq), K2CO3 (166 mg, 1.20 mmol, 3.0 eq) and 

Pd(dppf)Cl2 (30 mg, 0.04 mmol, 0.1 eq). Yield: 54 mg, 44%. 1H NMR (500 MHz, Chloroform-d) 

δ 8.04 (d, J = 1.8 Hz, 1H), 7.80 – 7.73 (m, 4H), 7.61 (d, J = 1.8 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.27 

(dd, J = 8.5, 1.8 Hz, 1H), 7.22 (dd, J = 8.2, 2.1 Hz, 1H), 7.18 (d, J = 8.1 Hz, 1H), 4.09 (s, 2H), 3.20 

(t, J = 6.6 Hz, 2H), 2.95 (t, J = 6.7, 6.1 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.31, 140.01, 

138.28, 137.96, 134.31, 133.69, 132.26, 131.01, 129.47, 128.41, 128.04, 127.74, 127.67, 127.42, 

127.20, 126.21, 125.62, 77.16, 41.60, 39.78, 26.76. 

 

65-2 (R)-2-methyl-N-((R)-6-(naphthalen-2-ylmethyl)thiochroman-4-yl)propane-2-sulfinamide. 

65-2 was synthesized following General Procedure (G) from intermediate 65-1 (54 mg, 0.18 

mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (65 mg, 0.53 mmol, 3.0 eq), and Ti(OEt)4 (0.22 

mL, 1.06 mmol, 6.0 eq), then NaBH4 (40 mg, 1.06 mmol, 6.0 eq). Yield: 56 mg, 78%. 1H NMR 

(500 MHz, Chloroform-d) δ 7.78 (d, J = 9.1 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.62 (s, 1H), 7.46 

– 7.40 (m, 2H), 7.29 (dd, J = 8.4, 1.8 Hz, 1H), 7.26 (d, J = 1.7 Hz, 1H), 7.26 (s, 1H), 7.04 (d, J = 

8.1 Hz, 1H), 7.00 (dd, J = 8.2, 1.9 Hz, 1H), 4.61 (q, J = 3.2 Hz, 1H), 4.05 (s, 2H), 3.28 (td, J = 

12.6, 2.8 Hz, 1H), 3.18 (s, 1H), 2.79 (dt, J = 12.5, 4.0 Hz, 1H), 2.45 (dtd, J = 14.2, 4.5, 3.0 Hz, 

1H), 2.06 – 1.95 (m, 1H), 1.21 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 138.49, 137.83, 133.73, 

132.75, 132.23, 131.90, 131.31, 129.38, 128.29, 127.73, 127.69, 127.57, 127.12, 127.10, 126.13, 

125.51, 77.16, 55.76, 50.98, 41.59, 28.22, 22.76, 21.19. 
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65 (S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)-N-((R)-6-(naphthalen-2-

ylmethyl)thiochroman-4-yl)propanamide. 65 was synthesized following General Procedure (H) 

from intermediate 65-2. Step 1: Sulfinamide cleavage was carried out with 65-2 (56 mg, 0.14 

mmol, 1.0 eq) and excess concentrated HCl, precipitating product as a white solid, which was used 

without further purification. Step 2: Amide coupling was performed with the aminium chloride 

salt of 65-2 (40 mg, 0.12 mmol, 1.0 eq), di-Boc-Dmt (53 mg, 0.13 mmol, 1.1 eq), and PyBOP (67 

mg, 0.13 mmol, 1.1 eq), followed by DIPEA (0.21 mL, 1.20 mmol, 10 eq). Crude product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 7.77 (dd, J = 7.9, 1.6 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.57 (s, 1H), 7.45 

– 7.37 (m, 2H), 7.25 (dd, J = 8.4, 1.7 Hz, 1H), 7.08 (d, J = 1.8 Hz, 1H), 6.99 (dd, J = 8.2, 1.8 Hz, 

1H), 6.94 (d, J = 8.1 Hz, 1H), 6.49 (s, 2H), 5.04 (q, J = 4.3 Hz, 1H), 4.00 (s, 2H), 3.85 (dd, J = 

11.6, 5.1 Hz, 1H), 3.24 (dd, J = 13.6, 11.6 Hz, 1H), 3.00 (dd, J = 13.7, 5.1 Hz, 1H), 2.52 (dt, J = 

13.3, 4.3 Hz, 1H), 2.27 (s, 6H), 2.22 (td, J = 12.7, 2.9 Hz, 1H), 1.86 (dq, J = 13.0, 4.4 Hz, 1H), 

1.81 – 1.73 (m, 1H). Calculated [M+H]+: 497.2. ESI-MS mass observed: 497.2 (M+H) and 519.2 

(M+Na). Analytical HPLC retention time: 45.0 min. 
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Compound 66 

 

66-1 6-(quinolin-3-ylmethyl)thiochroman-4-one. Intermediate 66-1 was synthesized following 

General Procedure (F) from 6-MeBr Thiochromane (80 mg, 0.31 mmol, 1.0 eq), 3-quinoline 

boronic acid (107 mg, 0.62 mmol, 2.0 eq), K2CO3 (128 mg, 0.93 mmol, 3.0 eq) and Pd(dppf)Cl2 

(23 mg, 0.03 mmol, 0.1 eq). Yield: 66 mg, 70%. 1H NMR (500 MHz, Chloroform-d) δ 8.78 (d, J 

= 2.2 Hz, 1H), 8.07 (d, J = 8.6 Hz, 1H), 8.04 (d, J = 1.7 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.74 (dd, J 

= 8.1, 1.4 Hz, 1H), 7.67 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.52 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.24 

(d, J = 1.2 Hz, 2H), 4.14 (s, 2H), 3.26 – 3.20 (m, 2H), 3.01 – 2.95 (m, 2H). 13C NMR (126 MHz, 

cdcl3) δ 151.92, 135.05, 134.13, 129.52, 129.32, 129.19, 128.34, 127.61, 126.97, 77.16, 39.73, 

38.79, 26.77. 

 

66-2 (R)-2-methyl-N-((R)-6-(quinolin-3-ylmethyl)thiochroman-4-yl)propane-2-sulfinamide. 66-2 

was synthesized following General Procedure (G) from intermediate 66-1 (66 mg, 0.22 mmol, 

1.0 eq), (R)-2-methyl-2-propanesulfinamide (79 mg, 0.65 mmol, 3.0 eq), and Ti(OEt)4 (0.27 mL, 

1.30 mmol, 6.0 eq), then NaBH4 (49 mg, 1.30 mmol, 6.0 eq). Yield: 71 mg, 80%. 1H NMR (500 
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MHz, Chloroform-d) δ 8.77 (d, J = 2.2 Hz, 1H), 8.06 (d, J = 8.5, 0.9 Hz, 1H), 7.90 (s, 1H), 7.75 

(d, J = 8.1 Hz, 1H), 7.65 (td, J = 8.2, 1.5 Hz, 1H), 7.51 (td, J = 8.1, 1.0 Hz, 1H), 7.28 (d, J = 2.0 

Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 6.99 (dd, J = 8.2, 2.0 Hz, 1H), 4.60 (q, J = 3.3 Hz, 1H), 4.08 (s, 

2H), 3.27 (td, J = 12.6, 2.8 Hz, 1H), 3.21 – 3.14 (m, 1H), 2.81 (dt, J = 12.7, 4.0 Hz, 1H), 2.44 (dtd, 

J = 14.2, 4.6, 3.0 Hz, 1H), 2.05 – 1.97 (m, 1H), 1.21 (s, 9H). 

 

66 (S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)-N-((R)-6-(quinolin-3-ylmethyl)thiochroman-4-

yl)propanamide. 66 was synthesized following General Procedure (H) from intermediate 66-2. 

Step 1: Sulfinamide cleavage was carried out with 66-2 (71 mg, 0.17 mmol, 1.0 eq) and excess 

concentrated HCl, precipitating product as a white solid, which was used without further 

purification. Step 2: Amide coupling was performed with the aminium chloride salt of 66-2 (21 

mg, 0.07 mmol, 1.0 eq), di-Boc-Dmt (31 mg, 0.08 mmol, 1.1 eq), and PyBOP (39 mg, 0.08 mmol, 

1.1 eq), followed by DIPEA (0.12 mL, 0.69 mmol, 10 eq). Crude product was carried forward to 

Step 3: TFA deprotection, followed by purification by reverse-phase semi-preparative HPLC, as 

described in General Procedure (H). Final yield not calculated. 1H NMR (500 MHz, Methanol-

d4) δ 8.88 (d, J = 2.2 Hz, 1H), 8.54 (s, 1H), 8.29 (d, J = 8.2 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 8.07 

(d, J = 8.3 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 2.0 Hz, 1H), 7.05 

(dd, J = 8.2, 1.9 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.50 (s, 2H), 5.06 (s, 1H), 4.18 (s, 2H), 3.86 

(dd, J = 11.6, 5.0 Hz, 1H), 3.26 (dd, J = 13.6, 11.7 Hz, 1H), 3.02 (dd, J = 13.6, 5.0 Hz, 1H), 2.55 

(dt, J = 13.3, 4.3 Hz, 1H), 2.28 (s, 6H), 2.25 (d, J = 12.9 Hz, 1H), 1.86 (d, J = 14.3 Hz, 1H), 1.78 
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(t, J = 12.9 Hz, 1H). Calculated [M+H]+: 498.2. ESI-MS mass observed: 498.2 (M+H) and 520.2 

(M+Na). Analytical HPLC retention time: 26.2 min. 

 

Compound 67 

 

67-1 6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)thiochroman-4-one Intermediate 67-1 was 

synthesized following General Procedure (F) from 6-MeBr Thiochromane (88 mg, 0.34 mmol, 

1.0 eq), THIQ (55 mg, 0.41 mmol, 1.2 eq), and K2CO3 (57 mg, 0.41 mmol, 3.0 eq). Yield: 63 mg, 

60%. 1H NMR (500 MHz, Chloroform-d) δ 8.07 (d, J = 2.0 Hz, 1H), 7.49 (dd, J = 8.2, 2.0 Hz, 

1H), 7.27 – 7.24 (m, 1H), 7.12 – 7.07 (m, 3H), 6.97 (dd, J = 7.7, 1.8 Hz, 1H), 3.65 (s, 2H), 3.61 

(s, 2H), 3.24 (t, J = 6.5 Hz, 2H), 2.98 (t, J = 6.5 Hz, 2H), 2.89 (t, J = 5.9 Hz, 2H), 2.73 (t, J = 5.9 

Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 194.27, 141.00, 135.83, 134.80, 134.39, 134.34, 130.76, 

129.64, 128.80, 127.92, 126.67, 126.25, 125.71, 77.16, 62.07, 56.10, 50.72, 39.77, 29.26, 26.78. 

 

67-2 (R)-N-((R)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)thiochroman-4-yl)-2-

methylpropane-2-sulfinamide. 67-2 was synthesized following General Procedure (G) from 
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intermediate 67-1 (63 mg, 0.20 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (74 mg, 0.61 

mmol, 3.0 eq), and Ti(OEt)4 (0.26 mL, 1.22 mmol, 6.0 eq), then NaBH4 (46 mg, 1.22 mmol, 6.0 

eq). Yield: 27 mg, 32%. NMR was taken, but indicated presence of impurity. Carried forward as 

crude mixture. 

 

67 (S)-2-amino-N-((R)-6-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)thiochroman-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 67 was synthesized following General Procedure (H) 

from intermediate 67-2. Step 1: Sulfinamide cleavage was carried out with 67-2 (27 mg, 0.07 

mmol, 1.0 eq) and excess concentrated HCl, precipitating product as a white solid, which was used 

without further purification. Step 2: Amide coupling was performed with the aminium chloride 

salt of 67-2 (23 mg, 0.07 mmol, 1.0 eq), di-Boc-Dmt (33 mg, 0.08 mmol, 1.1 eq), and PyBOP (42 

mg, 0.08 mmol, 1.1 eq), followed by DIPEA (0.13 mL, 0.74 mmol, 10 eq). Crude product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 7.32 (d, J = 5.3 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.29 – 7.22 (m, 3H), 7.17 

(d, J = 8.2 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 6.51 (s, 2H), 5.10 (d, J = 4.4 Hz, 1H), 4.36 (q, J = 

16.6, 14.8 Hz, 4H), 3.86 (dd, J = 11.7, 4.9 Hz, 1H), 3.74 (s, 2H), 3.29 – 3.23 (m, 1H), 3.23 – 3.09 

(m, 2H), 3.04 (dd, J = 13.6, 4.9 Hz, 1H), 2.69 – 2.60 (m, 1H), 2.37 – 2.31 (m, 1H), 1.91 – 1.75 (m, 

2H). Calculated [M+H]+: 502.3. ESI-MS mass observed: 502.3 (M+H) and 524.3 (M+Na). 

Analytical HPLC retention time: 26.0 min. 

S

N

HN

O

NH2 OH
S

N

HN

67-2

S
O

H

67



 226 

 

Compound 68 

 

68-1 6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)thiochroman-4-one. Intermediate 68-1 was 

synthesized following General Procedure (F) from 6-MeBr Thiochromane (105 mg, 0.41 

mmol, 1.0 eq), 1,4-benzodioxan-6-boronic acid (180 mg, 0.61 mmol, 1.5 eq), K2CO3 (168 mg, 

1.22 mmol, 3.0 eq) and Pd(dppf)Cl2 (30 mg, 0.04 mmol, 0.1 eq). Yield: 83 mg, 65%. 1H NMR 

(500 MHz, Chloroform-d) δ 7.96 (dt, J = 1.5, 0.8 Hz, 1H), 7.20 – 7.18 (m, 2H), 6.79 – 6.75 (m, 

1H), 6.63 (dd, J = 8.9, 1.4 Hz, 2H), 4.22 (s, 4H), 3.83 (s, 2H), 3.24 – 3.18 (m, 2H), 2.99 – 2.93 (m, 

2H). 13C NMR (126 MHz, cdcl3) δ 194.35, 143.58, 142.18, 139.85, 138.63, 134.22, 133.87, 130.99, 

129.33, 128.00, 121.83, 117.60, 117.42, 77.16, 64.52, 64.44, 40.69, 39.84, 26.80. 

 

68-2 (R)-N-((R)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)thiochroman-4-yl)-2-

methylpropane-2-sulfinamide. 68-2 was synthesized following General Procedure (G) from 

intermediate 68-1 (82 mg, 0.26 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (96 mg, 0.79 

mmol, 3.0 eq), and Ti(OEt)4 (0.33 mL, 1.57 mmol, 6.0 eq), then NaBH4 (59 mg, 1.57 mmol, 6.0 
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eq). Yield: 42 mg, 39%. 1H NMR (500 MHz, Chloroform-d) δ 7.16 (d, J = 1.9 Hz, 1H), 7.03 (d, J 

= 8.1 Hz, 1H), 6.96 (dd, J = 8.1, 1.9 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 8.5 Hz, 2H), 

4.60 (q, J = 3.0 Hz, 1H), 4.22 (s, 4H), 3.78 (s, 2H), 3.28 (td, J = 12.6, 2.8 Hz, 1H), 3.16 (s, 1H), 

2.78 (dt, J = 12.5, 4.0 Hz, 1H), 2.48 – 2.42 (m, 1H), 2.05 – 1.96 (m, 1H), 1.22 (s, 9H). 13C NMR 

(126 MHz, cdcl3) δ 143.50, 142.04, 138.10, 134.36, 132.61, 131.70, 131.14, 129.26, 127.04, 

121.81, 117.57, 117.31, 77.16, 64.50, 64.43, 55.74, 50.85, 40.61, 28.09, 22.78, 21.12. 

 

68 (S)-2-amino-N-((R)-6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)thiochroman-4-yl)-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 68 was synthesized following General Procedure (H) 

from intermediate 68-2. Step 1: Sulfinamide cleavage was carried out with 68-2 (42 mg, 0.10 

mmol, 1.0 eq) and excess concentrated HCl, precipitating product as a white solid, which was used 

without further purification. Step 2: Amide coupling was performed with the aminium chloride 

salt of 68-2 (36 mg, 0.10 mmol, 1.0 eq), di-Boc-Dmt (45 mg, 0.11 mmol, 1.1 eq), and PyBOP (57 

mg, 0.11 mmol, 1.1 eq), followed by DIPEA (0.18 mL, 1.03 mmol, 10 eq). Crude product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (H). Final yield not calculated. 1H NMR 

(500 MHz, Methanol-d4) δ 6.99 (d, J = 1.6 Hz, 1H), 6.92 – 6.90 (m, 2H), 6.70 – 6.66 (m, 1H), 6.56 

(d, J = 8.1 Hz, 2H), 6.49 (s, 2H), 5.02 (s, 1H), 4.17 (s, 4H), 3.85 (dd, J = 11.6, 5.1 Hz, 1H), 3.70 

(s, 2H), 3.25 (dd, J = 13.6, 11.7 Hz, 1H), 3.01 (dd, J = 13.6, 5.0 Hz, 1H), 2.51 (dt, J = 13.3, 4.4 
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Hz, 1H), 2.27 (s, 6H), 2.21 (td, J = 12.7, 2.8 Hz, 1H), 1.85 (dd, J = 10.4, 5.9 Hz, 1H), 1.81 – 1.73 

(m, 1H). Calculated [M+H]+: 505.2. ESI-MS mass observed: 505.2 (M+H) and 527.2 (M+Na). 

Analytical HPLC retention time: 38.5 min. 

 

Compound 69 

 

69-2 4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one (2). Intermediate 69-2 was synthesized by 

implementation of the following procedure: to a flame-dried reaction vessel was added 

commercially available lactone 69-1 (500 mg, 4.38 mmol, 1 eq) in anhydrous benzene solvent 

under inert atmosphere. AlCl3 (2.04 g, 15.3 mmol, 3.0 eq) was then added to a separate flame-

dried reaction vessel containing anhydrous benzene under inert atmosphere and was cooled to 0oC. 

The solution of lactone was transferred via cannula to the flask containing AlCl3 and heated at 

reflux (95oC) for 2.5 h. Reaction was quenched by pouring over HCl/ice slurry. Reaction mixture 

was separated with DCM/H2O. Product was dried over magnesium sulfate and filtered. Organic 

solvent was removed under reduced pressure. Purified by silica column in 1:4 ethyl 

acetate/hexanes. Title compound 69-2 was recovered in 73% yield. 1H NMR (500 MHz, 

Chloroform-d) δ 8.01 (td, J = 7.8, 1.7 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.41 (td, J = 8.0, 1.3 Hz, 1H), 

7.30 – 7.23 (m, 1H), 2.76 – 2.67 (m, 2H), 2.05 – 1.96 (m, 2H), 1.47 – 1.28 (m, 6H). 13C NMR (126 

O

O O

69-1 69-2
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MHz, cdcl3) δ 198.17, 198.14, 152.12, 133.71, 133.68, 131.04, 127.16, 126.13, 125.70, 77.25, 

77.00, 76.98, 76.75, 36.96, 35.00, 33.78, 29.74, 29.62. 

 

69-3 7-bromo-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one. Intermediate 69-3 was synthesized 

by implementation of the following procedure: Intermediate 69-2 (552 mg, 3.17 mmol, 1 eq) was 

dissolved in concentrated sulfuric acid, then added NBS (662 mg, 3.80 mmol, 1.2 eq) 

incrementally. Solution was heated at 60oC until side-product was observed by TLC (30 min). 

Reaction was quenched reaction with addition of H2O on ice bath to minimize generation of excess 

heat. Reaction was extracted with DCM/H2O, rinsed with brine, and dried over magnesium sulfate. 

Filtrate was concentrated under reduced pressure and purified by silica column in 1:9 ethyl 

acetate/hexanes. Title compound 69-3 was recovered in 53% yield. 1H NMR (500 MHz, 

Chloroform-d) δ 8.13 (d, J = 2.2 Hz, 1H), 7.62 (ddd, J = 8.5, 2.3, 1.1 Hz, 1H), 7.33 – 7.28 (m, 1H), 

2.76 – 2.69 (m, 2H), 2.02 (q, J = 6.9 Hz, 2H), 1.39 (d, J = 9.3 Hz, 6H). 13C NMR (126 MHz, cdcl3) 

δ 196.93, 150.97, 136.52, 133.80, 132.68, 130.08, 127.90, 127.27, 126.23, 125.78, 120.48, 77.25, 

77.00, 76.75, 37.05, 36.76, 35.09, 34.93, 33.89, 33.79, 29.71, 29.55. 
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69-2 69-3
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69-4 7-benzyl-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one. Intermediate 69-4 was synthesized 

following a modified form* of General Procedure (D) from intermediate 69-3 (100 mg, 0.40 

mmol, 1 eq) benzylboronic acid pinacol ester (172 mg, 0.79 mmol, 2.0 eq), K2CO3 (164 mg, 1.18 

mmol, 3.0 eq) and Pd(dppf)Cl2 (30 mg, 0.04 mmol, 0.1 eq). Yield: 82 mg, 75%. *Modification: 

reaction was done in microwave reactor at 110oC for 30 minutes. 1H NMR (500 MHz, Chloroform-

d) δ 7.33 (t, J = 1.2 Hz, 2H), 7.30 – 7.25 (m, 4H), 7.23 – 7.17 (m, 3H), 3.98 (s, 2H), 2.74 – 2.69 

(m, 3H), 2.00 (td, J = 6.9, 1.2 Hz, 2H), 1.38 (dd, J = 16.6, 1.0 Hz, 8H). 13C NMR (126 MHz, cdcl3) 

δ 198.50, 150.15, 140.57, 139.26, 134.42, 131.13, 128.86, 128.53, 127.31, 127.30, 126.25, 126.21, 

126.11, 77.25, 77.00, 76.75, 41.42, 37.10, 37.07, 35.18, 35.11, 33.67, 29.73, 29.72, 24.70. 

 

69-5 (R)-N-((R)-7-benzyl-4,4-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)-2-methylpropane-2-

sulfinamide. 69-5 was synthesized following General Procedure (G) from 69-4 (163 mg, 0.617 

mmol, 1 eq), (R)-2-methyl-2-propanesulfinamide (224 mg, 1.85 mmol, 3.0 eq), and Ti(OEt)4 (0.77 

mL, 3.70 mmol, 6.0 eq), then NaBH4 (140 mg, 3.70 mmol, 6.0 eq). Yield: 153 mg, 65%. 

Characterized by NMR after sulfinamide cleavage in next step (see Final Compound 69 Step 1). 

69-3 69-4
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69 (S)-2-amino-N-((R)-7-benzyl-4,4-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)-3-(4-hydroxy-

2,6-dimethylphenyl)propanamide. Final compound 69 was synthesized following General 

Procedure (H) from intermediate 69-4. Step 1: Sulfinamide cleavage was carried out with 69-4 

(153 mg, 0.56 mmol, 1 eq) and excess concentrated HCl, precipitating product as a white solid, 

which was used without further purification. 1H NMR (500 MHz, Chloroform-d) δ 8.76 (s, 4H), 

7.48 (d, J = 2.1 Hz, 1H), 7.20 (d, J = 4.4 Hz, 4H), 7.11 (p, J = 4.3 Hz, 1H), 7.09 – 7.04 (m, 1H), 

4.33 (d, J = 6.2 Hz, 1H), 3.83 (d, J = 2.7 Hz, 2H), 2.20 – 2.04 (m, 3H), 1.94 (t, J = 12.5 Hz, 1H), 

1.54 – 1.46 (m, 1H), 1.32 (s, 3H), 1.18 (s, 3H). Step 2: Amide coupling was performed with the 

aminium chloride salt of 69-4 (46 mg, 0.15 mmol, 1.0 eq), di-Boc-Dmt (69 mg, 0.17 mmol, 1.1 

eq), PyBOP (86 mg, 0.15 mmol, 1.0 eq), and 6-Cl HOBt (51 mg, 0.15 mmol, 1.0 eq), followed by 

DIPEA (0.21 mL, 1.52 mmol, 10 eq). Yield not calculated. After purification by silica 

chromatography, product was carried forward to Step 3: TFA deprotection, followed by 

purification by reverse-phase semi-preparative HPLC, as described in General Procedure (H). 

Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.94 (d, J = 8.0 Hz, 1H), 7.25 – 

7.10 (m, 5H), 7.03 – 6.98 (m, 2H), 6.49 (s, 2H), 3.87 (d, J = 14.7 Hz, 3H), 3.26 (dd, J = 13.6, 11.5 

Hz, 1H), 3.01 (dd, J = 13.7, 5.0 Hz, 1H), 2.27 (s, 6H), 1.72 (dddd, J = 13.5, 11.0, 4.9, 2.7 Hz, 1H), 

1.44 (dddd, J = 13.3, 7.8, 5.3, 2.7 Hz, 1H), 1.37 (ddd, J = 13.9, 7.4, 2.6 Hz, 1H), 1.24 – 1.18 (m, 

1H), 1.17 (d, J = 7.2 Hz, 6H). 13C NMR (126 MHz, cd3od) δ 171.84, 168.82, 165.07, 157.40, 

145.26, 142.67, 140.04, 139.89, 135.46, 130.38, 129.75, 129.70, 129.38, 128.05, 127.01, 123.16, 

HN
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116.51, 53.52, 49.83, 49.00, 42.24, 35.88, 34.28, 32.00, 31.71, 31.64, 26.76, 20.49. Calculated 

[M+H]+: 457.3. ESI-MS mass observed: 457.3 (M+H) and 480.3 (M+Na). Analytical HPLC 

retention time: 45.6 min. 
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Chapter 4: Additional Projects 

 The previous chapters have discussed the novel exploration of substitutions at C-8 (Chapter 

2) and the effects of combined substitutions at C-6 and N-1 (Chapter 3). In the first two sections 

of Chapter 4, we will investigate cross-over projects, combining C-8 substitutions with each of the 

Chapter 3 pharmacophores previously explored. In the third section, efforts toward the further 

development of in vivo candidates—including both increasing the scale of synthesis and 

radiolabeling of analogue 43—will be discussed. These additional projects involved only a small 

number of compounds. When relevant, related analogues synthesized by other chemists will be 

included to provide greater context for these works. The projects discussed in Chapter 4 are in 

various stages of completion, and as such, have not been published.  

4.1  Bicyclic/C-8 Hybrid Peptidomimetics 

 As described in greater detail in Chapter 3, it was discovered that bicyclic pendants at the 

C-6 position of the THQ scaffold proved beneficial toward reducing DOR efficacy. On the other 

hand, the N-acyl and C-8 series—when combined with a monocyclic C-6 THQ core—typically 

displayed partial DOR agonism. However, when a bicyclic C-6 pendant was combined with an N-

acyl or N-sulfonyl motif, these analogues often maintained the DOR antagonist profile and 

increased MOR potency to subnanomolar levels. As described previously, some N-acyl motifs 

(namely the acetyl and cyclopropyl) did generate DOR efficacy with single-digit to sub-nanomolar 

potency. As such, it was inferred that both the C-6 and N-1 substitutions could impart effects on 
In vitro pharmacology data obtained by Nicholas Griggs, Thomas Fernandez, Tyler Trask, Jessica Anand, and others 
in the lab of John Traynor. In vivo data were obtained by Jessica Anand and others in the lab of Emily Jutkiewicz. 
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DOR efficacy. Early on in the C-8 campaign, the idea of combining an advantageous C-8 

substitution with a bicyclic C-6 pendant was explored. However, the most advantageous C-8 

pendants were also the most bulky and lipophilic. Incorporating two bulky, aryl substitutions at C-

6 and C-8 would result in undesirably lipophilic, amphipathic chemical matter. Indeed, compound 

8, which featured benzyl pendants at C-6 and C-8, displayed very poor aqueous solubility. 

Considering that the benzyl and ethylphenyl were initially our most advantageous substitutions, 

combining these with a bicyclic C-6 would yield an undesirably lipophilic core. Thus, this idea 

was shelved at an early stage.  

 Further synthetic and SAR development at the C-8 position provided renewed interest in 

combining advantageous C-8 and C-6 substitutions. It was discovered that a small, polar carbonyl-

containing motif such as the dimethyl amide moiety found in analogue 20 could not only elicit 

DOR antagonism, but also reduced ClogP from 3.1 (no C-8 substitution) to 2.2. Furthermore, it 

had been shown that this low-ClogP analogue (20) maintained antinociceptive activity in vivo, 

whereas all other bioactive analogues in the C-8 series increased lipophilicity. Lastly, the carbonyl 

motif could be incorporated after installation of the C-6 pendant, simplifying the synthesis of this 

analogue. The first proof-of-concept bicyclic/C-8 hybrid peptidomimetic featured a 2-naphthyl 

pendant at C-6. The synthesis of this 2-naphthyl/C-8 dimethyl amide analogue 70 can be found in 

Scheme 9. Starting with the commercially available p-toluidine, this synthesis involves 15 steps, 

described in further detail below. 
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Scheme 9. De Novo Synthesis of Analogue 70 

 

 

 The synthesis of analogue 70 utilized methodologies previously developed and described 

in Chapters 2 and 3. Acylation, cyclization, and Fries Rearrangement proceed in fairly high yields 

to give the THQ core, which can be N-Boc protected prior to benzylic bromination of the C-6 

methyl position. Suzuki coupling and Boc removal give the C-6 naphthyl THQ scaffold, which 

undergoes facile, selective aryl bromination at the C-8 position with exceptional yields. Palladium-

catalyzed carbonylation with carbon monoxide (generated in situ) in DMF/H2O produces the 

carboxylic acid at C-8. Amide coupling installs the C-8 dimethyl amide prior to reductive 
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amination. Upon cleaving the sulfinamide, the Dmt moiety is installed through another amide 

coupling. Final Boc deprotection and HPLC purification yields final compound 70. While 

incorporation of the dimethyl amide prior to C-6 substitution would facilitate further 

diversification, the branched C-8 moiety sterically hinders Boc protection which is necessary for 

benzylic bromination of the C-6 position. As such, no other analogues have yet been synthesized 

of this type. However, as Table 16 indicates, the in vitro profile is highly favorable (discussed 

below) and could merit further research around this chemotype. Further C-6 bicyclic pendants 

would need to be tolerant of bromination and carbonylation conditions if further analogues are 

synthesized following Scheme 9. 

 

Table 16. Bicyclic/C-8 Hybrid Peptidomimetic 70 Compared to Parent Analogues 20 & 43a 

 
a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR). Values are expressed as the mean of three separate assays performed in duplicate 
with standard error of the mean in parentheses. dns = does not stimulate. b Synthesized by A.A.H., see reference 94. 

Ki (nM) EC50 (nM) % stim

# MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR ClogP

20 0.23
(0.08)

1.3
(0.2)

80
(50) 6 9

(3) dns >500 58
(1) dns 25

(4) 2.2

70 0.15
(0.01)

0.73
(0.03)

28
(3)

5 1.8
(0.7) dns dns 92

(8) dns dns 3.7

43b 0.04
(0.01)

0.23
(0.02)

48
(20)

6 0.9
(0.2)

dns dns 87
(3)

dns dns 4.5
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By translocating and inverting the tertiary amide moiety of analogue 43 from the N-1 to 

the C-8 position, analogue 70 maintains high MOR and DOR affinity but decreases ClogP from 

4.5 to 3.7. Additionally, the preferred MOR agonist/DOR antagonist profile is maintained, with 

only a 2-fold reduction in MOR potency (though the high error associated with this value could 

negate or amplify this change in potency). Analogue 70 shows subnanomolar affinity for MOR 

and DOR with 5-fold MOR selectivity, consistent with the parent analogues 20 and 43. This hybrid 

shows higher affinity for KOR, though selectivity for MOR over KOR is still approximately 200:1. 

A profile summary of analogue 70 is provided below in Fig. 20.  

 

Figure 20. Profile Summary of Bicyclic/C-8 Hybrid Peptidomimetic 70 

 

Moving forward, analogue 70 is a prime candidate for further in vivo studies, as the in vitro 

profile meets our desired characteristics. However, due to recency of this ligand’s synthesis, it still 

awits in vivo testing.  

While analogue 70 is the only analogue to date utilizing a bicyclic C-6/carbonyl C-8 

substitution pattern, it represents a promising means toward further diversifying the chemical 

motifs that maintain (or improve) our desired MOR agonist/DOR antagonist profile. Translocating 

the carbonyl moiety to C-8 and removing the H-bond donating capacity of the amide decreases the 

70

MOR agonist (92% stim, EC50 = 1.8 nM)
DOR antagonist (<10% stim), Ke not yet tested
MOR/DOR selectivity: 5:1
MOR/KOR selectivity: 200:1
Antinociceptive activity not yet tested
Duration of action = N/A; ClogP = 3.7
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ClogP of 70 relative to 43 while retaining most of the favorable in vitro properties. Additional 

analogues of this type should be further investigated, exploring different modifications to both the 

bicyclic C-6 and carbonyl C-8 substitutions. Based on the currently available data, analogue 70 

represents a novel, if incremental diversification of the THQ-based peptidomimetic series that 

opens up new opportunities for drug development in the field of bifunctional MOR-/DOR-

selective ligands. 

4.2  N-Acetyl/C-8 Hybrid Peptidomimetics  

Prior to the expanded investigation into combined bicyclic C-6/N-1 substitutions detailed 

in Chapter 3, N-acetylation of analogues was still a newly identified strategy for increasing DOR 

affinity and potentially improving bioavailability. This modification could typically be 

incorporated at a late stage in the synthesis, making these analogues easily accessible synthetically. 

Following this practice, several C-8 substituted analogues were N-acetylated in order to boost 

DOR affinity and bioavailability. However, given the proximity between the C-8 and N-1 

substitutions, it was uncertain as to which motif would most strongly influence the 

pharmacological profile associated with these dually substituted ligands. In order to determine 

which substitution was most important and whether N-acetylation could reliably improve 

bioavailability, the compounds presented in Table 17 were synthesized and evaluated in vitro and 

in vivo. 
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Table 17. N-Acetyl/C-8 Hybrid Peptidomimetics 71-77 Mimic Parent N-Acetyl Analogue 32a 

 
a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR). Values are expressed as the mean of three separate assays performed in duplicate 
with standard error of the mean in parentheses. dns = does not stimulate. † n=2 ‡ n=1. b Synthesized by A.A.H. c First 
reported in reference 94. 

 

 The analogues in Table 17 show highly similar in vitro profiles to that of the parent 

analogue 32 featuring an N-acetyl moiety and no C-8 substitution. Generally, this series showed 

0.1 to 0.2 nM affinity at MOR, 1 to 2 nM affinity at DOR, and double-digit nanomolar affinity at 

KOR, though KOR affinity varied considerably more than MOR or DOR, ranging between 10 and 

100 nM affinity. The C-8 benzyl analogue 77 was somewhat of an outlier, displaying lower MOR 

Ki (nM) EC50 (nM) % stim

# R MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

32b, c H 0.13
(0.02)

1.8
(0.1)

87
(11)
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(1.3)

68
(2) >500 76

(4)
26
(3)
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(5)
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(0.02)

0.9
(0.4)
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(6)

6 1.4
(0.2)
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(8)
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(2)
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(3)
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affinity and higher DOR affinity than those general trends previously stated. The decreased MOR 

affinity and increased DOR affinity combined to yield a perfectly balanced 1:1 MOR/DOR binding 

profile. Functionally, all analogues displayed MOR agonism with partial DOR agonism. MOR 

potency typically varied between 1 and 10 nM with no clearly discernible trends. On the other 

hand, DOR potency did show some dependence on the size of the C-8 substitution, with larger C-

8 moieties (analogues 74-77) displaying single-digit nanomolar potency and smaller C-8 motifs 

(analogues 32, 71-73) showing doubled-digit nanomolar potency. KOR efficacy was only 

observed at concentrations above 500 nM.  

 Aside from analogue 77, all N-acetyl/C-8 hybrids in Table 17 are pharmacologically 

indistinguishable from the unsubstituted parent analogue 32. Due to the spatial proximity between 

C-8 and N-1, it appears that any meaningful interaction between these ligands and the opioid 

receptors are primarily mediated by the N-1 acetyl group. However, in the case of the C-8 benzyl 

analogue 77 where the benzyl group is significantly larger than the N-1 moiety, one can observe a 

departure from the common profile observed for others in this series. Notably, 77 displays more 

balanced binding and greater potency at DOR compared to most in this series. Additionally, MOR 

potency is the poorest for 77, though only by a slight margin. This short series of analogues 

efficiently answered the question of which motif was most likely to influence the in vitro profile 

of a dually C-8/N-1 substituted analogue. This dependence on N-1 to dictate pharmacological 

profile, comparatively independent of C-8, is consistent with the flat binding SAR discussed in the 

C-8 substituted series of Chapter 2. Because the C-8 moieties likely occupy a flexible or solvent-

exposed pocket of the opioid receptors, it is unsurprising that the N-1 motif influences ligand 

binding more strongly. N-acetylation of the C-8 ethyl ester analogue 26 was also attempted, 

seeking to determine whether DOR antagonism could be reestablished despite the masking effect 
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of the N-acetyl moiety. However, synthesis of this analogue was unsuccessful, as acetylation of N-

1 was sterically occluded by the rigid, branched carbonyl at C-8. 

 Concerning bioavailability, most analogues in Table 17 were evaluated in vivo, probing 

whether N-acetylation did indeed improve bioavailability for this series. These results are depicted 

in Table 18, where N-acetyl analogues are compared with their unacetylated counterparts. 

 

Table 18. Investigating the Effect of N-Acetylation on Bioavailability for C-8 Substituted Ligandsa 

 

a Results from the mouse WWTW assay after cumulative dosing of test compound up to 10 mg/kg ip. Antinociceptive 
activity represented as percent maximum possible effect (% MPE), with MPE being a 20 s latency to tail withdrawal. 
Baseline tail withdrawal latency is ~5 s, or 25% MPE. “dns” indicates no stimulation of an antinociceptive response. 
b Reported in reference 83. c Synthesized by A.A.H. d Reported in reference 94. 
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1b H 100

14c F dns

9 CH3 100

15 CF3 dns

16 Br 50
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11 n-Propyl dns

8 Benzyl dns

N-Acetyl C-8 Analogues

# C-8 R Group % MPE

32c, d H dns

71c F dns

72 CH3 100

73 CF3 50

74 Br ---

75c OCH3 ---

76 n-Propyl dns

77 Benzyl dns
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Of the analogues tested in the WWTW assay for antinociception, only the C-8 methyl 

analogue 72 (within the N-acetyl series) displayed full antinociceptive activity. Correspondingly, 

the unacetylated C-8 methyl analogue 9 was also fully active in vivo. The N-acetyl analogue 72 

did show a slightly improved duration of action of 2.0 h compared to 1.5 h for 9. Additionally, the 

trifluoromethyl analogue went from inactive (analogue 15) to partially active (73) when acetylated. 

Conversely, N-acetylation actually eliminated the bioavailability of the lead peptidomimetic 1 as 

seen in analogue 32. It may be informative to evaluate the N-acetyl C-8 bromo analogue 74 in vivo, 

as the unacetylated 16 showed partial activity. However, on the whole it can be surmised that while 

N-acetylation may improve bioavailability, it does so only sporadically and unpredictably.  

 In this short series of analogues, we observed that N-acetylation dictates the in vitro profile 

more significantly than the small C-8 substitutions investigated here. However, in the case of the 

larger benzyl pendant of 77, the MOR/DOR balancing effect associated with the C-8 benzyl 

substitution can be observed, as 77 displayed a 1:1 binding ratio at MOR and DOR. Functionally, 

all ligands in this series were partial DOR agonists. Unfortunately, it was not synthetically tractable 

to incorporate a C-8 carbonyl substitution as well as an N-acetyl substitution, as these branched 

substitutions caused insurmountable allylic (A1,3) strain. As such, C-8 substitutions evaluated in 

this series were limited to small or unbranched motifs. Bioavailability for this series of compounds 

showed no reliable improvement relative to the unsubstituted analogues, consistent with other N-

acetylated/non-acetylated pairs synthesized previously. From the work presented in this chapter 

and those preceding, N-1 and C-8 substitutions show highly favorable profiles when combined 

with a C-6 bicyclic pendant. However, when both are implemented in the context of a monocyclic 

C-6 benzyl pendant, the benefits are minor. While these results support previous observations, this 
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series did not substantially improve in vitro or in vivo parameters and is unlikely to be utilized in 

further ligand design. 

4.3  Scaled Syntheses of In Vivo Candidates & Radiosynthetic Approaches 

 The main focus of the preceding chapters has been the design and synthesis of novel ligands 

to further probe SAR and generate new leads for opioid drug design with the aim of eliminating 

analgesic tolerance and opioid dependence. In this section, projects focused less on chemical 

novelty and more on the further evaluation of select candidates in vivo. In particular, this section 

will detail two projects necessitating the increased scale of synthesis of analogues 43, 45, 64, and 

20 shown in Fig. 21. The first project involved the scaled synthesis of all four aforementioned 

analogues for evaluation in in vivo assays including those for tolerance, dependence, and 

conditioned place preference (CPP) among others. The second project involved the attempted 

radiosynthesis of [11C]43. The results of the first project were reported in part in a 2018 manuscript 

published in the British Journal of Pharmacology.98 Unfortunately, the second project stalled at 

radiosynthesis and has not been further pursued at present.   

 

Figure 21. In Vivo Candidates and Amounts of Compound Synthesized  
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 Novel peptidomimetic ligands—requiring in vitro and in some cases in vivo evaluation—

are typically synthesized with a target yield of five to ten milligrams of final compound. However, 

compounds showing robust antinociceptive activity—especially those with a long duration of 

action and favorable in vitro profile—may be selected for further evaluation in chronic 

antinociceptive tolerance, physical dependence, and CPP models. Descriptions of these assays and 

the resultant data for compounds 43, 45, and 64 are detailed below. Compound 20 has been 

synthesized but is yet to be evaluated in the assay for chronic tolerance, dependence, or CPP. 

To test for chronic tolerance, mice were given twice daily injections ip of saline or test 

compound at escalating doses, such that on day one, mice received two 10 mg/kg doses of test 

compound, and by day five, mice received two 50 mg/kg injections of test compound. Following 

five days of escalating treatment with a test compound, animals were evaluated in the WWTW 

assay on day six. When using morphine as a test compound, a significant rightward shift in the 

dose-response curve was observed on day six compared to WWTW dose-response performed prior 

to chronic drug exposure. However, compounds 43, 45, and 64 showed no significant rightward 

shift in dose-response curve after chronic drug exposure, indicating these compounds produce 

significantly less antinociceptive tolerance than morphine.98 Fig. 22, adapted from Anand et. al., 

2018, shows the results of the chronic tolerance assay for 43, 45, and morphine—64 was evaluated 

subsequent to the publication of these results and is not included in Fig. 22. Showing no significant 

analgesic tolerance, 43, 45 and 64 were then advanced into dependence models.  
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Figure 22. Chronic Antinociceptive Tolerance Evaluation of 43, 45, and morphinea 

 
a Mice were given test compound or saline in escalating doses over a 5-day regimen and were tested in the WWTW 
assay using test compound on days 1 and 6. After 5 days of saline, no tolerance is observed for any compound. After 
5 days of morphine, tolerance develops indicated by the rightward shift in dose-response curve. No tolerance develops 
for analogues 43 or 45. BL = baseline. Figure adapted from Anand et. al., 2018 (reference 98). 

 

Dependence models utilized the same escalating dosing regimen as tolerance, where mice 

were exposed to increasing doses of test compound (or saline) for five days and were evaluated on 

day six. Following five days of chronic opioid exposure, mice were given naltrexone, an opioid 

antagonist, to precipitate withdrawal symptoms. Chronic treatment with morphine, followed by 

naltrexone, induced significant withdrawal jumps compared to chronic saline treatment (baseline). 

However, compounds 43 and 64 showed no difference in withdrawal jumps compared to saline, 

suggesting these compounds do not produce significant opioid dependence. On the other hand, 

compound 45 looked similar to morphine in this assay, indicating 45 did induce physical 

dependence.98 These results, as well as those for CPP evaluation, are displayed below in Fig. 23.   

 

 

 

 



 246 

Figure 23. Compounds 43 and 64 Show No Physical Dependence; Only 43 Shows No CPPa 

 
a To test for physical dependence, mice were given test compound or saline in escalating doses over a 5-day regimen. 
On day 6, mice were given naltrexone to precipitate opioid-induced withdrawal jumps. Compound 45 showed 
comparable withdrawal symptoms to morphine while 43 and 64 showed significantly less dependence. In the two-
chambered CPP apparatus, mice preferred the morphine-paired side while saline and 45 induced no significant 
preference. 64 was not significantly different from either saline or morphine. Results adapted from data prepared by 
J.P.A. and reported in part in reference 98.  

 

The final assay discussed here, evaluation of CPP as a proxy for “drug-seeking” or 

“reward,” uses a two-chambered apparatus. One chamber is paired with test compound whereas 

the other is paired with saline. After five days of conditioning, mice are free to inhabit either 

chamber. In this model, rewarding drugs such as morphine cause mice to preferentially occupy the 

drug-paired side, whereas the negative control (where saline is paired with both chambers) induces 

no significant preference for either chamber. Only compounds 43 and 64—which showed 

significantly less physical dependence than morphine—were evaluated in the CPP assay. 

Compound 43 showed significantly less CPP than morphine, mimicking the negative control, 

saline. However, compound 64 showed intermediate levels of CPP, not statistically different from 

either saline or morphine.98 Dr. Jessica Anand (J.P.A.), was the lead pharmacologist who oversaw 

or performed the aforementioned assays. Figs. 22 and 23 were adapted from the manuscript98 and 
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data presentations prepared by J.P.A. Compounds for these experiments were synthesized by 

A.F.N. and D.J.M. 

At present, compound 20 is awaiting evaluation in tolerance models to determine whether 

this analogue should be carried forward with dependence and CPP assays. The twice-daily dosing 

regimen utilized for morphine, 43, 45, and 64 was not suitable for the short-acting analogue 20 

(2.0 h), as mice would be below the therapeutic threshold during much of the drug exposure period. 

As such, methodological development was required in order to evaluate shorter-acting analogues 

for tolerance, dependence, and CPP. Methods are currently in development using fentanyl—a 

short-acting MOR agonist known to induce tolerance and dependence—as a positive control. Once 

these protocols are established and functioning reliably, compound 20 will be evaluated for the 

aforementioned assays. 

Due to the cumulative dosing and number of trials (n=6 mice for each compound), the 

amount of final compound required for these assays was substantial. As such, the scale of syntheses 

were increased by one to two orders of magnitude. In addition to tolerance, dependence, and CPP, 

the in vivo candidates shown in Fig. 21 (as well as others not shown, but also synthesized in lesser, 

20 to 60 mg quantities) were required for various other in vivo experiments including but not 

limited to the following: evaluation of antinociception in rats as well as MOR-knockout and PGP-

knockout mice, evaluation of antinociception after pretreatment with the non-specific opioid 

antagonist naltrexone (affirming opioid-mediated antinociception) or the PGP-inhibitor elacridar 

(to determine if these ligands are PGP substrates), evaluation of DOR antagonism in vivo by pre-

treatment with ligand followed by the DOR agonist SNC-80, evaluation for constipation and 

locomotion, and various other in vivo assays. Because these compounds were synthesized on-

demand, the quantities listed in Fig. 21 represent cumulative totals and not yields synthesized in a 
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single batch. The largest single batch of compound produced was 280 mg of 43, followed by two 

batches of 180 mg each for compound 64.  

 Advancement of in vivo candidates through preclinical animal models has validated 43 as 

a bioavailable analgesic with significantly reduced tolerance, dependence and CPP compared to 

morphine. More generally, these results support the bifunctional MOR agonist/DOR antagonist 

approach as a viable strategy for reducing side effects associated with classical opioid treatment. 

Moving forward, the Mosberg lab and collaborators were interested in gathering further data 

concerning the pharmacokinetics of 43. In order to track 43 through the phases of absorption, 

distribution, metabolism and excretion, effort was made toward radiolabeling 43 with a 11C nuclide 

which can be tracked via positron emission tomography (PET) in vivo. Though at longer-lasting 

nuclide such as 18F would provide more information over a longer duration, no fluorinated 

analogues of the peptidomimetic series have demonstrated robust in vivo activity. Importantly, 

despite the short half-life of the 11C nuclide, an [11C]43 ligand could confirm whether or not 43 

gains access to the central nervous system (CNS), further substantiating the notion that our 

peptidomimetic was centrally-acting. In order to bolster the novelty of 43 as a CNS-active opioid 

devoid of tolerance and dependence, visual demonstration (in addition to pharmacological 

evidence) of CNS access via PET would be instrumental. With this goal in mind, we aimed to 

incorporate an 11C nuclide into the acetyl group of 43 as described in Scheme 10. The synthesis 

of unlabeled precursor and HPLC standards was performed by A.F.N., while radiolabeling was 

performed by Dr. Allan Brooks and Dr. Xia Shao as a collaborative project with Dr. Peter Scott’s 

laboratory. 
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Scheme 10. Attempted Radiolabeling of [11C]43 

 

 

 Synthesis of [11C]43 was attempted using a Boc-protected unacetylated precursor of 43 and 

[11C]acetyl chloride, derived from [11C]CO2 which is converted to [11C]acetate by methyl 

Grignard. Treatment of the acetate with thionyl chloride gives the activated acid chloride, which 

was successfully incorporated into the peptidomimetic molecule with 4.5% conversion. However, 

subsequent Boc-deprotection methodologies using TFA or HCl both removed the 11C-labeled 

acetyl group. This was unexpected, as acetyl removal had not been observed previously with 

unlabeled compounds. Nonetheless, the desired [11C]43 product was not observed by HPLC. Due 

to expense and time constraints, radiosynthesis was not further pursued at this time.  

 Although the design and synthesis of novel chemical matter is a major focus of any 

synthetic chemist working in drug development, the importance of resynthesizing or incrementally 

modifying chemical hits should not be understated. In order to proceed further, or to redirect efforts 

in more fruitful directions, it is often necessary to halt novel chemical exploration in favor of 
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deeper exploration of chemical guideposts. In this chapter, considerable effort was dedicated to 

further evaluating compound 43 for both pharmacological effects as well as pharmacokinetic 

properties. Through this deeper investigation, it was discovered that not all MOR agonist/DOR 

antagonist compounds with in vivo activity are effective at reducing tolerance and dependence, as 

was the case of compound 45. At present, the reason for why some analogues are more effective 

than others are reducing side-effects is unknown. However, the work detailed in this section 

provided critical proof-of-concept data in support of the bifunctional MOR agonist/DOR 

antagonist approach. Furthermore, this work bolsters the bicyclic C-6/N-1 research described in 

Chapter 3 which builds incrementally from the chemotype of in vivo candidates 43 and 45. 

Through this collaborative work, we have demonstrated that the bifunctional, bicyclic C-6/N-1 

THQ-based peptidomimetics may indeed (but do not necessarily) offer the target pharmacological 

profile both in vitro and in vivo. Future directions in this field of research, in the context of the 

work described in the preceding chapters, will be discussed further in Chapter 5.  
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4.4  Experimental Procedures  

 

Figure 24. Structures of Analogues 32, 70-77 Discussed in Chapter 4 
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*Analogues 32, 71 and 75 were synthesized by A.A.H. See her thesis for synthetic details.  
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General Procedure (A): N-Acylation or Mesylation of the THQ core. To a round-bottom flask 

containing THQ intermediate (1.0 eq) was added acetic anhydride (excess) and heated to 100°C. 

When starting material showed complete conversion to product by TLC, solvent was removed 

under reduced pressure and reaction mixture was purified by silica chromatography. When noted, 

product was isolated by crystallization and was used without further purification.   

General Procedure (B): Reductive Amination of THQ Ketone Intermediate to a Sulfinamide 

Using Ellman’s Chiral Auxilliary. To a round bottom flask already containing desiccated THQ 

intermediate (1.0 eq) under Ar atmosphere was added (R)-2-methylpropane-2-sulfinamide (3.0 

eq). Meanwhile, a reflux condenser was flame-dried under vacuum, and then flooded with Ar. 

Next, anhydrous THF (5-10 mL) was added to the reaction vessel containing starting reagents via 

syringe. The round bottom flask was placed in an ice bath and allowed to equilibrate to 0°C. Next, 

Ti(OEt)4 (6.0 eq) was added slowly via syringe. Once addition was complete, the reaction vessel 

was taken out of ice bath and placed in oil bath at 70°C-75°C, affixed condenser, and stirred for 

16-48 h under Ar. The reaction was monitored by TLC for loss of ketone. Once sufficient 

conversion to the tert-butanesulfinyl imine was observed, reaction vessel was taken out of oil bath 

and cooled to ambient temperature. Meanwhile, an additional round bottom flask was flame-dried 

under vacuum, then flooded with Ar. NaBH4 (6.0 eq) was added quickly, and anhydrous THF was 

added (5-10 mL). The round bottom flask was placed in dry ice/acetone bath and allowed to 

equilibrate to -78°C. Contents from the round bottom flask containing the imine intermediate were 

transferred to round bottom flask containing NaBH4 via cannula. Imine-containing flask was 

washed twice with minimal THF, which was also transferred to reducing flask via cannula under 

Ar. Once contents were completely added, the reaction was taken out of dry ice/acetone bath and 

was allowed to warm to room temperature. The reaction stirred at ambient temperature for 2-3 h. 



 253 

To quench, sat. NaCl solution was added. Reaction mixture was diluted with ethyl acetate and DI 

H2O and separated, washing with H2O until both layers were clear, indicating sufficient removal 

of titanium oxide by-product. Organics were then isolated and dried over MgSO4 and filtered 

through a fritted funnel. Organic extract was then concentrated onto silica and purified by silica 

chromatography. 

General Procedure (C): Conversion of Sulfinamide to Final Compound. Step 1: To a round 

bottom flask containing sulfinamide (1.0 eq) was added 1,4-dioxane, followed by conc. HCl (6.0 

eq), cleaving the sulfinamide to the primary amine. The reaction stirred at RT for up to 3 h. Solvent 

was removed under reduced, and residue was re-suspended in Et2O. The resultant white solid 

precipitate (the HCl salt of the amine) was isolated by decanting and washing with Et2O up to three 

times. After desiccation, the solid residue was used without further purification. Step 2: To a pear-

shaped flask under inert atmosphere containing amine salt (1.0 eq) was added di-Boc-Dmt (1.1 

eq), PyBOP (1.1 eq), and, when specified, 6-Cl HOBt (1.1 eq), followed by DMF and DIPEA (10 

eq) at ambient temperature. After stirring for 6 hours, solvent was removed under reduced pressure 

and residual oil was loaded onto silica. Boc-protected intermediate was purified by silica 

chromatography but was generally not characterized by NMR. Step 3: Boc-protected intermediate 

was suspended in DCM (10 mL), then TFA (3-5 mL) was added. After 1 hour, solvent was 

removed under vacuum. Product was resuspended in a solution of 99.9% acetonitrile, 0.1% TFA, 

then diluted with deionized water. Final products were purified by reverse-phase semi-preparative 

HPLC. Final yield not calculated.  
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Compound 70 

 

70-1 8-bromo-6-(naphthalen-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 70-1 was 

synthesized from intermediate 48-2, whose synthesis was described in Section 3.8 Experimental 

Procedures. To a round-bottom flask containing intermediate 48-2 (275 mg, 0.96 mmol, 1.00 eq), 

dissolved in dichloromethane under inert atmosphere was added N-bromosuccinimide (178 mg, 

1.00 mg, 1.05 eq) at ambient temperature. After 5 minutes, TLC in 40% ethyl acetate, 60% hexanes 

showed complete conversion. Reaction was concentrated onto silica in vacuo and was purified by 

flash chromatography. Yield: 290 mg, 88%. 1H NMR (500 MHz, Chloroform-d) δ 7.79 (d, J = 8.3 

Hz, 1H), 7.77 (s, 1H), 7.76 (d, J = 4.9 Hz, 1H), 7.61 (d, J = 1.8 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.43 

(s, 1H), 7.28 (dd, J = 8.4, 1.6 Hz, 1H), 4.90 (s, 1H), 4.01 (s, 2H), 3.66 – 3.59 (m, 2H), 2.71 (t, J = 

6.9 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 193.14, 147.49, 138.67, 138.14, 133.72, 132.29, 

131.25, 128.45, 127.77, 127.71, 127.40, 127.19, 127.13, 126.22, 125.63, 120.35, 110.44, 41.98, 

40.99, 37.61. 
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70-2 6-(naphthalen-2-ylmethyl)-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxylic acid. 70-2 was 

synthesized using the following procedure: To a flame-dried pear-shaped flask under Ar 

atmosphere was added intermediate 70-1 (310 mg, 0.85 mmol, 1.0 eq), K2CO3 (175 mg, 1.27 

mmol, 1.5 eq) and Pd(dppf)Cl2 (62 mg, 0.09 mmol, 0.1 eq), followed by 5:1 DMF/H2O (12 mL). 

To a separate 30 mL pressure tube under Ar atmosphere was added 2M NaOH (15 mL), then 

evacuated, flushed with Ar, and bubbled Ar through base solution for 15 min. To the bottom of 

the tube containing stirring base solution was added, via syringe, oxalyl chloride (1 mL in aliquots 

of 0.1 to 0.2 mL). Carbon monoxide generated in situ from the decomposition of oxalyl chloride 

was cannulated to the reaction mixture. Reaction was heated at 80°C for 8 hours, monitored by 

TLC. When TLC indicated conversion of starting material to new product, reaction was cooled to 

ambient temperature and reaction solvents were removed under vacuum. Residual oil was 

resuspended in ethyl acetate and water, and acid/base extraction was performed. Organics were 

isolated, dried with MgSO4, filtered, and reconcentrated onto silica in vacuo. Reaction was purified 

by flash chromatography. Reaction yielded 190 mg pure 70-2, 82%. An additional 120 mg of 

impure material containing 70-2 was isolated and was carried forward separately. 1H NMR (500 

MHz, Chloroform-d) δ 9.78 (s, 1H), 8.47 (s, 1H), 8.03 (d, J = 2.2 Hz, 1H), 7.82 – 7.79 (m, 1H), 

7.78 (dd, J = 7.8, 2.4 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.52 (d, J = 2.3 Hz, 1H), 7.50 – 7.40 (m, 2H), 

7.29 (dd, J = 8.4, 1.8 Hz, 1H), 4.08 (s, 2H), 3.68 (td, J = 7.2, 2.5 Hz, 2H), 2.77 – 2.70 (m, 2H). 13C 

NMR (126 MHz, cdcl3) δ 193.57, 192.56, 151.31, 143.15, 137.99, 135.06, 133.73, 132.33, 128.57, 

128.52, 127.80, 127.70, 127.33, 127.16, 126.32, 125.72, 120.68, 120.15, 77.16, 40.82, 40.68, 

37.12. 
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70-3 N,N-dimethyl-6-(naphthalen-2-ylmethyl)-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxamide. 

Intermediate 70-3 was synthesized by the following procedure: To a pear-shaped flask containing 

intermediate 70-2 (91 mg, 0.27 mmol, 1.0 eq) dissolved in DMF under inert atmosphere was added 

PyBOP (157 mg, 0.30 mmol, 1.1 eq), dimethylamine hydrochloride (45 mg, 0.55 mmol, 2.0 eq) 

and DIPEA (0.48 mL, 2.74 mmol, 10 eq), then stirred at ambient temperature. Reaction was 

monitored by TLC. After 5 hours, solvent was removed under reduced pressure and reconcentrated 

residue onto silica in vacuo. Crude reaction mixture was combined with a previously run trial 

reaction which used impure starting material. The combined reactions were purified by flash 

chromatography, giving a combined overall yield of 125 mg, or 38% of the theoretical combined 

yield. 1H NMR (500 MHz, Chloroform-d) δ 7.85 (d, J = 2.2 Hz, 1H), 7.79 (dd, J = 7.4, 1.8 Hz, 

1H), 7.77 – 7.72 (m, 2H), 7.59 (s, 1H), 7.44 (pd, J = 6.8, 1.5 Hz, 2H), 7.26 (dd, J = 8.4, 1.7 Hz, 

1H), 7.08 (d, J = 2.2 Hz, 1H), 5.92 (s, 1H), 4.03 (s, 2H), 3.54 (t, J = 7.0 Hz, 2H), 2.97 (s, 7H), 2.67 

(t, J = 7.0 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 193.60, 170.09, 149.64, 138.42, 134.94, 133.69, 

132.24, 129.57, 128.67, 128.36, 127.75, 127.64, 127.43, 127.09, 126.21, 125.58, 120.46, 120.37, 

77.16, 46.42, 46.38, 41.59, 41.00, 37.69, 26.50, 26.44. 
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70-4 (R)-4-(((R)-tert-butylsulfinyl)amino)-N,N-dimethyl-6-(naphthalen-2-ylmethyl)-1,2,3,4-

tetrahydroquinoline-8-carboxamide. Intermediate 70-4 was synthesized following General 

Procedure (B) from intermediate 70-3 (125 mg, 0.35 mmol, 1.0 eq), (R)-2-methyl-2-

propanesulfinamide (127 mg, 1.05 mmol, 3.0 eq), and Ti(OEt)4 (0.44 mL, 2.10 mmol, 6.0 eq), then 

NaBH4 (80 mg, 2.10 mmol, 6.0 eq). Yield: 45 mg, 23%. 1H NMR (500 MHz, Chloroform-d) δ 

7.78 (d, J = 7.7 Hz, 2H), 7.74 (dd, J = 10.7, 8.0 Hz, 2H), 7.60 (s, 1H), 7.43 (pd, J = 6.9, 1.6 Hz, 

2H), 7.28 (s, 1H), 7.19 (d, J = 2.1 Hz, 1H), 6.82 (d, J = 2.1 Hz, 1H), 4.53 (d, J = 3.0 Hz, 1H), 3.99 

(d, J = 2.8 Hz, 2H), 3.37 (td, J = 11.9, 2.9 Hz, 1H), 3.22 (td, 1H), 2.96 (s, 6H), 2.05 (dd, J = 13.7, 

3.3 Hz, 1H), 1.88 (t, J = 12.9 Hz, 1H), 1.21 (s, 9H). 

 

70 (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-N,N-dimethyl-6-

(naphthalen-2-ylmethyl)-1,2,3,4-tetrahydroquinoline-8-carboxamide. 70 was synthesized 

following General Procedure (C) from intermediate 70-4. Step 1: Sulfinamide cleavage was 
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product as a white solid, which was used without further purification. Step 2: Amide coupling was 

performed with the aminium chloride salt of 70-4 (54 mg, 0.14 mmol, 1.0 eq), di-Boc-Dmt (61 

mg, 0.15 mmol, 1.1 eq), and PyBOP (78 mg, 0.15 mmol, 1.1 eq), followed by DIPEA (0.24 mL, 

1.36 mmol, 10 eq). Crude product was carried forward to Step 3: TFA deprotection, followed by 

purification by reverse-phase semi-preparative HPLC, as described in General Procedure (C). 

Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 8.21 (d, J = 7.8 Hz, 1H), 7.77 (d, 

J = 7.8 Hz, 1H), 7.75 – 7.69 (m, 2H), 7.57 (s, 1H), 7.44 – 7.37 (m, 2H), 7.25 (dd, J = 8.5, 1.8 Hz, 

1H), 6.99 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 2.1 Hz, 1H), 6.47 (d, J = 6.8 Hz, 2H), 4.95 – 4.89 (m, 

1H), 3.94 (s, 2H), 3.81 (dd, J = 11.5, 5.1 Hz, 1H), 3.28 – 3.20 (m, 1H), 3.02 – 2.85 (m, 6H), 2.41 

(t, J = 12.3 Hz, 1H), 2.26 (s, 6H), 1.70 – 1.61 (m, 1H), 1.51 (dt, J = 13.5, 3.7 Hz, 1H). Analytical 

HPLC retention time: 36.8 min. 

Compound 72 

 

72-1 1-acetyl-6-benzyl-8-methyl-2,3-dihydroquinolin-4(1H)-one. Intermediate 72-1 was 

synthesized following General Procedure (A) from intermediate 9-6 (570 mg, 2.27 mmol, 1.0 

eq), and Ac2O (15 mL, excess). Yield not calculated. NMR identified two rotomers, which was 

supported by HSQC NMR. 1H NMR (500 MHz, Chloroform-d) δ 7.68 (d, J = 2.3 Hz, 1H), 7.28 

(d, J = 7.9 Hz, 3H), 7.18 (d, J = 7.2 Hz, 3H), 5.06 (dd, J = 13.4, 5.8 Hz, 1H), 4.26 (t, J = 9.1 Hz, 

0.5H), 3.95 (d, J = 10.1 Hz, 2H), 3.88 – 3.77 (m, 0.5H), 3.32 (td, J = 13.1, 3.4 Hz, 0.5H), 2.91 (td, 
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J = 13.7, 10.4, 4.8 Hz, 0.5H), 2.89 – 2.80 (m, 0.5H), 2.72 (d, J = 18.0 Hz, 0.5H), 2.60 (d, J = 17.9 

Hz, 0.5H), 2.38 – 2.34 (m, 1.5H), 1.97 (d, J = 2.5 Hz, 1.5H). 13C NMR (126 MHz, cdcl3) δ 195.57, 

194.25, 171.04, 168.87, 141.84, 141.11, 140.14, 139.92, 139.45, 137.53, 137.16, 136.98, 135.06, 

134.71, 133.11, 131.22, 129.45, 128.87, 128.69, 128.59, 128.08, 127.67, 126.50, 126.32, 125.89, 

125.76, 125.05, 115.38, 44.12, 41.32, 40.04, 39.51, 24.83, 22.61, 21.64. 

 

 

72-2 (R)-N-((R)-1-acetyl-6-benzyl-8-methyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. Intermediate 72-2 was synthesized following General Procedure (B) from 

intermediate 72-1 (90 mg, 0.31 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (112 mg, 0.92 

mmol, 3.0 eq), and Ti(OEt)4 (0.39 mL, 1.84 mmol, 6.0 eq), then NaBH4 (70 mg, 1.84 mmol, 6.0 

eq). Yield: 121 mg, 98%. 1H NMR (500 MHz, Chloroform-d) δ 7.32 – 7.28 (m, 2H), 7.21 (d, J = 

7.0 Hz, 3H), 7.08 (s, 1H), 6.99 (s, 1H), 4.52 (dt, J = 4.7, 2.5 Hz, 1H), 3.94 (d, J = 20.2 Hz, 2H), 

2.99 (ddd, J = 13.3, 9.1, 4.4 Hz, 1H), 2.84 (tt, J = 10.2, 4.5 Hz, 1H), 2.54 (dddd, J = 14.0, 9.4, 4.4, 

2.8 Hz, 1H), 1.88 (d, J = 1.6 Hz, 3H), 1.81 (dq, J = 14.0, 8.8 Hz, 1H), 1.21 (d, J = 1.7 Hz, 9H). 13C 

NMR (126 MHz, cdcl3) δ 171.05, 140.13, 137.44, 135.28, 134.08, 131.76, 130.33, 128.96, 128.63, 

128.53, 126.37, 126.29, 123.22, 51.71, 41.45, 39.48, 39.11, 28.61, 22.60, 22.12. 
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72 (S)-N-((R)-1-acetyl-6-benzyl-8-methyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-(4-hydroxy-

2,6-dimethylphenyl)propanamide. 72 was synthesized following General Procedure (C) from 

intermediate 72-2. Step 1: Sulfinamide cleavage was carried out with 72-2 (83 mg, 0.21 mmol, 

1.0 eq) and excess concentrated HCl, precipitating product as a white solid, which was used 

without further purification. Step 2: Amide coupling was performed with the aminium chloride 

salt of 72-2 (37 mg, 0.11 mmol, 1.0 eq), di-Boc-Dmt (51 mg, 0.12 mmol, 1.1 eq), and PyBOP (64 

mg, 0.12 mmol, 1.1 eq), followed by DIPEA (0.20 mL, 1.12 mmol, 10 eq). Crude product was 

carried forward to Step 3: TFA deprotection, followed by purification by reverse-phase semi-

preparative HPLC, as described in General Procedure (C). Final yield not calculated. 1H NMR (500 

MHz, Methanol-d4) δ 7.27 – 7.20 (m, 2H), 7.16 (dq, J = 7.5, 4.6, 2.9 Hz, 3H), 7.03 (d, J = 6.2 Hz, 

1H), 7.01 – 6.96 (m, 1H), 6.94 (s, 0H), 6.52 (d, J = 3.3 Hz, 2H), 4.66 – 4.49 (m, 1H), 3.98 (dd, J = 

11.3, 4.8 Hz, 0.5H), 3.94 (s, 1H), 3.88 (d, J = 15.7 Hz, 1H), 3.83 – 3.78 (m, 0.5H), 3.31 (s, 2H), 3.26 

(dd, J = 13.7, 11.6 Hz, 1H), 3.09 (dd, J = 14.0, 4.7 Hz, 1H), 2.72 (ddd, J = 13.6, 9.2, 5.2 Hz, 0.5H), 

2.33 – 2.26 (m, 6H), 2.02 (d, J = 6.3 Hz, 1.5H), 1.88 (d, J = 8.3 Hz, 1.5H), 1.48 – 1.28 (m, 0.5H), 1.21 

– 1.10 (m, 0.5H). Calculated [M+H]+: 486.28. ESI-MS mass observed: 486.3 (M+H) and 508.3 

(M+Na). Analytical HPLC retention time: 34.6 min. 
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Compound 73 

 

73-1 1-acetyl-6-benzyl-8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. Intermediate 73-1 was 

synthesized following General Procedure (A) from intermediate 15-6 (175 mg, 0.57 mmol, 1.0 

eq), and Ac2O (12 mL, excess). Yield: 45 mg, 23%. NMR identified two rotomers, supported by 

HSQC NMR. 1H NMR (500 MHz, Chloroform-d) δ 8.01 (d, J = 5.8 Hz, 1H), 7.72 – 7.65 (m, 1H), 

7.32 (dd, J = 11.3, 7.3 Hz, 2H), 7.29 – 7.22 (m, 1H), 7.19 (t, J = 6.0 Hz, 2H), 5.08 (dd, J = 13.4, 

6.2 Hz, 0.5H), 4.32 (dd, J = 14.5, 5.4 Hz, 0.5H), 4.05 (d, J = 15.3 Hz, 2H), 3.90 (td, J = 14.0, 3.9 

Hz, 0.5H), 3.40 (td, J = 13.2, 3.8 Hz, 0.5H), 2.97 (ddd, J = 19.2, 13.1, 6.3 Hz, 0.5H), 2.86 (td, J = 

13.0, 6.6 Hz, 0.5H), 2.82 – 2.75 (m, 0.5H), 2.64 (dd, J = 18.6, 3.7 Hz, 0.5H), 2.37 (s, 1.5H), 1.95 

(s, 1.5H). 13C NMR (126 MHz, cdcl3) δ 194.23, 171.41, 141.68, 133.27, 131.63, 131.23, 129.12, 

129.00, 127.12, 126.93, 46.69, 44.54, 41.38, 39.88, 39.40, 22.35, 22.06. 
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73-2 (R)-N-((R)-1-acetyl-6-benzyl-8-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-

methylpropane-2-sulfinamide Intermediate 73-2 was synthesized following General Procedure 

(B) from intermediate 73-1 (45 mg, 0.13 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (47 

mg, 0.39 mmol, 3.0 eq), and Ti(OEt)4 (0.17 mL, 0.78 mmol, 6.0 eq), then NaBH4 (30 mg, 0.78 

mmol, 6.0 eq). Yield: 52 mg, 90%. Carried forward without NMR characterization. 

 

73 (S)-N-((R)-1-acetyl-6-benzyl-8-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-

(4-hydroxy-2,6-dimethylphenyl)propanamide. 73 was synthesized following General Procedure 

(C) from intermediate 73-2. Step 1: Sulfinamide cleavage was carried out with 73-2 (40 mg, 0.09 

mmol, 1.0 eq) and excess concentrated HCl, precipitating product as a white solid, which was used 

without further purification. Step 2: Amide coupling was performed with the aminium chloride 

salt of 73-2 (32 mg, 0.08 mmol, 1.0 eq), di-Boc-Dmt (38 mg, 0.09 mmol, 1.1 eq), 6-Cl HOBt (16 

mg, 0.09 mmol, 1.1 eq), and PyBOP (48 mg, 0.09 mmol, 1.1 eq), followed by DIPEA (0.15 mL, 

0.83 mmol, 10 eq). Crude product was carried forward to Step 3: TFA deprotection, followed by 

purification by reverse-phase semi-preparative HPLC, as described in General Procedure (C). 

Final yield not calculated. 1H NMR (500 MHz, Methanol-d4) δ 7.46 (d, J = 4.2 Hz, 1H), 7.38 (dd, 

J = 20.8, 11.2 Hz, 1H), 7.27 (q, J = 6.9 Hz, 3H), 7.18 (d, J = 7.3 Hz, 4H), 6.59 (t, J = 7.2 Hz, 1H), 

6.53 (s, 2H), 4.80 (dd, J = 11.9, 6.7 Hz, 0.5H), 4.74 – 4.66 (m, 0.5H), 4.55 (dd, J = 11.3, 6.6 Hz, 

1H), 4.07 (d, J = 5.4 Hz, 2H), 4.02 (s, 1H), 3.99 – 3.93 (m, 1H), 3.25 (d, J = 12.0 Hz, 1H), 3.10 

N

HN

O

NH2 OH

N

HN S
O

C

73-2 73

CF3 CF3 OO



 263 

(dd, J = 14.3, 5.4 Hz, 1H), 2.75 – 2.68 (m, 0.5H), 2.28 (s, 6H), 1.84 (d, J = 5.2 Hz, 3H), 1.32 (s, 

0.5H), 1.18 (s, 0.5H). Calculated [M+H]+: 540.25. QTOF high-res mass observed: 540.2467 

(M+H). Analytical HPLC retention time: 38.1 min. 

 

Compound 74 

 

74-1 1-acetyl-6-benzyl-8-bromo-2,3-dihydroquinolin-4(1H)-one. Intermediate 74-1 was 

synthesized following General Procedure (A) from intermediate 8-5 (158 mg, 0.50 mmol, 1.0 

eq), and Ac2O (10 mL, excess). Yield: 63 mg, 34%. 1H NMR (500 MHz, Chloroform-d) δ 7.79 (d, 

J = 2.0 Hz, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.26 (d, J = 7.2 Hz, 1H), 7.21 – 

7.16 (m, 2H), 5.07 (s, 1H), 3.98 (s, 2H), 3.36 (s, 1H), 2.90 (s, 1H), 2.64 (d, J = 19.1 Hz, 1H), 2.14 

(s, 2H). 13C NMR (126 MHz, cdcl3) δ 138.98, 128.88, 128.86, 127.19, 126.80, 44.18, 41.06, 39.42, 

22.71. 
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74-2 (R)-N-((R)-1-acetyl-6-benzyl-8-bromo-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide Intermediate 74-2 was synthesized following General Procedure (B) from 

intermediate 74-1 (63 mg, 0.17 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (60 mg, 0.49 

mmol, 3.0 eq), and Ti(OEt)4 (0.21 mL, 0.99 mmol, 6.0 eq), then NaBH4 (38 mg, 0.99 mmol, 6.0 

eq). Yield not calculated. 1H NMR (500 MHz, Chloroform-d) δ 7.45 (d, J = 1.9 Hz, 1H), 7.33 (dt, 

J = 10.6, 7.6 Hz, 4H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 1.8 Hz, 1H), 4.52 (dt, J = 4.3, 2.8 Hz, 

1H), 3.95 (s, 2H), 3.04 (ddd, J = 13.2, 9.2, 4.2 Hz, 0.5H), 2.88 (td, J = 10.9, 8.8, 5.2 Hz, 0.5H), 

2.61 – 2.53 (m, 0.5H), 2.49 (dt, J = 12.5, 6.3 Hz, 0.5H), 2.04 (s, 3H), 1.88 – 1.79 (m, 0.5H), 1.57 

(d, J = 13.1 Hz, 0.5H), 1.20 (s, 9H). 13C NMR (126 MHz, cdcl3) δ 142.18, 137.57, 133.93, 129.14, 

128.97, 128.86, 127.97, 126.87, 126.69, 55.74, 55.30, 52.07, 47.33, 41.29, 39.45, 28.96, 24.97, 

22.72, 22.65. 

 

 

74 (S)-N-((R)-1-acetyl-6-benzyl-8-bromo-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 74 was synthesized following General Procedure (C) 

from intermediate 74-2. Step 1: Sulfinamide cleavage was carried out with 74-2 and excess 

concentrated HCl, precipitating product as a white solid, which was used without further 

purification. Step 2: Amide coupling was performed with the aminium chloride salt of 74-2 (58 

mg, 0.14 mmol, 1.0 eq), di-Boc-Dmt (57 mg, 0.14 mmol, 1.0 eq), 6-Cl HOBt (26 mg, 0.15 mmol, 
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1.1 eq), and PyBOP (79 mg, 0.15 mmol, 1.1 eq), followed by DIPEA (0.24 mL, 1.4 mmol, 10 eq). 

Crude product was carried forward to Step 3: TFA deprotection, followed by purification by 

reverse-phase semi-preparative HPLC, as described in General Procedure (C). Final yield not 

calculated. Calculated [M+H]+: 550.17. ESI-MS mass observed: 550.2 (79Br M+H) ,552.2 (81Br 

M+H), 572.2 (79Br M+Na), and 574.2 (81Br M+H). Analytical HPLC retention time: 36.0 min. 

 

Compound 76 

 

76-1 1-acetyl-6-benzyl-8-propyl-2,3-dihydroquinolin-4(1H)-one. Intermediate 76-1 was 

synthesized following General Procedure (A) from intermediate 11-6 (202 mg, 0.72 mmol, 1.0 

eq), and Ac2O (8 mL, excess). Yield: 180 mg, 78%. 1H NMR (500 MHz, Chloroform-d) δ 7.67 (d, 

J = 2.1 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.27 (d, J = 13.4 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.20 – 7.16 

(m, 2H), 5.07 (ddd, J = 12.9, 6.2, 1.2 Hz, 1H), 3.97 (d, J = 10.0 Hz, 2H), 3.31 (td, J = 13.1, 3.7 

Hz, 1H), 2.92 (ddd, J = 19.0, 13.2, 6.1 Hz, 1H), 2.69 – 2.63 (m, 1H), 2.60 (ddd, J = 18.6, 3.7, 1.3 

Hz, 1H), 2.49 (ddd, J = 14.3, 8.7, 5.4 Hz, 2H), 1.95 (s, 3H), 1.69 – 1.44 (m, 2H), 0.87 (t, J = 7.3 

Hz, 3H). 13C NMR (126 MHz, cdcl3) δ 195.73, 171.29, 141.67, 140.53, 140.07, 138.03, 136.08, 

135.76, 128.95, 128.81, 128.70, 126.60, 126.43, 125.90, 125.32, 44.27, 41.56, 39.55, 33.03, 24.22, 

21.98, 13.80. 
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76-2 (R)-N-((R)-1-acetyl-6-benzyl-8-propyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. Intermediate 76-2 was synthesized following General Procedure (B) from 

intermediate 76-1 (180 mg, 0.56 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (204 mg, 1.68 

mmol, 3.0 eq), and Ti(OEt)4 (0.70 mL, 3.36 mmol, 6.0 eq), then NaBH4 (127 mg, 3.36 mmol, 6.0 

eq). Yield not calculated. 1H NMR (500 MHz, Chloroform-d) δ 7.31 (qd, J = 8.0, 3.8 Hz, 3H), 

7.24 – 7.19 (m, 3H), 7.11 (d, J = 2.0 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 4.88 – 4.79 (m, 0.5H), 4.76 

(ddd, J = 13.0, 9.0, 6.6 Hz, 0.5H), 4.52 (dt, J = 4.6, 2.4 Hz, 1H), 3.95 (s, 2H), 2.95 (ddd, J = 13.3, 

9.2, 4.5 Hz, 0.5H), 2.81 (ddd, J = 13.4, 9.1, 5.2 Hz, 0.5H), 2.56 (dtdd, J = 24.1, 11.1, 8.9, 6.2 Hz, 

2H), 2.42 (tdd, J = 10.9, 5.3, 1.9 Hz, 1H), 1.87 (s, 3H), 1.85 – 1.78 (m, 0.5H), 1.63 – 1.43 (m, 2H), 

1.23 (s, 9H), 0.84 (td, J = 7.3, 3.2 Hz, 3H). 13C NMR (126 MHz, cdcl3) δ 140.42, 138.96, 135.47, 

130.71, 129.29, 129.09, 128.76, 128.65, 126.47, 126.32, 55.54, 51.83, 41.71, 39.75, 32.82, 28.76, 

24.06, 22.74, 22.68, 22.24, 13.91. 

 

76 (S)-N-((R)-1-acetyl-6-benzyl-8-propyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-(4-

hydroxy-2,6-dimethylphenyl)propanamide. 76 was synthesized following General Procedure (C) 
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from intermediate 76-2. Step 1: Sulfinamide cleavage was carried out with 76-2 and excess 

concentrated HCl, precipitating product as a white solid, which was used without further 

purification. Step 2: Amide coupling was performed with the aminium chloride salt of 76-2 (60 

mg, 0.17 mmol, 1.0 eq), di-Boc-Dmt (75 mg, 0.18 mmol, 1.1 eq), 6-Cl HOBt (31 mg, 0.18 mmol, 

1.1 eq), and PyBOP (93 mg, 0.18 mmol, 1.1 eq), followed by DIPEA (0.29 mL, 1.67 mmol, 10 

eq). Crude product was carried forward to Step 3: TFA deprotection, followed by purification by 

reverse-phase semi-preparative HPLC, as described in General Procedure (C). Final yield not 

calculated. Calculated [M+H]+: 514.31. ESI-MS mass observed: 514.3 (M+H) and 536.3 (M+Na). 

Analytical HPLC retention time: 39.2 min. 

 

Compound 77 

 

77-1 1-acetyl-6,8-dibenzyl-2,3-dihydroquinolin-4(1H)-one. Intermediate 77-1 was synthesized 

following General Procedure (A) from intermediate 8-6 (310 mg, 0.95 mmol, 1.0 eq), and Ac2O 

(15 mL, excess). Yield: 158 mg, 45%. NMR identified multiple rotational states. 1H NMR (500 

MHz, Chloroform-d) δ 7.70 (dd, J = 14.0, 2.2 Hz, 2H), 7.27 (d, J = 7.1 Hz, 7H), 7.21 (d, J = 6.6 

Hz, 4H), 7.15 (d, J = 7.7 Hz, 2H), 7.12 (d, J = 7.6 Hz, 2H), 7.04 (d, J = 7.4 Hz, 4H), 5.00 (dd, J = 

13.0, 6.1 Hz, 0.5H), 4.01 – 3.94 (m, 0.5H), 3.94 (d, J = 3.5 Hz, 4H), 3.49 (td, J = 14.1, 3.4 Hz, 

0.5H), 3.17 (td, J = 13.1, 3.7 Hz, 0.5H), 2.93 (ddd, J = 19.2, 13.2, 6.1 Hz, 0.5H), 2.81 (ddd, J = 
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19.2, 13.8, 5.7 Hz, 0.5H), 2.67 (dd, J = 17.9, 3.8 Hz, 0.5H), 2.58 (dd, J = 18.7, 3.6 Hz, 0.5H), 2.21 

(s, 1.5H), 2.05 (s, 1.5H). 13C NMR (126 MHz, cdcl3) δ 195.16, 193.85, 170.70, 168.53, 141.27, 

140.49, 140.33, 139.98, 139.74, 139.52, 139.47, 139.17, 137.86, 136.87, 136.72, 136.56, 128.82, 

128.65, 128.60, 128.57, 128.54, 128.48, 128.42, 128.37, 128.31, 128.29, 128.25, 128.16, 128.01, 

126.27, 126.19, 126.04, 126.02, 125.85, 125.45, 77.00, 46.34, 43.69, 41.04, 39.60, 39.05, 38.71, 

37.04, 22.22, 21.63. 

 

77-2 (R)-N-((R)-1-acetyl-6,8-dibenzyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-

sulfinamide. Intermediate 77-2 was synthesized following General Procedure (B) from 

intermediate 77-1 (158 mg, 0.43 mmol, 1.0 eq), (R)-2-methyl-2-propanesulfinamide (155 mg, 1.28 

mmol, 3.0 eq), and Ti(OEt)4 (0.56 mL, 2.56 mmol, 6.0 eq), then NaBH4 (98 mg, 2.56 mmol, 6.0 

eq). Yield not calculated. H NMR not available. 

 

 

77 (S)-N-((R)-1-acetyl-6,8-dibenzyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-amino-3-(4-hydroxy-2,6-

dimethylphenyl)propanamide. 77 was synthesized following General Procedure (C) from 
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intermediate 77-2. Step 1: Sulfinamide cleavage was carried out with 77-2 and excess 

concentrated HCl, precipitating product as a white solid, which was used without further 

purification. Step 2: Amide coupling was performed with the aminium chloride salt of 77-2 (63 

mg, 0.15 mmol, 1.0 eq), di-Boc-Dmt (69 mg, 0.17 mmol, 1.1 eq), 6-Cl HOBt (26 mg, 0.15 mmol, 

1.0 eq), and PyBOP (80 mg, 0.15 mmol, 1.0 eq), followed by DIPEA (0.26 mL, 1.5 mmol, 10 eq). 

Crude product was carried forward to Step 3: TFA deprotection, followed by purification by 

reverse-phase semi-preparative HPLC, as described in General Procedure (C). Final yield not 

calculated. Calculated [M+H]+: 562.3. ESI-MS mass observed: 562.3 (M+H) and 584.3 (M+Na). 

Analytical HPLC retention time: 42.4 min. 
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Chapter 5: Conclusions & Future Directions 

5.1  Observations at C-8 

 The endogenous opioid peptides such as the enkephalins, endorphins, and dynorphins share 

the N-terminal Tyr1-Gly2-Gly3-Phe4-X5 sequence, where X is either Met or Leu, highlighting an 

importance for the conserved tetrapeptide N-terminus. As indicated by pharmacophore models, the 

di-glycine residues primarily act as a flexible spacer region between two key aryl pharmacophores, 

Tyr1 and Phe4. The first peptidomimetic series reported by our lab, synthesized by L.Y.M., A.A.H. 

and A.M.B., exchanged Tyr1 for the dimethyl analogue Dmt and explored the effects of five aryl 

Phe4 bioisosteres located at the C-6 position of our scaffold. Subsequent work continued to probe 

C-6, and eventually branched to N-1. Recently, that exploration has expanded to include 

modifications to the C-8 position, which was the focus of Chapter 2. The 24 substitutions 

investigated here varied widely in length, bulk, lipophilicity, and polarity and included the 

following motifs: alkanes, halogens, amides, esters, acids, saturated heterocycles, flexible and 

inflexible aromatics, H-bond donors, H-bond acceptors, as well as nitrile and amino acid 

substitutions. An intentional emphasis was placed on diversity of chemical matter throughout this 

SAR campaign so as to thoroughly explore the chemical space with a minimal number of 

analogues.  
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 One major issue with prior analogues focusing exclusively on C-6 modifications was a 

high degree of selectivity for MOR over DOR. Though it is not known what specific binding ratio 

is optimal between MOR and DOR, the 20:1 to 200:1 selectivity for MOR limited the bifunctional 

aspect of these compounds. Based on the first fifteen compounds synthesized in the C-8 series, the 

flexible aryl C-8 substitutions of compounds 8 (C-8 = benzyl) and 18 (ethylphenyl) provided the 

best increase in DOR affinity with a modest decrease in MOR affinity, yielding significantly more 

balanced profiles (2:1 and 4:1 respectively). However, all analogues in this series also elicited low-

potency partial DOR agonism whereas the target had been DOR antagonism.  

Subsequent synthetic development allowed access to a C-8 carbonyl motif as in the case of 

the amides, esters, and acid analogues 20-27. These carbonyl-featuring analogues consistently 

displayed the desired DOR antagonist profile. Additionally, the flexible, lipophilic ethyl ester of 

analogue 26 retained the MOR/DOR affinity balance achieved by the flexible aryl C-8 pendants 

(4:1 MOR/DOR), achieving a highly favorable in vitro profile. This favorability was bolstered by 

the in vivo antinociceptive activity of analogue 26, solidifying this as a noteworthy improvement 

over the unsubstituted C-8 lead peptidomimetic 1. This success was replicated with a less flexible, 

less lipophilic dimethyl amide analogue 20. 20 not only retained the optimal functional profile 

(MOR agonist/DOR antagonist), but also maintained an only 6-fold selectivity for MOR over DOR 

in terms of binding affinity. Significantly, analogue 20 reduced ClogP to 2.2 compared to 3.1 for 

the lead 1 and 4.3 for the ethyl ester analogue 26 and maintained antinociceptive activity. These 

two compounds were featured as highlights of the C-8 series in Fig. 13, replicated below with the 

added comparison to analogue 1 for convenience in Fig. 25. The only detraction of 20 is the loss 

of MOR potency—9 nM compared to 1.6 nM for lead 1 and 4.9 for ethyl ester analogue 26. 
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Figure 25. Summary Profiles of Top C-8 In Vivo Candidates 20 and 26 Compared to Lead 1 

 

 Based on the library of C-8 substituted compounds 8-31 discussed at length in Chapter 2, 

the author notes the following observations: 

1. C-8 substituted analogues, with the exception of the saturated amino heterocycles, display 
better binding balance between MOR and DOR (closer to 1:1) than lead peptidomimetic 1. 
 

2. Most substitutions elicit low-potency DOR agonism, though carbonyl motifs reverse this 
trend and reliably provide DOR antagonism.  
 

3. Small, non-polar alkyl chains and non-H-bond-donating carbonyl substituents are well-
tolerated in vivo (i.e. dimethyl amide and esters fully active, secondary amides inactive). 
 

4. Halogens and amines were also poorly tolerated in vivo and offered limited benefit in vitro. 
 

5. C-8 substituted analogues display 1 to 10 nM MOR potency, though deep, lipophilic n-
propyl, n-butyl, ethylphenyl and benzofuranyl substitutions diverge from this trend, 
displaying double-digit nanomolar potency. 
 

6. DOR and KOR potency is consistently 10 nM or higher, with most in the 100 nM range. 
 

7. Duration of action is not significantly improved by C-8 modifications—the longest-acting 
analogues display a 2.5 h duration of action compared to 2.0 h for lead peptidomimetic 1. 
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Presently, analogue 20 is the only compound from this series under further investigation 

for in vivo tolerance and/or dependence. However, 26 may also be a viable candidate for further 

evaluation. 

Chapter 4 discussed the combined effects of N-acetyl and C-8 moieties, which were 

evaluated in vitro and in vivo via a short series of compounds (71-77). These analogues all showed 

highly similar in vitro profiles, with MOR affinity between 0.1 and 0.2 nM and DOR affinity 

ranging from 1 to 2 nM. The one exception, 77, showed a much more balanced 1:1 binding profile 

with 0.4 nM affinity at both MOR and DOR. Functionally, all compounds evaluated were MOR 

agonists/partial DOR agonists. The only analogue showing full antinociceptive activity was the C-

8 methyl analogue 72. Based on this short series of analogues, the pharmacological profile 

associated with these combined N-acetyl/C-8 substitutions is most heavily impacted by the N-

acetyl motif. All analogues in this series are nearly indistinguishable from the N-acetyl/C-8 H lead 

32. As such, these combined substitutions offer no discernible improvement either in vitro or in 

vivo relative to the C-8/N-H analogues. Furthermore, the N-acetyl group sterically precludes a 

number of advantageous C-8 motifs from being incorporated. Specifically, the carbonyl analogues 

which showed the most favorable in vitro profile could not be incorporated in tandem with an N-

acetyl motif. As such, it is recommended that further investigations at C-8 be done in the absence 

of an N-1 modification.  

5.2  Future Directions for C-8 Utilization  

 Moving forward, the C-8 position could be an advantageous position to exploit in order to 

advance various projects yet undeveloped. The first of these potential future directions involves a 

follow-up to the previously unsuccessful 11C-radiolabeling project discussed in Chapter 4. Based 
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on the bioavailability of the small, non-H-bonding carbonyl motifs at C-8 tested thus far, the 

synthesis of a methyl ester at C-8 is suggested (see Fig. 26, analogue 79). Not only will this 

analogue decrease ClogP relative to the bioavailable ethyl ester (ClogP = 3.7 for 79 vs. 4.3 for 26), 

it is predicted that this will maintain bioavailability if existing trends hold true. Furthermore, 79 is 

likely to maintain the MOR agonist/DOR antagonist profile of the carbonyl series, offering an 

additional compound with favorable in vitro pharmacology. 

 

Figure 26. Structures of Proposed Compound 79 and its Radiolabeled Analogue [11C]79 

 

 Should analogue 79 demonstrate the predicted in vivo activity, a radiolabeled analogue 

[11C]79 could then be synthesized and evaluated via PET to observe CNS penetrance. An 

immediately apparent liability of this approach is the positioning of the radiolabel on an ester 

moiety, as esters are notoriously susceptible to hydrolysis. Hydrolysis of the radiolabel would 

increase background signal and limit resolution. However, a similar model is currently used in the 

field of PET for labeling opioid receptors. The radioligand [11C]carfentanil, the synthesis and 

utilization of which has been widely reported in the literature120–131 (including by those in the Peter 

Scott lab at the University of Michigan132–134), also employs a 11C-labeled methyl ester. Using this 

radioligand as a model should facilitate the synthesis and evaluation of the methyl ester 

peptidomimetic [11C]79. Additionally, as demonstrated by the wealth of studies utilizing 
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[11C]carfentanil, hydrolysis of the radioligand is not likely to be a limiting factor in the PET 

analysis of the proposed peptidomimetic radioligand.  

 The radiosynthesis of [11C]79, outlined in Scheme 11, is designed based on the updated 

[11C]carfentanil radiosynthesis recently reported by members of the Scott lab133 and utilizes input 

from Dr. Allan Brooks of said research group. The Boc-protected desmethyl precursor (Boc-25) 

has been synthesized in half-gram quantities and is presently available for utilization, should the 

prerequisite synthesis and pharmacology be executed and yield favorable results.  

 

Scheme 11. Proposed radiosynthesis of [11C]79 

 

 An additional future direction utilizing the C-8 position aims to improve bioavailability by 

incorporation of a glucoserine moiety. Our lab and others have previously reported on the use of a 

glycosylated amino acid residue to boost transport into the CNS.82,108,111 Fig. 27 shows the cyclic 

peptide KSK-103 developed by our lab, which gained in vivo activity via glucoserine attachment 

(VRP-26). By comparison, the unglycosylated peptide showed no activity in vivo. In Fig. 27, one 

can see the overlap between the spatial orientation of the glucoserine motif (shown in blue) of 

VRP-26 and of the proposed compound 80 in relation to the Tyr1 and Phe4 isosteres. 
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Figure 27. Structures of the Unglycosylated Peptide KSK-103, the Bioavailable VRP-26, and 80 

  

 

 As described in Chapter 2 as well as the above C-8 observations, substitutions at the C-8 

position were well-tolerated and had little impact on binding. Despite carbonyl moieties impacting 

the functional profiles of C-8 substituted compounds, even the larger C-8 substitutions show 

similar binding profiles to their smaller or unsubstituted counterparts. Highlighted in Table 19 are 

the in vitro profiles of analogues 1, 30, and 31. The notable similarity between the unsubstituted, 

piperazine-substituted, and Dmt-piperazine-substituted analogues suggests that even the larger 

moieties at this position are well-tolerated, as substitutions at this position are likely able to adopt 

a solvent-accessible conformation. Using this to our advantage, it may be possible to increase BBB 

permeability and solubility with a similarly-sized glucoserine moiety without significantly 

impacting binding at MOR and DOR. Additionally, if this analogue should prove promising, the 

chemistry is presently established to replace the C-6 benzyl pendant with a 2-naphthyl pendant, 

which may improve the in vitro profile.  
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Table 19. Large, Hydrophilic C-8 Substitution Show Limited Impact on Binding Affinity 

  

a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. † indicates n=2. 

 

 The synthesis of analogue 80 was recently attempted as outlined in Scheme 12. However, 

synthesis stalled at the amide coupling between the peptidomimetic acid and glucoserine amine.   
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Scheme 12. Full Synthetic Scheme of Glucoserine Conjugated Peptidomimetic 80 

 

 

 

 The attempted synthesis of 80 begins as previously described for analogue 25. The key 

intermediate Boc-25 was synthesized in 9 steps as outlined in Scheme 12. This key intermediate, 

useful for both the glucoserine conjugate analogue 80 as well as the proposed radioligand [11C]79 
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described above, has been synthesized in half-gram quantities. The glucoserine component was to 

be incorporated using resin-bound peptide chemistry. The glucoserine free acid, available on-hand 

due to the prior synthesis of VRP-26, was loaded onto a Rink resin after Fmoc deprotection of the 

resin. A Rink resin was selected because after ligand cleavage from the resin, the carboxylate is 

converted to a terminal carboxamide which is more CNS penetrant than the carboxylic acid. 

Glucoserine loading onto the resin and subsequent Fmoc deprotection proceeded as expected, 

confirmed by ninhydrin stain and HPLC at each step. Unfortunately, amide coupling between the 

peptidomimetic carboxylate and glucoserine amine—attempted three times using different 

coupling reagents—failed to produce the desired product. There was concern that the sterics of the 

Rink resin could inhibit the amide coupling. Thus, in a fourth attempt, after loading the glucoserine 

onto the resin and removing the Fmoc group, the glucoserine moiety was cleaved with TFA, 

yielding the C-terminal carboxamide and free amine. Unfortunately, the attempted solution-phase 

peptide coupling yielded only a non-volatile oily substance with no relevant peaks in the UV 

spectrum as observed by HPLC. Again, the peptidomimetic component failed to couple to the 

glucoserine amine. Due to time constraints as well as the cost of starting materials, a fifth synthesis 

was not attempted.  

 Reasons for the lack of success of the synthesis outlined in Scheme 12 are elusive. The 

consistent result of an oily substance devoid of any appreciable UV activity is perplexing. This 

oily substance adhered to the HPLC column and was only removed after excessive washing, 

limiting the ability to inject higher concentrations of the unidentified substance. Organic/aqueous 

extraction and vacuum desiccation were unsuccessful at isolating any UV-active product, and TLC 

showed only uncoupled peptidomimetic fragment. It may be the case that the carboxylic acid, after 

reductive amination of the ketone, is significantly less reactive than the THQ carboxylate. Amide 
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couplings were generally low-yielding at the THQ stage and increasing electron density by 

removal of the ketone may further deactivate the acid. Further synthetic optimization may indeed 

prove fruitful toward developing analogue 80, however at present, this project is no longer being 

actively pursued.  

5.3  C-8 Conclusions 

 A diverse set of substitutions at C-8 have been investigated and reported in part in a 2018 

article in the journal ACS Chemical Neuroscience. This SAR campaign has demonstrated that C-

8 substitutions, with only two exceptions, serve to balance the relative affinities at MOR and DOR, 

reducing MOR selectivity. Additionally, while most substitutions demonstrate MOR and DOR 

agonism, carbonyl-substituted ligands decreased efficacy at both receptors yielding MOR 

agonist/DOR antagonist or, in some cases, MOR partial agonist/DOR antagonist ligands. In vivo, 

7 of the 24 ligands featuring C-8 modifications demonstrated full antinociceptive activity while 

two others were partially active. As outlined in section 5.1, some rules governing bioavailability 

in the context of C-8 substitutions have been observed, though further in vivo SAR development 

is needed to bolster these observations. At present, this SAR campaign has shown the greatest 

propensity for maintaining bioavailability of any SAR campaigns explored by our lab, with nearly 

one-third of all compounds showing full antinociceptive activity. The bioavailability of this series, 

paired with the ability to reduce MOR selectivity and to modulate functionality to fit the desired 

MOR agonist/DOR antagonist profile, sets this campaign apart as a successful area of exploration 

in the field of THQ-based bifunctional peptidomimetics. Two key analogues to come from the C-

8 campaign, 20 and 26, have been highlighted in Figs. 13 and 25 noting improvements in several 

areas of drug development. Moving forward, plans are underway for analogue 20 to be evaluated 

for antinociceptive tolerance in vivo. 
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 Two projects that have been partially developed were outlined in section 5.2, presently in 

the category of “future directions.” The background and supporting chemical context for both 

projects are well-founded and both are, by this author’s estimation, high-quality candidates for 

further research. The C-8 position is additionally viable as a useful chemical handle due to its 

predicted access to bulk solvent when bound to the opioid receptors. Based on the limited impact 

of large chemical motifs at C-8 on binding, this position could be utilized in other areas requiring 

a solvent-exposed handle. C-8 may be further functionalized to design fluorescent, proximity-

based (FRET or BRET) probes in an attempt to observe dimerization between opioid receptors 

and other proposed dimer pairs. Additionally, the C-8 position could serve as a branch for linking 

two (bifunctional) pharmacophores in a bivalent ligand. Appropriately spaced bivalent 

peptidomimetics would in theory show increased binding affinity to dimers of opioid receptors 

compared to monovalent ligands. Furthermore, computational modeling indicates the presence of 

a conserved lysine residue near C-8 which could be targeted by C-8 substituted lysine-targeting 

covalent ligands. The need for these chemical probes is not presently well-established; however, 

these potential applications for C-8 substituted ligands highlights the functionality of this position 

on the THQ core. Even so, if none of the aforementioned future directions are further pursued, this 

previously unexplored position has been successfully exploited in a number of bioavailable in vivo 

candidates that may yet provide benefits in the treatment of pain with the promise of reduced side-

effects due to their bifunctional nature.  

5.4  Observations Based on Combined Bicyclic C-6 and N-1 or C-8 Motifs  

 Early peptide-based and peptidomimetic SAR studies had demonstrated that bicyclic 

substitutions at C-6 (or analogously positioned bicyclics in the peptide series) preferentially bound 

to the active-state receptor conformation of MOR and to the inactive-state conformation of DOR. 
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By utilizing a bicyclic C-6 pendant, it was possible to elicit the MOR agonist/DOR antagonist 

profile which was hypothesized to be advantageous for reducing tolerance and dependence while 

maintaining antinociceptive activity in vivo. A limitation of the C-6 bicyclic approach was the high 

degree of binding selectivity for MOR over DOR, which limits the bifunctional aspect of these 

ligands. Chemists previously working on this project (A.A.H. and A.M.B.) had established that N-

acylation could increase DOR affinity, thereby reducing MOR selectivity and achieving a more 

optimal in vitro profile. Furthermore, two notable N-acetylated/bicyclic C-6 analogues (43 and 45) 

had demonstrated a boost in bioavailability whereby both analogues showed robust antinociceptive 

activity. These promising results were expanded upon as described in Chapter 3 by pairing five 

bicyclic C-6 pendants with four N-acyl and N-sulfonyl moieties. The monocyclic benzyl pendant 

and unsubstituted N-H core were included in this series for reference, giving a 6x5 matrix of 30 

analogues—20 of which could be classified as bicyclic/N-substituted analogues. Of these 20 

bicyclic/N-substituted analogues, 14 displayed partial or full MOR agonism and DOR antagonism. 

Based on the results of the study described in Chapter 3, the following observations were made: 

1. Subnanomolar affinity at MOR and DOR can be consistently achieved via N-substitution. 
 

2. The N-mesyl substitution has the most beneficial effect on functional profile, combining DOR 
antagonism with superior MOR potency and efficacy. 

 
3. N-Acetyl and cyclopropyl acyl substitutions provide the best binding profiles (closest to 1:1 

between MOR and DOR), but often elicit partial DOR agonism—especially with planar, fully 
aromatic pendants. 

 
4. Heteroatoms distal to the THQ core are poorly tolerated at MOR (poor potency and efficacy). 

 
5. The THIQ pendant is most effective at achieving the MOR agonist/DOR antagonist profile, 

but also displays high KOR affinity and sporadic KOR efficacy. 
 

6. Bioavailability is unpredictable, though a ClogP < 3.5 is generally preferred. 
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The in vitro profiles achieved through the combination of C-6 and N-1 substitutions 

investigated in Chapter 3 are among the most favorable throughout the peptidomimetic series. 

These typically display less than 10-fold selectivity for MOR over DOR with subnanomolar 

affinity at both receptors. Additionally, specific motifs (THIQ, N-mesyl) could reliably produce 

the desired MOR agonist/DOR antagonist profile with subnanomolar potency at MOR. 

Furthermore, clear functional trends showed ways in which both MOR and DOR efficacy could 

be increased or attenuated. Some highlighted analogues featuring the bicyclic motif at C-6 are 

displayed in Fig. 28.  

 

Figure 28. Bicyclic Leads Displaying MOR Agonism/DOR Antagonism with <10:1 MOR/DOR 
Selectivity & >10:1 MOR/KOR Selectivitya 

 
a Analogues 43 and 59 synthesized by A.A.H. and D.J.M. respectively.  

MOR agonist (92% stim, EC50 = 1.8 nM)
DOR antagonist (<10% stim, Ke = N/A)
MOR/DOR selectivity: 5:1
MOR/KOR selectivity: 200:1
Antinociceptive activity: N/A
Duration of action = N/A ; ClogP = 3.7

MOR agonist (96% stim, EC50 = 0.26 nM)
DOR antagonist (<10% stim, Ke = N/A)
MOR/DOR selectivity: 3:1
MOR/KOR selectivity: 30:1
Antinociceptive activity: 50% MPE
Duration of action = N/A; ClogP = 3.1

MOR agonist (87% stim, EC50 = 0.9 nM)
DOR antagonist (<10% stim, Ke = 2.0 nM)
MOR/DOR selectivity: 6:1
MOR/KOR selectivity: 1200:1
Full antinociceptive activity (100% MPE)
Duration of action = 4.5 h; ClogP = 4.5

MOR agonist (114% stim, EC50 = 0.12 nM)
DOR antagonist (<10% stim, Ke = 0.85 nM)
MOR/DOR selectivity: 9:1
MOR/KOR selectivity: 10:1
Full antinociceptive activity (100% MPE)
Duration of action = 1.5 h; ClogP = 3.1

MOR agonist (95% stim, EC50 = 0.52 nM)
DOR antagonist (<10% stim, Ke = N/A)
MOR/DOR selectivity: 3:1
MOR/KOR selectivity: 300:1
Antinociceptive activity: 60% MPE
Duration of action = N/A; ClogP = 3.8
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 Fig. 28 includes six analogues that display the desired MOR agonist/DOR antagonist 

profile with less than 10-fold selectivity for MOR over DOR as well as 10-fold or more selectivity 

for MOR over KOR. Notably, analogue 70 does not incorporate an N-1 substitution but features 

an analogous carbonyl motif at the proximal C-8 position. Analogues 43, 59, and 56 all display 

full antinociceptive activity, but display at least one limiting characteristic. 43 and 59 both display 

a ClogP of 4.5 or greater, which is associated with poor aqueous solubility. Analogue 56 improves 

ClogP to 3.1, but shows a diminished duration of action of only 1.5 h. Furthermore, the binding 

profile of 56 is less optimal than most others included in Fig. 28, displaying approximately 10-

fold selectivity for MOR over both DOR and KOR. Functionally, 56 is the most efficacious and 

potent at MOR, and displays a subnanomolar Ke at DOR, indicating high potency as an antagonist. 

Analogues in the bottom row display highly favorable in vitro profiles, but either have not yet been 

evaluated in vivo (70) or only show partial activity (55 and 50). These three analogues display 

greater than 90% efficacy at MOR and single-digit to sub-nanomolar potency paired with DOR 

antagonism. In terms of binding, all show 5:1 or less MOR selectivity over DOR, while 70 and 50 

are both 200-fold selective over KOR. These analogues demonstrate the types of favorable in vitro 

profiles achieved through incorporation of bicyclic C-6 pendants in tandem with a carbonyl (or 

sulfonyl) motif at N-1 or C-8. As illustrated in Fig. 28, the specific chemical moieties can vary at 

both positions, however a general pattern of bicyclic C-6 pendant paired with a H-bond acceptor 

at the bottom face of the THQ core is consistent throughout all six analogues.  

5.5  Future Directions of the Bicyclic C-6 Chemotype 

 Utilizing the insights obtained from the SAR study discussed in Chapter 3 and above, one 

can re-evaluate past analogues from the C-6 and N-1 series to guide future ligand design. Following 

the success that the THIQ pendant had offered (potent, high-efficacy MOR agonism and DOR 
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antagonism), an analogous pendant that may afford similar success is the isoindoline pendant 

shown in Fig. 29 in analogues 83, 85 and 86. Removal of a single carbon is unlikely to drastically 

affect the pharmacological profile in vitro, however as has been demonstrated, even very subtle 

changes can have significant effects in vivo. As such, this pendant may be useful for replicating 

the in vitro profile attained by the THIQ pendant while also increasing bioavailability. 

Additionally, this pendant was selected for its low lipophilicity. As discussed, existent in vivo data 

indicate a preference for analogues with a ClogP of less than 3.5 (ideally 3.3 or less). Analogues 

83, 85, and 86 all fit within that optimal window, offering the best opportunity for in vivo activity. 

These three analogues utilize N-1 substitutions including the previously unexplored methyl 

carbamate (83) as well as the cyclopropyl acyl moiety (85) that showed the greatest benefit in 

binding as well as the mesyl moiety (86) which demonstrated optimal functionality. Similar to 56, 

one might predict that 86 will also display high KOR affinity due to the N-mesyl group as well as 

the basic amine at C-6. Nevertheless, synthesis and evaluation of 86 could confirm or aid in the 

refinement of in vitro SAR predictions.  

 

Figure 29. Proposed Bicyclic Analogues 81-86 
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 The methyl carbamate moiety of 83 has been previously reported by A.A.H. and, in the 

context of the C-6 benzyl pendant (33), showed full antinociceptive activity in vivo.95 In fact, it 

was additionally paired with two bicyclic pendants, the 2-naphthyl (87) and isoindanyl (88) 

pendants, shown in Table 20 (all three of which were synthesized by A.A.H.). Unforutnately, the 

bicyclic analogues were both inactive in vivo.  

 

 

a Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]-diprenorphine in membrane 
preparations. Functional data were obtained using agonist induced stimulation of [35S]-GTPγS binding. Potency is 
represented as EC50 (nM) and efficacy as percent maximal stimulation relative to standard agonist DAMGO (MOR), 
DPDPE (DOR), or U69,593 (KOR) at 10 μM. All values are expressed as the mean of three separate assays performed 
in duplicate with standard error of the mean in parentheses. dns = does not stimulate. b Synthesized by A.A.H.  

 

The methyl carbamate is comparable in lipophilicity to the cyclopropyl acyl group discussed 

previously. As such, the bicyclic C-6 pendants proposed for analogues 81-83 are all heterocycles 

which, can negate some of the added lipophilicity. Analogues 81-83 range in lipophilicity between 

3.1 and 3.6 as indicated in Fig. 28. These proposed compounds are predicted to display the 

Ki (nM) EC50 (nM) % stim

# R2 R1 MOR DOR KOR DOR Ki / 
MOR Ki

MOR DOR KOR MOR DOR KOR

33b 0.19
(0.05)

0.51
(0.19)

29
(8)

3 0.78
(0.19)

14
(3)

250
(40)

95
(5)

40
(7)

28
(3)

87b 0.32
(0.08)

0.46†

(0.08)
140†

(70)
2 0.39

(0.21)
dns† dns† 106

(6)
dns† dns†

88b 0.10
(0.02)

0.32
(0.07)

7†

(3)
3 0.39

(0.05)
14†

(3)
170†

(40)
94
(8)

40†

(7)
26†

(3)

81 --- --- --- --- --- --- --- --- --- ---

82 --- --- --- --- --- --- --- --- --- ---

83 --- --- --- --- --- --- --- --- --- ---

Table 20. N-1 Methyl Carbamate Leads 32, 87, & 88,
and Proposed C-6 Heterocyclic Analogues 81-83a
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favorable profile of the leads 32, 87, and 88, however one might expect 81 to display some DOR 

agonism, as the 3-quinolinyl pendant was often a partial DOR agonist when paired with the N-

acetyl and N-cyclopropyl acyl moieties. Additionally, 87 shows some DOR agonism suggesting 

the methyl carbamate may display similar DOR-activating propensity to that of the cyclopropyl 

acyl motif.  

The final analogue proposed in Fig. 29, 84, also incorporates the 3-quinolinyl pendant. 

However, as observed with prior C-8 carbonyl analogues, it is predicted that the dimethyl amide 

motif would maintain the DOR antagonist profile. Analogue 84 is largely designed to mimic the 

2-naphthyl analogue 70 which has shown promise in vitro but displays a ClogP of 3.7 which may 

be unfavorably high. The 3-quinolinyl analogue 84 displays a lower ClogP (2.1) comparable to 

that of the C-6 benzyl/C-8 dimethyl amide analogue 20 which previously showed full activity in 

vivo. Analogue 20 displayed a comparatively poor MOR potency of 9 nM, whereas the bicyclic 

analogue 70 was 5-fold more potent, with an EC50 of 1.8 nM. It is predicted that this increase in 

potency associated with the bicyclic series would also translate to the 3-quinolinyl analogue 84.  

The proposed analogues above represent incremental changes upon a chemotype proven to 

display an optimal or near-optimal in vitro pharmacological profile. As highlighted in Fig. 28, 

analogues featuring a bicyclic C-6 pendant with a carbonyl moiety at the bottom face (N-1/C-8) of 

the THQ core typically show high-potency MOR agonism and DOR antagonism, though in vivo 

activity and duration of action are less predictable. Thus, the goal of the analogues proposed in 

Fig. 29 is to achieve an optimal in vitro profile while targeting low (<3.5) ClogP. As the library of 

analogues displaying related but slightly modified structures and chemical properties expands, it 

may be possible to better predict which motifs will be favored and which are not. Four novel 

bicyclic analogues in Chapter 3 displayed full antinociceptive activity. Analogues 81-86 aim to 
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expand the number of bioavailable ligands so as to better understand correlations between 

structure, chemical properties, in vivo activity, and duration of action. The bicyclic analogues 

discussed thus far have shown promising result in vitro and may yet yield further analogues with 

in vivo profiles comparable to 43. The data presented above and in the preceding chapters merit 

further research into compounds of the bicyclic/N-1 or bicyclic/C-8 carbonyl type.   

5.6 Bicyclic C-6 Conclusions 

 The structural paradigm established by analogues 43 and 45 of two conjugated, aryl or 

semi-aryl rings at C-6 paired with an N-1 acetyl moiety has proven widely successful at achieving 

high affinity at MOR and DOR in tandem with potent, efficacious MOR agonism and DOR 

antagonism. Several analogues replicating this chemotype have demonstrated optimal or near-

optimal in vitro profiles spanning a range of characteristics. Following this structural paradigm, 

efficacious have spanned the range of <10% to 114% at MOR and <10% to 84% at DOR. 

Furthermore, by strategically pairing sets of C-6 and N-1 motifs with one another in a 2D matrix 

setup, trends have emerged that facilitate the design of ligands with tailorable profiles including 

dual agonists, dual antagonists, and anywhere between. This capacity is instrumental in the 

continued evaluation of bifunctional opioid profiles and what impact those have in vivo. Presently, 

the duration of antinociceptive activity achieved by 43 and 45 is yet to be rivaled. However, the 

number of ligands achieving a full antinociceptive effect, albeit for a shorter duration, has 

increased from 2 to 6, with plans for further analogues detailed above. A reliable predictor of 

bioavailability based on in vitro pharmacology, structural traits, or physicochemical properties 

remains elusive. Yet, preliminary data within this series indicates low lipophilicity (ClogP < 3.5) 

is a fair correlate of bioavailability. Further investigation of this chemotype could yield novel 

analogues that reproduce the in vitro and in vivo success observed for 43 outlined in Chapter 4.  
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 In addition to combining bicyclic C-6 pendants with N-acyl or N-sulfonyl motifs, the recent 

analogue 70 has demonstrated that the carbonyl moiety can effectively be translocated to C-8 

(described in Chapter 2), replicating the in vitro profile achieved by 43. Furthermore, by inversion 

of the tertiary amide moiety of 43 as in analogue 70, lipophilicity is decreased considerably (ClogP 

of 4.3 for 43 is reduced to 3.7 for 70). At present, analogue 70 is a prime candidate for evaluation 

in vivo for antinociception.  

5.7 Concluding Remarks 

 As a result of the work presented here, the number of fully active in vivo candidates has 

been expanded by 11. Seven of the in vivo candidates come from the C-8 campaign described in 

Chapter 2 while four come from the bicyclic project of Chapter 3. It should be noted that credit for 

the synthesis of two of those bicyclic analogues (59 and 60) belongs to chemist D.J.M. who also 

contributed to the bicyclic project. These analogues cover a range of in vitro profiles. The further 

evaluation of said in vivo candidates for tolerance and dependence may aid in the identification of 

which pharmacological descriptors best predict reductions in tolerance, dependence, and CPP. 

This work additionally has yielded numerous compounds displaying optimal in vitro profiles—

potent, efficacious MOR agonism and DOR antagonism with similar affinity at both receptors (and 

100-fold selectivity over KOR). The SAR research described here has laid strong foundations for 

future development of analogues in both the C-8 and bicyclic series. It is now established that 

carbonyl C-8 moieties and sulfonyl N-1 motifs (when combined with bicyclic C-6 pendants) can 

reliably achieve the desired MOR agonist/DOR antagonist profile. Additionally, compounds of 

both types of shown robust antinociceptive activity after peripheral administration, suggesting both 

approaches are viable for the development of future analgesics.  
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 Plans for the continued utilization of C-8, bicyclic C-6/N-1, and C-6/C-8 substitution 

patterns have been laid out in this chapter. C-8 may serve as a functional handle for radiolabeling 

and glucoserine conjugation, while proposed C-6/N-1 and C-6/C-8 analogues hold promise for 

further optimization of physicochemical properties as well as in vitro and in vivo pharmacology. 

The work presented here was made possible by foundational SAR work performed by chemists 

Larisa Yeomans, Aubrie Harland, and Aaron Bender. Should future chemists carry on in this field 

of research, it is hoped by this author that the work described herein will provide a similarly strong 

foundation for continued opioid drug discovery.  

  



 291 

 

 

 

References 

 

(1)  Merlin, M. D. Archaeological Evidence for the Tradition of Psychoactive Plant Use in the 
Old World. Econ. Bot. 2003, 57 (3), 295–323. 

(2)  Kunzig, R.; Tzar, J. La Marmotta. Discov. Mag. 2002, 23 (11), 34–40. 

(3)  Brownstein, M. J. A Brief History of Opiates, Opioid Peptides, and Opioid Receptors. 
Proc. Natl. Acad. Sci. U. S. A. 1993, 90 (June), 5391–5393. 

(4)  Krikorian, A. D. Were the Opium Poppy and Opium Known in the Ancient near East? J. 
Hist. Biol. 1975, 8 (1), 95–114. 

(5)  Kritikos, P. G.; Papadaki, S. P. The History of the Poppy and Opium and Their Expansion 
in Antiquity in the Eastern Mediterranean Area. Bull. Narc. 1967, 19 (3). 

(6)  Day, J. Botany Meets Archaeology: People and Plants in the Past. J. Exp. Bot. 2013, 64 
(18), 5805–5816. 

(7)  Coxe, J. R. The Writings of Hippocrates and Galen. Epitomised from the Original Latin 
Translations.; Lindsay and Blakiston: Philadelphia, 1846. 

(8)  Diniejko, A. Victorian Drug Use 
http://www.victorianweb.org/victorian/science/addiction/addiction2.html (accessed Aug 
15, 2018). 

(9)  Foxcroft, L. The Making of Addiction: The Use and Abuse of Opium in Nineteenth-
Century Britain; Ashgate Publishing, Ltd., 2007. 

(10)  Klockgether-Radke, A. P. F. W. Sertürner und die Entdeckung des Morphins TT  - F. W. 
Sertürner and the Discovery of Morphine. Anästhesiol Intensivmed Notfallmed 
Schmerzther 2002, 37 (05), 244–249. 

(11)  Hari, J. Chasing the Scream : The First and Last Days of the War on Drugs; Bloomsbury: 
New York, 2015. 

(12)  Quinones, S. Dreamland: The True Tale of America’s Opiate Epidemic; Bloomberg Press: 
New York, 2015. 

(13)  Macy, B. Dopesick: Doctors, Dealers, and the Drug Company That Addicted America, 
First Edit.; Little, Brown and Company: New York, 2018. 



 292 

(14)  Beckett, A. H.; Casy, A. F. Synthetic Analgesics: Stereochemical Considerations. J. 
Pharm. Pharmacol. 1954, 6, 986–999. 

(15)  Portoghese, P. S. A New Concept on the Mode of Interaction of Narcotic Analgesics with 
Receptors. J. Med. Chem. 1965, 8, 609–616. 

(16)  Snyder, S. H.; Pasternak, G. W. Historical Review: Opioid Receptors. Trends Pharmacol. 
Sci. 2003, 24 (4), 198–205. 

(17)  Pasternak, G. W.; Pan, Y.-X. Mu Opioids and Their Receptors: Evolution of a Concept. 
Pharmacol. Rev. 2013, 65 (4), 1257–1317. 

(18)  Pert, C. B.; Snyder, S. H. Opiate Receptor: Demonstration in Nervous Tissue. Science 
1973, 179 (4077), 1011–1014. 

(19)  Terenius, L. Stereospecific Uptake of Narcotic Analgesics by a Subcellular Fraction of the 
Guinea-Pig Ileum: A Preliminary Communication. Ups. J. Med. Sci. 1973, 78 (3), 150–
152. 

(20)  Appelgren, L.-E.; Terenius, L. Differences in the Autoradiographic Localization of 
Labelled Morphine-Like Analgesics in the Mouse. Acta Physiol. Scand. 1973, 88 (2), 
175–182. 

(21)  Simon, E. J.; Hiller, J. M.; Edelman, I. Stereospecific Binding of the Potent Narcotic 
Analgesic [3H]Etorphine to Rat-Brain Homogenate. Proc. Natl. Acad. Sci. U. S. A. 1973, 
70 (7), 1947–1949. 

(22)  Hughes, J.; Smith, T. W.; Kosterlitz, H. W.; Fothergill, L. A.; Morgan, B. A.; Morris, H. 
R. Identification of Two Related Pentapeptides from the Brain with Potent Opiate Agonist 
Activity. Nature 1975, 258 (5536), 577–579. 

(23)  Li, C. H.; Chung, D. Isolation and Structure of an Untriakontapeptide with Opiate Activity 
from Camel Pituitary Glands. Proc. Natl. Acad. Sci. 1976, 73 (4), 1145–1148. 

(24)  Thompson, R. C.; Mansour, A.; Watson, S. Cloning and Pharmacological Characterization 
of a Rat Mu Opioid Receptor. 1993, 11, 903–913. 

(25)  Wang, J. I. A. B. E. I.; Imai, Y.; Epplert, C. M.; Gregor, P.; Spivak, C. E.; Uhl, G. R. Mu 
Opiate Receptor : CDNA Cloning and Expression. 1993, 90 (November), 10230–10234. 

(26)  Evans, C. J.; Keith, D. E.; Morrison, H.; Magendzo, K.; Evans, C. J.; Jr, D. E. K.; 
Morrison, H.; Magendzo, K.; Edwards, R. H. Cloning of a Delta Opioid Receptor by 
Functional Expression. Science (80-. ). 1992, 258 (5090), 1952–1955. 

(27)  Kieffer, B. L.; Befort, K.; Gaveriaux-ruff, C.; Hirtht, C. G. The Delta Opioid Receptor : 
Isolation of a CDNA by Expression Cloning and Pharmacological Characterization. Proc. 
Natl. Acad. Sci. 1992, 89, 12048–12052. 



 293 

(28)  Meng, F. A. N.; Xie, G.; Thompson, R. C.; Mansour, A.; Goldsteint, A.; Watson, S. J.; 
Akil, H. Cloning and Pharmacological Characterization of a Rat c Opioid Receptor. 1993, 
90 (November), 9954–9958. 

(29)  Li, S.; Zhu, J.; Chen, C.; Chen, Y.; Deriel, J. K.; Ashby, B. Molecular Cloning and 
Expression of a Rat K Opioid Receptor. 1993, 633, 629–633. 

(30)  Broom, D. C.; Nitsche, J. F.; Pintar, J. E.; Rice, K. C.; Woods, J. H.; Traynor, J. R. 
Comparison of Receptor Mechanisms and Efficacy Requirements for Delta-Agonist-
Induced Convulsive Activity and Antinociception in Mice. J. Pharmacol. Exp. Ther. 
2002, 303 (2), 723–729. 

(31)  Perrine, S. A.; Hoshaw, B. A.; Unterwald, E. M. Delta Opioid Receptor Ligands Modulate 
Anxiety-like Behaviors in the Rat. Br. J. Pharmacol. 2006, 147 (8), 864–872. 

(32)  Chu Sin Chung, P.; Boehrer, A.; Stephan, A.; Matifas, A.; Scherrer, G.; Darcq, E.; Befort, 
K.; Kieffer, B. L. Delta Opioid Receptors Expressed in Forebrain GABAergic Neurons 
Are Responsible for SNC80-Induced Seizures. Behav. Brain Res. 2015, 278, 429–434. 

(33)  Schwarzer, C. 30 Years of Dynorphins - New Insights on Their Functions in 
Neuropsychiatric Diseases. Pharmacol. Ther. 2009, 123 (3), 353–370. 

(34)  Casselman, I.; Nock, C. J.; Wohlmuth, H.; Weatherby, R. P.; Heinrich, M. From Local to 
Global - Fifty Years of Research on Salvia Divinorum. J. Ethnopharmacol. 2014, 151 (2), 
768–783. 

(35)  Valdés, L. J.; Díaz, J.; Paul, A. G. Ethnopharmacology of Ska María Pastora (Salvia 
Divinorum, Epling AND Játiva-M.). J. Ethnopharmacol. 1983, 7 (3), 287–312. 

(36)  Cui, X.; Yeliseev, A.; Liu, R. Ligand Interaction, Binding Site and G Protein Activation of 
the Mu Opioid Receptor. Eur. J. Pharmacol. 2013, 702 (1–3), 309–315. 

(37)  Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F. S.; Mathiesen, J. M.; Sunahara, R. K.; 
Pardo, L.; Weis, W. I.; Kobilka, B. K.; Granier, S. Crystal Structure of the Μu-Opioid 
Receptor Bound to a Morphinan Antagonist. Nature 2012, 485 (7398), 321–326. 

(38)  Koehl, A.; Hu, H.; Maeda, S.; Zhang, Y.; Qu, Q.; Paggi, J. M.; Latorraca, N. R.; Hilger, 
D.; Dawson, R.; Matile, H.; Schertler, G. F. X.; Granier, S.; Weis, W. I.; Dror, R. O.; 
Manglik, A.; Skiniotis, G.; Kobilka, B. K. Structure of the Μu-Opioid Receptor–Gi 
Protein Complex. Nature 2018, 558 (7711), 547–552. 

(39)  Sounier, R.; Mas, C.; Steyaert, J.; Laeremans, T.; Manglik, A.; Huang, W.; Kobilka, B. 
K.; Déméné, H.; Granier, S. Propagation of Conformational Changes during Mu-Opioid 
Receptor Activation. Nature 2015, 524, 375–379. 

(40)  Fenalti, G.; Giguere, P. M.; Katritch, V.; Huang, X.-P.; Thompson, A. a; Cherezov, V.; 
Roth, B. L.; Stevens, R. C. Molecular Control of Delta-Opioid Receptor Signalling. 
Nature 2014, 506 (7487), 191–196. 



 294 

(41)  Dror, R. O.; Arlow, D. H.; Maragakis, P.; Mildorf, T. J.; Pan, A. C.; Xu, H.; Borhani, D. 
W.; Shaw, D. E. Activation Mechanism of the Β2 -Adrenergic Receptor. Proc. Natl. Acad. 
Sci. USA 2011, 108 (46), 18684–18689. 

(42)  Nygaard, R.; Zou, Y.; Dror, R. O.; Mildorf, T. J.; Arlow, D. H.; Manglik, A.; Pan, A. C.; 
Liu, C. W.; Fung, J. J.; Bokoch, M. P.; Thian, F. S.; Kobilka, T. S.; Shaw, D. E.; Mueller, 
L.; Prosser, R. S.; Kobilka, B. K. The Dynamic Process of Β2-Adrenergic Receptor 
Activation. Cell 2013, 152 (3), 532–542. 

(43)  Latorraca, N. R.; Venkatakrishnan, A. J.; Dror, R. O. GPCR Dynamics: Structures in 
Motion. Chem. Rev. 2017, 117 (1), 139–155. 

(44)  Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.; 
Sanborn, A. L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; 
Gmeiner, P.; Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; 
Kobilka, B. K. Structural Insights into μ-Opioid Receptor Activation. Nature 2015, 524 
(7565), 315–321. 

(45)  Manglik, A.; Kim, T. H.; Masureel, M.; Altenbach, C.; Yang, Z.; Hilger, D.; Lerch, M. T.; 
Kobilka, T. S.; Thian, F. S.; Hubbell, W. L.; Prosser, R. S.; Kobilka, B. K. Structural 
Insights into the Dynamic Process of Β2-Adrenergic Receptor Signaling. Cell 2015, 161 
(5), 1101–1111. 

(46)  Huang, W.; Manglik, A.; Venkatakrishnan,  a J.; Laeremans, T.; Feinberg, E. N.; Sanborn, 
A. L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; Gmeiner, 
P.; Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; Kobilka, B. K. 
Structural Insights into Μu-Opioid Receptor Activation. Nature 2015, 524 (7565), 315–
321. 

(47)  Venkatakrishnan, A. J.; Ma, A. K.; Fonseca, R.; Latorraca, N. R.; Kelly, B.; Betz, R. M.; 
Asawa, C.; Kobilka, B. K.; Dror, R. O. Stable Networks of Water-Mediated Interactions 
Are Conserved in Activation of Diverse GPCRs; unpublished work accessed 08/28/2018. 

(48)  Mason, J. S.; Bortolato, A.; Weiss, D. R.; Deflorian, F.; Tehan, B.; Marshall, F. H. High 
End GPCR Design: Crafted Ligand Design and Druggability Analysis Using Protein 
Structure, Lipophilic Hotspots and Explicit Water Networks. Silico Pharmacol. 2013, 1 
(23). 

(49)  Blankenship, E.; Vahedi-Faridi, A.; Lodowski, D. T. The High-Resolution Structure of 
Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region 
Essential for Activation. Structure 2015, 23 (12), 2358–2364. 

(50)  Breiten, B.; Lockett, M. R.; Sherman, W.; Fujita, S.; Al-Sayah, M.; Lange, H.; Bowers, C. 
M.; Heroux, A.; Krilov, G.; Whitesides, G. M. Water Networks Contribute to 
Enthalpy/Entropy Compensation in Protein-Ligand Binding. J. Am. Chem. Soc. 2013, 135 
(41), 15579–15584. 

(51)  Bortolato, A.; Tehan, B. G.; Bodnarchuk, M. S.; Essex, J. W.; Mason, J. S. Water 



 295 

Network Perturbation in Ligand Binding: Adenosine A2A Antagonists as a Case Study. J. 
Chem. Inf. Model. 2013, 53 (7), 1700–1713. 

(52)  Yuan, S.; Palczewski, K.; Peng, Q.; Kolinski, M.; Vogel, H.; Filipek, S. The Mechanism 
of Ligand-Induced Activation or Inhibition of μ- And κ-Opioid Receptors. Angew. Chemie 
- Int. Ed. 2015, 54 (26), 7560–7563. 

(53)  Yuan, S.; Filipek, S.; Palczewski, K.; Vogel, H. Activation of G-Protein-Coupled 
Receptors Correlates with the Formation of a Continuous Internal Water Pathway. Nat. 
Commun. 2014, 5 (May), 1–10. 

(54)  Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Han, G. W.; Roth, C. B.; 
Heitman, L. H.; Ijzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for 
Allosteric Regulation of GGPCRs by Sodium Ions. Science (80-. ). 2013, 337 (6091), 
232–236. 

(55)  Mahoney, J. P.; Sunahara, R. K. Mechanistic Insights into GPCR–G Protein Interactions. 
Curr. Opin. Struct. Biol. 2016, 41, 247–254. 

(56)  Al-Hasani, R.; Bruchas, M. R. Molecular Mechanisms of Opioid Receptor-Dependent 
Signaling and Behavior. Anesthesiology 2011, 115 (6), 1. 

(57)  Neer, E. J. Heterotrimeric C Proteins: Organizers of Transmembrane Signals. Cell 1995, 
80 (2), 249–257. 

(58)  Wimpey, T. L.; Chavkin, C. Opioids Activate Both an Inward Rectifier and a Novel 
Voltage-Gated Potassium Conductance in the Hippocampal Formation. Neuron 1991, 6 
(2), 281–289. 

(59)  Nagi, K.; Pineyro, G. Kir3 Channel Signaling Complexes: Focus on Opioid Receptor 
Signaling. Front. Cell. Neurosci. 2014, 8 (July), 1–15. 

(60)  Fujita, W.; Gomes, I.; Devi, L. A. Revolution in GPCR Signalling: Opioid Receptor 
Heteromers as Novel Therapeutic Targets: IUPHAR Review 10. Br. J. Pharmacol. 2014, 
171 (18), 4155–4176. 

(61)  Jiang, Q.; Mosberg, H. I.; Porreca, F. Selective Modulation of Morphine Antinociception, 
but Not Development of Tolerance, by Delta Receptor Agonists. Eur. J. Pharmacol. 1990, 
186 (1), 137–141. 

(62)  Heyman, J. S.; Jiang, Q.; Rothman, R. B.; Mosberg, H. I.; Porreca, F. Modulation of Mu-
Mediated Antinociception by Delta Agonists: Characterization with Antagonists. Eur J 
Pharmacol 1989, 169 (1), 43–52. 

(63)  Porreca, F.; Takemori, A. E.; Sultana, M.; Portoghese, P. S.; Bowen, W. D.; Mosberg, H. 
I. Modulation of Mu-Mediated Antinociception in the Mouse Involves Opioid Delta-2 
Receptors. J. Pharmacol. Exp. Ther. 1992, 263 (1), 147–152. 



 296 

(64)  Abdelhamid, E. E.; Sultana, M.; Portoghese, P. S.; Takemori, A. E. Selective Blockage of 
Delta Opioid Receptors Prevents the Development of Morphine Tolerance and 
Dependence in Mice. J. Pharmacol. Exp. Ther. 1991, 258 (1), 299–303. 

(65)  Hepburn, M. J.; Little, P. J.; Gingras, J.; Kuhn, C. M. Differential Effects of Naltrindole 
on Morphine-Induced Tolerance and Physical Dependence in Rats. J. Pharmacol. Exp. 
Ther. 1997, 281 (3), 1350–1356. 

(66)  Zhu, Y.; King, M. a.; Schuller, A. G. P.; Nitsche, J. F.; Reidl, M.; Elde, R. P.; Unterwald, 
E.; Pasternak, G. W.; Pintar, J. E. Retention of Supraspinal Delta-like Analgesia and Loss 
of Morphine Tolerance in δ Opioid Receptor Knockout Mice. Neuron 1999, 24 (1), 243–
252. 

(67)  Kest, B.; Lee, C. E.; McLemore, G. L.; Inturrisi, C. E. An Antisense 
Oligodeoxynucleotide to the Delta Opioid Receptor (DOR-1) Inhibits Morphine Tolerance 
and Acute Dependence in Mice. Brain Res. Bull. 1996, 39 (3), 185–188. 

(68)  Wells, J. L.; Bartlett, J. L.; Ananthan, S.; Bilsky, E. J. In Vivo Pharmacological 
Characterization of SoRI 9409, a Nonpeptidic Opioid Mu-Agonist/Delta-Antagonist That 
Produces Limited Antinociceptive Tolerance and Attenuates Morphine Physical 
Dependence. J. Pharmacol. Exp. Ther. 2001, 297 (2), 597–605. 

(69)  Ananthan, S.; Khare, N. K.; Saini, S. K.; Seitz, L. E.; Bartlett, J. L.; Davis, P.; Dersch, C. 
M.; Porreca, F.; Rothman, R. B.; Bilsky, E. J. Identification of Opioid Ligands Possessing 
Mixed µ Agonist / δ Antagonist Activity among Pyridomorphinans Derived from 
Naloxone , Oxymorphone , and Hydromorphone. J. Med. Chem. 2003, 47, 1400–1412. 

(70)  Ananthan, S.; Kezar, H. S.; Carter, R. L.; Saini, S. K.; Rice, K. C.; Wells, J. L.; Davis, P.; 
Xu, H.; Dersch, C. M.; Bilsky, E. J.; Porreca, F.; Rothman, R. B. Synthesis, Opioid 
Receptor Binding, and Biological Activities of Naltrexone-Derived Pyrido- and 
Pyrimidomorphinans. J. Med. Chem. 1999, 42 (18), 3527–3538. 

(71)  Ananthan, S. Opioid Ligands With Mixed Mu / Delta Opioid Receptor Interactions : An 
Emerging Approach to Novel Analgesics. AAPS J. 2006, 8 (1), 118–125. 

(72)  Deekonda, S.; Wugalter, L.; Rankin, D.; Largent-Milnes, T. M.; Davis, P.; Wang, Y.; 
Bassirirad, N. M.; Lai, J.; Kulkarni, V.; Vanderah, T. W.; Porreca, F.; Hruby, V. J. Design 
and Synthesis of Novel Bivalent Ligands (MOR and DOR) by Conjugation of Enkephalin 
Analogues with 4-Anilidopiperidine Derivatives. Bioorganic Med. Chem. Lett. 2015, 25 
(20), 4683–4688. 

(73)  Lenard, N. R.; Daniels, D. J.; Portoghese, P. S.; Roerig, S. C. Absence of Conditioned 
Place Preference or Reinstatement with Bivalent Ligands Containing Mu-Opioid Receptor 
Agonist and Delta-Opioid Receptor Antagonist Pharmacophores. Eur. J. Pharmacol. 
2007, 566 (1–3), 75–82. 

(74)  Aceto, M. D.; Harris, L. S.; Negus, S. S.; Banks, M. L.; Hughes, L. D.; Akgün, E.; 
Portoghese, P. S. MDAN-21: A Bivalent Opioid Ligand Containing Mu-Agonist and 



 297 

Delta-Antagonist Pharmacophores and Its Effects in Rhesus Monkeys. Int. J. Med. Chem. 
2012, 2012, 1–6. 

(75)  Daniels, D. J.; Lenard, N. R.; Etienne, C. L.; Law, P.-Y.; Roerig, S. C.; Portoghese, P. S. 
Opioid-Induced Tolerance and Dependence in Mice Is Modulated by the Distance 
between Pharmacophores in a Bivalent Ligand Series. Proc. Natl. Acad. Sci. U. S. A. 
2005, 102 (52), 19208–19213. 

(76)  Gomes, I.; Fujita, W.; Gupta, A.; Saldanha, S. A.; Negri, A.; Pinello, C. E.; Eberhart, C.; 
Roberts, E.; Filizola, M.; Hodder, P.; Devi, L. A. Identification of a Mu-Delta Opioid 
Receptor Heteromer-Biased Agonist with Antinociceptive Activity. Proc. Natl. Acad. Sci. 
2013, 110 (29), 12072–12077. 

(77)  Schiller, P. W.; Fundytus, M. E.; Merovitz, L.; Weltrowska, G.; Nguyen, T. M.; Lemieux, 
C.; Chung, N. N.; Coderre, T. J. The Opioid Mu Agonist/Delta Antagonist DIPP-
NH(2)[Psi] Produces a Potent Analgesic Effect, No Physical Dependence, and Less 
Tolerance than Morphine in Rats. J. Med. Chem. 1999, 42 (18), 3520–3526. 

(78)  Schiller, P. W. Bi- or Multifunctional Opioid Peptide Drugs. Life Sci. 2010, 86 (15–16), 
598–603. 

(79)  Salvadori, S.; Trapella, C.; Fiorini, S.; Negri, L.; Lattanzi, R.; Bryant, S. D.; Jinsmaa, Y.; 
Lazarus, L. H.; Balboni, G. A New Opioid Designed Multiple Ligand Derived from the μ 
Opioid Agonist Endomorphin-2 and the δ Opioid Antagonist Pharmacophore Dmt-Tic. 
Bioorganic Med. Chem. 2007, 15 (22), 6876–6881. 

(80)  Bender, A. M.; Clark, M. J.; Agius, M. P.; Traynor, J. R.; Mosberg, H. I. Synthesis and 
Evaluation of 4-Substituted Piperidines and Piperazines as Balanced Affinity μ Opioid 
Receptor (MOR) Agonist/δ Opioid Receptor (DOR) Antagonist Ligands. Bioorganic Med. 
Chem. Lett. 2014, 24 (2), 548–551. 

(81)  Turnaturi, R.; Aricò, G.; Ronsisvalle, G.; Parenti, C.; Pasquinucci, L. Multitarget Opioid 
Ligands in Pain Relief: New Players in an Old Game. Eur. J. Med. Chem. 2016, 108, 211–
228. 

(82)  Mosberg, H. I.; Yeomans, L.; Anand, J. P.; Porter, V.; Sobczyk-Kojiro, K.; Traynor, J. R.; 
Jutkiewicz, E. M. Development of a Bioavailable μ Opioid Receptor (MOPr) Agonist, δ 
Opioid Receptor (DOPr) Antagonist Peptide That Evokes Antinociception Without 
Development of Acute Tolerance. J. Med. Chem. 2014, 57 (7), 3148–3153. 

(83)  Mosberg, H. I.; Yeomans, L.; Harland, A. a.; Bender, A. M.; Sobczyk-Kojiro, K.; Anand, 
J. P.; Clark, M. J.; Jutkiewicz, E. M.; Traynor, J. R. Opioid Peptidomimetics: Leads for 
the Design of Bioavailable Mixed Efficacy μ Opioid Receptor (MOR) Agonist/δ Opioid 
Receptor (DOR) Antagonist Ligands. J. Med. Chem. 2013, 56 (5), 2139–2149. 

(84)  Purington, L. C.; Pogozheva, I. D.; Traynor, J. R.; Mosberg, H. I. Pentapeptides 
Displaying Mu Opioid Receptor Agonist and Delta Opioid Receptor Partial 
Agonist/Antagonist Properties. J. Med. Chem. 2009, 52 (23), 7724–7731. 



 298 

(85)  Purington, L. C.; Sobczyk-Kojiro, K.; Pogozheva, I. D.; Traynor, J. R.; Mosberg, H. I. 
Development and in Vitro Characterization of a Novel Bifunctional μ-Agonist/δ-
Antagonist Opioid Tetrapeptide. ACS Chem. Biol. 2011, 6 (12), 1375–1381. 

(86)  Harvey, J. H.; Long, D. H.; England, P. M.; Whistler, J. L. Tuned-Affinity Bivalent 
Ligands for the Characterization of Opioid Receptor Heteromers. ACS Med. Chem. Lett. 
2012, 3 (8), 640–644. 

(87)  Dietis, N.; Guerrini, R.; Calo, G.; Salvadori, S.; Rowbotham, D. J.; Lambert, D. G. 
Simultaneous Targeting of Multiple Opioid Receptors: A Strategy to Improve Side-Effect 
Profile. Br. J. Anaesth. 2009, 103 (1), 38–49. 

(88)  Pasternak, G. W.; Pan, Y. X. Mix and Match: Heterodimers and Opioid Tolerance. 
Neuron 2011, 69 (1), 6–8. 

(89)  Anand, J. P.; Purington, L. C.; Pogozheva, I. D.; Traynor, J. R.; Mosberg, H. I. 
Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive 
State Receptor Models. Chem. Biol. Drug Des. 2012, 80 (5), 763–770. 

(90)  Mosberg, H. I.; Omnaas, J. R.; Medzlhradsky, F.; Smith, C. B. Cyclic, Disulfide- and 
Dithioether-Containing Opioid Tetrapeptides: Development of a Ligand with High Delta 
Opioid Receptor Selectivity and Affinity. 1988, 43 (1), 1013–1020. 

(91)  Anand, J. P.; Boyer, B. T.; Mosberg, H. I.; Jutkiewicz, E. M. The Behavioral Effects of a 
Mixed Efficacy Antinociceptive Peptide, VRP26, Following Chronic Administration in 
Mice. Psychopharmacology (Berl). 2016, 233 (13), 2479–2487. 

(92)  Mosberg, H. I.; Montgomery, D.; Bender, A.; Nastase, A.; Henry, S.; Harland, A. 
Peptidomimetics and Methods of Using the Same. US2018/0072677 A1, 2018. 

(93)  Wang, C.; McFayden, I.; Traynor, J. R.; Mosberg, H. I. Design of a High Affinity 
Peptidomimetic Opioid Agonist from Peptide Pharmacophore Models. Bioorganic Med. 
Chem. Lett. 1998, 8, 2685–2688. 

(94)  Harland, A. A.; Yeomans, L.; Griggs, N. W.; Anand, J. P.; Pogozheva, I. D.; Jutkiewicz, 
E. M.; Traynor, J. R.; Mosberg, H. I. Further Optimization and Evaluation of Bioavailable, 
Mixed-Efficacy Mu-Opioid Receptor (MOR) Agonists/Delta-Opioid Receptor (DOR) 
Antagonists: Balancing MOR and DOR Affinities. J. Med. Chem. 2015, 58 (22), 8952–
8969. 

(95)  Harland, A. A.; Bender, A. M.; Griggs, N. W.; Gao, C.; Anand, J. P.; Pogozheva, I. D.; 
Traynor, J. R.; Jutkiewicz, E. M.; Mosberg, H. I. Effects of N-Substitutions on the 
Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid 
Receptor (DOR) Ligands. J. Med. Chem. 2016, 59 (10), 4985–4998. 

(96)  Nastase, A. F.; Griggs, N. W.; Anand, J. P.; Fernandez, T. J.; Harland, A. A.; Trask, T. J.; 
Jutkiewicz, E. M.; Traynor, J. R.; Mosberg, H. I. Synthesis and Pharmacological 
Evaluation of Novel C ‑ 8 Substituted Tetrahydroquinolines as Balanced-Affinity 



 299 

Mu/Delta Opioid Ligands for the Treatment of Pain. ACS Chem. Neurosci. 2018. 

(97)  Bender, A. M.; Griggs, N. W.; Gao, C.; Trask, T. J.; Traynor, J. R.; Mosberg, H. I. Rapid 
Synthesis of Boc-2′,6′-Dimethyl‑L-Tyrosine and Derivatives and Incorporation into 
Opioid Peptidomimetics. ACS Med. Chem. Lett. 2015, 6, 1199–1203. 

(98)  Anand, J. P.; Kochan, K. E.; Nastase, A. F.; Montgomery, D.; Griggs, N. W.; Traynor, J. 
R.; Mosberg, H. I.; Jutkiewicz, E. M. In Vivo Effects of μ Opioid Receptor Agonist/δ 
Opioid Receptor Antagonist Peptidomimetics Following Acute and Repeated 
Administration. Br. J. Pharmacol. 2018. 

(99)  Bender, A. M.; Griggs, N. W.; Anand, J. P.; Traynor, J. R.; Jutkiewicz, E. M.; Mosberg, 
H. I. Asymmetric Synthesis and in Vitro and in Vivo Activity of Tetrahydroquinolines 
Featuring a Diverse Set of Polar Substitutions at the 6 Position as Mixed-E Fficacy μ 
Opioid Receptor/ δ Opioid Receptor Ligands. ACS Chem. Neurosci. 2015, 6, 1428–1435. 

(100)  Harland, A. A.; Pogozheva, I. D.; Griggs, N. W.; Trask, T. J.; Traynor, J. R.; Mosberg, H. 
I. Placement of Hydroxy Moiety on Pendant of Peptidomimetic Scaffold Modulates Mu 
and Kappa Opioid Receptor Efficacy. ACS Chem. Neurosci. 2017, 8 (11), 2549–2557. 

(101)  Hansen, D. W. J.; Mazur, R. H.; Clare, M. Peptides: Structure and Function. In 
Proceedings of the 9th American Peptide Symposium; Deber, C. M., Hruby, V. J., Kopple, 
K. D., Eds.; Pierce Chem. Co.: Rockford, IL: Toronto, 1985; p 491. 

(102)  Lazarus, L. H.; Bryant, S. D.; Salvadori, S.; Geurrini, R.; Balboni, G.; Tsuda, Y.; Okada, 
Y. Dimethyltyrosine, the Viagra of Opioids. Chem. Res. Chinese U. 2006, 22 (2), 258–
262. 

(103)  Balboni, G.; Marzola, E.; Sasaki, Y.; Ambo, A.; Marczak, E. D.; Lazarus, L. H.; 
Salvadori, S. Role of 2′,6′-Dimethyl-l-Tyrosine (Dmt) in Some Opioid Lead Compounds. 
Bioorganic Med. Chem. 2010, 18 (16), 6024–6030. 

(104)  Manhas, M. S.; Jeng, S. J. Cyclization of Omega-Haloamides to Lactams. J. Org. Chem. 
1967, 32 (9), 1246–1248. 

(105)  Anderson, K. W.; Tepe, J. J. Trifluoromethanesulfonic Acid Catalyzed Friedel-Crafts 
Acylation of Aromatics with beta-Lactams. Tetrahedron 2002, 58 (42), 8475–8481. 

(106)  Granier, S.; Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F. S.; Weis, W. I.; Kobilka, 
B. K. Structure of the δ-Opioid Receptor Bound to Naltrindole. Nature 2012, 485 (7398), 
400–404. 

(107)  Pettinger, J.; Jones, K.; Cheeseman, M. D. Lysine-Targeting Covalent Inhibitors. Angew. 
Chemie - Int. Ed. 2017, 56 (48), 15200–15209. 

(108)  Zeiadeh, I.; Najjar, A.; Karaman, R. Strategies for Enhancing the Permeation of CNS-
Active Drugs through the Blood-Brain Barrier: A Review. Molecules 2018, 23 (6). 



 300 

(109)  Salameh, T. S.; Banks, W. A. Delivery of Therapeutic Peptides and Proteins to the CNS, 
1st ed.; Elsevier Inc., 2014; Vol. 71. 

(110)  Pardridge, W. M. Drug Transport across the Blood-Brain Barrier. J. Cereb. Blood Flow 
Metab. 2012, 32 (11), 1959–1972. 

(111)  Li, Y.; Lefever, M. R.; Muthu, D.; Bidlack, J. M.; Bilsky, E. J.; Polt, R. Opioid 
Glycopeptide Analgesics Derived from Endogenous Enkephalins and Endorphins. Future 
Med. Chem. 2012, 4 (2), 205–226. 

(112)  Lowery, J. J.; Raymond, T. J.; Giuvelis, D.; Bidlack, J. M.; Polt, R.; Bilsky, E. J. In Vivo 
Characterization of MMP-2200, a Mixed Delta/Mu Opioid Agonist, in Mice. 2011, 336 
(3), 767–778. 

(113)  Polt, R.; Dhanasekaran, M.; Keyari, C. M. Glycosylated Neuropeptides: A New Vista for 
Neuropsychopharmacology? Med. Res. Rev. 2005, 25 (5), 557–585. 

(114)  Traynor, J. R.; Nahorski, S. R. Modulation by Mu-Opioid Agonists of Guanosine-5’-O-(3-
[35S]Thio)Triphosphate Binding to Membranes from Human Neuroblastoma SH-SY5Y 
Cells. Mol. Pharmacol. 1995, 47 (4), 848–854. 

(115)  Liu, G.; Cogan, D. A.; Ellman, J. A. Catalytic Asymmetric Synthesis of Tert -
Butanesulfinamide . Application to the Asymmetric Synthesis of Amines. J. Am. Chem. 
Soc. 1997, 119, 9913–9914. 

(116)  Ellman, J. A. Applications of Tert-Butanesulfinamide in the Asymmetric Synthesis of 
Amines. Pure Appl. Chem. 2003, 75 (1), 39–46. 

(117)  Guan, X. Y. 2-Methyl-2-Propanesulfinamide (Ellmans Sulfinamide): A Versatile Chiral 
Reagent. Synlett 2010, No. 3, 503–504. 

(118)  Hansen, D. W.; Stapelfeld, A.; Savage, M. A.; Reichman, M.; Hammond, D. L.; Haaseth, 
R. C.; Mosberg, H. I. Systemic Analgesic Activity and Delta-Opioid Selectivity in [2,6-
Dimethyl-Tyr1,D-Pen2,D-Pen5]Enkephalin. J. Med. Chem. 1992, 35, 684–687. 

(119)  Stevenson, G. W.; Folk, J. E.; Linsenmayer, D. C.; Rice, K. C.; Negus, S. S. Opioid 
Interactions in Rhesus Monkeys : Effects of Delta + Mu and Delta + Kappa Agonists on 
Schedule-Controlled Responding and Thermal Nociception. 2003, 307 (3), 1054–1064. 

(120)  Bice, A. N.; Wagner, H. N.; Frost, J. J.; Natarajan, T. K.; Lee, M. C.; Wong, D. F.; 
Dannals, R. F.; Ravert, H. T.; Wilson, A. A.; Links, J. M. Simplified Detection System for 
Neuroreceptor Studies in the Human Brain. J. Nucl. Med. 1986, 27, 184–191. 

(121)  Wagner, H. N. Radiolabeled Drugs as Probes of Central Nervous System Neurons. Clin. 
Chem. 1985, 31 (9), 1521–1524. 

(122)  Nascimento, T. D.; DosSantos, M. F.; Lucas, S.; van Holsbeeck, H.; DeBoer, M.; 
Maslowski, E.; Love, T.; Martikainen, I. K.; Koeppe, R. A.; Smith, Y. R.; Zubieta, J. K.; 



 301 

DaSilva, A. F. μ-Opioid Activation in the Midbrain during Migraine Allodynia – Brief 
Report II. Ann. Clin. Transl. Neurol. 2014, 1 (6), 445–450. 

(123)  Eriksson, O.; Antoni, G. [11C]Carfentanil Binds Preferentially to μ -Opioid Receptor 
Subtype 1 Compared to Subtype 2. Mol. Imaging 2015, 14 (8), 476–483. 

(124)  Dannals, R. F.; Ravert, H. T.; Frost, J. J.; Wilson, A. A.; Burns, H. D.; Wagner, H. N. 
Radiosynthesis of an Opiate Receptor Binding Radiotracer: [11C]Carfentanil. Int. J. Appl. 
Radiat. Isot. 1985, 36 (4), 303–306. 

(125)  Sadzot, B.; Mayberg, H. S.; Frost, J. J. Imaging Opiate Receptors in the Human Brain 
with Positron Emission Tomography. Potential Applications for Drug Addiction Research. 
Acta psychiatrica Belgica. 1990, pp 9–19. 

(126)  Saji, H.; Tsutsumi, D.; Magata, Y.; Iida, Y.; Konishi, J.; Yokoyama, A. Preparation and 
Biodistribution in Mice of [11C]Carfentanil: A Radiopharmaceutical for Studying Brain 
μ-Opioid Receptors by Positron Emission Tomography. Ann. Nucl. Med. 1992, 6 (1), 63–
67. 

(127)  Endres, C. J.; Bencherif, B.; Hilton, J.; Madar, I.; Frost, J. J. Quantification of Brain μ-
Opioid Receptors with [11C]Carfentanil: Reference-Tissue Methods. Nucl. Med. Biol. 
2003, 30 (2), 177–186. 

(128)  Hirvonen, J.; Aalto, S.; Hagelberg, N.; Maksimow, A.; Ingman, K.; Oikonen, V.; 
Virkkala, J.; Någren, K.; Scheinin, H. Measurement of Central μ-Opioid Receptor Binding 
in Vivo with PET and [11C]Carfentanil: A Test-Retest Study in Healthy Subjects. Eur. J. 
Nucl. Med. Mol. Imaging 2009, 36 (2), 275–286. 

(129)  Mick, I.; Myers, J.; Stokes, P. R. A.; Erritzoe, D.; Colasanti, A.; Bowden-Jones, H.; Clark, 
L.; Gunn, R. N.; Rabiner, E. A.; Searle, G. E.; Waldman, A. D.; Parkin, M. C.; Brailsford, 
A. D.; Nutt, D. J.; Lingford-Hughes, A. R. Amphetamine Induced Endogenous Opioid 
Release in the Human Brain Detected with [11C]Carfentanil PET: Replication in an 
Independent Cohort. Int. J. Neuropsychopharmacol. 2014, 17 (12), 2069–2074. 

(130)  Quelch, D. R.; Katsouri, L.; Nutt, D. J.; Parker, C. A.; Tyacke, R. J. Imaging Endogenous 
Opioid Peptide Release with [11C]Carfentanil and [3H]Diprenorphine: Influence of 
Agonist-Induced Internalization. J. Cereb. Blood Flow Metab. 2014, 34 (10), 1604–1612. 

(131)  DaSilva, A. F.; Nascimento, T. D.; DosSantos, M. F.; Lucas, S.; van Holsbeeck, H.; 
DeBoer, M.; Maslowski, E.; Love, T.; Martikainen, I. K.; Koeppe, R. A.; Smith, Y. R.; 
Zubieta, J. K. μ-Opioid Activation in the Prefrontal Cortex in Migraine Attacks – Brief 
Report I. Ann. Clin. Transl. Neurol. 2014, 1 (6), 439–444. 

(132)  Shao, X.; Kilbourn, M. R. A Simple Modification of GE Tracerlab FX C Pro for Rapid 
Sequential Preparation of [11C]Carfentanil and [11C]Raclopride. Appl. Radiat. Isot. 2009, 
67 (4), 602–605. 

(133)  Blecha, J. E.; Henderson, B. D.; Hockley, B. G.; VanBrocklin, H. F.; Zubieta, J.-K.; 



 302 

DaSilva, A. F.; Kilbourn, M. R.; Koeppe, R. A.; Scott, P. J. H.; Shao, X. An Updated 
Synthesis of [ 11 C]Carfentanil for Positron Emission Tomography (PET) Imaging of the 
μ-Opioid Receptor. J. Label. Compd. Radiopharm. 2017, 60 (8), 375–380. 

(134)  Saccone, P. A.; Lindsey, A. M.; Koeppe, R. A.; Zelenock, K. A.; Shao, X.; Sherman, P.; 
Quesada, C. A.; Woods, J. H.; Scott, P. J. H. Intranasal Opioid Administration in Rhesus 
Monkeys: PET Imaging and Antinociception. J. Pharmacol. Exp. Ther. 2016, 359 (2), 
366–373. 

 

 


