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ABSTRACT 

 

4D printing is a new manufacturing paradigm that combines stimuli-responsive materials, 

mathematics, and multi-material additive manufacturing to yield encoded 3D structures with 

intelligent behavior over time. This field has received growing interests from various disciplines 

such as space exploration, renewable energy, bioengineering, textile industry, infrastructures, soft 

robotics, etc. Here, after a review of 4D printing, three substantial gaps are identified. First, the 

main difference between 3D and 4D printed structures is one extra dimension that is smart 

evolution over “time”. However, currently, there is no general formula to model and predict this 

extra dimension. This gap pertains to the design aspect of 4D printing. Second, 3D printing is a 

well-known manufacturing process with its unique attributes. Now, 4D printing needs to be 

underpinned as a manufacturing process and its unique attributes should also be proved. This gap 

pertains to the manufacturing aspect of 4D printing. Third, various shape-morphing 4D printed 

structures have been illustrated in the literature. However, real applications and products, where 

4D printing can provide unique features still need to be demonstrated. This gap pertains to the 

product development aspect of 4D printing.  

To address the first gap (design), we delve into the fourth dimension and reveal three general 

laws that govern the shape-shifting behaviors of almost all (photochemical-, photothermal-, 

solvent-, pH-, moisture-, electrochemical-, electrothermal-, ultrasound-, etc.-responsive) multi-

material 4D structures. By starting from fundamental concepts, we derive and validate a universal 

bi-exponential formula that is required to model and predict the fourth dimension of 4D multi-

materials. Our results, starting from the most fundamental concepts and ending with governing 

equations, can serve as general design principles for future research in 4D printing, where the time -

dependent behaviors should be understood, modeled, and predicted correctly. Future 4D printing 

software and hardware developments can also benefit from these results.   
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To address the second gap (manufacturing), first, we underpin 4D printing as a new 

manufacturing process and identify its unique attributes. Then, we specifically focus on the energy-

saving attribute of 4D printing. We obtain the theoretical limit of energy consumption in 4D 

printing and prove that 4D printing can be the most energy-efficient manufacturing process.  

To address the third gap (product development), we demonstrate two real applications, where 

4D printed products can provide unique features. First, we demonstrate a novel wind turbine blade 

based on 4D printing that provides several advantages in one blade, simultaneously. Scientists 

reported that leaf veins grow in a manner not only to facilitate their biological and physiological 

functions but also to sustain the environmental loads. Researchers showed that plant-leaf-mimet ic 

blades could always have better structural properties compared with the conventional structures. 

However, the plant-leaf-mimetic blade has remained at the level of simulations. We demonstrate 

the plant-leaf-mimetic blade in practice that simultaneously has the capability of bend-twist-

coupling. Second, we introduce the concept of smart solar concentrators inspired by nature and 

enabled by 4D printing. We found that diurnal flowers mainly have parabolic and nocturnal 

flowers mainly have hyperbolic petals. Based on this inspiration, we propose a smart solar 

concentrator that can increase the overall optical efficiency more than 25% compared with its non-

smart counterparts.
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CHAPTER 1  

INTRODUCTION AND A REVIEW OF 4D PRINTING 

Research into 4D printing has attracted unprecedented interest since 2013 when the idea was 

first introduced. It is based on 3D printing technology, but requires additional stimulus and 

stimulus-responsive materials. Based on certain interaction mechanisms between the stimulus and 

smart materials, as well as appropriate design of multi-material structures from mathematical 

modeling, 4D printed structures evolve as a function of time and exhibit intelligent behavior. 4D 

printing targets a time-dependent and predictable shape/property/functionality evolution. This 

allows for self-assembly, self-adaptability, and self-repair. This chapter presents a comprehensive 

review of the 4D printing process and summarizes the practical concepts and related tools that 

have a prominent role in this field. Unsought aspects of 4D printing are also studied and organized 

for future research.1 

1.1 Introduction 

3D printing was invented in the 1980s and has been applied in various fields, ranging from 

biomedical science to space science. 4D printing, a recently developed field originating from 3D 

printing, shows promising capabilities and broad potential applications. 4D printing was initiated 

and termed by a research group at MIT (Tibbits, 2013). It relies on the fast growth of smart 

materials, 3D printers, design (Choi et al., 2015), and mathematical modeling. 4D printing shows 

advantages over 3D printing in several aspects (Jacobsen, 2016).  

In this review, a general guideline is provided by deconstructing the 4D printing into several 

sections. These sections include definition, motivations, shape-shifting behaviors, material 

structures, materials, shape-shifting mechanisms and stimuli, mathematics, and applications.  

                                              
1 This chapter is based on our journal article published in Materials & Design 122 (2017), entitled “A review of 4D 

printing”, by Farhang Momeni, Seyed M.Mehdi Hassani, Xun Liu, and Jun Ni. 
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1.1.1 Definition  

4D printing was initially defined as 4D printing = 3D printing + time (Figure 1-1), where the 

shape, property, or functionality of a 3D printed structure can change as a function of time (Tibbits, 

2013; 2014; Tibbits et al., 2014; Ge et al., 2013; Pei, 2014; Khoo et al., 2015). As the number of 

studies conducted on this technology increases, a more comprehensive definition of 4D printing is 

necessary and presented here. 4D printing is a targeted evolution of the 3D printed structure, in 

terms of shape, property (other than shape), or functionality. It is capable of achieving self-

assembly, self-adaptability, and self-repair. It is time-dependent, printer-independent, and 

predictable.  

 

 

 

 

Figure 1-1. A simple illustration of the concept of 4D printing (Young, 2016). 

 
As mentioned above, 4D printing can fabricate dynamic structures with adjustable shapes, 

properties, or functionality (Tibbits et al., 2014; Pei, 2014; Gladman et al., 2016). This capability 

mainly relies on an appropriate combination of smart materials in the three-dimensional space 

(Gladman et al., 2016). Mathematical modeling is required for the design of the distribution of 

multiple materials in the printed structure. There are at least two stable states in a 4D printed 

structure, and the structure can shift from one state to another under the corresponding stimulus 

(Zhou et al., 2015). The differences between 3D printing and 4D printing processes are illustrated 

in Figure 1-2. 
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Figure 1-2. The differences between 3D printing and 4D printing processes. 

 

As illustrated in Figure 1-3, the fundamental building blocks of 4D printing are 3D printing 

facility, stimulus, stimulus-responsive material, interaction mechanism, and mathematical 

modeling. These elements enable targeted and predictable evolution of 4D printed structures over 

time and are discussed in further detail below:  

⚫ 3D printing facility: Usually, a 4D printed structure is created by combining several materials  

in the appropriate distribution into a single, one-time printed structure (Raviv et al., 2014). 

The differences in material properties, such as swelling ratio and thermal expansion 

coefficient, will lead to the desired shape-shifting behavior. Therefore, 3D printing is 

necessary for the fabrication of multi-material structures.  

⚫ Stimulus: Stimulus is required to trigger the alterations of shape/property/functionality of a 

4D printed structure. The selection of the stimuli depends on the requirements of the specific  

application, which also determines the types of smart materials. 

⚫ Smart or stimulus-responsive material: Stimulus-responsive material is one of the most critical 

components of 4D printing. Stimulus-responsive materials can be classified into several sub-

categories, as shown in Figure 1-4. The capability of this group of materials is defined by the 

following characteristics: self-sensing, decision making, responsiveness, shape memory, self-

adaptability, multi-functionality (Khoo et al., 2015), and self-repair. Several review studies on 
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stimulus-responsive materials have been provided by Roy et al. (2010), Stuart et al. (2010), 

Sun et al. (2012), and Meng et al. (2013).  

⚫ Interaction mechanism: In some cases, the desired shape of a 4D printed structure is not 

directly achieved by simply exposing the smart materials to the stimulus. The stimulus needs 

to be applied in a certain sequence under an appropriate amount of time, which is referred to 

as the interaction mechanism in this review study. For example, one of the main interaction 

mechanisms is constrained-thermo-mechanics. In this mechanism, the stimulus is heat and the 

smart material has the shape memory effect. It contains a 4-step cycle. First, the structure is 

deformed by an external load at a high temperature; second, the temperature is lowered while 

the external load is maintained; third, the structure is unloaded at the low temperature and the 

desired shape is achieved; fourth, the original shape can be recovered by reheating.  

⚫ Mathematical modeling: Mathematics is necessary for 4D printing in order to design the 

material distribution and structure needed to achieve the desired change in shape, property, or 

functionality. Theoretical and numerical models need to be developed to establish the 

connections between four core elements: material structure, desired shape, material properties, 

and stimulus properties. These will be discussed in additional details later.  

 

Figure 1-3. 4D printing bases. 
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Figure 1-4. Stimulus-responsive materials (Sun et al., 2012). 

 

A 4D printed structure can be regarded as a child born from the marriage between a 3D 

printer and smart materials. It can walk by being exposed to the external stimulus through an 

interaction mechanism, and it learns how to walk properly with the assistance of mathematics.  

1.1.2 Motivations 

4D printing opens new fields for application, in which a structure can be activated for self-

assembly, reconfiguration, and replication through environmental free energies (Tibbits, 2014). 

This brings several advantages, such as significant volume reduction for storage, and 

transformations that can be achieved with flat-pack 4D printed structures. The latter may include 

transformations to 3D structures required during actual applications (Tibbits, 2014). Another 

example is that instead of directly creating a complicated structure using the 3D printing process,  

simple components from smart materials can be 3D printed first and then self-assembled to reach 



 

6 
 

that final complex shape (Zhou et al., 2015). In general, the applications of 4D printed structures 

can be classified into three categories: self-assembly, self-adaptability, and self-repair. 

• Self-assembly:  

Self-assembly extends from the molecular scale to the planetary scale (Whitesides & 

Grzybowski, 2002; Campbell et al., 2014). Currently, researchers are interested in macroscale 

applications (Campbell et al., 2014). One example is the transfer of equipment parts to the inside 

of a human body through a small hole. The parts can then self-assemble at the desired location for 

medical purposes (Zhou et al., 2015). Another future application of self-assembly will be on a 

large scale and in a harsh environment. Individual parts can be printed with small 3D printers and 

then self-assembled into larger structures, such as space antennae and satellites (Tibbits et al., 

2014). This capability paves the way for the creation of transportation systems to the International 

Space Station (Choi et al., 2015). Further applications include self-assembling buildings , 

especially in war zones or in outer space where the elements can come together to yield a finished 

building with minimum human involvement (Campbell et al., 2014). Moreover, some limitations 

in architectural research and experiments can be removed with the capabilities of 4D printing 

(Čolić-Damjanovic & Gadjanski, 2016). 

• Self-adaptability: 

Adaptive infrastructures are another application of 4D printing (Campbell et al., 2014). 4D 

printing can integrate sensing and actuation directly into a material so that external 

electromechanical systems are not necessary (Tibbits et al., 2014). This would decrease the number 

of parts in a structure, assembly time, material and energy costs, as well as the number of failure -

prone devices, which is usually utilized in current electromechanical systems (Tibbits et al. , 2014). 

Multi-functional and self-adaptive 4D printed tissues (Khademhosseini & Langer, 2016; Jung et 

al., 2016) and 4D-printed medical devices, such as tracheal stents (Zarek et al., 2017) and 

cardiovascular devices (Robinson et al., 2018) are other fascinating applications of 4D printing.  

• Self-repair: 

The idea of self-assembly can be utilized for self-disassembly. The error-correct and self-

repairing capability of 4D manufactured products show tremendous advantages with regard to 

reusability and recycling (Tibbits, 2014). Self-healing pipes (Campbell et al., 2014) and self-

healing hydrogels (Taylor, 2016) are some of the potential applications.  
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1.1.3 Various shape-shifting types and dimensions  

Various shape-shifting types and dimensions that have been studied in 4D printing are 

categorized in Figure 1-5 along with the related literature (details in Appendix A).  

 

 

Figure 1-5. Shape-shifting types and dimensions in 4D printing. 

 

In the following, we delve into the elements of 4D printing seen in Figure 1-2. The reader is 

also invited to have a look at Appendix A for details of various shape-shifting behaviors and 

applications of 4D printing. 

1.2 Material structures 

Details of material types are discussed in the next section. In this section, material structures 

are classified and generally referred to as smart materials and conventional (non-smart) materials. 

In additive manufacturing, material structures are divided into single-material and multi-materia l 

structures. According to Vaezi et al. (2013), multi-material structures can be further classified into 
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discrete multiple materials, composite materials, and porous materials. For the 4D printing process, 

a new classification is introduced in this review, and the multi-material structure can be categorized 

as uniform distribution, gradient distribution, and special patterns. Based on different perspectives, 

the material structure can also be classified as a structure with or without joints and hinges. 

1.2.1 Multi-material structures 

In 4D printing, multiple materials usually need to be inserted into a single and one-time 

printed structure (Raviv et al., 2014). This multi-material structure can be a mixture of different 

smart materials or a combination of smart materials and conventional materials. The single -

material structure in 4D printing should always be fabricated with a smart material. In addition, it 

needs to be based on the structure with a gradient distribution of materials. The gradient 

distribution of a single material means that the density of the structure is different at various 

locations. This anisotropy can generate shape-shifting behaviors such as bending and twisting, 

which is beyond linear expansion and contraction. Most of the previous studies on 4D printing 

focused on multi-material structures. In this review, the concept of digital material is described for 

4D printing. Based on this concept, all material structures involved in 4D printing can be 

generalized into three categories. 

1.2.2 Digital materials 

The digital concept was first introduced in the fields of communication and computation. 

This digital concept can be similarly expanded into material structures (Hiller et al., 2009). The 

element that enables us to move from analog materials to digital materials is the physical voxel 

(Hiller et al., 2009), which is defined as the fundamental and physical bit that occupies 3D physical 

space. The physical voxel can be of any size and shape (Hiller & Lipson, 2009; 2010; Popescu et 

al., 2006). In nature, biological structures usually consist of fundamental building blocks that can 

be considered physical voxels, such as DNA and proteins (Hiller et al. 2009). In 4D printing and 

associated multi-material structures, the physical voxel can be similarly defined. 

Digital material is defined as an assembly of various physical voxels (Hiller & Lipson, 2009; 

2010). The spatial arrangement of voxels plays a major role in determining the features of a 4D-

printed structure (Raviv et al., 2014). In digital materials, each voxel contains only one material.  

Adjacent voxels can be composed of different materials. Each voxel has its own properties and the 

collection of different voxels results in the multi-material structure. According to Hiller et al.  
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(2010), a negative Poisson’s ratio can be achieved with appropriate voxel arrangement in the 

digital material structure. 

The three most important categories of 4D-printed structures for digital materials are uniform 

distribution (Figure 1-6 (a)), gradient distribution (Figure 1-6 (b)), and special patterns (Figure 1-6 

(c)). One main category of special patterns is the fiber and matrix structure. Each structure  in 

Figure 1-6 shows only one single layer, but they can be combined to yield bi-layer or multi-layer 

structures. In addition, the number of materials can be more than two. One example of a gradient 

distribution material structure is shown in Figure 1-7 from Tibbits et al. (2014). In this example, 

the concentration of active and passive materials varies from the center to the perimeter within one 

layer. The disk can yield various sinusoidal shapes depending on the duration of immersion in 

water. 

 

Figure 1-6. 4D-printed material structures (Digital Materials) (a) Uniform distribution 

with different concentrations, (b) Gradient distribution, and (c) Special patterns. 
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Figure 1-7. The simulation related to gradient distribution of material structure (red 

indicates the passive material and purple indicates the active material) and the results of its 

immersion in water over time (left to right) (Tibbits et al., 2014). 

 

In summary, all multi-material structures that have been studied in the 4D printing process 

are summarized in the following figure, along with the related literature. 

 

Figure 1-8. Multi-material structures that have been used in 4D printing. 
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disassembly and could reuse the building blocks of the structure. Huang et al. (2016) demonstrated 
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were several limitations to the current additive manufacturing processes. For example, printers 

with inkjet nozzles could only print materials with certain viscosities and curing temperatures. The 

fused deposition modeling (FDM) process was relatively slow and had limited options for its 

minimum nozzle size. Zhou et al. (2013) investigated several new techniques for digital material 
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production using mask-image-projection-based stereolithography. Ge et al. (2016) provided an 

approach for printing multi-material shape memory polymers (SMPs) with a high resolution (up 

to a few microns). This approach is enabled by a high-resolution projection microstereolithography 

(PμSL) additive manufacturing system with an automated material exchange mechanism (Figure 

1-9). In order to enable 4D printing for biomedical applications, multi-material additive 

manufacturing systems that can print from aqueous mediums needs to be developed (Loh, 2016) . 

In this regard, the direct-write (DW) printing technique (Lewis, 2006; Gratson & Lewis, 2005; 

Lebel et al., 2010), which is suitable for printing polymeric solutions (Guo et al., 2013), can be 

engaged.  

 

Figure 1-9. Multi-material additive manufacturing system (Ge et al., 2016). 

 

In some studies on 4D printing, shape-shifting behavior is enabled by certain targeted smart 

hinges embedded inside the structure. In this case, only the hinges are made from smart materials 

and the other parts are made from conventional materials. A typical example is shown in Figure 

1-10. 4D-printed structures with hinges are typically used for folding, wherein the structures can 

deform through the hinges. In other cases, the structure itself has shape-shifting capability without 

dependence on the hinges. In these hinge-less structures, the spatial arrangement of passive and 

active materials is extremely crucial to precisely yield the desired shape-shifting behavior (Tibbits 

et al. 2014). In general, structures with hinges can achieve local shape-shifting behavior, while the 

structures without hinges can have both global and local shape-shifting behaviors.  
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Figure 1-10. Illustration of structures with a smart hinge (Ge et al. 2014). 

 
In summary, structures with hinges vs. structures without hinges in 4D printing are 

categorized in Figure 1-11, along with the related studies. 

 

Figure 1-11. Structures with hinges vs. structures without hinges in 4D printing. 
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properties of current materials are insufficient to yield the desired performance and functions of 

actual biological muscles (Loh, 2016). Therefore, the development of advanced smart materials 

with desirable properties that are also compatible with printers is crucial to advance the application 

of 4D printing. Programmable materials, such as carbon fiber, wood, and textiles, have undeniable 

influence in many applications, including aerospace, automotive, clothing, construction, 

healthcare and utility (Loh, 2016). 

Tibbits et al. (2014) applied passive plastic and active expandable polymer materials in their 

experiments. They combined these two materials in various spatial arrangements, as shown in 

Figures A-7, A-8, and A-9. The expandable material was a hydrophilic UV-curable polymer, 

which could expand up to 150% of its original volume under water. Raviv et al. (2014) performed 

a more precise experiment with two base materials similar to those used by Tibbits (2014) and 

Tibbits et al. (2014). One of the base materials was passive plastic with an elastic modulus of 2 

GPa and a Poisson s̀ ratio of 0.4. The other base material was an expandable material with an 

elastic modulus of 40 MPa in the dry condition and 5 MPa in water. Its Poisson’s ratio is 0.5. This 

expandable material has a composition of vinyl caprolactam (50 %wt), polyethylene (30 %wt), 

epoxy diacrylate oligomer (18 %wt), Irgacure 81 (1.9 %wt), and wetting agent (0.1 %w). It could 

expand up to 200% of its original volume under water. Its material structure contains hydrophilic 

acrylated monomers that build linear chains during the polymerization process with some 

difunctional acrylate molecules. This kind of crosslink makes the polymer swell under water rather 

than being dissolved (Raviv et al. 2014). 

Ge et al. (2013) printed glassy shape memory polymer fibers in an elastomeric matrix. The 

elastomeric matrix has no shape memory effect, i.e., the degree of fixity is 0%. The glass transition 

temperature , 𝑇𝑔 of the matrix is approximately -5 °C. The matrix is in a rubbery state with a 

modulus of approximately 0.7 MPa at 15 °C. The fiber has a glass transition temperature  𝑇𝑔 

approximately 35 °C. Its modulus is 3.3 MPa at the lowest temperature of the thermomechanical 

cycle (𝑇𝐿 = 15 °C) and 13.3 MPa at the highest temperature (𝑇𝐻 = 60 °C ).  

Ge et al. (2014) used two base materials: Tangoblack as the elastomeric matrix with 𝑇𝑔~ −

5 ℃ and Verowhite (Gray 60) as the fiber with 𝑇𝑔~ 47 ℃. Tangoblack is in a rubbery state at room 

temperature, which can be polymerized by an ink consisting of urethane acrylate oligomer, Exo-

1, 7, 7-trimethylbicyclo (2.2.1) hept-2-yl acrylate, methacrylate oligomer, polyurethane resin, and 

photo initiator. Verowhite is a rigid plastic at room temperature and can be polymerized by an ink 
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consisting of isobornyl acrylate, acrylic monomer, urethane acrylate, epoxy acrylate, acrylic 

monomer, acrylic oligomer, and photo initiator. Similarly, Bodaghi et al. (2016) used 

TangoBlackPlus and VeroWhitePlus in a fiber and matrix structure. They also used Sup705a, 

which is a hydrophilic gel, as a sacrificial material for the manufacturing of complex geometries. 

This auxiliary material can be removed using a compressed water jet during the post-fabrication 

process, based on the preferential interactions between the hydrophilic gel and water.  

Jamal et al. (2013) (Figure A-20) used photopatterned poly (ethylene glycol) (PEG)-based 

hydrogel bilayers. The two PEG bilayers contain two molecular weights with different swelling 

ratios and are crosslinked with conventional photolithography. 

Villar et al. (2013) printed aqueous droplets in oil, which were connected by lipid bilayers 

and create a cohesive material.  

Mao et al. (2015) used the same two base materials as Ge et al. (2014) did (Tangoblack and 

Verowhite). They combined these two materials at varying compositions, which was different 

from the conventional fiber and matrix structure in Ge et al. (2014). In fact, they fabricated seven 

compositions with various combinations of these two materials for seven hinges, as shown in 

Figure A-25. 

Bakarich et al. (2015) used Alginate/PNIPAAm ionic covalent entanglement (ICE) gel with 

various concentrations of NIPAAm. In their experiments, the thermo-responsive crosslinked 

network of poly N-isopropylacrylamide (PNIPAAm) was utilized as the toughening agent and 

could also achieve reversible volume changes. The Alginate/PNIPAAm ICE gel contained α-Keto 

glutaric acid photoinitiator, acrylamide, alginic acid sodium salt, calcium chloride, ethylene glycol 

(as a rheology modifier), N-isopropylacrylamide and N, N’-methylenebisacrylamide crosslinker, 

and a commercial epoxy-based UV-curable adhesive (Emax 904 Gel-SC). 

Kokkinis et al. (2015) used two cross-linked polymers with different swelling properties: a 

soft, highly swellable polymer and a solid polymer. The ink for these two polymers consists of 

PUA oligomers, which act as the base components of all inks. Two of them yield hard polymers, 

such as BR 302 and BR 571, and one of them yields a soft polymer, such as BR 3641 AJ. The ink 

for the two polymers also consists of reactive diluents to change the rheological and mechanical 

properties, photoinitiator (either Irgacure 907 with ultraviolet light or Irgacure 819 with a longer 

wavelength blue LED light), rheology modifier, and the alumina platelets. They used various 

concentrations of components for different objectives.  
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Mutlu et al. (2015) (Figure A-36) printed a thermoplastic elastomer (TPE) material that had 

viscoelastic behavior and was soft enough for the fabrication of a compliant finger. 

Gladman et al. (2016) (Figure A-33) fabricated a composite hydrogel ink that mimicked the 

structure of plant cell walls. It consisted of a soft acrylamide matrix reinforced with the cellulose 

fibrils that had a high stiffness. The composite was printed using a viscoelastic ink that contained 

an aqueous solution of N, N-dimethylacrylamide, Irgacure 2959 (BASF), nanoclay, glucose 

oxidase, glucose, and nanofibrillated cellulose (NFC). Irgacure 2959 is the ultraviolet 

photoinitiator. The clay particles were used as a modifier for appropriate rheology and 

viscoelasticity, which was necessary for desirable ink printing. Larger amounts of clay lead to 

higher crosslink densities and therefore lower swelling ratios. Glucose oxidase and glucose 

scavenge the surrounding oxygen, which consequently can control oxygen during the UV curing 

process. The shape-shifting behavior of the material with the composition described above was 

irreversible. To achieve reversible shape-shifting behavior in hot and cold water, the poly(N, N-

dimethylacrylamide) needed to be replaced with thermo-responsive N-isopropylacrylamide. 

Zhang et al. (2016) printed polylactic acid (PLA) strips as the fibers on a fixed sheet paper. 

PLA strips have a glass transition temperature of 𝑇𝑔~ 60 ℃ and an elastic modulus of 3.5 GPa in 

its glass state (Drumright et al., 2000; Cock et al., 2013). Zhang et al. (2016) assumed the elastic 

modulus of PLA to be 50 MPa when the temperature was above its 𝑇𝑔. In addition, they assumed 

the coefficient of thermal expansion of sheet paper to be negligible (Figure A-26). 

Kuksenok et al. (2016) fabricated a composite that consisted of a thermo-responsive polymer 

gel with poly (N-isopropylacrylamide) (PNIPAAm), which was the host gel, and photo-responsive 

fibers functionalized with spirobenzopyran (SP) chromophores. The thermo-responsive gel has a 

lower critical solution temperature (LCST) and undergoes contraction at high temperature. With 

no light, the spirobenzopyran chromophores are in open ring form or in an equivalent protonated 

merocyanine McH form. Under the blue light, they are reversibly converted to the closed ring form 

or the equivalent spiro SP form (Kuksenok et al., 2016). 

Wu et al. (2016) (Figures A-13, A-14, A-15, A-16, and A-17) used TangoBlack plus and 

Verowhite, which is similar to what Ge et al. (2014) and Mao et al. (2015) used. However, their 

composite contains two types of fibers. They used DM8530 (fiber 1) with 𝑇𝑔~ 57 ℃ and DM9895 

(fiber 2) with 𝑇𝑔~ 38 ℃. These two fibers have SME in the temperature range between ~ 20 ℃ 

and ~ 70 ℃. The matrix is TangoBlack with 𝑇𝑔~ 2 ℃. 
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Le Duigou et al. (2016) fabricated hygromorphic biocomposite, which was activated by 

moisture gradient. Their hygromorphic biocomposite consisted of polylactic acid (PLA) and 

polyhydroxyalkanoate (PHA) as the overall matrix, which was then reinforced with wood fibers. 

Natural fibers such as wood, flax, hemp, etc. usually exhibit hydro-elastic behavior. Biocomposites 

with natural fibers have a high-porosity microstructure (approximately 20 % volume percent). This 

structure enables swelling when subjected to moisture gradient. 

Nadgorny et al. (2016) tried to achieve high quality, printable pH-responsive filaments for 

material extrusion 3D printing. They used poly (2-vinylpyridine) (P2VP) core material, and 

improved its mechanical properties by adding 12 %wt of acrylonitrile−butadiene− styrene (ABS) 

as the reinforcement material.  

Zarek et al. (2016) produced a thermo-responsive shape memory tracheal stent based on 

semi-crystalline methacrylated polycaprolactone (PCL). PCL has great rheological and 

viscoelastic properties and can be easily manufactured into implants and medical devices. PCL has 

also been used in many drug delivery and tissue engineering applications (Woodruff & Hutmacher, 

2010). Zarek et al. (2017) additionally used 2,4,6-trimethylbenzoyl-diphenyl-phosphineoxide 

(TPO) as the photoinitiator, in addition to vitamin E, to avoid premature crosslinking.  

Naficy et al. (2016) used poly (N-isopropylacrylamide) (poly(NIPAM)) as the smart thermo-

responsive polymer, along with a non-active poly (2-hydroxyethyl methacrylate) (poly(HEMA)) 

as the bilayer. Long polymer chains of polyether-based polyurethane (PEO-PU) are used to modify 

the rheology and viscosity. α-ketoglutaric acid serves as the UV initiator. N, N′-

methylenebisacrylamide (BIS) is the crosslinking agent. 

• Discussions 

From analyzing existing studies, there are two requirements for materials in the 4D printing 

process: printability and intelligence (Figure 1-12). If the materials cannot be printed, the 4D 

printed structure cannot be manufactured. Many studies utilized a rheology modifier to provide a 

suitable material viscosity for extrusion-based printing processes. Similarly, the photo-initiator and 

the crosslinking and sacrificial agents are several other aspects that need to be considered for 

proper material printability. If the structure contains only non-active materials, it cannot achieve 

any targeted changes over time as a response to the stimulus. Schweiger et al. (2016) studied 

multilayered anterior teeth and defined "multi-material-3D-printing" as a 4D printing process. This 
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is not the 4D printing process discussed in this study because the structure does not contain any 

smart material. 

Some applications require dual-responsive materials. For example, the shape-shifting 

behavior of a material can be triggered by both water and heat. Triple and other multi-respons ive 

materials have not been considered in the 4D printing process so far and can be studied in the 

future. Another issue is the degree to which the smart materials can respond to stimulus. Some 

smart materials can sense stimulus but only provide minimal actuation or respond after a very long 

time. The responsivity of smart materials needs to be further studied as well.  

 

Figure 1-12. 4D printing materials. 

 

1.4 Shape-shifting mechanisms and Stimuli 

A 4D-printed structure can alter its shape, properties, or functionality based on one or more 

stimuli. However, an interaction mechanism needs to be identified, through which the printed 

smart structure can respond to stimulus in an appropriate way. The mechanisms can be divided 

into various categories. Campbell et al. (2014) explained two types of mechanisms in 4D printing: 

hydro-mechanics and thermo-mechanics. In this section, other mechanisms from the literature are 

organized and summarized, including unconstrained-hydro-mechanics, constrained-thermo-

mechanics, unconstrained-thermo-mechanics, unconstrained-hydro-thermo-mechanics, 

unconstrained-pH-mechanics, unconstrained-thermo-photo-mechanics, osmosis-mechanics, and 

dissolution-mechanics. 
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In this mechanism, a smart printed structure consists of an expandable hydrophilic active 

material and a passive material. Water is utilized as the external stimulus so that the structure can 

undergo shape-shifting under water and so that it can return to its original shape after being dried. 

This mechanism is driven by the different swelling ratios between the active and passive materials.  

The expansion of the smart material generates a force that leads to the shape change. When the 

expandable material is appropriately arranged with the passive material, complex shape-shifting 

behavior can be achieved. The magnitude and direction of the shape change depends on the spatial 

arrangements of the two materials (Tibbits et al. 2014). The mechanism is illustrated in Figure 

1-13 and the entire cycle is unconstrained. Tibbits (2014), Tibbits et al. (2014), Raviv et al. (2014), 

and Jamal et al. (2013) used this type of mechanism in their experiments.  

It should be noted that this mechanism is naturally reversible, i.e., the original shape can be 

recovered by drying the smart structure. However, the shape-shifting behavior can also be forced 

to be irreversible by using a special arrangement of passive and active materials. For example, 

Tibbits et al. (2014) reported that the structure in Figure A-31 will not unfold after being dried 

because of geometrical constraints.   

 

Figure 1-13. Schematic illustration of the unconstrained-hydro-mechanics mechanism in 

4D printing. The green parts represent e xpandable materials. 
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Two levels of temperature and one external load are required in this mechanism, as 

illustrated in Figure 1-14. One temperature is higher than the critical temperature of the smart 

material, such as its glass transition temperature or crystal-melt transition temperature (𝑇𝐻 >  𝑇𝐶). 

The other temperature should be lower than the critical temperature (𝑇𝐿 <  𝑇𝐶). In this mechanism, 

the printed structure is heated to 𝑇𝐻 and the cycle starts at 𝑇𝐻 in the following order. First, the 

original structure is stretched at  𝑇𝐻  with a certain amount of strain depending on specific 

applications. Then, under external stress, the structure is cooled to 𝑇𝐿 while the strain remains 

unchanged. Next, the external stress is removed at 𝑇𝐿, and the desired temporary shape is obtained 

at the end of this step. Finally, the structure can be reheated to 𝑇𝐻 in a free stress condition to 

recover its original shape.  

In this mechanism, temperature is the external stimulus. Ge et al. applied this mechanism in 

their experiments (Figures A-30 and A-24) (Ge et al., 2013; 2014). Wu et al. (2016) also employed 

this mechanism (Figures A-13, A-14, A-15, A-16, and A-17). They used water with different 

temperatures as a medium in order to transfer the heat to the printed structure. It should be noticed 

that the temperature is still the only stimulus in this cycle to trigger the shape-shifting behavior. 

Mao et al. (2015) applied this mechanism in their sequential self-folding multi-shape memory 

structure (Figure A-25). Yu et al. (2015) showed the feasibility of controlling the multi-shape-

shifting sequence in a shape memory polymer based on this mechanism. Monzón et al. (2016) 

experimentally studied the correlations between the amount of recovery force and the 

mass/thickness/width of the printed shape memory polymers. These correlations can be effectively 

applied in the 4D printing process and should be the focus of future studies on interaction 

mechanisms. 
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Figure 1-14. Constrained-thermo-mechanics mechanism in 4D printing. 

 

• Unconstrained-Thermo-Mechanics 

Unlike the previous mechanism, the external load is not included in the cycle of this 

mechanism. Only the two temperatures are required. One is higher than critical temperature of the 

active material involved in the structure (𝑇𝐻 >  𝑇𝐶), and the other one is lower than the critical 

temperature (𝑇𝐿 <  𝑇𝐶). As shown in Figure 1-15, the printed structure is first heated to 𝑇𝐻. The 

cycle then starts at 𝑇𝐻 and proceeds in the following manner. First, the original structure is cooled 

to 𝑇𝐿, where the desired shape is achieved at the end of this step. Then, the structure can be heated 

to 𝑇𝐻  to recover its original shape. In this mechanism, the external stimulus is temperature. Zhang 

et al. (2016) used this mechanism in their 4D printing studies (Figure A-26). They demonstrated 

several kinds of shape-shifting behaviors in smart, lightweight, and thin composite structures, such 

as transformation from a planar sheet to flower-like 3D structures, periodic 3D structures, and 

adaptive metamaterials. 
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Figure 1-15. Unconstrained-thermo-mechanics mechanism in 4D printing. 

 

• Unconstrained-Hydro-Thermo-Mechanics 

This mechanism was shown by Bakarich et al. (2015), wherein the 4D printed structure 

undergoes two steps in the shape-shifting cycle. It first swells freely in cold water, and then 

deswells freely in hot water, as shown in Figure 1-16. This cycle can be repeated continuously. 

The swelling and deswelling processes are free and there are no constraints from external load. In 

this mechanism, both water and temperature are required as stimuli. Gladman et al. (2016) also 

employed this mechanism for reversible shape-shifting behavior (Figure A-33).  
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Figure 1-16. Unconstrained-hydro-thermo-mechanics mechanism in 4D printing. 

 

• Unconstrained-pH-Mechanics 

This mechanism was demonstrated by Nadgorny et al. (2016). In this mechanism, a 4D-

printed, pH-responsive hydrogel can linearly swell at a specific pH level and then shrink at another 

designed pH level (Figure 1-17). This cycle is mainly conducted in an aqueous environment and 

is therefore suitable for the shape-shifting of hydrogels. Many studies on pH-responsive hydrogels 

have been conducted in available literature (Puranik et al., 2016; Frohm et al., 2015; Krogsgaard 

et al., 2013; Best et al., 2013; Gong et al., 2016). Nadgorny et al. (2016) provided pH-responsive 

hydrogels with a composition appropriate for printing.  
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Figure 1-17. Unconstrained-pH-mechanics mechanism in 4D printing. 

 

• Unconstrained-Thermo-Photo-Mechanics 

This mechanism has been demonstrated by Kuksenok et al. (2016). In this mechanism, fibers 

were considered to be photo-responsive materials and the matrix was considered to be a thermo-

responsive material. They showed that the application of light, heat, or a combination of both 

stimuli could yield printed structures with various morphologies. In their study, the gel has a lower 

critical solution temperature and shrinks at a high temperature. The spiro benzopyran (SP) 

chromophores functionalize elastic fibers, which can be converted into a hydrophobic form when 

subjected to blue light, and recover its hydrophilic form in dark environments.  

Different behavior under exposure to light or heat is a result of local and global response. 

Light can be used to non-invasively enable local shape-shifting behavior in specific regions of the 

structures (Kuksenok et al. 2016). The original composite (Figure 1-18 (a)) shrinks like an 

accordion (Figure 1-18(b)) when heated freely (unconstrained) and bends like a caterpillar (Figure 

1-18 (c)) when subjected to blue light. Figure 1-18(d) shows the behavior of the composite when 

both heat and blue light are applied. 
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Figure 1-18. Illustration of the unconstrained-thermo-photo-mechanics mechanism. 

 

• Osmosis-Mechanics 

Villar et al. (2013) demonstrated this mechanism with a lipid interface bilayer, which joins 

two picoliter aqueous droplets with two different osmolarities. Water is the stimulus in this 

mechanism. The droplet with the higher osmolarity swells and the droplet with the lower 

osmolarity shrinks until they reach the same osmolarity (Figure 1-19(a)), which enables self-

bending and is similar to the nastic movements of plants. At the macroscopic level, water flows 

through a network of droplets and causes the network to bend in a predetermined way, as shown 

in Figure 1-19(b). The final configuration of the network is determined based on the original 

geometry, the spatial arrangement of the droplets, and the ratio between their osmolarities.  
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Figure 1-19 (a) Osmosis effect between two droplets, (b) Macroscopic deformation arising 

from osmosis effect (Villar et al. 2013). 

 

• Dissolution-Mechanics 

This mechanism was demonstrated by Kokkinis et al. (2015) in the field of bioprinting. In 

this mechanism, a printed structure is immersed in an appropriate solvent (ethyl acetate), based on 

the studied polymer structures. A change in shape occurs as a result of the loss of some non-

crosslinked polymers when the structure is immersed in the solvent. After complete drying, the 

soft phase shrinks. This shape-shifting behavior is reversible by re-immersing the structure in the 

solvent. In this mechanism, the appropriate solvent is the stimulus.   

As a summary of this section, all the shape-shifting mechanisms and stimuli are categorized 

in Figure 1-20, along with their related studies. 
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Figure 1-20. Shape-shifting mechanisms and stimuli which were used in 4D printing. 

 

1.5 Mathematics 

In this section, forward and inverse problems are defined for the 4D printing process, and 

one example is provided for each category. In addition, some studies focused specifically on the 

mathematics of 4D printing are discussed.  

The development of the 4D printing process relies on appropriate mathematical modeling 

(Gladman et al., 2016). In fact, mathematics is necessary in 4D printing for the following reasons: 

• It is needed to predict the shape evolution over time after printing. 

• It provides the theoretical models needed to avoid collisions between components of the 

structure during the self-assembly operation. 

• It reduces the number of trial-and-error experiments. Early experiments in 4D printing 

involve many repetitions for a specific structure to achieve the desired shape. For example, 

Tibbits et al. (2014) printed and repeated a series of experiments to identify the appropriate 
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material structure needed to reach the desired shape. This is shown in Figure 1-21. With 

mathematics and some theoretical models, the final shape can be predicted for a given 

material structure, material properties, and stimulus properties. Consequently, the number 

of test experiments can be reduced dramatically.  

Several modeling experiments were conducted for 4D printing. The aforementioned 

experimental study by Tibbits et al. (2014) was quantified with mathematical models developed 

by Raviv et al. (2014), where the spring-mass concept was adopted, as shown in Figure 1-22. In 

addition, this spring-mass system for shape-memory materials was also used by Sun et al. (2012) 

and Yu et al. (2012). Sun et al. (2010) proposed a framework to illustrate the underlying physics 

in the thermo-responsive multi-shape memory effect (multi-SME). Their study qualitative ly 

investigated the energy storage and release process achieved during the shape memory cycle. Yu 

et al. (2012) improved the previous qualitative study by proposing a quantitative analysis for multi-

SME, as shown in Figure 1-23. They verified their model with the experimental results for 

perfluoro sulphonic acid ionomer (PFSA) from Xie (2010). Yu et al. (2012) employed the 1D 

standard linear solid (SLS) model proposed by Qi et al. (2010) to illustrate the multiple relaxation 

processes of the polymer chains in their multi-branch model. The SLS model has a parallel 

arrangement consisting of one elastic spring and one Maxwell element. The Maxwell element 

contains a serial arrangement of one spring and one dashpot. A previous study conducted on this 

subject yielded a four-element model developed by Tobushi et al. (1997), in which the creep 

phenomenon was incorporated through the fourth element , 𝜀𝑠 called the creep recovery strain 

(Figure 1-24).     

 

Figure 1-21. Repeated tests to identify the appropriate material structure to reach the 

precise desired shape (Tibbits et al., 2014). 
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Figure 1-22. Mathematical modeling of the 4D-printed hinge that was introduced earlier by 

Tibbits et al. (2014) with the spring-mass concept (Raviv al. 2014). 

 

 

Figure 1-23. Standard linear solid (SLS) model to explain the mechanism of the shape 

memory effect in a shape memory polymer (Yu et al. 2012). 

 

Figure 1-24. Four-element modeling of shape memory effect (Tobushi et al. 1997). 
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An appropriate theoretical model for 4D printing consists of four major components. The 

first is the final desired shape, which may include desired bending angle, twisting angle, length, 

etc. The next is material structure, such as the volume fractions of fibers and the matrix, filament 

size, orientation, spacing, anisotropy. Equivalently the material structure can be described by the 

size, shape and spatial arrangement of the voxels. From the perspective of the printing process, the 

material structure depends on print paths and nozzle sizes. Material properties makeup the third 

component, and they include shear modulus, Young s̀ modulus, and the interactive properties 

associated with the stimulus, such as glass transition temperature and swelling ratio. The final 

component is the stimulus properties, such as the temperature value and light intensity. 

4D printing mathematics can be divided into two categories according to Gladman et al.  

(2016): the forward problem and the inverse problem. The categories are defined below: 

Forward problem: Determination of the final desired shape given material structures, 

material properties, and stimulus properties.  

Inverse problem: Determination of the material structure or the print paths and nozzle sizes 

given the final desired shape, material properties, and stimulus properties. 

The studies on 4D printing related to the inverse problem are application-oriented, meaning 

that they are focused on achieving a desired functionality or shape. Studies related to the forward 

problem are mainly fundamental research aimed toward discovering concepts, theories, and 

relationships. These are illustrated in Figure 1-25. 
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Figure 1-25. 4D printing mathematics allows theoretical models to connect the final desired 

shape, material structure (or equivalently the size, shape and spatial arrangement of the 

voxels or equivalently print paths and nozzle sizes), material properties, and stimulus 

properties. 

 
The example with the spring-mass mathematical model shown above can be considered to 

be a forward problem. Gladman et al. (2016) studied a bilayer structure and utilized the 

mathematical relationships of coordinate system transformations to identify the print paths (Figure 

1-29); this is an example of an inverse problem. As shown in Figure 1-26(a), the print path of the 

first layer aligns along the 𝑒𝑥 direction (unit vector in x direction) and the print path of the second 

layer aligns along the direction of  cos(𝜃) 𝑒𝑥 + sin(𝜃)𝑒𝑦, where 𝜃 is the angle between the two 

layers. The relationship between 𝜃 and the final desired shapes is then established, as given by the 

following equations:  

𝐻 = 𝑐1
𝛼∥ −𝛼⊥
ℎ

𝑠𝑖𝑛2(𝜃)

𝑐2 − 𝑐3 cos(2𝜃) + 𝑚
4 cos(4𝜃)

 

𝐾 = −𝑐4
(𝛼∥ − 𝛼⊥)

2

ℎ2
𝑠𝑖𝑛2(𝜃)

𝑐5 − 𝑐6 cos(2𝜃) + 𝑚
4 cos(4𝜃)
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where the final desired shapes are quantified by the curvature tensor 𝜿, mean curvature  𝐻 =

1

2
𝑇𝑟(𝜿) =

1

2
(𝜅𝑥𝑥 +𝜅𝑦𝑦)  and Gaussian curvature  𝐾 = 𝐷𝑒𝑡 (𝜿) = 𝜅𝑥𝑥𝜅𝑦𝑦− 𝜅𝑥𝑦

2 , as shown in 

Figure 1-26(b). 𝛼∥ and 𝛼⊥ are the longitudinal and transverse swelling strains, respectively, as 

shown in Figure 1-26. 𝑚 =
𝑎𝑏𝑜𝑡𝑡𝑜𝑚

𝑎𝑡𝑜𝑝
 is the ratio of layer thicknesses, ℎ = 𝑎𝑡𝑜𝑝+ 𝑎𝑏𝑜𝑡𝑡𝑜𝑚 is total 

thickness of the bilayer, and 𝑐𝑖  are functions of longitudinal Young s̀ modulus , 𝐸∥ , transverse 

Young s̀ modulus,  𝐸⊥, Poisson s̀ ratio, 𝜈 , and 𝑚. Based on final desired shape, the print paths can 

be calculated accordingly. As shown in Figure 1-27 and Figure 1-28, surfaces with positive 

Gaussian curvature can be produced with the concentric circles. Surfaces with negative Gaussian 

curvature or saddle-like surfaces can be produced with an orthogonal bilayer lattice structure. The 

combination of these two print paths can then yield a structure with varying Gaussian curvatures.  

 

Figure 1-26. Mathematical modeling can make a connection between (a) print paths 

quantified by the angle 𝜽 between the two layers, and (b) final desired shape quantified by 

curvature tensor 𝜿, mean curvature  𝑯, and Gaussian curvature  𝑲(Gladman et al., 2016). 

 

Figure 1-27. Longitudinal and transverse swelling strains (𝜶∥ and 𝜶⊥) (Gladman et al., 

2016). 
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Figure 1-28. Print paths and final shapes (a) positive Gaussian curvature (b) negative 

Gaussian curvature (c) and varying Gaussian curvature (Gladman et al., 2016). 

 

 

Figure 1-29. Using the concepts of the mean curvature, 𝑯, and Gaussian curvature, 𝑲, 

generates the print paths by knowing the final desired morphologies (Gladman et al., 

2016). 

 

Kowk et al. (2015) conducted design optimization of origami for freeform surfaces in 4D 

printing. According to them, the 3D structure needs to be flattenable to achieve self-folding shape-

shifting. A flattenable 3D structure can be flattened into a 2D form without stretching. However, 

many designed parts are not flattenable. To address this issue, they provided a geometry 

optimization method, which can modify a non-flattenable pattern into a flattenable pattern. Wang 

et al. (2017) studied the mathematics of the single-loop foldable 8R (revolute joint) with multiple 

modes, which is also related to folding. They mathematically described that a self-folding structure 

can be folded into the same pattern through different methods and can also be folded to different 

patterns. These studies serve as the mathematical tools for the forward and inverse problems in 4D 

printing processes. 
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1.6 Conclusions 

4D printing is the art of combining science with engineering technology. The scientific 

aspect of 4D printing is related to fundamental research into developing new smart materials, 

stimuli, and mathematical modeling. From the engineering aspect, the 4D printing process enables 

innovative and fascinating applications that can hardly be achieved with conventional 

manufacturing processes. The foundation of the 4D printing process includes the 3D printing 

process, stimulus, smart or stimulus-responsive materials, interaction mechanisms, and 

mathematical modeling. These features enable changes in shape/property/functionality after 

printing, as a function of time.  

In addition, 4D printing has three main capabilities: self-assembly, self-adaptability, and 

self-repair. More studies need to be performed in the area of self-repair compared with the other 

two. Mathematical modeling is necessary in the 4D printing process primarily for three reasons: 

the prediction of the shape-shifting as a function of time; the prevention of collisions between 

components of the structure during self-assembly operations, and finally, the reduction of the 

number of trial-and-error experiments. The mathematical models used in the 4D printing process 

can be developed based on a desired shape, printing path, material properties, and stimulus 

properties. 4D printing can be utilized in various scales in interesting applications. To gain the 

potential applications of the 4D printing, a large amount of multidisciplinary research needs to be 

conducted in the future.   

1.7 Problem statement and dissertation structure 

After a comprehensive review of the 4D printing and related areas, three substantial gaps are 

identified in this emerging field. First, the main difference between 3D and 4D printed structures 

is one extra dimension that is smart evolution over “time”. However, currently, there is no general 

formula to model and predict this extra dimension. This gap is related to the design aspect of 4D 

printing. Second, 3D printing (additive manufacturing) is a manufacturing process with its known 

unique attributes. Now, 4D printing needs to be clearly underpinned as a new manufacturing 

process. Unique attributes of 4D printing as a new manufacturing process should also be identified. 

This gap is related to the manufacturing aspect of 4D printing. Third, various shape-morphing 4D 

printed structures have been illustrated in the literature. However, real applications and products, 

in which 4D printing can provide unique features still need to be demonstrated. 4D printing is not 
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just a concept, it is also a manufacturing paradigm that finally should lead to useful and applicable 

products or structures. Thus, real applications that can benefit from 4D printed structures should 

be addressed, continuously. This gap is related to the product development aspect of 4D printing. 

To address the first gap (design), we have the second chapter, where we present general 

design principles of 4D printing that are required for understanding, modeling, and predicting the 

shape-shifting behaviors (the 4th D) of any multi-material 4D printed structure. To address the 

second gap (manufacturing), we have the third chapter, where we clearly underpin 4D printing as 

a new manufacturing process and specifically work on its energy-saving characteristic and obtain 

its theoretical limit. To address the third gap (product development), we have the fourth and fifth 

chapters, where we demonstrate two real applications (one in solar energy and one in wind energy), 

in which 4D printed products can provide unique benefits. These three main gaps and their 

corresponding chapters are related to design, manufacturing, and product development aspects of 

4D printing.
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CHAPTER 2  

LAWS OF SHAPE-SHIFTING IN 4D PRINTING 

The main difference between 3D and 4D printed structures is one extra dimension that is 

smart evolution over “time”. However, currently, there is no general formula to model and predict 

this extra dimension. Here, by starting from fundamental concepts, we derive and validate a 

general bi-exponential formula that can model and predict the fourth D of 4D printed multi-

material structures. 4D printing is a new manufacturing paradigm that utilizes stimuli-respons ive 

materials in multi-material structures for advanced manufacturing (and construction) of novel 

products (and structures). It conserves the general attributes of 3D printing (such as the elimination 

of molds, dies, and machining) and further enables the fourth dimension of products and structures 

to provide intelligent behavior over time.  

This intelligent behavior is encoded (usually by an inverse mathematical problem) into 

stimuli-responsive multi-materials during printing and is enabled by stimuli after printing. Here, 

we delve into the fourth dimension and reveal three general laws that govern the time-dependent 

shape-shifting behaviors of almost “all” (photochemical-, photothermal-, solvent-, pH-, moisture-, 

electrochemical-, electrothermal-, ultrasound-, enzyme-, etc.-responsive) multi-material 4D 

structures. We demonstrate that two different types of time-constants govern the shape-shifting 

behavior of almost all the multi-material 4D printed structures over time. Our results starting from 

the most fundamental concepts and ending with governing equations can serve as general design 

principles for future research in the 4D printing field, where the “time-dependent” behaviors 

should be understood, modeled, and predicted correctly. Future software and hardware 

developments in 4D printing can also benefit from these results.2 

 

                                              
2 This chapter is based on our journal article (under review), entitled “Laws of 4D printing”, by Farhang Momeni and 

Jun Ni. 
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2.1 Introduction 

Although some studies demonstrated single-material 4D printed structures, the future of 4D 

printing will lie in multi-material structures (Tibbits, 2014; Raviv et al., 2014; Ge et al., 2016; Pei 

& Loh, 2018; Kwok & Chen, 2017; Lind et al., 2017; News Staff, accessed 2018; Major, accessed 

2018; Saunders, accessed 2018). The quiddity of 4D printing usually needs multi-materia l 

structures (Raviv et al., 2014). In the most fundamental case, the multi-material 4D printed 

structure has one active and one passive layer (Kwok & Chen, 2017). Performance improvement 

by allocating proper materials to related locations based on local necessities (Bandyopadhyay & 

Heer, 2018), multi-functionality by embeddable functions such as electronics (MacDonald & 

Wicker, 2016), combing rigid and flexible sections in an integrated structure (Lopes et al., 2018), 

and providing lightweight structures (Demir & Previtali, 2017) are only some of the advantages of 

multi-material structures.  

In addition, to enable the shape memory effect (SME) (that is not an intrinsic property (Behl 

& Lendlein, 2007) of shape memory polymers (SMPs), a mechanical force is required in addition 

to heat (thermomechanical cycles). This force is usually provided externally. However, 4D printing 

can help us to arrange active and passive materials in a multi-material structure and utilize their 

internal mismatch-driven forces to enable the SME autonomously, with no need of external load 

for training (Mao et al., 2016; Momeni et al., 2019). In this study, we focus on multi-material 4D 

printed structures. 

Aspects of 4D printing have been explored in the literature. Several studies worked on beam 

and plate theories (e.g., refer to the supplementary information of ref. (Gladman et al., 2016). 

However, the missing piece in the literature is modeling of “time-dependent” behaviors (the 4th D) 

of 4D structures. Especially, the time-dependent behavior is the critical part of 4D (stimuli-

responsive) materials, whether fabricated by additive manufacturing and thus called 4D printed 

structures or created by other manufacturing processes. More importantly, a huge number of 

studies on 4D materials used the Timoshenko bimetal model (Timoshenko, 1925) (that is linear 

with time) to analyze the time-dependent behaviors of their experiments. Here, we will see that, in 

general, the Timoshenko bimetal model cannot capture the true time-dependent behaviors of 4D 

materials (except for some special cases or selected linear regions), although it provides useful 

insights on time-independent behaviors. In fact, the purpose of Timoshenko bimetal model was 
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not to model the time-dependent behavior (the 4th D) of 4D materials. Thus, there is an urgent need 

for qualitative and quantitative analysis on the 4th D of 4D materials.  

The main part of 4D printed structures is the 4th D; however, currently, there is no general 

formula to model and predict this extra dimension. Here, by developing fundamental concepts and 

from the equilibrium and compatibility conditions, we derive a bi-exponential formula that “is 

needed” for modeling and predicting the 4th D of any multi-material 4D printed structure. We 

further validate our bi-exponential formula by various experimental data from separate studies in 

the literature and show that it is a general formula that is useful for any type of 4D multi-materia l 

structure (photochemical-, photothermal-, solvent-, pH-, moisture-, electrochemical-, 

electrothermal-, ultrasound-, enzyme-, etc.-responsive). This generality happens, because we build 

the bases of our bi-exponential formula, comprehensively.  

2.2 Definitions, derivations, and discussions 

There are many materials and stimuli. Consequently, most of the ongoing studies in the 4D 

printing field are case-specific. The time-dependent behavior (the 4th D) of any 4D printed structure 

needs to be predicted. A detailed, but systematic, study on 4D printing and related areas helped us 

to reveal three universal laws that govern the “shape-shifting” behaviors of almost all the multi-

material 4D printed structures, although there are many materials and stimuli (Figure 2-1). 

 

Figure 2-1. Toward the laws of shape-shifting in 4D printing. 
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2.2.1 First law 

Almost all the shape-shifting behaviors (photochemical-, photothermal-, solvent-, pH-, 

moisture-, electrochemical-, electrothermal-, ultrasound-, enzyme-, hydro-, thermo-, etc.-

responsive) of the multi-material 4D printed structures originate from one fundamental 

phenomenon that is “relative expansion” between active and passive materials.   

This “relative expansion” is the origin of almost all the complicated 4D printing shape-

shifting behaviors such as twisting, coiling, curling, etc., that are enabled by encoding various 

types of anisotropy between active and passive materials and fabricating different heterogeneous 

structures.  

2.2.2 Second law  

The shape-shifting behaviors of almost all the multi-material 4D printed structures have four 

different types of physics: mass diffusion, thermal expansion/contraction, molecular 

transformation, and organic growth. They all (discussed and quantified below) lead to the relative 

expansion between active and passive materials and consequent shape-shifting behaviors under 

stimuli (the stimulus is usually provided externally, but it can be internal).  

2.2.2.1 Quantifying the second law 

Here, we describe and quantify the four underlying physical concepts that lead to relative 

expansions between active and passive materials in multi-material 4D structures, resulting in 

various shape-shifting behaviors, with or without shape memory effect. 

2.2.2.1.1 Mass Diffusion 

In this category, a matter transport leads to the relative expansion.  

Mass change due to sorption (absorption or adsorption) of a guest matter (here is mainly a 

stimulus such as water, ion, etc.) in a host matter can be modeled as below (Kim et al., 2003; 

Berens & Hopfenberg, 1978; Czugala et al., 2014): 

where 𝑡 is time and 𝑀 is mass. 𝐶 and 𝜏 are usually obtained by curve fitting to experimental 

data and depend on host matter relaxation and guest matter diffusion. However, models can be 

developed for these two parameters. The exponential model above captures the correct behavior 

of mass diffusion for short- to long-time processes. There is also one other model called power 

∆𝑀

𝑀
(𝑡) = 𝐶 [1− exp (−

𝑡

𝜏
)], (2-1) 
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function (𝑘𝑡𝑛), which is not accurate for long-time processes of mass diffusion (Kim et al., 2003). 

However, we know that the main part of 4D printing is the intelligent behavior over “time” that 

can be short or long.  

The exponential model above has been mainly introduced for 
∆𝑀

𝑀
 and 

∆𝑉

𝑉
 (volumetric strain). 

However, we have 

where 𝑉  is volume, 𝐿 is length, 𝜀  is strain, and the second- and third-order differential 

quantities are neglected.  

For an isotropic material, 

In addition, mass and volume have a linear relationship. Therefore,  

where 𝐶1 and 𝜏1 are constants that depend on the previous parameters.  

We quantify all the four categories in terms of strain. One reason is that for example, if we 

want to quantify them in terms of mass, then we do not have any mass change in the next category 

(Thermal Expansion/Contraction). Similarly, we do not have temperature change in this category, 

while we have it in the next category.  

In this category, several stimuli can be used such as hydro-, solvent-, moisture-, pH-, 

enzyme-, photochemical-, and electrochemical-responsive mechanisms. All of these stimuli finally 

cause a matter transport, leading to relative expansion in multi-material 4D structures, resulting in 

various shape-shifting behaviors. 

2.2.2.1.2 Thermal Expansion/Contraction 

In this category, a temperature change will increase (or decrease) the average distance 

between atoms and molecules (with constant mass), leading to the relative expansion in multi-

materials.  

Strain due to temperature change is (Pytel & Kiusalaas, 2012): 

∆𝑉

𝑉
=
𝑉2 − 𝑉1
𝑉

=
(𝐿𝑥 + ∆𝐿𝑥)(𝐿𝑦+∆𝐿𝑦)(𝐿𝑧+ ∆𝐿𝑧) − 𝐿𝑥𝐿𝑦𝐿𝑧

𝐿𝑥𝐿𝑦𝐿𝑧
≅ 𝜀𝑥 + 𝜀𝑦+ 𝜀𝑧 , (2-2) 

𝜀𝑥 = 𝜀𝑦 = 𝜀𝑧 = 𝜀 ⇒ 𝜀 =
1

3

∆𝑉

𝑉
. (2-3) 

𝜀Mass Diffusion(𝑡) = 𝐶1 [1 − exp (−
𝑡

𝜏1
)], (2-4) 

𝜀thermal = 𝛼∆𝑇, (2-5) 
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where 𝛼 is thermal expansion coefficient and 𝑇 is temperature. Because we need to predict 

the behavior of 4D printed structures over time, we convert this temperature-based equation to 

time-based form.  

On the other hand, by applying a thermal stimulus with temperature 𝑇2 to a structure with 

temperature 𝑇1 , and assuming a uniform temperature in the structure, the temperature of the 

structure changes over time as below (Kaviany, 2011): 

where 𝑡 is time, 𝑇1(𝑡 = 0) is the initial temperature of the structure, �̇�1 is energy conversion 

in the structure, 𝑄1 is the heat transferred between the structure and environment (other than the 

stimulus), and 𝑅 is thermal resistance. 𝜏 is a time-constant that depends on density, heat capacity, 

volume of the structure, and thermal (and thermal contact) resistance, and can be modeled in a 

specific application (Kaviany, 2011).  

By working on the above equation, we have 

𝑇1(𝑡) − 𝑇1(𝑡 = 0)

= [𝑇2 − 𝑇1(𝑡 = 0)] − [𝑇2 − 𝑇1(𝑡 = 0)]exp (−
𝑡

𝜏
) +𝑅(�̇�1− 𝑄1) [1− exp (−

𝑡

𝜏
)], 

⇒ 𝑇1(𝑡) − 𝑇1(𝑡 = 0) = [𝑇2 −𝑇1(𝑡 = 0)][1 − exp (−
𝑡

𝜏
)] + 𝑅(�̇�1 − 𝑄1) [1− exp (−

𝑡

𝜏
)], 

⇒ 𝑇1(𝑡) − 𝑇1(𝑡 = 0) = [𝑇2 −𝑇1(𝑡 = 0) +𝑅(�̇�1 −𝑄1)][1 − exp (−
𝑡

𝜏
)],  

By combining the above equation and the initial equation (i.e., 𝜀 = 𝛼∆𝑇), we will have 

where 𝐶2 and 𝜏2 are constants that depend on the previous parameters.  

In this category, several stimuli can be used such as photothermal-, electrothermal-, and 

ultrasound- responsive mechanisms. All of these stimuli finally raise the temperature of the 

structure and consequently, increase the average distances between atoms and molecules. For 

example, in electrothermal-responsive structures, the movement of a current through a resistance 

provides heat (so-called Joule or Ohmic heating), this heat increases the temperature, and finally, 

the expansion happens. Similarly, contraction is obtained by cooling. It should be noted that some 

𝑇1(𝑡) = 𝑇2 + [𝑇1(𝑡 = 0) − 𝑇2]exp (−
𝑡

𝜏
) +𝑅(�̇�1 − 𝑄1) [1− exp (−

𝑡

𝜏
)], (2-6) 

⇒ ∆𝑇1 = [𝑇2 − 𝑇1(𝑡 = 0) + 𝑅(�̇�1 − 𝑄1)] [1− exp (−
𝑡

𝜏
)]. (2-7) 

𝜀Thermal Expansion/Contraction(𝑡) = 𝐶2[1 − exp (−
𝑡

𝜏2
)], (2-8) 
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materials will shrink (contract) upon heating. In these cases, 𝛼 (the thermal expansion coefficient) 

would be negative in the equations above and the final equation, i.e., 

𝜀Thermal Expansion/Contraction (𝑡) = 𝐶2 [1 − exp (−
𝑡

𝜏2
)] will remain intact. Nevertheless, the key 

point is the “relative” thermal expansion/shrinkage in multi-materials to enable various shape-

shifting behaviors in this category. 

2.2.2.1.3 Molecular Transformation 

In this category, a molecular transformation (e.g., trans-to-cis change in azobenzene) with 

constant mass and temperature leads to the relative expansion. The constant-temperature feature 

of this category indicates that the relative expansion is not due to the thermal expansion/contraction , 

even though some thermal fluctuation may happen in the structure due to bond cleavage or 

formation. 

The molecular transformation is usually accomplished by photochemical responsivity 

mechanism that is different from photothermal responsivity (Naumov et al., 2015). The kinetics of 

photoinduced transformation is (Naumov et al., 2015): 

where 𝑡 is time and 𝐷(𝑡) is the degree of transformation. 𝐷0 and 𝜏 are constants that depend 

on the irradiation flux intensity, quantum yield of the transformation, etc., and can be modeled in 

a specific application (Naumov et al., 2015).  

On the other hand, subsequent volume change (expansion or contraction) is proportional to 

the degree of transformation (Naumov et al., 2015). In addition, we have already seen that the 

volumetric strain (
∆𝑉

𝑉
) and linear strain (𝜀 =

∆𝐿

𝐿
) are proportional. Therefore, 

where 𝐶3 and 𝜏3 are constants that depend on the previous parameters. 

The main stimulus for this category is the photochemical-responsive mechanism. 

2.2.2.1.4 Organic Growth 

In this category, there is a living layer (organism) and its growth over time can lead to the 

relative expansion between active and passive materials. The organic growth can be defined as the 

increase of an organic system in weight or length (Von Bertalanffy, 1938). This usually happens 

𝐷(𝑡) = 𝐷0[1 − exp (−
𝑡

𝜏
)], (2-9) 

𝜀Molecular Transformation(𝑡) = 𝐶3[1 − exp (−
𝑡

𝜏3
)], (2-10) 
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in bioscience and bioengineering dealing with cells, soft tissues, organs, scaffolds, and so on that 

can be 4D printed and are generally called 4D bioprinting. 

Kinetics of the organic growth is (Von Bertalanffy, 1938): 

where 𝑡 is time, 𝐿(𝑡) is the length of the organic system, 𝐿∞ is the final length, and 𝐿0 is the 

initial length. 𝜏 is usually a curve-fitting time-constant that depends on the metabolism of the living 

organism, environment, and so on. Nevertheless, models can be developed for it. It should also be 

noted that 𝜏 affects 𝐿∞ (Von Bertalanffy, 1938). This formula shows the growth of individual 

organisms in a population that is different from population growth. The population growth is the 

growth in the number of individuals in a population and is modeled by other formulas (Malthus, 

1798; Verhulst, 1838).  

On the other hand, based on the definition of strain, 𝜀 =
𝐿(𝑡)−𝐿0

𝐿0
, we have  

Therefore, 

where 𝐶4 and 𝜏4 are constants that depend on the previous parameters.  

In this category, one of the main stimuli that can trigger a living organism would be the 

electrical signal (electrochemical mechanism). In addition, various stimuli such as pH, light, heat, 

and enzyme can be used to tune the growth rate. 

2.2.2.2 Unified model of the second law 

By quantifying the second law, we found that 

𝐿(𝑡) = 𝐿∞− (𝐿∞ − 𝐿0)exp (−
𝑡

𝜏
), (2-11) 

𝜀 =
𝐿(𝑡) − 𝐿0
𝐿0

=
(𝐿∞− 𝐿0) − (𝐿∞ −𝐿0) exp (−

𝑡
𝜏
)

𝐿0

= (
𝐿∞ − 𝐿0
𝐿0

)[1 − exp (−
𝑡

𝜏
)]. 

(2-12) 

𝜀Organic Growth(𝑡) = 𝐶4[1 − exp (−
𝑡

𝜏4
)], (2-13) 
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where 𝐶𝑖 and 𝜏𝑖  (𝑖 = 1,2,3,4) all are constants. However, they depend on different factors as 

described. 

2.2.3 Third law  

Time-dependent shape-shifting behavior of almost all the multi-material 4D printed 

structures is governed by two “different types” of time-constants. For the most fundamental case 

of a multi-material 4D printed structure having one active and one passive layer (Figure 2-2), the 

time-dependent behavior (in terms of “curvature” that is a building block concept for shape-

shifting) is  

𝜅(𝑡) =
1

𝜌
(𝑡) =

𝐻𝐼 (1 − 𝑒
−𝑡
𝜏𝐼)+ 𝐻𝐼𝐼 (1 − 𝑒

−𝑡
𝜏𝐼𝐼)

ℎ
2
+ 
2(𝐸1𝐼1 +𝐸2𝐼2)

ℎ
(
1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)

= 𝐾𝐼 (1 − 𝑒
−𝑡
𝜏𝐼)+ 𝐾𝐼𝐼 (1 − 𝑒

−𝑡
𝜏𝐼𝐼), 

(2-15) 

where 𝑡 is time, 𝜅(𝑡) is the curvature induced by the relative expansion, 𝜌 is the radius of 

curvature, ℎ and 𝑎𝑖 are thicknesses identified in Figure 2-2, 𝐸𝑖 is Young s̀ modulus, and 𝐼𝑖  is the 

second moment of area. The passive and active layers are denoted by numbers 1 and 2, respectively. 

𝐻𝐼 is a constant that depends on Young s̀ moduli of the active and passive layers and the amount 

of the mismatch-driven stress generated at the interface. 𝜏𝐼 is a time-constant that depends on the 

viscosity induced at the interface and Young s̀ moduli of the active and passive layers. The 

viscosity induced at the interface needs to be measured or modeled for a specific active-passive 

composite. The exact format of 𝐻𝐼 and 𝜏𝐼 can be developed in a specific application depending on 

the active-passive composite and by using parallel and series rules of springs (elasticity elements) 

{
 
 
 
 

 
 
 
 𝜀Mass Diffusion(𝑡) = 𝐶1 (1 − 𝑒

−
𝑡
𝜏1)

𝜀Thermal Expansion/Contraction(𝑡) = 𝐶2(1 − 𝑒
−
𝑡
𝜏2)

𝜀Molecular Transformation(𝑡) = 𝐶3 (1 − 𝑒
−
𝑡
𝜏3)

𝜀Organic Growth(𝑡) = 𝐶4 (1 − 𝑒
−
𝑡
𝜏4)

, (2-14) 
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and dashpots (viscosity elements). 𝐻𝐼𝐼 and 𝜏𝐼𝐼 are respectively equivalent to 𝐶𝑖 and 𝜏𝑖  (𝑖 = 1,2,3,4) 

of the unified model in the previous section.  

2.2.3.1 Proof of the third law 

To derive equation (2-15), we start from the equilibrium and compatibility conditions that 

are the starting point for any problem in mechanics of materials (Pytel & Kiusalaas, 2012). We 

also consider the Timoshenko bimetal model (Timoshenko, 1925) (and its basic assumptions).  

 

Figure 2-2. Toward the third law by analyzing the most fundamental multi-material 4D 

structure. 

 

Equilibrium: 

First, we must have balances of forces and moments in Figure 2-2. Therefore (Timoshenko, 

1925), 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠: ∑𝑭 = 0 ⇒  𝑃1 = 𝑃2 = 𝑃 (2-16) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑠: ∑𝑴 = 0 ⇒  
𝑃1𝑎1
2
+
𝑃2𝑎2
2
= 𝑀1 +𝑀2    

𝑃1=𝑃2=𝑃
𝑎1+𝑎2=ℎ
⇒         

𝑃ℎ

2

= 𝑀1 +𝑀2, 

(2-17) 
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where 𝑃𝑖 and 𝑀𝑖  are forces and moments, respectively (shown in Figure 2-2).  

Compatibility: 

Second, at the interface of the two layers, the lengths of the two layers are the same after 

applying the stimulus. Because their initial lengths are also the same, their strains must be equal 

and thus (Timoshenko, 1925; Pytel & Kiusalaas, 2012), 

𝐴𝑡 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒: 𝜀1 = 𝜀2. 

The strain in each of the two layers has three main contributors as below (Timoshenko, 1925; 

Matsumoto, 2016).  

(𝜀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒+ 𝜀𝑠𝑡𝑟𝑒𝑠𝑠 + 𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)1 =
(𝜀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 + 𝜀𝑠𝑡𝑟𝑒𝑠𝑠 + 𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)2. (2-18) 

Strain from curvature: 𝜀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 

{
(𝜀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)1 =

𝑎1

2𝜌

(𝜀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)2 = −
𝑎2

2𝜌

   (Timoshenko, 1925). (2-19) 

Strain from stress: 𝜀 𝑠𝑡𝑟𝑒𝑠𝑠 

{
(𝜀 𝑠𝑡𝑟𝑒𝑠𝑠)1 =

𝑃1

𝐸1𝑎1

(𝜀 𝑠𝑡𝑟𝑒𝑠𝑠)2 = −
𝑃2

𝐸2𝑎2

  (Timoshenko, 1925). (2-20) 

(2-18),(2-19),and (2-20)
⇒                  

𝑎1
2𝜌
+ 

𝑃1
𝐸1𝑎1

+ (𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)1

= −
𝑎2
2𝜌
− 

𝑃2
𝐸2𝑎2

+ (𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)2. 

(2-21) 

 

Now, in the following, we develop 𝜀𝑠𝑡𝑟𝑒𝑠𝑠  and 𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛  for 4D multi-materials and 

incorporate them in the equilibrium and compatibility equations. 

Here, we note that 𝜀 𝑠𝑡𝑟𝑒𝑠𝑠 is the strain due to the mismatch-driven stress at the interface of 

the active and passive materials. The mismatch-driven stress naturally leads to opposing resistive 

forces in the two layers (in general). We include the resistive effect by expanding the well-known 

moment equation for each layer, 𝑀𝑖 . By considering Figure 2-2(c), 

𝑀𝑖 = ∫𝒓𝒊 × 𝑑𝑭𝒊 = ∫𝒛𝒊𝜎𝑖𝑑𝐴𝑖

= (∫𝒛𝒊𝜎𝑖𝑑𝐴𝑖)
𝑒𝑥𝑐𝑒𝑝𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

+ (∫ 𝒛𝒊𝜎𝑖𝑑𝐴𝑖)
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

. 

(2-22) 
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Because the integral is the same as the summation, i.e., it is continuous summation, we could 

separate the integral above into two terms as equation (2-22). The second term on the right-hand 

side of (2-22) shows the integral over an infinitesimal cross-sectional area, 𝑑𝐴𝑖 (Figure 2-2(c)) that 

is close to the interface. Therefore, equation (2-22) can be written as 

{
 

 𝑀1 =
𝐸1𝐼1
𝜌
+𝑚1

𝑀2 =
𝐸2𝐼2
𝜌
+ 𝑚2

    . (2-23) 

The first terms on the right-hand side of (2-23) are similar to those proposed by Timoshenko 

(1925) and the second terms (𝑚1 and 𝑚2) arise from the resistive (mismatch) effect at the interface 

of the active and passive materials. At this stage, the nature of 𝑚1 and 𝑚2 is moment. Let us keep 

them as black-box terms.  

Strain from expansion that is enabled by stimulus: 𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 

By analyzing almost all types of shape-shifting mechanisms in multi-material 4D structures, 

the relative expansions induced under stimuli can be categorized into four main groups elaborated 

in the second law. We demonstrated that almost all types of strains due to expansions induced by 

stimuli have the same format as below:     

𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑡) = 𝐶 (1 − 𝑒
−𝑡
𝜏𝐼𝐼). (2-24) 

We use 𝜏𝐼𝐼 as the time-constant of 𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 to distinguish it from 𝜏𝐼 that will be introduced 

for the strain due to the mismatch-driven stress (𝜀 𝑠𝑡𝑟𝑒𝑠𝑠).     

By combining equations (2-16), (2-17), and (2-21), 

ℎ

2𝜌
+ 
2(𝑀1 + 𝑀2)

ℎ
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
)= (𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)2−

(𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)1  
(2-23)
⇒    

ℎ

2𝜌
+ 
2(𝐸1𝐼1 +𝐸2𝐼2)

ℎ𝜌
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
)+ 𝑁𝑚1 +𝑁𝑚2 = (𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)2−

(𝜀𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)1⏟                  
𝜀𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

, 

where 𝑁 =
2

ℎ
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
) . Now, we assume that the active (stimuli-respons ive) 

material is usually responsive under stimulus, and the passive material is not usually 

responsive under stimulus, as their names imply (nevertheless, the relative expansion is 

important for shape-shifting). Therefore, by applying equation (2-24) to the above equation,  
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ℎ

2𝜌
+ 
2(𝐸1𝐼1 +𝐸2𝐼2)

ℎ𝜌
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
)+ 𝑁𝑚1 +𝑁𝑚2 = 𝐶 (1 − 𝑒

−𝑡
𝜏𝐼𝐼). 

Now, each term in the above equation is strain. Therefore, the nature of 𝑁𝑚1 and 𝑁𝑚2 

is strain. On the other hand, these two terms reflect the mismatch (viscosity) effect of the 

interface into each layer. The viscoelastic strain over time can be modeled by an exponential 

term as below (Duffy, 2010). 

ℎ

2𝜌
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ𝜌
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
)+𝐴1 (1 − 𝑒

−𝑡
𝐵1 )+𝐴2 (1 − 𝑒

−𝑡
𝐵2 ) = 𝐶 (1 − 𝑒

−𝑡
𝜏𝐼𝐼), 

where 𝐴1 and 𝐴2 are constants that depend on Young s̀ moduli of the active and passive 

layers and the amount of the mismatch-driven stress generated at the interface. This stress is 

affected by the stimulus power (such as light intensity, pH value, etc.). 𝐵1  and 𝐵2 are constants 

that depend on the viscosity induced at the interface (that is related to the active-passive 

composite) and Young s̀ moduli of the active and passive layers. It should be noted that the 

Young s̀ modulus and viscosity are affected by the fabrication process (Momeni et al., 2019) 

and its conditions (such as printing resolution). 

On the other hand, because the two layers are attached at the interface during the shape-

shifting, 𝐵1  and 𝐵2 (time-constants of strains in each layer due to the mismatch-driven stress 

at the interface) are equal (𝐵1 = 𝐵2 = 𝜏𝐼). Thus, 

ℎ

2𝜌
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ𝜌
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
)+𝐴1 (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐴2 (1 − 𝑒

−𝑡
𝜏𝐼 ) = 𝐶 (1 − 𝑒

−𝑡
𝜏𝐼𝐼). 

By using new uniform notations 𝐻𝐼 and 𝐻𝐼𝐼, 

ℎ

2𝜌
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ𝜌
(
1

𝐸1𝑎1
+ 

1

𝐸2𝑎2
) = 𝐻𝐼 (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐻𝐼𝐼 (1 − 𝑒

−𝑡
𝜏𝐼𝐼). 

Finally, by re-arranging, 

1

𝜌
=

𝐻𝐼 (1 − 𝑒
−𝑡
𝜏𝐼)+ 𝐻𝐼𝐼 (1 − 𝑒

−𝑡
𝜏𝐼𝐼)

ℎ
2
+ 
2(𝐸1𝐼1 +𝐸2𝐼2)

ℎ
(
1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)
= 𝐾𝐼 (1 − 𝑒

−𝑡
𝜏𝐼)+ 𝐾𝐼𝐼 (1 − 𝑒

−𝑡
𝜏𝐼𝐼), 

which is the same as equation (2-15).  

2.2.3.2 Stimulus-on versus stimulus-off 

Equation (2-15) is used when the stimulus is “on”, and a curvature happens in the structure. 

However, when the stimulus is “off”, the structure can return to its original shape by starting from 
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the final curvature of the previous part (i.e., the stimulus-on region). Therefore, the governing 

equation for the second region can be found as below: 

(
1

𝜌
)
off

 = { lim
𝑡→∞

(or large 𝑡)

[𝐾𝐼 (1 − 𝑒
−𝑡

𝜏𝐼)+𝐾𝐼𝐼 (1 − 𝑒
−𝑡

𝜏𝐼𝐼)]} − [𝐾𝐼 (1 − 𝑒
−𝑡

𝜏𝐼)+𝐾𝐼𝐼 (1 − 𝑒
−𝑡

𝜏𝐼𝐼)] 

= (𝐾𝐼 + 𝐾𝐼𝐼) − [𝐾𝐼 (1 − 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1 − 𝑒

−𝑡
𝜏𝐼𝐼)] 

= 𝐾𝐼𝑒
−𝑡
𝜏𝐼 + 𝐾𝐼𝐼𝑒

−𝑡
𝜏𝐼𝐼 . (2-25) 

It should be noted that in some applications, a self-locking mechanism could be devised by 

special arrangements of active and passive materials so that when the stimulus is off, the structure 

does not return to its original shape.  

 

2.2.3.3 General graph 

Based on equations (2-15) and (2-25), the general graph is rendered in Figure 2-3. Some 

applications need only one cycle, and some others require multiple cycles. In some applications, 

only one of the two regions of the graph happens and in some other applications, both the regions 

are present. In some cases, the shape-shifting behavior can occur with memory (SME), and in some 

other cases, it can take place without memory. 
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Figure 2-3. The general graph that exhibits the time-dependent behavior of almost all the 

multi-material 4D printed structures (photochemical-, photothermal-, solvent-, pH-, 

moisture-, electrochemical-, electrothermal-, ultrasound-, enzyme-, hydro-, etc.-

responsive).  

 

2.2.3.4 Analyzing the proposed formula by using real data 

Here, we analyze our derived bi-exponential formula by using real data. For completeness, 

we also consider the Timoshenko bimetal (Timoshenko, 1925) and mono-exponential models. As 

seen in Figure 2-4, unlike the Timoshenko bimetal and mono-exponential models, the developed 

bi-exponential model perfectly captures the correct time-dependent behavior of various 

experimental data from separate studies in the literature. Therefore, in general, the time-dependent 

behavior of 4D multi-materials is nonlinear (with time) and has the specific format as equation 

 
𝜿(𝒕) = 𝑲𝑰𝐞𝐱𝐩(−𝒕/𝝉𝑰) + 

𝑲𝑰𝑰𝐞𝐱𝐩(−𝒕/𝝉𝑰𝑰) 

 
𝜿(𝒕) = 𝑲𝑰[𝟏 − 𝐞𝐱𝐩(−𝒕/𝝉𝑰)] 

+𝑲𝑰𝑰[𝟏 − 𝐞𝐱𝐩(−𝒕/𝝉𝑰𝑰)] 
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(2-15). Some of the following studies presented experimental data for time-dependent curvature, 

and some others provided experimental data for time-dependent angle of rotation (deflection 

angle). However, the curvature and deflection angle have a linear relationship. Consequently, if 

one of them has bi-exponential behavior, the other one will have bi-exponential behavior. All the 

six items in Figure 2-4 have one active material and one passive material. The active component 

has responsivity to the desired stimulus, whether with or without shape memory effect. We 

performed the curve fitting by Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) method. 

We also tried other least-squares algorithms and obtained similar results. The axes units are 

eliminated, as the absolute values are not essential to convey the idea.  
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Figure 2-4. Analysis of the proposed model by experimental data from separate studies in 

the literature (Le Duigou et al., 2016; Alipour et al., 2016; Nath et al., 2014; Zhou et al., 

2016; Li et al., 2015; Zhang et al., 2016), for both the on and off regions and various stimuli 

such as moisture (Le Duigou et al., 2016), solvent (Alipour et al., 2016), photochemical 

(Nath et al., 2014), photothermal (Zhou et al., 2016), ultrasound (Li et al., 2015), and heat 

(Zhang et al., 2016).  



 

52 
 

Remark 1. True time-dependent behavior of 4D printed multi-material structures. The 

results show that generally speaking, two different time-constants govern the time-dependent 

shape-shifting behaviors of multi-material 4D structures. Nevertheless, in some cases, the two 

time-constants (𝜏𝐼 and 𝜏𝐼𝐼) may be approximately equal, and the time-dependent behavior can be 

modeled by a mono-exponential equation. In some cases, the resistive (viscosity) effect at the 

interface of the active and passive materials (that is reflected in 𝜏𝐼) is negligible, and the first 

exponential term vanishes. In addition, sometimes, the two time-constants are large, and the 

proposed bi-exponential formula tends to the linear (Timoshenko) model. That is, if 𝜏𝐼 and 𝜏𝐼𝐼 → 

large values, then 𝐾𝐼 (1 − 𝑒
−𝑡

𝜏𝐼)+𝐾𝐼𝐼 (1 − 𝑒
−𝑡

𝜏𝐼𝐼) ≅ 𝑏𝑡, where 𝑏 is a constant. This point can be 

realized by analyzing the related graph or by using Taylor series. Thus, in linear cases, both the 

proposed bi-exponential model and Timoshenko bimetal model work. 

It should be noted that in the heat- and ultrasound-responsive structures of Figure 2-4, the 

mono- and bi-exponential models are relatively close to each other. 

Remark 2. Final shape versus instantaneous shape. We found that the Timoshenko 

bimetal model (Timoshenko, 1925), as well as the mono-exponential function, cannot capture the 

correct time-dependent (instantaneous) behavior. However, when the final shape is achieved (𝑡 → 

large values), both the Timoshenko bimetal model (Timoshenko, 1925) and our formula (equation 

(2-15)) would be    

𝜅𝑓𝑖𝑛𝑎𝑙 ∝
1

ℎ
2
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ
(
1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)
. 

(2-26) 

Two points should be discussed in this regard. First, the above outcome implies that both the 

Timoshenko bimetal model and our formula provide similar analyses for time-independent 

behaviors (such as the effect of thickness on curvature). Second, in the literature, some 

experimental studies reported the decrease of maximum (final) curvature with an increase of layer 

thickness, while some others reported the increase of maximum (final) curvature with an increase 

of layer thickness. It is worth digging into this point by an analytical study as the following.  

Equation (2-26) depends on two quantities, Young s̀ moduli (𝐸𝑖) and layers thicknesses (𝑎𝑖), 

as ℎ  and 𝐼𝑖  are functions of layers thicknesses (ℎ = 𝑎1 + 𝑎2, 𝐼𝑖 =
1

12
𝑎𝑖
3; based on the basic 

assumptions of the Timoshenko bimetal model, the width of the strip was assumed to be small and 

specifically was taken unity as seen in Figure 2-2). Therefore, we have 
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𝜅𝑓𝑖𝑛𝑎𝑙∝
1

𝑎1 + 𝑎2
2

+ 
2

𝑎1 + 𝑎2
(
𝐸1
12
𝑎1
3 +

𝐸2
12
𝑎2
3)(

1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)
. 

(2-27) 

By analyzing equation (2-27), we can find that the curvature first increases and then 

decreases with increase in 𝑎1. Because equation (2-27) is symmetric in terms of 𝑎1 and 𝑎2, the 

curvature has a similar trend with respect to 𝑎2. The region, in which the increase or decrease of 

the curvature happens, depends on relative values of 𝑎1 and 𝑎2, as well as 𝐸1 and 𝐸2. Here, we 

generate some possible scenarios as shown in Figure 2-5. A similar result to scenario (c) in Figure 

2-5 was proposed by Timoshenko (Timoshenko, 1925). Due to the symmetry of (2-27), the same 

results as Figure 2-5(a)-(b) are valid if we switch 𝑎1 and 𝑎2 in these two plots.  

 

                   

 

Figure 2-5. Depending on the relative values of 𝒂𝟏, 𝒂𝟐, 𝑬𝟏, and 𝑬𝟐, the relationship between 

curvature and layers thicknesses would be different (it can be decreasing, increasing, or a 

mixed behavior). This figure is based on equation (2-27). 

 

Remark 3. Shape-shifting speed. The shape-shifting speed is important almost in any 

application performing dynamic intelligent behavior over time, and becomes more crucial in some 

b 

c 

a 
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applications such as autonomous deployment in space missions, drug delivery systems, detection 

devices, and so on. By taking derivatives of equations (2-15) and (2-25), the magnitude of the 

shape-shifting speed for both the on and off regions would be 

(𝑠ℎ𝑎𝑝𝑒 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑)𝑜𝑛 = (𝑠ℎ𝑎𝑝𝑒 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑)𝑜𝑓𝑓 = 

𝑑𝜅(𝑡)

𝑑𝑡
=

𝐻𝐼
𝜏𝐼
(𝑒
−𝑡
𝜏𝐼)+

𝐻𝐼𝐼
𝜏𝐼𝐼
(𝑒
−𝑡
𝜏𝐼𝐼)

ℎ
2
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ
(
1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)
=
𝐾𝐼
𝜏𝐼
(𝑒
−𝑡
𝜏𝐼 )+

𝐾𝐼𝐼
𝜏𝐼𝐼
(𝑒
−𝑡
𝜏𝐼𝐼). 

(2-28) 

As seen in equation (2-28), the shape-shifting speed is time-dependent with the specific 

format above. However, the Timoshenko bimetal model (Timoshenko, 1925) gives a constant 

shape-shifting speed over time.   

Based on equation (2-28), for a large amount of time (i.e., when the final shape is going to 

be achieved), the shape-shifting speed tends to zero for both the on and off regions. This point can 

also be captured from Figure 2-3 as both the on and off regions becomes flat (constant) for 𝑡 → 

large values, and the derivative of a constant function is zero. 

Remark 4. Stimulus power. Here, we analyze the effect of stimulus power on the time-

dependent behavior. By the expression “stimulus power”, we mean light intensity, temperature 

magnitude, pH value, moisture (RH) content, enzyme concentration, current magnitude, solvent 

concentration, and so on. By analyzing the various parameters of equation (2-15) (and considering 

the concepts associated with the second and third laws), we can find that the stimulus power will 

affect three parameters, 𝐻𝐼, 𝐻𝐼𝐼, and 𝜏𝐼𝐼. Therefore, the time-dependent behaviors of two different 

stimulus powers would be  
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝜅(1)(𝑡) =

𝐻𝐼
(1) (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐻𝐼𝐼

(1)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(1))

ℎ
2
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ
(
1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)

= 𝐾𝐼
(1) (1 − 𝑒

−𝑡
𝜏𝐼)+ 𝐾𝐼𝐼

(1)(1 − 𝑒
−𝑡

𝜏𝐼𝐼
(1))

𝜅(2)(𝑡) =

𝐻𝐼
(2) (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐻𝐼𝐼

(2)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(2))

ℎ
2
+ 
2(𝐸1𝐼1 + 𝐸2𝐼2)

ℎ
(
1
𝐸1𝑎1

+ 
1
𝐸2𝑎2

)

= 𝐾𝐼
(2) (1 − 𝑒

−𝑡
𝜏𝐼)+ 𝐾𝐼𝐼

(2)(1 − 𝑒
−𝑡

𝜏𝐼𝐼
(2))

. (2-29) 

To illustrate the effect of stimulus power on time-dependent behaviors, we consider five 

different stimulus powers. The related formulas would be 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜅(1)(𝑡) = 𝐾𝐼

(1) (1 − 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼

(1)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(1))

𝜅(2)(𝑡) = 𝐾𝐼
(2) (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐾𝐼𝐼

(2)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(2))

𝜅(3)(𝑡) = 𝐾𝐼
(3) (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐾𝐼𝐼

(3)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(3))

𝜅(4)(𝑡) = 𝐾𝐼
(4) (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐾𝐼𝐼

(4)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(4))

𝜅(5)(𝑡) = 𝐾𝐼
(5) (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐾𝐼𝐼

(5)(1− 𝑒
−𝑡

𝜏𝐼𝐼
(5))

, (2-30) 

and the general graph would be similar to Figure 2-6(a). The general trend observed in Figure 

2-6(a) is consistent with the experimental data found in the literature (Zhang et al., 2014; Hirano 

et al., 2017; Zhou et al., 2016; Nath et al., 2014).  

There might be some applications, in which faster response without any change in the final 

shape (unlike Figure 2-6(a)) is desirable. To this end, smaller time-constant (𝜏) with the same 

coefficient (𝐾) is required. For five different scenarios, the related formulas would be  
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{
 
 
 
 
 
 

 
 
 
 
 
 𝜅(1)(𝑡) = 𝐾𝐼 (1 − 𝑒

−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1 − 𝑒

−𝑡

𝜏𝐼𝐼
(1))

𝜅(2)(𝑡) = 𝐾𝐼 (1 − 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1 − 𝑒

−𝑡

𝜏𝐼𝐼
(2))

𝜅(3)(𝑡) = 𝐾𝐼 (1 − 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1 − 𝑒

−𝑡

𝜏𝐼𝐼
(3))

𝜅(4)(𝑡) = 𝐾𝐼 (1 − 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1 − 𝑒

−𝑡

𝜏𝐼𝐼
(4))

𝜅(5)(𝑡) = 𝐾𝐼 (1 − 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1 − 𝑒

−𝑡

𝜏𝐼𝐼
(5))

, (2-31) 

and the general graph would be similar to Figure 2-6(b). In order to tune the response speed 

without interfering with the final shape, separate studies are needed. Carbon nanotubes (CNTs) 

(De Volder et al., 2013) may be a possible solution, as they can be incorporated into stimuli-

responsive materials to tune their response speed (He et al., 2016). 

 

              

Figure 2-6. (a) The general effect of stimulus power (e.g., light intensity, pH value, 

temperature magnitude, and so on) on time -dependent behavior. This plot is based on 

equation (2-30). (b) Tuning the response speed, without changing the final shape. This plot 

is based on equation (2-31). 

 
Remark 5. Extension of the developed concepts to complicated multi-material 4D 

structures. Based on the concepts developed here, one can analyze, predict, and tune the time -

dependent behaviors of multi-material 4D structures almost at any level of complexity. Let us 

consider one example exhibited in Figure 2-7. This case has four different types of materials, two 

of which are active materials. For the top two layers, we have one exponential term of type I and 

one exponential term of type II. Similarly, we can consider the middle two layers, and the bottom 

a b 
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two layers. By superposing these terms, this multi-material structure has three exponential terms 

of type I and three exponential terms of type II (nevertheless, some of these exponential terms can 

be equal in a specific case, as discussed in Remark 1). In addition, this case will have the same 

general graph shown in Figure 2-3, as its governing equation is a summation of exponential terms. 

However, the slope of its graph would be different at various points (i.e., it will have steeper slopes 

in some regions).  

 

Figure 2-7. A 4D structure with more than two types of materials. 

To realize the complicated 4D structures, in addition to the multi-material (rather than two-

material) structures discussed above, two more important points should be taken into consideration. 

First, our model provides the time-dependent behavior of the “curvature” that is a fundamental 

building block of shape-shifting in multi-material structures. Other higher-level shape-shifting 

quantities such as curling, twisting, coiling, and their combinations originate from this quantity. 

Second, we have discussed the time-dependent behavior of the curvature in one direction (narrow 

strip). For a plate having the same materials as the original narrow strip, the curvature would be 

the same in any direction (this point can be concluded by analyzing the discussions made by 

Timoshenko, 1925), and can be modeled by the same two exponential terms of the original (parent) 

narrow strip. For a plate that has different materials in different directions, the curvature would be 

different in each direction. However, the same two types of time-constants and exponential terms 

proposed in this study can be used to model the time-dependent curvature in a specific direction, 
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accordingly. Future studies may incorporate the proposed two time-constants in extensions to 

plates and so on. 

It should also be noted that the concepts have been developed for multi-material structures 

that may not necessarily be multi-layer. In some cases, the boundary between active and passive 

layers may not be as clear as Figure 2-2. However, in these cases, eventually, the active and passive 

materials will have contact in some regions, and the same concepts developed here will be present.  

Remark 6. Shape memory effect (SME). As we touched on earlier, SME is not an intrinsic 

property (Behl & Lendlein, 2007). The readers are referred to ref. (Behl & Lendlein, 2007) for 

more information on the SME and shape memory polymers. The four shape-shifting mechanisms 

discussed and quantified in the second law can take place with or without SME. The key point is 

that these four shape-shifting mechanisms are the underlying physical concepts for relative 

expansion and subsequent shape-shifting in multi-material 4D structures. For example, the “heat-

responsive structure” of Figure 2-4 illustrates a typical shape memory polymer in a bilayer with a 

passive material, and its shape-shifting in the multi-material structure is enabled by the relative 

“thermal expansion” of the active and passive materials as mentioned by Zhang et al. (2016).  

Because of the aforementioned discussion, we did not put SME as one category of 

fundamental physical concepts in the second law. Nevertheless, the following discussion can be 

useful. 

Most of the shape memory polymers are thermo-responsive, and to enable their shape 

memory effect, their temperature should go beyond a critical temperature, e.g., glass transition 

temperature (whether by direct heat or other stimuli such as light, electricity, and electromagnetic 

field to change the temperature, indirectly) (Behl & Lendlein, 2007). It is worth mentioning that 

the researchers (Bonner et al., 2010) reported that the “strain-time” relationship of a shape memory 

polymer above its glass transition temperature could be modeled by the exponential formula 

𝜀(𝑡) = 𝐶 [1 − exp (−
𝑡

𝜏
)].  

Remark 7. Other manufacturing processes. We distilled three laws that govern the shape-

shifting behaviors of almost all the 4D multi-materials, whether fabricated by additive 

manufacturing (AM) and so-called 4D printed structures or made by other manufacturing 

processes.  

Stimuli-responsive multi-materials can be made by various manufacturing processes; 

however, AM has some benefits. Two general advantages are discussed here. First, the same 
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reasons that motivate us to use AM for conventional (passive) materials, will be motive for 

utilizing AM for stimuli-responsive (active) materials. In other words, 4D printing conserves the 

general advantages of AM (such as material waste reduction, elimination of molds, dies, and 

machining (Ligon et al., 2017), and providing complex geometries) that are not present in other 

manufacturing processes. In addition, unlike other manufacturing processes, 4D printing provides 

an encoded multi-material smart structure in a single run. Second, AM helps us to manipulate the 

“structure” of multi-materials, precisely, to enable various shape-shifting behaviors. In other words, 

4D “printing” enables encoding local anisotropy (Gladman et l., 2016) in multi-materials.   

In fact, before the initiation of the 4D printing idea, researchers were not usually trying to 

find a specific printing path by mathematics that could yield a predictable and desired shape-

shifting over time. 4D printing is a new manufacturing paradigm that combines smart materials, 

mathematics, and multi-material additive manufacturing, as we organized it in a systematic way 

in Chapter 3 (see the simplified version of Figure 3-1, in Figure 2-8). 
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Figure 2-8. The simplified version of Figure 3-1, illustrating 4D printing process. 

Remark 8. Scope and exceptions. Throughout this work, we did not make any specific 

assumption regarding the types of materials, stimuli, and length scales, for which these three laws 

are valid.  

However, three points should be mentioned about the scope of this study. First, these three 

laws aimed at “shape-shifting” behaviors that are currently the focus of studies in the 4D printing 

field. The evolutions of other properties such as color or thermal resistance have not been discussed 

in this study, although they are of interest. Nevertheless, the shape-shifting behavior can provide 

evolutions in other properties or functionality. As an example, the researchers (Athanasopoulos & 

Siakavellas, 2018; 2017) demonstrated smart patterned surfaces that can alter their geometry in a 

manner that leads to changes in their effective emissivity to eventually control the satellite 

temperature, without using controllers and energy supplies. Second, these laws are associated with 
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“multi-material” structures having active and passive materials. Third, simple linear 

expansion/contraction shape-shifting behaviors are excluded from this study, because in these 

cases, there is no curvature (they may be considered as zero-curvature, for which the radius of 

curvature is infinity). 

In science and engineering, laws are flexible and can have exceptions. We have reviewed 

more than 200 related published works, whether stimuli-responsive structures fabricated by 

printing or made by other manufacturing processes. However, we could not find any exception 

(counterexample) for our laws (considering the remarks and scope of this study). Nevertheless, we 

put the expression “almost all” in our three laws for possible exceptions in the future . By the way, 

our results are general and also important, as they target the 4th D of 4D multi-materials. Some of 

the exiting works, at the first glance, may seem counterexample for these three laws. However, by 

in-depth analysis and considering their fundamental physics, their compliance with these three 

laws will be comprehended. For example, the built-in (direct) 4D printing proposed by some 

researchers (Ding et al., 2017; van Manen et al., 2017) has the same “underlying physics” of 

conventional shape memory polymers. As we touched on earlier, to enable the SME of SMPs a 

mechanical force is required in addition to heat (the thermomechanical (thermo+mechanics) cycles 

of SMPs indicate this point, as well). In the built-in (direct) shape memory effect (Ding et al., 2017; 

van Manen et al., 2017), this mechanical force (that is used for programming) is provided during 

the printing, i.e., the printing and programming steps are integrated. A similar concept has been 

discussed in the introduction and has also been mentioned by some other studies (Mao et al., 2016; 

Zhang et al., 2016). The underlying physics of shape-shifting of these examples in multi-materia l 

structures is the same as “heat-responsive structure” of Figure 2-4 that has been discussed in 

Remark 6.  

Sometimes, a formula is derived and validated; however, it is valid and applicable only for 

a specific range of cases. The bi-exponential formula derived and validated here is a universal 

governing equation that can model and predict the 4th D of any 4D multi-material structure as seen 

in Figure 2-4, this is because we built its bases, comprehensively. We use the word “law”, because 

the related results are general and are also required for understanding, modeling, and predicting 

the shape-shifting behaviors of multi-material 4D printed structures. 

Remark 9. Closing. As a summary of the proposed three laws, Figure 2-9 is presented. 
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Figure 2-9. A summary of our laws. (the galactic shape of this figure has been inspired by a 

display designed by Rod Hill, showing advancements in Reconfigurable Manufacturing 

Systems, and installed on the wall of the ERC-RMS Center at the University of Michigan.) 

2.3 Conclusions 

Stimuli-responsive materials have demonstrated their promising applications. Any emerging 

application that is enabled by functional and stimuli-responsive materials can be elaborated in the 

field of 4D printing due to the unique attributes of the multi-material additive manufacturing 

process. Here, by a detailed, but systematic, qualitative and quantitative study, we generated a bi-

exponential formula that governs the shape-shifting behavior of almost all the multi-material 4D 

structures over time. We showed that two different types of time-constants are needed to capture 

the correct time-dependent behavior of 4D multi-materials. The purpose of the first and second 

laws was to understand the 4th D of 4D printed multi-material structures, and the purpose of the 

second and third laws was to model and predict the 4th D. The results of this study can serve as a 

guideline and general design principles for the future. They can also be incorporated into future 

software and hardware developments. We should note that pure experimental study might not be 

able to generate a general conclusion for the relationship between two quantities, as the 

experimental study may not cover all the possible regions of the relationship in various cases. 

1
st

 Law: Almost all the shape-shifting 
behaviors of the multi-material 4D 
printed structures originate from one 
fundamental phenomenon that is 
 relative expansion  between active and 
passive materials. 

2
nd

 Law: The shape-shifting behaviors 

of almost all the multi-material 4D 

printed structures have four different 

types of physics (4D printing Galaxy). 

3
rd

 Law: Time-dependent shape-shifting 

behavior of almost all the multi-material 

4D printed structures is governed by two 

different  types  of time-constants.

Extracted from the 2
nd

 lawIntroduced in the 3
rd

 law 

1 2

𝜅(𝑡) = 𝐾𝐼 (1− 𝑒
−𝑡
𝜏𝐼 )+𝐾𝐼𝐼 (1− 𝑒

−𝑡
𝜏𝐼𝐼 ) 
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Drawing a systematic conclusion is the strength of analytical study (validated by experimental data) 

as done here. 
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CHAPTER 3  

4D PRINTING AS A NEW PARADIGM FOR MANUFACTURING 

WITH MINIMUM ENERGY CONSUMPTION  

In this chapter, as a first attempt, we consider the energy aspect of 4D printing. By a 

thermodynamic analysis, we obtain the theoretical limit of energy consumption in 4D printing and 

prove that 4D printing can be the most energy-efficient manufacturing process. Before that, we 

clearly underpin 4D printing as a new manufacturing process and identify its unique attributes.3     

3.1 Introduction   

Manufacturing industries consume about one-third (31%) of the global energy and are also 

responsible for approximately one-third (36%) of CO2 emissions (Bunse et al., 2011; IEA, 2007a; 

ElMaraghy et al., 2017; Saygin et al., 2010). Energy availability and costs are the next issues in 

addition to environmental impacts (Rahimifard et al., 2010; Seow & Rahimifard, 2011). Therefore, 

energy efficiency has been the focus of many studies recently, and its eminence has been 

highlighted more than ever (Nilakantan et al., 2015; Liu et al., 2014).   

On the other hand, 4D printing provides a situation for using random (free) energy to make 

non-random structures (Tibbits, 2013). As discussed and illustrated in various examples in 

Appendix A, self-assembling components are first encoded and fabricated by the 4D printing 

process. Then, the components are self-assembled by applying free environmental energy like heat 

or water to get the desired complex shape. 

 

                                              
3 This chapter is based on our journal article (under review), entitled “4D printing as a new paradigm for manufacturing 

with minimum energy consumption”, by Farhang Momeni and Jun Ni. 
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In fact, rather than making the final complex desired structure thoroughly by 3D printing 

(and spending more electrical energy), simpler components can be made that later transform into 

the desired shape under free environmental energies (or stimuli). The initial self-assembling 

components can be made as separate components or an integrated structure (like a flat sheet that 

transforms into a cube), depending on a specific application. These goals are achieved by encoding 

smart (stimuli-responsive) materials in multi-material structures. Thus, 4D printing may 

revolutionize manufacturing and construction industries as said by Tibbits (2013). 

In the following, first, we underpin 4D printing as a new manufacturing process and identify 

its unique attributes. Then, we obtain the theoretical limit of minimum energy consumption in 

manufacturing that can be approached by 4D printing.  

3.2 4D printing as a new manufacturing process with unique attributes   

3D printing (additive manufacturing) is a well-known manufacturing process with its unique 

attributes. Now, 4D printing needs to be clearly defined and described as a new manufacturing 

process and its unique attributes should also be proved.  

By analyzing natural shape morphing materials and structures (Oliver et al., 2016), in 

addition to stimuli and stimuli-responsive materials, one other thing is observed that is encoded 

anisotropy (Oliver et al., 2016). To enable complicated shape-shifting behaviors required for 

accomplishing various tasks in natural structures such as the pinecone, nature programs a specific 

arrangement of active and passive elements (Oliver et al., 2016). This encoded anisotropy is 

required to direct the response into the desired direction (Oliver et al., 2016). Now, 4D printing is 

a good paradigm to meet this type of encoding in synthetic shape morphing structures. By 

considering the aforementioned point in natural shape morphing structures and based on the 4D 

printing concepts discussed in the first chapter, we underpin 4D printing as a new manufacturing 

process as shown in Figure 3-1, and identify attributes of 4D printing as in Figure 3-2. As we have 

seen in the first chapter, almost all applications enabled by 4D printing can be categorized into 

self-assembly, self-adaptability, and self-repair that we call them here as “3S of 4D printing 

applications”. 4D printing conserves the advantages of 3D printing and further adds new features. 

The “complexity-free geometry” attribute was introduced as the unique feature of structures made 

by 3D printing (Kruth et al., 1998; Mahajan et al., 2012; Jin et al., 2016; Costabile et al., 2017). 

Here, we introduce “complexity-free geometry change” as the unique attribute of 4D printed 
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structures. One of the key goals of 3D printing is movement from form to functionality (Lewis, 

2015). 4D printing goes further and provides multi-functionality. Furthermore, 4D printing 

possesses the material-saving characteristic arising from the general advantages of 3D printing and 

further adds the energy-saving trait (that is the focus of this study). 

Proposal for future: it should be highlighted that future “4D printers” should possess an 

integrated inverse mathematics (as a software/hardware added to the current multi-material 3D 

printers) to predict the shape-shifting behaviors for various (or categories of) materials and stimuli.  

The term “4D printer” has already been mentioned in various studies in the literature of 4D printing. 

However, “4D printer” is not simply achieved by extending a single-material 3D printer to a multi-

material 3D printer, or by combining several printing techniques (e.g., FDM and inkjet) in one 3D 

printer. “4D printer” should be able to analyze and predict the “4 th D”. To achieve a 4D printer, 

an “intelligent head” should be developed and added to the current printers (Figure 3-3). This head 

(as an integrated software/hardware added to the existing multi-material 3D printers) should be 

able to analyze and predict the 4th D. It should be able to predict the appropriate arrangement of 

active and passive materials (an encoded anisotropy) for the desired evolution after printing. As 

we elaborated in the first chapter, 4D printing mathematics is a link between four main factors: 

printing path (arrangement of active and passive voxels), desired shape after printing, stimulus 

properties, and materials properties. 4D printing mathematics is required to predict the shape-

shifting behavior after printing over time, prevent internal collisions, and decrease or even 

eliminate trial-and-error tests for getting the desired shape-shifting. Currently, 4D printing process 

utilizes the inverse mathematical modeling in an offline manner (passively), as seen in Figure 3-1. 

However, the inverse mathematical modeling can systematically be incorporated into current 3D 

printers to yield 4D printers that can analyze and predict the 4th D. Our general bi-exponentia l 

formula derived and validated in the second chapter can be used in future 4D printers. That 

equation is the starting point and the proposed two time-constants can be further extended to 

complicated cases.  
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Figure 3-1. 4D printing process. 
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Figure 3-2. “3S of 4D printing applications” and 4D printing attributes. 
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Figure 3-3. Future 4D printers. To achieve a 4D printer, an “intelligent head” (i.e., an 

integrated software/hardware that incorporates inverse mathematical problems of Figure 

3-1) should be developed and added to the current multi-material 3D printers. 

 

3.3 Energy aspect of 4D printing as a new process for self-assembly at manufacturing 

scale  

A manufacturing process, in the most general form, can be modeled as Figure 3-4 

(Gyftopoulos & Beretta, 2005; Gutowski et al., 2006; 2007; 2009; Branham et al., 2008). There 

are three types of energy transfer mechanisms between a system and its surroundings: heat, work, 

and mass flow (in fact, mass is energy and mass flow is present in open thermodynamic systems) 

(Cengel & Boles, 2015). The energy transfer between a system and its surroundings causes entropy 

transfer between them so that �̇�ℎ𝑒𝑎𝑡=
�̇�

𝑇
 , �̇�𝑤𝑜𝑟𝑘 = 0, and �̇�𝑚𝑎𝑠𝑠 = �̇�𝑠 (there is no entropy transfer 

by work) (Cengel & Boles, 2015). Energy is conserved (i.e., it cannot be destroyed or generated), 

while entropy can be generated (Cengel & Boles, 2015). The first and second laws of 
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thermodynamics deal with energy and entropy, respectively, and in the most general forms are 

(Cengel & Boles, 2015): 

{
Energy balance: 𝐸𝑖𝑛− 𝐸𝑜𝑢𝑡 = ∆𝐸𝑠𝑦𝑠  

rate form
⇒       �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 =

𝑑𝐸𝑠𝑦𝑠

𝑑𝑡
                           

Entropy balance: 𝑆𝑖𝑛 −𝑆𝑜𝑢𝑡+ 𝑆𝑔𝑒𝑛 = ∆𝑆𝑠𝑦𝑠 
rate form
⇒       �̇�𝑖𝑛− �̇�𝑜𝑢𝑡+ �̇�𝑔𝑒𝑛 =

𝑑𝑆𝑠𝑦𝑠

𝑑𝑡

. (3-1) 

By ignoring kinetic and potential energies (and other macroscopic forms of energy), the two 

thermodynamics laws are (Bejan, 2016): 

{
 
 

 
 Energy balance: �̇�𝑖𝑛− �̇�𝑜𝑢𝑡 + �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 +∑�̇�ℎ

𝑖𝑛

−∑�̇�ℎ

𝑜𝑢𝑡

=
𝑑𝐸𝑠𝑦𝑠

𝑑𝑡

Entropy balance: ∑
�̇�𝑖𝑛
𝑇𝐻

𝐻

−∑
�̇�𝑜𝑢𝑡
𝑇𝐿

𝐿

+∑�̇�𝑠

𝑖𝑛

−∑�̇�𝑠

𝑜𝑢𝑡

+ �̇�𝑔𝑒𝑛 =
𝑑𝑆𝑠𝑦𝑠

𝑑𝑡

. (3-2) 

Here, we adopted subscripts 𝐻 and 𝐿 to indicate high and low temperatures, respectively 

(Figure 3-4).   

By applying equation (3-2) to a general manufacturing process (Figure 3-4) operating under 

steady conditions (
𝑑

𝑑𝑡
= 0), we have 

{

Energy balance: �̇�𝑖𝑛− �̇�𝑜𝑢𝑡+ �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 + (�̇�ℎ)𝑖𝑛 − (�̇�ℎ)𝑜𝑢𝑡 = 0

Entropy balance: 
�̇�𝑖𝑛
𝑇𝐻
−
�̇�𝑜𝑢𝑡
𝑇𝐿

+ (�̇�𝑠)𝑖𝑛− (�̇�𝑠)𝑜𝑢𝑡 + �̇�𝑔𝑒𝑛 = 0           
. (3-3) 

By multiplying both sides of the entropy balance equation by 𝑇𝐿 and equating the left-hand 

sides of the energy balance and the resulting entropy balance equation, we arrive at 

�̇�𝑖𝑛 = �̇�𝑜𝑢𝑡 + (
𝑇𝐿
𝑇𝐻
−1) �̇�𝑖𝑛+ (�̇�ℎ)𝑜𝑢𝑡 − (�̇�ℎ)𝑖𝑛 −𝑇𝐿[(�̇�𝑠)𝑜𝑢𝑡 − (�̇�𝑠)𝑖𝑛]

+ 𝑇𝐿�̇�𝑔𝑒𝑛. 

(3-4) 

Equation (3-4) is a more general form of the required input work than that obtained in the 

literature (Branham et al., 2008; Gutowski et al., 2009), which further considers the output work. 

Up to here, we followed the same approach devised by Gutowski et al. (2006; 2007; 2009) and 

Branham et al. (2008) and further extended their input work equation.  

Now, the required input power (energy rate) would be 

�̇�𝑖𝑛 = �̇�𝑖𝑛 + �̇�𝑖𝑛 ⇒ 

�̇�𝑖𝑛 = �̇�𝑜𝑢𝑡 +
𝑇𝐿
𝑇𝐻
�̇�𝑖𝑛+ (�̇�ℎ)𝑜𝑢𝑡 − (�̇�ℎ)𝑖𝑛 − 𝑇𝐿[(�̇�𝑠)𝑜𝑢𝑡 − (�̇�𝑠)𝑖𝑛] + 𝑇𝐿�̇�𝑔𝑒𝑛. (3-5) 
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This equation can also be written in non-rate form as  

𝐸𝑖𝑛 = 𝑊𝑜𝑢𝑡 +
𝑇𝐿
𝑇𝐻
𝑄𝑖𝑛+ (𝑚ℎ)𝑜𝑢𝑡 − (𝑚ℎ)𝑖𝑛 − 𝑇𝐿[(𝑚𝑠)𝑜𝑢𝑡 − (𝑚𝑠)𝑖𝑛] + 𝑇𝐿𝑆𝑔𝑒𝑛. (3-6) 

Equation (3-6) is a general equation that gives the required input energy for any 

manufacturing process.   

Now, for 4D printing as a manufacturing process that enables self-assembly at 

manufacturing scale, this equation can be further analyzed and simplified. Let us consider the 

following key-points: 

Key-point 1. Self-assembly is a spontaneous and reversible process (Bergström, 2011; Steed 

et al., 2007; Frewer et al., 2011; Whitesides & Grzybowski, 2002; Bensaude-Vincent, 2006; 160. 

Whitesides & Boncheva, 2002).  For such a process, the central thermodynamic equation is 

∆𝐺𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 0 (Bergström, 2011; Cengel & Boles, 2015).  

Key-point 2. In a reversible process, the system is in thermodynamic equilibrium with its 

surroundings. One of the necessities of thermodynamic equilibrium is thermal equilibrium. When 

two bodies are in thermal equilibrium, their temperatures are the same. Therefore, during a 

reversible process, 𝑇𝑠𝑦𝑠 ≈ 𝑇𝑠𝑢𝑟𝑟 (Sears & Salinger, 1975; Zumdahl & DeCoste, 2016; Cengel & 

Boles, 2015) (“sys” and “surr” stand for system and surrounding, respectively).  

Key-point 3. For a reversible process, 𝑆𝑔𝑒𝑛 = 0 (Cengel & Boles, 2015) (“gen” stands for 

generation).  

By considering Key-point 2, for any manufacturing process in the reversible condition, 

equation (3-6) can be written as (we emphasize that from the first equation, the convention is 

∆⦾ =⦾𝑖𝑛 −⦾𝑜𝑢𝑡):  

𝐸𝑖𝑛 = 𝑊𝑜𝑢𝑡 +
𝑇𝐿
𝑇𝐻
𝑄𝑖𝑛 −∆𝐺 +𝑇𝐿𝑆𝑔𝑒𝑛, (3-7) 

where ∆𝐺 = ∆𝐻 − 𝑇∆𝑆 and 𝐺 is the Gibbs free energy. Then, by using key-points 1 and 3, 

we have the following equation for 4D printing that enables self-assembly at manufacturing scale: 

𝐸𝑖𝑛 = 𝑊𝑜𝑢𝑡 +
𝑇𝐿
𝑇𝐻
𝑄𝑖𝑛. (3-8) 

Equation (3-8) is the minimum theoretical limit of required input energy for 4D printing as 

a new process that enables self-assembly at manufacturing scale. In addition, generally, ∆𝐺 ≤ 0 

and 𝑆𝑔𝑒𝑛 ≥ 0 and thus both terms −∆𝐺  and 𝑇𝐿𝑆𝑔𝑒𝑛 are positive or zero (≥ 0). Therefore, by 
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comparing equations (3-7) and (3-8), it can be concluded that 4D printing can have the minimum 

energy consumption among various manufacturing processes.   

 

Figure 3-4. A manufacturing process in the most general thermodynamic model (this figure 

has been drawn based on the concepts in (Gyftopoulos & Beretta, 2005; Gutowski et al., 

2006; 2007; 2009; Branham et al., 2008). The energy and entropy flows have also been 

illustrated. 

 

3.4 Conclusions 

We derived the theoretical limit of minimum energy consumption in 4D printing as a 

manufacturing process and proved that 4D printing could be the most energy-efficient process 

among various manufacturing processes. This minimum energy consumption limit in 
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manufacturing obtained here can be approached by 4D printing process and future 4D printers. It 

does not necessarily mean that this limit is practically achieved in 4D printing processes. One of 

the main reasons is that, currently, in 4D printing, although the self-assembly process can be 

triggered by environmental free energy, fabrication of the initial self-assembling components 

requires electrical energy for running the printers. Nevertheless, future 4D printers may somehow 

incorporate environmental free energy for the whole manufacturing process (that is, fabrication of 

the self-assembling components and then self-assembly of them). Sadi Carnot worked on the 

energy efficiency of “heat engines” and the Carnot cycle gives the theoretical limit in heat engines .  

Here, we worked on the energy efficiency of “manufacturing processes” and obtained the 

theoretical limit of minimum energy consumption in manufacturing that can be approached by 4D 

printing. In this study, we have also clearly underpinned 4D printing as a new manufacturing 

process with unique attributes.
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CHAPTER 4  

PLANT LEAF-MIMETIC SMART WIND TURBINE BLADES BY 

4D PRINTING 

Scientists have reported that plant leaf veins grow into an optimized architecture not only to 

accomplish their biological and physiological functions but also to sustain the environmental loads  

(Steele, 2000; Somerville et al., 2004; Liu & Gong, 2011). Researchers showed that the wind blade 

mimicking the leaf architecture could always have relatively lower internal strain energy, better 

static strength and stiffness, smaller stress intensity, and higher fatigue life compared with the 

conventional blade structures (Liu et al., 2006; 2009; 2010; 2011). However, the plant leaf-mimetic 

wind blade has so far remained at the level of simulations. Here, a new paradigm for the design 

and fabrication of wind blades is demonstrated by 4D printing process, which combines several 

beneficial attributes in one blade. The proposed blade having the plant leaf structure can show 

reversible bend-twist coupling (BTC). It does not rely on conventional electromechanical systems 

such as sensors and actuators to determine proper deflection and change its shape. Additiona lly, 

the existing blades capable of BTC through passive methods have inherent flutter instability since 

they need to be flexible. The proposed blade may solve the flutter challenge. Lastly, this multi-

functional blade can lead to eco-friendly wind turbines. Wind-tunnel tests and performance 

analysis are performed on the proposed blade to demonstrate its applicability.4 

 

 

 

                                              
4 This chapter is based on our journal article published in Renewable Energy 130 (2019), entitled “Plant leaf-mimetic 
smart wind turbine blades by 4D printing”, by Farhang Momeni, Seyedali Sabzpoushan, Reza Valizadeh, Mohammad 

Reza Morad, Xun Liu, and Jun Ni. 
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4.1 Introduction 

Earth s̀ winds have enough capacity to become a primary resource for near-zero-emission 

electricity generation (Marvel et al., 2013). In 2016, MacDonald et al. (2016) mentioned that about 

80% reduction of CO2 emissions could be achieved from the US electricity sector, compared with 

1990 levels, by using the wind and solar energies with no penalty in the levelized cost. By assessing 

the wind power costs, whether long-term (Zhang et al., 2016) or short-term (Girard et al., 2013), 

it was drawn that the wind electricity had a promising future and market (Esteban et al., 2011). 

Wind resources are free and carbon-free (Zhang et al., 2016).  

 One of the apparent challenges in the wind energy exploitation is saturation. The power 

extraction from the wind increases linearly with increasing the number of wind turbines in the 

beginning but then approaches saturation (Jacobson & Archer, 2012). Several studies analyzed the 

limits that govern power extraction from wind kinetic energy (Marvel et al., 2013; Miller et al., 

2015; Jacobson & Archer, 2012; and Miller & Kleidon, 2016). In this regard, Marvel et al., 2013 

mentioned that the Earth’s winds have enough capacity to become a primary resource for 

electricity generation and wind power growth is limited by economic, political, environmental, 

and technical constraints, instead of global geophysical limits.    

Historically, wind turbines originate about 200 BC from Persia (Iran) and also the first 

practical windmills (named the Sistan windmills) were designed and utilized by Persians in the 7th 

century that were vertical axis (Tummala et al., 2016; Eriksson et al., 2008; Kaldellis & Zafirakis, 

2011; Musgrove, 2010 and Dodge, 2006). One of the first endeavors to produce electricity from 

the wind energy was made by Charles Brush in the US in 1888 (Eriksson et al., 2008).    

Many studies are pursued in the renewable energy field to improve the current wind turbine 

blades from various perspectives. To convey the whole relevant studies, we organize the important 

concepts as the following sub-sections by considering four main advancements in wind turbine 

blades, including adaptability, bend-twist coupling shape-shifting, flexibility and plant leaf-

mimetic wind blade. 

4.1.1 Adaptive wind turbine blades 

Two types of adaptability have been considered in wind turbine blades so far, bend-twist 

coupling (Lobitz et al., 1996; Veers et al., 1998; De Goeij et al., 1999; Lobitz et al., 2001; Griffin, 

2002; Veers & Lobitz, 2003; Bottasso et al., 2013; Nicholls-Lee et al., 2013; Fedorov & Berggreen, 
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2014; Hayat & Ha, 2015; Zhou et al., 2015; Hayat et al., 2016; Stäblein et al., 2017), and sweeping 

(Liebst, 1986; Zuteck, 2002; Larwood & Zutek, 2006; Ashwill et al., 2010; Verelst & Larsen, 2010; 

Hansen, 2011; Picot et al., 2011; Larwood et al., 2014; Pavese et al., 2017). The adaptive wind 

turbine blade can be defined as a blade capable of shape-shifting between the original blade shape 

and the final shape. In this regard, the bend-twist coupling and sweeping are two common 

strategies that their final effect would be similar. Bend-twist coupling (BTC) has one flap-wise 

(span-wise) out-of-plane bending coupled with one chord-wise out-of-plane twisting (Figure 

4-1(a)). Sweeping shape-shifting is in the direction of rotation, edge-wise and in-plane (Riziotis et 

al., 2010) as shown in Figure 4-1(b). Both types of these adaptabilities have been proven to be 

effective in load reductions on the wind turbine blades and improved energy gain (Lobitz et al., 

1996; Veers et al., 1998; De Goeij et al., 1999; Lobitz et al., 2001; Griffin, 2002; Veers & Lobitz, 

2003; Bottasso et al., 2013; Nicholls-Lee et al., 2013; Fedorov & Berggreen, 2014; Hayat & Ha, 

2015; Zhou et al., 2015; Hayat et al., 2016; Stäblein et al., 2017; Liebst, 1986; Zuteck, 2002; 

Larwood & Zutek, 2006; Ashwill et al., 2010; Verelst & Larsen, 2010; Hansen, 2011; Picot et al., 

2011; Larwood et al., 2014; Pavese et al., 2017).  

 

Figure 4-1. Adaptability in wind turbine blades. (a) Bend-twist coupling adaptability 

(Hayat et al., 2016) and (b) Sweeping adaptability (Sandia lab presentations, 2012). 
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4.1.2 Bend-twist coupling in wind turbine blades  

The bend-twist coupling (BTC) was proven to be effective in fatigue and extreme loads 

alleviation and energy conversion improvement (Lobitz et al., 1996; Veers et al., 1998; De Goeij 

et al., 1999; Lobitz et al., 2001; Griffin, 2002; Veers & Lobitz, 2003; Bottasso et al., 2013; 

Nicholls-Lee et al., 2013; Fedorov & Berggreen, 2014; Hayat & Ha, 2015; Zhou et al., 2015; Hayat 

et al., 2016; Stäblein et al., 2017). Bend-twist coupling is also known as aero-elastic tailoring 

(Veers et al., 1998; Veers & Lobitz, 2003 and Hayat & Ha, 2015). The BTC is currently achieved 

in active and passive manners. In the active manner, controllers and electromechanical systems are 

required to change the blade shape. In the passive manner, anisotropic mechanical properties of a 

composite structure is utilized such that during operations (under wind loads), the wind blades 

display the BTC shape-shifting. The passive way has attracted more interests, because it can be 

more effective and economical and does not need sensors, actuators, and moving parts that may 

fail (Lobitz et al., 1996; Veers et al., 1998; De Goeij et al., 1999; Lobitz et al., 2001; Griffin, 2002; 

Veers & Lobitz, 2003; Bottasso et al., 2013; Nicholls-Lee et al., 2013; Fedorov & Berggreen, 2014; 

Hayat & Ha, 2015; Zhou et al., 2015; Hayat et al., 2016; Stäblein et al., 2017). Thus, most of the 

current works are focused on BTC through the passive manner. However, one related issue is the 

flutter instability. This is because this type of blade needs to be flexible to achieve the BTC through 

the passive manner under the wind loads. Higher flexibility leads to higher risk of flutter instability 

(Hayat et al., 2016; Bir & Jonkman, 2007; Politakis et al., 2008 and Cognet et al., 2017). 

4.1.3 Flexible wind turbine blades  

Human being can always be inspired and benefit from nature and living things, even from 

those that are apparently useless and harmful. Unexpected changes in wind turbines power have 

been reported in California wind farms, in which the power declined to half after 26 July at the 

same speeds compared with the days before 11 July (Corten & Veldkamp, 2001). The reason was 

found to be contamination and roughness of the leading edge of blades caused by insects, resulting 

in flow separation increase, sooner stall and lift lost. However, the insect wing s̀ flexibility has 

been inspired recently to increase the power generation of the wind turbine by expanding the 

desired working zone, which is a narrow region in rigid blades (Shultz, 2017 and Cognet et al., 

2017).  
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Flexible wind blades are elastic and can be deformed in the direction of the wind. This 

deformation falls into two categories, pre-bending deformation (Sartori et al., 2016; Bazilevs et al., 

2012; Riziotis et al., 2010) and pitch- angle change (Bongers et al., 1991; Hoogedoorn et al., 2010; 

Krawczyk et al., 2013; MacPhee & Beyene, 2011; MacPhee et al., 2015; MacPhee & Beyene, 

2016; Su & Song, 2015; Cognet et al., 2017). Pre-bend deformation is in the direction of the wind, 

flap-wise (span-wise) and out-of-plane (Riziotis et al., 2010) as shown in Figure 4-2. Pitch-angle 

change is in the direction of the wind, chord-wise, and out-of-plane (Cognet et al., 2017) as 

illustrated in Figure 4-3. Moreover, the pitch- angle change can involve blade airfoil camber 

change (Figure 4-3(a)) or can keep the camber constant and only adjust the pitch angle (Figure 

4-3(b)).     

Pre-bending deformation is one of the solutions for the tower clearance problem in wind 

turbine blades to ensure enough distance between the blades and the tower during operations 

(Bazilevs et al., 2012). Moreover, the pre-bending can reduce the blade loads during operations 

and improve aero-structural efficiency (Riziotis et al., 2010; Sartori et al., 2016).  

Pitch-angle change (whether with constant or adjustable airfoil camber) is one of the 

solutions to increase the efficient working zone (envelope) of wind turbines (Krawczyk et al., 2013; 

Hoogedoorn et al., 2010; Schubel & Crossley, 2012 and Cognet et al., 2017). This type of 

flexibility can also delay the stall compared with the rigid counterparts (Hoogedoorn et al., 2010 

and MacPhee & Beyene, 2011).  

In the literature, the difference between the adaptive and flexible wind turbine blades was 

ambiguous, and they were used interchangeably sometimes. These two phrases are distinguished 

in this study. An adaptive blade has the capability to change its shape from shape 1 (the original 

shape) to shape 2 (bend-twist coupled or swept form). However, both the original and final shapes 

can be rigid or flexible. These will be further discussed in section 4.3.1.4.   
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Figure 4-2. Pre-bending deformation in flexible wind turbine blades to ensure tower 

clearance (Bazilevs et al., 2012). 

  
Figure 4-3. Pitch-angle change in flexible wind turbine blades . (a) airfoil with variable 

camber (Hoogedoorn et al., 2010). (b) airfoil with constant fixed camber (Cognet et al., 

2017). 
 

4.1.4 Plant leaf-mimetic wind turbine blades 

Plant leaves grow in a manner not only to perform their physiological functions but also to 

accommodate and adapt to the environmental stresses (Steele, 2000; Somerville et al., 2004 and 

Liu & Gong, 2011). Veins of plant leaves grow into a steady architecture with global optimal 
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performance, and this self-optimization capability arises from their genes (Li et al., 2013). There 

are several similarities between the wind turbine blade and plant leaf. Both of them have similar 

working environment; both are cantilever (fixed-free beam) structures and both need to sustain the 

environmental loads (Liu & Gong, 2011). Inspired by natural optimum laws of the plant leaf 

growth, bionic design mimicking the plant leaf structure can be applied to wind turbine blades (Liu 

et al., 2006; 2009; 2010; 2011). Liu et al. (2006; 2009; 2010; 2011) showed that the blade structures 

based on the plant leaf network could always have relatively lower internal strain energy, better 

static strength and stiffness, smaller stress intensity, and higher fatigue life (Liu et al., 2006; 2009; 

2010; 2011).    

However, most of the studies in wind turbine blades inspired by the plant leaf remained at 

the level of simulations such as geometry optimization (Figure 4-4). One reason is that the vein 

network has a complex and subtle geometry and its fabrication can hardly be achieved by the 

conventional manufacturing processes. Especially, more difficulties are raised in traditional 

manufacturing processes with fabrication of complex geometries by using smart (active) materials 

such as shape memory polymers (Choong et al., 2017). This will be resolved in this study by 4D 

printing process.   

  

 
Figure 4-4. The simulations such as geometry optimizations performed by Liu et al. (2006; 

2009; 2010; 2011) , demonstrated that wind blades based on the plant leaf structure had 

better mechanical and structural properties such as the stiffness, static strength, and 

fatigue life compared to the conventional structures (Liu et al., 2006; 2009; 2010; 2011). 
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By analyzing the related literature described so far, various shape-shifting behaviors in wind 

turbine blades are organized and summarized in Figure 4-5.  

 

Figure 4-5. Various shape-shifting behaviors in wind turbine blades, and their advantages. 

The 3D printing presents unique characteristics regarding geometry complexity and specific  

functionality in renewable energy applications (Ruiz-Morales, 2017). 4D printing conserves the 

attributes of 3D printing and adds the fourth dimension to provide shape, property (other than 

shape), or functionality evolution over “time” (Momeni et al. 2017; 2018). In this study, we explore 

the 4D printing in the wind energy field and demonstrate its advantages. 

The smart material used in this study is Polylactic acid (PLA), which is a thermo-responsive, 

biodegradable shape memory polymer. The shape-shifting dimension is 2D flat blade to 3D 

deformed blade, and the shape-shifting type is bend-twist coupling. 

4.2 Mathematical modeling of the proposed blade 

4D printing relies on a desired arrangement of active (smart) and passive (non-smart) 

materials in space such that the mismatch-driven forces enable the required dynamics of the 

structure. The arrangement is calculated from mathematical modeling. Based on the properties of 

materials and stimuli, the printing paths will determine the final desired shape, which is referred 

to as a forward problem. In contrary, if the final desired shape is known, while the printing path is 

unknown, it is called an inverse problem (Gladman et al., 2016 and Momeni et al., 2017).  
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In this study, a mathematical model is developed to establish the relationship between the 

printing paths and the final desired bend-twist coupling shape. Here, the bending of the blade is 

from the global bending associated with the main vein as well as the local bending of the lateral 

veins. Overall twist of the blade originates from the local bending of each lateral vein. After the 

bend-twist coupling shape-shifting, the deformed blade would have one bend angle (β) and one 

twist angle (α) as shown in Figure 4-6. Here, PLA is the smart material, and a membrane of paper 

is the passive material.  

                                        

 

Figure 4-6. Schematic illustrations of the desired bend-twist coupling in the proposed 4D 

printed wind turbine blade based on the leaf structure: (a) Original flat blade, (b) Desired 

deformed blade , and (c) bend angle (β) and twist angle (α) in the deformed blade.  

 
Since both the bending and twisting of the blade are from the bending of the main and lateral 

veins, the mathematical model can be developed by treating the main and lateral veins as composite 

bending beams, which consist of one layer of PLA and one membrane layer of paper.  

In Chapter 2, we found that when the final shape was achieved, both the Timoshenko model 

and our formula would converge and provide similar analyses for time-independent behaviors 

(such as the effect of thickness on curvature). Here, we are interested in the final shape (rather than 

instantaneous shapes). In this regard, Zhang et al., 2016 had already worked on the Timoshenko 
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model, simplified it, and provided the values of parameters for the PLA/paper composite. As 

described by Timoshenko and Gere (1973) and Zhang et al., (2016), after heating this composite 

structure to a certain temperature greater than the glass transition temperature, 𝑇𝑔 of the smart layer, 

and then reaching equilibrium at room temperature, about 25 ºC, the final bend angle would be: 

𝜃(𝑥, 𝑡′) = −6𝛼𝑒𝑓𝑓 �̇�𝑡
′(1− 𝜅′)

𝑥

ℎ𝑚

𝐸𝑝𝑚
′ ℎ𝑝𝑚𝑏𝑝𝑚(ℎ𝑝𝑚+1)

(𝐸𝑝𝑚
′ ℎ𝑝𝑚+ 1)(𝐸𝑝𝑚

′ 𝑏𝑝𝑚ℎ𝑝𝑚
3+1)

 (4-1) 

where �̇� is the heating rate; ℎ𝑝𝑚 = ℎ𝑝/ℎ𝑚, and ℎ𝑝 and ℎ𝑚 are the thickness of the printed 

polymer and paper, respectively;  𝑏𝑝𝑚 = 𝑏𝑝/𝑏𝑚, and 𝑏𝑝 and 𝑏𝑚 are the widths of the printed 

polymer and paper, respectively; 𝐸𝑝𝑚
′ = 𝐸𝑝𝑒/𝐸𝑚, where 𝐸𝑝𝑒 is the elastic modulus of the polymer 

above the 𝑇𝑔, and 𝐸𝑚 is the elastic modulus of the paper. 𝑥 ∈ [0, 𝑙], where 𝑙 is the composite strip 

length. 𝑡′ = 𝑡 − 𝑡0, where 𝑡 is the total time and 𝑡0 is the amount of time between the initial 

temperature and the glass transition temperature. 𝜅′ = 𝛼𝑚/𝛼𝑒𝑓𝑓, where 𝛼𝑚 is the coefficient of 

thermal expansion (CTE) of the paper. The equivalent linear CTE (𝛼𝑒𝑓𝑓) for the printed composite 

is calculated based on the equation below (Zhang et al., 2015; 2016), which is derived from the 

Kelvin–Voigt model that consists of a spring and a dashpot arranged in parallel:  

𝛼𝑒𝑓𝑓 = −
𝜀𝑟

�̇�𝑡′
(1 − 𝑒

−
𝑡′

𝜏𝑓) (4-2) 

where 𝜀𝑟 is the stored internal strain and 𝜏𝑓 is the relaxation time, both of which are constants 

related to the printed PLA/paper composite and 𝜀𝑟 is also affected by the printing speed (Zhang et 

al., 2015; 2016). When the final shape is the goal, 𝑡′ will be large and the exponential term will 

vanish. Here, our goal is the final shape and eventually, we consider 𝑡′ as a large number. 

The above two equations are employed to develop mathematical model of the vein network 

structure in this study. For a plant leaf-mimetic blade consisting of N lateral veins and 1 main vein, 

the length (l), width (b), and thickness (h) of each vein, as well as the angle between the main vein 

and lateral veins (γ) are illustrated in Figure 4-7. 
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Figure 4-7. Illustration of the veins dimensions and the angle between the main and lateral 

veins. 

 

Based on this figure, the required printing paths for the desired blade bending and twist 

angles can be determined as the following:  

𝜃𝑖(𝑙𝑖 , 𝑡
′) = −6𝛼𝑒𝑓𝑓�̇�𝑡

′(1− 𝜅′)
𝑙 𝑖
ℎ𝑚,𝑖

𝐸𝑝𝑚
′ ℎ𝑝𝑚,𝑖𝑏𝑝𝑚,𝑖(ℎ𝑝𝑚,𝑖 +1)

(𝐸𝑝𝑚
′ ℎ𝑝𝑚,𝑖 +1)(𝐸𝑝𝑚

′ 𝑏𝑝𝑚,𝑖ℎ𝑝𝑚,𝑖
3+ 1)

 (4-3) 

Equation (4-3) expresses the relationship between the final desired shape (𝜃𝑖 ), printing paths 

(𝑙 𝑖, ℎ𝑖 , 𝑏𝑖), materials properties (𝐸𝑖 , 𝛼𝑖) and stimulus property(�̇�). Number 𝑖 = 0 is the main vein 

and 1 ≤ 𝑖 ≤ 𝑁 denote the lateral veins, where 𝑖 = 1 is the lateral vein nearest to the root and 𝑖 =

𝑁 corresponds to the nearest one to the tip. 𝜃𝑖 (𝑙 𝑖 ,𝑡
′) is the bending angle of the tip for each of the 

lateral or main veins.  

The bending angle (𝛽) in the final deformed blade can be approximated by the following 

equation:   

𝛽 = 𝜃0(𝑙0,𝑡
′) + cos(𝛾) × (𝜃1(𝑙1, 𝑡

′) + 𝜃2(𝑙2, 𝑡
′) +⋯+𝜃𝑁(𝑙𝑁,𝑡

′)) (4-4) 

On the right side, the first term is the contribution of the bending angle from the main vein 

and the second term is the contributions from the lateral veins. For the blade twist angle (α), similar 
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correlation can be obtained considering the individual 𝜃𝑖 (𝑙 𝑖, 𝑡
′) . However, the inverse 

mathematical modeling for determining the printing path based on the desired twist angle is more 

complicated. Instead, forward appoach is employed for the twist angle. Three angles of 

45°, 65°, and 90°  between the main and lateral veins are experimentally (in the next section)  

investigated to obtain a smooth and incremental twist from root to tip.    

In our structure, the smart material is PLA, and the passive material is a paper membrane. 

According to Zhang et al. (2015; 2016), 𝜀𝑟 = 0.0155 (assuming that the increase in printing speed 

from 30 mm/s to 50 mm/s has an insignificant effect on 𝜀𝑟), 𝜏𝑓 = 1.89 𝑠, 𝐸𝑚 = 5 × 10
9 (𝑃𝑎), 

𝛼𝑚 = 0 (
1

𝐾
). The elastic modulus of the printed PLA at different temperatures is measured and 

the value well above 𝑇𝑔 is around 𝐸𝑝𝑒 = 2 × 10
8 (𝑃𝑎). The measurement of this critical material 

parameter is elaborated in the section of DMA test. For the final bending angle (rather than 

instantaneous bending angles), 𝑡′ is generally in the range of hours and much larger compared with 

the relaxation time 𝜏𝑓, therefore 1 − 𝑒
−
𝑡′

𝜏𝑓 ≅ 1. Consequently, the heating rate will be cancelled 

out. Based on these values and the discussions above, printing paths of several plant leaf-mimetic 

structures are designed and listed in Table 4-1. The experiments were carried out with three angles 

45°, 65°, and 90° between the main vein and the lateral veins. For each angle, two sets of the  

lateral veins widths are investigated to compare the shape-shifting behavior between the constant-

width and varying-width lateral veins. Accordingly, there are a total of six conditions for one 

specific thickness. These six conditions were further studied with three levels of veins thicknesses 

for the analysis of the blade flexibility. 
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Table 4-1. Designed veins dimensions and the angle between the main and lateral veins for 

printing. 

Veins 

lengths 

Value 

(mm) 

Veins 

widths 

Value  

(mm) 

Veins 

thicknesses 

Value 

(mm) 

𝑙0,𝑙𝑒𝑎𝑑𝑖𝑛𝑔 100 𝑏0,𝑡𝑖𝑝 5 
ℎ0 0.2, 0.4, 1 

𝑙0,𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 100.5 𝑏0,𝑟𝑜𝑜𝑡 15 

𝑙1 29 𝑏1 6 (in V.W.), 2 (in C.W.) * ℎ1 0.2, 0.4, 1 

𝑙2 28 𝑏2 5 (in V.W.), 2 (in C.W.) ℎ2 0.2, 0.4, 1 

𝑙3 27 𝑏3 4.2 (in V.W.), 2 (in C.W.) ℎ3 0.2, 0.4, 1 

𝑙4 26 𝑏4 3.4 (in V.W.), 2 (in C.W.) ℎ4 0.2, 0.4, 1 

𝑙5 25 𝑏5 2.8 (in V.W.), 2 (in C.W.) ℎ5 0.2, 0.4, 1 

𝑙6 24 𝑏6 2.2 (in V.W.), 2 (in C.W.) ℎ6 0.2, 0.4, 1 

𝑙7 23 𝑏7 1.8 (in V.W.), 2 (in C.W.) ℎ7 0.2, 0.4, 1 

𝑙8 22 𝑏8 1.4 (in V.W.), 2 (in C.W.) ℎ8 0.2, 0.4, 1 

𝑙9 21 𝑏9 1.2 (in V.W.), 2 (in C.W.) ℎ9 0.2, 0.4, 1 

𝑙10 20 𝑏10 1 (in V.W.), 2 (in C.W.) ℎ10 0.2, 0.4, 1 

Angle Value (degrees) 

γ 45°, 65°, 90° 

*V.W. stands for varying-width lateral veins and C.W. stands for constant-width lateral veins. 
 

To demonstrate the capability of the mathematical modeling in the prediction of the blade 

bending angle (β), one specific case of Table 4-1 shown in Figure 4-12 is analyzed in detail. The 

geometric specifications of this case are listed in Table 4-2. Based on equation (4-4), the calculated 

bending angle is 16°. The actual bending angle of the deformed blade is determined based on 

Figure 4-6 (c), and the measured value is 15 ± 2°, which shows a good agreement with the 

mathematical modeling result.   
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Table 4-2. Dimensions of PLA/paper composite in the blade structure demonstrated in 

Figure 4-12. 

Description Length Value 

(mm) 

Width Value 

(mm) 

Thickness Value (mm) 

Main vein 𝑙0
† 100.3± 0.1 𝑏0

† 10 ± 0.1 ℎ0 1 ± 0.1 

Lateral vein 1 

(closest one to the root) 
𝑙1 29 ± 0.1 𝑏1 6 ± 0.1 ℎ1 1 ± 0.1 

Lateral vein 2 𝑙2 28 ± 0.1 𝑏2 5 ± 0.1 ℎ2 1 ± 0.1 

Lateral vein 3 𝑙3 27 ± 0.1 𝑏3 4.2 ± 0.1 ℎ3 1 ± 0.1 

Lateral vein 4 𝑙4 26 ± 0.1 𝑏4 3.4 ± 0.1 ℎ4 1 ± 0.1 

Lateral vein 5 𝑙5 25 ± 0.1 𝑏5 2.8 ± 0.1 ℎ5 1 ± 0.1 

Lateral vein 6 𝑙6 24 ± 0.1 𝑏6 2.2 ± 0.1 ℎ6 1 ± 0.1 

Lateral vein 7 𝑙7 23 ± 0.1 𝑏7 1.8 ± 0.1 ℎ7 1 ± 0.1 

Lateral vein 8 𝑙8 22 ± 0.1 𝑏8 1.4 ± 0.1 ℎ8 1 ± 0.1 

Lateral vein 9 𝑙9 21 ± 0.1 𝑏9 1.2 ± 0.1 ℎ9 1 ± 0.1 

Lateral vein 10 

(closest one to the tip) 
𝑙10 20 ± 0.1 𝑏10 1 ± 0.1 ℎ10 1 ± 0.1 

Paper membrane 𝑙𝑚 = 𝑙𝑖 𝑏𝑚 = 𝑏𝑖 ℎ𝑚 0.105± 0.001 * 

Angle  Value (degrees) 

𝜸 45° 

† 𝑙0 was calculated as the average of 𝑙0,𝑙𝑒𝑎𝑑𝑖𝑛𝑔 and 𝑙0,𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 and 𝑏0 was accounted as the average 

of 𝑏0,𝑡𝑖𝑝 and 𝑏0,𝑟𝑜𝑜𝑡 .  

 
* Measured by a Mitutoyo micrometer with 0.001 mm resolution and ±1 μm accuracy.  

 

Here, we were interested in the final shape and thus we had the simplified (linear) equation. 

Now, we want to utilize our biexponential equation to analyze the time-dependent (instantaneous) 

behaviors of the same materials used here (a bilayer of PLA/paper). The purpose is to generate the 

time-dependent behavior of this bilayer by our own biexponential equation in a step-by-step 

example and then to see whether the generated behavior is similar to the actual time-dependent 

behavior of this bilayer in practice or not. For the actual behavior, we use the data from Zhang et 

al. (2016). They used PLA strips with the size of 60 × 0.8 × 0.12mm (length × width × thickness) 

(based on which the values of 𝑎1, 𝑎2, 𝐼1, 𝐼2, and ℎ of our formula are identified) and a heat plate 

with a temperature of 90 ºC. 

The physics of this bilayer structure lies in category 2 of our second law (Thermal 

Expansion/Contraction). Thus, 𝜏𝐼𝐼 = (𝜌𝑐𝑝𝑉)𝑅  and 𝐻𝐼𝐼 = 𝛼[𝑇2 − 𝑇1(𝑡 = 0) + 𝑅(�̇�1 − 𝑄1)] , 
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where 𝜌 = 1240 
Kg

m3
 (density of PLA is well-known), 𝑐𝑝 = 1800

J

Kg.K
 (heat capacity of PLA is 

well-known). 𝑉 = 60 mm ×  0.8 mm ×  0.12 mm = 5.76× 10−9 m3 . The thermal resistance 

of a rectangular slab is 𝑅 = 𝐿/𝐴𝑘, where 𝐿 is the length of the slab in the direction of heat flow 

(and thus 𝐿 = 0.12 × 10−3 m), 𝐴 is the area of the slab perpendicular to the direction of heat flow 

(and thus 𝐴 = 60 ×  0.8 = 48 × 10−6 m2), and 𝑘 is thermal conductivity (𝑘 = 0.13
𝑊

𝑚·𝐾
 that is 

well-known for PLA). Therefore, 𝜏𝐼𝐼 = 0.25 (s). The quantities �̇�1 and 𝑄1 can be assumed zero in 

heat transfer, 𝑇1(𝑡 = 0) = 25 ºC, 𝑇2 =  90 ºC, and 𝛼 = 41 × 10−6  (
1

𝐾
)  (this is the thermal 

expansion coefficient of the active layer, PLA, which is well-known. The passive layer has 𝛼𝑚 =

0 (
1

𝐾
) as mentioned earlier, which is consistent with the fact that the passive layer is not usually 

responsive under stimuli). Therefore, 𝐻𝐼𝐼 = 2.67 × 10
−3  (unitless). 𝐸2 = 2 × 10

8 (𝑃𝑎) 

(measured in our DMA test as discussed earlier). 𝐸1 = 5× 10
9 (𝑃𝑎) (this is Young s̀ modulus of 

the paper as noted earlier).  

To find 𝐻𝐼 and 𝜏𝐼, we need the following discussion. PLA is a typical viscoelastic material.  

For such a material, there is a famous model in solid mechanics as 𝐸′′ =
𝐸𝜏𝜔

𝜏2𝜔2+1
, where 𝜏 =

𝜂

𝐸
, 𝜂 

is viscosity, 𝐸′′ is loss modulus, 𝐸 (or equivalently written as 𝐸′) is Young s̀ (storage) modulus, 

𝜔 = 2𝜋𝑓 and 𝑓 is the frequency in DMA test. In a typical single-material shape memory polymer, 

to enable the shape memory effect, the required force is applied externally. However, in a multi-

material having active and passive elements, the force is generated internally between the active 

and passive materials. In this bilayer, we can assume that the passive layer (paper) has the role of 

a mechanism that applies the required force to the active layer (PLA). Therefore, the above 

equation that is used for a single-material shape memory polymer, can be used for the PLA in the 

PLA/paper bilayer in this example. Thus, 𝜏𝐼 in our formula would be equivalent to 𝜏 in the above 

formula. To find 𝜏𝐼, we can do the shear test by DMA machine to find the shear storage and loss 

moduli (𝐺′ , 𝐺′′) and then viscosity, or we can re-write the above equation as 𝜏𝐼
2 − 

𝐸

2𝜋𝑓𝐸′′
𝜏𝐼 +

1

𝜔2
= 0 and solve it by knowing the involved parameters. The value of storage modulus has been 

measured in our DMA test (Figure 4-31) as discussed earlier in the mathematical modeling. The 

value of loss modulus (𝐸′′) has also been measured in DMA test. It is illustrated here in Figure 

4-8. To find 𝜏𝐼 from the equation above, we need the ratio of storage and loss modulus. The value 
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of 𝑓 from the DMA section is 1 Hz. Therefore, the value of 𝜏𝐼 is obtained. Finally, the value of 𝐻𝐼 

has already been measured in the literature (Zhang et al., 2015; 2016) for this example. Now, the 

values of all parameters in our biexponential equation are present (Table 4-3).  

The generated behavior is seen in Figure 4-9. This behavior impressively has the same trend 

of real behavior reported in the literature (Zhang et al., 2016). However, some gaps happen 

between theory and practice. One immediate reason is that we obtained the result for one strip, 

while the real behavior is related to multiple strips (the number of strips is not clear in the related 

study). The coupling effect between several strips is also the next important reason for the 

difference. By the coupling effect, we mean that the behavior of a PLA/paper strip with width 𝑤 

is not similar to the behavior of 𝑛 PLA strips each of which having a width of 𝑤/𝑛 printed on 

paper with some spacing between PLA strips. Nevertheless, the general trend is nicely generated. 

If we just change the value of one of 𝜏𝐼, 𝜏𝐼𝐼 , 𝐻𝐼, 𝐻𝐼𝐼, the trend is totally corrupted as seen in Figure 

4-10. This implies that this step-by-step analysis of our formula led us to the appropriate values of 

parameters. Any deviation from these values, cannot lead to the correct behavior (even through 

the biexponential formula).   

It should be noted that, in chapter 2, we presented three laws. Laws are different from 

theories. Law is the starting point and reveals something that exists. By further analysis, laws can 

lead to theories. Theories are much more complicated expressions. The step-by-step example 

analyzed here can show the way for future theories in 4D printing that can be built based on the 

proposed laws. These laws capture and show the big picture and future theories can delve into 

more details to find some models for 𝜏𝐼, 𝜏𝐼𝐼 , 𝐻𝐼, 𝐻𝐼𝐼 of our biexponential formula.  
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Table 4-3. Values of parameters of our biexponential formula for a bilayer of PLA/paper 

composite . Number 1 indicates the passive layer (paper) and number 2 indicates the active 

layer (PLA). 

Parameter Value  (Unit) 

𝑬𝟏 5× 109 (𝑃𝑎) 

𝑬𝟐 2 × 108 (𝑃𝑎) 

𝒂𝟏 0.105 (𝑚𝑚) 

𝒂𝟐 0.12 (𝑚𝑚) 

𝑰𝟏 7.72× 10−5  (𝑚𝑚4) 

𝑰𝟐 1.15× 10−4 (𝑚𝑚4) 

𝒉 0.225 (𝑚𝑚) 

 𝑯𝑰 0.0155  (unitless) 

𝑯𝑰𝑰 2.67 × 10−3 (unitless) 

𝝉𝑰 0.6 (s) 

𝝉𝑰𝑰 0.25 (s) 

  

 

Figure 4-8. The behavior of the  loss modulus of the PLA from DMA test (with the same 

conditions considered for storage modulus in Figure 4-31). 
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Figure 4-9. The generated behavior of our biexponential formula for one strip and the real 

behavior for multiple strips from Zhang et al. (2016). The exact number of strips was not 

given in that experimental study (Zhang et al., 2016). 
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Figure 4-10. Any deviation from the generated parameters in the step-by-step example, 

cannot give the correct behavior. The experimental data are from Zhang et al. (2016). 
 

4.3 Fabrications and shape-shifting demonstrations 

The wind turbine blade structures in Table 4-1 are fabricated by printing PLA filaments onto 

a piece of paper, which resembles the structure of plant leaves. The CAD models were transformed 

from STL format to G-code by Cura software and imported to the printer (LulzBot, TAZ 5). The 

printer was run under the following condition: printing resolution was set to 100 microns; nozzle 

temperature was adjusted to 205 ℃; bed temperature was considered as 60 ℃, and printing speed 

was tuned to 50 mm/s (Figure 4-11). PLA is a shape memory polymer having a 𝑇𝑔 (glass transition 
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temperature) of 60 ºC. After printing process, each structure was heated to 110 ºC and maintained 

at that temperature for 10 min to reach the equilibrium. It was then cooled down to the room 

temperature in the atmospheric condition, and the desired bend-twist coupling shape-shifting was 

achieved.       

 

Figure 4-11. Printer TAZ 5 test setup for printing the plant-leaf mimetic architectures. 

 

4.3.1 Results and discussions 

Here, we have six items. In the first four items, we analyze the technical advantages of the 

proposed wind blade. In item 5, we discuss eco-friendly attributes of the proposed blade. In item 

6, we discuss the unique advantages of the proposed blade compared to other blades capable of 

BTC through passive methods. 

4.3.1.1 Plant leaf-mimetic structure 

As shown in Figure 4-11, the proposed structure mimics the pattern of the plant leaf. The 

plant leaf-mimetic structure proposed in the literature remained mainly at the level of simulations 

including geometry optimization. Its fabrication was challenging.  

This is because, first, the vein network has a complex and subtle geometry and its fabrication 

can hardly be achieved by the conventional manufacturing processes. In addition to the first-level 

veins, there are second- and third-level veins (smaller branches) that support structural and 

mechanical properties and can be explored in the future. Second, more difficulties are raised in 

traditional manufacturing processes with the fabrication of complex geometries by using smart 
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materials such as shape memory polymers (Choong et al., 2017). This is resolved in this study by 

4D printing process that is the convergence of additive manufacturing and smart materials (as well 

as mathematics). This study demonstrates the plant leaf-mimetic wind blade structure in practice. 

In addition, it has simultaneously other advantageous attributes. This feature of the proposed blade 

is in favor of structure durability as discussed in the introduction.    

4.3.1.2 Reversible bend-twist coupling shape-shifting 

The architecture with an angle of 45° between the main and lateral veins had more twisting 

in the tip than in the root, which was desirable. The angle of 90° had more twisting in the root than 

the tip for both constant-width and varying-width cases, which was unsuitable. The angle of 65° 

had similar twisting from tip to root for both constant-width and varying-width cases, which was 

also unsuitable. Based on simulations, Liu et al. (2010; 2011) showed that the best fatigue life 

happened in blades having angles of 45°-65° between their main and lateral veins. This is not only 

coincident with the related angle of most natural plant leaves seen in the environment, but also 

increasing the blade fatigue life remarkably (Liu et al., 2010; 2011).  

Additionally, the blade structure with varying width that mimics more accurately the actual 

pattern of plant leaf shows a better and more uniform twisting overall. The bend-twist coupling 

shape-shifting behavior was reversible by re-heating. This feature of the proposed blade is in favor 

of aero-elasticity (load reduction and energy gain) as discussed in the introduction. Figure 4-12 

shows the structure for the desired bend-twist coupling shape-shifting, which has the angle of 45°, 

1 mm thickness, and varying-width lateral veins. 

 

Figure 4-12. (a) Originally printed flat blade without heat treatment (b) Bend-twist 

coupling after heat treatment. 

 

4.3.1.3 No need for electromechanical and moving parts 

The structures can demonstrate the desired bend-twist coupling shape-shifting only by 

providing the stimulus (heat), which removes the requirement of moving parts and traditional 

electromechanical systems such as external sensors and actuators that are required in the active 

a b 
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control. The necessity of the conventional sensor is eliminated by employing the smart (active) 

material during the printing. The need for the conventional actuator is removed by printing the 

active and passive materials in a special spatial arrangement based on mathematical modeling to 

guide the mismatch-driven forces into the desired directions to provide the BTC shape-shifting.  

This feature of the proposed blade is in favor of control simplicity.  

4.3.1.4 Decoupled flexibility and adaptability 

It should be emphasized that the flexibility is different from adaptability. An adaptive blade 

can change its shape from shape one to shape two. However, shapes one and two can be either 

rigid or flexible. In the literature, the bend-twist coupling (BTC) shape-shifting in wind turbines 

is achieved either by using controllers (active method) or by utilizing the anisotropic mechanical 

properties of a composite structure (passive method). The passive method is currently the focus of 

the studies owing to its advantages (Lobitz et al., 1996; Veers et al., 1998; De Goeij et al., 1999; 

Lobitz et al., 2001; Griffin, 2002; Veers & Lobitz, 2003; Bottasso et al., 2013; Nicholls-Lee et al., 

2013; Fedorov & Berggreen, 2014; Hayat & Ha, 2015; Zhou et al., 2015; Hayat et al., 2016; 

Stäblein et al., 2017). However, the BTC through the existing passive methods has one big issue 

that is flutter instability. This issue occurs because the blade needs to be flexible to demonstrate 

the BTC under wind loads through the current passive methods. A more flexible blade has a higher 

risk for flutter instability (Hayat et al., 2016; Bir & Jonkman, 2007; Politakis et al., 2008; Cognet 

et al., 2017). We demonstrated a blade that could show the BTC without the need of flexibility 

such that both the initial and deformed shapes could be as much rigid as needed. It would become 

soft and flexible only during the shape-shifting process, when it is above the glass transition 

temperature. It can be rigid during the usual operation. Its rigidity can be adjusted to any degree 

that is desired depending on a specific application by changing the thickness of the smart material.  

This feature of the proposed blade may solve the flutter instability and can be explored in a separate 

study, quantitatively.  

It should be noted that during the shape-shifting, the structure is not too flexible to cause a 

failure under the external loads. In addition, the flexibility of PLA can be tuned depending on a 

specific need by incorporating some additives into PLA or by suitable synthesis processes on pure 

PLA (Mittal et al., 2015; Wang et al., 2018). However, the effect of external loads on the shape-

shifting angles in a specific application should be considered and incorporated in the mathematical 

equations to have accurate predictions of shape-shifting behaviors. 
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In the proposed blade design, a thickness of 1 mm for the veins showed an adaptive blade, 

in which both the flat and deformed shapes were rigid under the wind loads in the wind tunnel. 

However, the blade with a thickness of 0.2 mm (and 0.4 mm) displayed adaptive blade with 

flexible flat and deformed states. 

The technical advantages of the developed wind blade in this study are summarized in Figure 

4-13.  

 
Figure 4-13. The technical advantages of the proposed wind turbine blade. 

 

4.3.1.5 Eco-friendly attributes  

To pave the ways for the future sustainable world, several advancements such as novel eco-

friendly wind turbines are needed in the near future (Figure 4-14). The eco-friendly attributes of 

the proposed blade are:  

1. Biodegradable materials: The smart material employed in the proposed blade is PLA, 

which is biodegradable that can lead to eco-friendly wind turbines. PLA is a bio-based 

polymer generated from natural resources such as corn and is one of the cheapest 

biodegradable polymers to supersede petroleum-based plastics (Dong et al., 2014; 

Mallegni et al., 2018). It is currently utilized in rigid bottles for beverage, yogurt and so on 

(Mallegni et al., 2018) and has potential applications in many other industries such as 
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automotive (Dong et al., 2014). PLA is usually degraded by hydrolysis (Garlotta, 2001). 

Recent industrial technologies could produce PLA with high molecular weights suitable 

for structural applications with enough lifetime and no rapid hydrolysis (Avella et al., 2009). 

An experiment showed that, in air, PLA begins to degrade at 300 ℃ (Sombatdee et al., 

2018). Nevertheless, depending on biodegradability needs in a specific application, the 

biodegradability of PLA can be tuned through several ways such as coating with beeswax 

to decrease water vapor permeability and biodegradability (Reis et al., 2018) or cold plasma 

treatment to increase the biodegradability (Song et al., 2016). 

2. Low mass: The low mass of the proposed blade is the next benefit. Blade mass 

minimization is one of the four main objective functions engaged to optimize wind turbine 

performance (Chehouri et al., 2015)  

3. Low carbon emission: Ji & Chen (2016) analyzed the overall carbon footprint in the full 

life cycle of a representative wind farm by considering construction, operation, and 

dismantling phases. They showed that the most carbon emission was related to the 

construction phase and in this phase, “smelting and pressing of metals” has the highest 

share of carbon emissions. The proposed blade is not involved in such concern.    

 

Figure 4-14. From purely rigid ancient wind turbines (such as Persian panemone (Dodge, 

2006)) toward the future plant leaf-mimetic, smart, and eco-friendly wind turbines. 
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4.3.1.6  Comparison between the proposed blade and other blades capable of bend-twist 

coupling through passive manners 

The overall advantages of the proposed blade were discussed in the previous sections. Now, 

the unique advantages of this blade compared with the existing blades capable of BTC through the 

passive manners can be summarized as three main benefits. These are the plant leaf-mimetic 

structure that improves the mechanical and structural properties, decoupled flexibility and 

adaptability that may solve the flutter issue, and the eco-friendly features that may pave the way 

for the future sustainable world. Additionally, the optimization of the proposed paradigm can be 

studied in future investigation to explore the energy and power gains improvement.  

4.4 Wind tunnel tests 

Based on the above results, the blade structure with the angle of 45° between the main and 

lateral veins, 1 mm thickness and varying-width lateral veins is selected for the following wind 

tunnel test. Aerodynamics and performance of the originally printed flat blade and the final 

deformed blade that has been exposed to the thermal stimulus, as shown in Figure 4-12(a) and (b), 

are compared.  

In this experiment, a wind tunnel was assembled by a fan (Model No. #122 “FC” HD Arr 

9H, IAP Inc.), a direct current permanent magnet motor (Model C4D17FK10, LEESON Electric 

Corporation), a manometer (Model No. 400-, Dwyer Instrument Inc.), and subminiature load cells 

(Model 11 with tension/compression, Honeywell). The wind tunnel setup was connected to a PC 

with LabVIEW software (version 2014, National Instruments) through an NI-cDAQ chassis. The 

ambient temperature and pressure were 21.4 ± 0.1°C and 99.63 ± 0.05 kPa measured by a Wireless 

Weather Forecaster (model TE688W, Meade Instruments) with temperature resolution of 0.1°C, 

pressure resolution of 0.01 kPa, negligible temperature accuracy error, and pressure accuracy error 

of 0.05 kPa.  

The ambient temperature and pressure are for determining the density and viscosity of air.  

Viscosity is used in Reynolds number calculations. Density is for calculating Reynolds number as 

well as wind speed based on the Bernoulli equation. The drag and lift are measured by the 

subminiature load cells that have ± 0.5% accuracy. The precision error of the lift and drag forces 

is obtained from the LabVIEW program by considering a 95%-confidence-interval. The wind 

speeds are calculated by using the pressure data from the manometer and the Bernoulli equation. 

The manometer has 1 Pa resolution error, ± 2% accuracy error and the precision error obtained by 
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repeated measurements. These three types of errors (resolution, accuracy and precision errors) are 

combined to determine the uncertainties and error bars. Figure 4-15 shows the wind tunnel test 

setup.     

 
Figure 4-15. Wind tunnel test setup. 

 

4.4.1 Results and discussions 

4.4.1.1 Calibration curves 

The output of subminiature load cells of the wind tunnel is in mV/V. The wind tunnel load 

cells need to be calibrated to find the conversion factor between the load cell output (in mV/V) 

and the desirable drag and lift forces in Newton (N). To this end, we used several calibration 

masses (10 g, 20 g, 50 g, 100 g, and 150 g) and one Correx tension gauge (model 1001681, 500 g 

CNP KM) with an accuracy of ±0.01 × (maximum dial reading + actual test reading) and the 

resolution error of 0.05 N.  For a stationary object in the wind tunnel, the drag force is in the same 

direction as the wind, while the lift force can be either upward or downward depending on the 

shape of the object. Therefore, we consider only one horizontal direction for the drag force 

calibration by using the Correx force gauge. However, we consider both the vertical directions for 

the lift force by using the calibration masses for the downward force and Correx force gauge for 

the upward force. The force gauge can be used to calibrate the downward lift as well, but the 

calibration masses are used for this direction, as they are more accurate compared to the force 
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gauge. The sample for the calibration is a rectangular cuboid Balsa wood with the dimensions (51 

± 1 mm) × (51 ± 1 mm) × (102 ± 1 mm). The calibration curves are presented in Figure 4-16. The 

horizontal and vertical error bars have been calculated by combining all the three types of errors 

including resolution error (𝑒𝑟)  , precision error (𝑒𝑝) , and accuracy error (𝑒𝑎)  based on the 

following equation:  

  𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±√𝑒𝑟
2 + 𝑒𝑝

2 + 𝑒𝑎
2 (4-5) 

A best-fit line was plotted for both the calibration curves and the slope of these curves was 

the conversion factors. These conversion factors can be used for the test on the blades, in which 

the raw data in mV/V are multiplied by these factors to yield the lift and drag forces in N. The 

uncertainty in each of these conversion factors is twice the error in slope with 95%-confidence-

interval uncertainty. The error in slope can be obtained by the following formula (Heald, 1992) for 

a line (𝑦 = 𝑎𝑥 + 𝑏) that is fitted to data,    

𝑒𝑟𝑟𝑜𝑟  𝑜𝑓 𝑠𝑙𝑜𝑝𝑒 = 𝜎𝑎 = 𝑎
√
1
𝑅2
− 1

𝑁 −2
 

(4-6) 

Where 𝑎 is the slope, 𝑅2 is the correlation factor and 𝑁 is the number of data points. The 

conversion factors are obtained as 0.256 ± 0.017 for the drag force and 0.254 ± 0.004 for the lift 

force. The vertical error bars for the downward lift (negative lift) are smaller than the upward lift 

(positive lift). This is consistent with the assumption that the standard masses used for the 

downward lift calibration have less uncertainty than the Correx force gauge. 
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Figure 4-16. (a) Drag load cell calibration, only for one horizontal direction. (b) Lift load 

cell calibration, for both upward and downward vertical directions. 

 

4.4.1.2 Aerodynamics of the flat blade versus deformed blade  

The two flat and deformed blades (Figure 4-12) are tested in the wind tunnel chamber (Figure 

4-17). The lift and drag forces at various speeds are measured based on the conversion coefficients 

Drag (N) = 0.256Drag (mV/V) + 0.028 

R² = 0.9983 

Lift (N) = 0.254Lift (mV/V) - 0.019 

R² = 0.9998  

a 

b 
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from the previous calibrations, and the results are shown in Figure 4-18. The speed values were 

gained by using the Bernoulli equation and the pressure data from manometer. To convert the 

pressure data from manometer to wind speed, the following simplified equation (Dwyer 

Instruments Inc., 2010) derived from Bernoulli equation was used: 

𝑉 = 1096.7√
𝑃𝑉
𝜌

 (4-7) 

Where, 𝑃𝑉 is the pressure measured by manometer in inch-of-water, 𝜌 is the air density in 

𝑙𝑏/𝑓𝑡3 and 𝑉 is the wind speed in ft/min.  

The resolution, accuracy and precision errors in forces gained from the load cells construct 

the vertical error bars, while these three errors in wind speeds obtained from the manometer data 

underpin the horizontal error bars in Figure 4-18. The sample is mounted to a sting installed inside 

of the test chamber. The other end of the sting is attached to the load cells for force measurements 

as shown in Figure 4-17. The lift and drag forces from the sting are measured as well, which is 

then subtracted for determining the lift and drag forces due to the samples only. It should be noted 

that for the vertical direction, along which the blades were mounted to the sting shown in Figure 

4-17 (a), (b) and (c), the lift is in the downward direction (negative), and the results in Figure 4-18 

illustrate the absolute values of the lift forces. If we install the blades upside down, the lift would 

be upward.  
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Figure 4-17. (a) Wind tunnel test on the samples installed on the sting, (b) flat sample 

attached to the sting, (c) deformed sample connected to the sting and (d) wind tunnel test 

on the pure sting. 
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Figure 4-18. (a) Comparison of the lift force for the flat and deformed blades. (b) 

Comparison of the drag force for the flat and deformed blades. 

 

For further comparisons, dimensionless quantities including the drag coefficient (𝐶𝐷), the 

lift coefficient (𝐶𝐿) and Reynolds number (𝑅𝑒) are calculated based on the following equations  

(Kuethe & Chow, 1976). These three quantities can also be used to scale up the results. 

 

b 

a 
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𝐶𝐷 =
𝐹𝐷

1
2
𝜌𝑉2𝐴

 
(4-8) 

𝐶𝐿 =
𝐹𝐿

1
2
𝜌𝑉2𝐴

 
(4-9) 

𝑅𝑒 =
𝜌𝑉𝐿

𝜇
 (4-10) 

Where 𝐹𝐷 , 𝐹𝐿 , 𝜌 , 𝑉 , 𝜇 , 𝐿 and 𝐴  are the drag force, lift force, air density, air speed, air 

dynamic viscosity, characteristic length and the reference area of the sample, respectively. The 

drag coefficients are calculated based on the frontal area of the samples and the lift coefficient s 

are calculated based on the top area of the samples. The top and frontal areas of the deformed blade 

are calculated based on a CAD reconstruction of the experimentally obtained blade, which is 

explained in more details in the next section. Corresponding parameters for calculations of 𝐶𝐷 and 

𝐶𝐿 are listed in Table 4-4 and the results are shown in Figure 4-19 (a) and (b). The error bars in  

Figure 4-19 are calculated based on the sequential perturbation method by using equations (4-8), 

(4-9), and (4-10) and the measurements of the lift force, drag force, and wind speed (Figure 4-18). 

   

Table 4-4. Values of parameters for calculating 𝐂𝐃, 𝐂𝐋 and 𝐑𝐞. 

Parameter (Symbol) Value  (Unit) 

Temperature (𝑻) 21.4 ±  0.1 (℃) 

Pressure (𝑷) 99628 ±  50(𝑃𝑎) 

Dynamic Viscosity (𝝁) 
 1.84E − 5 ±  0.00𝐸 − 5 (

𝑘𝑔

𝑚.𝑠
) 

Density (𝝆) 
1.17 ±  0.00 (

𝑘𝑔

𝑚3
) 

Characteristic length (𝑳) 0.1± 0.0 (𝑚) 

Deflected Frontal Area (𝑨𝑭,𝑫𝒆𝒇.)   0.0013  ±  0.0002  (𝑚2) 

Deflected Top Area (𝑨𝑻,𝑫𝒆𝒇.) 0.0024 ±  0.0002  (𝑚2) 

Flat Frontal Area (𝑨𝑭,𝑭𝒍𝒂𝒕) 0.00010 ±  0.00004 (𝑚2) 

Flat Top Area (𝑨𝑻,𝑭𝒍𝒂𝒕) 0.0029 ±  0.0002  (𝑚2) 
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Figure 4-19. (a) Comparison of the lift coefficient for the flat and deformed blades. (b) 

Comparison of the drag coefficient for the flat and deformed blades. 

 

The 𝐶𝐷 and 𝐶𝐿 show that the deformed blade has a higher non-dimensional lift force and 

lower non-dimensional drag force compared with the flat blade, which demonstrate the better 

aerodynamics in the bend-twist coupled blade. It should be noted that based on the physics of the 

problem, the pressure drag is of much greater magnitude and importance than the other types of 

a 

b 
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drag. Hence, in order to normalize the drag force, one can use the blade frontal area, from which 

the dominant term of drag (pressure drag) originates (NASA Glen research center page, accessed 

2018; Hedenstrom & Liechti, 2001). Due to larger frontal area of the deformed blade in 

comparison to the flat blade, its drag coefficient is smaller than that of the flat one, although the 

numerator of the drag coefficient (that is drag force) may increase itself. Hence, although Figure 

4-18 (b) shows that the deformed blade has a higher drag force, but its drag coefficient is lower as 

can be seen in Figure 4-19 (b).  

4.4.1.3 Blockage ratio  

Blockage ratio is the ratio of the cross-section of the sample that is normal to the flow 

direction divided by the cross-section of the wind tunnel test section (test chamber) normal to the 

flow direction. In this experiment, the test chamber cross-sectional area normal to the airflow was 

203 ± 1mm by 203 ± 1mm. Consequently, the blockage ratio for the deformed blade, flat blade, 

and the calibration rectangular cuboid sample are 3.2 ± 0.5 %, 0.2 ± 0.1 % and 6.3 ± 0.2 %, 

respectively. According to the literature (Howell et al., 2010), the blockage ratio should be less 

than about 7% to ensure that the flows around the samples are unaffected by the walls.  

4.5 CFD simulations and performance analysis 

In this section, CFD analyses are performed to study additional characteristics of the 4D-

printed blade that could not be investigated in wind tunnel tests. It should be mentioned that the 

dimensions of the simulated blade are the same as the tested blade in wind tunnel. Advantages of 

the proposed blade can be further revealed. First, the simulation is validated with available 

experimental data. Performance study is then carried out for various conditions including different 

wind speeds, rotational speeds, etc. The wind speed interval of approximately 5 to 24 m/s is 

rational, which lays between cut-in and cut-off speeds for small-scale wind turbines due to their 

intrinsically high rotational speeds (Drumheller et al., 2015; Wan et al., 2015). 

In the wind tunnel test as well as performance calculations, the amounts of the top and frontal 

areas are needed in order to calculate aerodynamic coefficients (especially lift and drag coefficients) 

(NASA Glen research center page, accessed January 2018; Hedenstrom & Liechti, 2001). These 

areas can be easily obtained in a CAD software as shown in Figure 4-20. The top and frontal areas 

of the deformed blade are calculated of about 0.0024 ± 0.0002 (m2) and 0.0013 ± 0.0002 (m2), 

respectively. The uncertainties in the top and frontal areas arise from the reconstruction of the 

deformed blade in the software based on the measured (x, y, z) coordinates of some specific points 
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of the deformed blade. The main and lateral veins are not shown in this figure because only the 

aerodynamic shape of the blade (bend-twist coupled form) due to the deflection of these smart 

veins is important and the veins themselves have only structural roles.  

 

Figure 4-20. The top, frontal and lateral projections of the deflected 4D-printed blade. 

 

As a validation of CFD simulations method, lift and drag forces on the fixed (stationary) 

deformed blade are compared between wind tunnel data and numerical results at different wind 

speeds. These comparisons are shown in Figure 4-21 and Figure 4-22, respectively, where the 

horizontal axis is the wind speed, the primary vertical axes are lift or drag forces exerted on the 

blade, and the secondary vertical axis is the percentage of error of numerical results with respect 

to corresponding experimental data. The errors are in 5% to 10% from lower wind speeds to higher 

wind speeds. This implies that the CFD simulations are in good accuracy and valid in order to be 

implemented for further investigations on the proposed blade.  
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Figure 4-21. Comparison of lift force on a fixed deformed blade as a function of wind speed 

between results of the wind tunnel tests and CFD simulations. 

 

 

Figure 4-22. Comparison of drag force on a fixed deformed blade as a function of wind 

speed between results of the wind tunnel tests and CFD simulations. 

 

After validation of the numerical results, the rotational speed of blade in a rotor disk at 

different wind speeds is determined, which is also helpful for future design criteria. This value is 

determined by two groups of opponent moments. One is the driving torque from the wind 
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generated due to lift force on the blade, and the others are the opposite moments, including the 

friction from bearings and preventer torque from the generator. Here, no study is going to be done 

on bearing and generator selection and hence, their effects can be neglected to obtain an upper 

limit for ideal working conditions. The rotational speed of the rotor disk increases until the velocity 

triangles of different sections of the rotor blade change in such a way that their resultant yields a 

zero net lift force (driving torque). Therefore, in general, as the wind speed goes up, turbine rotor 

disk rotational speed increases. This behavior is shown in Figure 4-23 for the proposed 4D-printed 

blade in a rotor disk. The rotor disk is chosen to have 6 blades and a hub radius of 5 cm. 6-bladed 

rotor disk will be shown to be optimum from a certain point of view in a few paragraphs later. The 

value of the rotational speeds in Figure 4-23 can be implemented for the future structural design 

of the wind turbine (bearings, spars, etc.). 

 

Figure 4-23. The increment of deformed blade RPM as the wind blows in higher speeds. 

 

One crucial performance parameter of a wind turbine blade is its generated torque (due to 

lift) as a function of wind speed. In order to verify the advantages of the proposed 4D-printed blade 

(with outer geometry same as the tested blade in wind tunnel), its generated lift force at different 

wind speeds is provided in Figure 4-24. The result is compared with the flat (non-heated) blade at 

an angle of attack (AOA) slightly less than the stall value. According to the simulations on the flat 

blade at different angles of attack, the stall angle is about 12.6° at the Reynolds number of about 

23000. Hence, in order to avoid flat blade stall at higher Reynolds numbers (higher wind speeds), 



 

111 
 

it has been simulated at an AOA of 12.4°. The lift forces in this figure are from conditions wherein 

both the deflected and flat blades were stationary. The higher values of lift force at various wind 

speeds in Figure 4-24 show the superiority of the deformed blade over the flat one, albeit the flat 

blade has an AOA (12.4°) just before its stall AOA (12.6°). Physically, in the pre-stall region, 

higher AOA of the blade will lead to higher lift generation. Through wind tunnel tests, we have 

already observed that the deformed blade has more lift generation than the flat blade when both 

have the same angles of attack equal zero at the root. Here, we captured an interesting point that 

the deformed blade with zero AOA at the root even has more lift compared with the flat blade 

almost having its maximum pre-stall AOA at the root.  

 

Figure 4-24. Generated lift on deflected shape of the proposed 4D-printed blade and its flat 

shape at different wind speeds. 

 

In addition, the optimum number of deformed blades in a full rotor disk is determined. In 

this regard, rotor disks with different numbers of blades (3, 4, 6, 8, 10 and 12) have been simulated 

for sliced-periodic disks (1/3, 2/4, 2/6, 2/8, 2/10 and 2/12) at a fixed position. As an example, the 

corresponding sliced-periodic domain with 2 out of 6 blades of a rotor disk is shown in Figure 

4-25. The hub radius is 5 cm as specified before. Inlet boundary and the imaginary shaft are also 

shown in this figure. 
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Figure 4-25. The sliced-periodic domain used for simulation of a rotor disk with 6 blades, 

containing only a couple of those blades. 

 

In the next step, the amount of generated torque is selected as the criterion for performance 

evaluation. Due to different blockage ratios and interactive effects of adjacent blades, the drag and 

lift forces and consequently, the generated torque per blade depends on the number of blades in a 

rotor disk, as shown in Figure 4-26 for a wind speed of 9.4 m/s. The maximum torque per blade 

occurs at a rotor disk with 6 deformed blades. The values of this curve depend on wind speed. 

However, the optimum number of blades for generating the maximum torque per blade remains at 

6 by varying the value of air stream velocity. 
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Figure 4-26. Variation of generated torque per blade as a function of the total number of 

blades in a full rotor disk (at the wind speed of 9.4 m/s). 

 

Some important performance parameters for wind turbine blade are generally studied with 

certain theories like Blade Element Momentum (BEM). However, the BEM method can only 

predict these parameters accurately for large-scale turbines (Tummala et al., 2016). Due to these 

limitations, in this study, numerical simulation is employed. As one of the most important 

performance parameters, the power coefficient is calculated using equations (4-11), (4-12) and 

(4-13) and plotted as a function of tip speed ratio (TSR) in Figure 4-27. It should be noted that the 

trend of variation of the power coefficient with TSR depends on the incidence angle (the angle 

between the root's chord line and the rotor axis) of the rotor blades (Tummala et al., 2016). 

 

𝑇𝑆𝑅 =
𝑟𝑡𝑖𝑝 .𝜔

𝑉𝑤𝑖𝑛𝑑
 (4-11) 

𝐶𝑝 =
𝑇.𝜔

1
2
𝜌𝐴𝑉𝑤𝑖𝑛𝑑

3
 (4-12) 

𝐴 = 𝜋𝑟𝑡𝑖𝑝
2 (4-13) 
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In the formulas above, 𝑟𝑡𝑖𝑝 is equal to 15 cm considering a hub radius of 5 cm for the blade 

with 10 cm of span (length) and 𝜔 is rotational speed of the rotor disk. T is the generated torque 

on the blade rotating with the corresponding rotational speed (𝜔) at wind velocity of 𝑉𝑤𝑖𝑛𝑑. 𝜌 is 

air density equal to its value during wind tunnel tests (1.17 
𝑘𝑔

𝑚3
) and 𝐴  is area of a circle 

encompassing the rotor disk. For each wind speed, different rotational speeds have been considered 

for the rotor disk, which yields in different values of TSR. Having the amounts of the generated 

torque on the blade for all the wind speed-RPM couples from CFD, variation of power coefficient 

versus TSR is achievable. The ratio of the hub radius to the blade tip radius of the proposed blade 

may seem too small in comparison to that of the large-scale turbines. However, it should be noted 

that for small-scale (micro) wind turbines, this ratio becomes smaller and some examples of such 

small values can be found in some references (Sedaghat et al., 2012; Kishore et al., 2013). 

In real operations, by utilizing different generator and bearings, they may have different 

friction coefficients. The rotor disk would then be subjected to different amounts of opponent 

moments. Therefore, at a certain wind speed, the rotor can have different rotational speeds and 

consequently different TSRs depending on the utilized generator and bearings, which then change 

the value of the power coefficients, accordingly. In this regard, Figure 4-27 compares the 

relationship between the TSR and the power coefficient at different wind speeds for a rotor disk 

with 6 deformed blades. It can be observed that the TSR value that maximizes the power 

coefficient is independent of wind speed. Not only the maxima, but also the entire curve of power 

factor versus TSR is independent of wind speed (Tummala et al., 2016). Figure 4-27 indicates 

these independencies very well. Using the proposed 4D-printed blade, the maximum power 

coefficient occurs at the TSR of about 0.6.    
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Figure 4-27. Performance curve of the 6-bladed rotor disk power coefficient vs. tip speed 

ratio in five different wind speeds. 

 

In addition to the above outcomes in CFD part, some qualitative analyses on numerical 

results are provided. Figure 4-28 shows velocity contour lines at four different sections of the 

deformed blade when it is rotating with an induced rotational speed of about 580 rpm due to the 

wind speed of 9.4 m/s. Except a tiny partial flow separation occurs at the root of the blade, the 

flow is fully attached to the blade surface especially near the tip (no tip stall is observed), which 

has a more important effect on the aerodynamic performances compared with the root (Wetzel, 

2005).  
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Figure 4-28. Velocity contours in 4 different chord-wise cross sections along the blade span 

(0.01, 0.3, 0.6 and 0.9 of span). 

 

Figure 4-29 and Figure 4-30 show the air streamlines and static pressure contours at those 

four chord-wise sections at the same wind conditions, respectively. These reaffirm the good quality 

of the airflow around the blade. Almost no flow separation exists around the blade, and the pressure 

distributions are favorable (there is almost no reverse flow on the blade surface). A tiny partial 

flow separation occurs at the root of the blade, which is due to a relatively high local angle of 

attack. This arises from some structural constraints, which can be explained as follows: The blade 

is subjected to a couple of perpendicular moments due to lift and drag forces. The moment from 

the drag force is usually more crucial because the blade may not have any rotational motion in the 

direction of drag force. Indeed, the maximum bending moment occurs at the root. The cross-

section of the root should, therefore, have a large Izz in order to withstand the moment exerted by 

the drag force, which can be achieved by aligning of the chord of root parallel to the air stream. 

This causes a relatively high local angle of attack at the root of the blade. However, the small 

amount of flow separation at this region can have no considerable effect on the blade performance.  



 

117 
 

 

Figure 4-29. Air streamlines passing around the stationary 4D-printed blade in four 

different chord-wise cross sections along the blade span. (a) 0.01, (b) 0.3, (c) 0.6 and (d) 0.9 

of span. 



 

118 
 

 

Figure 4-30. Static pressure (gauge) contours in 4 different chord-wise cross sections along 

the blade span. (a) 0.01, (b) 0.3, (c) 0.6 and (d) 0.9 of span. 

 

In the CFD part of the present study, a novel 4D-printed blade is compared to a simple flat 

plate. In other words, the 4D-printed deformed blade is considered as a thin flat plate which is 

deformed and curved. Therefore, the whole present analysis is about the improvement gained by 

4D deformation of a thin plate inspired by leaf structure, so the performance is also compared with 

a flat plate as presented in CFD part. The present cross-section may be the camber of any arbitrary 
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airfoil section profile for upper and lower surfaces. In fact, there is a high potential for future 

investigations to improve both aerodynamic and structural performance of the leaf-mimetic 4D-

printed blades with airfoil cross-sections. Apart from aerodynamic performance, structural 

characteristics (strength to weight ratio, etc.), manufacturing expenses, and attainability of 

desirable shape deformation are other concepts, which must be investigated in separate studies. 

Along with the CFD simulations and in order to compare the power range quantitatively, a 

6-bladed commercially-used small-scaled wind turbine with a rotor disk diameter of 91 cm is 

considered (Marlec Eng. Co. Ltd.). Referring to the performance curves, its power production 

varies from almost 2 to 222 Watts in the operating range of wind speed from 3 to 15 m/s. The 

present 4D-printed blade, with 5 cm hub radius and blade length of 10 cm, has a rotor disk with a 

diameter of 30 cm. According to a simple scaling law (Amano & Sundén 2014; Manwell et al., 

2010), the power of the turbine is proportional to the square of the diameter of its rotor disk. This 

proportionality is also examined numerically in the present study. Consequently, after scaling the 

4D-printed rotor disk diameter from 30 to 90 cm, its power (obtained from present CFD results) 

lies between 2.2 to 174 Watts for wind speeds of 5.5 to 23.5 m/s. A result which is comparable to 

that of commercially-used small-scaled turbines with conventional blades. 

The main purpose of these simulations, however, is to evaluate the performance of the 4D-

printed blade in more details and complement some limitations of experimental tests and analytical 

solutions. In fact, these analyses serve to implement the proposed design and fabrication paradigm 

in this study for advanced 4D-printed wind turbine blades in future works.   

4.6 Dynamic Mechanical Analysis (DMA) tests 

One of the critical material properties that needs to be determined in the mathematical model 

in equation (4-3) is the elastic (storage) modulus of the polymer above the glass transition 

temperature 𝑇𝑔 . The shape memory polymers have a temperature-dependent elastic modulus, 

especially around the 𝑇𝑔 and it can be measured from Dynamic Mechanical Analysis (DMA) test.  

Some of the studies in the literature used the results of the DMA test on molded structures 

for analyzing the deformation behavior in 4D printed structures, which is conceivably inaccurate. 

To verify this statement, DMA tests were performed on a treated printed PLA.  

The test was performed in the tensile mode with a DMA machine under the following 

condition: the strain oscillation had a frequency of 1 Hz with a maximum amplitude of 0.01%. The 
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temperature ranged from 40 to 130 ℃ at an increasing rate of 2 ℃/𝑚𝑖𝑛. A static preload of about 

0.1𝑔 (0.001𝑁) was considered to maintain the specimen straight during the whole experiment as 

was done in some of the previous studies (Wu et al. 2016). 

It is seen that some researchers use the materials properties of molded or annealed structures 

to model the behavior of their 4D printed structures. Here, we measure the desired property of our 

4D printed structure (Figure 4-31) and observe that the manufacturing process affects materials 

properties. It should be noted that our smart blade will have multiple shape-shifting behaviors 

(cycles) rather than only one cycle. Therefore, we consider this point and measure the desired 

property of a printed structure that has already gone one shape-shifting cycle. We just call this 

structure as “treated printed” structure to distinguish it from “just printed” structure. After the first 

shape-shifting cycle, the structure would behave as a "treated printed" structure for the rest of the 

shape-shifting cycles, rather than the "just printed" structure. Therefore, the "treated printed" 

structure is closer to reality than the "just printed" structure. 

Comparing the measured results in Figure 4-31 with the properties of a molded PLA from 

Cock et al. (2013) in Figure 4-32, the elastic modulus shows an entirely different behavior as a 

function of temperature. The elastic modulus for the molded PLA has a local minimum value and 

then increases after the glass transition temperature. On the other hand, the elastic modulus in a 

treated printed PLA uniformly decreases as the temperature increases. This shows that the 

manufacturing process directly influences these material properties not only on their absolute 

values (especially around the 𝑇𝑔) but also on their general trends. This difference can lead to 

tremendously different results in predicting the behavior of the 4D printed structures. Based on 

Figure 4-31, the elastic modulus well above 𝑇𝑔 of the treated printed PLA is 2 × 108 𝑃𝑎, which 

was used in the mathematical modeling. In contrary, Figure 4-32 shows that the value of the elastic 

modulus for molded PLA well above 𝑇𝑔 is around 5× 107  𝑃𝑎.  

Therefore, for accurate mathematical modeling and prediction of the shape-shifting behavior 

over time, the actual material properties of the 4D printed structure should be used.   
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Figure 4-31. The behavior of the  elastic (storage) modulus of the “treated printed” PLA 

from DMA test. 

 

Figure 4-32. The behavior of the elastic (storage) modulus of the “molded” and “annealed” 

PLA from DMA test (Cock et al., 2013). 

 

4.7 Discussions  

4.7.1 Mechanisms for applying stimulus  

In this study, we utilized a hot plate (CIMAREC, model SP131325) to provide heat in the 

lab. The mechanisms that can supply heat in real operations can be studied, separately. For example, 



 

122 
 

a connection can be made between the environmental temperature and the desired shape changes, 

instantaneously; or some hot wires can be embedded through the smart parts (PLA) of the blade 

to apply heat locally. This heat can be provided by electricity or even by a mechanism that 

incorporates the free energy of sunlight. In addition, photo-responsive smart materials can be used 

in our design rather than the current heat-responsive smart material. In this case, the desired shape 

can be achieved directly by light (i.e., photochemical mechanism) without reliance on heat and 

temperature change (as seen in photothermal mechanism).  

The frequency of the shape-shifting should also be considered in a specific application. 

According to the Probability Density Function (PDF) and Cumulative Frequency (CF) of wind 

speed and also wind rose graph of its direction in the region of installation site (Chen et al., 2016), 

the materials compositions and layers directions can be set in the printing process. Then, depending 

on these features and by dividing the wind speed range into some intervals, it can be determined 

for the blade to shift its shape at certain wind speed and direction milestones. The required energy 

for blade deflection is then dependent on the materials and structural characteristics of the blade , 

as well as wind intensity (speed) and direction. One main parameter that determines the amount of 

the required heat is the glass transition temperature (𝑇𝑔) of the smart material that can be tuned by 

some additives, blends, and even using some other types of smart materials. However, one of the 

ultimate goals of 4D printing is using random free energy to provide non-random structures and 

shape-shifting behaviors (Tibbits, 2013). It should be also noted that if the number of shape-

shifting is too many, then the 4D printed structure may not be able to totally recover its initial and 

final shapes and this fact should be considered and monitored (Momeni et al., 2016). 

The next consideration is related to seasonal variations in temperature that cause the blade 

surface temperature to vary. The smart material used here has a glass transition temperature (𝑇𝑔) 

of about +60 ℃, above which the shape-shifting occurs. Therefore, at any temperature below this 

point, there is no unwanted shape-shifting. By the way, the 𝑇𝑔 can be decreased or increased as 

discussed above.  

4.7.2 Small-scale and large-scale applications 

Here, we demonstrated the proof-of-concept of a new blade followed by wind tunnel tests 

and performance analysis. The proposed paradigm can be explored for both small-scale and large-

scale applications. The three unique advantages of the proposed blade compared to the existing 
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blades capable of BTC through the passive methods (discussed in section 3.1.6), would be present 

in both the small and large scales. In addition, the energy gain can be studied by optimizing the 

proposed blade from various perspectives. It should be noted that, for large-scale applications, the 

widths of main and lateral veins will increase. Thus, to avoid unwanted shape-shifting along the 

width of a vein, the smart material should be printed as several small-width strips with some 

spacing between strips, rather than a continuous large-width vein. Moreover, for the large-scale 

wind turbines, the mechanical properties of the materials should be considered as the following. 

4.7.3 Materials considerations 

First of all, composite materials have been recognized as the best materials for wind blades 

(compared to metals (primarily aluminum) and wood) (El Alaoui et al., 2016; Mishnaevsky et al., 

2017; Swolfs, 2017; Sutherland, 1999; Brøndsted et al., 2005; Jespersen & Mikkelsen, 2017; Dai 

& Mishnaevsky, 2014). Moreover, if green composites (Dicker et al., 2014; Schledjewski et al., 

2017; Murdani et al., 2017) are used, then it will be eco-friendlier. For composite materials, fiber 

and matrix should be analyzed separately. For matrix portion, two types of materials are usually 

used; thermosets and thermoplastics. Compared to thermosets, thermoplastics are recyclable and 

have higher fracture toughness, as well as larger elongation at fracture. Nevertheless, 

thermoplastics have more difficult manufacturing processes due to their higher viscosity and larger 

processing temperature compared to thermosets (Mishnaevsky et al., 2017). However, this 

difficulty can be resolved by additive manufacturing. Here, we used PLA that is a biodegradable 

thermoplastic. It can be reinforced by carbon fibers. PLA-carbon fiber blends are commercially 

available for additive manufacturing. In addition, natural fibers such as Bamboo have been 

reported as good alternatives to glass and carbon fibers for both the small- and large-scale wind 

turbines (Mishnaevsky et al., 2017; Holmes et al., 2009; Pozo Morales et al., 2017). Nevertheless, 

research on green composites suitable for large-scale wind turbine blades is ongoing.  

4.7.4 Other plant-mimetic approaches useful for wind turbines  

There was a different plant-mimetic approach for wind turbines, where the researchers (Loth 

et al., 2017; Ichter et al., 2016; Noyes et al., 2018) were inspired by downstream bending of the 

palm tree trunk in high winds leading to load reduction. In their design, the blades had the same 

conventional structures (rather than leaf structure). However, they had a segmented structure close 

to their rotor hub and could bend from that part, in the direction of the wind, similar to the palm 
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tree (and in contrast to the oak tree). This leads to load reduction and is suitable for extreme-scale 

wind turbines  (Loth et al., 2017; Ichter et al., 2016; Noyes et al., 2018). This approach can be 

combined with our proposed blade mimicking the leaf vein network.  

4.8 Conclusions 

A new paradigm for the design and fabrication of the wind turbine blades has been 

demonstrated by the 4D printing process. This can integrate several advantageous attributes into 

one structure, simultaneously. Other materials can be incorporated. The results can be scaled up, 

and the methodology can be adjusted and customized to a particular need. We demonstrated a plant 

leaf-mimetic wind turbine blade in practice that is capable of reversible bend-twist coupling 

behavior. This blade does not rely on traditional electromechanical systems, moving parts, sensors 

and actuators. We have also separated the adaptability and flexibility concepts in wind turbine 

blades and demonstrated this difference in practice. This may solve the flutter issue seen in blades 

capable of BTC through passive methods. The proposed multi-functional blade can finally lead to 

eco-friendly wind turbines. Our blade only relies on heat to show its shape memory effect, in 

contrast to the usual shape memory materials that need both the heat (thermal part) and force 

(mechanical part) to achieve the shape memory effect. This is because we combined active and 

passive materials and designed their arrangement so that their mismatch-driven force serves as the 

required mechanical force in the required direction. Finally, it should be noted that certain 

materials properties of 4D printed structures, for example, the elastic (storage) modulus are 

different from those of the molded/annealed structures. The actual materials properties of “4D 

printed” structures should be applied in the corresponding mathematical models for predicting the 

shape-shifting behaviors over time. 
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CHAPTER 5  

NATURE-INSPIRED SMART SOLAR CONCENTRATORS BY 

4D PRINTING 

Currently, solar concentrators, whether in solar PV or solar thermal applications are designed 

and utilized as a fixed shape such as elliptic, parabolic, V-shape, hyperbolic, and multi-stage forms. 

Here, we are inspired by diurnal and nocturnal flowers and their differences and propose a smart 

solar concentrator that can increase the overall light collection efficiency by more than 25% 

compared with its non-smart counterparts. We introduce the concept of smart solar concentrators 

inspired by nature and enabled by 4D printing and illustrate its necessity and advantages. We found 

that most of the diurnal flowers have parabolic and most of the nocturnal flowers have hyperbolic 

petals. Our proposed multi-functional concentrator has a parabolic shape for a portion of the day 

that parabola dominates all the other shapes in terms of the optical efficiency, then it can reversibly 

change its shape to hyperbola for another portion of the day that the hyperbola beats all the other 

geometries. By using this design, the optical efficiency trend will move from peak-and-valley form 

toward constant-at-peak format, resulting in overall efficiency improvement. The proposed 

biomimetic structure is an example of smart origami. It is simple and low-mass. It demonstrates 

the desired shape-shifting without reliance on cumbersome and expensive electromechanical 

systems.5 

 

 

 

                                              
5 This chapter is based on our journal article published in Renewable Energy 122 (2018), entitled “Nature-inspired 

smart solar concentrators by 4D printing”, by Farhang Momeni and Jun Ni. 
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5.1 Introduction  

Both the solar PV and solar thermal modules can have three main elements, a receiver 

(mandatory), a concentrator (optional) and a tracking mechanism (optional). The primary reason 

for using concentrators is to converge the sunlight and obtain the same efficiency by using less 

solar cell materials in solar PV applications (Parida et al., 2011) and increase the receiver 

temperature in solar thermal applications (Tian & Zhao, 2013). Currently, the solar concentrators 

are designed as a fixed shape, and most of the existing solar concentrators are parabolic. Ellipt ic, 

V-trough, and hyperbolic concentrators have been studied in few specific cases, and the parabolic 

concentrators have been recognized as a suitable form for general purposes and usual operations 

(Madala & Boehm, 2017; Khamooshi et al., 2014; Ghasemi & Ranjbar, 2017; Marefati et al., 2018; 

Kasaeian et al., 2018; Bellos & Tzivanidis, 2017; Rabl, 1976; Khakrah et al., 2017).  

On the other side, the reason for using the tracking mechanism is to keep perpendicular 

sunlight incidence by tracking the apparent motion of the sun (Apostoleris et al., 2016). However, 

the current tracking mechanisms are heavy, large, and expensive (due to the installation, operation, 

auxiliary energy, and maintenance costs) (Madala & Boehm, 2017; Apostoleris et al., 2016). These 

factors cause hurdles for the commercialization of concentrating photovoltaic (CPV) systems  

(Apostoleris et al., 2016). This issue is going to be solved through several ways such as integrated-

tracking systems (Apostoleris et al., 2016; Duerr et al., 2011; Lamoureux et al., 2015) and/or 

proposing simple, lower-mass and cheap tracking mechanisms by novel solutions, such as kirigami 

technique (Lamoureux et al., 2015), and so on. Kirigami (‘kiru’: cut; ‘kami’: paper) and origami 

(‘ori’: fold) can provide novel solutions for engineering applications by combing mathematics and 

art (Blees et al., 2015; Rafsanjani & Bertoldi, 2017; Wang-Iverson et al., 2016; Ge et al., 2014). 

By 4D printing, smart origami (Ge et al., 2014) and kirigami are achievable, in which the shape is 

evolved by intelligence rather than mechanically-driven alterations by pure pushing and pulling. 

Optical efficiency is one of the primary efficiencies in solar PV and solar thermal 

applications, and in some cases, the overall efficiency of concentrating photovoltaic/therma l 

(CPVT) collectors is limited by optical efficiency (Karathanassis et al., 2017; Daneshazarian et al., 

2018). This means that, in these cases improving factors other than optical efficiency, cannot give 

a net improvement in the overall efficiency until this bottleneck (optical efficiency) is improved. 

In optical efficiency analysis, ray-tracing simulation is a useful technique for the design, analysis, 

and optimization of solar concentrators (Riveros-Rosas et al., 2011), especially by using TracePro 
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software (TracePro User’s Manual, 2017) that has attracted a growing level of attention (Wang et 

al., 2017). 

The design, analysis, and optimization of the four concentrators above have been explored 

in several studies by numerical, experimental, and analytical approaches (Zhang et al., 2017; Tina 

& Scandura, 2012; Ali et al., 2013; Tang & Wang, 2013; Sellami et al., 2012; Al-Shohani et al., 

2016; Mohsenzadeh & Shafii, 2017; Chaves, 2015; Gorjian et al., 2014). Here, we show the 

necessity and advantages of a smart solar concentrator that has the desired reversible shape-shifting 

in one specific case. We demonstrate the proof-of-concept for a low concentration (Amanlou et 

al., 2016), one-stage, and compound concentrator. However, 4D printed solar concentrators can 

be further analyzed in all the four shapes, in simple or compound, one- or multi-stage concentrators, 

in the low, medium, or high concentration systems, in the solar PV or solar thermal applications, 

etc. Moreover, it can be considered in various optimizations schemes.  

Natural living things have evolved, self-corrected, self-adapted, and self-optimized to the 

environmental conditions over a long time. Nature usually accomplishes a function with the least 

amount of energy. Hence, biomimetic approaches can provide one of the most efficient, and most 

robust solutions for human-made systems (Li et al., 2013; Vincent, 2006; Speck et al., 2017). Here, 

we show how a biomimetic inspiration paves the way for a more efficient solar energy utilizat ion.   

5.2 Design concept 

There are three types of flowers. Some flowers are always open, some of them open in the 

morning and close in the afternoon that is named diurnal flowers, and some others open in the 

afternoon and close in the next morning that is called nocturnal flowers. The diurnal and nocturnal 

flowers open and close for several reasons such as pollination and the type of pollinators (some 

pollinators are night-flying, and some are day-flying), avoiding unwanted attention from other 

harmful insects whether during the day or night, managing the internal temperature & humidity, 

metabolism, etc. Nevertheless, one of the main growing requirements of both the diurnal and 

nocturnal flowers is capturing as much sunlight as possible. However, the interesting point is that 

the total performance (fruit or seed set) of these two categories are comparable in many cases 

(Young, 2002; van Doorn & van Meeteren, 2003; ProFlowers, 2011; UCSB ScienceLine, accessed 

2017; Shamoon, accessed 2017; Carter, accessed 2017; Avid, accessed 2017; Palermo, 2013; 

Villazon, 2009). Therefore, we can say that there should be some competitive advantages in 

nocturnal flowers that can yield the same performance, albeit they receive only the inclined portion 
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of the sunlight of a day and are closed around noon. We propose one competitive advantage, 

demonstrate an impressive result based on this inspiration, utilize it in our smart solar concentrator 

design, and show the efficiency gain.  

We organize several popular nocturnal and diurnal flowers in Figure 5-1. A fascinating result 

can be captured by analyzing the geometries of these two categories. The diurnal flowers have 

mainly parabolic petals, while the nocturnal flowers have mainly hyperbolic (trumpet-shaped) 

petals.  
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Figure 5-1. Comparing the configurations of petals in diurnal and nocturnal flowers. 

Category (a) shows some popular nocturnal flowers . They are closed around noon and are 

open far from noon. Category (b) illustrates some popular diurnal flowers. They are open 

around noon and are closed far from noon (Palermo, 2013; Villazon, 2009; Taylor, 2017; 

Wikipedia. Mirabilis jalapa, accessed 2017; Waluyo, 2015; Wikipedia. Nicotiana tabacum, 

accessed 2017; Taylor, 2017; Wooden Shoe Tulip Farm, accessed 2017; Gardenia, accessed 

2017).  

Four o'clock (Mirabilis jalapa)Datura Angel's Trumpet (Brugmansia)

Moonflower Nicotiana Night-Blooming Jasmine

Tulip Crocus Poppy

a

b
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Before we proceed to simulations, we discuss the reflectivity of the flowers  ̀ petals. The 

flowers  ̀ petals have a combination of specular (mirror-like) and diffuse reflections (Moyroud et 

al., 2017; Grant, 1987; Vogelmann, 1993; Hohmann-Marriott, 2014; Barthlott et al., 2017; 

McClendon, 1984; Wehner & Bernard, 1993; Xie et al., 2017; Foster et al., 2014; Fritz et al., 2017). 

The specular reflection generally results from the air-petal interface (Moyroud et al., 2017; Grant, 

1987; Vogelmann, 1993). More interestingly, in some flowers such as Buttercup (Ranunculus 

species), the specular reflection totally dominates the diffuse one, and the flowers  ̀petals, perfectly 

reflect the sunlight toward the reproductive organs (van der Kooi et al., 2017) (Figure 5-2). The 

highly specular reflection in Ranunculus is due to an incredibly smooth epidermal layer (van der 

Kooi et al., 2017; Kooi et al., 2014; Parkin, 1928), and the presence of an air layer  beneath the 

epidermal layer (i.e., between the epidermal and starch layers) (Vignolini et al., 2011; van der Kooi 

et al., 2017). The highly specular reflection has been reported in some other flowers (such as 

Gorteria diffusa) that helps the pollination (Ellis & Johnson, 2010; Vignolini et al., 2012). Even, 

metallic-mirror like surfaces were found in the mirror orchid Ophrys speculum (Barthlott et al., 

2017). The extremely specular reflection in the mirror orchid is due to an unusually smooth cuticle 

layer (ultrastructure) resided on top of a very flat epidermal layer (Vignolini et al., 2012).  

 

Figure 5-2. The specular reflection in flowers` petals. The flower photo of this figure was 

taken by Dekker (accessed 2017). 

5.3 Simulation 

Now let s̀ analyze these two geometries observed in the nocturnal and diurnal flowers 

(hyperbola and parabola), by a ray tracing simulation software, TracePro. The general concepts 

and procedures of ray tracing simulation by TracePro are shown in Figure 5-3. In Figure 5-3, θ is 

θ r

θ i

=(Incidence angle) (Reflection angle)θ i θ r

Specular reflection

Reproductive 

organs
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the solar incidence angle. Light is beam and monochromatic with an average wavelength of 0.5461 

µm (green color light). Concentrators have about 95% specular reflectance (standard mirror), and 

the receiver is a perfect absorber (blackbody). Figure 5-3 also shows the irradiance maps of the 

receiver surface that indicate the pattern and amount of absorbed flux. Both the black-white and 

color maps show the absorbed flux by the receiver that is equal to the incident flux on the receiver, 

as the reflected flux is zero for the perfect absorber. The color map is for better realization, and 

further illustrates the incoming rays, concentrators, and receiver.  

At this point, rather than comparing only parabola and hyperbola, we follow a recent work 

(Madala & Boehm, 2016) and similarly consider all of the four shapes, elliptic, parabolic, V-shape, 

and hyperbolic concentrators. The results are illustrated in Figure 5-4.  

In Figure 5-4 the heights (H) and (geometric) concentration ratios (CR) of the four shapes 

are the same, and each data point shows one particular simulation that illustrates the optical 

efficiency at a specific irradiance angle. This figure implies two main points. First, we can find 

that why most of the diurnal flowers have parabolic shape and most of the nocturnal flowers have 

the hyperbolic shape as one reason. It shows that the parabolic shape is better in terms of optical 

efficiency for perpendicular irradiance angles around noon and the hyperbolic shape is better for 

inclined angles far from noon. Second, it can be understood that why most of the existing studies 

worked on parabolic concentrators. They try to capture the perpendicular irradiations around noon, 

as much as possible. In addition, it should be noted that the parabolic concentrator has easier 

fabrication through the conventional manufacturing processes compared with the hyperbolic 

counterpart.  

Now, we propose 4D printed smart solar concentrators, which specifically in our case, can 

be parabolic as long as parabola beats all other shapes in terms of optical efficiency and can 

reversibly change its shape to hyperbola for another portion of the day that hyperbola has the best 

performance among all the four shapes. To show the gain, let s̀ consider three different scenarios 

(cases) as seen in Figure 5-5. In this figure, we consider the overall (average) optical efficiency 

(i.e., considering all irradiance angles) of a day for three cases. CPC and CHC stand for the 

compound parabolic concentrator, and compound hyperbolic concentrator, respectively. Case 1 

has a non-smart (static) parabolic concentrator for the whole day. Case 2 has a non-smart 

hyperbolic concentrator for the entire day. However, case 3 has a 4D printed smart concentrator 

that is parabolic for a portion of the day (i.e., between the two intersection points in Figure 5-4) 
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and can change to hyperbola for another portion of the day (i.e., outside of the intersection points).  

The overall efficiencies of these three cases have been calculated based on Figure 5-4 by 

considering all the irradiance angles. The overall efficiency of case 3 was obtained by considering 

the efficiency of the CPC between the two intersection points, and the efficiency of the CHC 

outside of the intersection points. It is observed that case 3 improves the overall optical efficiency 

by more than 25% compared to cases 1 and 2. By further optimizations of concentrators, this gain 

can be enhanced as well. It should be noted that the equality of the overall efficiencies of the CPC 

and CHC is accidental. For example, if we change the present geometry of the CHC (in Figure 5-4 

and Figure 5-5) and keep the same geometry for the CPC, then their overall efficiencies would 

become different.  

 

 

Figure 5-3. Concepts and procedures of Ray tracing simulations and optical analysis using 

TracePro. 
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Figure 5-4. Comparison of the optical efficiency in four well-known concentrators, i.e., 

elliptic, parabolic, V-shape, and hyperbolic. All the four concentrators have equal heights 

and concentration ratios (H=10 mm and CR=2.35). (a) shows CAD (Computer-Aided 

Design) models of the four concentrators that were simulated in ray tracing software. (b) 

exhibits the optical efficiency of the four shapes illustrated in part (a), over various 

irradiation angles. 
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Figure 5-5. Overall optical efficiency in three different cases. 

 

Now, we have the proposed idea in our mind and can proceed to further analysis. The studies 

on hyperbolic concentrators, usually try to improve their optical efficiency around noon similar to 

all other types of concentrators. However, we are not worried about the performance of hyperbolic 

concentrators around noon. We are interested in a better performance of hyperbolic concentrators 

far from noon that solar irradiations are inclined. Because our concentrator would be parabolic 

between the two intersection points specified in Figure 5-4 (i.e., around noon) and will become 

hyperbolic far from noon. The optical efficiency around noon is high enough and outside of the 

intersection points needs improvements.  

In the following, we investigate four design principles including height, concentration ratio, 

trapping zone, and entry curvature in CHC to improve its optical efficiency far from noon. After 

that, we demonstrate the design, fabrication and the desired shape-shifting.  
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The first design principle (Figure 5-6), indicates that by increasing the concentrator s̀ height 

in CHC, the optical efficiency decreases at all irradiation angles. By further analysis, the reason is 

unveiled as shown in Figure 5-7. This figure indicates that higher heights would cause ray flux 

reductions arising from more reflections. It should be noted that this result cannot be captured in 

simulations having concentrators with perfect mirror (perfect reflector). In the cases with standard 

mirrors having a reflectivity less than 100% (as shown in Figure 5-3), after each reflection, some 

ray flux is lost, the thing that happens in real applications.  

The second design (Figure 5-8) indicates that higher concentration ratio will usually cause 

lower optical efficiency at all solar incidence angles. Similar results about the effect of 

concentration ratio on optical efficiency were obtained in the literature (Maatallah et al., 2018; Ota 

et al., 2017; Reddy et al., 2014; Kim & Dutta, 2012).  
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Figure 5-6. The effect of concentrator`s height on the optical efficiency of CHC at various 

solar irradiance angles. H= 10 mm is the reference value that was used in Figure 5-4. The 

concentration ratio and head configuration are kept constant at all various heights. This 

result indicates that higher height usually leads to lower optical efficiency at all incidence 

angles. 
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Figure 5-7. The reason of less optical efficiency in concentrators with higher heights by 

flux-based ray color analysis . The concentration ratio and head configuration are the same 

in both cases. 

 

 

 

Figure 5-8. The effect of concentration ratio (CR) on the optical efficiency of CHC at 

various solar irradiance angles. The height is similar in all cases. This result indicates that 

higher CR leads to lower optical efficiency at all incidence angles. 
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Now, we consider the third design principle. We realized that similar to some nocturnal 

trumpet-shaped flowers if we have a concave area near to the receiver (concentrator s̀ exit), the 

optical efficiency can be improved for inclined solar irradiations (far from noon) as seen in Figure 

5-9. For example, at an angle of 45°, more than 10% improvement in optical efficiency is obtained.  

We call this design as “Trapping Zone”. This design will decrease the efficiency of CHC around 

noon. However, it does not matter as the concentrators would be the usual CPC rather than CHC 

in that portion of the day. The gain in optical efficiency can be improved by systematic 

optimizations in separate studies.  

Achieving this geometry will not be a drawback, by using 4D printing process, that provides 

shape-shifting at any level of complexity.  

 

 

Figure 5-9. The effect of our so-called Trapping Zone on the optical efficiency of CHC at 

various solar irradiance angles. The concentration ratio, height, and head configuration are 

kept constant in both of the cases. 
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Finally, our last design principle deals with our so-called “Entry Curvature” in concentrator`s 

head. We found that similar to some trumpet-shaped nocturnal flowers if we have a curvature in 

the entry of concentrators (aperture area), the optical efficiency is improved for inclined 

irradiations far from noon, in which we are interested (Figure 5-10). For example, at an angle of 

45°, about 20% improvement in optical efficiency is obtained. This design will decrease the optical 

efficiency around noon, but it is not an issue as the structure would be CPC around noon. By 

further optimizations in separate studies, the gain would become more. 

 

 

Figure 5-10. The effect of our so-called Entry Curvature on the optical efficiency of CHC at 

various solar irradiance angles. The concentration ratio and height are kept constant in 

both the cases. 

 

5.4 Experiment 

In the following, we demonstrate the design, fabrication and the desired shape-shifting of 

the proposed 4D printed solar concentrator based on the results of Figure 5-4 and Figure 5-5. The 

steps are presented in Figure 5-11. We need a smart concentrator that is parabolic at high 
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temperatures (because it needs to be parabolic around noon) and is hyperbolic at low temperatures 

(because it needs to be hyperbolic far from noon). As seen in Figure 5-11 (c), by considering the 

geometry of the two ends of the concentrator, the proposed concentrator meets this requirement. 

Here, we used a hot plate (CIMAREC, model SP131325) to apply heat. However, the mechanisms 

that provide heat can be explored, separately. For example, heat can be provided directly by 

making a connection between the sunlight s̀ energy and the desired geometry change, 

instantaneously; or by storing the sunlight s̀ energy and releasing it at a designed rate. To this end, 

other smart materials whether thermo-responsive materials with low glass transition temperature 

(𝑇𝑔) or photo- responsive ones should be studied as well.   
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Figure 5-11. Design, manufacturing, and desired shape-shifting. (a) illustrates the design 

process. (b) exhibits the fabrication steps that consist of three processes. Process 1 shows 

one example of the PLA printing on a paper sheet. (c) shows the desired reversible shape-

shifting between hyperbola at low temperatures (consistent with the weather conditions far 

from noon) and parabola at high temperatures (consistent with the weather conditions 

around noon). Scale bars are 3.5 cm. 
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The proposed structure contains three layers including PLA (polylactic acid), paper sheet, 

and silver-chrome. PLA is a thermo-responsive shape memory polymer with a glass transition 

temperature of around 60 ºC. The PLA layer plays the role of the smart (active) layer. The paper 

sheet plays the role of the passive (non-smart) layer. The silver-chrome portion is a coating layer 

serves as the reflector. The PLA layer has been modeled by a CAD software (Solidworks 2016) 

and consists of 6 strips, each of which has 80mm length, 1mm width, and 0.2mm thickness (these 

four numbers were flexible, and other values for the design parameters worked, as well). The 

spacing between adjacent PLA strips is 5mm (2mm to 5mm worked for the desired shape-shifting 

of this structure). The CAD model was converted from STL file to G-code format by Cura 20.01 

software. The PLA filaments (transparent color) were printed onto a paper sheet by using LuzBot, 

TAZ 6 printer that operates with FDM (Fused deposition modeling) method. The printer was used 

with a printing speed of 50mm/s, a bed temperature of 60 ℃, a nozzle temperature of 205 ℃, and 

a resolution of 100 microns (z-direction).  

After printing process and before coating, we need to perform the programming step of the 

structure. Programming is a process in the shape memory polymers, in which we embed a memory 

of the desired shape (by applying mechanical force in the desired direction) in the structure during 

the thermomechanical cycle, which can be activated upon exposure to the right stimulus. Without 

the programming step, the PLA/paper composite will uniformly bend toward the PLA layer after 

heat treatment (exposing to a temperature higher than the 𝑇𝑔 of smart layer for a few minutes and 

then putting at room temperature) as done by Zhang et al. (2016).  

Uniform bending is not suitable for our goal by considering the geometry of concentrators. 

Moreover, without the programming step, the structure would become totally flat at high 

temperatures that again is not suitable. Thus, without the programming step, the structure will have 

a reversible shape-shifting between a uniform bending (arc shape) at low temperatures and flat 

shape at high temperatures. However, with programming, the structure will have the desired shape-

shifting as seen in Figure 5-11 (c). Here, we only need to program one end of the concentrator (the 

end that is close to the receiver) so that this end will bend toward the silver-chrome layer at high 

temperatures (to provide parabola) and becomes flat at low temperatures (to provide hyperbola). 

The low and high temperatures are specified as lower and higher than the 𝑇𝑔 of the smart layer, 

respectively. In the proposed structure, after we reach the suitable shape-shifting by programming 

step, for the subsequent cycles there is no need for programming step and heat is the only 



 

143 
 

requirement for the desired reversible shape-shifting. The coating process was the last step to avoid 

the negative effects of printing and programming steps. For the coating step, we sprayed silver-

chrome (NC.FORMULA, SPRAY PAINT, MONTANA.CANS) on the other side of the paper 

sheet so that the paper sheet was the middle layer as shown in Figure 5-11 (a). 

The mathematical modeling of the solar concentrator of this chapter is similar to the 

mathematical modeling of the wind blade of the previous chapter, as the bilayer structure has the 

same materials discussed in previous chapter. This mathematical modeling makes a connection 

among four main elements involved in 4D printing mathematics: (1) printing paths (which in this 

study are identified by width, length, and thickness of PLA strips); (2) final desired shape (which 

in this study is identified by bending angle of the structure); (3) materials properties (which in this 

study are Young s̀ modulus and thermal expansion coefficient), and (4) stimulus properties (which 

in this study is the heating rate). The effect of the coating layer on bending angle is neglected in 

this work.  

This structure is an example of smart origami (considering the folding concept as local 

bending). The proposed concept and paradigm can be further explored for various cases in future. 

Other smart and passive materials can also be incorporated. The accuracy of the coating layer can 

be improved by other techniques such as E-beam deposition. Solar simulators can be utilized to 

study the total efficiency improvement in solar PV applications. The robustness of the proposed 

structure to environmental conditions can be tuned by adjusting the thickness of the PLA layer to 

produce as much rigid structure as needed. This rigid structure becomes soft only above the 𝑇𝑔, 

during the shape-shifting. The next consideration is related to the degradation of the 4D printed 

structure (Momeni et el., 2016) so that the smart structure will gradually degrade after some cycles 

and the lifespan of a 4D printed structure should be monitored as well. These considerations 

regarding new materials, and fabrication processes can be explored in future studies.  

5.5 Conclusions 

Here, we introduced the general concept of smart solar concentrators inspired by nature 

and enabled by the 4D printing process. Based on the difference that we observed between diurnal 

and nocturnal flowers, we devised a study and showed that this biomimetic inspiration unveiled 

an exciting result in engineering side and could further help us to propose a novel smart solar 

concentrator. The proposed 4D printed solar concentrator is multi-functional and takes advantages 

of both types of flowers discussed above. It shows the desired reversible shape-shifting from 
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parabolic to hyperbolic shape that can improve the overall optical efficiency (day-average) by 

more than 25% compared with the non-smart solar concentrators. In future studies, this efficiency 

can be enhanced by various optimizations. The proposed smart solar concentrator does not rely on 

external sensors and actuators. Moreover, the proposed concept and its design & fabrication 

processes can be scaled up or down (in microarray applications) for a particular need.
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CHAPTER 6  

 CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

In history, some topics are coined and enter into research communities and become popular, 

then after a short period, they lose the broad interests. However, it is expected that 4D printing 

remains attractive and useful for a long period because stimuli-responsive materials have already 

demonstrated their promising applications in various fields. Furthermore, 4D printing helps us to 

locally and precisely encode the stimuli-responsive multi-materials by leveraging the strengths of 

multi-material additive manufacturing and mathematics that are the elements of 4D printing. 

The purpose of this work was to address three main gaps in the emerging field of 4D printing. 

After a comprehensive review of 4D printing and related areas, we identified three important gaps 

in this field that were respectively related to design, manufacturing, and product development 

aspects of 4D printing (details in “Problem statement and dissertation structure”, Section 1.7). Our 

contributions are:  

In Chapter 1, by an extensive review, we systematically studied and organized the 4D 

printing field for future research. We explored, identified, and framed various elements and 

unsought aspects of the 4D printing (e.g., we framed 4D printing mathematics). We provided a 

general guideline for the reader by deconstructing the 4D printing process into several main 

sections. These sections include definition, scope, motivation, shape-shifting behaviors, material 

structures, materials, shape-shifting mechanisms and stimuli, mathematics, and applications.  

In Chapter 2, we revealed three laws that govern the time-dependent shape-shifting 

behaviors of almost all the multi-material 4D printed structures. Our laws starting from the most 

fundamental concepts and ending with general equations are essential for future research in the 4D 

printing field, where the time-dependent behaviors should be comprehended, modeled, and 
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predicted, correctly. The main part of 4D printed structures is the 4th D; however, currently, there 

is no general formula to model and predict this extra dimension. Here, by starting from the 

equilibrium and compatibility conditions and developing some concepts, we derived a bi-

exponential formula that “is needed” for modeling and predicting the 4th D of any multi-materia l 

4D printed structure. We further validated our bi-exponential formula by various experimental 

data from separate studies in the literature and showed that it was a general formula for any type 

of 4D multi-material structure (photochemical-, photothermal-, solvent-, pH-, moisture-, 

electrochemical-, electrothermal-, ultrasound-, enzyme-, etc.-responsive). This generality happens, 

because we built the bases of our bi-exponential formula, comprehensively. The overall results of 

this chapter can serve as general design principles. Future software and hardware developments in 

4D printing can benefit from these results, as well.  

In Chapter 3, first, we underpinned 4D printing as a new manufacturing process and 

identified its unique attributes. Then, as a first attempt, we considered the energy aspect of 4D 

printing. By a thermodynamic analysis, we proved that 4D printing could be the most energy-

efficient manufacturing process, and obtained its theoretical limit.  

In Chapter 4, we demonstrated plant leaf-mimetic wind blade in practice that simultaneously 

is capable of bend-twist coupling shape-shifting. Our proposed smart blade can demonstrate 

reversible BTC, with no need for electromechanical systems and moving parts. Moreover, we 

separated adaptability and flexibility concepts in wind blades, based on which our proposed 

paradigm may solve the flutter instability issue seen in blades capable of BTC through passive 

methods. The above four advantageous blade features were integrated into one structure by the 4D 

printing process. Our multi-functional blade can also lead to eco-friendly wind turbines. Wind 

tunnel tests and performance analysis showed the applicability of the proposed blade.  

In Chapter 5, we introduced the general concept of smart solar concentrators inspired by 

nature and enabled by 4D printing. Our smart concentrator can increase the overall optical 

efficiency by more than 25% compared with its non-smart counterparts. In addition, we introduced 

Trapping Zone and Entry Curvature design principles for solar concentrators enabled by 4D 

printing.  

6.2 Future works 

A market study announced on the Reuters website (Costello, 2018) indicates that 3D printing 

market will have a CAGR (compound annual growth rate) of 30.20% from 2017 to 2022, while 
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4D printing market will have a CAGR of 40.30% from 2017 to 2022. Definitely, the total 

investment on 3D printing is more than 4D printing, at the present time. However, the 

aforementioned statistics compare the growth (the future perspective) between 3D and 4D printing.  

3D printing, by itself, is considered a multi-disciplinary field. Thus, more research areas will 

be involved in the 4D printing field. This diversity can increase the strength of 4D printing.  

Future works can consider several topics. One of the main topics is the compatibility of 

materials in multi-material structures. The materials should form a strong bond at their interface. 

Their bond should also remain strong under stimuli. The other topic is the measurement and 

modeling of critical parameters in the bi-exponential formula such as the time-constants. Some of 

the parameters should be measured for active-passive materials, while models (whether case-

specific or general) can be developed for some of them. Experimental studies can be conducted to 

find the exact values or the ranges of parameters for categories of materials.  

The next topic lies in software and hardware developments and their “integration”. Future 

4D printing software should have some levels of predictions. It can also provide a situation for 

tuning the behavior over time. Future 4D printing hardware developments require some controls 

strategies that can handle multi-material printing. Assume that ten different materials are going to 

be encoded in a single-piece structure, in its various locations (voxels), through ten different 

nozzles that are going to work, simultaneously. As we proposed in chapter 3, future “4D printers” 

need to have an “intelligent head” with a built-in inverse mathematical problem (an integrated 

software/hardware added to current multi-material 3D printers) to predict evolutions over time (the 

4th D). Printability of smart materials is the next work. There are many smart materials; however, 

they need to become printable. Tuning the response speed is also an important topic.  

The next point is related to product development by 4D printing. In fact, 4D printing is not 

a concept in physics, chemistry, or medicine. It is a new manufacturing process, as 3D printing 

(additive manufacturing) is a manufacturing process. Manufacturing is always connected with 

design and their integration leads to a product. Therefore, new products or applications that can 

have unique features by 4D printing, should continuously be considered and addressed. 

Recently, many exciting works have been demonstrated by 4D printing that can hardly be 

achieved by other processes. However, more collaborations between scientists and engineers from 

various fields are needed to move from lab to fab and unveil full potentials of 4D printing. 

 



 

148 
 

 

 

 

APPENDIX A  

Details of our review on 4D printing 

A.1 Shape-shifting behaviors 

The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, 

linear or nonlinear expansion/ contraction, surface curling, and the generation of surface 

topographical features. These features include wrinkles, creases, and buckles. The shapes can be 

shifted from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. It should be noted 

that a structure that shows 1D-to-1D shape-shifting over time is also considered to be a 4D printed 

structure. This is because this structure is initially 3D printed and then evolves over time. Before 

analyzing the shape-shifting types and dimensions, some relevant definitions are presented first. 

A.1.1 Shape-changing vs. Shape-memory materials  

Zhou et al. (2016) explained that shape-shifting materials could be divided into two sub-

classes: shape-changing materials and shape-memory materials. A shape-changing material 

changes its shape immediately after a stimulus is applied, and returns to its permanent shape 

immediately after the stimulus is removed. On the other hand, the shape-memory effect (SME) 

involves a two-step cycle. Step 1 is the programming step in which a structure is deformed from 

its primary shape then held in a metastable temporary shape, and Step 2 is the recovery step in 

which the original shape can be recovered with an appropriate stimulus (Zhou et al., 2015; 2016; 

Sun et al., 2010). The SME can be further classified into two subsets: (1) One-way shape memory 

materials, and (2) Two-way shape memory materials (Zhou et al., 2016). 

One issue with classical one-way SME is irreversibility (Hager et al., 2015). After the 

original shape is recovered, a new programming step is needed to re-create the temporary shape. 

This issue can be avoided with two-way SME, which can alter shape in a reversible manner (Hager 

et al., 2015). This concept is illustrated in Figure A-1. 
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Figure A-1. Illustration of the difference between one-way and two-way shape memory 

materials (Hager et al., 2015). 

 

A.1.2 Dual, triple, and multi shape memory effects  

Shape memory materials belong to the category of stimulus-responsive materials shown in 

Figure 1-4. Hager et al. (2015) described that in shape memory materials, the permanent shape 

was “memorized” by the material and alterations between a permanent and a temporary shape 

occurred. A dual-SME material includes one permanent shape and one temporary shape, while a 

triple-SME material has one permanent shape and two temporary shapes (Figure A-2). Similar ly, 

a multi (𝑛)-SME material has one permanent shape and (𝑛 − 1) temporary shapes (Hager et al. , 

2015). Multi-SME materials were discussed by Xie (2010), Yu et al. (2012), Sun et al. (2010), 

Therien-Aubin et al. (2013), and Li et al. (2016).   

 

Figure A-2. Illustration of dual and triple SME (Hager et al., 2015), where A is the 

permanent shape. 

 
A.1.3 Folding vs. bending 

The difference between folding and bending is nuanced. Bending is a global deformation 

associated with smoother curvatures, while folding is localized deformation that is associated with 
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sharp angles occurring in a narrow hinge area (Ryu et al., 2012; Peraza-Hernandez et al., 2014). A 

series of local folding results in bending (Liu et al., 2016). In other words, bending relates to a 

distributed curvature, whereas folding is more localized (Lauff et al., 2014). These concepts are 

shown in Figure A-3 (Peraza-Hernandez et al., 2014; Liu et al., 2016).  

 

 

Figure A-3. The difference between folding and bending (Liu et al., 2016). 

 
A.1.4 Surface topography 

Surface topography is the representation of local deviations of a surface from a flat plane. 

Typical features include wrinkling, creasing, and buckling, as shown in Figure A-4. These features 

usually occur under compressive loading conditions (Wang & Zhao, 2014) and have been 

quantitatively studied by Wang and Zhao (2014). They allow for an approach based on the 

Maxwell stability criterion to predict the initiation and growth of various types of these features. 

 

Figure A-4. Surface topography: wrinkling, creasing, and buckling (Wang & Zhao, 2014). 

 

A.1.5 Shape-shifting types and dimensions  
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• 1D-to-1D expansion/contraction: 

Raviv et al. (2014) and and Yu et al. (2015) demonstrated the linear expansion/contraction 

from 1D to 1D through a 4D printing process. The research from Raviv et al. is shown in Figure 

A-5. The stimulus is water and the 4D printed structure contains alternating layers of passive discs 

and active hydrogels. After the structure is immersed in water, the hydrogel parts will swell while 

the passive discs remain the same. By adjusting the ratio of expandable hydrogels to passive discs, 

the structure can show linear shape-shifting behavior with a desirable final length (Raviv et al., 

2014). On the other hand, in the structure obtained by Yu et al., the stimulus is heat, as shown in  

Figure A-6. Its linear shape-shifting behavior is obtained based on a shape memory cycle, which 

includes the usual programming and recovery steps for thermoresponsive shape memory polymers 

(SMP).  

 

Figure A-5. The illustration of 1D-to-1D shape-shifting by linear expansion/contraction 

adapted from (Raviv et al., 2014). 

 

 

Figure A-6. The illustration of 1D-to-1D shape-shifting by linear expansion/contraction 

adapted from (Yu et al., 2015). 

 

• 1D-to-2D Folding: 

Tibbits (2014) printed a single strand structure that can transform into the letters “MIT” 

when subjected to water. This is a demonstration of 1D to 2D shape-shifting by self-folding 

mechanism (Figure A-7). There are two types of materials involved in the structure: passive and 

active. The active material is a hydrogel that can swell when immersed in water while the passive 

parts remain intact. This difference provides a stress mismatch and enables the overall shape to be 
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changed toward a specific direction. The position and volume of the active and passive materials 

in the structure can be designed to achieve different shape-shifting directions.  

 

Figure A-7. The illustration of 1D-to-2D shape-shifting by self-folding (Tibbits, 2014). 

 

• 1D-to-2D Bending: 

Tibbits et al. (2014) then created a linear strip structure with alternating sections of the 

passive and active materials described above. This structure can transform into a precise sinusoidal 

shape when immersed in water (Figure A-8). This is a demonstration of 1D-to-2D shape-shifting 

using the self-bending mechanism. 

 

Figure A-8. An illustration of 1D-to-2D sinusoidal shape-shifting by self-bending (Tibbits et 

al., 2014). 

 

• 1D-to-3D Folding: 

Tibbits (2014) also created a single strand structure that could transform into a 3D-cube 

wireframe when subjected to water (Figure A-9). The structure contains the same two materials 

described above. This is an illustration of 1D-to-3D shape-shifting by self-folding mechanism. For 

each wireframe hinge, two passive discs are embedded in the hydrogel part, which connects the 

two passive strands. This is shown in Figure A-10. These two passive discs can limit the maximum 

degree of free shape-shifting. For example, in order to stop the deformation of the two strands at 

90° to create a cubic shape, the two passive discs can be placed to touch each other at this final 

position, which prevents additional folding. The amount of folding is determined by the size of the 

two discs and the distance between them. According to Tibbits (2014), increasing the diameter of 

the discs or decreasing the distance between the discs will reduce the final folding angle amount. 
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Figure A-9. The self-folding of 1D strand to 3D wireframe cube (Tibbits , 2014). 

 

 
Figure A-10. Two passive discs to tune the final folding angle (Tibbits , 2014). 

 

In another study, Tibbits et al. (2014) demonstrated shape-shifting from a 1D strand to a 3D 

structure of Crambin protein, based on the self-folding mechanism (Figure A-11). This shape-

shifting behavior is again enabled by the stress mismatch between the passive and active materials 

from their different swelling properties.   

 
Figure A-11. Shape-shifting from a 1D strand to a 3D structure of Crambin protein based 

on self-folding (Tibbits et al., 2014). 

 

• 2D-to-2D Bending: 

Villar et al. (2013) illustrated 2D-to-2D self-bending in a 4D bio-printed networks of droplets. 

As shown in Figure A-12, a rectangular network could be bent into a circle. This shape-shifting 

behavior is based on the differences in osmolarity of the droplets. The droplets with higher 

osmolarity swell and the droplets with lower osmolarity shrink. The shape continues to change 

until the osmolarity gradient becomes zero. 

 

Figure A-12. 2D-to-2D self-bending in which a rectangular network transforms  into a 

circle. Scale bar, 200 µ𝐦 (Villar et al., 2013). 
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• 2D-to-3D Bending: 

Wu et al. (2016) applied multi-shape memory effect for 2D-to-3D transformations in various 

structures, such as the active trestle (Figure A-13), active helix shape (Figure A-14), active wave 

shape (Figure A-15), smart insect-like structure (Figure A-16), and smart hook (Figure A-17). Heat 

was the stimulus and these shape-shifting behaviors were achieved in the usual shape memory 

cycles with well-known programming and recovery steps. 

 

Figure A-13. Multi-shape memory effect from 2D to 3D by self-bending in a smart trestle 

(Wu et al., 2016). 

 

 

Figure A-14. Multi-shape memory effect from 2D to 3D by self-bending in an active helix 

shape (Wu et al., 2016). 

 

 

Figure A-15. Multi-shape memory effect from 2D to 3D by self-bending in an active wave 

shape (Wu et al., 2016). 
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Figure A-16. Multi-shape memory effect from 2D to 3D by self-bending in a smart insect-

like structure (Wu et al., 2016). 

 

 

Figure A-17. Multi-shape memory effect from 2D to 3D by self-bending in a smart hook 

(Wu et al., 2016). 

 

Zhang et al. (2016) demonstrated 2D-to-3D self-bending behavior by creating a flower-like 

structure. This is shown in Figure A-18(a) and (b). In Figure A-18(c), a complex structure was 

created by tearing paper off the flower-like 3D structure. Heat is the stimulus in this shape-shifting 

behavior. However, their experiment is different from the regular shape memory cycles with 

programming and recovery steps. In this mechanism, there is no need to apply external force at a 

high temperature and cool down to a low temperature while maintaining the previously applied 

force. The shape-shifting behavior is enabled by different thermal expansion coefficients of the 

active and non-active materials.    

 

Figure A-18. Flower-like 4D structure. (a) The original flat sheet. (b) The final flower-like 

structure. (c) A complex structure created by tearing pape r off the flower-like 3D structure 

(Zhang et al. 2016). 
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In another experiment performed by Zhang et al. (2016), a 3D periodic structure was 

achieved from a 2D sheet consisting of four periodic cells in a square arrangement. Each cell 

included one central region and four rectangular neighbors, as shown in Figure A-19. The 

mechanism of this shape-shifting behavior is similar to that exhibited in the previous experiment.  

 

Figure A-19. A 3D periodic structure created from a 2D sheet by self-bending (Zhang et al., 

2016). 

 

Jamal et al. (2013) illustrated a shape alteration for tissue engineering purposes in which a 

2D bio-origami planar pattern changed to a 3D pattern based on the self-bending operation (Figure 

A-20). This shape-shifting is enabled by the different swelling ratios of hydrogels and passive 

materials under water. 

 

Figure A-20. A bio-origami 2D pattern transforms into a 3D pattern by self-bending: (a) 

Schematic illustration of the self-bending of PEG bilayer. (b) A fluorescent micrograph of a 

self-bended bilayer (Jamal et al., 2013). 

 

Villar et al. (2013) illustrated 2D-to-3D self-bending behavior in which a flower-shaped 

network of droplets transforms into a hollow sphere. This is shown in Figure A-21. This shape-

shifting is enabled by the osmolarity gradient of the droplets described earlier. 
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Figure A-21. (a) The experiment related to 2D-to-3D self-bending in which a flower-shaped 

network transforms into a hollow sphere. Scale bar, 200 µm (b) Simulation of (a) (Villar et 

al., 2013). 

 

• 2D-to-3D Folding: 

As shown in Figure A-22, Tibbits (2014) printed a 2D flat plane that could be folded into a 

closed-surface cube, which presented 2D-to-3D shape-shifting behavior based on self-folding. 

This shape-shifting behavior is enabled by a stress mismatch between passive and active materials 

due to their different swelling behaviors under water. 

 

Figure A-22. An illustration of 2D to 3D shape-shifting by self-folding to make a cube 

(Tibbits, 2014). 

 

The same shape-shifting behavior from a 2D pattern to 3D cube based on self-folding was 

also illustrated by Naficy et al. (2017), where both water and heat were required as stimulus. They 

printed bilayer hinges made of active and non-active gels. The active layer is a temperature-

sensitive hydrogel. In a dry condition at room temperature, the cube is flat. When submerged in 

water at room temperature, the active hydrogel swells and the flat structure is folded. However, if 

the temperature of the water is increased above the lower critical solution temperature (LCST) of 
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the active hydrogel, the folded structure unfolds. This occurs because the active hydrogel collapses 

above its LCST (which is mainly due to the breaking of the hydrogen bondings). 

As shown in Figure A-23, a truncated octahedron was created by Tibbits et al. (2014) and 

shows 2D to 3D shape-shifting behavior based on self-folding mechanism. This shape-shifting is 

enabled by the stress mismatch between passive and active materials due to their different swelling 

ratios.  

 

Figure A-23. 2D-to-3D self-folding to make a truncated octahedron (Tibbits et al., 2014). 

 

Ge et al. (2013) showed self-folding transformations from 2D flat sheets to 3D shapes, 

examples of which included an active origami box, pyramid, and airplanes (Figure A-24). These 

shape-shifting behaviors are triggered by heat in the usual shape memory cycles with the regular 

programming and recovery steps. 

 

Figure A-24. An illustration of a 2D-to-3D alteration in which some origami shapes, such as 

an origami box, pyramid, and airplane can be generated by self-folding (Ge et al., 2014). 
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Mao et al. (2015) demonstrated a sequence of self-folding operations for transforming a 2D 

strip into 3D shape, as shown in Figure A-25. This shape-shifting behavior is also triggered by 

heat in the regular shape memory cycles with programming and recovery steps. 

 

Figure A-25. Sequential self-folding from 2D to 3D (Mao et al., 2015). 

 

• 2D-to-3D Twisting: 

Zhang et al. (2016) illustrated helical structures with different spiral degree patterns by 

twisting a 2D sheet and converting it to 3D shapes, as shown in Error! Reference source not f

ound.. This shape-shifting behavior has a similar mechanism to that shown in Figure A-18 and 

Figure A-19. In addition, Zhang et al. (2018) printed the fibers with certain angles to induce  

twisting, and by adjusting the print angles of active fibers, the final twist angle would be changed.  

 

Figure A-26. Helical structures with different degrees of spiral by 2D-to-3D twisting 

(Zhang et al., 2016). 

 

• 2D-to-3D Surface Curling: 

Tibbits et al. (2014) fabricated a surface grid structure with alternating upper and lower 

segments of expandable materials, which could yield a mathematical sinusoidal surface under 

water (Figure A-27). This was a demonstration of 2D to 3D shape-shifting behavior with a surface 

curling feature. This shape-shifting behavior is enabled by a stress mismatch between passive and 

active materials from their different swelling properties under water. 
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Figure A-27. 2D-to-3D sinusoidal shape-shifting by surface curling (Tibbits et al., 2014). 

 

To further illustrate surface curling behavior, hair-like structures were generated from 

vertical linear strips by Tibbits et al. (2014) (Figure A-28). The mechanism is the same as above. 

 

Figure A-28. An illustration of 2D-to-3D hair-like shape-shifting by surface curling (Tibbits 

et al., 2014). 

 
Raviv et al. (2014) illustrated 2D-to-3D surface curling behavior with various configurations 

(Figure A-29). The mechanism is the same as that described above. 

 

Figure A-29. 2D-to-3D surface curling (Raviv et al., 2014). 
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Ge et al. (2013) demonstrated 2D-to-3D shape-shifting behavior in which a flat sheet was 

transformed into a complex and non-uniform curvature shape as a sculpture (Figure A-30). This 

shape-shifting behavior is triggered by heat in the usual shape memory cycles. 

 

Figure A-30. An illustration of 2D-to-3D alteration in which a complex, non-uniform 

curvature sculpture is achieved: (a) Schematic of the flat laminate. (b) The final desired 

shape after the thermo-mechanical experiment (Ge et al., 2013). 

 

• 2D-to-3D surface topographical change: 

In one experiment from Tibbits et al. (2014), mountain and valley features could be 

generated from concentric circles in the presence of an appropriate stimulus (Figure A-31). This 

is an illustration of 2D-to-3D change in surface topography. This shape-shifting behavior is 

enabled by a stress mismatch between passive and active materials from their different underwater 

swelling properties. 

 
Figure A-31. An illustration of 2D-to-3D surface topographical changes where mountains 

and valleys are created on a flat surface (Tibbits et al., 2014). 

 
Tibbits et al. (2014) showed another 2D-to-3D surface topographical change in Figure A-32. 

In this test, three shapes evolved as a function of time (zero minutes, thirty minutes, and twenty-

four hours in contact with stimulus). These sinusoidal topographies are generated based on the 
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different swelling ratios between the active and passive materials. The concentrations of these 

materials vary from the center to the perimeter of the disc.  

 

Figure A-32. 2D-to-3D shape-shifting with surface topography (Tibbits et al., 2014). 

 

• 2D-to-3D Bending and Twisting: 

Gladman et al. (2016) demonstrated a combination of 2D-to-3D bending and twisting 

behavior with complex flower morphologies. This is produced by the biomimetic 4D printing 

process shown in Figure A-33. This shape-shifting behavior is caused by the differences in the 

swelling ratios of active and passive materials under water. 

 

Figure A-33. 2D-to-3D shape-shifting by the combination of bending and twisting with 

complex flower morphologies (Gladman et al., 2016). 
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Ge et al. (2013) also demonstrated 2D-to-3D bending, twisting, and a combination of the 

two, as shown in Figure A-34. This shape-shifting behavior is triggered by heat in the usual shape 

memory cycles with the well-known programming and recovery steps. 

 

Figure A-34. Various 2D-to-3D shape-shifting behaviors (Ge et al., 2013). 

 

• 3D-to-3D Bending: 

Kokkinis et al. (2015) showed 3D-to-3D self-bending in a bio-printed structure, as illustrated 

in Figure A-35. This shape-shifting behavior is triggered by the dissolution of an appropriate 

material into a suitable solvent, which will be further described in the section discussing shape-

shifting mechanisms and stimuli. 

 

Figure A-35. An illustration of 3D-to-3D self-bending in a bio-printed structure (Kokkinis 

et al., 2015). 

 

Mutlu et al. (2015) demonstrated the 3D-to-3D self-bending shape-shifting behavior in a 

prosthetic finger made from thermoplastic elastomer (TPE), as shown in Figure A-36.  
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Figure A-36. 3D to 3D self-bending in a prosthetic finger (Mutlu et al., 2015). 

 

• 3D-to-3D Linear Deformation 

Bakarich et al. (2015) demonstrated 3D-to-3D linear expansion and contraction behavior 

(Figure A-37). This shape-shifting behavior is enabled by linear free swelling or shrinkage of a 

thermo-responsive hydrogel in the cold or hot water. 

 

Figure A-37. 3D-to-3D shape-shifting by expansion and contraction (Bakarich et al., 2015). 

 

• 3D-to-3D Non-Linear Deformation: 

Kuksenok et al. (2016) illustrated the concepts of global and local shrinkage and bending for 

3D to 3D shape-shifting behavior. Two stimuli are needed for the global and local shape-shifting 

deformation (Figure A-38). The left side of Figure A-38 shows 3D-to-3D bending, while the right 

side indicates 3D-to-3D nonlinear shrinkage. The mechanism of this behavior will be described in 

further detail in the section discussing shape-shifting mechanisms and stimuli.  

 

Figure A-38. Illustration of global and local shrinkage  and bending for 3D-to-3D 

alterations by using two different stimuli (Kuksenok et al., 2016). 

A.1.6 Discussions 
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In many applications, a 4D printing process can be used to avoid directly printing a 

complicated 3D shape. Instead, a lower-dimension shape can be printed first and then the other 

dimension(s) can be enabled in the target location with the required performance. Printing a lower-

dimensional object is relatively easy, fast, and has lower manufacturing costs. Furthermore, the 

storage and transportation of lower-dimension objects are more convenient. In the study of 2D-to-

3D shape-shifting behavior from Liu et al. (2016), the addition of the third dimension could add 

desired value or functions to the 2D substrates, which could be printed with various ordinary 

techniques such as inkjet, photolithography, and roll-to-roll printing. 

Even though many shape-shifting types and dimensions have been demonstrated in the 

literature, hybrid shape-shifting behavior is largely unexplored. Future studies can focus on serial 

and parallel combinations of different shape-shifting types and dimensions. For example, a 

complex 3D structure can be generated by a designed series of bending and twisting from a 2D 

substrate. In some conditions, due to space restrictions, twisting shape-shifting is not directly 

accessible until the 2D pattern is first bent into a certain angle. Accordingly, self-bending can be 

designed as the first step of the shape-shifting sequence, which allows the structure to access the 

target location and then perform the desired twisting. 

Sequential shape-shifting behavior can provide more complex actuations. However, all of 

the existing sequential shape-shifting studies are limited to folding deformation, whether it is 

fabricated from a 4D printing process (Mao et al., 2015; Lee et al., 2015; Baker et al., 2016) or 

other manufacturing processes (Laflin et al., 2012; Stoychev et al., 2013; Felton et al., 2013). 

Therefore, other sequential shape-shifting types and their combinations can be studied in future 

research in this area.  

A.2 Applications 

The droplets network illustrated by Villar et al. (2013) can be used as tissue engineering 

substrates or as support for the functionality of failing tissues (Figure 1-19). 

Kokkinis et al. (2015) created smart key–lock connectors (Figure A-39) based on the 

experiments shown in Figure A-35. The walls are flat before swelling. After swelling, convex and 

concave deformations occur in the wall, which leads to a reduction in the internal size of the cuboid 

and finally the interlocking can be achieved. The key-lock connector can be used as a physical 

connection between biological parts in the body, such as tendons and muscle. In addition, it can 
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be used as the selective pick-and-place system in soft robots. Soft robotics is one main area, where 

4D printing can provide benefits (Wallin et al., 2018). 

 

Figure A-39. Smart key–lock connectors that can be employed for various purposes 

(Kokkinis et al., 2015). 

 

Bakarich et al. (2015) fabricated a skeletal muscle-like reversible actuator with high response 

speed based on the principle in Figure A-37. They incorporated it into a smart valve (Figure A-40) 

and controlled the water flow by self-opening of the valve in cold water and self-closing in hot 

water. This work shows one example of 4D printed soft mechanical actuators (Loh, 2016). 

 

Figure A-40. (a) Computer-aided design of the smart valve, (b) Printing of the valve, (c) 4D 

printed valve in cold water, and (d) hot water (Bakarich et al., 2015). 

 

Using a different stimulus, Nadgorny et al. (2016) printed a pH-responsive hydrogel valve 

that demonstrated dynamic and reversible swelling and shrinkage behavior that could regulate the 
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flow rate under various pH levels (Figure A-41). Additionally, this structure could serve as a useful 

platform for pH-responsive membranes (Orlov et al., 2007) and photonic gels (Kang et al., 2007).  

 
Figure A-41. pH-responsive flow regulating smart valve (Nadgorny et al., 2016). 

 
Adaptive metamaterials with tunable bandgaps enabled by 4D printing were reported by 

Zhang et al. (2016) (Figure A-42) and later by Bodaghi et al. (2016) (Figure A-43). In both studies, 

the lattice structure could be reconfigured in a reversible manner, where heat was the external 

stimulus. The fabricated metamaterial shown in Figure A-43 could be applied as planar self-

expanding/shrinking actuators (Bodaghi et al., 2016). The lattice structure demonstrated by Zhang 

et al. (2016) (Figure A-42) worked under the unconstrained-thermo-mechanics interaction 

mechanism, while the one reported by Bodaghi et al. (2016) (Figure A-43) worked under the 

constrained-thermo-mechanics interaction mechanism. 

The mechanical properties of metamaterials depend on their geometrical architectures 

instead of their chemical compositions (Bodaghi et al., 2016). The adaptive metamaterials with 

tunable band gaps are useful for controlling the elastic waves (Zhang et al., 2016). Adaptive 

metamaterials can adjust their stiffness based on changes in geometry while keeping their mass 

constant. Therefore, they can be used as a switch between two different dynamic states (Bodaghi 

et al., 2016). 

 

Figure A-42. Thermo-responsive adaptive metamaterials with tunable bandgaps (Zhang et 

al., 2016). 
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Figure A-43. Thermo-responsive adaptive metamaterials with tunable structures (Bodaghi 

et al., 2016). 

 

Jiang and Wang (2016) fabricated and analyzed elastomer metamaterials (Figure A-44) that 

could be used as reversible shape-shifting connectors. The shape-shifting action is enabled by 

external mechanical loadings. These materials can be applied through the 4D printing process to 

bridge components for flexible twisting or bending (Jiang & Wang, 2016). 

 

 

Figure A-44. Elastomer metamaterials (Jiang & Wang, 2016). 

 

Kuksenok et al. (2016) (Figure A-38) developed a 4D-printed structure that could mimic the 

contraction of an accordion. They also developed a structure to mimic the lateral movement of a 

caterpillar. Their experiments were suitable to manufacture smart components for new adaptive 

devices, such as soft robots (Mao et al., 2016). 

An active origami box, pyramid, and airplanes illustrated by Ge et al. (2014) show that the 

4D printing process is capable of developing smart origami. Origami has attracted a significant 

amount of interest lately in an effort to solve engineering issues related to the packing of large 
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structures into small volumes, for the sake of storage and transportation (Ge et al. 2014). In this 

regard, Kowk et al. (2015) performed the design optimization of origami for freeform surfaces in 

4D printing. In addition, Jamal et al. (2013) (Figure A-20) proposed and fabricated self-bending, 

bio-origami structures that could be used in the field of tissue engineering to analyze the behavior 

of cells and self-bending vascularized tissue structures. In addition, their findings can be applied 

to the field of microfluidic networks (Jamal et al., 2013).  

The regeneration of Crambin protein structures through self-folding of a 1D strand in water 

was demonstrated by Tibbits et al. (2014) to serve as a potential solution for biomedical problems. 

A linear stretching joint, ring stretching joint, and folding joint had been demonstrated by Raviv 

et al. (2014). These joints could be used in other structures in practice. The development of a fully 

compliant prosthetic finger was another application that was demonstrated by Mutlu et al. (2015) 

(Figure A-36). 

Wu et al. (2016) showed several smart structures including a smart hook, smart trestle, and 

a smart insect-like structure so that after the thermomechanical cycle, the structure could undergo 

shape-shifting between a planar shape and the desired hook, trestle, and insect-like shapes. 

A 4D-printed, thermo-responsive, SMP-based, cardiovascular stent was fabricated by Ge et 

al. (2016) (Figure A-45). Stents are important devices to expand the human vessels and has been 

the focus of many studies from different perspectives (Anand et al., 2009; Yakacki et al., 2007; 

Yakacki et al., 2008). Traditional fabrication methods are difficult and time-consuming in 

providing complex geometries with high resolutions required by stents (Yakacki et al., 2007; 

Srivastava et al., 2010). Based on a high resolution PμSL additive manufacturing system, Ge et al.  

(2016) could manufacture the high-resolution stents with various diameters, heights, number of 

joints, ligament diameters, and inter-ligament angles. Similarly, a 4D-printed thermo-responsive 

stent (Figure A-46) was demonstrated by Bodaghi et al. (2016), in which the stent diameter could 

be changed reversibly while the height was kept constant. Both stents (Figure A-45 and Figure 

A-46) worked under the constrained-thermo-mechanics interaction mechanism. Wei et al. (2016) 

incorporated Fe3O4 in a thermo-responsive PLA-based ink and 4D printed a smart stent which 

could be guided magnetically and actuated remotely.  
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Figure A-45. A 4D-printed, thermo-responsive stent which is able to reversibly change its 

diameter and height (Ge et al., 2016). 

 

Figure A-46. A 4D-printed, thermo-responsive stent which is able to reversibly change its 

diameter (Bodaghi et al., 2016). 

 

Zarek et al. (2016) 4D printed a thermo-responsive tracheal stent (Figure A-47), which 

solved two issues related with the current tracheal stents. First, it fits the arcade pattern and 

cartilaginous rings better and provides a stable state, which prevents migrations. Second, the 

shrunk form during insertion prevents the injurious insertion. After being inserted into the body, 

the tracheal stent can expand to the permanent shape with a local increment in temperature (Zarek 

et al., 2016).  
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Figure A-47. 4D printed thermo-responsive tracheal stent (Zarek et al., 2016). 

 

Ge et al. (2016) developed a SMP-based thermo-responsive multimaterial gripper, as shown 

in Figure A-48, which can be applied in drug delivery systems (DDS) (Malachowski et al., 2014).    

 

Figure A-48. 4D-printed shape memory gripper that can reversibly grab and release the 

objects by heat (Ge et al., 2016). 

 

Self-adaptive and multi-functional textiles are some of the potential applications that can be 

improved by 4D printing (Truby & Lewis, 2016). Self-adaptive smart textile structure can be 

adapted to a new size without tensile loading, in contrast to the textiles made of elastic fibers 

(Figure A-49) (Hu et al., 2012). Multi-functional smart textiles are capable of managing the 

moisture or temperature of the body, monitoring wounds, providing skin care, protecting against 

harsh climates, or adaptively changing color of a dress (Hu et al., 2012).  
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Figure A-49. Adaptability of textiles made of SMP vs. the textiles made of elastic fibers (Hu 

et al., 2012). 

 

4D bio-printing (An et al., 2015; Gao et al., 2016) of stem cells directly into scaffolds is a 

significant advancement toward the creation of organs and tissues. The stimulation of stem cell 

differentiation can provide shape-shifting behavior in a 4D printed scaffold (Irvine & Venkatraman, 

2016; Miao et al., 2016; Wei et al., 2016). Laser-based cell printing (Koch et al., 2016) can pave 

the way for 4D bio-printing of cells. 

Recently, a 4D nano-printing process was demonstrated by Carbonell and Braunschweig 

(2016). The bottom-up 4D nano-printing process is expected to be an effective alternative to the 

conventional top-down techniques used for fabricating electronics, bioarrays, and functional 

substrates. Future developments in this area depend on further developments in surface chemistry 

and instrumentation (Carbonell & Braunschweig, 2016). 

The additive construction of buildings can make a significant contribution to the construction 

industry (Labonnote et al., 2016). One of the primary technologies in this field is contour crafting 

(CC) (Khoshnevis, 2004). As Khoshnevis mentioned, the purpose of CC is the automated 

construction of one house or a colony of houses in a single run using layered manufacturing 

techniques (Figure A-50). CC is one of the few feasible methods for construction on planets in 

outer space, such as Mars (Khoshnevis, 2004). On the other hand, 4D printing can fabricate smart 

elements as building blocks that can be self-assembled after printing. Therefore, as Labonnote et 
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al. (2016) indicated, 4D printing and contour crafting can effectively complement each other to 

pave the way for the human colonization on Mars. One of the main challenges in 4D printed 

structures is that after a certain number of shape-shifting cycles, the 4D printed structure cannot 

effectively recover its original shape and degrades (Raviv et al., 2014). In addition to the 

degradation modeling and lifespan monitoring of 4D printed structures (Momeni et al., 2016), 

future studies should focus on the improvement of their lifespan.  

 
Figure A-50. Automated construction of a building in a single run using contour crafting 

technology (Khoshnevis, 2004). 

In summary, 4D printing process applications are summarized in Figure A-51, along with 

the associated literature. 
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Figure A-51. Applications of the 4D printing process. 

 

  

 

 

4D printing applications

Demonstrated applications Potential applications

• Zhang et al. (2016)

• Bodaghi et al. (2016)

• Jiang and Wang (2016) 

Adaptive meta-

materials

Artificial Crambin 

protein structure Tibbits et al. (2014)

Construction on  Mars along 

with Contour Crafting  Labonnote et al. (2016)

4D nanoprinting Carbonell and 

Braunschweig (2016)
Smart valve to control 

the hot and cold flow Bakarich et al. (2015)

Smart valve to control 

the acidic or basic flow 
Nadgorny et al. (2016)

Drug delivery systems  Ge et al. (2016)

Smart textiles   Truby and Lewis (2016)

Laser-based cell printing Koch et al. (2016)

Origami structures Ge et al. (2014)

Bio-origami Jamal et al. (2013)

Stent 
• Ge et al. (2016);  Bodaghi et al. (2016)

• Zarek et al. (2016); Wei et al. (2016)

Adaptive pipes Campbell et al. (2014)

Self-healing hydrogels Taylor et al. (2016)

Self-assembly at large scales 

and in the harsh environment
Tibbits et al. (2014)

Soft robots 
• Kuksenok et al. (2016)

• Kokkinis et al. (2015)

Smart gripper Ge et al. (2016)

Smart key–lock connectors Kokkinis et al. (2015)

Adaptive joints Raviv et al. (2014)

Adaptive Scaffolds
• Miao et al. (2016)

• Wei et al. (2016)

Tissue engineering 

• Villar et al. (2013)

• Khademhosseini & Langer (2016)

• Jung et al. (2016)

Error-correct and self-

repairing structures
Tibbits (2014)
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