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Abstract 
 

Mobile brain and body imaging (MoBI) presents new and promising methods for moving 

traditional research studies out of a controlled laboratory and into the real world. Most current 

neuroimaging techniques require subjects to be stationary in laboratory settings because of both 

hardware and software limitations. Recent developments in mobile brain imaging have utilized 

Electroencephalography (EEG) in conjunction with advanced signal processing techniques such 

as Independent Component Analysis (ICA) to overcome these obstacles and study humans doing 

complex tasks in non-traditional environments. In my first study, I used high density EEG to 

examine the cortical dynamics of subjects walking on a split-belt treadmill with legs moving 

independently of each other at different speeds to investigate how humans adapt to novel 

perturbations. I found significantly increased low and high frequency spectral power across all 

sensorimotor and parietal neural sources during split-belt adaptation compared to normal 

walking, which provides insight into the brain areas and patterns used to accommodate 

locomotor adaptation. In my second study I combined multi-modal sensing and biometric 

devices including EEG, eye tracking, heart rate, accelerometers, and salivary cortisol into a 

portable setup that subjects wore indoors on a treadmill using virtual reality as well as outdoors 

in a public arboretum. Subjects walked for 1 hour each indoors and outdoors while completing a 

free viewing visual search oddball task in virtual reality and in real life. I reported on the 

methods for how to set this experiment up, synchronize all data, and standardize the data in order 

to make it usable as an open access dataset that has been made available to the public online. My 

third study used this data set to examine the P300 event-related potential response during both 
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indoors in virtual reality and outdoors in the arboretum. I found a significantly increased 

amplitude response between 250 to 400 ms across the centro-parietal electrodes that 

distinguished target flags from distractor flags during visual search for both indoor and outdoor 

environments. And finally, for my fourth study I used the same data set to look at the behavioral 

and neural correlates associated with gait dynamics when subjects walked indoors on a treadmill 

vs outdoors in variable terrain while also doing the visual search task. I found significant EEG 

power differences across multiple neural sources that showed increased spectral fluctuations 

throughout the gait cycle when subjects walked outdoors compared to indoors on a treadmill.  

 

The collective studies in this dissertation present new ways of using mobile brain and body 

imaging devices to expand our knowledge of the neural dynamics involved in humans moving in 

complex ways and in variable environments outside of traditional laboratories. 
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Chapter 1 Introduction 
 

Recent developments in human neuroimaging have made it possible to understand how the brain 

and body interact in ways that weren’t possible before. Traditional neuroimaging has relied on 

expensive, heavy, and stationary scanners like functional magnetic resonance imaging (fMRI) 

and positron emission tomography (PET) that often require subjects to remain completely still. 

This poses limited options for tasks that can be studied as well as limited environments in which 

experiments can take place. Advances in neuroimaging technology and software has allowed for 

other technologies like functional near-infrared spectroscopy (fNIRS) (Meyerding and Risius 

2018; Miyai et al. 2001; Suzuki et al. 2004) and electroencephalography (EEG) (Debener et al. 

2012) to be used in mobile experiments that comprise a large range of opportunities for moving 

traditional neuroimaging into more real world situations. For instance, using cheaper and more 

affordable mobile technologies could form the foundation for brain-computer interface (BCI) 

devices which could help in applications like gait assistance or rehabilitation.  

 

Currently, EEG is increasingly becoming more common in mobile research (Minguillon, Lopez-

Gordo, and Pelayo 2017) as it has the advantage of maintaining a high temporal resolution for 

capturing the dynamics in locomotion. Many recent studies have used EEG combined with 

independent component analysis (ICA) to show how the brain functions during locomotion. The 

first study to demonstrate these techniques in locomotion showed anterior cingulate, posterior 

parietal, and sensorimotor electrocortical sources were involved and associated with significant 

intra-stride fluctuations in spectral power during normal treadmill walking (Gwin et al. 2011). 
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Since then, more studies have explored other ways to use EEG show gait dynamics in more 

complex locomotion tasks (Bradford, Lukos, and Ferris 2016; Bruijn, Van Dieën, and 

Daffertshofer 2015; Bulea et al. 2015; Castermans et al. 2012; Gramann et al. 2011; Gwin et al. 

2011; Kline, Poggensee, and Ferris 2014a; Lau, Gwin, and Ferris 2014; Oliveira, Schlink, 

Hairston, et al. 2017; Petersen et al. 2012; Presacco et al. 2011; Seeber et al. 2015; Sipp et al. 

2013; Wagner et al. 2016; Wieser et al. 2010). For instance, one study had subjects walk on an 

inclined treadmill and showed an increase in theta (4-7 Hz) power in anterior cingulate, posterior 

parietal, and sensorimotor areas compared to level walking (Bradford et al. 2016). Other gait 

studies are investigating the mechanism of balance and control. In a stabilized walking 

experiment, subjects walked on a treadmill connected to elastic cords and they found significant 

increases in high beta band (~17 Hz) power around contralateral push off in the left premotor 

area (Bruijn et al. 2015). Another group used  a balance beam mounted on a treadmill to show 

increased theta (4-7 Hz) power in anterior cingulate, anterior parietal, superior dorsolateral-

prefrontal, and medial sensorimotor areas compared to normal treadmill walking (Sipp et al. 

2013). And left and right sensorimotor areas showed significantly less beta (12-30 Hz) power on 

the balance beam compared to walking. However, there are still many known and unknown 

variables that could negatively hinder our ability to capture clean EEG signal as things like line 

noise, eye movements, muscle, and motion related artifacts.  

 

Another popular area of study for mobile brain and body imaging is in perception and navigation 

in the real world. For instance, searching a scene for an object of interest is a common 

occurrence in everyday life for humans (Eckstein 2011; Hopf et al. 2000). Scientists have studied 

this aspect of active perception for decades using tasks like visual search in the fields of 
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psychology and cognitive neuroscience (Braun and Julesz 1998; Luck, Fan, and Hillyard 1993; 

Luck and Ford 1998; Sutton et al. 1965; Treisman and Gelade 1980). EEG has been a useful tool 

in examining the brain in this capacity as it has been shown that attention to visual targets can 

elicit sensory invoked activity in the brain known as event-related potentials (ERPs) (Luck et al. 

1993). The ERPs are best identified by looking at changes in electrocortical activity time-locked 

to presentation of a stimulus (Luck 2005). 

 

The P3 (sometimes referred to as the P300) component is an robust, and well-studied 

electrocortical potential that occurs approximately 250-500 ms after a target or task-relevant 

stimulus has been presented (Patel and Azzam 2005; Ravden and Polich 1999). This particular 

component is quite useful for its wide-scale applications because it is relatively easy to detect, 

and the amplitude is dependent on voluntarily controlled attentional processes. This makes it a 

popular tool for analyzing changes in cognitive load (Debener et al. 2012; Polich 1987; Polich 

and Kok 1995), diagnosing neurological pathologies (Alonso-Prieto et al. 2002; Lagopoulos et 

al. 1998; Münte, Matzke, and Johannes 1997), and developing brain computer interfaces (BCI) 

(Brouwer et al. 2013; Farwell and Donchin 1988; Krusienski et al. 2006). However, most visual 

search implementations rely on using computer screens flashing predefined targets while the 

subject looks straight ahead, maintaining gaze fixating on the screen (Aziz-Zadeh, Liew, and 

Dandekar 2013; Brouwer et al. 2013; Katayama, Miyata, and Yagi 1987; Kazai and Yagi 1999; 

Thickbroom et al. 1991; Thickbroom and Mastaglia 1985). 

 

Recently, a small number of research studies have begun to use visual search tasks with 

relatively natural scene conditions (Graupner et al. 2007; Kaunitz et al. 2014; Ossandon et al. 
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2010). Kaunitz and colleagues were combined EEG and eye tracking to examine and compare 

the cognitive components of visual search in a traditional oddball task to a free viewing search of 

complex, natural images. They relied on using eye tracking to determine fixation event-related 

potentials (fERPs) in which stimulus onset was synchronized to the onset of eye gaze fixation. 

Their findings showed that fERP responses to target detection in free viewing search could elicit 

P3 components that behave similarly to ERP components with unconstrained exploration of 

natural scenes. But even these studies using natural scenes still take place in controlled 

laboratories indoors using computer screens. It is unknown how those findings would translate to 

natural experiences in real world environments outside of a lab. 

 

In order to relate traditional research from laboratory experiments to outdoor, real world settings, 

virtual environments are being used a way to simulate the outdoor experience (Cruz-Neira et al. 

1992; Diemer et al. 2015; Holden 2005; Livingston et al. 2009; McCall and Blascovich 2009; 

Mine, Brooks, and Sequin 1997; Sandstrom, Kaufman, and A. Huettel 1998). Virtual reality is 

becoming more accessible and feasible in research and it provides a naturalistic context in 

feature rich scenarios while still being able to work in controlled laboratory conditions. One of 

the areas that EEG and virtual reality is becoming more popular is in research on the cognitive 

neuroscience of driving. One study (Chin-Teng Lin et al. 2007) recorded EEG during virtual 

reality automobile driving simulations and was able to demonstrate the effectiveness of single 

trial (ERP) analysis. Other studies (Mager et al. 2000; Pugnetti, Meehan, and Mendozzi 2001) 

have reported on the success of using EEG and ERPs to study attention and presence in virtual 

reality. Based on the findings of these previous EEG and virtual reality studies, virtual reality 
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could be a useful tool in exploring the cognitive neuroscience involved in visual search tasks and 

how ERP components change in more natural environments.  

 

The primary goals for this dissertation were to 1) explore new methods for using mobile EEG in 

complex motor tasks to better understand gait dynamics in locomotion and 2) advance the field 

of mobile brain and body imaging (MoBI) systems and test the feasibility of using them in more 

complex real world environments. In chapter 2, I used high density EEG to examine young, 

healthy adults walking on a split-belt treadmill with legs moving independently of each other at 

different speeds to understand the neural dynamics of how humans adapt to complex 

perturbations. In chapter 3, I documented the design of a novel brain and body imaging system 

that combined multi-modal sensing and biometric devices including EEG, eye tracking, heart 

rate, accelerometers, and salivary cortisol into a portable setup. I collected data from 49 healthy 

adults as they used this system while walking indoors in virtual reality completing a free viewing 

visual search task as well as completing an analogous version of that same visual search task in 

the real world outside in a public arboretum. I then showed that the data could be synchronized 

and aligned to the EEG recordings and standardized in a way that would be made freely available 

to the public as an open access data set stored online. In chapter 4, I used that data set to analyze 

the EEG activity to see if I could capture the P300 event-related potential response both indoors 

and outdoors during the visual search task. In chapter 5, I used the same data set to explore the 

neural and behavioral patterns associated with gait dynamics when subjects walked indoors on a 

treadmill and outdoors in variable terrain while also doing the visual search task. The goals of 

these studies were to explore new ways of using mobile brain and body imaging devices to 

expand our knowledge of the neural dynamics involved as humans move in complex ways and in 
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variable real world situation. The following chapters (2-5) contain complete manuscripts that can 

be read as independent studies. The first three chapters have been submitted for publication and 

are under peer-review. The fourth chapter will be submitted for publication shortly. 
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Chapter 2 Electrocortical activity of locomotor adaptation during split-belt 

treadmill walking 

 

Abstract 

Split-belt treadmill walking is a highly studied walking task that has been used to better 

understand the principles of locomotion adaptation. The goal of this study was to use scalp 

electroencephalography (EEG) to determine if there are detectable changes in electrocortical 

activity between normal treadmill walking and split-belt treadmill walking. We had 20 young, 

healthy adults walk for 5 minutes on a normal treadmill (0.5 m/s) both before and after 10 

minutes of asymmetric split-belt walking (one foot at 0.5 m/s, the other at 1.5 m/s) to observe 

changes in locomotor adaptation. We recorded high-density EEG combined with independent 

component analysis (ICA) to find the maximally independent brain sources active during both 

tasks. We clustered similar components into left sensorimotor, right sensorimotor, anterior 

cingulate, and posterior parietal areas, and analyzed their spectral power changes across each 

task as well as their event-related spectral fluctuations synchronized to gait events. We found 

significantly increased theta (4-7 Hz) and gamma (31-80 Hz) band power across all clusters 

during split-belt adaptation compared to normal walking. In addition, there was increased theta 

fluctuation desynchronizations during swing phase of the faster moving foot followed by 

increased theta and alpha (8-12 Hz) synchronizations in double support phase. These fluctuation 

patterns were consistent in most clusters except the right sensorimotor area which suggest that 
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both event-related synchronizations and desynchronizations in theta and alpha power are 

involved and relevant for gait adaptation. The differences between spectral power patterns in left 

and right sensorimotor areas are congruent with previous studies indicating that the two sides 

take on different roles in control of walking. These findings provide new insights into the neural 

correlates of locomotor adaptation and indicate the high-density EEG could be used to study 

cortical correlates to gait adaptation in patient populations. 

 

Introduction 

Motor adaptation is an important mechanism underlying gait biomechanics. It is defined as the 

process of modifying a previously learned movement due to an environmental or contextual 

perturbation on the basis of error feedback such that a new movement pattern is temporarily 

learned to respond to new task demands (Reisman, McLean, and Bastian 2010). If the 

perturbation is removed after the new movement pattern is adapted, the movements will again be 

erroneous in the opposite manner because the adapted pattern still remains. These initial errors 

are termed aftereffects. Motor adaptation to a perturbation happens relatively quickly after 

practiced motor movements and then requires active de-adaptation, rather than passively adjusted 

over time (Roemmich, Long, and Bastian 2016).  

 

Split-belt treadmills have become popular for locomotion adaptation because of the ability to 

control each foot independently. Reisman et al. (Reisman 2005) first demonstrated that healthy 

adults were able adapt their gait in order to walk on a treadmill with one leg moving faster than 

the other. Intra-limb parameters from each individual leg showed a rapid change in order to adapt 

to split-belt walking, but there was no aftereffect present. However, walking parameters 
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associated with interlimb relationships showed slow changes during adaptation and displayed an 

aftereffect during post-adaptation. To understand how this affects sensory perception, one split-

belt study found people had altered perception of leg speed during walking after motor 

adaptation, but that adaptation did not alter the perception of leg position or stepping force 

(Vazquez et al. 2015). Because recalibration of sensory perception occurred in the same domain 

of the applied perturbation during walking (i.e., speed but not position or force), this showed that 

both motor and sensory changes from locomotor adaptation may be linked and there might be 

overlapping mechanisms driving these changes in both domains.  

 

These split-belt studies have led to questions about the neural mechanisms and control during 

locomotor adaptation. Decerebrate cats were able to achieve stable locomotion on a split-belt 

treadmill by slightly shortening step cycle durations and by adjusting durations of bisupport 

phases asymmetrically in the left and right forelimbs (Yanagihara et al. 1993). More recently, 

humans with cerebellar stroke damage were also able make reactive motor adaptations to 

walking on a split-belt treadmill, but they did not display an aftereffect which suggests the 

cerebellum may be essential for predictive, but not reactive locomotor adjustments (Morton 

2006). That same group (Reisman et al. 2007) hypothesized that if cerebellar-cerebral motor 

connections are important in adaptation then cerebral motor damage should also impair 

adaptation. They showed stroke patients with various cerebral damage (not to the cerebellum) 

were still able to make both reactive and adaptive abilities (retained aftereffect) from split-belt 

walking adaptation. This suggests that it may be cerebellar interactions with the brainstem (rather 

than cerebral structures) that are responsible for the neural mechanism underlying this type of 

interlimb control.  
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In order to further investigate the sensorimotor neural mechanism involved in locomotor 

adaptation, there is a need for neuroimaging studies in this field. Recently, it has become 

possible to study human brain function during locomotion using electroencephalography (EEG) 

combined with independent component analysis (ICA) (Bradford et al. 2016; Bruijn et al. 2015; 

Brunner et al. 2016; Bulea et al. 2015; Castermans et al. 2012; Gramann et al. 2011; Gwin et al. 

2011; Haefeli et al. 2011; Kline et al. 2014a; Lau et al. 2014; Petersen et al. 2012; Presacco et al. 

2011; Sipp et al. 2013; Wagner et al. 2012). It was first shown that anterior cingulate, posterior 

parietal, and sensorimotor electrocortical sources were present and exhibited significant intra-

stride fluctuations in spectral power during normal treadmill walking (Gwin et al. 2011). Since 

then, many other studies have compared normal treadmill walking to different gait patterns. 

Compared to normal walking, walking on an incline showed an increase in theta (4-7 Hz) power 

in anterior cingulate, posterior parietal, and sensorimotor areas (Bradford et al. 2016). However, 

there was greater gamma (30-70 Hz) power during level walking for the left sensorimotor and 

anterior cingulate areas. To investigate walking with more natural control, one study used a 

treadmill in which speeds of belts were constantly adjusted based on the pelvis position and 

swing foot velocity and found that the left and right sensorimotor areas showed increased 

desynchronizations in mu (8-13 Hz) and beta (14-30 Hz) frequency (Bulea et al. 2015). In 

addition, the prefrontal and posterior parietal cortices showed phasic low gamma (30-50 Hz) 

power increases during double support and early swing phases of the gait cycle. More gait 

studies are further investigating the mechanism of balance and control. In a stabilized walking 

experiment, subjects walked on a treadmill connected to elastic cords and that showed significant 

increases in high beta band (~17 Hz) power around contralateral push off in the left premotor 
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area (Bruijn et al. 2015). Using a balance beam, one group showed more theta (4-7 Hz) power in 

anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor 

area than treadmill walking (Sipp et al. 2013). While left and right sensorimotor areas had 

significantly less beta (12-30 Hz) power on the balance beam compared to treadmill.  

 

The purpose of this study is to locate the neural sources involved in locomotor adaptation and to 

determine the dynamics of these sources during the different phases of the gait cycle. We expect 

increased theta fluctuations in the left and right sensorimotor areas during split-belt walking 

compared to normal walking, but their patterns would be different due to lateralized 

specializations. This is based on previous studies that show left hemisphere is dominant for 

motor skills across both sides of the body, whereas the right hemisphere may be more specialized 

in goal-directed behavior for motor control (Serrien, Ivry, and Swinnen 2006). Previous studies 

from our lab showed similar lateralized differences in left and right sensorimotor areas during 

both walking and balance (Bradford et al., 2016; Joseph T. Gwin et al., 2011; Sipp et al., 2013). 

We also believe the motor areas along with anterior cingulate and posterior parietal areas will 

exhibit greater spectral fluctuations in alpha, beta, and gamma bands during asymmetric 

adaptation walking as compared to normal walking due to demands of increased balance, 

coordination, and motor planning. 

 

Material and methods 

Participants 

Twenty healthy volunteers with no neurological or locomotor deficits participated in this study. 

All subjects reported themselves as right hand and right foot dominant (15 males; age 24 ± 5.5 
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years). Prior to testing, all subjects signed an informed consent document approved by the human 

subject Institutional Review Board of the University of Michigan. One subject was not able to 

complete the entire protocol due to technical problems during data collection and was excluded 

from data analysis.  

 

Experimental Setup 

EEG. We recorded EEG with a 256-channel active electrode cap (ActiveTwo, Biosemi, 

Amsterdam, The Netherlands, 512 Hz sampling rate). We placed 8 additional sensors on the 

neck of the subject to record neck muscle activity. All electrode locations were recorded relative 

to the subject’s head with a digitizer (Zebris, Isny, Germany). Before data collection, we applied 

electrode gel underneath each sensor and kept all offsets below 20 mV as is recommended by 

Biosemi user manual for optimal data quality. Subjects then put on a small backpack that 

contained the EEG amplifier and battery such that only a fiber optic cable connected the EEG 

system to the data collection computer (Figure 2-1).    
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Figure 2-1. Experimental Setup. Subject wore a backpack holding the EEG battery and analog 

to digital converter. Instrumented split-belt treadmill required subjects to keep each foot on each 

separate belt while walking. Safety bars surrounded the subject at all times. 

 

 

Instrumented treadmill. Subjects walked on an instrumented, split-belt treadmill (1000 Hz; 

Bertec, Columbus, OH) which has separate belts, each with its own motor, for the left and right 

side of the walking surface. Separate force transducers under each belt were used for the 

collection of 6 degree of freedom ground reaction forces from the left and right foot separately.  
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Protocol 

Subjects walked for a total of 1 hour within different testing periods in which the two belts each 

moved at the same speed (‘tied’ configuration) or different speeds (‘split-belt’ configuration) 

according to Table 1. Testing periods were ordered in three blocks, each with the following 

pattern: Pre-adaptation 5 minutes (tied), Adaptation 10 minutes (split), and Post-adaptation 5 

minutes (tied). Standing breaks were given between each walking trial. In addition, blocks 1 and 

3 were identical in order to determine if increased training affected outcomes. Event-related 

spectral perturbations (ERSPs) comparing blocks 1 and 3 showed minimal to no changes 

(Supplemental Figures 2-1 and 2-2). To minimize muscle and movement artifact in the EEG 

data, we instructed subjects to restrain from unnecessary movements (e.g. jaw clenching, eye 

blinking) and to fixate their gaze straight ahead on a white projector screen placed in from of 

them. While there were safety hand rails installed on both sides of the treadmill, subjects were 

not allowed to hold onto them during walking unless they were needed for safety. 

 

Table 2-1 Belt speeds for each condition within each block. 

  First 5 Minutes Middle 10 Minutes Last 5 Minutes 
 Left Belt Right Belt Left Belt Right Belt Left Belt Right Belt 

Block 1 0.5 m/s 0.5 m/s 0.5 m/s 1.5 m/s 0.5 m/s 0.5 m/s 

Block 2 0.5 m/s 0.5 m/s 1/5 m/s 0.5 m/s 1.5 m/s 1.5 m/s 

Block 3 0.5 m/s 0.5 m/s 0.5 m/s 1.5 m/s 0.5 m/s 0.5 m/s 

 

 

Data Processing 

We synchronized force plates measurements and EEG by sending a 2 Hz square wave signal to 

both systems simultaneously. We verified data alignment offline after each participant and 

downsampled force plate data to 512 Hz to match EEG sampling rate. 
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Gait Cycle Events. We used the vertical ground reaction forces obtained from the instrumented 

treadmill to determine gait cycle events. When force exceeded or dropped below a 15 N 

threshold (Kersting 2011; Sinclair et al. 2013; Zeni, Richards, and Higginson 2008), we marked 

heel strike or toe off, respectively, for each foot separately. This determined four distinct gait 

events: right heel strike (RHS), right toe off (RTO), left heel strike (LHS), and left toe off (LTO). 

All gait cycle events greater than 3 standard deviations from the mean time of their cycle periods 

were removed as outliers and not included in further analyses. 

 

Gait parameters were measured using the double support time as a percentage of stride time. This 

refers to the time in which both feet were on the treadmill (as measured by the treadmill’s force 

plate ground reaction forces) expressed as a percentage of the stride time for each leg. For one 

complete gait cycle, there are two periods of double support designated as slow double support—

time from fast leg heel strike to slow leg toe off, and fast double support—time from slow leg 

heel strike to fast leg toe off. 

 

EEG cortical source localization. We performed all EEG analyses in MATLAB (The 

MathWorks, Natick, MA) using custom scripts based on EEGLAB (Delorme and Makeig 2004). 

First, all EEG was downsampled to 256 Hz and high pass filtered at 1 Hz to remove drift. All 

blocks were concatenated together for all downstream processing. Channel data was re-

referenced to the common average reference and the EEGLAB plug-in, Cleanline 

(https://www.nitrc.org/projects/cleanline/), was used to remove 60 Hz line noise. In order to 

minimize gait-related movement artifact from the EEG data, we first removed EEG channels 
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with activity highly correlated with the gait cycle as described by Anderson and colleagues in a 

previous study (Oliveira, Schlink, David Hairston, et al. 2017). Briefly, individual channel 

activations were first smoothed with a 128 point moving average filter and then epoched into 

complete gait cycles (RHS to RHS). The mean amplitude of each time point across all gait cycles 

was used to create an average waveform template per channel. Every individual gait cycle for 

each channel was cross-correlated against the average template for that channel. Individual 

channels with highly correlated (r > 0.4) gait cycles for more than 75% of the total number of 

gait cycles were discarded. We then removed bad EEG channels as described previously by 

Gwin et al. (Gwin et al. 2010, 2011). Briefly, we removed bad channels using standard statistical 

thresholds (i.e., range, SD, kurtosis). Next, we applied Artifact Subspace Reconstruction (ASR) 

(Mullen et al. 2013) with a standard deviation threshold of 20 to correct for time segments 

induced with high variable noise and ungrounding. We then used the EMDLAB toolbox (Al-

Subari et al. 2015) to apply Ensemble Empirical Mode Decomposition (EEMD) (WU and 

HUANG 2009), which performs selective low-pass filtering to target high frequency activity 

associated with muscle and noise. We isolated the first intrinsic mode function (IMF1) of each 

channel, which contained high frequencies over 40 Hz and ran Canonical Correlation Analysis 

(CCA) (Hotelling 1936) on IMF1 and a copy of IMF1 time-lagged by one data point (Friman et 

al. 2004). CCA components were removed from IMF1 based on interquartile range to target 

high-frequency data that is well-clustered by CCA (Safieddine et al. 2012). Next, we used CCA 

to find and remove low frequency components correlated with motion-related artifact. CCA was 

run on clean channel data that was high-pass filtered at 4 Hz to isolate the first low frequency 

component and then subsequently subtracted from the channels. After data cleaning, channels 

that were removed in the initial pre-processing steps were re-interpolated to full rank and then 
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common average referenced. Adaptive mixture independent component analysis (AMICA) (J A 

Palmer et al. 2008; Palmer, Kreutz-Delgado, and Makeig 2006) was applied to the cleaned 

channel time series using Principal Component Analysis to parse the data into 100 spatially 

fixed, maximally temporally independent component (IC) signals (Makeig et al. 1996) per 

subject. The DIPFIT function in EEGLAB (Oostenveld and Oostendorp 2002) modeled each 

independent component as an equivalent current dipole within a boundary element head model 

based on the Montreal Neurological Institute standard brain (Quebec). We removed independent 

components from further analysis if their best-fit equivalent current dipole accounted for less 

than 85% of the variance seen at the scalp (Gwin et al. 2011), or if their scalp map or spectra 

were indicative of an eye or muscle artifact (T. P. Jung et al. 2000; T.-P. Jung, Makeig, 

Humphries, et al. 2000).  

 

EEG group analyses. We used a k-means clustering algorithm across all independent 

components from all 19 subjects on vectors jointly coding similarities in dipole location, scalp 

topography, and frequency spectra (Gramann, Onton, et al. 2010; Jung et al. 2001) and set the 

number of clusters to 13 to agree with previous studies from our lab(Bradford et al. 2016; Gwin 

et al. 2010, 2011; Sipp et al. 2013). Four of the 13 clusters (Figure 2-2) were located in cortical 

areas that were the most relevant for the locomotor task and were similar to those found in 

previous studies (Bradford et al. 2016; Gwin et al. 2011; Sipp et al. 2013): Left Sensorimotor (22 

sources, 12 subjects), Right Sensorimotor (20 sources, 9 subjects), Anterior Cingulate (19 

sources, 10 subjects), and Posterior Parietal (21 sources, 10 subjects). All further analyses were 

performed only on these four clusters of interest. Localization of all independent components and 

associated clusters used for analysis are displayed in Figure 2. We computed log power spectra 
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for each cluster for four conditions: (1) Pre-adaptation, all blocks combined, (2) post-

adaptation, blocks 1 and 3 combined, (3) split-belt with left foot faster adaptation, block 2, and 

(4) split-belt with right foot faster adaptation, blocks 1 and 3 combined. Blocks 1 and 3 were 

combined for group analyses due to similar patterns shows in event-related spectral perturbations 

(ERSPs) (Supplemental Figures 2-1 and 2-2). Due to large amounts of noise artifact in the fastest 

post-adaptation walking trial in block 2 (1.5 m/s), that trial was excluded from further data 

analyses for all subjects. A repeated measures ANOVA test was used to evaluate mean spectral 

power differences among conditions (α = 0.05).  

 

 

Figure 2-2. Clusters of independent component (IC) EEG sources. Clusters are plotted on the 

Montreal Neurological Institute brain. Left sensorimotor (red), right sensorimotor (blue), anterior 

cingulate (green), and posterior parietal (yellow). Top: small spheres indicate the equivalent 

current dipole locations of each clustered IC source. Bottom: larger spheres show the locations of 

the cluster centroids. 
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For time-frequency analyses, we examined the same four conditions. All conditions for each 

subject were epoched at each RHS to produce discrete gait cycle trials across the experiment. For 

each gait cycle, we computed a single trial time-frequency log spectrogram for each independent 

component source activity using three-cycle Morlet wavelets. To allow us to examine time-

sensitive cortical activity changes related to gait events, the spectrograms were time-locked to 

the subsequent gait events (i.e., LHS, RTO, LTO) and linearly time warped so each gait event 

occurred at the same latency in every trial (Gwin et al. 2011; Makeig 1993a). For visualizing 

spectral changes across gait cycles, we subtracted a baseline (calculated as the average log 

spectrum across all gait cycles within each condition) from the log spectrum for each individual 

gait cycle within each condition. Thus, these analyses show spectral change from baseline and 

are referred to as event-related spectral perturbations (ERSPs) (Gwin et al. 2011; Onton et al. 

2006). We averaged the ERSP plots across each independent component in each cluster to make 

a grand mean ERSP for each cluster for all conditions (Figure 2-3). Statistically significant 

differences from baseline frequency power across the gait cycle (p < 0.01) were determined 

using a 200-iteration bootstrapping method available in EEGLAB (Delorme and Makeig 2004) 

separately for each condition. ERSP data were significance masked, such that all nonsignificant 

regions were set to zero. 

 

Results 

Gait analysis showed that the percentage of time spent in double support for both legs were 

significantly different in the split-belt adaptation periods than in the pre and post-adaptation 

conditions. The left foot forward during pre-adaptation was in double support on average 18.3% 
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(S.D. = 1.6%) of the gait cycle and the right foot forward was at 17.6% (S.D. = 1.5%), while 

during split-belt walking the slow double support foot was only 12.3% (S.D. = 0.9%) of the gait 

cycle and the fast double support foot at 11.6% (S.D. = 0.8%). However, for post-adaptation the 

double support percentages increased again to 17.6% (S.D. = 1.3%) when the left foot was 

forward and 17.7% (S.D. = 1.7%) when the right foot was forward.  

 

There were many significant EEG spectral power interactions (Table 2-2, Figure 2-3) across 

multiple frequency bands in all cortical areas among the four conditions (pre-adaptation, post-

adaptation, left foot faster adaptation, and right foot faster adaptation). The left sensorimotor 

area showed both left and right foot faster adaptation had significantly greater theta band (4-7 

Hz) power than both pre and post-adaptation. Alpha band (8-12 Hz) didn’t show significant 

changes from pre or post-adaptation compared to either foot faster adaptation, but post-

adaptation was significantly greater than pre-adaptation in alpha power. Left foot faster 

adaptation showed significantly greater gamma power (31-80 Hz) than post-adaptation. 

Similarly, right sensorimotor area showed both left and right foot faster adaptation had 

significantly greater theta power than both pre and post-adaptation. Post-adaptation showed 

significantly greater alpha power than pre-adaptation, and also left foot faster adaptation was 

greater than pre-adaptation. Both left and right foot faster adaptation showed greater gamma 

band power compared to post-adaptation. Anterior cingulate showed both left and right foot 

faster adaptation had significant power increase across theta power compared to post-

adaptation, as well as left foot faster adaptation was greater than pre-adaptation. Both alpha and 

beta (13-30 Hz) bands showed increased power in both left and right foot faster adaptation 

compared to pre-adaptation. Gamma band was significantly greater power for left foot faster 
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adaptation than post-adaptation. Posterior Parietal area showed significantly greater theta, beta, 

and gamma powers for right foot faster adaptation compared to pre-adaptation. And both left 

and right foot faster adaptation also showed greater gamma power than post-adaptation. 

 

 

Figure 2-3. Grand average spectral power for each electrocortical cluster during normal 

walking. Conditions are pre-adaptation (light blue), normal walking, post-adaptation (dark 

blue), split-belt walking, left foot faster adaptation (red), and split-belt walking, right foot faster 

adaptation (pink). The dashed lines mark boundaries of frequency bands—theta (3-7 Hz), alpha 

(8-12 Hz), beta (13-30 Hz), and gamma (31-80 Hz). Red shaded regions indicate at least one or 

both split-belt walking conditions are significantly greater than at least one or both normal 

walking conditions. Blue shaded region indicates normal walking, post-adaptation is 

significantly greater than pre-adaptation. Purple shaded region indicates normal walking, post-

adaptation is significantly greater than pre-adaptation and split-belt walking, left foot faster 

adaptation is greater than pre-adaptation. For specific pairwise statistics see Table 2-2. 
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Table 2-2. Significant spectral differences between pairs of conditions. 

 Theta (4-7 Hz) Alpha (8-12 Hz) Beta (13-30 Hz) Gamma (31-80 Hz) 

Left 

Sensorimotor 

Cortex 

 

Spl (L) > Pre (p=0.006) 

Spl (L) > Post (p=0.002) 

Spl (R) > Pre (p=0.034) 

Spl (R) > Post (p=0.017) 
 

Post > Pre (p=0.011) 
 

 
Spl (L) > Post (p=0.022) 

Right  

Sensorimotor 

Cortex 

 

Spl (L) > Pre (p=0.002) 

Spl (L) > Post (p<0.001) 

Spl (R) > Pre (p=0.001) 

Spl (R) > Post (p<0.001) 
 

Spl (L) > Pre (p=0.03) 

Post > Pre (p=0.028) 
 

Spl (L) > Post (p=0.05) 

Spl (R) > Post (p=0.014) 

Anterior 

Cingulate 

 

Spl (L) > Pre (p=0.037) 

Spl (L) > Post (p=0.002) 

Spl (R) > Post (p<0.001) 
 

Spl (L) > Pre (p=0.041) 

Spl (R) > Pre (p=0.006) 

Spl (L) > Pre (p=0.014) 

Spl (R) > Pre (p=0.009) 
Spl (L) > Post (p=0.011) 

Posterior 

Parietal 
Spl (R) > Pre (p<0.001)  Spl (R) > Pre (p=0.006) 

 

Spl (L) > Post (p=0.001) 

Spl (R) > Pre (p=0.001) 

Spl (R) > Post (p=0.037) 
 

Spl (L) = Left foot faster adaptation, Spl (R) = Right foot faster adaptation, Pre = Pre-adaptation, 

Post = Post-adaptation 

 

Fluctuations of spectral power during the gait cycle 

All four brain areas showed significant spectral power fluctuations in theta, alpha, beta, and 

gamma bands across the gait cycle during pre-adaptation, post-adaptation, left foot faster 

adaptation, and right foot faster adaptation (Figure 2-4). Left sensorimotor area showed 

significant alpha and beta power synchronizations during late left foot swing phase between left 

toe off (LTO) and left heel strike (LHS) and the following double support phase between left 

heel strike (LHS) and right toe off (RTO) for pre-adaptation as well as theta synchronization 

right before and after RTO. However, during post-adaptation both the theta and beta power 

synchronizations were significantly reduced. For both left and right foot faster adaptation there 

was a lateralized result such that there was significant beta and gamma power during double 

support (slow foot leading) followed by theta power desynchronizations during late swing phase 
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of the faster moving foot and then theta and alpha synchronization as the faster foot came down 

for double support.   

 

 

Figure 2-4. Grand average normalized spectrograms. Significance masked (p < 0.01) for left 

sensorimotor, right sensorimotor, anterior cingulate, and posterior parietal clusters during pre-

adaptation (“PRE”), post-adaptation (“POST”), left foot faster adaptation (“LEFT”), and right 

foot faster adaptation (“RIGHT”). All plots represent one gait cycle from right heel strike (RHS) 

to RHS, with left toe off (LTO), right toe off (RTO), and left heel strike (LHS) designated by 

dashed vertical lines. Nonsignificant values were set to zero (green). 

 

Right sensorimotor area also showed significant alpha and beta synchronizations during late right 

foot swing phase and the following double support phase during both pre and post-adaptation. 
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However, there was no significant fluctuation differences between the two tied belt conditions. 

Unlike the left sensorimotor ERSPs, right sensorimotor fluctuations during left and right foot 

faster adaptation were not completely lateralized. During left foot faster adaptation, there was 

significant beta and gamma power during double support (slow foot leading) followed by theta 

power desynchronizations during late swing phase of the faster moving foot and then theta 

synchronization as the faster foot came down for double support. There was also beta 

desynchronization during right foot swing phase. For right foot faster adaptation there the fast 

foot leading double support phase contained theta, alpha, and beta synchronizations that 

extended through slow foot swing phase. There were no fluctuations during double support 

before the faster foot (right) swing phase, which showed both theta and alpha 

desynchronizations.  

 

The anterior cingulate cluster showed a significant reduction of theta desynchronization during 

left foot swing phase from pre to post-adaptation. But there were no large fluctuations across 

alpha or beta band as the sensorimotor areas showed. However, there were lateralized 

fluctuations for both left and right foot faster adaptation with alpha, beta, and gamma power 

synchronizations during double support (slow foot leading) followed by theta and alpha power 

desynchronizations during faster foot swing phase and then theta and alpha synchronizations 

during the following double support (fast foot leading).  

 

Posterior parietal area did not show any large fluctuations during pre and post-adaptation. But 

there were lateralized fluctuations for both left and right foot faster adaptation with beta and 

gamma power synchronizations during double support (slow foot leading) followed by theta. 
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Alpha, and gamma power desynchronizations during faster foot swing phase and then theta and 

alpha synchronizations during the following double support (fast foot leading). There was also 

beta and gamma synchronizations present during the end of swing phase of the slow foot. 

 

Discussion 

The results of this study showed many significant differences in electrocortical activity during a 

locomotor adaptation task in young, healthy adults walking on a split-belt treadmill. There was 

always greater spectral power in theta (4-7 Hz) and gamma (31-80 Hz) bands during split-belt 

adaptation compared to normal walking in the left sensorimotor, right sensorimotor, anterior 

cingulate, and posterior parietal clusters.  

 

Theta Band Power Differences Among Conditions 

Theta band consistently showed greater spectral power in split-belt adaptation walking 

compared with pre and post-adaptation tied belt walking conditions for all clusters as we 

predicted in our hypothesis. Similarly, the ERSPs for all clusters showed strong theta 

synchronizations in one or both double support phases across the gait cycle during both left foot 

and right foot faster adaptation conditions while strong theta desynchronizations happened 

during swing phase of the faster moving foot in the adaptation conditions. This might suggest 

that theta fluctuations are necessary for asymmetric walking but not present for normal walking. 

Since the faster moving foot takes a quicker and longer step than the slower foot, foot placement 

is critical and stabilization afterwards is more challenging. This suggests that the increased theta 

band power synchronizations during double support might be important for balance and 

stabilization while the theta desynchronizations during swing phase of the faster moving foot is 
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needed to facilitate planning foot placement when more control is necessary compared to normal 

walking. Previous studies have also found increased theta power in similar brain areas for 

locomotor tasks that involve more motor control than normal walking (Bradford et al. 2016; 

Bulea et al. 2015; Sipp et al. 2013; Slobounov et al. 2009). Incline treadmill walking was shown 

to have increased theta band power across the entire gait cycle compared to flat treadmill 

walking (Bradford et al. 2016) in left sensorimotor, medial sensorimotor, anterior cingulate, and 

posterior parietal areas. It was also shown that the largest differences occurred at heel strike and 

toe off which suggests the transition between single and double support may be a critical time 

period for the control of foot adjustments. Theta power was also shown to significantly increase 

for active, speed-adjusted treadmill walking vs normal, passive treadmill walking in prefrontal, 

left premotor, and right motor cortices (Bulea et al. 2015). Balance beam treadmill walking 

increased theta power compared to normal treadmill walking in the anterior cingulate, anterior 

parietal, right sensorimotor, medial sensorimotor, and dorsolateral prefrontal cortices (Sipp et al. 

2013). That study also showed increased theta synchronizations during the moment of balance 

loss before falling off the beam. Similarly, theta power increased when participants stood on an 

unstable vs stable surface (Hülsdünker et al. 2015; Slobounov et al. 2009). Another study 

showed similar increased theta desynchronizations during single support with subject walking 

with eyes closed compared to open (Oliveira, Schlink, Hairston, et al. 2017). Our results support 

the theory that theta power modulation increases during more demanding motor tasks compared 

to normal walking.   

 

Alpha Power Differences During Split-Belt Adaptation 
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Significant alpha band (8-12 Hz) power fluctuations appeared throughout all clusters during 

split-belt adaptation walking. Left sensorimotor area showed a significant alpha synchronization 

during double support after LHS during left foot faster adaptation but not after RHS during right 

foot faster adaptation. Conversely right sensorimotor area showed a significant alpha 

synchronization during double support after RHS during right foot faster adaptation but not after 

LHS during left foot faster adaptation. Similarly, both anterior cingulate and posterior parietal 

showed increased alpha desynchronizations during swing phase of the faster foot for both left 

and right foot faster adaptation conditions along with increased alpha synchronizations during 

both double support phases while none of these patterns were seen in any of the pre or post-

adaptation conditions. This suggests an important role for alpha power across both swing and 

stance phases of the gait cycle, which was most prevalent during asymmetric walking. Other 

studies support this by also showing similar patterns of increased alpha (mu) desynchronizations 

during tasks that require increased cortical involvement (Bulea et al. 2015; Wagner et al. 2012; 

Wieser et al. 2010). Stepping movements showed sustained alpha power depression over the 

primary sensory motor regions when changing direction between flexion and extension phase 

(Wieser et al. 2010). Robot assisted treadmill walking showed suppression of mu rhythms over 

the right primary motor cortex during active vs passive mode (Wagner et al. 2012). Another 

study showed sustained mu band desynchronization in the left premotor, left motor, right motor, 

and posterior parietal cortices during walking compared to rest as well as consistent mu 

desynchronizations in all cluster except prefrontal cortex for active vs passive treadmill walking 

(Bulea et al. 2015). Oliveira et al. (Oliveira, Schlink, Hairston, et al. 2017) also showed increased 

alpha synchronizations in left and right somatosensory cortex during double support (ipsilateral 

foot ahead) when subjects walked with eyes closed compared to with eyes open. Our results 
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confirm our hypothesis that alpha power fluctuations are used in complex walking patterns 

compared to normal walking. 

 

Left and Right Sensorimotor Lateralization Differences 

While left and right sensorimotor areas showed similar ERSP patterns, there were clear 

lateralized differences in beta band (13-30 Hz) fluctuations. Beta synchronizations were present 

in both left and right sensorimotor areas at the end of ipsilateral swing phase into double support 

during tied walking pre-adaptation, but beta power synchronization was significantly reduced in 

the left sensorimotor area during post-adaptation while it was sustained in right sensorimotor 

area. Left sensorimotor also showed beta synchronization during double support before the fast 

leg swing phase for both left and right foot faster adaptation while right sensorimotor only 

showed this pattern for left foot faster adaptation but not right foot faster adaptation. One study 

(Bruijn et al. 2015) also found significant increases in beta power when subjects walked on a 

treadmill while being laterally stabilized by elastic cords compared to normal walking. The 

lateralized differences between left and right sensorimotor areas has also been shown in previous 

studies (Bradford et al. 2016; Bruijn et al. 2015; Sipp et al. 2013). Balance beam walking showed 

no significant changes in spectral power for the right sensorimotor area during balance loss that 

was found in left sensorimotor area. They conclude that the left compared to right sensorimotor 

cortex plays a larger role in sensing loss of balance during walking, which was also demonstrated 

in another study (Serrien et al. 2006) that the left hemisphere plays a more dominant role in 

skilled complex movements. Bruijin et al. (Bruijn et al. 2015) initially found sources in the left 

and right premotor areas when comparing normal vs stabilized walking, but subsequent source 

level analysis revealed only significant differences in the left premotor area and not the right 
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side. The theory that left sensorimotor may be more involved in coordination and balance is 

reflected in our results showing a significant reduction of beta synchronizations in swing phase 

from pre to post-adaptation as well as increased beta synchronizations during double support 

before the faster foot swing phase in both left and right foot faster adaptation conditions that 

were not present in the right sensorimotor area. 

 

Posterior Parietal Beta and Gamma Increases During Split-Belt Adaptation 

We found many large gait-related synchronizations and desynchronizations during split-belt 

adaptation walking in the posterior parietal cortex that were not present in the other neural 

sources. Particularly, both left and right foot faster adaptation conditions showed beta and 

gamma (31-80 Hz) synchronizations during double support phase with the slow foot forward and 

primarily only theta and alpha synchronizations in the double support phase with fast foot 

forward. Similarly, there were also theta, alpha, and gamma desynchronizations in adaptation 

conditions during the swing phase of the faster foot. These results suggest that theta, alpha, and 

gamma desynchronizations are used during the swing phase for planning critical foot placement 

when walking asymmetrically. Previous research has shown that the parietal area in cats may be 

directly involved in interlimb coordination during locomotion (Beloozerova and Sirota 1993; 

Drew, Kalaska, and Krouchev 2008; Drew, Prentice, and Schepens 2004; Lajoie et al. 2010; 

Widajewicz, Kably, and Drew 1994). Other studies (Bulea et al. 2015) further support this idea 

and found low gamma band in posterior parietal cortex was increased in double stance and early 

swing phase when comparing active to passive treadmill walking. They also showed increased 

low gamma synchronizations when participants tracked a target speed using the active treadmill 

which lead them to conclude that parietal gamma band activity may demonstrate increased 
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attention to foot velocity in order to track a target walking speed. Another study (Sipp et al. 

2013) also showed that successful balance beam walking was associated with sustained theta 

band power synchronizations compared to off-beam treadmill walking. They concluded that 

parietal lobe might be important for sensory information integration and decision related activity 

(de Lafuente 2013) while also contributing to the anterior cingulate processing regarding error 

trend detection. Together, these findings show support for the role of posterior parietal cortex in 

motor planning and error correction during more challenging walking conditions. 

 

Limitations 

Mechanical and movement related artifacts are always a concern with human locomotion EEG 

studies. It has been shown using passive electrodes and faster treadmill speeds that walking-

related artifacts exist, especially in delta bands (0-3 Hz) and subsequent harmonics (Castermans 

et al. 2014). Therefore, due to the nature of increased movement related artifact with fast walking 

speeds in EEG (Kline et al. 2015), we chose to only analyze slow treadmill speeds where at least 

one leg was moving at 0.5 m/s. We also used active, wet electrodes processed with independent 

component analysis (ICA) to present results in neural source components rather than scalp 

channels. We also employed a series of novel cleaning methods including template gait-related 

channel rejection to remove channels most correlated with the gait cycle, Ensemble Empirical 

Mode Decomposition (EEMD) to remove high frequency components associated with muscle 

electromyography (EMG), and Canonical Correlation Analysis (CCA) to remove low frequency 

cyclic components most closely aligned with stepping frequency. We also used a 

computationally intensive ICA method, Adaptive Mixture ICA (AMICA) (Delorme et al. 2012) 

to provide the best component source separation with maximum independence. However, better 
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methods for cleaning movement-related artifact and muscle-related (EMG) artifact are 

continually being updated as well as better hardware that incorporates noise data for extraction 

would help to further improve the detail of EEG results and allow for more complicated and 

challenging locomotor tasks. 

 

Conclusions 

We found significant differences in both cortical spectral power and event-related fluctuations 

between normal treadmill walking and split-belt motor adaptation in the left sensorimotor, right 

sensorimotor, anterior cingulate, and posterior parietal areas. This builds upon previous studies 

that showed similar brain areas are involved in demanding walking tasks and examines the 

relationship between theta synchronizations and desynchronizations in balance and postural 

control. We confirmed previous findings that alpha power plays an important role with more 

challenging motor task. We also found lateralized differences between left and right 

sensorimotor areas that suggest different roles for each hemisphere in asymmetric walking. 

Finally, we show support for posterior parietal area being more active during motor planning and 

foot placement in motor adaptation compared to normal walking. These results further show that 

it is possible to use EEG to study locomotor adaptation, which is important for future 

understandings of neurological rehabilitation in gait asymmetries. 
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Supplementary Figures 

 

Supplementary Figure 2-1. Grand average normalized spectrograms. Comparison of pre and 

post-adaption for Block 1 (top plots) vs Block 3 (bottom plots) showing minimal to no 

differences. Significance masked (p < 0.01) for left sensorimotor, right sensorimotor, anterior 

cingulate, and posterior parietal clusters. All plots represent one gait cycle from right heel strike 

(RHS) to RHS, with left toe off (LTO), right toe off (RTO), and left heel strike (LHS) designated 

by dashed vertical lines. Nonsignificant values were set to zero (green). 
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Supplementary Figure 2-2. Grand average normalized spectrograms. Comparison of split-

belt walking for Block 1 (top plots) vs Block 3 (bottom plots) showing minimal to no 

differences. Significance masked (p < 0.01) for left sensorimotor, right sensorimotor, anterior 

cingulate, and posterior parietal clusters. All plots represent one gait cycle from right heel strike 

(RHS) to RHS, with left toe off (LTO), right toe off (RTO), and left heel strike (LHS) designated 

by dashed vertical lines. Nonsignificant values were set to zero (green). 
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Chapter 3 Mobile brain-body imaging of indoor treadmill walking and 

outdoor walking during a visual search task 
 

Abstract 

To fully understand brain processes in the real world, it is necessary to record and study brain 

processes during human locomotion across varying terrain. Advances in electroencephalography 

(EEG) and signal processing techniques provide new opportunities for studying mobile subjects 

outside of the laboratory. Previous research has shown success in using these techniques to 

identify neural correlates and spectral power fluctuations during various human walking studies 

on treadmills. The purpose of this study was to document the current viability of using high 

density EEG for mobile brain imaging both indoors and outdoors. The data set includes 49 

young, healthy subjects walking on an outdoor arboretum path while completing a visual search 

task. Subjects also completed a laboratory version of the same task on a treadmill using virtual 

reality. The data provide a valuable research tool for scientists interested in electrocortical brain 

processes, mobile brain imaging, and brain-computer interfaces based on EEG. 

 

Background and Summary 

Identifying neural correlates and their dynamics in ambulatory tasks have presented many 

challenges in research. Previously, neuroimaging studies of human locomotion have been 

confined to laboratory environments that use large and expensive scanners like positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI). Both have shown that 
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during movement preparation and anticipation frontal and association areas are activated 

(Christensen et al. 2001; Dobkin et al. 2004; Heuninckx et al. 2005; Luft et al. 2002; Sahyoun et 

al. 2004). These findings have also been confirmed in electroencephalogram (EEG) studies using 

similar tasks that show lower limb movement related electrocortical potentials (Liv Hansen and 

Bo Nielsen 2004; Raethjen et al. 2008).  

 

Currently, EEG is the only non-invasive brain imaging modality that is portable enough to wear 

during ambulation in the real world while measuring cortical dynamics in the brain with high 

enough temporal resolution to record intra-stride changes (Makeig et al. 2009). EEG has long 

been considered to be too noise prone to allow such recordings (Gwin et al. 2010). Mechanical 

artifacts such as head movements can have amplitudes orders of magnitudes larger than the 

underlying EEG brain signals. The use of advanced signal processing techniques, such as 

Independent Component Analysis (ICA), however, allows for filtering out electromyographic 

(EMG), electroocular, movement artifact, and line noise contamination of EEG signals (Delorme 

et al. 2012; Jung et al. 2001; Makeig et al. 2004, 1996; Onton and Makeig 2006). Gwin and 

colleagues have demonstrated that it is possible to directly measure cortical activity using these 

methods and showed significant increases in alpha (8-13 Hz) and beta (13-30 Hz) band power in 

the sensorimotor and anterior cingulate cortices when both feet are on the ground during normal 

walking on a treadmill (Gramann, Onton, et al. 2010; Gwin et al. 2011).  

 

While previous studies (Gramann et al. 2011; Gramann, Onton, et al. 2010; Gwin et al. 2011) 

have shown that using EEG during ambulation is possible with the use of treadmills indoors, few 

studies have examined EEG in natural outdoor settings over ground. A couple of recent studies 
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(Debener et al. 2012; Roe et al. 2013) have measured EEG outdoors, but these use a limited set 

of electrodes (<15 channels). Using less than 64 EEG channels enables limited separation of 

mixed signals when using blind source separation techniques to identify neural components 

(Lau, Gwin, and Ferris 2012). A high density EEG system provides a much richer dataset to 

analyze neural dynamics of human locomotion.  

 

The overall goal of this project was to document the possibility of high-density 

electroencephalography (EEG) to provide insight into human brain function during ambulatory 

tasks in real world environments. The current study examined young, healthy subjects walking in 

a natural arboretum environment while they wore a high-density (256 channel) EEG. Subjects 

completed a visual search task where they had to identify colored flags in their environment. 

Subjects also completed an indoor virtual reality version of the task on a treadmill. By 

completing similar tasks indoors in a laboratory on a treadmill, and outdoors in an arboretum on 

natural terrain, the data set can reveal differences between traditional laboratory experiments and 

real world experiments. A secondary goal was to provide a potentially stressful intervention on 

the task, where subjects gained and lost monetary rewards based on their performance. 

 

Methods 

Subjects 

Forty-nine healthy adults (20 males, 29 females) between the ages of 18-45 (average age 22.7) 

participated in the study. None of the subjects had any history of neurological or physical 

impairments and were in good shape, such that they could walk on a treadmill and on outdoor 

terrain for one hour while carrying a fifteen-pound load without issue. The University of 
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Michigan Internal Review Board approved all study procedures and all subjects provided signed 

consent prior to participating in the study. 

 

Equipment 

EEG acquisition 

Subjects were fitted with a high density, pre-amplified 256-channel EEG cap (sampling rate: 512 

Hz; Biosemi Activetwo, Amsterdam, Netherlands). We placed 8 additional sensors on the neck 

of the subject to record neck muscle activity. The position of each electrode relative to the 

subject’s head was recorded using a 3D digitizer (Zebris, Germany). Before data collection, we 

applied electrode gel underneath each sensor and kept all offsets below 20 mV as recommended 

by Biosemi user manual for optimal data quality. 

 

Inertial measurement units 

Subjects wore 6 inertial measurement units (IMUs) (sampling rate: 128 Hz; APDM Opal, 

Portland, OR) attached to both feet, both ankles, waist, and chest. Each IMU monitored limb 

movements using 3D accelerometers, gyroscopes, and magnetometers. 

 

Instrumented treadmill  

Subjects walked on an instrumented, split-belt treadmill (sampling rate: 1000 Hz; Bertec, 

Columbus, OH) which has separate belts, each with its own motor, for the left and right side of 

the walking surface. Separate force transducers under each belt were used for the collection of 6 

degrees of freedom ground reaction forces from the left and right foot separately.  
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Cortisol 

The SalivaBio Oral Swab saliva collection method was used to obtain participant salivary 

cortisol samples (Salimetrics, Newmarket, UK). Subjects were previously informed not to 

consume any food or beverages (other than water) one hour prior to testing. Subjects were not 

allowed to eat during the duration of testing. A total of 8 saliva samples (4 indoors, 4 outdoors) 

were collected during testing as follows: before the start of each experiment, between the first 

and second conditions, between the second and third conditions, and after the third condition for 

both indoor and outdoor sessions. Collections were done by placing an oral swab under the 

subject’s tongue for two minutes. Swabs were then removed and placed in storage tubes and held 

in an ice chest at below 4°C during testing after which they were frozen at below -20 °C until 

analysis.  

 

Heart Rate  

Heart rate was measured using photoplethysmogram (PPG) recordings obtained from a Pulse 

Sensor heart rate monitor (sampling rate: 500 Hz; World Famous Electronics LLC, New York, 

NY) attached to the subject’s right earlobe and controlled through an external Arduino. 

 

Eye Tracker 

Each subject had visual gaze recorded with Mobile Eye XG eye tracking glasses (sampling rate: 

30 Hz; Applied Science Laboratory, Boston, MA) with 0.5 to 1 degree accuracy. 

 

Video 

High definition video recordings of the experiment were done using a high definition camcorder 
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(sampling rate: 30 Hz; Canon USA) handheld by an experimenter. Subjects wore a backpack that 

contained the EEG amplifier, battery, eye tracker acquisition logger, and connectors such that a 

line of cables connected the multiple systems to the data collection laptop placed in a carrying 

tray held by an experimenter following behind the subject approximately 10 feet away (Figure 3-

1A and 3-1B). 
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Figure 3-1. Experimental Design. (A) Diagram of measurement devices placed on an example 

subject (B) Layout of recording devices and how they were connected to each other for 

synchronization. 

 



 41 

Testing Environments 

Virtual reality environment  

A 3D animated environment (designed in Google SketchUp) of a virtual park was displayed as a 

video on a projector screen directly in front of the treadmill (Figure 3-2) set at 0.7 m/s moving at 

the same pace as the video. Within the virtual landscape, there were a total of 50 animated target 

flags (bright green) and 150 animated non-target flags (dark green) split evenly between the non-

stress and stress conditions. There were no flags displayed during the baseline condition. The 

difficulty of the target flag detection level varied based on position relative to environmental 

objects as well as distance from path.  

 

Real world environment 

Subjects walked outdoors on a marked trail path (Figure 3-2) at an arboretum (Nichols 

Arboretum, Ann Arbor, MI). The path was accessible to the public during testing. The marked 

path was approximately 2 miles long in total (Figure 3-3). There was a total of 50 target flags 

(bright green) and 150 non-target flags (dark green) split evenly between the non-stress and 

stress conditions. Flags were 2” x 3” trail marking flags attached to a 15” pole. There were no 

flags in place during baseline walking. Subjects were instructed to walk straight along the path at 

a slow to moderate pace without stopping. Auditory cues to speed up or slow down were given if 

necessary. Flags were placed within 10 feet off the path and not higher than 10 feet off the 

ground. They were placed in such a manner that they were visible from the path without having 

to step off of it. 
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Figure 3-2. Indoor and outdoor environments. Left panel shows an example subject standing 

on the instrumented, split-belt treadmill in front of the projector screen displaying the indoor, 

virtual environment. Right panel shows an example subject walking along the outdoor path 

tethered to an experimenter by cables from measurements devices connected to a laptop on a 

tray. 

 

Protocol 

Subjects walked for approximately one hour continuously in each environment while performing 

a visual search task. First, subjects started with a 20 minute baseline condition of normal walking 

in which no flags were present in the environment. After baseline walking was complete the 

visual search task began. The goal of the task was to search and identify bright green flags 

(targets) within the environment and to ignore dark green flags (non-targets). Subjects were to 

press the button on a joystick they were holding when they saw a target flag and to not press 

anything when they saw a non-target flag.  There were 2 conditions, 20 minutes each, during the 

visual search task: 1) “Non-stress” – subjects were told each correct flag identified earned an 

extra $0.25 toward their compensation for the study and 2) “Induced Stress” - in addition to 

earning $0.25 per correctly identified target flag subjects were also told they would be penalized 

$1.00 for every unidentified target flag and a loud siren was played immediately after the subject 

walked passed the unidentified target flag. To further induce stress, subjects were given false 

negative siren noises indicating a missed target flag randomly (approximately once every 2 
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minutes, 10 times total). Subjects were naïve to the random penalties during the task, but were 

debriefed after the conclusion of the experiments. Baseline walking was always first, but the 

order of the 2 visual search conditions was randomized. 

 

 

Figure 3-3. Map of the arboretum. Walking path highlighted in red. Subjects started at maker 

1, and at marker 7 continued northwest toward marker 6. After looping back to marker 7 subject 

proceeded west to the finish at marker 8. 

 

Code availability 

Code for importing data measures from all sources into Matlab and EEGLAB is provided.  
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Data Records 

Data storage 

All data measures used in this study are stored in IEEE Dataport (https://ieee-dataport.org/open-

access/mobile-brain-body-imaging-during-indoor-treadmill-walking-and-outdoor-overground-

walking; DOI: 10.21227/H24T0V) as an open-access data set. The data is stored as a single 

compressed .zip file (778 GB) and archived into individual folders by subject ID. A second copy 

archived as 49 individual .zip files by subject is also made available in Figshare 

(https://doi.org/10.6084/m9.figshare.6741734; DOI: 10.6084/m9.figshare.6741734). 

 

Data organization 

This study is an EEG Study Schema (ESS) Standard Data Level 1 container. This means that it 

contains raw, unprocessed EEG data arranged in a standard manner. Data is in a container folder 

and ready to be used with MATLAB to automate access and processing. All other data measures 

other than EEG are in .mat (MATLAB) format. For more information please visit eegstudy.org. 

 

There is one folder for every subject that includes the following files when available: 

(1) Indoor EEG session (<ID number_Indoor.set>) 

EEG files have been imported into EEGLAB and are stored as unprocessed raw .set format in 

standard EEGLAB Data Structures. 

(https://sccn.ucsd.edu/wiki/A05:_Data_Structures) 

 

(2) Outdoor EEG session (<ID number_Outdoor.set>) 

Same as Indoor EEG session (above) 

https://ieee-dataport.org/open-access/mobile-brain-body-imaging-during-indoor-treadmill-walking-and-outdoor-overground-walking
https://ieee-dataport.org/open-access/mobile-brain-body-imaging-during-indoor-treadmill-walking-and-outdoor-overground-walking
https://ieee-dataport.org/open-access/mobile-brain-body-imaging-during-indoor-treadmill-walking-and-outdoor-overground-walking
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(3) Indoor IMU session (<ID number_Indoor_imu.mat>) 

The IMU .mat file contains a structure with 6 fields (variable name: IMU) 

 

IMU.dataLabel: string including ID number, environment, and sensor type 

IMU.dataArray: 10xNx6 matrix. Third dimension refers to each of 6 IMU sensors (left foot, right 

foot, left ankle, right ankle, chest, and waist). Columns are frame numbers. Rows are:  

• x, y, and z direction of accelerations, in m/s^2  

• x, y, and z direction of gyroscopes, in rad/s  

• x, y, and z direction of magnetometers, in microteslas 

• Temperature, in degrees Celsius 

 

IMU.axisLabel: String headings for ‘dataType’ and ‘frame’ and ‘sensorNumber’ 

IMU.axisValue: 1x10 cell array of string headings for each row of data type, and 1x6 cell array 

of string headings for each IMU sensor 

IMU.samplingRate: Sampling rate 

IMU.dateTime: String of date and time information of recording 

 

(4) Outdoor IMU session (<ID number_Outdoor_imu.mat>) 

Same as Indoor IMU session (above). 

 

(5) Indoor eye tracking session (<ID number_Indoor_eye_tracker.mat>) 

The eye tracker .mat file contains a structure with 6 fields (variable name: Eye_tracker) 
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Eye_tracker.dataLabel: string including ID number, environment, and sensor type 

Eye_tracker.dataArray: 7xN matrix. Columns are frame numbers. Rows are:  

• x and y coordinates of the master spot, in eye image pixels 

• x and y coordinates of the pupil center, in eye image pixels 

• Pupil radius, in eye image pixels 

• Eye direction with respect to the scene image, in scene image pixels 

 

The eye and scene images are displayed and recorded with resolution of 640 x 480 pixels. 

The origin is the top left of the image with the X-axis positive to the right and the Y-axis 

positive downwards. Unavailable data is shown by the number –2000. 

 

Eye_tracker.axisLabel: String headings for ‘dataType’ and ‘frame’ 

Eye_tracker.axisValue: 1x7 cell array of string headings for each row of data type 

Eye_tracker.samplingRate: Sampling rate 

Eye_tracker.dateTime: String of date and time information of recording 

 

(6) Outdoor eye tracking session (<ID number_Outdoor_eye_tracker.mat>) 

Same as Indoor eye tracking session (above). 

 

(7) Indoor heart rate from pulse sensor session (<ID number_Indoor_pulse_sensor.mat>) 

The pulse sensor .mat file contains a structure with 6 fields (variable name: Pulse_sensor) 
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Pulse_sensor.dataLabel: string including ID number, environment, and sensor type 

Pulse_sensor.dataArray: 3xN matrix. Columns are frame numbers. Rows are:  

• pulse (normalized wave), in volts   

• Inter-beat Interval (IBI), in milliseconds 

• heart rate, in beats per minute (BPM) 

 

Pulse_sensor.axisLabel: String headings for ‘dataType’ and ‘frame’ 

Pulse_sensor.axisValue: 1x3 cell array of string headings for each row of data type 

Pulse_sensor.samplingRate: Sampling rate 

Pulse_sensor.dateTime: String of date and time information of recording 

 

(8) Outdoor heart rate from pulse sensor session  

(<ID number_Outdoor_pulse_sensor.mat>) 

Same as Indoor pulse sensor session (above). 

 

(9) Indoor heart rate from EEG session (<ID number_Indoor_pulse_from_eeg.mat>) 

If pulse rate was recovered from EEG ECG a corresponding file is available. The pulse from 

EEG .mat file contains a structure with 6 fields (variable name: Pulse_from_EEG) 

 

Pulse_from_EEG.dataLabel: string including ID number, environment, and sensor type 

Pulse_from_EEG.dataArray: 3xN matrix. Columns are frame numbers. Rows are:  

• pulse (normalized wave), in volts   

• Inter-beat Interval (IBI), in milliseconds 
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• heart rate, in beats per minute (BPM) 

 

Pulse_from_EEG.axisLabel: String headings for ‘dataType’ and ‘frame’ 

Pulse_from_EEG.axisValue: 1x3 cell array of string headings for each row of data type 

Pulse_from_EEG.samplingRate: Sampling rate 

Pulse_from_EEG.dateTime: String of date and time information of recording 

 

(10) Outdoor heart rate from EEG session (<ID number_Outdoor_pulse_from_eeg.mat>) 

Same as Indoor pulse from EEG session (above). 

 

(11) Indoor treadmill force plate session (<ID number_Indoor_force_plate.mat>) 

The force plate .mat file contains a structure with 6 fields (variable name: Force_plate) 

 

Force_plate.dataLabel: string including ID number, environment, and sensor type 

Force_plate.dataArray: 3xNx2 matrix. Third dimension is for left and right force plates, 

respectively. Columns are frame numbers. Rows are:  

• x, y, and z direction of force, in newtons 

 

Force_plate.axisLabel: String headings for ‘dataType’ and ‘frame’ and ‘sensorNumber’ 

Force_plate.axisValue: 1x3 cell array of string headings for each row of data type 

Force_plate.samplingRate: Sampling rate 

Force_plate.dateTime: String of date and time information of recording 
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(12) EEG digitized head map (<ID number.sfp>) 

Besa coordinates of all electrode positions. 

 

(13) Indoor eye tracking video (<ID number_Indoor_eye_tracker.avi>) 

The eye tracker .avi file is a video from the subject’s perspective (640x480 resolution, 30 

frames/sec) 

 

(14) Outdoor eye tracking video (<ID number_Outdoor_eye_tracker.avi>) 

The eye tracker .avi file is a video from the subject’s perspective (640x480 resolution, 30 

frames/sec) 

 

(15) Indoor video camera (<ID number_Indoor_video_camera(#).avi>) 

The camcorder .avi file is a video from the experimenter’s perspective (704x384 resolution, 30 

frames/sec). If there are multiple parts the (#) appended indicates the order. 

 

(16) Outdoor video camera (<ID number_Outdoor_video_camera(#).avi>) 

The camcorder .avi file is a video from the experimenter’s perspective (704x384 resolution, 30 

frames/sec). If there are multiple parts the (#) appended indicates the order. 

 

Cortisol (Cortisol_all_subjects.xlsx) 

Salivary cortisol data is provided as a single spreadsheet ‘Cortisol_all_subjects.xlsx’. It contains 

the following variables: 

● subid: ID number 

● sex: 1 = male, 2 = female 
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● age: in years 

● height: in inches 

● weight: in pounds 

● environment: 1 = outdoors, 2 = indoors 

● ordererenvironment: 1 = outdoor first, 2 = indoor first 

● orderstress: 1 = stress first, 2 = non-stress first 

● condition: 1 = Initial sample taken before walking started, 2 = Baseline sample after 

baseline walking, 3 = Non-stress sample taken after non-stress condition, 4 = Stress sample 

taken after stress condition 

● concentration: cortisol levels in µg/L 

● cond_ordered = order of conditions by environment 

 

Technical Validation  

Data synchronization 

All data collection devices (EEG, mobile eye tracker, IMUs, force plates, and heart rate monitor) 

were synchronized with custom software written in Labview to link with Biosemi (Figure 1b). 

Synchronization triggers from each device were marked in Biosemi in order to align each device 

in time with EEG.  

 

HED Tagging 

Hierarchical event descriptor (HED) tags are EEG semi-structured annotations used to provide 

categorized and detailed descriptors of events during an experiment (Bigdely-Shamlo et al, 

2017). These events that are logged with a predefined, structured, and common annotated 

language across studies that use the HED system. Some of these events like button presses are 

tagged automatically in real-time during the experiment. But most other events were marked 

manually by an experimenter.  

 

In order to recover events we relied on both videos and timestamps using the subject eye tracker 

and the handheld HD camcorder. To ensure accuracy a trained member would visually inspect 
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both video types for each subject and each environment watching frame by frame in order to 

obtain the most precise timing possible. Events were encoded in a spreadsheet correctly 

categorized and labelled with corresponding timestamps. Every session was reviewed a second 

time by a different staff member to ensure agreement of both event label and timing. If any 

disagreements occurred, a third, senior staff member would resolve the issue.  

 

Once all events were recovered and reviewed, the timestamps of each event were encoded into 

the corresponding EEG file and stored in the ‘EEG.event’ struct to indicate the event name, 

category, and timing.  

 

Generally, events to be tagged were categorized by priority as follows: 

 

1) Critical 

1A: Conditions (Baseline, Non-stress, Stress) 

1B: Button presses (The HED tags differentiate correct from incorrect button presses) 

1C: Flag looks (If a subject looked at a flag multiple times, each look was tagged) 

1D: Audible feedback (e.g. siren to indicate missed flag) 

1E: Voluntary subject actions related to the experimental procedure (e.g. subject opens mouth to 

receive the swab for the saliva sample) 

1F: Technical errors (e.g. video projector playback skips during indoor trial) 

 

2) Likely to be useful for analyses 

2A: Terrain changes (e.g. downhill/uphill/flat, dirt, grass, rock, wood chips, boardwalk) 
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2B: Experimenter instructions (sound played to instruct subject to slow down or speed up their 

pace) 

2C: Involuntary subject actions related to walking (e.g. subject stumbles over a tree root) 

2D: Voluntary subject actions that are incidental, related to walking (e.g. subject walks around a 

mud puddle) 

 

3) Not as likely to be useful for analyses 

3A: Distractors (e.g., pedestrian runs down the trail, construction noise is heard) 

3B: Involuntary subject actions not related to walking (e.g. subject sneezes) 

3C: Voluntary subject actions that are incidental, not related to walking (e.g. subject lifts arm, 

subject scratches face, subject reads a road sign, subject drinks water, subject whistles) 

 

Events hierarchy used primary and secondary categories shown in Table 3-1. 

 

Table 3-1. Commonly used primary and secondary category types in HED tagging along 

with the most specific examples for each. 

Primary 

Categories 

Secondary 

Category 

Event 

1) 

 

Environmental                                         

Event 

 

a) distracter 

 

● Pedestrian passes 

● Helicopter overhead 

● Truck passes 

● Animal crosses path 

 

b) terrain 

 

● Downhill/uphill portion  

● Puddle in path 

● Subject trips on branch 
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2)  

 

 

Scenario Event 

 

a) verbal cue 

 

● Condition change [baseline/stress/non-

stress] 

● Directions 

● Instructions 

● Slow down/ speed up 

 

b) non-verbal cue 

 

● Horn (stressor) 

● Slow down/speed up 

● Saliva swab 

3)  

 

Behavioral Event 

 

a) purposeful 

 

● Saliva swab 

● Subject speaks  

 

b) accidental 

 

● Subject trips on branch 

● Sneeze 

● Cough 

4)  

 

Technical Error 

 

a) distracter 

 

● Eye-tracker slipping 

● Experimenter next to subject 

● Video skips 

 

b) non-distracter 

● Heart rate monitor falls off ear 

● Trigger cord disconnects 

● EEG software stops recording 

 

 

EEG data 

EEG was constantly monitored in real-time throughout the duration of the experiment. Any 

technical problems with individual channels were noted in a log. If a channel appeared noisy 

during testing an experimenter applied more gel without interrupting the subject when possible. 

Figure 3-4A (left=indoors, right=outdoors) shows an example of 5 seconds of EEG data from a 
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single representative subject during baseline walking for 7 common EEG channels across the 

head (FPz, Fz, Cz, Pz, Oz, C3, and C4). 
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Figure 3-4: Example data from a single representative subject. Left column shows example 

indoor data and right column shows example outdoor data (5 seconds each) for (A) EEG, (B) 

both feet IMU z-axis accelerations (blue = left foot, red = right foot), (C) ground reaction forces 

of both force plates (blue = left foot, red = right foot), (D) pulse sensor heart rate, and (E) 

screenshot of subject’s eye tracker video with crosshair in red indicating eye gaze. 
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Inertial Measurements Units (IMUs) and Ground Reaction Forces (GRF) 

IMUs were placed in 6 locations (one on the top of the toe box of each foot, one around the ankle 

of each foot, one around the chest, and one around the waist). We found that the IMU on the top 

of the toe box provided the most reliable data for recovering gait events. In order to validate this 

we matched corresponding peaks in acceleration with known heel-strikes and toe-offs from the 

ground reaction forces of each force plate. Figure 3-4B shows the accelerations of the foot IMUs 

in the vertical direction (z-axis) aligned with force plate measurements (Figure 3-4C). 

 

Cortisol 

All samples were sent to a lab on campus using Salimetrics Assay kits. Results were given in 

concentration (µg/L). 

 

Eye Tracking 

Eye tracking videos were time synchronized with EEG data and aligned accordingly. 

Timestamps of eye tracking events were converted to match EEG sampling rate and encoded in 

the EEG.event struct as described in HED Tagging section. 

 

Heart Rate 

Pulse Sensor was linked to an Arduino logging data in real-time. The pulse sensor uses Pulse 

Transit Time (PTT), which is a measurement of the time it takes for the heart pulse wave to 

travel throughout your body. In application this measures the time between the R wave of an 

Electrocardiogram (ECG) against the pulse wave recorded with a Photoplethysmogram (PPG). 

The Pulse Sensor Amped software amplifies the raw signal of the previous Pulse Sensor, and 
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normalizes the pulse wave around V/2 (midpoint in voltage). The Pulse Sensor responds to 

relative changes in light intensity. If the amount of light incident on the sensor remains constant, 

the signal value will remain at (or close to) 512, the midpoint of Arduino’s range.  

 

For some subjects the Pulse Sensor data was not reliable and didn’t provide reliable peak 

detection or showed clipping. In those cases, we recovered ECG heart rate peaks from EEG 

electrodes attached to the back of the neck. 
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Chapter 4 Fixation event-related potentials during free visual search while 

walking indoors on a treadmill and outdoors in the natural world 
 

Abstract 

Detecting targets with a visual search is an important, daily task relevant to the normal behavior 

of humans and other animals. In controlled laboratory studies on humans with scalp 

electroencephalography (EEG), there is a positive event-related potential (ERP) over the centro-

parietal region occurring ~300 ms following the presentation of a target. As the laboratory 

studies have relied on stationary subjects in very controlled settings, it is less clear if the 

stereotypical event-related potential occurs in mobile, real world scenarios during visual search. 

We recorded mobile EEG and eye tracking on 34 healthy adults during walking while they 

performed a free viewing visual search task under two conditions: treadmill walking indoors 

with a virtual reality (VR) screen, and overground walking outdoors in a real world setting. 

Subjects were to press a button when they identified bright green flags (targets) and ignore dark 

green distractor flags (non-targets), both planted along their path. Using eye gaze fixations 

synchronized with EEG, we observed a significant fixation-event related potential (fERP) 

response across the centro-parietal brain areas when discriminating targets vs. non-targets in both 

indoor and outdoor environments. Our results provide an important step in extending cognitive 

neuroscience methods and insights on brain dynamics from past laboratory studies to real world 

applications. 
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Introduction 

Searching a scene for an object of interest is a common occurrence in everyday life for humans 

and other animals (Eckstein 2011; Hopf et al. 2000). To provide insight into how the brain 

handles this aspect of active perception, scientists have studied visual search tasks for decades in 

the fields of psychology and cognitive neuroscience (Braun and Julesz 1998; Luck et al. 1993; 

Luck and Ford 1998; Sutton et al. 1965; Treisman and Gelade 1980). Past studies using 

electroencephalography (EEG) have shown that attention to visual targets can elicit sensory 

invoked activity in the brain known as event-related potentials (ERPs) (Luck et al. 1993). The 

ERPs are best identified by looking at changes in electrocortical activity time-locked to 

presentation of a stimulus (Luck 2005). 

 

The P3 (sometimes referred to as the P300) component is an evoked electrocortical potential that 

occurs approximately 250-500 ms after a target or task-relevant stimulus has been presented 

(Patel and Azzam 2005; Ravden and Polich 1999). This P3 is of particular interest for wide-scale 

applications because it is relatively easy to detect and the amplitude is dependent on voluntarily 

controlled attentional processes. This makes it popular for analyzing changes in cognitive load 

(Debener et al. 2012; Polich 1987; Polich and Kok 1995) diagnosing neurological pathologies 

(Alonso-Prieto et al. 2002; Lagopoulos et al. 1998; Münte et al. 1997), and developing brain 

computer interfaces (BCI) (Brouwer et al. 2013; Farwell and Donchin 1988; Krusienski et al. 

2006). However, most visual search implementations use computer screens flashing predefined 

targets while the subject looks straight ahead, fixating on the screen (Aziz-Zadeh et al. 2013; 

Brouwer et al. 2013; Katayama et al. 1987; Kazai and Yagi 1999; Thickbroom et al. 1991; 

Thickbroom and Mastaglia 1985). 
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Only recently have research studies employed visual search tasks using relatively natural scene 

conditions (Graupner et al. 2007; Kaunitz et al. 2014; Ossandon et al. 2010). Kaunitz and 

colleagues were able to combine EEG and eye tracking to compare the cognitive components of 

visual search in a traditional oddball task to a free viewing search of complex, natural images. 

They used fixation event-related potentials (fERPs) in which stimulus onset was synchronized to 

eye gaze fixation. Their findings indicate that fERP responses to target detection showed P3 

components that behave similarly to ERP components across spatially unconstrained exploration 

of natural scenes. Up to this point these types of studies have all taken place in controlled 

laboratories indoors using computer screens. Little is known how those findings would translate 

to natural experiences in real world environments outside. 

 

Advances in mobile EEG have recently enabled its use for functional brain imaging during 

human walking and running. The large size and high cost of devices for functional brain imaging 

scanners like positron emission tomography (PET), magnetoencephalography (MEG), and 

functional magnetic resonance imaging (fMRI) have limited their use for to studying subjects in 

laboratories in stationary positions. Technology for functional near-infrared spectroscopy 

(fNIRS) allows for quantification of mobile brain activity but its temporal and spatial capabilities 

limit its use (Meyerding and Risius 2018; Miyai et al. 2001; Suzuki et al. 2004) EEG has become 

the most commonly used imaging modality in mobile studies (Minguillon et al. 2017) as it has 

the advantage of maintaining a high temporal resolution for capturing events like ERP 

components. A few recent studies have demonstrated that an auditory oddball task can elicit a P3 

component while walking or cycling outdoors (Debener et al. 2012; Scanlon et al. 2017; Zink et 
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al. 2016). However, using an auditory task still provides a very clean experimental paradigm as 

the stimulus timing is very clear relative to changes in electrocortical dynamics. The first studies 

to show that it was possible to quantify a P3 component with a visual oddball task during 

walking and running were published in 2010 (Gramann, Gwin, et al. 2010). They found using 

high density EEG with independent component analysis (ICA) and spatial filtering could clean 

EEG signals sufficiently to recover the negative ERP component at ~100 ms (called the N1) and 

the P3 component during a visual oddball task. A more recent study (De Sanctis et al. 2014) 

similarly used mobile EEG to quantify amplitude differences in the ERP components related to a 

Go/NoGo response-inhibition task while walking. These findings suggest that ERP components 

are robust enough to be captured in mobile situations in real world environments.   

 

To bridge the gap between indoor, laboratory experiments and outdoor, real world settings 

previous studies have used virtual environments to simulate the outdoor experience (Cruz-Neira 

et al. 1992; Diemer et al. 2015; Holden 2005; Livingston et al. 2009; McCall and Blascovich 

2009; Mine et al. 1997; Sandstrom et al. 1998). Virtual reality provides a naturalistic context in 

feature rich scenarios while still being able to work in controlled laboratory conditions. The 

combination of EEG and virtual reality is becoming more popular in research on the cognitive 

neuroscience of driving. One study (Chin-Teng Lin et al. 2007) recorded EEG during virtual 

reality automobile driving simulations and was able to demonstrate the effectiveness of single 

trial ERP analysis. Other studies (Mager et al. 2000; Pugnetti et al. 2001) have reported on the 

success of using EEG and ERPs to study attention and presence in virtual reality. Recently, EEG 

and virtual reality was used to show reliable ERP components in a language study (Tromp et al. 

2018) with participants placed in a virtual restaurant. Based on the successful use of EEG and 
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virtual reality in these past studies, virtual reality could be a useful tool in exploring the cognitive 

neuroscience involved in visual search tasks and how ERP components are modified in more 

natural environments.  

 

The goal of this study was to determine if mobile EEG and eye tracking could allow study of a 

similar P3 ERP component during free viewing visual search in both an indoor virtual reality 

environment and an outdoor real world environment. Based on previous evidence of fERP 

components eliciting P3 responses with free view visual search using natural images (Kaunitz et 

al. 2014) and P3 responses during a traditional visual oddball search while walking on a 

treadmill (Gramann, Gwin, et al. 2010), we hypothesized that we could resolve a fERP 

component near 300 ms in target discrimination for both the indoors and outdoors conditions. 

However, due to eye tracking sampling rate (30 Hz) limitations causing variable fixation onsets 

we believe there will be uncertainty in the exact time range at which a positive waveform occurs. 

An important aspect of the work is extending the mobile brain imaging methodologies to more 

naturalistic settings to determine how they have to be modified to work in the real world. The 

study also provides new insight into the brain dynamics while exploring natural, visual scenes. 

 

Methods 

Participants  

We recruited forty-nine healthy adults (20 males, 29 females) between the ages of 18-45 

(average age 22.7) to participate in this study. None of the participants had any history of 

neurological or physical impairments and were healthy enough such that they could walk on a 

treadmill and on outdoor terrain for at least one hour while carrying a fifteen-pound load without 
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issue. The University of Michigan Internal Review Board and the U.S. Army Institutional 

Review Board approved all study procedures and all participants provided signed consent before 

the start of the study. Due to the complex challenges involved with recording multiple data 

streams, synching, and calibration in mobile settings, 15 of the 49 participants were missing 

relevant data (e.g. eye tracker malfunction, inertial measurement units losing synch, etc.) for the 

full analyses proposed in this study. The results presented here are from 34 participants that had 

complete data sets.  

 

Virtual reality (VR) environment  

A large scale video of a 3D animated environment (designed in Google SketchUp) of a virtual 

park was displayed on a projector screen in a dark room directly in front of the treadmill (Figure 

4-1A) set at 0.7 m/s while subjects walked at the same pace as the video. A total of 50 animated 

target flags (bright green) and 150 animated distractor, non-target flags (dark green) were 

displayed during the visual search task (Figure 4-1B). Target flag detection varied in difficulty 

based on the position relative to environmental objects as well as distance from path.  

 

Real world environment 

Subjects walked outdoors (Figure 4-1B) on a marked trail path at an arboretum (Nichols 

Arboretum, Ann Arbor, MI). The park and walking trail (Figure 4-2) was accessible to the public 

during testing. The path was approximately 2 miles long in distance and terrain varied between 

gravel, grass, and wooden planks. A total of 50 target flags (bright green) and 150 distractor, 

non-target flags (dark green) were placed along the trail path placed within 10 feet off the path 

and not higher than 10 feet off the ground. The flags were 2” x 3” trail marking flags attached to 
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a 15” pole (Figure 4-1B). They were placed in a way to be visible from the path without having 

to step outside the marked trail. Subjects were instructed to walk straight along the set path at a 

slow to moderate pace that matched the 0.7 m/s speed used on the treadmill. Subject were not 

allowed to stop walking at any point during the experiment. Auditory cues to speed up or slow 

down were given if necessary. 

 

Figure 4-1. Indoor and outdoor environments with example flags. (A) Left panel shows an 

example subject standing on the instrumented, split-belt treadmill in front of the projector screen. 

Right panel shows an example subject walking along the outdoor path tethered to an 

experimenter by cables from measurements devices connected to a laptop on a tray. (B) Left 

panel shows a screenshot from the virtual environment with a non-target (dark green) and target 

(bright green) flag placed to the right of the walking path. Right panel shows a real non-target 

(dark green) and target (bright green) flag that were used for the outdoor environment. 
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Figure 4-2. Trail map for Nichols Arboretum, Ann Arbor, MI. Thick red line indicates 

walking path used for experiment. The trail started at point 1 and continued through points 2 and 

3. Once subjects arrived near the river at point 7 they walked to the right toward point 6 and 

looped back around until continuing past point 7 until the end position at point 8. Total distance 

walked was approximately 2 miles. 

 

 

Protocol 

Subjects walked continuously for approximately one hour in each environment. The testing 

began with subjects normally walking for a 20 minute baseline condition in which no flags were 

present in the environment. The visual search task began immediately following the baseline 

condition. The goal of the task was to search and identify bright green flags (targets) and to 

ignore dark green flags (non-targets). Once target flags were identified subjects were instructed 

to press the button on a joystick they were holding. They were instructed to not press anything 

when they saw a non-target flag. We also asked subjects to fixate their gaze on all flags for at 

least 1 second when possible. The visual search task was completed in two conditions, 20 
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minutes each: 1) “Non-stress” - each correct flag identified earned an extra $0.25 toward 

compensation for the study and 2) “Induced Stress” - in addition to earning $0.25 per correctly 

identified target flag subjects were told they would be penalized $1.00 for every missed target 

flag and a loud siren was played immediately after the subject walked passed the unidentified 

target flag. Subjects were also given false negative siren noises indicating a missed target flag at 

random times (approximately once every 2 minutes, 10 times total). Subjects were naïve to the 

random penalties during the task, but were debriefed after the conclusion of all the experiments 

and were not penalized in compensations. The order of the two visual search conditions was 

randomized for each subject, but order remained constant for both indoor and outdoor 

environments. 

 

Equipment and Data Processing 

Instrumented treadmill  

Subjects walked on an instrumented, split-belt treadmill (sampling rate: 1000 Hz; Bertec, 

Columbus, OH) with separate force transducers under each belt. Ground reaction forces using 6 

degrees of freedom could be obtained from the left and right foot separately to determine gait 

events. Vertical ground reaction forces above 30 Newtons were marked as a heel strike and 

vertical ground reaction forces under 30 Newtons were marked as a toe-off for each foot.  

 

Inertial measurement units 

For both indoors and outdoors subjects wore 6 inertial measurement units (sampling rate: 128 

Hz; APDM Opal, Portland, OR) attached to both feet, both ankles, waist, and chest. Each inertial 

measurement unit was used to monitor lower limb movements using 3D accelerometers, 
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gyroscopes, and magnetometers. We found that the inertial measurement units on the top of the 

toe box provided the most reliable data for recovering gait events and was validated by matching 

corresponding peaks in anterior-posterior acceleration with known heel-strikes and toe-offs from 

the ground reaction forces of each force plate. The gait events from the inertial measurement 

units were synced to the EEG data (Figure 4-3) and used in pre-processing for artifact detection 

removal.  

 

Eye Tracker and stimuli detection 

Each subject was fitted with Mobile Eye XG eye tracking glasses (sampling rate: 30 Hz; Applied 

Science Laboratory, Boston, MA) accurate within 0.5 to 1 degree (Figure 4-3). Before testing, 

eye tracker was calibrated indoors to ensure proper alignment. All eye tracking videos were 

examined off-line by reviewers trained to mark eye gaze fixation events to stimulus flags. All 

timestamps were confirmed by at least two different reviewers for consistency. Fixation events 

were determined when subjects held gaze for at least 0.5 seconds on a flag. Timestamps of eye 

tracking events were upsampled to match EEG sampling rate and labelled accordingly in the 

EEG data.  

 

Statistical analysis of flag detection 

Both indoor and outdoor environments had 50 bright green target flags and 150 dark green 

distractor flags (non-targets). A two-way repeated measures ANOVA was used to assess target 

identification accuracy with factors of environment (indoor vs outdoor) and stress condition 

(non-stress vs induced stress) using the order of environment and the order of stress condition as 

covariates. 
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EEG recordings 

Subjects wore a high density, pre-amplified 256-channel EEG cap (sampling rate: 512 Hz; 

Biosemi Activetwo, Amsterdam, Netherlands) (Figure 4-3). Eight additional external sensors 

were placed on the neck of the subject to record neck muscle activity. Electrode positions 

relative to the subject’s head were recorded using a 3D digitizer (Zebris, Germany). Electrode 

gel was placed underneath each sensor and all offsets were kept below 20 mV as recommended 

by Biosemi for optimal data quality. Offsets were checked between indoor and outdoor sessions 

and more electrode gel was applied if sensors went above 20 mV.  

 

EEG Pre-processing 

All EEG analyses were performed in MATLAB (The MathWorks, Natick, MA) using custom 

scripts based on EEGLAB (Delorme and Makeig 2004). EEG was first downsampled to 256 Hz 

and a high pass filter at 1 Hz was applied to remove drift. We re-referenced to the common 

average reference and the EEGLAB plug-in, Cleanline 

(https://www.nitrc.org/projects/cleanline/), was applied to remove 60 Hz line noise. To minimize 

the effects of gait-related movement artifact from the EEG data, we first removed EEG channels 

with activity highly correlated with the gait cycle as described by Anderson and colleagues 

(Oliveira, Schlink, David Hairston, et al. 2017). Briefly, individual channel activations were 

smoothed with a 128 point moving average filter and then epoched into individual gait cycles 

from right heel strike to right heel strike. The mean amplitude for each channel at each time point 

across all gait cycles was used to create an average waveform template. Then every individual 

gait cycle for each channel was cross-correlated against the average waveform template. 
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Individual channels which were highly correlated (r > 0.4) to the gait cycles for more than 75% 

of the total number of gait cycles were discarded. Further bad channels were identified and 

rejected using standard statistical thresholds (i.e., range, SD, kurtosis). For the remaining clean 

channels we applied adaptive mixture independent component analysis (AMICA 15) (J A Palmer 

et al. 2008; Palmer et al. 2006) using Principal Component Analysis to parse the data into 150 

spatially fixed, maximally temporally independent component (IC) signals (Makeig et al. 1996) 

per subject. The DIPFIT function in EEGLAB (Oostenveld and Oostendorp 2002) was used to 

model each independent component as an equivalent current dipole within a boundary element 

head model based on the Montreal Neurological Institute standard brain (Quebec). We identified 

all sources indicative of eye blinks, eye movements, or muscle artifact (T.-P. Jung, Makeig, 

Humphries, et al. 2000) and marked them for removal. The remaining sources were back 

projected to the channel domain and clean EEG was re-interpolated to full rank. 

  

Statistical analysis of event-related waveforms 

Cleaned EEG data was analyzed using custom scripts based on ERPLAB and the Mass 

Univariate ERP Toolbox (Groppe, Urbach, and Kutas 2011). Continuous EEG data was split into 

indoor and outdoor environment conditions, low-pass filtered at 30 Hz, and epoched from -300 

ms to 1000 ms around the onset of eye gaze fixation on a non-target or target flag as determined 

by the eye tracker. Any epochs with amplitude outside of +-75 uV were removed. To avoid 

potential eye movements before fixation, we chose a non-standard period from 0 to 100 ms after 

fixation onset as baseline and subtracted that activity for all epochs. Previous studies using eye 

gaze fixation as stimulus onset also used post-onset baseline activity (Hutzler et al. 2007; Rämä 

and Baccino 2010) for this purpose. Fixations to targets only included trials in which a correct 
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button response was given and did not include misses. Fixations to non-targets only included 

trials that were correctly ignored (correct rejections) and did not include trials in which the 

button was pressed (false alarms). All epochs were averaged for each subject and across all 

subjects for a grand average. To detect differences in waveform amplitudes between targets and 

non-targets we used a repeated measures, two-tailed t-tests at the average of time points between 

250 and 400 ms at 6 scalp electrode sites (Fz, Cz, Pz, CP1, CP2, and Oz). We used the 

Benjamini & Yekutieli (Benjamini and Yekutieli 2001) procedure for the control of the false 

discovery rate (FDR) to assess statistical significance of each test using an FDR adjusted p-value 

level of 5%. 
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Figure 4-3. Layout of recording devices. Diagram shows how all devices were connected to 

each other for synchronization. EEG amplifier, battery, and USB receiver were placed in a 

backpack worn by the participant. Laptop and wireless inertial measurement unit (IMU) receiver 

were carried externally by an experimenter following the participant. 

 

Results 

Flag identification accuracy  

There were no significant differences in the accuracy of the subject responses to the flags 

between stress conditions. There was a significant difference (F = 8.59, p = 0.005) between 

indoor accuracy (mean = 90.5% SD = 8.2%) and outdoor accuracy (mean = 84.2%, SD = 

13.3%). Since the stress condition did not produce significant behavioral differences the 

proceeding statistical analyses combined trials from both non-stress and induced stress 

conditions together within each environment.  

 

Analysis of fixation-event related potentials during visual search 

After removing fixation events that did not fit within criterion, for 34 subjects the average 

number of target fixations indoors was 36.0 (SD = 11.0) and non-target fixations indoors was 

93.0 (SD = 20.4). For outdoors, the number of average target fixations was 34.8 (SD = 11.7) and 

non-target fixations was 90.5 (SD = 29.1).  

 

Fixation-event related potentials (fERPs) during indoor visual search showed a significant 

amplitude increase around 250 ms to 400 ms after fixation onset (Figure 4-4) for targets vs non-

targets in both left (FDR adjusted p-value = 0.02) and right [False Discovery Rate (FDR) 

adjusted p-value = 0.001] centro-parietal areas, CP1 and CP2 (Figure 4-5).  There were no 

significant amplitude differences in the midline frontal, central, or occipital areas. Similarly, 
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outdoor visual search showed a significant left centro-parietal (CP1) amplitude increase (FDR 

adjusted p-value = 0.04) for targets vs non-targets 250 to 400 ms after fixation onset. There were 

no significant fERP differences in frontal, central, centro-parietal (right), or occipital areas 

during outdoors. The average scalp topography (Figure 5) during the 250 to 400 ms period for 

both indoor and outdoor environments showed the activation patterns of amplitude increases 

originating in the central to parietal areas with low activation in the frontal region across targets 

and non-targets in both environments. 
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Figure 4-4. Grand average fixation-event related potentials (fERPs). Targets and Non-target 

flags shown for frontal (Fz), central (Cz), parietal (Pz), centro-parietal (CP1, CP2), and occipital 

(Oz) EEG channels during indoor (top) and outdoor (bottom) visual search. Stimulus onset 

represents eye gaze fixation on Target or Non-target flags. Shaded red boxes around 250-400 ms 

represents time periods of significant (FDR adjusted p-values < 0.05) increases in amplitude for 

Target vs Non-target trials. 
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Figure 4-5. Grand average fixation-event related potentials (fERPs) between 250-400 ms 

scalp topographies. Centro-parietal cortical activations during indoor (left) and outdoor (right) 

visual search. Non-targets (top) showed little activation across the entire scalp while Targets 

(bottom) showed significant amplitude increases across the central and parietal regions. 

 

Discussion 

We were able to identify fixation based amplitude increases in walking human subjects 

performing a free viewing visual search task both indoors in a virtual reality environment and 

outdoors in a real world environment (Gramann, Gwin, et al. 2010). A previous study (Kaunitz et 

al. 2014) of stationary subjects found that fixation-event related potentials (fERPs) can be 

recovered during free viewing visual search of natural scenes. That study was done with a 

computer based test and subjects were sitting, not moving through their environment. Gramann 

and colleagues (Gramann, Gwin, et al. 2010) were able to recover P3 ERP components using a 

visual oddball task while walking on a treadmill across different speeds. However, they did not 

use eye tracking and instead relied on a stimulus presentation on a computer screen that subjects 

were fixated on. To the best of our knowledge, no other study has attempted to measure EEG 

ERPs in a free viewing visual search with natural scenes walking on a treadmill and fully mobile 

outdoors in an uncontrolled public space. Our results demonstrate that using mobile EEG in 
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combination with a mobile eye tracker could be successful in identifying target vs. distractor 

event-related components across centro-parietal regions in fERPs during a free viewing visual 

search task. These amplitude increases around 300 ms were present when subjects walked inside 

a laboratory on a treadmill in a virtual environment as well as in an uncontrolled, real world 

environment. 

 

The primary goal of this study was to determine if ERP components could be detected in free 

viewing visual search as it is a robust electrocortical response used for many purposes in basic, 

applied, and clinical research. Many previous EEG studies have used various discrimination 

tasks such as serial visual presentation, attentional blink, or oddball paradigms to demonstrate 

that targets and distractors are best separated by the P3 component evoked potential (Hillyard et 

al. 1973; Kranczioch, Debener, and Engel 2003; Polich and Kok 1995). We chose to focus on 

this later fixation-event related component to minimize contamination by eye movements in 

earlier periods. Our recording equipment was not able to account for microsaccades, which have 

been suggested to be correlated to ongoing brain activity (Martinez-Conde, Otero-Millan, and 

Macknik 2013). Another study (Brouwer et al. 2013) also looked at P300 fixation-related 

potentials (FRPs) in a visual target search task and demonstrated that the P300 component was 

reliably distinguished between target and nontarget fixations. To rule out the possibility of eye 

movement contamination they used machine learning on both EEG and electrooculogram (EOG) 

and found that EEG classification performance was significantly higher for discriminating target 

vs nontargets than EOG performance. Another challenge related to our device limitations was the 

relatively low sampling rate of our eye tracker (30 Hz). Due to the low sampling rate, there may 

be deviations in precise time locked fixations which could account for our waveform results not 
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showing stereotyped positive/negative fluctuations as is common in traditional ERP studies. The 

loss of precision in time-locked fixations might have smeared the waveform patterns that were 

expected. However, the significantly increased amplitudes we found after 250 ms were in 

agreement with the stereotyped amplitude increases found in typical P3 waveforms from ERP 

studies. 

 

Using a free viewing task also made this challenging to compare our results using earlier ERP 

components such as P1 (positive peak at 100 ms), N1 (negative peak at 150 ms), and P2 (positive 

peak at 200 ms). We chose to align our fixation events to saccade offset knowing that earlier 

components influenced by presaccadic spike, premotor negativity, and premotor positivity (Jagla 

and Riecansky 2007; Thickbroom et al. 1991; Thickbroom and Mastaglia 1985) would be 

washed out. One study (Kaunitz et al. 2014) that directly compared free viewing fERPs to 

traditional oddball ERPs found that the first 250 ms were equivalent in latency and amplitude for 

targets and distractors. They also found that only the P3 response was robust enough for target 

detection, which occurred after ~300 ms. In their study, they showed that the P3 component had 

a maximum amplitude over the parieto-central areas in the free viewing condition, which was in 

line with our findings in CP1 and CP2 electrodes. However, we were not able to find similar 

midline frontal (Fz), central (Cz), or occipital (Oz) P3 differences that they and other studies 

(Brouwer et al. 2013; Kamienkowski et al. 2012; Kaunitz et al. 2014) have found in free viewing 

visual search. This could be due to our EEG cleaning methods and removal of source 

components determined to be eye movements and muscle artifacts, which are often located in the 

frontal and occipital areas, respectively (Gramann, Gwin, et al. 2010). 
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Another challenge of experimenting in uncontrolled environments is that we can’t account for 

the outside sources that might affect temporal modulation of attention during free viewing. Some 

studies (Corbetta et al. 1998; Melcher and Colby 2008) have shown that high attentional 

engagement is naturally present in free viewing from fixation onset or earlier. This may account 

for the differences we found between our indoor and outdoor experiments. The indoor 

experiment showed much more consistent fERP waveforms across the scalp with less variability. 

The indoor environment was in a dark room in which the subjects were not able to view anything 

in the room other than the projection screen ahead. The outdoor environment took place in a 

public park with lots of external stimuli that may have split attentional resources and lowered 

engagement to the visual search task. Previous studies have shown that the level of temporal 

attention affects both the amplitude and the latencies of N2 (Correa et al. 2006) and P3 

components (Miniussi et al. 1999). It is possible that our P3 findings outdoors were just more 

variable due to the completely novel nature of conducting this experiment in public. We 

acknowledge the need for more work comparing attentional differences in public settings when 

conducting goal-directed tasks like visual search.   

 

One of the most difficult aspects with using EEG in mobile situations is potential contamination 

from noise sources. Several previous studies have reported on spectral and time-frequency 

analyses during locomotion (Artoni et al. 2017; Bradford et al. 2016; Bruijn et al. 2015; Bulea et 

al. 2015; Castermans et al. 2012; Gwin et al. 2011; Kline et al. 2014a; Severens et al. 2012; Sipp 

et al. 2013). One study (Castermans et al. 2014) examined the harmonics present in EEG 

electrodes and accelerometer spectra and determined that stepping frequency may pollute EEG 

signals depending on walking speed. Another study (Kline et al. 2015) designed a study using a 
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nonconductive cap over a simulated electrically conductive scalp (e.g. wig) in locomotion in 

order to characterize movement related artifacts recorded by EEG electrodes. The findings from 

these studies have suggested that EEG can be affected by movement related artifact that shows 

up in time-frequency analyses and varies across different walking speeds and affects individual 

subjects differently that must be taken into consideration when designing mobile EEG 

experiments. However, both of these studies concluded that artifact caused by locomotion was 

tied directly to stepping frequency, particularly at higher walking speeds. The conclusions from 

these studies suggest that analyzing EEG synchronized to cognitive tasks rather than the gait 

cycle is much less likely to have substantive motion artifacts affecting the results. In order to 

minimize the potential for noise artifacts, the present study used slow walking speeds (0.7 m/s) 

and careful pre-processing methods were applied to remove EEG channels that were most highly 

correlated with the gait cycle (Oliveira, Schlink, David Hairston, et al. 2017). As in many 

previous studies, we also used ICA decompositions to remove non-neural sources from the EEG 

channel data before ERP analysis. Because we analyzed electrocortical data synchronized to a 

visual search cognitive task and not synchronized to the gait cycle, it greatly attenuated the 

motion artifact effects. Gramann and colleagues (Gramann, Gwin, et al. 2010) studied P3 

responses during treadmill locomotion in walking speeds up to 1.25 m/s with a similar approach. 

The variability in our EEG results for the outdoor condition might be related to gait differences 

when navigating complex terrain outdoors rather than smooth, flat terrain on a treadmill. Further 

work should investigate the differences in walking patterns used indoors on a treadmill compared 

to outdoors over ground while using neuroimaging devices like EEG.  

 

Conclusions 
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As mobile brain imaging technology has become more portable and affordable, researchers have 

expanded their use of functional brain imaging during walking and running. Taking the studies 

into the real world is inevitable as the technology continues to progress. The P3 event-related 

potential component is one of the most studied brain electrocortical responses in cognitive 

neuroscience, but there is little understanding of how natural environments affect the P3 and 

brain dynamics in general. In order to provide additional insight into how the brain functions in 

real world situations, it is necessary to extend research study paradigms from traditional 

stationary computer tasks in a laboratory to ecologically valid tasks such as visual searches in 

more natural settings. We were able to use mobile EEG with simultaneous eye tracking to detect 

a similar amplitude increase around 250 to 400 ms after fixation for discriminating target stimuli 

that was consistent in virtual reality as well as outdoors. These methods and results provide a 

step forward to realizing the future of mobile brain imaging in the real world (Gramann et al. 

2011, 2014). 
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Chapter 5 Mobile brain-body locomotion dynamics of indoor treadmill 

walking in a virtual environment vs outdoor walking in real world during 

visual search 
 

Abstract 

To understand brain and body dynamics in the real world, it is necessary to move research 

studies outside of traditional laboratory environments. Advances in mobile brain and body 

imaging (MoBI) using electroencephalography (EEG) and signal processing techniques have 

provided new opportunities for studying mobile subjects in real world situations. We recorded 

EEG, eye tracking, heart rate, salivary cortisol, and gait kinematics in healthy adults walking 

both indoors using virtual reality on a treadmill and outdoors in an arboretum while completing a 

visual search task. Heart rate, cortisol concentration, and gait kinematics showed significant 

behavioral differences between normal walking and visual search walking. We used independent 

component analysis and source localization to identify four neural sources in left and right 

sensorimotor cortices, anterior cingulate, and posterior parietal area. All clusters showed 

significant increases in theta (4-7 Hz) power during visual search walking compared to normal 

walking as well as increases in alpha (8-12 Hz) and beta (13-30 Hz) power synchronizations and 

desynchronizations in outdoor walking compared to indoors for all conditions. These findings 

suggest that mobile brain and body imaging is a feasible tool for studying locomotion and there 

are many differences in both behavioral and neural measures between controlled settings indoors 

in a laboratory and outside in a natural environment. 
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Introduction 

Everyday life often requires walking in varying terrains and environments while searching a 

scene for an object of interest (Eckstein 2011; Hopf et al. 2000).  However, understanding how 

the brain and body coordinate those efforts is not well understood due to limitations in 

technology (Minguillon et al. 2017). Recently, a new field of mobile brain and body imaging 

(MoBI) has emerged with promising results showing ways to study these complex motor tasks 

(Gramann et al. 2011; Kranczioch et al. 2014; Malcolm et al. 2015; Ojeda, Bigdely-Shamlo, and 

Makeig 2014; De Sanctis et al. 2014). By combining portable, multi-modal biometric devices we 

can now do research studies outside of traditional laboratory settings and start to understand the 

ways in which the brain and body function in real world situations.  

 

One of the recent developments for making mobile neuroimaging possible has been the 

combination of better hardware systems with advanced signal processing methods. Traditionally, 

neuroimaging has been confined to indoor studies due to the large size and high cost of scanners 

like positron emission tomography (PET), magnetoencephalography (MEG), and functional 

magnetic resonance imaging (fMRI) that require subjects to be in stationary positions. Recently, 

other neuroimaging technologies have been proposed as useful tools to examine brain activity in 

mobile settings using portable devices like functional near-infrared spectroscopy (fNIRS) 

(Meyerding and Risius 2018), and EEG (Debener et al. 2012). EEG is increasingly becoming 

more common in mobile research (Minguillon et al. 2017) as it has the advantage of maintaining 

a high temporal resolution for capturing the dynamics in locomotion. Many recent studies have 

shown that EEG combined with independent component analysis (ICA) can be used to 

understand how the brain functions during locomotion (Bradford et al. 2016; Bruijn et al. 2015; 
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Bulea et al. 2015; Castermans et al. 2012; Gramann et al. 2011; Gwin et al. 2011; Kline et al. 

2014a; Lau et al. 2014; Oliveira, Schlink, Hairston, et al. 2017; Petersen et al. 2012; Presacco et 

al. 2011; Seeber et al. 2015; Sipp et al. 2013; Wagner et al. 2016; Wieser et al. 2010). One of the 

first studies using these techniques showed anterior cingulate, posterior parietal, and 

sensorimotor electrocortical sources were involved in locomotion by creating significant intra-

stride fluctuations in spectral power during normal treadmill walking (Gwin et al. 2011). Since 

then, more studies have emerged to show gait dynamics in other complex locomotion tasks using 

EEG. Walking on an inclined treadmill showed an increase in theta (4-7 Hz) power compared to 

normal walking in anterior cingulate, posterior parietal, and sensorimotor areas (Bradford et al. 

2016). Level walking showed there was greater gamma (30-70 Hz) power for the left 

sensorimotor and anterior cingulate areas. One study looked at  EEG of active treadmill walking 

in which the speeds of the belts were constantly adjusted based on the pelvis position and swing 

foot velocity and found that the left and right sensorimotor areas showed increased 

desynchronizations in mu (8-13 Hz) and beta (14-30 Hz) frequency (Bulea et al. 2015). The 

prefrontal and posterior parietal cortices also showed phasic low gamma (30-50 Hz) power 

increases during double support and early swing phases of the gait cycle. Other studies are 

investigating the mechanism of balance and control. One study showed that subjects walking on 

a treadmill connected to elastic cords displayed significant increases in high beta band (~17 Hz) 

power around contralateral push off in the left premotor area (Bruijn et al. 2015). Another group 

used a balance beam on a treadmill to show an increase in theta (4-7 Hz) power in anterior 

cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor area 

compared to normal treadmill walking (Sipp et al. 2013), while left and right sensorimotor areas 

had significantly less beta (12-30 Hz) power on the balance beam compared to normal walking.  
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These previous mobile locomotion studies have taken place in a controlled laboratory using 

treadmills, and little is known how the neural dynamics of gait relates to the experiences 

outdoors in the real world. More recently some groups have started using virtual reality as a way 

to simulate outdoor, real world situations within a traditional laboratory (Cruz-Neira et al. 1992; 

Diemer et al. 2015; Holden 2005; Livingston et al. 2009; McCall and Blascovich 2009; Mine et 

al. 1997; Sandstrom et al. 1998). Virtual reality can provide a naturalistic context in feature rich 

scenarios while maintaining control within a laboratory environment. Some researchers are 

exploring the usefulness of virtual reality in the context of gait rehabilitation. One study used 

stroke patients to show that virtual reality can be used for gait training to augment walking speed 

and community ambulation compared to a control group that received only normal treadmill 

training (Yang et al. n.d.). Another study used a virtual reality based soccer scenario to provide 

interactive elements for engaging patients during robot assisted treadmill training which 

produced motor output effects similar to the outcome effects using verbal instructions from a 

therapist (Brütsch et al. 2010). Treadmill training and virtual reality was also used in another 

study with Parkinson’s patients to show improvements in walking speeds (Mirelman et al. 2011). 

One study incorporated EEG and virtual reality with a balance beam to show that while virtual 

reality does provide a realistic experience it can also impair physical and cognitive performance 

during balance (Peterson, Furuichi, and Ferris 2018). Another study incorporated both EEG and 

virtual reality in the context of navigation to show theta power oscillations (4-8 Hz) are linked to 

spatial navigation while moving through a virtual maze (Bischof and Boulanger 2003). While 

there are many studies trying to use virtual reality and locomotion to provide applications in 

rehabilitation, none have directly examined the neural correlates of gait within this context.  
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The primary aim of this study was to use virtual reality and EEG to investigate the electrocortical 

dynamics related to gait as well as further explore how those findings relate to locomotion 

outdoors in a natural setting. One recent study showed that using mobile EEG outdoors is 

possible and conducted a dual-task experiment with subjects walking outdoors while either 

talking or texting to see how cortical gait dynamics changed compared to normal walking 

(Pizzamiglio et al. 2017). They found that walking while talking showed an increase in theta (4-7 

Hz) and beta (15-30 Hz) power across left-frontal and right parietal regions and that walking 

while texting showed a decrease in beta power across frontal-premotor and sensorimotor cortices 

compared to the walking and talking condition. However, while this study was conducted 

outdoors it did not compare results to an indoor control condition or use source localization to 

investigate the neural sources for locomotor control. To the best of our knowledge this current 

study is the first to use high density EEG both indoors in virtual reality and outdoors in the real 

world. 

 

A secondary aim of this study was to examine the stress response using EEG along with multi-

modal measurement devices in both the indoor and outdoor environments. Stress is a challenging 

component to quantify and many approaches have been used in the past. Behavioral response to 

stress is known to increase production of the cortisol hormone by the hypothalamus-pituitary-

adrenal axis (Tsigos and Chrousos 2002). Blood or urine can be used to measure cortisol levels 

but those methods are invasive. Cortisol concentrations can also be done through saliva excretion 

in subjects. Salivary cortisol has been known to be a reliable indicator of levels of free cortisol in 

the body (Hellhammer, Wüst, and Kudielka 2009). Many past studies have effectively elicited an 
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increase in salivary cortisol in laboratory testing (Dickerson and Kemeny 2004). They reviewed 

common categories of stress-inducing tasks which include social-evaluative threats, motivated 

performances and uncontrollability (Dickerson & Kemeny, 2004). One drawback to the salivary 

cortisol approach is its variability between individuals in its onset after a stressor (Hellhammer et 

al. 2009). It has been shown that individual cortisol trajectories can vary and that some 

individuals can experience an elevated cortisol level up to 100 minutes after an acute stressor in 

laboratory (Admon et al. 2017). Also, many of these studies focus on mental stress in stationary 

settings. Little is known about mobile subjects engaged in physical and mental tasks, and the 

relationship between exercise and cortisol is unclear (Hill et al. 2008). 

 

Heart rate variability (HRV) has also been used in laboratory as an indicator of acute stress in 

subjects (Thayer et al. 2012). Studies have shown that reduced variability in inter-beat intervals 

is an indicator of a disturbance of the autonomic nervous system and thus a potential sign of 

mental stress (Clays et al. 2011; Taelman et al. 2008). Power spectral analysis of these inter-beat 

intervals helps us understand the mechanism of the autonomic nervous system during a stress 

response. Low frequency bands are associated with the sympathetic nervous system, the system 

that is activated during a stressor, while high frequencies are associated with the parasympathetic 

nervous system activity, which tends to be suppressed during stress (Taelman et al. 2008). 

However, heart rate variability measures can be conflicting and can vary depending on the type 

of paradigm being used (Schlink et al. 2017). 

 

The overall goals of this study were to use brain and body imaging to determine the neural 

correlates of gait as well as the stress response and how they change in a laboratory indoors and 
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an arboretum outdoors. In order to mimic daily life challenges we chose to use a visual search 

task while walking. Visual search is a common paradigm used across the fields of psychology 

and cognitive neuroscience (Braun and Julesz 1998; Luck et al. 1993; Luck and Ford 1998; 

Sutton et al. 1965; Treisman and Gelade 1980) for its relationship to active perception. Our 

hypotheses were that 1) EEG can be used to capture the cortical dynamics of walking in 

sensorimotor, anterior cingulate, and posterior parietal areas using independent component 

analysis and source localization, and 2) gait dynamics and the stress response would vary by 

environment and task. By using similar tasks indoors in a laboratory on a treadmill with virtual 

reality, and outdoors in an arboretum on natural terrain, this study provides new insights into the 

challenges faced conducting brain and body imaging studies in the real world. 

 

Materials and Methods 

Participants  

This study consists of forty-nine healthy adults (20 males, 29 females) between the ages of 18-45 

(average age 22.7). All participants were required to be free of any history of neurological or 

physical impairments and be in good enough shape that they could walk on a treadmill one hour 

while carrying a fifteen-pound load without issue. Both the University of Michigan Internal 

Review Board and the U.S. Army Institutional Review Board approved all study procedures and 

all subjects provided signed consent prior to participating in the study. 

 

Testing Environments 

Virtual reality environment  
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We designed a 3D animated environment (Figure 5-1A) using Google SketchUp to simulate a 

virtual park that was displayed as a video on a projector screen directly in front of the treadmill 

(Figure 5-1B) set at 0.7 m/s moving at the same pace as the video. Within the virtual landscape, 

there were a total of 50 animated target flags (bright green) and 150 animated non-target flags 

(dark green) split evenly between the non-stress and stress conditions (described below) (Figure 

5-1A). All experiments started with a 20 minute baseline condition in which no flags were 

displayed. The placement of the target flag locations as well as their position relative to 

environmental objects were meant to simulate how flags were placed in the real world 

environment. 

 

Real world environment 

Subjects walked outdoors on a marked trail path (Figure 5-1B) at an arboretum (Nichols 

Arboretum, Ann Arbor, MI) while open to the public. The trail path was well marked and varied 

in terrain (e.g. gravel, wood chips, board walk, grass, mud, etc.) for approximately 2 miles 

(Figure 5-2). A total of 50 target flags (bright green) and 150 non-target flags (dark green) split 

evenly between the non-stress and stress conditions. The flags were 2” x 3” attached to a 15” 

pole (Figure 5-1A). During the first twenty minute baseline walking condition no flags were 

present. Subjects were instructed to walk straight along the path at a slow to moderate pace 

matching the indoor treadmill speed (0.7 ms/s) and were not allowed to stop walking at any time 

during the experiment. Auditory cues given by the experimenter were used to control the speed 

of the subject if necessary. Flags were placed within 10 feet off the marked path and not placed 

higher than 10 feet off the ground. All flags were visible from the trail as subjects were not 

allowed to deviate from the path. 
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Figure 5-1. Indoor and outdoor environments with example flags. (A) Left panel shows a 

screenshot from the virtual environment video with a non-target (dark green) and target (bright 

green) flag placed to the right of the walking path indicated by arrows. Right panel shows a real 

non-target (dark green) and target (bright green) flag that were used for the outdoor environment. 

(B) Left panel shows an example subject standing on the treadmill in front of the projector 

screen. Right panel shows an example subject walking along the outdoor path with an 

experimenter carrying a laptop on a tray monitoring all measurement devices. 

 

Protocol 

Environment order was randomized across subjects and both consisted of the same walking and 

visual search conditions. First, subjects always started with a 20 minute baseline walking 

condition in which no flags were present in the environment. After baseline walking was 

complete the visual search task began immediately without interruption. The goal of the task was 
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to search for bright green flags (targets) within the environment and to ignore distractor dark 

green flags (non-targets). Subjects were instructed to press a button using a joystick when they 

saw a target bright green flag and to ignore (not press anything) when they saw a non-target dark 

green flag. We asked subjects to hold eye gaze fixation for at least one second on all flags when 

possible. The visual search task was split into 2 conditions, ~20 minutes each: 1) Normal 

(referred to as “non-stress”) – subjects were told each correct flag identified would earn an extra 

$0.25 toward their compensation for the study completion and 2) Induced Stress (referred to as 

“stress”) - in addition to earning $0.25 per correctly identified target flag subjects were also told 

they would be penalized $1.00 for every unidentified (missed) target flag and a loud siren was 

played by the experimenter immediately after the subject walked passed the unidentified target 

flag. To further induce stress, subjects were given random false negative siren noises indicating a 

missed target flag (approximately once every 2 minutes, 10 times total) regardless of task 

performance. Subjects were naïve to the random penalties during the task, but were debriefed 

after the completion of all experiments. The 20 minute baseline walking condition was always 

first, but the order of the 2 visual search conditions (non-stress and stress) was randomized. 
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Figure 5-2. Trail map for Nichols Arboretum, Ann Arbor, MI. Thick purple line indicates 

walking path used for experiment. The trail started at point 1 and continued through points 2 and 

3. Once subjects arrived near the river at point 7 they walked to the right toward point 6 and 

looped back around until continuing past point 7 until the end position at point 8. Total distance 

walked was approximately 2 miles. 

 

Equipment and Data Processing 

Instrumented treadmill  

Subjects walked on an instrumented, split-belt treadmill (sampling rate: 1000 Hz; Bertec, 

Columbus, OH) consisting of two separate belts, each with its own motor, for the left and right 

side of the walking surface. Each belt contained separate force transducers which were used for 

the collection of 6 degrees of freedom ground reaction forces from the left and right foot 

separately. We used a threshold of 30 Newtons vertical ground reaction force to mark heel 

strikes and toe-offs for each foot. 
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Inertial measurement units 

Subjects wore 6 inertial measurement units (sampling rate: 128 Hz; APDM Opal, Portland, OR) 

attached to both feet, both ankles, waist, and chest for both indoor and outdoor environments 

(Figure 3A). Each inertial measurement contained 3D accelerometers, gyroscopes, and 

magnetometers. We used the gait events determined from the instrumented treadmill ground 

reaction forces to align with the inertial measurement units. The inertial measurement units on 

the top of the toe box provided the most reliable data for matching gait events to the treadmill 

using peaks in anterior-posterior acceleration. The gait events from the inertial measurement 

units were recovered from the outdoor experiment and were synced to the EEG data (Figure 3B) 

and used in pre-processing for artifact detection removal. Stride duration was computed by 

taking the average stride time (right heel strike to right heel strike) across all gait cycles within 

each condition. 
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Figure 5-3. Layout of all recording devices shown on example subject. (A) All measurement 

devices and position of each placed on an example subject. (B) Layout of recording devices and 

how they were connected to each other for data collection. The EEG A/D box, battery, EEG 
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USB receiver, Arduino, and mobile eye tracker were all contained into backpack worn by 

subject. The laptop and wireless IMU receiver were carried externally by an experimenter 

following behind the subject. 

 

Cortisol 

The SalivaBio Oral Swab saliva collection method was used to obtain salivary cortisol samples 

(Salimetrics, Newmarket, UK) from all subjects (Figure 3A). Subjects were informed ahead of 

the experiments to not to consume any food or beverages (other than water) one hour prior to 

testing. Subjects were not allowed to eat during the duration of testing and only water was given 

during breaks. A total of 8 saliva samples (4 indoors, 4 outdoors) were collected during testing as 

follows: before the start of each experiment (“initial”), after the baseline walking condition 

(“baseline”), after the first visual search condition, and after the second visual search condition 

for both indoor and outdoor environments. Samples were taken approximately 20 minutes apart. 

Collections were obtained by placing an oral swab under the subject’s tongue for two minutes. 

Swabs were then removed and placed in storage tubes that were then stored in an ice chest at 

below 4°C during testing. After testing samples were transferred to a freezer and kept below -20 

°C until analysis. Saliva swabs were analyzed in a university lab using the Salimetrics Salivary 

Cortisol ELISA Kit (Salimetrics, Newmarket, UK) and cortisol concentrations (µg/dL) were 

obtained from each sample. In order to normalize results across subjects the initial sample taken 

before the start of the experiment for each respective environment served as a baseline. The 

concentration for each of the 3 samples within each environment were taken after the end of each 

testing condition were subtracted from the initial sample and the concentration differences were 

used for statistics.  

 

Heart Rate  
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Heart rate was measured using the photoplethysmogram (PPG) signal and recorded from a Pulse 

Sensor heart rate monitor (sampling rate: 500 Hz; World Famous Electronics LLC, New York, 

NY) attached to each subject’s right earlobe and logged through an external Arduino (Figure 

3B). 

 

Heart Rate Analysis 

Each subject’s raw heart beat data was manually screened and visible artifacts were corrected. 

Inter-beat intervals were then calculated using the distances between peaks of consecutive beats. 

Inter-beat interval outliers were then identified using common statistical thresholds (i.e. standard 

deviation, percent change/range) and corrected by linear interpolation. Heart rate variability 

analysis was processed using Kubios (Tarvainen et al. 2009). The software was used to 

determine the time domain measure mean inter-beat intervals (R-R interval) as well as frequency 

domain measures like standard deviation of normal-to-normal interval, relative low frequency 

(0.4-1.2 Hz) power, and relative high frequency (1.2- 4 Hz) power. 

 

Eye Tracker 

Each subject was fitted with Mobile Eye XG eye tracking glasses (sampling rate: 30 Hz; Applied 

Science Laboratory, Boston, MA) accurate within 0.5 to 1 degree (Figure 3A) and calibrated 

indoors to ensure proper alignment. The eye tracker produced scene videos with a visual 

crosshair marking the location of subject’s eye gaze. All eye tracking videos were examined off-

line by reviewers to mark notable events such as eye fixations to flags, faces, and animals. All 

timestamps were confirmed by at least two different reviewers for consistency. 
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Video 

High definition video recordings of the all experiments were captured using a high definition 

camcorder (sampling rate: 30 Hz; Canon USA) handheld by an experimenter. Video recordings 

were synced to all measurement devices and reviewed to determine timestamps of relevant 

environmental variables like terrain changes, background talking, noises, bystanders, etc.  

 

EEG  

Subjects were fitted with a high density, pre-amplified 256-channel EEG cap (sampling rate: 512 

Hz; Biosemi Activetwo, Amsterdam, Netherlands) (Figure 3B) along with 8 additional external 

sensors placed on the neck of the subject to record neck muscle electromyographic (EMG) 

activity. Electrodes positions were digitized and mapped with a 3D digitizer (Zebris, Germany) 

to make subject-specific head models. We used electrode gel placed underneath each sensor and 

kept all offsets below 20 mV as recommended by Biosemi for optimal data quality. If anytime 

during the experiments electrode offsets went above 20 mV, more electrode gel was applied until 

threshold was reached. 

 

We performed All EEG analyses in MATLAB (The MathWorks, Natick, MA) using custom 

scripts based on EEGLAB (Delorme and Makeig 2004). EEG was downsampled to 256 Hz and 

high pass filtered at 1 Hz to remove drift. Common average reference was applied and the 

EEGLAB plug-in, Cleanline (https://www.nitrc.org/projects/cleanline/) was used to remove 60 

Hz line noise. In order to reduce the effects of gait-related movement artifact from the EEG data, 

we first removed EEG channels that were found to be highly correlated to the gait cycle as 

described by Anderson and colleagues (Oliveira, Schlink, David Hairston, et al. 2017). Briefly, 
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individual EEG channel activations were smoothed with a 128 point moving average filter and 

then split into individual gait cycles from right heel strike to right heel strike. Each channel’s 

mean amplitude for each time point across all gait cycles was used to create an average 

waveform template. Every individual gait cycle for each channel was cross-correlated against the 

average waveform. Individual channels which were highly correlated (r > 0.4) to the gait cycles 

for more than 75% of the total number of gait cycles were removed. Next we used standard 

cleaning methods (i.e., range, SD, kurtosis) to reject any further bad channels. All clean channels 

were re-referenced to common average. We then applied adaptive mixture independent 

component analysis (AMICA 15) (J. A. Palmer et al. 2008) using Principal Component Analysis 

to parse the data into 150 spatially fixed, maximally temporally independent component (IC) 

signals (Onton et al. 2006) per subject. We used the DIPFIT function in EEGLAB (Oostenveld 

and Oostendorp 2002) to model each independent component as an equivalent current dipole 

within a boundary element head model based on the Montreal Neurological Institute standard 

brain (Quebec). All sources indicative of eye blinks, eye movements, or muscle artifact (T.-P. 

Jung, Makeig, Westerfield, et al. 2000) were marked for removal. We removed the remaining 

independent components from further analysis if their best-fit equivalent current dipole 

accounted for less than 85% of the variance seen at the scalp (Gwin et al. 2011), or if their 

location was outside the boundary of the scalp. 

  

Group analyses were limited to the number of subjects that included clean EEG signal for all 

conditions (baseline walking, non-stress visual search, stress visual search) within both 

environments (indoor, outdoor) and had gait event timings properly synchronized with EEG. Due 

to missing data cause by various device malfunction like syncing errors, gait detection errors, 
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etc. this limited our group to 29 of the 49 total subjects. All following EEG analyses were 

performed on this subset. To cluster the neural independent components obtained from 

independent component analyses, we used a k-means clustering algorithm across all subjects on 

vectors jointly grouped by similarities in dipole location, scalp topography, and frequency 

spectra (Gwin et al. 2010; T.-P. Jung, Makeig, Humphries, et al. 2000). We set the number of 

clusters to 13 to agree with previous studies from our lab (Bradford et al. 2016; Gwin et al. 2011; 

Sipp et al. 2013) and removed components to an outlier cluster if they were 3 standard deviations 

from the mean. Four of the 13 clusters (Figure 5-4) contained at least half of all subjects 

analyzed and were located in cortical areas that were most relevant for the locomotor task and 

were similar to those found in previous studies (Bradford et al. 2016; Gwin et al. 2011; Sipp et 

al. 2013): Left Sensorimotor (27 sources, 14 subjects), Right Sensorimotor (21 sources, 16 

subjects), Anterior Cingulate (29 sources, 21 subjects), and Posterior Parietal (21 sources, 15 

subjects). All further analyses were performed only on these four clusters. For spectral analysis, 

we computed log power spectra for each cluster for six conditions: (1) Indoor baseline walking, 

(2) Indoor non-stress visual search, (3) Indoor stress visual search, (4) Outdoor baseline walking, 

(5) Outdoor non-stress visual search, and (6) Outdoor stress visual search. A repeated measures 

ANOVA test was used to evaluate mean spectral frequency band power differences among 

conditions (α = 0.05). Theta band was defined as 4-7 Hz, alpha band 8-12 Hz, beta band 13-30 

Hz, and gamma band 31-50 Hz. To avoid substantial line noise present near 60 Hz, we limited 

gamma band to 50 Hz.  

  

For time-frequency analyses, we examined the same six conditions. All conditions for each 

subject were epoched at each right heel strike (RHS) to produce discrete gait cycle trials across 
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the experiment and gait cycles with latencies outside of 3 standard deviations from the mean 

were removed. We computed a single trial time-frequency log spectrogram for each independent 

component source activity using three-cycle Morlet wavelets for every individual gait cycle. The 

spectrograms were time-locked to all subsequent gait events (i.e., left toe off, left heel strike, 

right toe off) and linearly time warped so each gait event occurred at the same latency in every 

trial (Gwin et al. 2011; Makeig 1993b). To visualize spectral changes within the gait cycle, we 

subtracted a baseline (calculated as the average log spectrum across all gait cycles within each 

condition) from the spectrum at each time point. The resulting plots show spectral change from 

baseline and are referred to as event-related spectral perturbations (ERSPs) (Gwin et al. 2011; 

Onton et al. 2006). We averaged the ERSP plots across each independent component in each 

cluster to make a grand average ERSP for each cluster across all conditions (Figure 10). We used 

a 200-iteration bootstrapping method to find statistical differences (p < 0.05) from baseline 

frequency power across the gait cycle for each condition and ERSP data were significance 

masked, such that all nonsignificant regions were set to zero (green). 
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Figure 5-4. Clusters of independent component EEG sources plotted on the Montreal 

Neurological Institute brain. Left sensorimotor (red), right sensorimotor (blue), anterior 

cingulate (green), and posterior parietal (yellow). Top: small spheres indicate the equivalent 

current dipole locations of each clustered independent component source. Bottom: larger spheres 

show the locations of the cluster centroids. 

 

EMG 

To assess the potential of neck muscle electromyography (EMG) effects in EEG results, we used 

the 8 external EMG channels placed as bipolar pairs on two left and two right neck muscles 

(Levator Scapulae and Splenius Capitis) to examine neck muscle activity across the gait cycle. 

For each of the four muscles, we subtracted the difference in EEG signal between each bipolar 

pair, detrended the signal, applied a 20 Hz high-pass filter and rectified the amplitude. We used a 

Butterworth low pass filter at 6 Hz to obtain the linear envelope of the EMG signal. Each of the 

four EMG signals were epoched into individual gait cycles separated by indoor and outdoor 

environment and then averaged across all gait cycles for a grand average. The grand average gait 
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cycle EMG signal for each environment was divided by the maximum peak amplitude found 

across all conditions in order to normalize EMG power for individual subjects. Finally, the 

average of all subjects for each environment was obtained for a grand average, normalized EMG 

gait cycle linear envelope. 

 

Statistical Analysis 

All statistical analyses except event-related spectral perturbations (ERPs) were carried out using 

SPSS Statistics 19 (IBM SPSS Statistics 19.0, Armonk, NY). For all variables of interest we 

used a two-way repeated measures ANOVA with factors of environment (indoor vs outdoor) and 

condition (baseline walking, non-stress visual search, stress visual search) using the order of 

environment and order of stress condition as covariates with alpha = 0.05.  

 

Results 

Gait 

Stride duration (Figure 5-5) was significant for both environment (F = 28.64, p < 0.001) and 

conditions (F = 13.47, p < 0.001). Pairwise comparisons showed indoor treadmill walking used a 

longer stride duration (mean = 1425.76 ms, std. error = 39.04 ms) compared to outdoors (mean = 

1210.95 ms, std. error = 15.41 ms). Baseline walking in both environments was significantly 

slower (p < 0.001) than both non-stress (mean difference = -75.44 ms, std. error = 15.97 ms) and 

stress (mean = -76.94 ms, std. error = 14.55 ms) visual search conditions. However, non-stress 

and stress visual search conditions were not significantly different in either environment. 
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Figure 5-5. Group average stride duration changes across environments and conditions. 

Stride duration was measured as mean right heel strike to right heel strike gait cycles time (in 

milliseconds) for each subject. * p < 0.05 

 

Cortisol 

Cortisol concentrations (differences from initial samples) (Figure 5-6) were only significant for 

conditions (F = 3.27, p = 0.049) but not for environment. Pairwise comparisons showed cortisol 

concentration for outdoor baseline walking was significantly greater compared to both non-stress 

(mean = 0.014 µg/dL, std. error = 0.006 µg/dL) and stress (mean = 0.016 µg/dL, std. error = 

0.006 µg/dL) visual search conditions. However, non-stress and stress visual search conditions 

were not significantly different in either environment. 
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Figure 5-6. Group average salivary cortisol changes across environments and conditions. 

Concentration (µg/dL) was measured as a difference from initial sample within each 

environment. * p < 0.05 

 

Heart Rate and Heart Rate Variability (HRV) 

The mean R-R inter-beat intervals (IBI) were significant for condition (F = 7.37, p = 0.02) but 

not for environment (Figure 5-7). Pairwise comparisons showed mean IBI was greater for 

outdoor baseline walking compared to non-stress (mean difference = 0.043 sec, std. error = 

0.005 sec, p < 0.001) and stress (mean difference = 0.047 sec, std. error = 0.007 sec, p < 0.001) 

visual search conditions. However, non-stress and stress visual search conditions were not 

significantly different in either environment. 

 

The standard deviation of the normal-to-normal RR interval (SD of NN) was significant for 

condition (F = 3.67, p = 0.03) but not for environment. Pairwise comparisons showed mean SD 

of NN was significantly greater for outdoor baseline walking compared to non-stress (mean 

difference = 0.007 sec, std. error = 0.002 sec, p = 0.005) and stress (mean difference = 0.008 sec, 
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std. error = 0.002 sec, p < 0.001) visual search conditions. However, non-stress and stress visual 

search conditions were not significantly different in either environment. 
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Figure 5-7. Group average heart rate and heart rate variability changes across 

environments and conditions. R-R interval is the time between successive peaks in the QRS 

complex. Standard deviation of the normal to normal RR interval represents the variability in 
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heart rate. Low frequency power represents 0.4-1.2 Hz and high frequency power is 1.2 to 4 Hz. 

* p < 0.05 

 

EMG 

The average gait cycle EMG linear envelops (Figure 5-8) for both left and right neck muscles 

(Levator Scapulae and Splenius Capitis) show that outdoor walking produced great amplitudes 

and more fluctuations of EMG activity compared to indoor walking. Both left and right neck 

muscles showed similar spikes of EMG activity at the end of toe off before heel strike. 

 

 

Figure 5-8. Grand average EMG envelopes. Plots shown for two left neck muscles (Levator 

Scapulae and Splenius Capitis) and same two right neck muscles across the average of all gait 

cycles normalized by subject. Red line represents indoor walking on a treadmill and blue line 

represents outdoor walking overground in arboretum. Shaded areas around lines represent +/-1 
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standard deviation from mean. RHS = right heel strike, LTO = left toe off, LHS = left heel strike, 

RTO = right toe off. 

 

EEG Spectral Analysis 

Table 5-1 presents all significant pairwise comparisons for each cortical cluster by frequency 

band. Left sensorimotor and right sensorimotor clusters showed very similar patterns (Figure 5-

9). For both clusters, outdoor non-stress visual search and outdoor stress visual search 

conditions were significantly greater in theta power compared to baseline walking. Left 

sensorimotor also showed significantly greater theta (4-7 Hz) power in the indoor stress visual 

search condition compared to baseline walking. Alpha power in left sensorimotor was 

significantly greater for indoor non-stress visual search compared to stress visual search 

condition, while right sensorimotor showed significantly greater alpha (8-12 Hz) power in 

outdoor non-stress vs stress visual search. Left sensorimotor showed significant beta (13-30 Hz) 

power increase for indoor non-stress visual search compared to stress visual search. Anterior 

cingulate showed significant increases in theta power for indoor and outdoor stress visual search 

conditions compared to baseline walking within each environment. Gamma (31-50 Hz) power 

was also significantly increased for indoor stress visual search compared to indoor non-stress 

visual search. Outdoor stress visual search has greater gamma power than both non-stress visual 

search and baseline walking. Posterior parietal area showed greater theta power for all visual 

search conditions compared to baseline walking within each environment. Both alpha and beta 

power was significantly higher for indoor baseline walking compared to both indoor non-stress 

and stress visual search conditions. Gamma power was greater for indoor stress visual search 

compared to indoor non-stress visual search. 
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Table 5-1. Significant spectral differences between pairs of conditions.   

 Theta (4-7 Hz) Alpha (8-12 Hz) Beta (13-30 Hz) Gamma (31-50 

Hz) 

Left 

Sensorimotor 

Cortex 

 

In S > In B (p=0.002) 

Out N > Out B 

(p=0.009) 

Out S > Out B (p=0.001) 
 

In N > In S (p=0.031) In N > In S (p=0.038)  

Right  

Sensorimotor 

Cortex 

 

Out N > Out B 

(p=0.011) 

Out S > Out B (p=0.020) 
 

Out N > Out S 

(p=0.017) 
  

Anterior 

Cingulate 

 

In S > In B (p=0.021) 

Out S > Out B (p=0.018) 
 

  

In S > In N (p=0.028) 

Out S > Out B (p=0.023) 

Out S > Out N 

(p=0.007) 

Posterior 

Parietal 

In N > In B (p=0.009) 

In S > In B (p=0.014) 

Out N > Out B 

(p=0.006) 

Out S > Out B (p<0.001) 

In B > In N (p=0.039) 

In B > In S (p=0.030) 

In B > In N (p=0.017) 

In B > In S (p=0.021) 
In S > In N (p=0.002) 
 

In B = Indoor baseline walking, In N = Indoor non-stress visual search, In S = Indoor stress visual search, Out B = 

Outdoor baseline walking, Out N = Outdoor non-stress visual search, Out S = Outdoor stress visual search. 
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Figure 5-9. Grand average spectral power for each electrocortical cluster. Conditions are 

indoor baseline walking (red), indoor non-stress visual search (magenta), indoor stress visual 

search (purple), outdoor baseline walking (blue), outdoor non-stress visual search (green), 

outdoor stress visual search (light blue). The dashed lines mark boundaries of frequency bands—

theta (3-7 Hz), alpha (8-12 Hz), beta (13-30.Hz), and gamma (31-80 Hz). Red shaded regions 

indicate at least one or both visual search conditions are significantly greater than baseline 

walking conditions. Green shaded region indicates at both visual search conditions are 

significantly less than baseline walking conditions during indoors. Blue shaded regions indicate 

non-stress visual search is significantly greater than stress visual search. For specific pairwise 

statistics see Table 5-1. 

 

 

ERSP fluctuations across the gait cycle 

All four brain areas showed significant spectral power fluctuations in theta, alpha, beta, and 

gamma bands across the gait cycle during indoor baseline walking, indoor non-stress visual 

search,, indoor stress visual search, outdoor baseline walking, outdoor non-stress visual search, 

and outdoor stress visual search (Figure 5-10). Left sensorimotor indoor baseline walking 

showed significant theta power desynchronizations during left swing phase and synchronizations 

during right foot swing phase. There was also a significant beta and gamma power 

synchronization at the end of left foot swing phase going into double support. During indoor 

non-stress visual search only a theta synchronization around left foot sing phase and 

desynchronization around right foot swing phase was significant. And during indoor stress visual 

search there was significant beta and gamma synchronizations at the beginning of left foot swing 

phase as well as theta, and beta desynchronizations during right foot swing phase. All outdoor 

conditions showed a similar pattern of alternating theta, alpha and beta synchronizations around 

both double support phases with theta, alpha, and beta desynchronizations around both swing 

phases.  
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Right sensorimotor area indoor baseline walking showed significant alpha and beta 

synchronizations during end of left foot swing and beginning of double support and alpha 

desynchronization during the opposite double support phase. This same pattern happened for 

indoor non-stress visual search as well. There were no significant fluctuations during indoor 

stress visual search. All outdoor conditions showed a similar pattern of alternating theta, alpha, 

beta, and gamma synchronizations during first double support phase with right foot forward and 

only theta synchronization during double support with left foot forward. There were significant 

theta, alpha, beta, and gamma desynchronizations during both swing phases.  

 

Anterior cingulate area indoor baseline walking showed only alpha synchronization at left foot 

forward double support phase. Indoor non-stress visual search showed a small fluctuation of 

alpha desynchronization during right foot forward double support phase followed by alpha 

synchronization during left foot swing phase. Indoor stress visual search showed theta 

desynchronization during right foot forward double support phase and alpha synchronization 

during right foot swing phase. All outdoor conditions showed a similar pattern of alternating 

theta, alpha and beta synchronizations around both double support phases with theta, alpha, and 

beta desynchronizations around both swing phases.  

 

Posterior parietal cortex indoor baseline walking showed only a small alpha desynchronization 

during left foot swing phase and alpha synchronization during right foot swing phase. Indoor 

non-stress visual search showed theta synchronization during right foot forward double support 

phase and theta desynchronization during end of left foot swing phase. Indoor stress visual 

search showed theta and alpha synchronizations during right foot forward double support 
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followed by alpha and beta desynchronizations during left foot swing phase. Outdoor baseline 

walking showed alpha synchronization during left foot forward double support phase followed 

by theta and alpha desynchronization during right foot swing phase. Outdoor non-stress visual 

search showed theta, alpha, and beta desynchronizations during left foot swing phase followed 

by theta and alpha synchronizations during double support. There was a significant alpha, beta, 

and gamma power synchronization at the end of right foot swing phase. And outdoor stress 

visual search showed a theta and alpha synchronization during right foot forward double support 

followed by theta and alpha desynchronizations during left foot swing phase. There was also 

alpha and beta desynchronizations during right foot swing phase as well as gamma 

synchronization during right foot swing phase. 
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Figure 5-10. Grand average normalized spectrograms. Plots are significance masked (p = 

0.05) for left sensorimotor, right sensorimotor, anterior cingulate, and posterior parietal clusters 

for all conditions in each environment. Left column indicates baseline walking, middle column 

indicates non-stress visual search, and right column indicates stress visual search. Environment is 
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indicated by vertical titles to the right of plots. All plots represent one gait cycle from right heel 

strike (RHS) to RHS, with left toe off (LTO), left heel strike (LHS), and right toe off (RTO) 

designated by dashed vertical lines. Nonsignificant values were set to zero (green). 

 

Discussion 

The results presented confirm that we were able to localize cortical EEG activity in left 

sensorimotor, right sensorimotor, anterior cingulate, and posterior parietal clusters for both 

indoor and outdoor walking. We were also able to combine EEG with other multi-modal imaging 

devices including heart rate, eye tracking, inertial measurement units, and salivary cortisol to 

find behavior differences between normal walking and walking during visual search for both 

indoor and outdoor environments. However, the behavioral and neural results show mixed 

patterns that aren’t entirely clear.  

 

Behavioral Differences 

We found that gait stride duration significantly increased during both non-stress and stress visual 

search tasks compared to baseline walking for both indoor and outdoor environments. Stride 

duration was also significantly longer indoors than it was outdoors. While we can’t say for 

certain whether or not walking speed decreased, longer stride durations suggest that subjects took 

longer steps when dual-tasking during visual search compared to normal walking. Past studies 

have similarly found that adding cognitive tasks while walking slows down walking speeds 

(Beauchet et al. 2005; Patel, Lamar, and Bhatt 2014). This isn’t surprising outdoors when 

subjects walked self-paced as they were not allowed to stop at any time during the visual search 

task. However, the same increase in stride duration during indoors while on a set treadmill speed 

(0.7 m/s) does indicate that subjects adjusted their overall walking pattern during visual search. 

Stride duration was also the only measure to show a significant difference from indoor to 
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outdoor with subjects walking with a shorter stride duration outside. This also seems reasonable 

as preferred walking speed is in the range of 1.3 m/s for healthy adults (Bastien et al. n.d.), but 

here we chose to keep the treadmill at slower speeds to minimize motion related artifact in EEG 

(Kline et al. 2015). 

 

Cortisol results only showed significant differences between outdoor baseline walking and both 

visual search conditions. There were no significant differences between non-stress and stress 

visual search nor any differences for any of the conditions indoors. The decrease in cortisol 

concentration seems contradictory given that previous studies have shown that cortisol 

concentration increases with mental stress (Tsigos and Chrousos 2002). However, one potential 

reason for this pattern might be caused by the nature of the latency response in salivary cortisol. 

It has been shown that measuring cortisol 21-40 minutes after the stressor elicits the peak cortisol 

response (Dickerson and Kemeny 2004). In this study we took our cortisol measurements 

immediately following each condition. Since each condition lasted for approximately 20 

minutes, our cortisol measurements might be reflecting the stress levels from the beginning of 

each condition rather than the end. Another possibility is that our experimental design was not 

using a strong enough stressor in our stress visual search condition. We tried to induce stress 

using negative feedback penalties for missing target flags along with uncontrollability in when 

subjects would be penalized. While previous studies have shown that motivated performance 

with uncontrollability show a significant effect size in cortisol increase (Dickerson and Kemeny 

2004), that effect size tends to be much smaller compared to other stressors like social-evaluative 

threat. It could be that our outdoor task was confounded with social-evaluative threat by the 
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nature of being outside in a heavily trafficked public space wearing unusual equipment like an 

EEG cap and mobile eye tracker.  

 

Surprisingly, heart rate and heart rate variability showed no significant differences across any 

conditions for the indoor environment. However, in the outdoor environment inter-beat interval 

decreased for both visual search conditions compared to baseline walking indicating an elevated 

heart rate. Heart rate variability results showed that standard deviation of the normal-to-normal 

RR peak decreased, low frequency (0.4-1.2 Hz) power decreased, and high frequency (1.2 to 4 

Hz) power increased for both visual search conditions compared to baseline walking. Heart rate 

variability decreases have been shown to indicate acute mental stress (Steptoe et al. 2002) and 

our results suggest that the outdoor visual search task was more stressful than normal baseline 

walking. The frequency domain results of heart rate variability showed a significant decrease in 

low frequency along with significant high frequency power during both visual search conditions. 

These results conflict with previous studies that have shown the opposite pattern of low 

frequency power increases and high frequency power decreases related to physiological stress 

(Delaney and Brodie 2000). However, the frequency domain measurements of heart rate 

variability and their relationship to stress are unclear in previous studies. One study conducted a 

review of across stress literature citing low frequency power results and found that many showed 

no relationship of low frequency power and laboratory physiological challenges (Goldstein et al. 

2011). From both cortisol and heart rate results it is clear that baseline walking and walking 

during visual search elicited different behavioral patterns outdoors, but we can’t say for sure if 

these differences are directly related to our induced stress procedures or if the involvement of 
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physical exercise also played a role. However, the lack of significant difference in the indoor 

condition may indicate that the outdoor differences are not entirely due to the effects of exercise.  

 

Theta band differences between conditions 

Our EEG spectral results showed significant decreases in theta (4-7 Hz) power across all clusters 

during baseline walking compared to one or both visual search conditions. This was consistent 

for both indoor and outdoor environments with the exception of right sensorimotor only showing 

both visual search conditions having greater theta frequency power compared to baseline 

walking in outdoors. The ERSP results similarly show that theta power tends to increase in 

synchronizations around one or both double support phases of the gait cycle, near heel strikes 

and toe-offs, going from baseline to visual search. The ERSP patterns also show more theta 

synchronizations during double support and desynchronizations during swing phase in all the 

outdoor conditions compared to their analogues in the indoor environment. This increase in theta 

power particularly around double support phase going from normal baseline walking to a more 

complex motor task has been shown in previous studies. One study showed this same pattern of 

theta band increases in the same cortical regions with a similar increase in synchronizations 

around double support phase when subjects walked on an incline treadmill compared to level 

walking (Bradford et al. 2016). Another study showed significant theta synchronizations around 

double support phase in anterior cingulate, left premotor, right motor, and prefrontal parietal 

clusters when walking on an active treadmill compared to passive walking. They also showed 

that same pattern of theta synchronizations during both active and passive treadmill walking 

relative to standing (Bulea et al. 2015). Balance beam walking similarly showed increase theta 

power compared to normal walking in anterior cingulate, anterior parietal, right sensorimotor, 



 116 

medial sensorimotor, and dorsolateral prefrontal cortex (Sipp et al. 2013). Theta power was also 

shown to increase during postural stance in the transition-to-stability stage and then decrease 

during falls (Slobounov et al. 2009). Together, these past findings along with the results from 

this current study support that theta power increases with more challenging motor demands and 

might be particularly critical in the transitional stability stages of gait.  

 

Alpha and Beta synchronizations and desynchronizations 

Our ERSP results revealed a common pattern across all the clusters showing significant alpha (8-

12 Hz) and beta (13-30 Hz) power alternations of synchronizations around double support and 

desynchronizations around swing phase for all conditions outdoors that was not present in the 

indoor conditions. Previous studies have also shown similar patterns in alpha and beta power 

fluctuations during treadmill walking (Bradford et al. 2016; Bruijn et al. 2015; Bulea et al. 2015; 

Gwin et al. 2011; Oliveira, Schlink, Hairston, et al. 2017; Sipp et al. 2013). Beta 

desynchronizations have been shown to represent an “active state” used by the brain for the 

promotion of sensorimotor integration of ongoing voluntary movement (Buneo and Andersen 

2006; Engel and Fries 2010). Similarly, one study doing dual-task walking using EEG outdoors 

showed increase beta desynchronizations across sensorimotor, prefrontal, frontal, and parietal 

cortices when walking while texting compared to walking and talking (Pizzamiglio et al. 2017). 

They concluded that beta desynchronizations promote stronger sensorimotor integration and is 

needed for maintaining gait stability and spatial navigations while performing a secondary 

cognitive task. These previous findings along with our currents results showing increased beta 

desynchronizations across all cluster in outdoor walking compared to indoor walking might 



 117 

suggest that outdoor walking utilizes more sensory integration in outdoor overground walking 

compared to the steady walking indoors on a treadmill.  

 

Limitations 

One concern when doing mobile EEG is that spectral fluctuations could be influenced by non-

neural artifact. Accelerometers on the head have been used to show that frequencies up to 15 Hz 

in EEG can be affected by head motion (Castermans et al. 2014). However, another study used a 

wig placed over a non-conductive swim cap to record EEG signals not related to neural activity 

in order to determine the extent to which motion related artifact might contaminate EEG results 

and they found that accelerometers on the head were not a good predictor of EEG artifact (Kline 

et al. 2015). They also noted that slower walking speeds dramatically reduced the effect of alpha 

and beta fluctuations related to movement artifact. In this study we chose to use 0.7 m/s as the 

walking speed for the treadmill and restricted subjects to a similar slow walking pace outdoors in 

the arboretum.  

 

Another possibility for the spectral fluctuation patterns differing so much between the indoor and 

outdoor environment is that we concatenated all EEG sessions together before pre-processing 

and using independent component analysis with source localization. This method was chosen in 

order to obtain the same neural components within each subject so that clusters could be 

compared across all conditions and both environments. We also presented the neck muscle EMG 

activity (Figure 5-8) for both indoor and outdoor walking with outdoor walking showing higher 

amplitudes for all muscles. Those results suggest that EEG indoors has less head movement and 

neck activation compared to outdoors, which might be caused by a larger range of head motion 
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during visual search in the real world. So even though both the indoor and outdoor walking tasks 

should be similar in representing locomotion, it could be that the differences in neural and 

muscle activity in each environment are large enough such that our single model used for 

independent component analysis was not well fit to both environments. One study has shown 

that using a multiple model approach to independent component analysis of EEG data from 

concatenated walking and sitting conditions produced competing models in which no single 

model showed high probability of likelihood for both walking and sitting data (Artoni et al. 

2017). They showed that multiple models were needed in order to best parse the walking and 

sitting EEG data separately. However, that same study used a rigorous cleaning methodology to 

analyze EEG spectral power across the gait cycle of normal treadmill walking in order to best 

reduce noise and motion related artifact, but they found very similar patterns of increased alpha 

and beta power synchronizations during double support and desynchronizations during swing 

phase in both motor and non-motor sources. While we acknowledge the limitations in our ability 

to ensure our EEG data was not partially contaminated by non-neural sources like noise, muscle, 

and motion related artifact, the pattern of spectral results we show draw similar conclusions from 

other mobile EEG studies. 

 

Conclusions 

Using mobile brain and body imaging is becoming a popular approach to conducting studies in 

the real world. However, there are still significant challenges to recording and interpreting data 

from behavioral and neural modalities. Our results demonstrate the feasibility of using mobile 

brain and body imaging both indoors with virtual reality and outdoors in a real world 

environment to understand the behavioral and neural dynamics related to locomotion and stress 
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during a visual search task. Future studies should continue to expand on these methods and find 

new ways of uncovering how the brain and body interact outside of traditional laboratory 

settings. 
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Chapter 6 Discussion and Conclusions 
 

The goal of this dissertation was to push the design and applications forward for mobile brain 

and body imaging (MoBI) using high density electroencephalography (EEG) to study complex 

motor tasks in more natural environments. In this dissertation I completed two main projects 

meant to 1) explore new methods for using mobile EEG in a split-belt motor adaptation walking 

task to better understand gait dynamics with perturbations, 2) advance the field of MoBI research 

by testing the feasibility of using a portable system in virtual reality and the real world, 3) 

determine if the P300 (positive peak amplitude around 250-400ms after stimulus onset) evoked 

potential present in previous EEG studies could be seen in both environments while walking and 

performing a visual search task, and 4) quantify the behavioral and electrocortical activity 

patterns related to locomotion and gait dynamics using the MoBI setup in indoor treadmill 

walking and outdoor overground walking.  

 

One of the main findings of study 1 were that left and right sensorimotor areas, anterior 

cingulate, and posterior parietal cortex all showed similar increases in theta (4-7 Hz) frequency 

fluctuations during motor adaptation compared to normal walking. This was particularly present 

around double support, when both feet were on the ground and stabilized for balance, which 

supports previous research that has shown theta power might play an important role in 

coordination and balance during more demanding motor tasks compared to normal walking. One 

previous study (Bradford et al. 2016) also showed increase theta band power when subjects 
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walked on an incline treadmill compared to level walking. Another study (Sipp et al. 2013) 

showed subjects walking on a balance beam had sustained theta power increases across the same 

neural sources compared to normal walking.  

 

We also saw similar increases in alpha (8-12 Hz) fluctuations as well in all clusters. These 

fluctuations showed up as desynchronizations during swing phase and synchronizations during 

double support. They were most present during asymmetric walking compared to normal 

walking and may suggest alpha power also plays a key role in complex movements that happen 

during the transition phases of swing to stance. Alpha power seems to show interesting dynamics 

in many complex walking studies (Bulea et al. 2015; Oliveira, Arguissain, and Andersen 2018; 

Wagner et al. 2012), but its exact function in motor areas are still unknown.  

 

Interestingly, another finding from study 1 was that left sensorimotor and right sensorimotor 

showed a lateralized difference in beta (13-30 Hz) power with left sensorimotor showing a 

decrease in beta power during swing phase from pre to post adaptation as well as increased beta 

synchronizations during double support. These beta power modulations in left sensorimotor areas 

might suggest that the left sensorimotor area plays a larger role in sensing loss of balance during 

walking compared to right sensorimotor area. Many other studies have noted similar lateralized 

differences (Bradford et al. 2016; Bruijn et al. 2015; Serrien et al. 2006; Sipp et al. 2013) and 

have theorized why these motor areas would control different functions, but there is no 

consensus yet.  
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And the last finding from this study was that posterior parietal cortex showed very different 

fluctuation patterns during split-belt walking compared to normal walking particularly in higher 

frequencies like beta and gamma (31-80 Hz) power. Previous research in cats (Beloozerova and 

Sirota 1993; Drew et al. 2008, 2004; Lajoie et al. 2010; Widajewicz et al. 1994) have noted the 

parietal areas involvement in interlimb coordination during locomotion. Our findings support 

previous research that has also concluded that parietal area is important in motor planning and 

error correction during challenging walking conditions.  

 

One of the main limitations for this study was that it was difficult to determine if mechanical or 

movement related artifacts were still present in the EEG data after cleaning. Over the course of 

many years I tried numerous cleaning and processing methods to look at the data in different 

ways. By analyzing muscle EMG activity from the neck electrodes I noticed some overlap in the 

EEG spectral fluctuations and wanted to find better ways to incorporate that activity back into 

the data processing steps to try and cancel it out. By including the neck electrode activity and 

using Ensemble Empirical Mode Decomposition (EEMD) before running independent 

component analysis (ICA) I was able to specifically target and parse out the highest frequency 

noise contributors to the data and remove those sources from the channels. Then I found that 

applying Canonical Correlation Analysis (CCA) to the cleaned channels I could localize 

components that were cyclical in nature and at low frequencies that aligned with the stepping 

frequencies. That helped to remove potential sources of movement related artifact. From there I 

could use adaptive mixture ICA (AMICA) to best separate the clean channel data into the most 

independent neural sources possible (Delorme et al. 2012). While I can’t be certain that I was 

able to successfully separate out all mechanical and motion artifact from the EEG data, I am 
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satisfied with the end result and feel that the overall pattern of results I found look similar to and 

not significantly more noisy than other studies using complex walking tasks and similar 

methodologies. 

 

The second project comprised of a large scale experiment that had multiple components. While 

this project was one experiment, there were many findings and challenges that could be split into 

multiple studies. The first study from this project was purely methods based. To the best of our 

knowledge nobody has tried to record high density EEG data outdoors in the real world while 

also using an indoor virtual reality component for comparison. This involved creating a custom 

system of both hardware and software devices to accomplish. One of the main challenges from 

this endeavor was that all the data streams from the MoBI device would need to be synced and 

monitored carefully such that experimental events could be labeled and coded into the data set 

for future public use. Designing the setup took careful planning and required building custom 

software to coordinate all devices together. This system was setup with EEG as the primary 

recording device and all other measuring equipment would be time locked to the EEG data. This 

allowed for adding unique and interesting tags that could be encoded into the data set in ways 

that have never been done before. Other team members and myself were able to use video data 

from the subject eye tracker as well as videos recorded externally from a high definition 

camcorder to post-hoc mark any timestamps in the data that could be of interest for other 

researchers unrelated to our field of study. The final data set includes tens of thousands of event 

labels pre-coded into the EEG data sets with a structured labeling system and key. The first study 

was a documentation of the data descriptions and methodology we used to complete this task and 

includes the full data set that has been made available to the public.  
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For the second study of this project, our main finding was that we could use the EEG data in 

coordination with the mobile eye tracker to detect a significant positive amplitude waveform 

around 300 ms to detect target vs distractor flags in both the indoor virtual visual search task as 

well as the analogous outdoor real world task. This is significant because previous ERP studies 

using visual search have focused on using computer screens with subjects forced to look straight 

ahead. Our study instead used a free viewing visual search task in which the subjects were 

allowed to freely gaze the entire environment. While more recent ERP studies have explored and 

compared this type of free viewing visual search to traditional oddball paradigms 

(Kamienkowski et al. 2012; Kaunitz et al. 2014) those were still using pictures of  natural scenes 

rather than using real environments. There have also been previous work that has shown the 

P300 response is detectable while in mobile walking situations (Debener et al. 2012; Gramann, 

Gwin, et al. 2010). The findings from this study now confirm that using a free viewing visual 

search task in the real world can also elicit a similar positive amplitude increase around 300 ms 

which can be captured by EEG and mobile eye tracking. The limitations from our results were 

that we were not able to find earlier ERP components like P1 (positive peak at 100 ms), N1 

(negative peak at 150 ms), and P2 (positive peak at 200 ms). This is most likely caused by the 

different method we used in time locking stimulus onset to eye gaze fixation on a target or 

distractor flag rather than traditional onset based on the moment when a stimulus is presented on 

a screen. Because of the nature of using a free viewing task in which stimuli were always present 

in the environment, we had to rely on fixation-event related potentials (fERPs). This method also 

produces more variability in determining the fixation onset as we relied on eye tracking videos 

recorded at 30 frames/sec, which limits the consistency of precise timestamps. Another challenge 
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was that the effect of attention and engagement outdoors compared to indoors might be different. 

There has been previous work noting that attentional engagement might modulate the temporal 

effects during free viewing (Corbetta et al. 1998; Melcher and Colby 2008). Since we were 

outdoors in a public space we had no method of control for subject attention. However, by 

showing we were able to still capture the positive amplitude waveform around 300ms in these 

environments under such uncontrollable conditions suggests that this evoked response is quite 

robust and could be used as a potential biomarker for other applications to take advantage of like 

brain-computer interface (BCI) devices.  

 

And finally, the last study from this project showed that there were many significant behavioral 

and neural differences between normal walking and visual search walking during non-stress and 

stress induced conditions, as well as between the indoor and outdoor environments. We found 

that gait kinematics, salivary cortisol, heart rate, and heart rate variability consistently showed 

that walking normally outdoors during the baseline condition was significantly different than 

during both of the visual search conditions. However, the pattern of results were mixed and the 

conclusions are unclear. Stride duration was significantly longer in baseline walking compared to 

both visual search conditions in each environment and that stride was significantly shorter in 

outdoors compared to indoors. This seems reasonable as the visual search task is more 

challenging and previous studies have shown that cognitive tasks while walking modulates gait 

patterns (Kline, Poggensee, and Ferris 2014b). Salivary cortisol concentrations decreased during 

the visual search conditions while outdoors, which was unexpected, but other studies have also 

showed that cortisol is sensitive to both the timing of the samples and the types of paradigms 

being used (Dickerson and Kemeny 2004). It is possible that outside variables like social-
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evaluative threat have affected our cortisol results as the act of doing this experiment outdoors in 

public might have played a larger role than the stress induced by the actual visual search task. 

This might also be a factor in why we were not able to see significant differences between the 

non-stress and induced stress conditions outdoors. Heart rate and hear rate variability 

consistently showed that baseline walking was significantly different than both visual search 

conditions but only outdoors. The inter-beat interval was reduced (faster heat rate) when subjects 

were performing the visual search tasks compared to baseline walking. And heart rate variability 

showed that the standard deviation of normal-to-normal R intervals (SD of NN) decreased when 

subjects performed the visual search tasks compared to baseline walking. These patterns are in 

line with previous research (Delaney and Brodie 2000; Steptoe et al. 2002) showing the same 

changes during more difficult and stressful tasks, but the frequency domain results showed the 

opposite effect as previous research in that low frequency (0.4-1.2 Hz) power decreased and high 

frequency (1.2-4 Hz) power increased during the visual search tasks compared to baseline 

walking. However, there are also conflicting reports about the role of low and high frequency 

components in heart rate variability (Goldstein et al. 2011). There were also no significant 

changes indoors for any condition.  

 

The main findings from EEG results were that theta power fluctuations around double support 

increased across all the outdoor walking conditions compared to indoors. This is in line with the 

findings from my first study showing theta power fluctuation increases during split-belt walking 

compared to normal walking. Similarly, the previously mentioned literature from my first study 

supports that theta power plays an important role in gait dynamics for more challenging motor 

task compared to normal walking on a treadmill. Another finding was that alpha and beta power 
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fluctuations showed significant increases in synchronizations and desynchronizations around 

both double support and swing phases, respectively, for all outdoor conditions compared to 

indoors. Again, this is similar to the previous findings I saw in the split-belt study with both 

alpha and beta power being more active in asymmetric walking and suggesting those frequencies 

play a role in coordination and motor planning. There were similar concerns with this EEG data 

regarding noise and movement related artifact. We chose to use a very slow walking speed of 0.7 

m/s since previous work (Kline et al. 2015) has shown that lower walking speeds are less likely 

to be affected by motion artifacts. Another major concern was that we chose to analyze the EEG 

data from both indoor and outdoor sessions concatenated together so that we could separate the 

same neural sources in each environment and compare them directly. A potential issue with this 

is that the ICA models assumes the sources are stationary and this might not be the case in both 

indoor and outdoor environments. While the walking tasks were meant to mirror each other in 

each environment, we can’t be sure if the same neural sources are active in each. This could lead 

to models with poor fit. However, other studies (Artoni et al. 2017) that have explored this exact 

issues using similar methods and took great care in avoiding this issue by doing rigorous 

cleaning steps and using multiple models, but their EEG walking results showed similar patterns 

of synchronization and desynchronizations in the same neural sources that I found in this study.  

 

Despite all the drawbacks and challenges I faced in each of my studies, I feel the work I 

presented shows results in line with previous research and that I was successful in advancing the 

ways in which brain and body imaging can be used in non-traditional environments. To the best 

of my knowledge, this MoBI study was the first to use high density EEG outdoors with as many 

multi-modal sensors and as many subjects. Completing the same task simulated indoors on a 
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treadmill with virtual reality was also novel and important in showing how these types of 

simulated environments relate to the real world. As more research is pushing towards using 

virtual reality and also exploring natural settings outside of traditional laboratories, this work was 

important for taking those first steps.  
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