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ABSTRACT

The relationship between local order and global structure is not often a straightfor-

ward one in systems on the nano- and microscale in which interactions are usually

weak and thermal fluctuations drive self-assembly. Moreover, structure in systems for

which particle symmetry is broken is difficult to describe theoretically on any level

higher than a pairwise one, due to the prohibitively high-dimensional nature of the

relevant configuration space. However, a thorough understanding of local structure in

all phases of soft matter systems is necessary to gain a complete picture of the physics

of these systems and to leverage them for technological and materials science appli-

cations. In this dissertation, I investigate local structure in systems of anisotropic

particles mediated exclusively by entropy maximization. Specifically, I explore the

role of local structure in crystallization and its failure by tackling two related lines of

inquiry.

First, I study the interplay between particle shape and spherical confinement in

systems of hard polyhedral particles, to examine locally dense clusters of anisotropic

particles and their possible connection to preferred local structures during unconfined

self-assembly. I use Monte Carlo simulation methods to find putative densest clusters

of the Platonic solids in spherical confinement, for up to N = 60 constituent particles.

I find that a spherical boundary suppresses the packing influence of particle shape and

produces a robust class of common cluster structures. I also find a range of especially

dense clusters at so-called “magic numbers” of constituent particles, and discover

that a magic-number cluster of tetrahedra is a prominent motif in the self-assembled

structure of tetrahedra, the dodecagonal quasicrystal.

xii



Second, I explore the influence of local structure in systems of hard polyhedral

particles that fail to crystallize. I use a shape landscape, or a two-dimensional space

of particles that are continuously interrelated by a set of shape perturbations, to

investigate why slight changes to particle shape sometimes result in the vitrification

rather than crystallization of dense monatomic systems of these particles. I show

that assembly failure in these systems arises from a multiplicity of competing local

structures, each of which is prevalent in ordered phases crystallized by particles that

are only slightly different in shape. Thus, systems that fail to assemble do so because

they cannot crystallize into any one ordered phase.

Third, I demonstrate that fragility in these systems, a technologically relevant

measure of glass-forming ability, can be tuned by slight changes to particle shape. I

relate this finding to simulations of molecular systems in which fragility is linked to

intermolecular bond angle.

Finally, I detail the methods and applications of software I developed to detect

multi-particle local structure in real space. This software is open-source and in current

use, and has already been utilized for local structure detection in several papers by

myself and others.

I conclude this dissertation by providing an outlook on the implications and future

directions of my work.
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CHAPTER I

Introduction

1.1 Self-assembly in soft matter

Soft condensed matter is a fairly modern classification for materials whose length

scales lie in the nano- to microscopic range, and whose energy scales lie within the

range of a few kBT (where kB is Boltzmann’s constant and T is the temperature of

the system) [1]. These two criteria have profound implications for the phase behavior

of soft matter – since the strength of the interaction between system components

is on the order of the thermal energy of the system, thermal fluctuations have the

ability to spontaneously drive structural evolution. Self-assembly typically occurs on

multiple length scales, and can result in surprisingly complex structures. Examples

of soft matter include polymer melts, colloidal solutions, liquid crystals, gels, glasses,

foams, membranes, and micelles [1].

It has been shown computationally, experimentally, and theoretically that the

size, shape, and interactions of self-assembling building blocks greatly affect the re-

sulting structure. Specifically, breaking the symmetry of the building block, rendering

it anisotropic in some way (e.g. through faceting, surface patterning, or changes to

aspect ratio), enables the assembly of a wide variety of target structures with sym-

metries and hierarchical features not ordinarily achievable by spherical or otherwise

isotropic building blocks alone [2]. Recent experimental advances in (for example)
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selective deposition, surface templating, emulsion drying, and lithography have made

the prospect of anisotropic particle assembly an increasingly intriguing one [2–15].

Prediction and control of self-assembly in soft matter systems of anisotropic build-

ing blocks is not straight-forward. Nevertheless, precise control over structure on the

nano- and micro-scale enables the development of novel materials for optical cloak-

ing [16], information storage [17], computation on the mesoscale [18], adaptation [19]

and self-replication [20], drug delivery [21], and tissue scaffolding [22], among other

applications. Even the failure of materials to organize in a predictable or periodic

fashion is leveraged in a variety of current technologies, including rewritable data

storage devices [23], fiber optic networks [24], and innumerable other applications

that utilize glass. Thus, control over the failure of assembly is equally useful. More

generally, the quest to predict and understand soft matter systems is a playground for

the development of statistical mechanical tools, both analytical and computational,

due to the typical size of systems under consideration and their classical (rather than

quantum) nature.

1.2 Local structure

Control over self-assembly requires a comprehensive understanding of the fluid or

liquid state of any system, as this is often the phase through which useful crystalline

structures are accessed in experiments and in nature. Fluids have traditionally been

treated in the formalism of statistical mechanics as isotropic media, characterized fully

by their pair correlation function g(r) [25]. Indeed, this treatment has historically had

major success in describing phase behavior, phase transitions, and other macroscopic

phenomena in a variety of systems [25]. However, the treatment of any fluid as a

spatially homogeneous medium is an oversimplification. As one may imagine, systems

with components that interact, whether those interactions are isotropic or anisotropic,

naturally have preferred local structures. These local arrangements vary in size and
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shape, and depend on the governing interactions. Accordingly, a full treatment of

the self-assembly of any system should include a consideration of local structure in

its fluid.

Local structure is already presumed by many in the glass community to play an

important role in the vitrification of supercooled liquids or supercompressed fluids

[26]. By definition, supercooled liquids are below the melting temperature (or su-

percompressed fluids above the crystallization density), so it is reasonable that local

structure might exist and persist in these systems. Work on the structure of su-

percooled liquids began over 50 years ago, when Sir Charles Frank showed that an

icosahedral arrangement of 12 particles around a central one is the most energetically

preferred in a theoretical model for simple monatomic liquids [27]. Bernal later con-

sidered general structures prevalent in random dense packings of hard sphere liquid

models, and work has since continued unabated to identify other prevalent structures

in supercooled metallic [28] and other [26] systems.

Whether or not local structure persists into the fluid regime is a topic of greater

debate and fewer systematic investigations. Evidence of this persistence is rather

incontrovertible in systems with strong or directional interactions, including notably

tetrahedral liquids like water and silicon [29]. There have been some attempts to treat

local structures in the fluid, and their influence on crystallization, in a formal sense

[30–32], including the proposal of an idea that there may be a loose three-dimensional

corollary to the two-dimensional hexatic phase [33], but these ideas have fallen out

of favor. Crystallization is still primarily explained through Classical Nucleation

Theory, in which crystalline nuclei form spontaneously out of a homogeneous fluid

background rather than resulting from any rearrangement of local structures [34].

However, Tanaka et al. [35] posit that bond-orientational ordering and formation

of local structures, in addition to density-based crystalline ordering, is required to

fully understand crystallization from the fluid. Those ideas will be explored more in
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Chapter IV of this dissertation.

1.3 Local dense packing in hard anisotropic fluids

In systems where interactions between particles are anisotropic, the identifica-

tion of significant local structure in the fluid is less analytically tractable, due to the

several-fold increase in dimensionality needed to characterize particle arrangements.

Recent progress has been made, however, in theoretical treatments of preferred local

structure in “hard” systems, or those governed solely by entropy. In these systems,

there are no forces between particles, and instead their interactions are over the very

short length scales relevant to volume exclusion. Free volume, then, becomes the rele-

vant currency in these systems: the free volume available to any given particle dictates

its vibrational entropy. Recent works by van Anders and Glotzer et al. considered free

volume exchange in monodisperse systems of anisotropic hard particles, and found

that systems maximizing their entropy via this mechanism exhibit preferences for

certain pairwise configurations [36, 37]. These preferences can be expressed through

the concept of statistically emergent forces, termed “directional entropic forces” [38].

Directional entropic forces can be quantified via a so-called potential of mean

force and torque (PMFT), F12 (∆ξ12), associated with a pairwise configuration ∆ξ12

between any two particles in the system. F12 is implicitly defined as follows [37]:

Z ≡
∫
d∆ξ12e

−βF12(∆ξ12) (1.1)

Z is the partition function (where we are ignoring overall constants due to in-

tegration over momentum terms and normalization by any factors proportional to

Planck’s constant), and β ≡ 1/kBT . F12 (∆ξ12) controls the contribution of the state

characterized by ∆ξ12 to the partition function; when it is lower, the contribution is

greater, implying that the state characterized by ∆ξ12 contributes more microstates
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to Z.

Van Anders et al. explored the physical meaning of F12 (∆ξ12) by decomposing

it into contributions from (i) the particle pair with configuration ∆ξ12 and (ii) the

surrounding sea of particles. Mathematical detail can be found in Appendix A; in

general, the authors found that F12 is minimized by some ∆ξ12 in a density-dependent

manner according to a trade-off between increasing the free volume available to the

particle pair, thereby increasing the configurational entropy of the pair, and packing

the pair in a locally dense fashion, thereby increasing the configurational entropy of

the sea of particles surrounding the pair. If particles are highly faceted, for example,

they tend to align face-to-face with their neighbors at suitably high densities, as this

pair arrangement strikes the best balance between the aforementioned free volume

considerations. The authors then computed F12 (∆ξ12) for a variety of hard-particle

systems, and showed that even at intermediate packing fractions it has relative min-

ima that can be on the order of a few kBT . Thus, directional entropic forces associated

with specific pair configurations seem to be powerful enough to direct self-assembly

in certain systems of hard anisotropic particles.

1.4 Outline

On a pairwise level, then, locally dense packings are of significant import in the

physics of self-assembly of hard particle systems. Van Anders et al. hypothesize that

assembly in these systems amounts to nature solving a few-body problem, i.e. the

maximization of the local density of a subset of particles [37].

This thesis tackles two broad lines of inquiry related to this hypothesis. The first

is, how does the interplay between hard particle shape and spherical confinement in-

fluence cluster structure? We were inspired to ask this question by considering locally

dense packing on intermediate length scales, i.e. for several particles. We hypothesize

that a spherical volume is a zeroth-order approximation of the local environment for
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a dense fluid on intermediate length scales, and generate a library of dense cluster

structures of hard, faceted particles, packed inside spherical containers, to serve as

potential candidates for motifs found in associated hard particle systems during self-

assembly. Moreover, dense particle packing in a confining volume generally remains

a rich, largely unexplored problem, despite applications in blood clotting, plasmon-

ics, industrial packaging and transport, colloidal molecule design, and information

storage. We use Monte Carlo simulation methods to find putative densest clusters of

the Platonic solids in spherical confinement, for up to N = 60 constituent polyhedral

particles. We find that densest clusters exhibit a wide variety of point group symme-

tries. For many N values, icosahedra and dodecahedra form clusters that resemble

sphere clusters. These common structures are layers of optimal spherical codes [39]

in most cases, a surprising fact given the significant faceting of the icosahedron and

dodecahedron. We also investigate cluster density as a function of N for each particle

shape, and find especially dense clusters at so-called “magic numbers” of constituent

particles. Finally, we find that the densest tetrahedron cluster across all investigated

values of N is also a prominent motif in the self-assembled structure of tetrahedra,

the dodecagonal quasicrystal. This suggests that, for tetrahedra, self-assembly may

favor the formation of local structures that pack densely inside a sphere.

Our second line of inquiry relates to how local structure changes as hard particle

shape is perturbed. In particular, we are interested in why slight changes in parti-

cle shape, which necessarily influence local structure, sometimes result in assembly

failure and consequent glass formation, rather than crystallization. We explore the

role of locally favored structural motifs in glass formation by examining the glass

transition in an extended alchemical space, or a space containing systems with mod-

ified constituent particle attributes. We investigate a family of monatomic systems

of hard particles of related polyhedral shapes via Monte Carlo simulation, and show

that assembly failure in these systems arises from a multiplicity of competing local
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particle environments, each of which is prevalent in – and predictable from – nearby

ordered structures in alchemical space. We provide evidence that competition among

local particle environments prevents crystallization by artificially tuning the presence

of competing motifs to promote or disrupt crystallization. Additionally, we show that

systems escape regions of competition and consequently crystallize when allowed to

thermodynamically explore alchemical space via alchemical Monte Carlo [40].

Finally, we demonstrate that fragility, a technologically relevant measure of glass-

forming ability, is dependent on system location in alchemical space, and thus can be

tuned by changing particle shape. This study demonstrates the power of considering

alchemical space in questions of local structure, self-assembly and its failure; in ad-

dition, we contribute to the body of literature probing the long-sought nature of the

relationship between structure and dynamics in glass-forming systems.

The last chapter in this thesis details software I developed over the past few years

to identify local structure in simulation trajectories. I discuss a variety of applications

of that software, both in my projects and in other lab members’ research.
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CHAPTER II

Methods

2.1 Simulation methods

2.1.1 Monte Carlo sampling

Equilibrium statistical mechanics, at its core, is a quest to compute the parti-

tion function of any given system. For most biological or materials systems, whose

phase space is extraordinarily high in dimension, the partition function is analytically

intractable, and must instead be sampled computationally. Moreover, since the parti-

tion function contains states that are orders of magnitude more probable than others,

it must be sampled intelligently, in a non-uniform manner, to compute ensemble av-

erages that are accurate and computationally efficient [41]. Monte Carlo importance

sampling is one such intelligent sampling method. In essence, microstates of the sys-

tem are randomly sampled with a probability proportional to their Boltzmann factor.

This ensures that the system is sampled according to its underlying statistical me-

chanical probability distribution, and that more probable states are sampled more

often.

Particle positions and orientations evolve during a Monte Carlo simulation ac-

cording to a trial-move update scheme, wherein particles are chosen randomly and

then translated or rotated (in the case of non-spherical particles) with equal proba-
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bility by a random amount within some range imposed by the size of the move type.

Particle rotation and translation are decoupled from each other, to enable the most

agnostic sampling of phase space. Additionally, move sizes are sometimes tuned over

the course of the simulation, to facilitate an exploration of phase space that is com-

putationally efficient. Any move from state o to state n is accepted with a probability

acco→n given by the standard Metropolis criterion [41]:

acco→n = min

(
1,
e−βU(n)

e−βU(o)

)
(2.1)

U(s), where s = {o, n}, is the potential energy of state s. This acceptance proba-

bility formulation ensures that the system obeys detailed balance, where the average

number of accepted trial moves from state o to state n equals the average number

of accepted trial moves from state n to state o [41]. In practice, for hard particle

systems with no interactions aside from excluded volume, this means that moves are

rejected if they result in any particle overlaps (since this results in an infinite energy

for the configuration), and accepted otherwise (since this results in zero energy for

the configuration).

2.1.2 The isobaric ensemble with confinement constraints

In the chapter of this thesis that discusses results for packing clusters of polyhedral

particles in spherical confinement, we use traditional Monte Carlo sampling methods

in the isobaric ensemble, with the additional constraint that we reject moves if they

result in any particle overlaps or the presence of a portion of any particle outside

the spherical container. Due to their faceting, polyhedra are fully encased in the

container if all their vertices are inside the container. Spheres are fully encased in the

container as long as their radial distance from the container center remains within a

small tolerance of (Rcirc −R), where Rcirc is the container radius and R is the particle

radius.
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Container resize moves occur with a probability equal to 1/ (N + 1), where N

is the number of particles in the system. During the run, simulation parameters are

tuned such that particle translation, particle rotation, and container resize acceptance

rates are approximately 0.2. (We found an acceptance rate of 0.2 to be near optimal in

similar Monte Carlo implementations, so we adopted this as a convention.) Container

shrinking moves are always accepted provided that they do not cause any particle

overlaps and that confinement is maintained, whereas container expansion moves are

accepted with a probability

Po→n = exp [−βp (Vn − Vo) +N log (Vn/Vo)] (2.2)

where Vn is the new container volume, Vo is the old container volume, and p is the

pressure of the system. This criterion can be derived by considering the analytical

form of the partition function in the isobaric ensemble in the thermodynamic limit,

where a small subsystem is considered to be in equilibrium with a larger bath of

ideal gas particles at some pressure p, and volume exchange between the subsystem

and the bath occurs in equilibrium [41]. In our case, the small subsystem is the

spherical container and its confined particles. Container resizing consists of rescaling

the container radius and is accompanied by identical rescaling of all particle positions

with respect to the container center.

2.1.3 The alchemical ensemble

In the section of this thesis pertaining to the role of local structure in assem-

bly failure, we also use Monte Carlo sampling in the so-called alchemical ensemble,

as developed and utilized in earlier works [40, 42–44]. This sampling technique is

implemented in a branch of our in-house HPMC software package [45].

This method extends the partition function in the following manner:
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Z =
∑
σ

e−β(Hσ−µNα) (2.3)

σ counts over microstates, Hσ is the Hamiltonian evaluated for microstate σ,

and the two additional parameters µ and α extend the ensemble. α, the “alchemical”

parameter, is a generalized displacement that represents a modified particle attribute.

(In the discussion that follows, all systems are assumed monatomic, and all particles

have identical values of α.) α is scaled by N , the number of particles in the system,

so that it is an intensive variable. µ is the generalized force associated with this

generalized displacement; it is the “alchemical potential” of the system. It gives the

change in free energy that the system experiences when α changes. The sum over

microstates in this ensemble is then:

∑
σ

=

∫
dαdrNdpNdqNdLN (2.4)

The integral contains the usual position and momentum terms, with additional

sums over orientations and angular momenta since we typically sample particles of

anisotropic shape, and an additional sum over the alchemical parameter α. We can

integrate out over momenta and write the partition function as

Z ∼
∫
dαdrNdqN(det Iα)N/2e−β(Uα−µNα) (2.5)

The integral over angular momenta produces the term (det Iα)N/2 inside the in-

tegral. It cannot be taken outside of the integral because the moment of inertia

tensor, Iα, now may depend on the alchemical parameter α. The probability of ob-

serving a microstate with alchemical parameter α is thus proportional to (det Iα)N/2.

(Note also that the potential energy of the system, Uα, may depend on the alchemical

parameter.)

Importance sampling in this extended ensemble now must include random moves
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in α. We can use a Metropolis-like acceptance probability for moving from alchemical

parameter αo to alchemical parameter αn that satisfies detailed balance:

acco→n = min

(
1,

(det Iαn)N/2e−β(Uαn−µNαn)

(det Iαo)
N/2e−β(Uαo−µNαo)

)
(2.6)

In the simulations in this thesis, we set µ = 0; effectively, we sample the mi-

crostates for which the free energy is a minimum with respect to α. Then, the system

is free to move about in alchemical space without bias to minimize its free energy

via standard configurational changes. In this case, the Metropolis-like acceptance

probability is written as:

acco→n = min

(
1,

(det Iαn)N/2e−βUαn

(det Iαo)
N/2e−βUαo

)
(2.7)

2.2 Characterization of local particle environments

Throughout my dissertation, I developed several methods of characterizing local

environments in systems of anisotropic particles. These methods target local struc-

ture on a variety of length scales, and operate on the set of particle positions and

orientations. Details of the methods are fleshed out in the following sections.

2.2.1 Pairwise configurations

I analyzed pairwise configurations of particles when characterizing the local struc-

ture of hard particle glass-formers as detailed in Section IV. A configuration of two

anisotropic particles can be fully characterized in a rotationally and translationally

invariant manner if the particles’ relative displacement (a vector) and relative misori-

entation (a unit quaternion) are captured. Thus, six scalars are required to fully char-

acterize a configuration of just two particles. This is already a rather high-dimensional

space; below, we characterize pairwise configurations using just two scalars, in an ef-
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fort to lower this dimensionality. The particle pairs we characterize via this method

are pairs of truncated polyhedra, where polyhedron faces, truncated edges, and trun-

cated vertices are all particle facets. To identify the motif composed of particle i and

its nearest neighbor, particle j, we use two parameters. The first is associated with

the “connection type” (cij, hereafter c) between i and j. We say i is “face-connected”

(c = f) to j if particle i’s face is the closest feature to the connection vector rij (from

the center of i, ri, to the center of j, rj), i is “edge-connected” (c = e) to j if i’s (trun-

cated) edge is closest, or i is “vertex-connected” (c = v) to j if i’s (truncated) vertex

is closest to the connection vector. To calculate the connection type, we consider first

the non-truncated polyhedron ipoly located at ri and oriented identically to i. We

find the unit vectors {f̂i} that point from ri to the faces of ipoly, the unit vectors {êi}

that point from ri to the edges of ipoly, and the unit vectors {v̂i} that point from ri

to the vertices of ipoly. We then find cos γf ≡ max(r̂ij · f̂i), cos γe ≡ max(r̂ij · êi), and

cos γv ≡ max(r̂ij · v̂i). Motifs are categorized as face-connected if γf = min(γf , γe, γv),

or edge- or vertex-connected if γe or γv are the minimum angles, respectively.

Motifs are further distinguished by their relative misorientation θij (hereafter θ),

the angle of rotation required to orient j identically to i. In calculating θ, we take par-

ticle symmetry into account: each θ is actually the minimum of the set of equivalent

angles {θ̃}, found by permuting through all possible pairs of equivalent particle orien-

tations according to the particles’ rotation group. This group is the chiral tetrahedral

point group 23 or chiral octahedral point group 432 for the polyhedra characterized

by this method.

We categorize pairwise motifs by combining the connection type c with the relative

misorientation θ via a joint discrete probability distribution Pobs(c, θk):

Pobs(c, θk) =
Nobs(c, θk)∑

c

∑nbins
k=1 Nobs(c, θk)

(2.8)
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Nobs(c, θk) is the number of particles observed with connection type c and misori-

entation θ in a bin centered at θk with some width ∆θ. There are nbins such bins for

each connection type.

To determine statistically significant trends in this distribution, we must normalize

by the equivalent joint discrete probability distribution Prand(c, θk) for an “ideal gas”

of non-interacting particles of the same symmetry group. The connection type is

unrelated to the misorientation for non-interacting particles, so these probabilities

can be considered separately: Prand(c, θk) = Prand(c)Prand(θk). The negative log

of the joint probability distribution, normalized with respect to an ideal gas, is an

especially useful quantity:

− logP (c, θk) = − log
Pobs(c, θk)

Prand(c, θk)
(2.9)

For each connection type, logPrand(θk) displaces − logPobs(c, θk) in the same

misorientation-dependent manner, while logPrand(c) displaces− logPobs(c, θk) by some

connection-dependent scalar over all misorientations. When − logP (c, θk) < 0, we

observe a connection type c and misorientation θk that is more probable than in the

ideal gas. Different pairwise motifs can be identified according to θ ranges that cor-

respond to local minima, or basins, in − logP (c, θk). In the remainder of this thesis,

the discrete θk is labeled as the continuous θ for simplicity.

We computed the random θ probability distribution Prand(θ) for both chiral tetra-

hedral and chiral octahedral point groups by generating 10 million random pairs of

orientations and computing the minimum rotation angle θ between them with respect

to the associated underlying rotation group, as detailed earlier. We computed Prand(c)

for the chiral tetrahedral point group by generating 2.5 million pairs of particles of

appropriate symmetry with random orientations and a random unit displacement
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A B

Figure 2.1:
Random θ probability distributions Prand(θ) for the (a) chiral tetrahedral
point group and (b) chiral octahedral point group.

vector between them. We then determined connection types for these pairs in the

manner detailed above. Prand(c) for the chiral octahedral point group was not ulti-

mately necessary for our analysis, but could be found in a similar manner. Fig. 2.1

shows the generated Prand(θ) for the chiral tetrahedral and chiral octahedral point

groups.

We note that analytical tools developed by the polycrystalline materials commu-

nity [46–48] can be brought to bear on this problem, since Prand(θ) for any underlying

particle symmetry group maps to the random grain boundary misorientation angle

distribution for that same underlying (crystal grain) symmetry group. For our pur-

poses, however, it was sufficient to numerically calculate Prand(θ). See Appendix D

for more detail regarding analytical treatments of misorientation spaces.

2.2.2 Multi-particle configurations

Throughout my dissertation, I also found it useful to characterize particle envi-

ronments using particle position data only. Particle environments in this case are

defined as sets of vectors pointing from the center of each particle in the system to

the centers of some number of its nearest neighbors. Multi-particle configurations

defined in this way can be analyzed in real space and in Fourier space.
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2.2.2.1 Analysis in real space

I utilized a real-space analysis of local particle environments to characterize crys-

talline domains and other motifs of interest in various systems in several projects over

the course of my thesis. This analysis uses an “environment matching” scheme, which

I developed and implemented in freud [49], our group’s open-source simulation anal-

ysis package. Applications of the analysis, by myself and various collaborators, are

discussed in detail in Section VI. The scheme is described in the following paragraphs.

We define particle i’s environment as the set of vectors {rim}, where rim points

from the center of particle i to the center of particle m, and m is an index over

i’s M nearest neighbors. Particle j’s environment is defined as the set of vectors

{rjm′}, where rjm′ points from the center of particle j to the center of particle m′

and m′ loops over j’s M nearest neighbors. We then compare the environments of

particle i and particle j by attempting to match these sets of vectors: j’s environment

“matches” i’s environment if we can find a rotation R and a one-to-one mapping such

that |rim − Rrjm′ | < t for every mapping pair (m,m′) for some threshold t. This

mapping can either be rotationally sensitive, in which case R is set to the identity

Î and identical environments of different orientations are regarded as distinct, or

rotationally invariant, in which case an attempt to find the rotation R that minimizes

the root-mean-squared displacement (RMSD) between the environments is made prior

to the attempt to find the more restrictive mapping according to the threshold.

The problem of finding R and an appropriate one-to-one mapping is very non-

trivial, and is known as the “registration” problem in various image recognition com-

munities. Wolfgang Kabsch developed a solution to one half of this problem in 1976

[50]: the eponymous Kabsch algorithm finds the optimal rotation to minimize the

RMSD between two labelled sets of points centered about the origin. In other words,

each point in each set is distinguishable and labelled by its position in the set, and the

RMSD minimized by the Kabsch algorithm is an average over every pair of points at
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the same position in each set. The real issue in finding the RMSD between indistin-

guishable point sets, then, is one of permutation. One could, theoretically, compare

every permutation of one point set against the other point set and use the Kabsch

algorithm to find the minimum RMSD across all permutations. However, the number

of permutations of N points is N !, meaning that, very quickly, the number of calcu-

lations required to exhaustively solve the problem combinatorially explodes. Paul M.

Dodd, a member of our group, implemented a brute-force solution to the registration

problem that I incorporated into our environment-matching scheme – I will briefly

outline this solution and the Kabsch algorithm in the following paragraphs.

First, I will outline Wolfgang Kabsch’s solution to minimizing the RMSD between

two labelled sets of points. This explanation largely follows that laid out by Ly-

dia E. Kavraki in her online bioinformatics class “Geometric Methods in Structural

Computational Biology” [51].

Let {xn} and {yn}, n = 1 . . . N , be two sets of vectors centered at the origin. Let

U be a rotation matrix that acts on {xn}. The mean-squared displacement between

these vector sets is

E =
1

N

∑
n

|Uxn − yn|2 (2.10)

We can re-write the above as a matrix equation, where X and Y are 3×N matrices

of all vectors in {xn} and {yn} respectively:
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NE =
∑
n

3∑
k=1

(UX − Y )kn (UX − Y )kn

=
∑
n

3∑
k=1

(UX − Y )Tnk (UX − Y )kn

= Tr
[
(UX − Y )T (UX − Y )

]
= TrXTUTUX + TrY TY − 2 TrY TUX

= TrXTX + TrY TY − 2 TrY TUX (2.11)

The fourth line follows from the third by noting that the trace of a matrix equals

the trace of its transpose. Minimizing E, therefore, means choosing U such that

TrY TUX is maximal. This quantity can be thought of as the overlap between the

rotated set of vectors UX and the unrotated set Y . If bra-ket notation is easier to

intuit (as it is for me), each element of the trace is equivalent to 〈yn|U |xn〉. We

find U by performing a singular value decomposition XY T = V SW T , where V and

W T are orthonormal matrices of the left and right eigenvectors of XY T , and S is a

diagonal matrix of its eigenvalues in decreasing order.

TrY TUX = TrXY TU

= TrV SW TU

= TrSW TUV (2.12)

Since S is a diagonal matrix, the above trace is a (weighted) sum over the diagonal

elements of W TUV . W TUV is an orthonormal matrix because it is a product of

orthonormal matrices, and elements of S are never negative, so the trace is maximal

when W TUV = I, the identity matrix. I is the orthonormal matrix with maximal
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trace. Thus, the U that minimizes E is given by:

W TUV = I

U = WV T (2.13)

If U found above is an improper rotation, meaning detU = −1, we must instead

use the next best (proper) rotation by setting the final column of W TUV to be

(0, 0,−1) rather than (0, 0, 1). This will insure that the next best U is a proper

rotation, and subtracts the smallest element of S during the trace, rather than adding

it. The optimal proper rotation U can be concisely written as:

U = W


1 0 0

0 1 0

0 0 d

V T (2.14)

with d = sign
(
detXY T

)
.

Thus, given the order of {xn} and {yn}, finding the minimal RMSD via the above

method is actually rather trivial. The difficult step is finding the proper order of {xn}

and {yn}. Below I outline Paul M. Dodd’s brute-force strategy for finding this proper

order.

1. 3 random points are chosen from the set {yn}

2. 3 points are chosen from the set {xn}

3. U is found that minimizes the RMSD between these two subsets of 3 vectors

each

4. The RMSD between UX and Y , the full sets of points, is found. The RMSD is
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computed over the pairing of points found by looping over each point in {yn}

and pairing it with the nearest point in {Uxn} that is not already matched to

any other point in {yn}. (This method is not guaranteed to find the absolutely

minimal RMSD; to do that, one would have to implement a solution to the

well-known assignment problem.)

* Steps 2-4 are repeated either until the RSMD between the full sets falls below

1e-6, or until every possible combination and permutation of 3 points in {xn}

has been considered.

5. The returned RMSD (and optimal rotation and pairing) is the minimal one over

all those calculated in the previous step.

Using three vectors above is reasonable because many particle environments in a

typical system are misaligned by essentially a rigid rotation. The stricter criterion of

all properly rotated and paired vectors having a displacement below some threshold

is then applied to determine if these vector sets match. If there was no registration by

the above algorithm, the pairing is rather more uninformed than that found in Step

4: each point in {yn} is looped over, and paired with any unpaired point in {xn} if

the displacement between the points is below the threshold. If a complete 1-1 map is

found this way, then the point sets match.

2.2.2.2 Analysis in Fourier space

I analyzed multi-particle configurations of particles in Fourier space when char-

acterizing clusters of polyhedra in spherical confinement as detailed in Section III.

To perform this analysis, I computed bond order parameters [52], first developed by

Paul J. Steinhardt and colleagues in the early 1980s to identify local icosahedral order

in liquids and glasses, and used them to build associated shape descriptors [53] for

cluster configurations. This technique is described in the following paragraphs.
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For a given l, the bond order parameter for a set of N points constituting cluster

i is

Qi
l ≡

 4π

2l + 1

l∑
m=−l

∣∣∣∣∣ 1

N

N∑
j=1

Y m
l (rj)

∣∣∣∣∣
2
1/2

(2.15)

where rj is the vector pointing from a reference point to point j, and Y m
l is

the spherical harmonic associated with angular momentum number l and magnetic

quantum number m. We use the centroid of cluster i as our reference point.

Bond order parameters are rotationally-invariant combinations of the Fourier com-

ponents of point distributions on the surface of a unit sphere. To see this, consider

first the simpler example of a distribution of points on the perimeter of a unit circle.

This is a one-dimensional distribution, where all points can be fully characterized by

their polar angle θ. Any distribution on the circle, f(θ), can be written in terms of

basis vectors of sines and cosines as

f (θ) =
1√
2π

∑
l=0

ψle
−ilθ (2.16)

ψl is the (complex) Fourier coefficient corresponding to l, or the strength of the

distribution for frequency l. It can be found in the usual manner, by taking advantage

of the orthonormality of the basis vectors 1√
2π
e−ilθ:

1√
2π

∑
l′=0

ψl′e
−il′θ = f (θ)

1

2π

∫
dθ
∑
l′=0

ψl′e
−il′θeilθ =

1√
2π

∫
dθf (θ) eilθ

∑
l′=0

ψl′δll′ =
1√
2π

∫
dθf (θ) eilθ

ψl =
1√
2π

∫
dθf (θ) eilθ (2.17)
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Consider that f(θ) is the discrete probability density distribution of N points

distributed with angles {θj} about the unit circle, such that
∫
dθf(θ) = 1:

f(θ) =
1

N

N∑
j=1

δ(θ − θj)

Then,

ψl =
1√
2π

∫
dθf (θ) eilθ

=
1√
2π

∫
dθ

1

N

N∑
j=1

δ(θ − θj)eilθ

=
1

N
√

2π

N∑
j=1

eilθj (2.18)

Consider the re-scaling ψl →
√

2πψl. These re-scaled coefficients have a very

physically intuitive meaning [54]. ψ0 = 1 is just a reflection of our normalization

choice. ψ1 = 1
N

∑N
j=1 e

iθj , however, is the pattern’s centroid in the complex plane. In

general, ψl = 1
N

∑N
j=1 e

ilθj can be thought of as the centroid of the pattern formed by

multiplying every angle by l. If the pattern is l-fold rotationally symmetric, then any

θj in the pattern corresponds to an l-membered set {θj′} given by θj′ = θj + 2πm/l

for 0 ≤ m < l. For any member of this set, eilθj′ = eilθjei2πm = eilθj . Thus, ql can be

re-written as:

ψl =
1

N

N∑
j=1

eilθj

=
l

N

N/l∑
k=1

eilθk
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k counts over the unique values of θ in the distribution under symmetry. ψl thus

has a larger signal if the pattern is l-fold rotationally symmetric, due to the above

constructive interference.

ψl, the centroid of the pattern formed by multiplying every angle by l, is in general

not a point at the origin of the complex plane. Thus, it has some angular component

itself, and is dependent on global rotations of the whole pattern, i.e. if θj → θj + α

for every value j and some displacement angle α. However, the distance between

the centroid and the origin, |ψl|, is rotationally-invariant. This quantity, ql ≡ |ψl|, is

the one-dimensional analogue of Steinhardt’s higher-dimensional bond-orientational

order parameter.

Steinhardt’s bond-orientational order parameter characterizes a set of bonds typi-

cally pointing from the center of some particle to the centers of its nearest neighbors.

These bonds, projected onto the surface of a unit sphere, are just a distribution of

points on the surface of that sphere. This distribution can be written as a superpo-

sition of spherical harmonics, the analogous orthonormal basis vectors to 1√
2π
eilθj :

f(θ, φ) =
∑
l=0

l∑
m=−l

qlmY
∗
lm(θ, φ) (2.19)

We again let f(θ, φ) be a discrete probability density distribution characterizing

N points on the surface of the unit sphere:

f(θ, φ) =
1

N

N∑
j=1

δ(Ω− Ωj)

Ωj is the solid angle of the unit sphere at which point j is located. We use the

orthonormality of the spherical harmonics to find qlm:
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∑
l′

l′∑
m′=−l′

ql′m′Y ∗l′m′(θ, φ) = f(θ, φ) (2.20)

∫
dΩ
∑
l′

l′∑
m′=−l′

ql′m′Y ∗l′m′(θ, φ)Ylm(θ, φ) =

∫
dΩf(θ, φ)Ylm(θ, φ)

∑
l′

l′∑
m′=−l′

ql′m′δll′δmm′ =

∫
dΩf(θ, φ)Ylm(θ, φ)

qlm =

∫
dΩf(θ, φ)Ylm(θ, φ)

=

∫
dΩ

1

N

N∑
j=1

δ(Ω− Ωj)Ylm(θ, φ)

=
1

N

N∑
j=1

Ylm(θj, φj)

We can then build a rotationally-invariant parameter, Ql, out of these qlm values,

as we did to build ql out of ψl in the one-dimensional case:

Ql ≡

[
4π

2l + 1

l∑
m=−l

|qlm|2
]1/2

(2.21)

This normalization is useful because
∑

m |qlm|2 ∼
2l+1
4π

due to the way the spherical

harmonics are defined; thus the re-scaling by 4π
2l+1

eliminates hidden l-dependence and

in particular lets Q0 = 1, in parallel to q0 = 1 in the one-dimensional case.

Point clusters of a given symmetry have well-defined values of Ql for various l, due

to constructive interference and consequent large signals in the Fourier coefficients, as

explored in the one-dimensional case. In general, a vector of these order parameters

at multiple values of l, {l1, l2 . . . ln}, acts as a signature for a particular distribution

of points over the surface of a sphere. This vector constitutes a shape descriptor [53]

characterizing a particular cluster i:
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Qi =
〈
Qi
l1
, Qi

l2
, . . . Qi

ln

〉
(2.22)

Qi lies in n-dimensional space. Throughout this dissertation, we use the set of l

= (2, 3, . . . 12) to calculate this vector.

To evaluate how well two different point configurations i and j match, we use the

following quantity:

Mdist (i, j) ≡ 1− |Qi −Qj|√
|Qi|2 + |Qj |2

(2.23)

This is effectively a normalized measure of the distance between two Q-vectors

[53]: Mdist (i, j) is 1 when Qi = Qj , and 0 when Qi is perpendicular to Qj .
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CHAPTER III

Clusters of polyhedra in spherical confinement

This chapter is adapted from Ref. [55], a publication in Proceedings of the National

Academy of Sciences authored in 2016 by E.G. Teich, G. van Anders, D. Klotsa, J.

Dshemuchadse, and S.C. Glotzer.

3.1 Packing in confinement

Phenomena as diverse as crowding in the cell [56, 57], DNA packaging in cell

nuclei and virus capsids [58, 59], the growth of cellular aggregates [60], biological

pattern formation [61], blood clotting [62], efficient manufacturing and transport, the

planning and design of cellular networks [63], and efficient food and pharmaceuti-

cal packaging and transport [64] are related to the optimization problem of packing

objects of a specified shape as densely as possible within a confining geometry, or

packing in confinement. Packing in confinement is also a laboratory technique used

to produce particle aggregates with consistent structure. These aggregates may serve

as building blocks (or “colloidal molecules”) in hierarchical structures [65, 66], in-

formation storage units [67], or drug delivery capsules [21]. Experiments concerning

cluster formation via spherical droplet confinement [21, 68–74] are of special interest

here. Droplets are typically either oil-in-water or water-in-oil emulsions, and particle

aggregation is induced via the evaporation of the droplet solvent. Clusters may be
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hollow (in which case they are termed “colloidosomes” [21]) or filled, depending on the

formation protocol, and may contain a few [69] to a few billion [68] particles. Clusters

of several metallic nanoparticles are especially intriguing given their ability to support

surface plasmon modes over a range of frequencies [75]. The subwavelength scale of

these clusters means that their optical response is highly dependent on their specific

geometry [76]. Consequently, control over their structure enables control over their

optical properties, with implications for cloaking [77], chemical sensing [78], imaging

[79], non-linear optics [80], and the creation of so-called “meta-fluids” [81–83], among

a host of other applications [84].

Additionally, the investigation of dense packings inside spheres offers a means by

which to access locally dense particle configurations beyond pairwise arrangements.

Pairwise local dense packing has been shown to be an important determinant of

structure in dense fluids of hard particles [37], but the contribution of dense packing

of multiple particles on intermediate length scales is less explored. Clusters of hard

particles in spherical confinement may be candidates for preferred motifs in associated

hard particle systems during self-assembly.

While some theoretical studies have addressed the confinement of anisotropic par-

ticles in one or two dimensions [85–89], a majority have focused on the confinement

of spherical particles in one [90, 91], two [63, 92], and three [73, 93? –98] dimen-

sions. There have also been studies of two-dimensional packings of circles [63, 64],

ellipses [99–102], convex polygons [64], and other generalized two-dimensional objects

[103]. However, to our knowledge, only a handful of studies have addressed three-

dimensional dense packings of anisotropic particles inside a container. Of these, al-

most all pertain to packings of ellipsoids inside rectangular, spherical, or ellipsoidal

containers [104–106], and only one investigates packings of polyhedral particles inside

a container [107]. In that case, the authors used a numerical algorithm (generalizable

to any number of dimensions) to generate densest packings of N = (1− 20) cubes

27



inside a sphere.

In contrast, the bulk densest packing of anisotropic bodies has been thoroughly

investigated in three-dimensional Euclidean space [108–113]. This work has revealed

insight into the interplay between packing structure, particle shape, and particle

environment. Understanding the parallel interplay between shape and structure in

confined geometries is both of fundamental interest and of relevance to the host of

biological and materials applications just mentioned.

3.2 Putative densest packings via Monte Carlo simulation

We used Monte Carlo simulations to explore dense packings of an entire shape

family, the Platonic solids, inside a sphere. The Platonic solids are a family of five

regular convex polyhedra: the tetrahedron, cube, octahedron, dodecahedron, and

icosahedron. Of these, all but the icosahedron are readily synthesized at nanometer

scales, micron scales, or both; see for example [5–15, 86]. This set of shapes has a

range of sphericity, as described by the isoperimetric quotient (IQ) of each polyhedron.

IQ ≡ 36πV 2/S3, where V is polyhedron volume and S is surface area. For spheres,

IQ = 1, and for all other polyhedra, 0 < IQ < 1 [114]. This quantity is the squared

ratio of the volume of the polyhedron to the volume of a sphere with the same surface

area. Since spheres maximize volume given any particular surface area, this quantity

asymptotically approaches 1 as any polyhedron becomes increasingly “spherical.”

For each polyhedron we generated and analyzed dense clusters consisting of N =

(4− 60) constituent particles. We also generated dense clusters of hard spheres for

the purposes of comparison. We found, for many N values, that the icosahedra and

dodecahedra pack into clusters that resemble sphere clusters, and consequently form

layers of optimal spherical codes. For a few low values of N the packings of octahedra

and cubes also resemble sphere clusters. Clusters of tetrahedra do not. Our results,

in contrast to those for densest packings in infinite space where particle shape sig-
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nificantly affects packing structure [108, 110–112], suggest that the presence of the

container suppresses the packing influence of particle shape at the range of N stud-

ied. Spherical confinement provides a means by which to impose certain symmetries

on anisotropic particles that otherwise might not pack like spheres. The imposed

structures are a set of dense motifs that are robust against changes in particle shape.

This result has implications for experimental applications in which the fabrication of

highly spherical particles is difficult or undesirable, as in the case of several plasmonic

applications [115–117].

We also examined cluster structure and density as they vary across each individual

set of densest found packings and found a wide variety of cluster symmetries as

N varies. We note that in a spherical container, in contrast to the situation in

infinite space described by Ulam’s conjecture, spheres are not the worst packers of

all convex bodies at small N . We additionally found that certain values of N , so-

called “magic numbers,” [118–121] correspond to especially high cluster densities of

a given particle shape. These magic numbers, however, do not correspond to any

particular cluster symmetry, indicating that especially dense clusters exist with a

variety of symmetries and structures. Many of these structures are unachievable with

densely-packed spheres, and are stabilized by a variety of contact types. They will

be of interest to experimentalists who use clusters for plasmonics and other colloidal

molecule applications.

3.3 Methods and protocols

3.3.1 Simulations

We used isobaric Monte Carlo simulations and specialized particle overlap checks

with respect to a spherical container, as detailed in Section 2.1.2. For consistency, all

particles were scaled such that they have equal circumscribing sphere radii. We ran
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Figure 3.1:
Overview of our methods. (a) The particle shapes studied: the Pla-
tonic solids and the sphere. (b) The evolution of the densest found 21-
octahedron cluster via NPT compression in a spherical container. p∗ is
the dimensionless pressure imposed on the system, and φcirc is the density
of the cluster. Insets are cluster images at p∗ = 0.135, p∗ = 5.246, and
p∗ = 500.

50 independent compression simulations at every (shape, N) state point, calculate the

density for each of the resultant clusters via φcirc ≡ NVp/Vcirc, and chose the densest

for further analysis. Vp is the volume of a single particle and Vcirc is the volume of

the container.

We induced increasing spherical confinement by raising dimensionless pressure ex-

ponentially from a minimum value of 0.1 to a maximum value of 500. Dimensionless

pressure is defined here as p∗ ≡ βpl3, where p is pressure and l = R is the charac-

teristic length scale in our systems. It is the particle radius for simulations involving

spheres, while for simulations involving polyhedra it is the radius of their circum-

scribing sphere. The system was allowed to equilibrate for 1000 MC sweeps between

pressure jumps. The total compression occurred over 107 sweeps.

Fig. 3.1 summarizes our simulation method: part (a) displays the shapes studied,

and part (b) shows a sample trajectory of cluster formation via our compression

scheme. Inset images are snapshots of the cluster at indicated pressures. Fig. 3.2
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Figure 3.2:
A selection of densest found clusters of the Platonic solids. N increases
from left to right for each particle shape. The screenshot of each clus-
ter is accompanied by an image below showing its particle centers, with
bonds drawn between neighboring particles at arbitrary distance cut-offs
for clarity. Particles in next inner layers are colored red, while parti-
cles in innermost layers are colored blue. Whenever possible, clusters are
displayed along an axis of symmetry.
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Figure 3.3:
Validation of our method. Red squares are from densest known structures
in the literature, and black circles represent our results. Vertical error bars
are smaller than the data points, and indicate possible underestimation
of φcirc due to an overestimation of Rcirc. (a) φcirc for sphere clusters at
N = (4− 60). Red squares are from Ref. [98]. (b) φcirc for cube clusters
at N = (4− 20). Red squares are from Ref. [107].

shows a sample of densest clusters found via this method, for a variety of constituent

particle shapes and numbers.

As a validation of our method, we compare our results for N = (4− 60) sphere

clusters to the literature results collected in Ref. [98] (Fig. 3.3A). Our methods

produce densest sphere clusters for which ∆φcirc ≡
(
φlitcirc − φuscirc

)
/φlitcirc obeys 1.3 ×

10−4 < ∆φcirc < 1.8× 10−2. φlitcirc are packing fractions of the densest clusters in the

literature, while φuscirc are packing fractions of our densest generated clusters.

We also compare our results for N = (4− 20) cube clusters to clusters obtained in

Ref. [107] (Fig. 3.3B). Our methods produce values of ∆φcirc for which −3.7×10−2 <

∆φcirc < 3.0×10−3, with the notable exception of the cluster of 7 cubes. In this case,
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the densest cluster in the literature, a central cube surrounded by 6 cubes in face-

face contact with it, is denser than our densest cluster by ∆φcirc ∼ 4.4× 10−2. This

value is about 15 times larger than the next largest value of ∆φcirc. Although it is

only about twice as large as the maximum value of ∆φcirc for our generated clusters

of spheres, it occurs for a much lower value of N . The maximum value of ∆φcirc

in the case of sphere clusters occurs at N = 56; at this system size, it is logical

that our compression method may not be as well-equipped to find maximum cluster

density as a numerical optimization, quasi-physical, or other dedicated algorithm,

due to the high dimensionality of phase space. The high value of ∆φcirc at N = 7

cubes is somewhat surprising, by contrast, and can be explained by the fact that the

denser cluster of cubes has a limited configuration space available to it at intermediate

pressures during our simulation, and is thus disfavored with respect to other structural

alternatives. See Appendix B for more details.

3.3.2 Cluster analysis

To quantify our structures and compare them with each other, we computed bond

order parameters [52] and used them to build associated shape descriptors [53] for

each cluster and each cluster layer in the manner detailed in Section 2.2.2.2. We then

used variants of the parameterMdist(i, j), given by Eq. 2.23, to quantitatively compare

clusters i and j. We determined cluster structures to match if Mdist(i, j) > 0.88.

Imposing a strict cutoff value for Mdist, below which clusters are deemed struc-

turally dissimilar for our purposes, inevitably results in an artificial oversimplification

of the data. However, we needed to establish a cutoff in order to interpret our data

objectively, without relying solely on potentially mistaken direct-eye observations of

hundreds of dense clusters. To determine the cutoff Mdist > 0.88, we supplemented

direct observations of cluster similarity with a comparison between Mdist (i, j) and

the root-mean-squared distance between certain sets of points i and j.
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We first observed that the set of particle centroids of most Platonic solid clusters

looked similar to the set of sphere clusters for Mdist in the range 0.9 ≤ Mdist ≤ 1.

This was a general observation, not true in some cases: some clusters looked quite

non-identical by eye but gave a value of Mdist greater than 0.9, while other clusters

looked more similar but gave values of Mdist less than 0.9.

We then gained intuition for what Mdist = 0.9 actually implies for differences be-

tween sets of points on the surface of a sphere. We placed N points randomly on the

surface of the unit sphere, perturbed them randomly on the surface for some number

of timesteps, and computed both Mdist(t) (calculated for the set of points {rN(t)} at

time t with respect to the set {rN(0)} at time 0) and
√
〈∆r2〉 (the time-dependent

root-mean-squared distance between {rN(0)} and {rN(t)}). We then compared these

two metrics. For N = (5, 10, 20, 30, 40, 50) points, a value of Mdist ∼ 0.90 corre-

sponded approximately to
√
〈∆r2〉 in the range [0.10 − 0.25]. The relationship is

not one-to-one given the angular sensitivity of Mdist. A quick back-of-the-envelope

calculation (in the following paragraph) shows that this range of average particle

displacements is not very significant with respect to the length scales of our dense

clusters.

The upper limit of the average particle displacement range implied by Mdist ∼

0.90,
√
〈∆r2〉 = 0.25, is a chord length on the unit sphere that maps to an angular

displacement of ∆θ ∼ 0.25. The largest container radius R encompassing any of our

maximally dense clusters is R ∼ 4.79 (corresponding to the N = 60 sphere cluster),

and thus this angular displacement maps maximally to an average distance between

two particles of
√
〈∆r2〉 = 2Rsin (∆θ/2) ∼ 1.19. This distance is only about 60%

of 2.0, the circumsphere diameter of all particle shapes. Thus, Mdist & 0.90 for two

sets of points corresponding to our dense clusters implies that one set can be mapped

onto the other with reasonably small average particle displacements, about 60% of

one particle circumsphere diameter.
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We chose our final, highly specific cutoff of Mdist > 0.88 by examining the distribu-

tion of M sph
dist values for all generated clusters. We noted that sticking to a hard cutoff

of M sph
dist > 0.9 would exclude a large number of clusters whose similarity to sphere

clusters we could observe by eye. In fact, the largest bin (containing 15 clusters) of

a 50-bin histogram of values of M sph
dist for all generated clusters was that with edges

0.889 and 0.904 (to 3 decimal places). We also noted that multiple clusters in the

range 0.88 ≤M sph
dist ≤ 0.9 looked structurally similar to sphere clusters. We therefore

took M sph
dist > 0.88 to be our condition for similarity between cluster structures.

3.4 Comparison with sphere clusters

We first compare our results for the densest found clusters of the Platonic solids

with those of spheres. To measure similarity, we use M sph
dist, given by Eq. 2.23 when

i is the set of polyhedron centroids for a given cluster of polyhedra and j is the set

of particle centroids for the corresponding sphere cluster. Fig. 3.4a shows a scatter

plot of values of M sph
dist for every densest found cluster as a function of the IQ of the

constituent particle shape. Average values 〈M sph
dist〉, computed across the set of all

densest found clusters of each Platonic solid, are also marked in Fig. 3.4a with an

image of the associated particle.

Given the similarity criterion M sph
dist > 0.88 (marked by a black horizontal line in

Fig. 3.4a and explained in the preceding section), we find that the number of clusters

that are similar to sphere clusters is quite high for the icosahedron (the most spherical

Platonic solid), and trends downward as the IQ of the particle shape decreases. Of the

57 densest clusters found for each particle shape, 44 clusters of icosahedra, 20 clusters

of dodecahedra, two clusters of octahedra, two clusters of cubes, and no clusters of

tetrahedra are structurally similar to their corresponding cluster of spheres. 〈M sph
dist〉

also trends downward as IQ decreases.
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Table 3.1:
Outermost and next inner cluster layers as optimal spherical codes. Num-
bers corresponding to SC(total) are the number of layers that are deemed
similar to optimal spherical codes for each particle shape, followed in paren-
theses by the total number of layers for which Nlayer ≥ 4. 〈MSC

dist〉 is an
average taken over each set of layers counted in the parentheses.

outer: SC (total) 〈MSC
dist〉 inner: SC (total) 〈MSC

dist〉
Sph 36 (57) 0.91 14 (30) 0.82
Icos 43 (57) 0.91 14 (30) 0.86
Dod 42 (57) 0.90 20 (30) 0.90
Oct 3 (57) 0.60 6 (32) 0.77

Cube 1 (57) 0.74 0 (35) 0.67
Tet 0 (57) 0.52 0 (3) 0.76

3.5 Common motifs are optimal spherical codes

The dense clusters of spheres consist of layers whose configurations map to opti-

mal spherical codes for a majority of cases. A spherical code, or finite set of points on

the surface of a sphere, can be characterized by the minimal angle between vectors

pointing from the center of the sphere to any two of the points. Optimal spherical

codes are ones for which this minimal angle, which corresponds to the smallest dis-

tance between any two of the points, is maximized [39, 122]. Given a point radius

(i.e. turning these points into circles), the optimal spherical code at N maps to the ar-

rangement of N circles on a sphere such that they fit on its surface at minimal sphere

radius and do not overlap. Optimal spherical codes are therefore a way of packing

spherical particles such that their configuration within a cluster layer is spherical but

still tightly packed. These motifs accordingly dominate in the dense sphere clusters,

from which we demand that the particles both pack densely and fit inside a sphere.

The relationship between densest packings within a container and optimal spher-

ical codes was previously addressed by Torquato et al. [122, 123]. They defined the

N -specific densest local packing (DLP) problem, equivalent to finding the densest

packing of spheres within a spherical container given that one additional sphere must

always be at the center of the container. Torquato et al. proved that every solu-
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tion to the optimal spherical code problem is also a solution to the DLP problem

for 1 ≤ R ≤ τ , where R is the greatest distance from the container center to the

center of any sphere and τ is the golden ratio [122]. They also found solutions to the

DLP problem for select values of N up to N = 1054, and noted that the majority of

their solutions maximized the number of spheres in the surface layer according to the

optimal spherical code at the relevant container radius [123].

Here, we expand upon those observations and find that optimal spherical codes

are prevalent motifs in solutions to a more general problem, one in which there is

no particle fixed at the center of the container and the packing particles are not just

spheres but faceted particles as well.

To determine the similarity between cluster layers and optimal spherical codes,

we decompose every cluster into layers, and use MSC
dist, given by Eq. 2.23 when i is

the set of particle centroids in a particular cluster layer and j is the optimal spherical

code at equal Nlayer. We use conjectured optimal spherical codes found in Ref. [124].

The criterion for similarity is again MSC
dist > 0.88. Layers in each cluster are identified

using the DBSCAN clustering algorithm [125] in the scikit-learn Python module [126].

DBSCAN operates on the set of radial distances from the cluster centroid to all

particle centroids. Our tuned DBSCAN parameters delineate cluster layers in nearly

all cases, but we fail to detect distinct layering for one cluster of cubes (N = 39) and

for 14 clusters of tetrahedra (N = 45, 46, 49 − 60), due to less distinct layering for

these less spherical particles. Although these clusters consist of particles at a range of

radial distances from each cluster center, the radial distances are not well-separated

enough to be grouped into distinct layers by DBSCAN.

Fig. 3.4b shows scatter plots of values of MSC
dist, both for the outermost layer and

the next inner layer of every densest cluster found, as a function of the IQ of the

constituent particle shape. MSC
dist for any layer is only plotted when Nlayer ≥ 4. At

higher N , there is also a third (innermost) layer, but at the particle numbers we
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studied this third layer is just a single central particle and is not included in the

figure. Average values 〈MSC
dist〉 for each layer, computed across the set of all relevant

layers of each particle shape, are also marked in Fig. 3.4b with an image of the

associated particle. Table 3.1 tabulates this data.

Optimal spherical code motifs constitute the majority of layers for sphere, icosa-

hedron, and dodecahedron clusters, and even appear in layers of the octahedron and

cube clusters. Additionally, 〈MSC
dist〉 > 0.88 (marked by black horizontal lines in

Fig. 3.4b) for the outer layers of the sphere, icosahedron, and dodecahedron clus-

ters, and the inner layer of the dodecahedron cluster, indicating that these layers

are, on average, optimal spherical codes. This is far from the case for the clusters of

octahedra, cubes, and tetrahedra.

Given the wealth of studies showing that bulk dense packing is sensitive to minute

differences in particle shape, e.g. [38, 113, 127], it is interesting that in spherical con-

finement icosahedra and dodecahedra pack like spheres. This is noteworthy because

of a combination of two facts. First, icosahedra and dodecahedra are dual to each

other, i.e. everywhere an icosahedron has a face, a dodecahedron has a vertex, and

vice versa. Second, polyhedra make contact with the spherical container only at their

vertices. These two facts would lead us to expect that icosahedra would arrange

themselves differently than dodecahedra at the surface of the container to accommo-

date the “opposite” location of their vertices. However, what we observe instead is

that the layered spherical code structures that occur for sphere packing are robust

against changes in particle shape.

3.6 Common clusters across particle shape

Similarity to sphere clusters and optimal spherical codes produces a class of com-

mon structures formed by different particle types at specific values of N . Values of N

for which more than two particle types share a common cluster geometry, as well as
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the respective cluster structure, are shown in Fig. 3.5. More common structures could

be listed here if we relax our M sph
dist criterion; the current set represents a sample based

on our cutoff M sph
dist > 0.88. For most of these values of N , common structures are

shared by clusters of spheres, icosahedra, and dodecahedra. Layers of these similar

clusters are optimal spherical codes, indicated by MSC
dist > 0.88, in all but six cases.

That these common motifs emerge simply from the spherical confinement of par-

ticles as non-spherical as dodecahedra, and in some cases even octahedra and cubes,

is a result with intriguing experimental implications. Common configurations are

resistant to significant deviations from spherical particle shape, meaning that they

may be ideal target structures for the self-assembly of imperfectly spherical colloidal

particles or faceted metallic nanoparticles.

3.7 Cluster symmetry and density

We next examine the relationship between symmetry and density of the dense

packings as a function of N . Fig. 3.6 shows both of these cluster properties simulta-

neously: the respective crystal systems of the symmetry point groups of the outermost

cluster layers are shown as vertical bars of color overlaid on plots of the cluster density

φcirc as a function of N . The crystal systems of the outermost layers are also tallied

in Table 3.2. Point groups were determined by eye for all clusters.

Density profiles are similar in behavior for all particle shapes: density increases

sharply with N at low values of N , as the densest clusters gain enough particles to be

approximately spherical, and then more gradually grows as N increases. We expect

φcirc to approach the bulk densest packing fraction for each particle shape as N goes

to infinity, although at N = 60 the density is still far from its bulk value in all cases.

Cluster symmetry, however, varies widely across N for all particle shapes.

The set of conjectured optimal spherical codes displays a wide variety of point

groups [128, 129], and it is thus unsurprising that the layers of the sphere, icosahedron,
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Table 3.2:
Crystal systems of all outer cluster layers. For each particle shape, data
show the total number of outer layers whose symmetry point group belongs
to each crystal system. A horizontal line separates crystal systems that
are crystallographic from those that are not.

Sph Icos Dod Oct Cube Tet
cubic 6 6 5 3 5 0

hexagonal 2 5 1 2 0 1
trigonal 4 6 9 3 3 1

tetragonal 3 2 4 1 2 1
orthorhombic 8 3 7 6 10 2

monoclinic 8 7 4 7 14 10
icosahedral 3 3 3 2 1 1
decagonal 2 1 2 0 0 1
octagonal 3 3 1 1 0 0

pentagonal 2 1 2 0 0 0
TOTAL 41 37 38 25 35 17

and dodecahedron clusters also have a variety of symmetries as N varies, at least

when they match optimal spherical codes. Within the set of sphere, icosahedron, and

dodecahedron clusters, a majority of clusters have non-triclinic point groups, and

these point groups are spread widely across ten crystal systems.

It is significant, however, that even those cluster layers that do not map to optimal

spherical codes display a variety of symmetries. These include the icosahedron and

dodecahedron layers for which MSC
dist ≤ 0.88, as well as the majority of octahedron,

cube, and tetrahedron cluster layers. In many cases, irrespective of the anisotropic

particle shape, the requirement of high density and cluster sphericity imposed by the

container selects for symmetric clusters.

3.8 Ulam’s conjecture in spherical confinement

As an interesting aside, Ulam conjectured that spheres pack less densely than all

other convex solids in infinite space [130]. The n-dimensional analogue of Ulam’s con-

jecture is violated in Euclidean spaces for n = 2, 4, 5, 6, 7, 8, and 24 [131], but in three
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dimensions it has been shown that spheres pack less densely than any other infinites-

imal centrosymmetric convex shape deformation [131]. It is not known if in three

dimensions spheres continue to be pesimal packers in confinement. We find that for

a majority of lower N values, spheres pack inside a spherical container more densely

than one or more Platonic solids. In fact, at N = (4− 9), the sphere cluster has the

highest value of φcirc. Spheres are only the worst packers for N = (26, 29, 31− 33, 35).

We believe these results can be explained by considering the volume occupied by the

particles in a spherical shell just below the container surface. A single spherical par-

ticle necessarily packs more densely than a convex faceted particle near the surface of

the container, due to the fact that the faceted particle may touch the container only

at its vertices. This density gain by spherical particle packing is a surface effect, and

matters less and less as N increases. At small values of N , however, it enables spheres

to pack more densely than the various Platonic solids inside a spherical container, in

contrast to what Ulam’s conjecture asserts for infinite space.

3.9 Magic number clusters

In every density profile the cluster density jumps at certain values of N , and is

markedly larger than densities at N − 1 and N + 1. These values of N are marked

by gray circles in Fig. 3.6; we term them “magic numbers” in deference to the wealth

of literature exploring magic numbers in other cluster systems. Typically, magic

numbers in other systems correspond to clusters of minimal energy [118, 119, 121, 132–

134].

We deem a cluster at N to be a magic-number cluster if its density φNcirc meets

three criteria:

1. ∆φNcirc ≡ φNcirc − 1
2
(φN−1

circ + φN+1
circ ) > 0.009

2. φNcirc > φN−1
circ
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3. φNcirc > φN+1
circ

Clusters at N = 4 and N = 60, the minimum and maximum values of N , are not

considered, since they are incapable of satisfying criterion 1 and criterion 2 or 3,

respectively. The cutoff value of 0.009 delimits a varied sample of clusters drawn

from every particle shape that nevertheless represents only a small fraction (∼ 0.064)

of all generated clusters.

The magic-number clusters for all particle shapes are shown in Fig. 3.7, along

with the symmetry point groups of their layers. The structure and symmetry of each

magic-number cluster vary widely both with N and particle shape.

Magic-number clusters of spheres, icosahedra, and dodecahedra consist of either

a single layer or a central single particle or dimer surrounded by an outer layer that

maps to an optimal spherical code in 12 out of 15 cases. Multiple shapes have the same

outer-layer structure at N = 6, 12 & 13, 21, and 38. Note that the N = 25 sphere and

dodecahedron clusters do not actually share the same structure; the sphere cluster

is a central particle surrounded by the N = 24 optimal spherical code, whereas the

dodecahedron cluster is a central dimer surrounded by the N = 23 optimal spherical

code. Of the three magic-number clusters that are not layers of optimal spherical

codes (N = 27 dodecahedra, N = 38 spheres, and N = 38 dodecahedra), the case of

N = 38 spheres and dodecahedra is particularly interesting. These clusters are both

slight distortions of a particular common structure, a central six-particle octahedron

surrounded by an outer layer whose centroids make up the union of a truncated

octahedron and a cube. (The N = 38 icosahedron cluster is also observed to share

this structure, although it is not a magic-number cluster and its value of M sph
dist is only

∼ 0.77.) Although its outer layer is not an optimal spherical code, the N = 38 motif

occupies a unique place in the pantheon of sphere cluster literature. It is an especially

spherical arrangement of maximally close-packed spheres, and is thus optimal under

a range of circumstances beyond just dense packing inside a spherical container. The
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undistended version of this cluster is a segment of the fcc sphere packing, the densest

packing possible for spheres in the bulk limit. Called the fcc truncated octahedron,

this cluster is additionally known to be the global energy minimum of the 38-atom

Lennard-Jones cluster [133, 135–137].

The magic-number clusters of the octahedra, cubes, and tetrahedra do not resem-

ble optimal spherical codes, but rather are unique configurations whose structures

allow each set of particles to be reasonably spherical and tightly packed. All magic-

number clusters are displayed in Fig. 3.7; only a portion will be discussed here. The

N = 9 octahedron cluster is a central particle surrounded by eight others, each face-

sharing with it, in a regular cubic configuration. The N = 21 octahedron cluster

is a central particle surrounded by a cage of twenty others, face-sharing with each

other, in a regular dodecahedral configuration. The N = 13 cube cluster is an irregu-

lar icosahedral configuration surrounding a central particle in six sets of face-to-face

aligned dimers. (A regular icosahedral configuration is an optimal spherical code, but

the particular arrangement of these dimers distorts the configuration such that MSC
dist

does not register the similarity.) The N = 48 cube cluster consists of the N = 13

cluster, with one dimer replaced by a single particle, surrounded by an outer layer of

36 particles with cubic symmetry (six particles per cubic “side”). The magic-number

clusters of tetrahedra will be discussed in the next section.

Magic-number structures are unique, but all exhibit a trade-off between face-

to-face alignment among particles, which enables tight packing but not necessarily

cluster sphericity, and other types of contact between particles, which may promote

cluster sphericity but not tight packing. No single rule appears to determine what

makes a particular cluster “magic” for any particle shape: locally maximal density

does not select for a particular type of symmetry or structure across particle types

or even within the same particle type. These magic-number clusters do, however,

provide a set of especially dense structures that possess symmetries not achievable via
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the spherical confinement of spheres, icosahedra, or dodecahedra at identical values

of N , a fact whose implications will be discussed in the Conclusions.

3.10 The densest found cluster of tetrahedra

The densest found cluster of tetrahedra suggests a connection between dense pack-

ings in a sphere and locally-preferred motifs[37] during the self-assembly of an un-

confined bulk system. A bulk fluid of tetrahedra self-assembles into a dodecagonal

quasicrystal under suitable conditions [138], forming a structure that is markedly dif-

ferent from the bulk densest known packing of tetrahedra (a crystalline arrangement

with four tetrahedra per unit cell, arranged in two face-sharing dimers [111]). It was

shown that en route to the quasicrystal, 20-tetrahedron icosahedral clusters in the

fluid rearrange to form a 22-tetrahedron structure [138]. This 22-tetrahedron cluster

consists of two pentagonal dipyramids at the cluster poles and a set of six face-to-face

aligned dimers ringing the cluster equator. It is precisely the structure we find to be

a magic-number cluster. Indeed, our set of densest found tetrahedron clusters forms

a telling sequence of structures: as N increases, the densest cluster passes from the

N = 5 pentagonal dipyramid, through the N = 20 icosahedron, and maximizes clus-

ter density at N = 22. Cluster density then dips, and significantly drops at N = 27

when the densest found cluster contains a particle at its center. That the N = 22

tetrahedron cluster is both a prominent motif in the self-assembled quasicrystal and

the densest structure inside a sphere for N = (4− 60) suggests that the self-assembly

of tetrahedra may favor the formation of local structures that pack densely inside a

sphere.
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3.11 Conclusions

We generated finite dense packings of the Platonic solids, for N = (4− 60) con-

stituent particles, using Monte Carlo sampling within spherical confinement. We

found that generated packings were layered structures, possessing maximally three

layers at high N and displaying a variety of point groups. Packings of the more

spherical icosahedra and dodecahedra were structurally similar to sphere packings

generated by the same method for many values of N , while packings of octahedra

and cubes were similar to sphere packings only in two instances each, and packings

of tetrahedra never matched sphere packings. Common packing structures were lay-

ers of optimal spherical codes in a majority of cases. The widespread similarity of

finite dense packings of icosahedra and dodecahedra inside a spherical container to

those of spheres indicates the suppression of the packing effects of particle shape by

the container. Rather than particle shape and orientation, it is the particles’ ability

to pack tightly into spherical shells by mimicking the behavior of spherical particles

and forming optimal spherical codes that enables dense packing. This is a result in

contrast to dense packing in infinite three-dimensional Euclidean space, for which

particle shape strongly influences packing structure [108, 110, 113].

We also generated cluster density profiles across N for each particle shape, and

noted that spheres were not the worst packers with respect to the volume of the

container at most values of N , and were in fact the best packers at especially low

values of N . This result is not consistent with the conjectured behavior of dense

packings of spheres and convex solids in infinite space [130]; we hypothesize that it is

due to the fact that spheres pack more densely than faceted convex particles near the

surface of a spherical container. This surface packing effect becomes less influential on

density as system size increases. Our density profiles additionally indicated clusters

of especially dense design that we termed magic-number clusters. These clusters vary

in symmetry and structure.
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Common structures shared by clusters of spheres, icosahedra, dodecahedra, and

in a few cases octahedra and even cubes are a class of dense motifs that are resistant

to changes in particle shape, a result of interest to those in the colloidal and plas-

monics communities for whom the fabrication of highly spherical particles is difficult

to achieve or experimentally undesirable. In the plasmonics community, for example,

recent efforts have focused on the manufacture of highly spherical metallic nanopar-

ticles for the production of plasmonic nanoclusters with consistent and reproducible

structure [116]. However, faceted geometries are thermodynamically preferred over

spherical geometries during the metallic nanoparticle growth process [116, 139], which

complicates the production of spherical metallic nanoparticles. We showed here that

a host of sphere cluster geometries, including among many others the optically inter-

esting four-particle tetrahedron [81] and 13-particle centered icosahedron [140], are

in fact robust against changes in particle shape. They can be formed by significantly

non-spherical particles if the clusters are created via spherical confinement. Moreover,

faceted particles within these common motifs assume a variety of contacts with their

neighbors, including edge-to-edge, face-to-face, and edge-to-face. Recent work on the

optical properties of different metallic nanoparticle junction types [115, 117] indicates

that these clusters, although they share common geometries, may exhibit diverse and

interesting optical behavior if formed from metallic nanoparticles.

Our dense magic-number clusters provide examples of structures with experimen-

tally useful geometries that are difficult to achieve otherwise. Many magic-number

clusters, especially of the less spherical shapes, have configurations that are not achiev-

able by densely packing spheres, and could be accessible via confinement within an

emulsion droplet or other spherical container. For instance, our densest cluster of 21

octahedra, a dodecahedral cage of 20 particles surrounding a central one, possesses a

structure that closely-packed spheres, either within a spherical container or in bulk,

do not adopt. Moreover, recent work shows that this dodecahedral geometry may
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have implications for self-assembled metamaterials [141].

Finally, we found that dense packing in spherical confinement may result in multi-

particle motifs that are preferred in the self-assemblies of unconfined dense fluids

of hard polyhedral particles. For systems of tetrahedra, the densest found cluster

in spherical confinement does appear as a common motif in the self-assembled do-

decagonal quasicrystal, suggesting indeed that tetrahedron crystallization favors the

formation of local structures that pack densely inside a sphere.
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Figure 3.4:
Comparison of (a) densest found clusters of the Platonic solids to dens-
est found clusters of spheres, indicated by M sph

dist, and (b) the outermost
and next inner layers of densest found clusters of the Platonic solids and
spheres to optimal spherical codes, indicated by MSC

dist. M
SC
dist for any layer

is only plotted when Nlayer ≥ 4. Values of Mdist for all clusters and clus-
ter layers are plotted as a function of the isoperimetric quotient (IQ) of
the constituent particle shape. Clusters whose value of Mdist lies above
0.88, indicated by a horizontal line in each figure, are deemed similar to
their corresponding cluster of spheres or optimal spherical code. Average
values 〈Mdist〉, computed across the set of all densest found clusters or
relevant cluster layers for each particle shape, are marked with an image
of the associated shape. The more spherical polyhedra (icosahedra and
dodecahedra) form clusters that increasingly resemble those of spheres,
and a majority of sphere, icosahedron, and dodecahedron cluster layers
match optimal spherical codes.
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Figure 3.5:
Common cluster structures across multiple particle types. N indicates
the number of particles in each cluster, and rows labeled Sph show the
positions of the centroids of the corresponding sphere clusters. Rows
labeled Icos, Dod, Oct, and Cube show corresponding clusters of icosahe-
dra, dodecahedra, octahedra, and cubes respectively. Clusters of Platonic
solids are similar to these sphere clusters, and included in this table, if
M sph

dist > 0.88. At N = 5 the sphere, dodecahedron, and cube clusters are
a square pyramid, while the icosahedron and octahedron clusters are the
N = 5 optimal spherical code, a triangular bipyramid.
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Figure 3.6:
φcirc with respect to particle number for all densest clusters found. Col-
ored bars indicate the crystal system of each outer cluster layer. Identi-
cally colored bars for clusters of different shapes denote the same crystal
system. Gray data points are those deemed to be “magic-number” clus-
ters.
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Figure 3.7:
All magic-number clusters for the spheres and polyhedra studied. Headers
above each row of images show the particle number N of each cluster.
Cluster snapshots and centroid skeletons are shown. Included with each
set of cluster images are the symmetry point groups of its layers. When
multiple symmetries are shown, the topmost symmetry belongs to the
inner cluster layer.
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CHAPTER IV

Local structure in hard particle glass-formers

This chapter is adapted from Ref. [142], a publication authored by E.G. Teich,

G. van Anders, and S.C. Glotzer that is currently under review.

4.1 Local structure and glass formation: the search for a

causal link

A universally accepted explanation for why liquids sometimes vitrify rather than

crystallize remains hotly pursued, despite the ubiquity of glass in our everyday lives,

utilization of the glass transition in rewritable data storage devices [23], fiber op-

tic networks [24], and other technologies, and nearly a century of theoretical and

experimental investigation. Researchers generally agree on the phenomenological be-

havior of liquids as they are supercooled. However, the underlying mechanism of

the glass transition remains in contention, and while dynamical glass-forming signa-

tures including caging, cooperative string-like motion, and dynamical heterogeneity

[143, 144] are well-characterized and established within the community, structural

signatures of glass formation (if indeed they exist at all [145]) have yet to be fully elu-

cidated. Among the most compelling hypothesized structural mechanisms underlying

glass formation is the development in the fluid phase of local structures that some-

how prevent crystallization [26, 27, 146, 147]. What these local structures are, why
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they form, and how exactly they prevent long-range ordering are central, unanswered

questions.

The search for local structure in various model and experimental glass-formers,

essentially to answer the first question just posed, is an ongoing endeavor. A great

many investigations have focused on local ordering in isolated model and experimental

glass-formers, including systems of binary Lennard-Jones particles [52, 148–152], par-

ticles interacting via a Dzugotov-like potential [153, 154], polydisperse hard spheres

[155–159], polydisperse hard disks [160], colloidal gels [161], metallic glasses [162–167],

patchy particles [168], and even a system of two-dimensional kites [169].

In parallel to this structural classification, the establishment of a causal structural

mechanism for dynamical arrest remains a holy grail for those in the glass community,

with countless paradigms proposed over the decades to do just that. Thermodynam-

ical theories of Goldstein [170], Adam and Gibbs [171], and the random first-order

transition theory of Kirkpatrick, Thirumalai and Wolynes [172] have all posited that

localized structural rearrangements are responsible for dynamical signatures related

to relaxation in glass-formers, though none firmly specify what those rearranging

structures might look like. Frustration-limited domain theory [146] is more specific,

asserting that liquids are characterized by “locally favored structures,” or motifs that

are locally optimal but do not tile space. Thus, growth of these domains is geomet-

rically frustrated and limited by strain, leading ultimately to vitrification. A more

recent pool of studies [35, 147, 158, 160, 173–175] views vitrification more explicitly

as the structural frustration of emerging crystalline order. In this context, local bond

orientational ordering and possibly multiple medium-range crystalline orderings may

compete and cause crystallization failure. Recent developments indicate that this

competition results in a higher structural difference between the liquid phase and any

possible crystal phase, and manifests in a larger interfacial penalty between those

phases [174, 175]. These different types of order can be mechanisms of crystallization
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in other systems that are closely related to the glass-former.

Our work draws inspiration from these latter studies: we systematically investi-

gate structural competition between different types of crystalline ordering in a full

two-dimensional landscape of related systems, and provide a link, for multiple glass-

formers in a unified manner, between vitrification and the existence of nearby self-

assembled crystalline structures. We show that glass-forming fluids of hard polyhedral

shapes contain local structures that are favored in crystals formed from particles of

slightly altered shape; that is, from neighboring shapes in alchemical “shape space”

[40, 113]. Rather than arrange into a crystal, particles self-organize due to directional

entropic forces [37, 38] into two or more local motifs that are accessible and thermo-

dynamically preferred in crystallizing systems comprised of particles that are nearby

in shape space. These motifs exist in each glass-forming fluid at ratios that pre-

vent crystallization into any one crystal structure. This local structural competition

creates an “identity crisis” in the fluid and promotes vitrification.

4.2 Assembly failure in a shape landscape

Previous work [38, 127, 176, 177] has shown that changing the truncation of poly-

hedral particles along various symmetry axes is an effective means of systematically

and controllably altering self-assembled structure in monatomic systems of these par-

ticles. van Anders et al. [37] showed that slight changes to particle shape caused

by truncation have the ability to significantly influence local structure in dense flu-

ids of these particles, by changing the entropic advantage systems gain via locally

dense particle packing and free volume exchange. These ideas are explored further

in Chapter 1.3. Changes in local structure in the dense fluid, brought on by changes

to particle shape, shift densities necessary for crystallization, and can even suppress

crystallization altogether [38, 176]. Thus, the exploration of a family of monatomic

systems composed of polyhedral particles that are related to each other via contin-
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uous truncations along certain symmetry axes is an ideal vehicle through which to

explore the relationship between local structure in the dense fluid and crystallization

failure.

We performed hard particle Monte Carlo (HPMC) [45] simulations of model glass

and crystal-formers comprised of hard polyhedra contained in the spheric triangle

invariant 323 family [113], a set of convex polyhedra formed by truncating the ver-

tices and edges of a tetrahedron by sets of planes at varying radial distances from the

polyhedron center (Fig. 4.1A). The two-dimensional 323 family of polyhedra allows

us to investigate shape perturbations in a tractable manner, since in principle the

more general space of all possible particle shapes is infinite-dimensional. We use a

convention employed previously [177] and define truncation parameters αa and αc

such that the corners of the shape space are formed by (αa, αc) = (1, 1), denoting

a cube, (αa, αc) = (0, 0), denoting an octahedron, and (αa, αc) = (0, 1) and (1, 0),

both denoting a tetrahedron. This family is identical under reflection across the line

αa = αc. It was discovered previously [176] that systems in certain regions of this

shape space assemble into a rich variety of colloidal crystals. Particles within this

family with large tetrahedrally-coordinated facets and smaller facets due to edge or

vertex truncation self-assemble into a dodecagonal quasicrystal [38, 138, 176]. With

increasing truncation, eventually a region of shape space is reached where cubic di-

amond or a lower-symmetry diamond derivative is stabilized [38, 176]. Close to the

diagonal of the shape family, where particles possess octahedral symmetry, body-

centered cubic and face-centered cubic structures are stable, with the exception of a

region of shape space for which the complex high-pressure Lithium structure is often

observed [38, 127, 176, 177]. More complicated γ-brass, β-Mn, and bc8 structures are

also observed to assemble from shapes in select, narrow regions of this shape space

[176]. Systems comprised of particles in other regions of shape space remain disor-

dered at densities ranging from φ = 0.50 to 0.65 [176]. We independently reproduced
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Figure 4.1:
Simulation space and analysis methods. (A) The spheric triangle invariant 323
family, with the portion of the shape space explored in this study outlined. The
remaining region is colored a light gray; for details on self-assembly behavior
in this region, see Damasceno et al. [38] and Klotsa et al. [176]. Sample
particle shapes are overlaid above corresponding regions of shape space, and
regions are colored according to the assembled structure of the corresponding
particle shape at densities between φ = 0.48 and φ = 0.64. At (αa, αc) =
(0, 0.2), the system assembles into a compressed derivative of diamond with
lower symmetry, but that region is colored identically to the other (cubic)
diamond-formers to emphasize the similarity of these structures. At (αa, αc) =
(0.3, 0.3), assembly into bcc occurs at φ = 0.64, while assembly into fcc occurs
at lower densities; we color this region by the structure it assembles at the
lowest density. For a broad swath of the highlighted landscape, colored gray,
assembly fails to occur at any investigated density. (B) Characterization of
local pairwise motifs. θ denotes the minimal angle associated with the rotation
(about n̂) that orients a particle identically to its nearest neighbor. γ denotes
the minimal angle associated with the projection of ~r onto the set of unit vectors
pointing to some feature of the non-truncated version of the particle shape. In
this example, vectors point to centers of the faces of the non-truncated particle
shape, and γf is the angle associated with the projection onto f̂ .
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these findings for {0 ≤ αa ≤ 0.3, 0 ≤ αc ≤ 1} at a shape space grid resolution

of ∆α = 0.1, finding the assembly of the γ-brass structure at finer resolution at

(αa, αc) = (0.25, 0.5).

Fig. 4.2A shows the critical packing fraction, or lowest packing fraction at which

crystallization was observed, across the shape landscape. Also shown in Fig. 4.2B

are crystallization times at the critical packing fraction. We define crystallization

time, or so-called nucleation incubation time [178], as the first frame after which ap-

proximately all crystalline particle fractions measured over the trajectory are greater

than 0.1. Crystalline particles were identified according to an environment matching

scheme detailed in Chapter 6.1. If the crystalline fraction never surpasses 0.1, the

system did not crystallize. For nucleation of the dodecagonal quasicrystal, we esti-

mated the crystallization time by eye, corroborating our observations by calculating

pressure over the simulation trajectory (using volume perturbation methods discussed

in Section 4.11.3) when that data was available, and confirming that pressure begins

to drop to its crystal value around the estimated crystallization time.

For a more detailed map of the critical packing fraction across this shape land-

scape, see Klotsa et al [176].

4.3 Dynamical characterization of disordered systems

Those systems failing to crystallize despite excessively long simulation runs exhibit

all of the usual characteristic dynamics of glass formers [143, 144], and we note that

dynamical glass-forming characteristics of several one-component systems of hard

polyhedra have been reported elsewhere [179].

For each system, we calculated the following order parameters at logarithmic

timescales: the mean-squared displacement 〈∆r2(t)〉 of all particles in the system,

the self-part of the intermediate scattering function Fs(k, t), computed for the k-

value associated with the first peak of the static structure factor, the non-Gaussian
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Figure 4.2:
(A) Critical packing fraction and (B) crystallization time at the criti-
cal packing fraction across the shape landscape. Color bars below each
panel show relevant limits and scales. Squares are left uncolored if crys-
tallization was not observed at any density at the corresponding location
in shape space, or if the location in shape space is outside the bounds
studied in this paper.
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parameter α(t) [180], and the self-part of the four-point susceptibility χSS4 (t) [181,

182]. These quantities are defined as follows:

〈∆r2(t)〉 ≡ 1

N

〈
N∑
j=1

(∆rj(t))
2

〉
(4.1)

Fs(k, t) ≡
1

N

〈
N∑
j=1

eik·∆rj(t)

〉
(4.2)

α(t) =
3 〈∆r4(t)〉
5 〈∆r2(t)〉2

− 1 (4.3)

χSS4 (t) = N
[〈
Q2
S(t)

〉
− 〈QS(t)〉2

]
(4.4)

QS(t) =
1

N

N∑
j=1

H (a− |∆rj(t)|) .

In all definitions above, ∆rj(t) ≡ rj(t) − rj(0). In the final expression, H is the

Heaviside step function: H(x) = 1 for x > 0 and 0 otherwise. a is a length-scale

associated with the self-overlap of any particle in the system; in this paper we took a

to be the inscribing sphere radius of the particle shape for each system. In all cases,

angle brackets indicate ensemble averages. We determined that relaxation in most

systems is complete by about 10 million MC sweeps; thus, we broke each trajectory

into 10 windows and took appropriate ensemble averages over these windows. Error

bars were determined through either error propagation or jackknife resampling.

We computed Fs(k, t) at every pertinent lagtime t by averaging over computed

values of Fs(k, t) for 10 randomly generated vectors with magnitude k in a similar
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Figure 4.3:
Static structure factors for the systems identified by letters in shape space.
Vertical lines through each plot indicate the position of the first peak, used
for calculation of the self-intermediate scattering function in the main
text. These positions are kσ = 5.8, 4.5 for (αa, αc) = (0.2, 0.5), (0, 0.5)
respectively.

manner to that described elsewhere [179]. We did this to speed up our calcula-

tions, as Fs(k, t) = Fs(k, t) in an isotropic medium. We computed Fs(k, t) for the

k value corresponding approximately to the location of the first peak of the static

structure factor of each system, as shown in Fig. 5.2. The static structure fac-

tor is defined as S(k) ≡ 1
N
〈
∑N

j,l=1 e
ik·(rl−rj)〉. We found S(k) via the squared FFT

of the number density ρ(r) of the system, Gaussian-blurred for smoothness, since

S(k) = 1
N

∣∣〈∫ drρ(r)eik·r〉
∣∣2. We then found S(k) by assuming that the system is

isotropic, and spherically averaging S(k) using a channel-sharing method [183]. The

static structure factors we show here were calculated for the first frame of the trajec-

tory only. They are given as functions of kσ, where σ is a length scale that charac-

terizes the particle size of each system: σ3 = vp, where vp is the particle volume (1 in

all cases).

In glass-forming systems generally, 〈∆r2(t)〉 and Fs(k, t) increasingly display three

regimes as density increases or temperature decreases: a regime at short timescales in
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which particles move without colliding with any others, a caging regime at interme-

diate timescales in which particles are caged by their neighbors and relaxation slows,

and a regime at long timescales in which particles escape the confines of their cages

and eventually diffuse through the system. α(t) gives a measure of the degree to

which the distribution of particle displacements in the system deviates from a Gaus-

sian distribution. It typically has a peak in glass-forming systems at times of large

dynamical heterogeneity [184, 185], when some particle motions are cooperative and

therefore a subset of particle displacements is higher than that given by the expected

Gaussian distribution. χSS4 (t) gives a direct measure of the dynamical heterogeneity

of the system, as it is the scaled variance of the 2-point self-correlation function QS(t):

χ4 grows from zero as heterogeneity in the dynamics of the system increases over a

time window t, and decreases back to zero at long times in the dense fluid.

The glass-forming behavior of the systems (αa, αc) = (0, 0.5) and (αa, αc) =

(0.2, 0.5) is summarized in Fig. 4.4. For all state points studied, plateaus in the

mean-squared displacement 〈∆r2(t)〉 and the real part of the self-intermediate scat-

tering function Fs(k, t) indicate caging, and relaxation associated with escaping this

regime corresponds to peaks in the non-Gaussian parameter α(t) and the self-part of

the four-point susceptibility χSS4 (t). Thus, we find that our systems display canonical

behavior associated with glass formation. One notable difference between our system

and other glass-forming models simulated via molecular dynamics (MD) appears in

the non-Gaussian parameter: for systems simulated via MD, α goes to zero as t goes

to zero because the system is Gaussian at short times. As expected for an MC simula-

tion, however, we find that α does not go to zero at short times, and instead increases

as t decreases in the short time regime. This behavior is due to the discrete nature of

particle moves during MC sampling. As t goes to zero our probability distribution of

particle positions can be thought of as that of a random walk in which just one step

is attempted, and a back-of-the-envelope calculation of α in an associated toy model
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gives values that are comparable to those we see at short times in our system. See

Appendix C for more detail.

4.4 Disordered systems are super-compressed

We first discuss results of stability tests for candidate crystal structures in our

example glass-forming systems. We systematically changed the shape of particles

comprising crystal structures near these glass-formers in shape space, transforming

the particle shape incrementally into the glass-forming shape, and measured melt-

ing density and pressure as a function of particle shape. We found that, at each

investigated glass-forming location in shape space, select crystals remain stable in

density regimes for which we observed no crystallization from the fluid. This strongly

suggests that these glass-forming fluids are “super-cooled,” or more accurately, super-

compressed.

Figs. 4.5 and 4.6 summarize our results, and show plots of melting density as

a function of particle shape for several candidate crystal structures. Melting plots

show the solidus line, or lowest density at which systems remain fully crystallized,

and the liquidus line, or lowest density at which crystals coexist with the fluid. In all

cases, the densities shown are the highest found across all replicates, since our method

establishes a lower bound for melting density. Highest liquidus or solidus densities

across replicates thus represent the most restrictive lower bound. Each solidus line is

labeled by the crystal structure that is stable above the line. In some cases, systems

undergo phase transitions during the melting process to other solids. Whether the

system passes through a fluid phase during that process or undergoes a solid-solid

phase transition is not shown here, because our method is not rigorous enough to

determine the nature of these transitions. Instead, we simply show stability lines for

all observed structures. Some crystal structures observed in the melting process were

identical to those self-assembled from the fluid. Otherwise, we describe them below.

62



0.30
0.40
0.50
0.56
0.60
0.62
0.64

b

a b

a

Figure 4.4:
The mean-squared displacement 〈∆r2(t)〉, the real part of the self-
intermediate scattering function Fs(k, t), the non-Gaussian parameter
α(t), and the four-point susceptibility χSS4 (t), measured at a variety of
densities for two disordered state points in our shape space. Signatures
in all four order parameters indicate that these systems are glass-formers.
The increase in α(t) as t goes to zero is due to the discrete nature of
Monte Carlo sampling; see Appendix C for more detail.
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The “hR6-SbSn/hR6/oC4” melting line shows the stability of three interrelated

phases, whose delineation was often not clear during the melting process itself. “hR6-

SbSn” is a lower (hexagonal) symmetry diamond derivative, featuring a coordination

number of 4 for all particles and squashed tetrahedral local environments. Its Pearson

symbol is hR6, and its space group is R3̄m, number 166. We use the short-hand

hR6-SbSn because compounds of Sb and Sn have been found to crystallize into this

structure [186]. “hR6” is a slightly distorted version of hR6-SbSn, with the same space

group. Next nearest neighbor distances are shifted closer to each particle, such that

there is no clear peak in the radial distribution function corresponding to four nearest

neighbors, and instead the structure could be described with a larger coordination

number of 14. “oC4” is a related structure of lower symmetry with coordination

number 12. Its Pearson symbol is oC4, and its space group is Cmcm, number 63.

The “bcc (OO)” melting line corresponds to orientationally-ordered bcc, featuring

all particles oriented in the same direction. The “bcc (OD)” melting line corresponds

to orientationally-disordered bcc, featuring plastic-like particle orientations. Equa-

tions of state indicate a phase transition between these two phases, so we mark them

distinctly. For more information regarding orientational phase transitions in hard

particle systems, see Karas et al. [187].

The “distorted/tetragonal diamond” melting line describes systems that shear

and distort, occasionally managing to form a lower symmetry tetragonal diamond

derivative, when melted from cubic diamond at higher αc. This signature appears in

the pressure and indicates a phase transition between this strained or lower symme-

try phase and (cubic) diamond at lower densities. Because we keep the box cubic,

the phase transition is not clean, and strain occurs; however, “floppy box” simula-

tions in these αc regimes, in which we allow the box aspect ratio and box shear to

change randomly and independently (while keeping box volume fixed), do show clear

phase transitions between a lower symmetry diamond derivative phase at high pack-
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ing fraction and cubic diamond at lower packing fraction. This phase transition in

these systems was first observed by Cersonsky et al. [188]. The lower-density (cu-

bic) diamond structure melts at approximately the same density in these floppy box

simulations as it does in the simulations in which we keep the box fixed and cubic.

We also used floppy box Monte Carlo to investigate the melting of the other crys-

tals shown in these figures at identical locations in shape space; we did not observe any

qualitatively different behavior in the melting lines or the stable structures exhibited

by each system with decreasing density.

Our melting lines are in the spirit of other phase diagrams calculated as functions

of various system control parameters [175, 189]. In those cases, it was observed that

good glass-formers appear near eutectic points in these phase diagrams, when the

stable crystal structure undergoes a cross-over. We find evidence of eutectic points

near our glass-forming state points, although at each glass-forming location in shape

space, there is a crystal structure that is more stable than the others investigated

and whose stability easily extends into the fluid density regime. The glass-former

at (αa, αc) = (0, 0.5), in particular, appears to be at a location in shape space for

which the nearby diamond crystal is actually more stable than in the region for which

diamond self-assembles. Thus, we argue that a close examination of the fluid phase

itself, and especially its structural make-up, is necessary for a complete understanding

of crystallization failure in these systems.

4.5 Identity crisis in alchemical space

Fig. 4.7 displays the local structural motifs we observe for two example glass-

forming systems at a variety of densities and crystals nearby in shape space at φ = 0.62

and φ = 0.6. We define motifs as pairwise configurations of each particle and its

nearest neighbor, and classify them by their connection type (face, edge or vertex)

and relative particle misorientation θ as detailed in Chapter 2.2.1 and shown in Fig.
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Figure 4.5:
Stability testing of crystal structures near the glass-forming state point
at (αa, αc) = (0, 0.5). Crystal structures tested are (A) the dodecagonal
quasicrystal self-assembled at (αa, αc) = (0, 0.6) as a function of decreas-
ing αc, (B) the diamond structure self-assembled at (αa, αc) = (0, 0.4)
as a function of increasing αc, and (C) the diamond structure self-
assembled at (αa, αc) = (0.1, 0.5) as a function of decreasing αa. The
upper left panel shows the equation of state of the super-compressed fluid
at (αa, αc) = (0, 0.5) in black, and the melting equations of state of the
indicated crystal structures at (αa, αc) = (0, 0.5). Melting line plots show
the stability of the structures initialized in each crystal as a function of αa
or αc. Symbols at each value of α indicate the structure in which the sys-
tem was initialized, as indicated by the legends embedded in the figures.
Solidus lines are indicated by opaque, larger symbols, and liquidus lines
are indicated by semi-transparent, smaller symbols. Symbols are colored
by phase, and each phase is labeled by text above the solidus line in a
matching color.
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Figure 4.6:
Stability testing of crystal structures near the glass-forming state point
at (αa, αc) = (0.2, 0.5). Crystal structures tested are (A) the diamond
structure self-assembled at (αa, αc) = (0.1, 0.5) as a function of increas-
ing αa, (B) the bcc structure self-assembled at (αa, αc) = (0.2, 0.4) as
a function of increasing αc, and (C) the fcc structure self-assembled
at (αa, αc) = (0.3, 0.5) as a function of decreasing αa. The upper
left panel shows the equation of state of the super-compressed fluid at
(αa, αc) = (0.2, 0.5) in black, and the melting equations of state of the in-
dicated crystal structures at (αa, αc) = (0.2, 0.5). Melting line plots show
the stability of the structures initialized in each crystal as a function of αa
or αc. Symbols at each value of α indicate the structure in which the sys-
tem was initialized, as indicated by the legends embedded in the figures.
Solidus lines are indicated by opaque, larger symbols, and liquidus lines
are indicated by semi-transparent, smaller symbols. Symbols are colored
by phase, and each phase is labeled by text above the solidus line in a
matching color.
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4.1B. Connection types are calculated with respect to the faces, edges, and vertices

of equivalent non-truncated tetrahedra for all particles in the 323 family. Note that

due to particle symmetry, θ = 90◦ is the maximum possible relative misorientation

for all pairwise configurations. Our analysis reveals that every competing motif in

the investigated glass-formers is characteristic of a nearby ordered structure. These

characteristic motifs compete in each disordered fluid at stoichiometries that impede

crystallization into any one particular crystal structure.

Panels show probabilities of observing certain pairwise configurations, Pobs(c, θ),

and negative logs of the distributions normalized with respect to an ideal gas, − logP (c, θ).

The brown curves indicate Prand(c, θ), and other curves are colored according to their

location in shape space. Motifs that are characteristic of nearby crystal structures

and that exist in significant number in the glass-forming fluid are shown in insets in

the top row of figures, while motifs that are characteristic of nearby crystal struc-

tures and that do not exist in significant number in the glass-forming fluid are shown

in images in the bottom row of figures. Ranges of θ that characterize motifs are

shown as small black bars, with symbols that represent the motif between them. The

symbols are colored according to the crystals in which each is dominant. Circles

indicate vertex-connection, squares indicate edge-connection, and triangles indicate

face-connection. Heterogeneous connections are possible, where one member of the

pair has one connection type, and the other has another connection type. Motifs

in ordered systems were calculated at φ = 0.62, with the exception of the γ-brass

crystal, for which motifs were calculated at φ = 0.6.

Fig. 4.7A shows the glass-former at the location (αa, αc) = (0, 0.5) in shape space,

sandwiched between shapes that form the diamond structure and shapes that form a

dodecagonal quasicrystal. We find that the glass-former is increasingly dominated by

face-connected particles as density increases. Vertex connection is heavily suppressed,

even at lower densities around φ = 0.5, and edge connection is increasingly suppressed
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with increasing density. The function (− logP (f, θ)) for the disordered system shows

two distinct basins, around θ = 90◦ and θ = 70◦, and the depth of both basins in-

creases with density. The nearby dodecagonal quasicrystal shows a corresponding

basin around θ = 70◦, while the nearby diamond structure shows a basin at θ = 90◦.

By inspection, the basin around θ = 70◦ corresponds to an “aligned” motif (drawn

in red) consisting of two particles face-to-face and rotated such that their truncated

vertices are aligned; a perfectly-constructed pair with this configuration has a misori-

entation θ ∼ 70.53◦. The basin at θ = 90◦, by contrast, corresponds to a “twisted”

motif (drawn in pink) consisting of two particles face-to-face and twisted such that

the edge midpoints of one particle align with the truncated vertices of the other.

Thus, these motifs coexist in the glass-forming fluid, and each motif is dominant in a

nearby crystal. The aligned motif is abundant in the nearby dodecagonal quasicrystal

and absent in the nearby diamond structure, while the twisted motif is abundant in

the nearby diamond structure and absent in the nearby quasicrystal. We will show

that these motifs exist in the glass-forming fluid at ratios that prevent crystallization

into either structure, and thus that these motifs compete in the glass-forming fluid.

Fig. 4.7B shows results for the second example glass-forming shape, located at

(αa, αc) = (0.2, 0.5) and surrounded in shape space by shapes that self-assemble into

a dodecagonal quasicrystal, the diamond crystal, a bcc crystal, an fcc crystal, and a

γ-brass crystal structure. This competition is more complicated, due to the multiple

competing nearby crystal structures, and the fact that some nearby crystal structures

are characterized by multiple pairwise motifs. Each crystal structure, however, does

have particular pairwise configurations that are more probable for that structure than

any other structure and more probable than in the random gas; we will take these as

the motifs that are characteristic of each crystal structure.

We find that vertex-connection is heavily suppressed in the glass-forming system

at all investigated densities. This connection type is characteristic of the nearby bcc
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Figure 4.7:
Pairwise motifs in example glass-formers compete, and are found to dom-
inate in ordered structures self-assembled from shapes nearby in shape
space. Figures show probabilities of observing certain pairwise configu-
rations, Pobs(c, θ), and the negative log of the normalized distributions,
− logP (c, θ), for disordered systems at the indicated densities and nearby
crystals at φ = 0.62 (or φ = 0.6 for γ-brass). (A) Competition between
face-connected aligned and twisted motifs at (αa, αc) = (0, 0.5). Mo-
tifs are prevalent in nearby diamond and dodecagonal quasicrystal (dqc)
structures. (B) Competition between face-connected aligned and twisted
motifs and a face-edge connected motif at (αa, αc) = (0.2, 0.5). Motifs are
prevalent in nearby diamond, dodecagonal quasicrystal (dqc), fcc, and γ-
brass structures.
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crystal; more specifically, the bcc crystal is characterized by the pairwise motif (drawn

in blue) consisting of two particles with a face-vertex connection and a misorienta-

tion θ = 0◦. Regarding edge-connection, the disordered system has a local basin in

− logP (e, θ) around 58◦ that persists at all densities, although the number of edge-

connections in the disordered system decreases as density increases. This basin is

characteristic of the nearby fcc crystal, and corresponds by inspection to the pairwise

motif drawn in green, consisting of an edge-face connection in which the edge of one

particle bisects the face of its nearest neighbor. A perfectly-constructed pair with this

configuration has misorientation θ ∼ 54.74◦. (The fcc structure also shows basins in

− logP (e, θ) around θ = 0◦ and θ = 90◦. By inspection, these basins correspond to

the pairwise configurations drawn in dark green and light green. They do not appear

with any significance in the dense fluid at any density, however.) In terms of face-

connection, the disordered system shows a basin in − logP (f, θ) around 58◦, which

becomes less significant as density increases, and basins around 70◦ and 90◦, which

become more significant as density increases. The basin around 58◦ corresponds to the

other half of the aforementioned face-edge connected motif that is characteristic of fcc

and drawn in green. The basin around 70◦ corresponds to the face-connected aligned

pairwise configuration, drawn in red, that is characteristic of the nearby dodecago-

nal quasicrystal. The basin around 90◦ corresponds to the face-connected twisted

pairwise configuration, drawn in pink, that is characteristic of the nearby diamond

structure. Thus, motifs that are characteristic of nearby crystal structures are shown

to coexist in the disordered fluid at all investigated densities.

4.6 Local structure in fluids across the shape landscape

We next consider the varying abundance, across the entire shape space, of the

motifs we identified in the previous section as important structural characteristics of

select glass-formers and nearby crystals. We examine motif fractions in pre-cursor and
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disordered fluids only. We find that motifs are generally more abundant in disordered

or pre-cursor fluids in regions of shape space in which fluids tend to self-assemble

into the crystals associated with those motifs. Thus, (i) the motifs associated with

bcc are strongly suppressed in all fluids except near the αa = αc line, where vertex

truncation is highest, (ii) motifs associated with fcc are more abundant in regions with

higher αa, or edge truncation, (iii) the quasicrystal motif is more abundant near the

(αa, αc) = (0, 1) corner of shape space corresponding to a non-truncated tetrahedron,

and (iv) the diamond motif is more abundant near the (αa, αc) = (0, 0.35) location

in shape space that corresponds to a vertex-truncated tetrahedron.

Figs. 4.8 and 4.9 show fractions of these motifs across the shape landscape in

disordered or pre-cursor fluids at densities of φ = 0.56 and φ = 0.6, respectively.

We identified pre-cursor fluids in all cases as all frames of self-assembling trajectories

prior to the nucleation incubation time, discussed previously. As density increases,

the regions in which the bcc and fcc motifs are abundant become smaller and more

concentrated near the αa = αc line and at higher αa values respectively. Conversely,

the regions of quasicrystal and diamond structure motif abundance grow as density

increases, and they grow in directions in which the corresponding crystals still self-

assemble at higher density. The behavior of all regions as density increases makes

sense in the context of locally dense packing arguments in hard particle fluids [37]:

vertex/edge connected motifs only appear in systems in which particle vertex/edge

truncation is significant, and these connection types are suppressed as density in-

creases because face connection is enhanced as density increases. Face connection

provides higher locally dense packing of particle pairs.

Note that particles on the diagonal of the shape landscape, where αa = αc, have

octahedral symmetry rather than tetrahedral symmetry. Thus, their set of possible

misorientation angles is different: in particular, it is not possible for particles with this

symmetry to have misorientation angles between ∼ 65◦ and 90◦, so systems of these
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Figure 4.8:
Motif fractions in disordered or pre-cursor fluids across the shape land-
scape at φ = 0.56. Color bars below each panel show corresponding motif
fraction limits. The motif whose abundance is displayed in each panel
is drawn in its upper left corner, with a symbol below it indicating its
connection type. αa and αc limits are shown for the upper left panel, and
apply to all other panels. Regions of shape space are left un-filled if data
at the centers of those regions is not available at φ = 0.56.

particles somewhat artificially display zero motifs associated with the dodecagonal

quasicrystal or diamond structure.

4.6.1 Local structure near glass-forming state points

The above analysis demonstrates that different motifs are abundant in fluids in

distinct regions of shape space, each of which has a tendency to self-assemble into a

characteristic crystal structure. Glass-forming fluids lie approximately between these

regions, and thus contain not-insignificant motif fractions corresponding to multiple

crystals.
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Figure 4.9:
Motif fractions in disordered or pre-cursor fluids across the shape land-
scape at φ = 0.6. Color bars below each panel show corresponding motif
fraction limits. The motif whose abundance is displayed in each panel
is drawn in its upper left corner, with a symbol below it indicating its
connection type. αa and αc limits are shown for the upper left panel, and
apply to all other panels. Regions of shape space are left un-filled if data
at the centers of those regions is not available at φ = 0.6.
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We now tighten our focus, and consider the structural differences between the

glass-forming fluids at (αa, αc) = (0, 0.5) (Fig. 4.11) and (αa, αc) = (0.2, 0.5) (Fig.

4.12) and pre-cursor fluids that form crystals nearby in shape space. Fig. 4.11 shows

motif fractions as a function of density for the glass-forming fluid at (αa, αc) = (0, 0.5)

and the nearby (pre-cursor) crystal-forming fluids at (αa, αc) = (0, 0.4), (αa, αc) =

(0, 0.6), and (αa, αc) = (0.1, 0.5). The fluid at (αa, αc) = (0, 0.4) coexists with the

diamond structure at φ = 0.54, and assembles solely the diamond structure at 0.56 ≤

φ ≤ 0.62. The fluid at (αa, αc) = (0, 0.6) assembles into the dodecagonal quasicrystal

at φ = 0.6; shown here is a trajectory at the same state point that did not assemble

into the quasicrystal on the time scale of our simulation, but for which we collected

ample data in the fluid regime. We believe that, at long enough times, the system

shown here would assemble into the quasicrystal, since (i) assembly was observed

in a system that differed from this one only by its random initial conditions, (ii)

the assembled quasicrystal was found to be stable at densities as low as φ = 0.56

according to the melting studies detailed earlier, and (iii) the assembled quasicrystal

has a motif stoichiometry that is very similar to the fluid one shown here. Fig. 4.10

compares motif stoichiometry and system pressure for the fluid shown here and the

assembled dqc at this state point. Fig. 4.12 shows motif fractions as a function of

density for the glass-forming fluid at (αa, αc) = (0.2, 0.5) and the nearby pre-cursor

crystal-forming fluids at (αa, αc) = (0.1, 0.5), (0.2, 0.4), (0.25, 0.5), and (0.3, 0.5). The

fluid at (αa, αc) = (0.1, 0.5) assembles into diamond at 0.62 ≤ φ ≤ 0.64. The fluid at

(αa, αc) = (0.2, 0.4) assembles into bcc at 0.58 ≤ φ ≤ 0.64, although at φ = 0.64 it is

still assembling into bcc at the end of our simulation. The fluid at (αa, αc) = (0.25, 0.5)

assembles into γ-brass at φ = 0.6. The fluid at (αa, αc) = (0.3, 0.5) assembles into fcc

at 0.58 ≤ φ ≤ 0.6.

We ran three or four replicate simulations at each density for the (αa, αc) = (0, 0.4),

(0.1, 0.5), (0.2, 0.4), (0.25, 0.5), and (0.3, 0.5) systems, to collect more statistics in the
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DQC

Figure 4.10:
Dimensionless pressure and motif fraction for a trajectory at
(αa, αc, φ) = (0, 0.6, 0.6) which did not crystallize, and a crystallized
dodecagonal quasicrystal (DQC) at this state point. Pressure and motif
fraction for the DQC are shown in the right-most panel. Error bars in the
pressure of the DQC are smaller than the marker size. Motif fractions
of the DQC are very similar to those of the non-assembling trajectory,
and pressure is lower in the crystallized system.
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pre-cursor fluid regime. Motif fractions are ensemble-averaged over all fluid frames

and shown with error bars indicating the associated standard deviation of the mean.

For the crystal-forming fluids, motif fractions are plotted both for the pre-cursor

fluid stage of those trajectories and for the crystalline stage of those trajectories,

when applicable. In the case of the crystalline stage, motif fractions are ensemble-

averaged over the final 5 frames of all crystallizing replicates and shown with error bars

indicating the associated standard deviation of the mean. Frames in all trajectories

are written at a frequency of once per 1 million MC sweeps.

Fig. 4.11 is rather straight-forward, and shows that at densities relevant to crys-

tallization, the disordered fluid at (αa, αc) = (0, 0.5) contains fewer motifs associated

with the diamond structure than nearby fluids that assemble into diamond, and fewer

motifs associated with the dodecagonal quasicrystal than the nearby fluid that is ca-

pable of assembling into the dodecagonal quasicrystal. Thus, the disordered fluids

are structurally different than nearby fluids that assemble into crystal structures, and

reflect a higher competition between the face-to-face twisted (pink) motif associated

with the diamond structure and the face-to-face aligned (red) motif associated with

the dodecagonal quasicrystal. In both panels (B) and (C), at high enough densities,

the fraction of twisted face-to-face pairwise motifs shown in dashed pink triangles is

high enough to promote self-assembly into the diamond structure, at which point the

aligned face-to-face motif shown in dot-dash red triangles is strongly suppressed in

favor of the twisted face-to-face motif shown in dot-dash pink triangles. We observe

some portion of the particles in the motif indicated by green triangles, associated

with the fcc structure, in all systems at all densities. However, plots of Pobs(f, θ)

for these systems show that this is essentially just an artifact of imposing cut-offs on

the misorientation angle to define our motifs- these systems do not have any special

spike in probability near 58◦, the misorientation angle associated with the face-edge

connected fcc motif.
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Figure 4.11:
Motif fraction as a function of packing fraction for the disordered fluid
at (αa, αc) = (0, 0.5) and nearby crystal-formers. Solid lines indicate
motif fractions for disordered systems, dashed lines indicate motif frac-
tions in fluids of nearby crystal-forming systems, and dot-dash lines,
where shown, indicate motif fractions in assembled crystals of nearby
crystal-forming systems. The location of each disordered system is out-
lined in a solid line in the shape space image to the right of each panel,
and the location of the crystal-forming system is outlined in a dashed
line. Plots show that disordered fluids and crystal-forming fluids con-
tain different ratios of motifs in all cases, with crystal-forming fluids in
general containing higher fractions of the motifs that dominate in the
assembled structures. Motif fractions are shown for the disordered sys-
tem at (αa, αc) = (0, 0.5) and crystal-formers at (A) (αa, αc) = (0, 0.6)
(although this trajectory did not self-assemble into the quasicrystal dur-
ing our simulation, an identical state point with different random initial
conditions did; see the main text for more detail), (B) (αa, αc) = (0, 0.4),
and (C) (αa, αc) = (0.1, 0.5).
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Figure 4.12:
Motif fraction as a function of packing fraction for the disordered fluid
at (αa, αc) = (0.2, 0.5) and nearby crystal-formers. Solid lines indi-
cate motif fractions for disordered systems, dashed lines indicate mo-
tif fractions in fluids of nearby crystal-forming systems, and dot-dash
lines, where shown, indicate motif fractions in assembled crystals of
nearby crystal-forming systems. The location of each disordered sys-
tem is outlined in a solid line in the shape space image to the right of
each panel, and the location of the crystal-forming system is outlined
in a dashed line. Plots show that disordered fluids and crystal-forming
fluids contain different ratios of motifs in all cases, with crystal-forming
fluids in general containing higher fractions of the motifs that domi-
nate in the assembled structures. Motif fractions are shown for the
disordered system at (αa, αc) = (0.2, 0.5) and crystal-formers at (A)
(αa, αc) = (0.1, 0.5), (B) (αa, αc) = (0.2, 0.4), (C) (αa, αc) = (0.25, 0.5),
and (D) (αa, αc) = (0.3, 0.5).
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Fig. 4.12 is more complicated, due to the presence of more types of pairwise motifs

in systems in this region of shape space, but nevertheless portrays a similar story to

Fig. 4.11. At densities relevant to crystallization, the disordered system at (αa, αc) =

(0.2, 0.5) contains fewer motifs associated with the diamond structure than the nearby

fluid that assembles into diamond, fewer motifs (almost none in this case) associated

with the bcc structure than the nearby fluid that assembles into bcc, and fewer motifs

associated with the fcc structure than the nearby fluids that assemble into γ-brass and

fcc. (Whether the system assembles into γ-brass or fcc seems to depend on the precise

cocktail of motifs in the pre-cursor fluids at appropriate densities.) We also point

out that the disordered system contains about half as many motifs associated with

the dodecagonal quasicrystal than the fluid at (αa, αc) = (0, 0.6), which is capable of

assembling the quasicrystal. Thus, the disordered fluids are structurally different than

nearby fluids that assemble into crystal structures, and reflect a higher competition

between the face-to-face twisted (pink) motif associated with the diamond structure,

the edge-to-face (green) motifs associated with the fcc structure, and the face-to-face

aligned (red) motif associated with the nearby quasicrystal. (In panel (D), we also

note the non-negligible presence in the fcc-forming fluid of the edge-connected motifs

shown as light and dark green squares, also associated with the fcc structure. These

motifs are more suppressed in the disordered fluid at all densities.)

4.7 Doping simulations

We next demonstrate that the incompatible motifs found in the glass-forming

fluid at (αa, αc) = (0, 0.5) compete with one another sufficiently to hinder crystal-

lization. Evidently, the fraction of particles forming twisted motifs in the pre-cursor

diamond-forming fluid is high enough to drive crystallization into diamond at appro-

priate densities, and the fraction of particles forming aligned motifs in the pre-cursor

quasicrystal-forming fluid is high enough to drive self-assembly into the dodecagonal
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quasicrystal at appropriate densities. By contrast, the glass-forming fluid exhibits a

significant fraction of both motifs, preventing either crystal from forming.

We verified that the twisted motif fraction shown in the pre-cursor fluid of the

diamond-former was necessary for crystallization into diamond via a set of “doping

simulations” in which we artificially inserted the face-connected aligned motif (asso-

ciated with the quasicrystal) into the diamond-forming fluid at (αa, αc) = (0, 0.4),

and the twisted motif (of the diamond crystal) into disordered fluids at (0, 0.5) and

(0, 0.55). For these simulations, we rigidly connected a fraction ηd of particles in each

dense fluid into pairs to form the relevant dimer motifs, and ran simulations at den-

sities φ = 0.54 and φ = 0.56 for ηd ranging from 0.05 to 1.0. Via this mechanism, we

were able to either artificially enhance or suppress the fraction of particles forming

twisted pairwise motifs, and observe consequent assembly or non-assembly behavior.

Our results are summarized in Fig. 4.13A, which shows twisted motif fraction as a

function of packing fraction for (pre-cursor) fluids of doped and undoped systems.

Symbols are colored pink if the system self-assembles into diamond on the time scales

of our simulation at that state point. Pink symbols only appear at twisted motif

fractions above the threshold established by the diamond-forming undoped system

at (αa, αc) = (0, 0.4), indicated by circles connected by a black line, for all inves-

tigated locations in shape space and doping schemes. At the point in shape space

(αa, αc) = (0, 0.4), introduction of the aligned motif of the quasicrystal causes assem-

bly failure in the would-be diamond-former when ηd ≥ 0.25. For the doping schemes

in which crystallization is thwarted, the fraction of particles in the twisted motif is

observed to be below the threshold shown by the diamond-forming undoped system.

At (αa, αc) = (0, 0.5) and (αa, αc) = (0, 0.55), introduction of the twisted motif of

diamond to the disordered fluids causes crystallization into diamond at ηd ≥ 0.25 and

ηd ≥ 0.75, respectively. For these crystallization-inducing doping schemes, the frac-

tion of particles in the twisted motif is observed to be above the threshold established
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by the diamond-forming undoped system at (αa, αc) = (0, 0.4). Previous studies have

additionally shown that systems composed entirely of aligned motifs made of non-

truncated tetrahedra [190] and tetrahedra with a slightly modified vertex truncation

[191] assemble the dodecagonal quasicrystal at long times under various simulation

strategies. This provides some evidence that the aligned motif is capable of promot-

ing self-assembly into the dodecagonal quasicrystal. Thus, the competition between

the high fractions of twisted and aligned face-to-face motifs in the glass-forming fluid

at (αa, αc) = (0, 0.5) seems to be responsible for its failure to crystallize, since this

competition can be artificially tuned to promote self-assembly in systems that may

otherwise vitrify, or suppress self-assembly in systems that may otherwise crystal-

lize. (Note that some schemes, even though they impose high twisted motif fractions

above the threshold, do not result in assembly into diamond. This is due probably to

longer relaxation times associated with polydisperse systems and systems containing

extended rigid bodies.) Fig. 4.13B shows a phase diagram summarizing the results

of all doping simulations.

We also attempted to dope systems near (αa, αc) = (0, 0.5) with the aligned motif,

to coax them into forming the dodecagonal quasicrystal, and to dope systems at

(αa, αc) = (0.2, 0.5) with motifs dominant in nearby bcc, fcc, and diamond structures,

to manipulate them into forming those crystals. However, we were unsuccessful in

those attempts, indicating perhaps that appropriate local structure is a necessary but

not sufficient condition for crystallization, at least on the time- and size-scales of our

simulations.

4.8 Alchemical Monte Carlo

We provide additional evidence that an identity crisis in alchemical space promotes

glass formation in hard particle fluids by allowing disordered systems to explore their

surrounding shape space through alchemical Monte Carlo (Alch-MC) sampling [40],
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Figure 4.13:
Disordered fluids and crystal-forming fluids are structurally different, and this
fluid structure can be tuned to promote or suppress crystallization. Systems
are identified by αc, indicating their location in shape space at (αa, αc) =
(0, αc), and the relevant location in shape space is outlined in black in the
image to the right of the plots. (A) Doping via the introduction of rigid
local structural motifs into dense fluids influences assembly behavior, causing
crystallization for systems that might otherwise vitrify, and vitrification for
systems that otherwise crystallize. Panels show twisted motif fraction for
(pre-cursor) fluids during doping experiments at different locations in shape
space. Symbols indicate different dopant fractions ηd. The dopant dimer is
the twisted motif for αc = 0.5 and αc = 0.55, in which case doping promotes
self-assembly into the diamond structure. For αc = 0.4, the dopant dimer
is the aligned motif, in which case doping disrupts self-assembly into the
diamond structure. Symbols are colored pink if the system self-assembles
into diamond on the time scales of our simulation. The threshold for assembly
established by the undoped system at (αa, αc) = (0, 0.4) is indicated by circles
connected by a black line. (B) A phase diagram summarizes results of our
doping simulations. The associated dopant dimer configuration is shown to
the right of each row of doping results. Boxes are colored according to whether
simulations remain disordered at both φ = 0.54 and φ = 0.56, assemble into
diamond at φ = 0.54, or assemble into diamond at φ = 0.56.
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as detailed in Chapter II. In this technique, particle shape (defined in this case

by the truncation parameters αa and αc) is treated as a thermodynamic variable,

and allowed to fluctuate in a generalized thermodynamic ensemble at constant (zero)

conjugate alchemical potential. In each simulation, all particle shapes were identical

and sampled simultaneously. We sampled disordered systems at (αa, αc) = (0, 0.5)

and (0.2, 0.5) via Alch-MC at a range of densities between φ = 0.52 and φ = 0.64.

At each density, we ran simulations in which we allowed only the vertex truncation

parameter αc, only the edge truncation parameter αa, or both to fluctuate. We

constrained systems to only explore the area inside a square of side length ∆α = 0.2

centered at their initial position in shape space by imposing appropriate limits on

each α parameter during sampling.

Figure 4.14 shows results for alchemical sampling in both example glass-forming

systems. All simulations shown are at φ = 0.62, except the case of edge truncation

sampling at (αa, αc) = (0.2, 0.5), which is shown at φ = 0.60 (the equivalent Alch-

MC simulation at φ = 0.62 failed to crystallize on the time scale of our simulations).

Instead of forming a glass, each disordered system now crystallizes into a “nearby”

ordered structure by slightly altering its particle shape and accordingly adopting a

larger fraction of the associated crystalline pairwise motif. Thus we see that, given

the thermodynamic choice, these hard particle fluids escape schizophrenic regions of

shape space, and assemble into nearby crystalline structures typically dominated by

one motif.

4.9 The identity crisis in the 423 family

Finally, we show that our identity crisis hypothesis is independent of particle

symmetry and adjacent crystal structure by investigating another glass-forming sys-

tem in a different shape space, defined by the spheric triangle invariant 423 family

[113, 176]. This glass-former consists of hard particles with octahedral symmetry,
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Figure 4.14:
Would-be glass-formers escape their identity crisis and crystallize when allowed to ex-
plore their surrounding shape space via alchemical Monte Carlo simulation. Squares
indicate simulations at the glass-forming state point (αa, αc) = (0, 0.5), while circles
correspond to simulations at (αa, αc) = (0.2, 0.5). Empty symbols overlaid above
the shape space indicate system position at the start of Alch-MC sampling, and
letters indicate system position after 20-30 million MC sweeps of vertex truncation
(v), edge truncation (e), or both vertex and edge truncation (ve) sampling. System
snapshots, particle shapes, pie charts of pairwise motif fractions, and bond-order di-
agrams are shown for initial and final frames of each Alch-MC simulation. Pie chart
wedges are colored according to the motifs identified in Fig. 4.7. Wedges colored
gray represent (connection type, θ) regimes that were not identified with any crystal
structure. Pie chart wedges colored identically represent motifs characteristic of the
same crystal structure that differ only by connection type. In those cases, the mo-
tif with face connection is always drawn second, proceeding in a counter-clockwise
fashion. The hexagonal bond-order diagram resulting from edge Alch-MC sampling
at (αa, αc) = (0, 0.5) is a consequence of wurtzite-like structural motifs due to the
presence of stacking faults in the system. Crystalline structures resulting from edge
and vertex-edge Alch-MC sampling at (αa, αc) = (0.2, 0.5) contain multiple grains
and stacking faults; associated bond-order diagrams show the local environment of
particles in just a single grain. In all cases shown, disordered dense fluids avoid
vitrification and instead form crystals dominated by a single pairwise motif.
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located in a shape space region surrounded by shapes that form either bcc or a high-

pressure Lithium phase that is likely metastable to bcc [176]. As expected from the

above findings, we observed two competing motifs in this glass-former, each dominant

in the nearby bcc or metastable high-pressure Lithium structures. We allowed the

glass-former to explore its immediate surroundings in shape space through Alch-MC

sampling, and observed that it escaped its identity crisis by adopting a nearby particle

shape that forms bcc.

The spheric triangle invariant 423 family of polyhedra is formed by truncating the

vertices and edges of an octahedron by sets of planes at varying radial distances from

the polyhedron center. As we did for the 323 family, we define truncation parameters

αa and αc such that (αa, αc) = (0, 0), denoting a cuboctahedron, (αa, αc) = (0, 1),

denoting a cube, (αa, αc) = (1, 1), denoting a rhombic dodecahedron, and (αa, αc) =

(1, 0), denoting an octahedron, form the corners of this shape space. Fig. 4.15A

shows the full shape space, with representative polyhedra superimposed above their

corresponding positions in the space. It was previously found that at certain locations

in this shape space near the octahedron corner (αa, αc) = (1, 0), systems failed to

assemble into any ordered structure at densities ranging from φ = 0.50 to 0.65, while

at nearby locations, bcc or occasionally high-pressure Lithium formed only at high

packing fractions at or above φ = 0.6 [176].

We investigated the region near the octahedral corner of this shape space using

Monte Carlo methods identical to those described in Section 4.11.1. Our results are

shown in Fig. 4.15A. They agree generally with the aforementioned previous results;

we found that three state points failed to assemble on the 100 million MC sweep time

scale of our simulations, for densities φ = 0.56, 0.58, 0.6, 0.62, and 0.64. At four state

points, also simulated at φ = 0.56, 0.58, 0.6, 0.62, and 0.64, only bcc formed at φ ≥ 0.6.

At the remaining two state points, those that were previously found to assemble into

high-pressure Lithium at φ = 0.61[176], we ran five replicate simulations each at
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φ = 0.6, 0.61, and 0.62, and indeed found that high-pressure Lithium occasionally

formed at these state points only at φ = 0.61. For φ = 0.6 and 0.62, only bcc formed.

At (αa, αc) = (0.9, 0.05), Lithium formed in three of the five replicate simulations at

φ = 0.61, and transitioned to bcc over the course of the simulation in two of those

three cases. The remaining replicate simulations assembled into bcc outright. At

(αa, αc) = (0.95, 0.05), Lithium formed in two of the five replicate simulations at

φ = 0.61, and transitioned to bcc over the course of the simulation in both cases.

Two of the remaining three replicates formed bcc outright, while the final replicate

remained disordered.

We tested for the stability of the high-pressure Lithium structure at every investi-

gated state point by running melting simulations in which we initialized our systems

in the Lithium structure at packing fractions ranging from φ = 0.56 to 0.64, and sub-

sequently sampled in the isochoric ensemble for 39 to 61 million MC sweeps or until

melting into bcc occurred. We ran three replicate simulations at each state point and

each density. We additionally ran one corresponding simulation at each state point

and density in which we tested for the stability of bcc in an identical manner. We

found that, on these time scales, bcc was stable at all densities for all state points, and

Lithium was stable at a subset of (higher) densities for all state points. We found that

Lithium was stable at φ ≥ 0.58 for (αa, αc) = (0.85, 0.05), (0.9, 0.05), (0.95, 0.05), and

(0.95, 0.1); at φ ≥ 0.6 for (αa, αc) = (0.85, 0.1), (0.9, 0.1), (0.9, 0.15), and (0.95, 0.15);

and at φ ≥ 0.62 for (αa, αc) = (0.85, 0.15). At other densities, all replicates of Lithium

melted into bcc. The trend is clear: as edge and vertex truncation generally increase,

and thus αa decreases and/or αc increases, Lithium is only stable at higher and higher

densities.

These assembly and melting simulations demonstrate that high-pressure Lithium

can form and remain stable in this region of shape space, especially at small edge and

vertex truncations, but Lithium appears generally metastable to bcc.
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Fig. 4.15B shows the results of pairwise motif identification for the disordered

system at (αa, αc) = (0.9, 0.1) and φ = 0.62, as well as surrounding crystal structures.

Motif fractions were found by averaging across all snapshots (separated by 1 million

MC sweeps) for which systems were fully crystallized, or all snapshots in the case of

the disordered system. The disordered system is dominated by two motifs, colored

light and dark purple, that are each prevalent in nearby bcc (at φ = 0.62) and Lithium

(at φ = 0.61) structures respectively. In direct parallel to the motifs that dominate

the diamond structure and the dodecagonal quasicrystal within the 323 shape family,

we call these the “twisted” and “aligned” motifs, respectively. The “aligned” motif,

detailed in row 5 in Fig. 4.15B, dominates in a nearby Lithium structure and consists

of two truncated octahedra face-to-face and rotated such that their truncated vertices

are aligned. The “twisted” motif, detailed in row 4 in Fig. 4.15B, dominates in a

nearby bcc structure and consists of two truncated octahedra face-to-face and rotated

such that they have the same orientation, and thus their bonded faces are twisted 60◦

with respect to each other.

Fig. 4.15C shows a subset of results for alchemical Monte Carlo (Alch-MC) sam-

pling at the disordered state point (αa, αc) = (0.9, 0.1), at densities ranging from

φ = 0.52 to 0.64. We constrained each system to only explore the area inside a

square of side length ∆α = 0.1 centered at its initial position in shape space. Self-

assembly on our simulation time scales occurred at φ = 0.6 when we allowed only

vertex truncation αa to fluctuate, at φ = 0.6 and φ = 0.62 when we allowed only

edge truncation αc to fluctuate, and at φ = 0.6 when we allowed both αa and αc

to fluctuate. In these simulations, disordered systems escaped into regions of larger

truncation and assembled into bcc, with a larger fraction of their particles accordingly

adopting the twisted motif.
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Figure 4.15:
An identity crisis in the 423 shape family leads to disorder. (A) The full spheric triangle invariant 423
family, with the portion of the shape space explored in this study outlined. That portion is shown
in greater detail, with sample particle shapes overlaid above corresponding regions of shape space,
and regions colored according to their assembled structure. (B) Pairwise motifs in the disordered
system at (αa, αc) = (0.9, 0.1) compete, and are found to dominate in nearby ordered structures
in shape space. Relevant locations in shape space are outlined in black in panel A. Motifs are
listed in tabular form and color-coded according to their connection type ct and θ range. (C) The
disordered system escapes its region of identity crisis and crystallizes when allowed to explore its
surrounding shape space via Alch-MC. The empty square in the shape space diagram to the upper
right indicates system position in shape space at the start of Alch-MC sampling, and letters indicate
system position after 30-40 million MC sweeps of vertex truncation (v) sampling at φ = 0.6, edge
truncation (e) sampling at φ = 0.62, or both vertex and edge truncation (ve) sampling at φ = 0.6.
System snapshots, particle shapes, pie charts of pairwise motif fractions, and bond-order diagrams
are shown for initial and final frames of each Alch-MC simulation.
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4.10 The identity crisis in context

Our results show that the concept of alchemical space is a useful lens through which

to understand the vitrification of hard particle fluids. Crystallization fails in these

systems due to the presence of multiple local structures, each of which is preferred

in crystals formed by particles nearby in shape space. These structures compete by

existing at ratios in the glass-formers that impede crystallization into any one crystal.

Thus the entropic colloidal glass transition is caused by an identity crisis in shape

space in which the glass-formers are unable to settle on any one particular set of

local motifs consistent with a single crystal structure. In relation to other studies

of local structures in glassy liquids, our findings most closely align with the results

of Tanaka et al. [35, 175, 192], who posit that multiple types of ordering compete

and suppress crystallization via the literal suppression of crystalline pre-cursors in

supercooled liquids. Ref. [175] is especially relevant here: in that work, coauthors

found that glass-forming ability is positively correlated with increased competition

between multiple types of crystalline ordering, found near eutectic points when either

the size ratio of a binary hard disk system or the strength of tetrahedrality in a mod-

ified Stillinger-Weber [193] model system is varied. Our results expand on these ideas

in the context of hard-particle glass-formers: we find glass formation via multiple

types of competing crystalline order on a very local level, each prevalent in nearby

ordered structures in a two-dimensional alchemical landscape. Slightly modified par-

ticles have correspondingly modified preferences for assuming various local structural

motifs, and thus serve as indicators of the competing preferences of the system under

investigation.

The alchemical framework considered in this work may also be useful for under-

standing glass-formers in different contexts. Many previous studies have manipulated

degrees of freedom in glass-forming systems to relieve or increase frustration. Stoi-

chiometry in binary Lennard-Jones systems [194], polydispersity in two [160, 175] and
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three[157] dimensions, salt concentration in a water-salt mixture [195], bias towards

five-fold local ordering in two [173] and three [196] dimensions, bond tetrahedrality

[175, 189], and even the curvature of three-dimensional space [197] have been tuned

in pursuit of turning a glass-former into a crystal-former or vice-versa. In those cases,

results typically show that local structures in frustrated glass-formers are related to

local structures in one or more corresponding non-frustrated crystals. Considering

these degrees of freedom as alchemical parameters, and their “tuning” as controlled

exploration of alchemical space, may provide a useful unifying perspective.

4.11 Methods and protocols

4.11.1 Assembly simulations

To explore the self-assembly behavior of particles in the spheric triangle invariant

323 family, we sampled equilibrium behavior in the isochoric ensemble over a range

of densities between φ = 0.48 and φ = 0.64. Simulations of 4,096 particles were run

for about 100 million MC sweeps or until self-assembly was observed. Self-assembled

phases were identified by eye and quantified by the bond-order diagram [198], radial

distribution function, and diffraction pattern. At all state points corresponding to

αa < 0.3 and αc > 0.4 for which self-assembly was not observed, we also simulated

smaller systems of 2,624 particles for about 70-100 million MC sweeps. At one state

point, (αa, αc, φ) = (0, 0.6, 0.6), self-assembly was observed around 120 million MC

sweeps. To reach each density, we initialized our system in a sparse cubic array inside

a cubic box, randomized the system by running isochoric Monte Carlo sampling for

10,000 MC sweeps, and progressively rescaled box vectors by a scale factor of 0.9995

until the target density was reached. After every rescaling step, isochoric Monte Carlo

sampling proceeded until all particle-particle overlaps were eliminated. During the

compression process, the translational trial move size was identical to its value during
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equilibrium sampling, but the rotational trial move size was larger in order to facilitate

the removal of overlaps during fast compressions to high densities. During equilibrium

sampling, rotational and translational trial move sizes were constant across all systems

studied, and were chosen to most efficiently structurally relax a typical system.

4.11.2 Dynamical characterization

To establish glass-forming behavior in our systems, we chose particle shapes that

remain disordered on the long timescales of our simulations at the densities investi-

gated to establish phase behavior, and re-sampled one-component systems of those

shapes in a broader density range. We used Monte Carlo methods identical to those

described in detail above. We equilibrated our systems for approximately 50 million

MC sweeps, and then collected dynamical data for 100 million MC sweeps.

4.11.3 Crystal stability tests

To test the stability of candidate crystal structures at any location in shape space,

we replaced the particles of a well-equilibrated simulation snapshot of that crystal at

φ = 0.62 with particles of the desired shape, while leaving particle positions and

orientations unchanged. We then sampled in the isochoric ensemble to eliminate

particle overlaps, isotropically enlarging the simulation box by a small scale factor

every 10,000 MC sweeps if overlaps still existed. We subsequently compressed the

system to some initial density between φ = 0.62 and φ = 0.66 in the manner detailed

in Section 4.11.1, and allowed it to slowly melt. During the melting process, system

densities were decreased in increments of ∆φ = 0.01 every 10 million MC sweeps. Step

size tuning was performed during the melting process to maintain sampling efficiency.

Pressure was calculated using a volume perturbation technique [199–201] that

extrapolates pressure in hard particle isochoric simulations through evaluations of

the volume scaling needed to cause particle-pair overlaps throughout the system.
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Its implementation in HOOMD-blue is detailed elsewhere [45, 202]. Melting of the

crystal structures was determined by eye and corroborated by melting equations of

state; for each melting event, pressure exhibited behavior characteristic of a phase

transition, and often showed non-monotonic behavior in the form of Mayer-Wood

loops [203, 204]. Three melting replicates were run for each state point.

Equations of state for each disordered, super-compressed fluid, shown in the upper

left panel of Figs. 4.5 and 4.6, were determined from system snapshots used to

calculate dynamical order parameters. At each density, pressure was calculated for

100 snapshots, taken every 1 million MC sweeps. Pressures for each snapshot were

then ensemble averaged, and the equation of state shows these averages and associated

standard deviations of the mean at each packing fraction. Pressure is reported in

reduced units: p∗ ≡ βpσ3, where β ≡ 1/kBT , p is pressure, and σ = 1 is the

characteristic length scale defined previously.

To test the stability of the high-pressure Lithium structure in the 423 family,

we initialized in the Lithium structure via a compression scheme similar to that

described in Section 4.11.1, with a few changes. We set up our particles in a high-

pressure Lithium structure at very low packing fraction, then compressed quickly to

the desired density with a very small translational trial move size and a much larger

rotational trial move size, to ensure that the particles remained on-lattice during the

compression.

4.11.4 Identity crisis analysis

Error bars in Fig. 4.7 were calculated as follows: histograms over θ for each

connection type c were accumulated for 10 frames (separated by 1 million MC sweeps),

then Pobs(c, θ) was computed. Ensemble averages were taken over these values of

Pobs(c, θ). These averages have an associated standard deviation that is shown as

vertical error bars in plots of Pobs(c, θ), and that error was propagated via a first-
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order Taylor series expansion of − logP (c, θ), shown as vertical error bars in plots of

− logP (c, θ). Random distributions do not have associated error.

Motifs in ordered systems were calculated at φ = 0.62, with the exception of the

γ-brass crystal, for which motifs were calculated at φ = 0.6. To gather statistics

on motifs in relevant ordered systems at φ = 0.62, we began with already well-

equilibrated, self-assembled system snapshots of N = 4, 096 particles, and sampled

them in the isochoric ensemble for 100 million more MC sweeps. For several state

points, we began with snapshots at lower packing fractions than φ = 0.62, because

they represented cleaner samples of the ordered structures of interest that assembled

on the timescales of our simulations. We compressed these systems to φ = 0.62 before

acquiring statistics. In the case of γ-brass, motif statistics were simply collected for

the last 40 million MC sweeps of the self-assembling trajectory, throughout which the

crystal was fully formed.

4.11.5 Doping simulations

We performed doping simulations by artificially introducing select pairwise motifs

into our systems and monitoring consequent assembly or non-assembly. We used iso-

choric Monte Carlo sampling and treated pairwise motifs as rigid bodies. Simulations

were composed of 4,096 particles and run for about 100 million MC sweeps or until

the system self-assembled. Overlap checks treated each rigid body as a union of con-

vex polyhedra, and thus trial moves of pairwise motifs were rejected if either member

of the pair overlapped with any other particle or pair. We employed a compression

and equilibration scheme similar to that used in the hard particle MC simulations

described previously, with a few differences to accommodate the larger size and as-

pect ratio of the dimer dopants: we thermalized the system prior to compression for

1 million MC sweeps rather than 10,000 MC sweeps, and switched rotation move size

during compression to its smaller equilibration value if compression was proceeding
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slowly.

4.11.6 Alchemical Monte Carlo simulations

For alchemical Monte Carlo sampling in the 323 family, we initialized and com-

pressed systems of 1,000 particles to desired volume fractions in an identical manner

to that described earlier for traditional isochoric MC sampling. We then equilibrated

each system for 10 million MC sweeps at constant volume and constant particle shape.

We finally ran Alch-MC simulations of each system for 20-30 million MC sweeps. Al-

chemical shape moves were attempted with a 25% probability after every MC sweep.

In simulations in which both αa and αc were sampled, each truncation parameter had

a 50% probability of being sampled during a shape move.

For alchemical Monte Carlo sampling in the 423 family, we equilibrated 1,000

particle systems for 10 million MC sweeps at constant volume and particle shape,

then allowed particle shape to fluctuate for 29.7 - 40 million MC sweeps. Due to

the increased computational time required for particle-particle overlap checks after

every alchemical shape move attempt in these systems, we attempted shape moves

with a 25% probability after every 10 MC sweeps for all vertex and vertex+edge

truncation sampling simulations. During the edge truncation sampling simulations,

we attempted shape moves with a 25% probability after every 10 MC sweeps for 26.2

- 28.5 million MC sweeps, and attempted shape moves with a 25% probability after

every MC sweep for the remainder of the time.
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CHAPTER V

Alchemical tuning of glass-forming ability

Consideration of the extended alchemical space in Chapter IV also allows us to

explore relationships between seemingly disparate glass-forming systems at different

locations in that space. In this chapter, we examine the glass-forming behavior of

several systems in the 323 shape family in more depth. We find that the fragility of

our glass-formers is a consequence of particle shape and consequent local structure

formation, and controlled by location in shape space. We thus demonstrate that the

engineering of fragility via slight changes to particle shape is possible.

Richert and Angell [205] were the first to consider that fragility might be a conse-

quence of changes to local structure on approach to the glass transition, and variation

in fragility due to changes in local structure has been previously been explored by

means of tuning polydispersity [157, 160, 175, 206], isotropic pairwise potential shape

[149, 207, 208], local bond-orientational ordering [173], and tetrahedrality [175, 189].

Here, we show that fragility in our hard particle systems is indeed a consequence

of local structure formation, mediated by location of the particle in shape space.

We find that systems are stronger as constituent particle shapes become increasingly

tetrahedral, with smaller amounts of edge and vertex truncation. This corresponds

to an increased preference in the system for aligned pairwise configurations charac-

teristic of the dodecagonal quasicrystal and explored thoroughly in Chapter IV. A
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periodic crystal consisting of all particles forming aligned pairwise motifs with each

of their tetrahedrally coordinated neighbors is impossible due to the frustration in-

herent in perfect polytetrahedral ordering [209]; thus, the aligned motif is indicative

of a locally preferred structure that globally frustrates against periodic ordering, but

may give rise to quasiperiodic ordering when higher-order rearrangements of groups

of face-to-face aligned particles occur [138]. We find that, in agreement with results

[157, 160, 173] supporting a crystallization/frustration competition theory [35], sys-

tems become stronger as frustration against periodic ordering increases. Our alchem-

ical lens puts this idea into a concrete, geographical context: systems grow stronger

as they move closer to the tetrahedron in shape space.

5.1 Dynamical behavior and relaxation time

To examine glass-forming ability across the 323 shape landscape, we investigated

dynamical behavior and measured relaxation times in four sample systems in this

alchemical space. We employed Monte Carlo simulation techniques identical to those

explained in detail in Section 4.11.1, and determined relaxation time by the average of

all values {t} for which |ReFs(k, t)−ReFs(k, 0)/e| < ∆, where ReFs(k, t) is the real

part of the self-intermediate scattering function and ∆ is a tolerance chosen from the

set [0.01, 0.05, 0.1]. We chose the ∆ value that gave a relaxation time τα that produced

the best fit of ReFs(k, t) to a Kohlrausch-Williams-Watts (KWW) [210, 211] stretched

exponential functional form, B exp[−(t/τα)β], at all densities. We varied B and β as

fitting parameters. We fit the final fraction f of ReFs(k, t) at all densities, and chose

f from the set [0.99, 0.95, 0.9, 0.8, 0.7] such that it produced the best fit. We only

considered data for which ReFs(k, t) > 0.01 to avoid unnecessary fitting to long tails

at zero.

Fig. 5.1 shows order parameters 〈∆r2(t)〉, Fs(k, t), α(t), and χSS4 (t) that charac-

terize the glass-forming nature of the two additional systems investigated here that
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were not explored in Chapter IV. These order parameters are detailed in depth in

Section 4.3. For each system, Fs(k, t) was calculated at the first peak of the static

structure factor. Static structure factors of all systems are shown in Fig. 5.2 and

were calculated for the first frame of each trajectory. Systems at (αa, αc) = (0, 0.5),

(0, 0.6), and (0, 0.7) display a so-called “pre-peak,” or “first sharp diffraction peak,”

that indicates intermediate-range ordering commonly seen in network glass-formers

[212–214].

Fig. 5.3 shows the self-part of the intermediate scattering function Fs(k, t) rescaled

by relaxation time for all systems, as well as the best KWW fit. We observe that

the systems each obey a so-called “time-temperature superposition” [215] during late

α-relaxation, indicated by the curves collapsing onto each other.

5.2 Fragility across the shape landscape

Fig. 5.4A shows relaxation time τα at varying densities for four systems in the

323 shape family, each with a different particle shape. Relaxation time at each

state point was determined by the average of all values {t} for which |ReFs(k, t) −

ReFs(k, 0)/e| < ∆, as described in Section 5.1, and error bars indicate standard de-

viations of the mean. Error bars are smaller than the marker size in almost all cases.

Note that data points in Fig. 5.4A are missing for system c (φ = 0.6) and system d

(φ = 0.56); at these state points, crystallization into the dodecagonal quasicrystal was

observed at long simulation times. We did not experiment with faster compression

protocols to avoid this crystallization via deeper supercooling, and instead chose to

omit these data points from our plot.

We fit our data with a modified Vogel-Fulcher-Tammann (VFT) function [215]:
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Figure 5.1:
The mean-squared displacement 〈∆r2(t)〉, the real part of the self-
intermediate scattering function Fs(k, t), the non-Gaussian parameter
α(t), and the four-point susceptibility χSS4 (t), measured at a variety of
densities for the indicated state points in our shape space. Signatures in
all four order parameters indicate that these systems are glass-formers.
The increase in α(t) as t goes to zero is due to the discrete nature of our
Monte Carlo sampling; see Appendix C for more detail.
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Figure 5.2:
Static structure factors for all systems, identified by letters in the shape
space. Static structure factors are given as functions of kσ, where σ is a
length scale that characterizes the particle size of each system: σ3 = vp,
where vp is the particle volume. Vertical lines through each plot indicate
the position of the first peak, used for calculation of the self-intermediate
scattering function. These positions are kσ = 5.8, 4.5, 3.7, 3.7 for
(αa, αc) = (0.2, 0.5), (0, 0.5), (0, 0.6), and (0, 0.7), respectively.
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Figure 5.3:
The real part of the self-intermediate scattering function as a function of
rescaled time, for indicated state points. The optimal KWW fit is shown
in white squares.

τα(φ) = τ∞ exp

[
A

(φ0 − φ)δ

]
(5.1)

We used δ = 2 because this form has been found to accurately model relaxation

times in other hard particle systems at high density [179, 216, 217]. Lines in Fig.

5.4A are VFT fits to our relaxation data. For some systems, relaxation times at high

φ fall off the trend lines established by the VFT fits, in agreement with relaxation

times observed in systems of hard tetrahedra in Ref. [179]. Coauthors in that paper

hypothesized that this was due to higher order local structure formation in systems

of tetrahedra at high density. We do not speculate on the cause of this peculiar

behavior here, but merely note that as a result of this behavior, we did not include

some values of τα at high φ when fitting the VFT functional form to our data. Were

we to include those values, the accuracy of the VFT fits would be greatly reduced.

101



Solid lines in the figure pass through the data points that were actually fit, and dotted

lines indicate continuations of the fit function. Fig. 5.4A shows that VFT fits are

able to qualitatively capture the relaxation behavior of all systems, although the fits

begin to deviate from the data for small φ.

Fig. 5.4B shows scaled relaxation time as a function of scaled density for our

sample systems. φ is scaled by the factor φC , defined for each system according to

τα(φC) = 2e6 MC sweeps. To determine φC , τα was extrapolated for each curve

according to its fit by the VFT functional form. τα is also scaled in the figure by

the quantity κ, defined for each system by κ−1 = τα(φ = 0.3). This scaling collapses

the data for small φ. We performed this scaling to account for the different length

scales (and thus different values of k used to calculate the self-intermediate scattering

function and consequent relaxation time) associated with each particle shape. Similar

scaling has been performed elsewhere [179, 216, 218].

Curves for each particle shape show different slopes on approach to the glass

transition, and thus different fragilities, although the trend is not very clear from the

data in the main portion of Fig. 5.4B alone. To make this clearer, we quantified

our observations by calculating m ≡ ∂ log τα/∂(φ/φC), shown in the inset of Fig.

5.4B. The glass transition limit of this quantity is known as the “m fragility”[219] or

“steepness index”[220]; this parameter has the advantage of indicating fragility while

not relying on any fit to a theoretical model. Stronger glass-formers exhibit a less

dramatic increase in m with increasing density, and the inset of Fig. 5.4B clearly

shows this trend for particle shapes that are more tetrahedral.

Fig. 5.4C shows the fraction of aligned pairwise motifs in each system as a function

of density scaled by φC . Stronger glass-formers are increasingly dominated by particle

pairs in the aligned configuration at all densities. Regardless of fragility, the fraction

of particles participating in the aligned motif increases as relaxation time increases,

although less drastically for the more fragile systems due to the presence of other
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Figure 5.4:
Glass-forming systems exhibit a range of fragilities, with systems becom-
ing “stronger” as particle shapes move closer to the upper left corner of
shape space, corresponding to the non-truncated tetrahedron. (A) An
Angell plot of relaxation time as a function of density. Relaxation time is
in units of 10 MC sweeps. Lines through the data points are VFT fits to
relaxation time. (B) A scaled Angell plot, where density is scaled by φC
and relaxation time is scaled by κ, both defined in the main text. Inset
are the slopes of the logs of relaxation time as a function of scaled den-
sity. Systems of more tetrahedral particle shapes tend to be stronger. (C)
Fractions of particles in the aligned pairwise motif as a function of scaled
density. An example of this motif for the particle shape (αa, αc) = (0, 0.5)
is inset.
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Table 5.1:
Parameters related to VFT fits of relaxation time in our systems. τ∞ is in units
of 10 MC sweeps.

αa αc φ0 τ∞ A φC
0.2 0.5 0.800 9.760 0.284 0.631
0.0 0.5 0.762 42.460 0.183 0.615
0.0 0.6 0.812 32.220 0.356 0.610
0.0 0.7 0.811 26.056 0.416 0.596

pairwise motifs. Aligned motif fractions were calculated in frames separated by 1e6

MC sweeps. Motif fractions were collected over groups of 10 frames each, and the

mean values are plotted in Fig. 5.4C with error bars associated with the standard

deviation of the mean. Error bars are smaller than marker sizes in all cases.

For completeness, we tabulate parameters associated with VFT fits to our data

in Table 5.1. However, we note that due to the aforementioned discrepancies in τα at

high φ and our consequent ad hoc fitting procedure, these values may not be especially

informative.

5.3 Conclusions

In this chapter, we used the concept of the alchemical ensemble to show that sys-

tems in shape space have glass-forming properties that are related to and dependent

upon their position in this space. We found a range of fragilities over a small range

of particle shapes related to the regular tetrahedron. Stronger glass-formers, with re-

laxation times that are closer to exponential functions of density, result when particle

shape is less truncated and thus more tetrahedral. By tuning particle shape (and

therefore position in shape space), we showed that we consequently tune fragility,

which may be useful for applications related to phase-change memory technology

[221]. This chapter is adapted from Ref. [222], a manuscript authored by E.G. Teich,

G. van Anders, and S.C. Glotzer that is currently in preparation.
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CHAPTER VI

Structural detection in other contexts

Over the course of my dissertation, the software I developed to analyze particle

neighborhoods in real space (detailed in 2.2.2.1) found uses in a variety of applications.

Some of these applications were published, and some are yet to be published; some

were spearheaded by me, and some I had little to do with besides providing software

and scripts. In this chapter I briefly outline a handful of these applications.

Analysis of particle neighborhoods in real space lends itself to two broad classes

of use. The first is rather agnostic in its approach, and relies on comparisons among

particle neighborhoods as its main means of gathering information. Particle neighbor-

hoods, or environments, are determined throughout the system and compared with

each other, either in a local or global manner. If the comparison is global, all par-

ticle environments are compared with all others; if the comparison is local, particle

environments are only compared with other nearby environments. The latter case is

especially useful for crystal grain detection, as crystal grains can be defined through

this method as clusters of particles that are spatially localized with similar environ-

ments. Users may specify how the particle environments are calculated by requiring

that the environments of each particle consist of either a certain number of nearest

neighbors or all neighbors that lie within some cut-off distance of the particle center.

Users may wish instead to be maximally agnostic by using automatically calculated
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quantities associated with an ensemble-averaged first neighbor shell.

The second use-class of my environment-matching software is more directed, and

involves the search for user-specified structural motifs within simulations. In this case,

users may choose to compare the environment of every particle in the system against

some environment of interest that they provide. This is useful in analyses in which

users are especially interested in tracking specific structural motifs over the course of

a simulation. For example, it may be informative to track structural motifs that are

prevalent in end-game crystalline structures during the crystallization process itself.

Do the structures exist in the fluid? How do they influence the crystallization pro-

cess? Indeed, we already saw the usefulness of this consideration on a pairwise level

when examining the glass-forming behavior of systems of hard polyhedra; the afore-

mentioned structure-tracking is simply an extension to motifs consisting of multiple

particles.

6.1 Crystal grain detection

Environment matching in real space is very useful for agnostically detecting crystal

grains in twinned or polycrystalline systems. Fig. 6.1 shows two examples of crystal

grain detection in simulations; particles are colored according to grain.

Panel A illustrates twinning detection by this method in three dimensions, in

an fcc crystal of hard truncated octahedra. This data was provided by my labmate

Chrisy Xiyu Du. Two grains exist in the system, colored blue and purple respectively,

and are separated by two grain boundaries (colored red and green) due to periodic

boundary conditions. Particles are colored black if their environments do not match

the environments of their neighbors, or if they are members of crystalline clusters

with sizes below some cut-off. Bond-order diagrams to the right of the simulation

image show the local neighborhood (projected onto a unit sphere) of (top) all particles

in the simulation box, (middle) only particles in the blue grain, and (bottom) only
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A B

Figure 6.1:
Crystal grain detection via environment matching in (A) three dimensions
and (B) two dimensions. Particles are colored by cluster; black particles
are not members of any crystalline cluster or belong to a crystalline cluster
with a size below some cut-off.

particles in the purple grain. The bond-order diagrams are oriented along the three-

fold rotational axis of symmetry of the fcc structure, and show that each grain has

a three-fold axis that is rotated 60◦ with respect to the other. The superposition of

these makes up the cumulative bond-order diagram.

Panel B shows crystal grain detection in two dimensions, in a system of active

hexagons (rendered here as circles) that cluster into groups during a simulation. This

data was provided by my labmate Shannon Moran. This example is somewhat trivial,

as these groups of particles could be found via other means of spatial clustering,

but it additionally shows that crystal defects and boundaries can be detected via

environment matching in two dimensions. As before, particles are colored by cluster,

and are colored black if they are not members of any crystalline cluster or belong to

a crystalline cluster with a size below some cut-off.

Fig. 6.2 shows crystal grain detection in a more complicated case, when trun-

cated octahedra self-assemble into a high-pressure lithium-like (Li) structure with

eight unique particle environments in one unit cell. In this case, one can define the

environment of a particle as the set of vectors pointing to its 11 nearest neighbors,
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Figure 6.2:
High-pressure lithium crystal grain detection in a system of hard trun-
cated octahedra. Particles are colored by cluster; transparent black par-
ticles are not members of any crystalline cluster or belong to a crystalline
cluster with a size below some cut-off.

and then search for similarity with the environments of other particles that are close

by. Care must be taken to make sure that the field over which the software searches

for similar neighbors is wide enough, since the unit cell is bigger and thus particles

with similar environments are further away from each other. The Li grain is char-

acterized by eight colors, corresponding to the eight unique particle environments in

the high-pressure lithium structure. Other particles that are not members of any

crystalline cluster or belong to a crystalline cluster with a size below some cut-off are

colored black and shown transparently. Bond order diagrams to the right of the simu-

lation image show the local environment of (top) all particles and (bottom) particles

identified as the high-pressure lithium grain; the grain shows a cleaner crystalline

environment.

Environment matching may also be used to track the fraction of particles found to

be crystalline over the course of a simulation trajectory, and in that way to monitor
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Figure 6.3:
Crystallization in a system of hard truncated octahedra. Crystalline frac-
tion is plotted as a function of time; crystallization is marked by a signif-
icant jump in crystalline fraction. Nucleation incubation times, defined
in the main text, are shown as vertical lines.

the crystallization process. Fig. 6.3 shows the fraction of crystalline particles in simu-

lations of truncated octahedra at multiple densities. These systems self-assemble into

the bcc phase; we thus cluster particles according to common environment, searching

over the 14 nearest neighbors of every particle, and label a particle as “crystalline”

if it belongs to a cluster of size s > 1. Crystallization in these systems is marked

by a nearly instantaneous (in the time resolution of our trajectory writing) jump in

the fraction of crystalline particles measured in the system. We can also quantify

crystallization through observables like the nucleation incubation time [178], defined

in these simulations as the first frame after which approximately all measured crys-

talline particle fractions are greater than 0.1. Nucleation incubation times are drawn

as vertical lines in the figure.

The final example of this use case augments environment-matching with informa-

tion regarding particle orientations; although this is a somewhat specialized applica-

tion, I include it here to illustrate the power of combining different methods of local

structural detection. Fig. 6.4 shows the fraction of particles detected as bcc-like and

as high-pressure Li-like as a function of time in a single trajectory of hard truncated
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octahedra at packing fraction φ = 0.61. In this trajectory, the high-pressure Li struc-

ture first forms, before transforming into the bcc structure. Plots of the crystalline

fraction of each phase show this phenomenon: first the fraction of Li-like particles

grows, then plummets to zero as the fraction of bcc-like particles grows and eventually

saturates. This result supports the claim in an earlier chapter of this thesis (and our

accompanying paper [142]) that the high-pressure Li phase is metastable to bcc at

this state point.

Bcc-like particles are defined as those whose environment of 14 nearest neigh-

bors matches the environments of surrounding particles within some threshold, with

an additional restriction based on particle orientations. That restriction is as follows:

when a crystalline cluster of particles is identified by the aforementioned environment

matching scheme, the average minimal misorientation angle of all particles in that

cluster with respect to their nearest neighbors must be less than or equal to 31.4◦.

Only then is the cluster classified as bcc-like. This is because, in bcc assemblies of

octahedra, particles are oriented in the same direction, and thus have misorientations

of ∼ 0◦ with respect to their nearest neighbors. The maximal misorientation of two

objects of octahedral symmetry is ∼ 62.8◦; thus we use 31.4◦ as our cut-off. Li-like

particles are defined as those whose environment of 11 nearest neighbors matches the

environments of surrounding particles within some threshold, with essentially the op-

posite restriction based on particle orientations. When a crystalline cluster of particles

is identified by this environment matching scheme, the average minimal misorienta-

tion angle of all particles in that cluster with respect to their nearest neighbors must

be greater than 31.4◦. Only then is the cluster classified as Li-like. In high-pressure

lithium assemblies of octahedra, particles are typically (to within thermal fluctua-

tions) oriented perfectly face-to-face with their nearest neighbors. This corresponds

to a misorientation of 60◦.
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Figure 6.4:
The growth of high-pressure lithium and its transformation to the bcc
structure during a single simulation trajectory of hard truncated octahe-
dra.

6.2 Motif detection

Detection of specific structural motifs over the course of a simulation via envi-

ronment matching is an informative means of tracking the crystallization process,

especially when said process is more complicated than homogeneous nucleation and

growth. As an example, I consider the two-step nucleation and growth of a com-

plicated clathrate-like crystal phase in systems of hard truncated tetrahedra of very

specific vertex and edge truncations, shown in Fig. 6.5. My collaborator and labmate

Sangmin Lee discovered this phase, and we hypothesize that its formation mech-

anism is two-step in nature; first a phase transition from a low-density fluid to a

high-density fluid occurs in this system, and only after that process does the addi-

tional phase transition from the high-density fluid to the clathrate-like crystal occur.

Julia Dshemuchadse and Michael Engel have determined that the clathrate-like phase

possesses face-centered cubic symmetry, with space group Fd3̄ and no more than 432

particles in the cubic unit cell. Fig. 6.5A shows the unit cell of 432 particles. The
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Figure 6.5:
The clathrate-like phase that assembles in systems of specifically-
truncated hard tetrahedra. (A) The 432-particle unit cell of this structure.
(B) An example of how dodecahedral cages of twenty particles surround-
ing a single particle are linked throughout this structure.

image to the left also contains the bond-order diagram of the structure, and the image

to the right shows particle centers of mass, more clearly depicting the symmetry of the

cell. We term the structure clathrate-like because it is made up of dodecahedral cages

of twenty truncated tetrahedra surrounding a central particle. These are arranged

periodically in a complicated manner, with “glue” particles linking them in specific

ways. Particles are colored gray if they are at the centers of these dodecahedral cages,

and purple otherwise. Fig. 6.5B shows an example of how the dodecahedral cages are

linked throughout this structure: it consists of four dodecahedral cages, arranged in a

tetrahedral fashion. The particle centers are shown to the right, with bonds between

them to guide the eye. Links can be clearly seen between the dodecahedral cages.
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Dodecahedral cages are important motifs in this assembled clathrate-like struc-

ture. It is useful, then, to track dodecahedral cages during the crystallization process,

from the high density fluid phase to the crystal phase. This analysis could answer

questions such as: Do the dodecahedra form independently of each other, and then

link up somehow, or does one dodecahedron form and then act as a seed for the growth

of other dodecahedra? How does the quality of the dodecahedral cages change during

crystallization? More generally, how does nucleation propagate in this complicated

two-step process? Fig. 6.6 shows a first step towards answering these questions using

environment matching. It consists of three simulation snapshots during the crys-

tallization process from the high density fluid to the clathrate-like phase. Not all

particles in the simulation box are shown; rather, I show only those particles with

environments that are suitably dodecahedron-like. Particles are redder in hue if their

environments are more similar to dodecahedra. The clear crystalline ordering of do-

decahedral cages can be seen in this figure. Dodecahedral cages exist throughout the

system in the snapshot to the left, before crystallization, although they are less red in

hue and thus lower quality. The central snapshot shows a seed of high-quality dodec-

ahedral cages, arranged in a manner consistent with the final crystalline structure,

that ultimately gives rise to the final crystal. Bonds are drawn between particles to

guide the eye, and the seed is outlined with a circle. The periodic nature of the final

structure is clearly demonstrated by the right-most snapshot: the dodecahedral cages

are arranged in a cubic manner, consistently with the arrangement of the crystal

seed in the high-density fluid. More quantitative analysis must be performed to fully

elucidate the nature of this complex crystal growth, but Fig. 6.6 indicates that motif

matching to find dodecahedral environments during the crystallization process is a

fruitful analytical avenue.

To generate these images, I tested particle environments (consisting of vectors

pointing to 20 nearest neighbors) for similarity with an ideal dodecahedron, suitably
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scaled to match the pertinent length scales of the simulation. To save time, I pre-

filtered which particle environments were tested for similarity: I only tested those

with an appropriate number of nearest neighbors in a shell of appropriate distance,

such that they were good candidates for dodecahedral-like characteristics. Specifi-

cally, I only tested particle environments that contained between 17 and 20 nearest

neighbors in a shell characterized by 1.2 < r < 1.8, where r is radial distance from

the particle center. A typical dodecahedral shell in the final structure is character-

ized by a radial distance of R ∼ 1.45 from the central particle to any of its twenty

nearest neighbors. I then minimized the root-mean-squared displacement of these

pre-filtered environments with respect to a (scaled) ideal dodecahedron, using envi-

ronment matching, and calculated the number of vectors in each particle environment

that were matched to the vertices of an ideal dodecahedron. Only particles with a

number of matching environment vectors greater than or equal to 11 are shown, and

they are colored by the number of matching environment vectors. The more red these

particles are, the more environment vectors they possess that match to the vertices

of an ideal dodecahedron.

6.3 Uses in publications and pre-prints

My environment matching software was used to detect crystalline domains in

polycrystalline assemblies of binary mixtures of tetrahedra and octahedra [223] and

diamond-like assemblies of truncated tetrahedra [43].

It was also used to monitor crystallization in our forthcoming paper on local

structure in hard particle glass-formers, as detailed in Chapter IV.

In another forthcoming paper [224], we use this software as a way of detecting

unit cells in systems of densely packed anisotropic particles.

A final forthcoming paper [225] uses environment matching to track physically

relevant structural motifs during the complex two-step nucleation and growth of trun-
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Figure 6.6:
The evolution of particles with dodecahedron-like environments during
crystallization into a complex clathrate-like phase. Only particles with
suitably dodecahedron-like environments are shown, and particles that
are redder in hue possess more dodecahedron-like environments. Three
snapshots are shown from the crystallizing trajectory, and are arranged
chronologically from left to right. During crystallization, dodecahedral
cages are shown to arrange themselves periodically; the central image
shows the seed, outlined by a circle, that gives rise to the final periodic
structure.

cated tetrahedra into a clathrate-like phase, as detailed earlier.

This software is also being used to detect local environments in complex crystals

for comparison against various reference motifs [187], to track local motif formation

during the growth of the hard tetrahedron dodecagonal quasicrystal, and to under-

stand the metastability of high-pressure lithium in various hard particle systems.
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CHAPTER VII

Conclusion and outlook

This dissertation explored the role of local structure in crystallization and its fail-

ure in systems controlled solely by entropy maximization. Structure in these systems

is often not easy to identify or treat theoretically, and its role in thermodynamic

phase behavior has yet to be fully elucidated, due to analytical intractability and the

emergent nature of entropy-driven structure formation. I studied local structure in

hard particle systems through two broad computational investigations.

In the first investigation, detailed in Chapter III, I explored dense clusters of hard

polyhedral particles formed through spherical confinement. In addition to numerous

experimental and technological motivations unrelated to the fundamental physics of

self-assembly, this work was driven by the question of how to identify multi-particle

preferred motifs during the crystallization of hard particles. We hypothesized that

spherical confinement may act as a zeroth-order approximation of the local environ-

ment during unconfined self-assembly, and sought to identify candidate locally dense

motifs that might be important in crystallization via this confinement mechanism. We

found that spherical confinement for our cluster sizes tends to actually suppress pack-

ing effects due to particle shape, causing polyhedral particles to mimic the behavior

of spheres and form tightly-packed concentric layers. We also explored other inter-

esting, unanticipated signatures in our data set, including especially dense clusters at
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certain shape-dependent “magic numbers” of constituent particles, the violation of a

modified Ulam’s conjecture in spherical confinement, and a connection to the math-

ematical concept of optimal spherical codes. We also found a possible connection

to preferred local structure during crystallization, by identifying the densest cluster

of tetrahedra in spherical confinement as an important motif in the self-assembled

dodecagonal quasicrystal of hard tetrahedra.

In a second investigation detailed in Chapters IV and V, I explored the effect

of shape perturbation on local structure formation and consequent crystallization or

crystallization failure. This work was motivated by the question of why crystallization

fails in some hard particle systems and succeeds in other very similar systems, and

how local structure formation plays a role in that phenomenon. We were additionally

inspired by the glass community’s ongoing endeavor to uncover the role of structure in

dynamical arrest. We studied local structure and dynamical behavior across so-called

“shape landscapes,” or families of systems of particles of continuously interrelated

shape. We found that crystallization failure in these systems can be attributed to

competition in local structural motifs, each of which is prevalent in ordered phases

assembled by particles of closely related shape. We showed evidence that this struc-

tural “identity crisis” in the dense fluid indeed gives rise to vitrification by artificially

manipulating the local structure in various dense fluids and consequently enhancing

or suppressing crystallization. We also showed that disordered systems tend to escape

regions of structural competition and subsequently crystallize when allowed to explore

shape space through extended Monte Carlo sampling techniques. In Chapter V, we

showed that fragility, a measure of glass-forming ability extensively used in the glass

community, can be tuned through slight changes to particle shape and consequent

changes to the local structural makeup of the system.

I concluded my dissertation with a brief discussion of structural detection mecha-

nisms and an implementation I developed that has found use in a range of applications.
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7.1 Outlook

My work opened up many new avenues for investigation, and it will be a privilege

to see it continued by newer generations of graduate students. My study on confine-

ment could be enormously expanded through the consideration of different confine-

ment mechanisms and confined particle shapes. Mesh confinement, packing about a

point, different confinement geometries, or the introduction of surface tension might

give rise to cluster structures that are more relevant in hard particle self-assembly.

Confinement of flexible or semi-flexible polymers may be relevant for applications

related to the containment of genomic material in cells and capsids [59, 226, 227],

and confinement of ellipsoids may be helpful for studying the effects of cell nucleus

confinement on the behavior of ellipsoidal nucleosomes and higher-order chromosome

territories [58, 228, 229]. Interpolations in particle shape from highly faceted parti-

cles to spheres may be additionally informative: at what level of rounding do packing

effects due to particle shape disappear in spherical confinement? Can we design parti-

cles balanced on an edge such that slight changes to particle shape trigger completely

different cluster geometries? Laura Rossi and collaborators have the ability to build

rounded colloidal cubes and to control the degree of particle rounding [230]; we are

currently working with them to study questions of this type on both a computational

and experimental front. On another note, one could ask how cluster geometry changes

with system size. There must be a cross-over with size from surface-dominated pack-

ing behavior to bulk-dominated behavior, and that phenomenon has already been

explored in clusters of spheres [73]. It would be interesting to see how particle shape

influences this cross-over. We have begun a study of this sort with a former under-

graduate in our lab, Larissa Woryk; it would be informative to continue and expand

on that. Finally, I am very interested in the role of the densest tetrahedron cluster

in the self-assembly of the dodecagonal quasicrystal. Is it an important motif in that

crystallization process? When in the process does it appear and how does it prop-
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agate during nucleation? Kwanghwi Je, a current graduate student in our group, is

pursuing those questions.

My study on structural competition in colloidal glass-formers could be contin-

ued in many fascinating directions. It would be very informative to stress-test our

hypothesis about local structural competition in other contexts completely divorced

from the influence of hard particle shape. Russo, Romano, and Tanaka have already

published a very promising work [175] in which they find that structural competition,

and therefore surface tension between the dense fluid phase and any possible crystal

phase, is responsible for vitrification in a binary hard disk system and a system of

particles governed by a modified Stillinger-Weber potential. It would be interesting

to extend those ideas to our systems and others. It would also be very interesting

to more thoroughly study the relationship between structure and dynamics in our

systems. For instance, which motifs are slow and which are fast? How does structure

give rise, on a microscopic level, to observed dynamical heterogeneity? Can dynam-

ical signatures be tuned on-the-fly by tuning particle shape? Finally, we found that

glass-forming systems consistently crystallize when allowed to explore shape space,

and a related study [231] in preparation by Paul M. Dodd in our group also supports

the preliminary conclusion that the glass transition may be avoided in an extended

ensemble. It would be very interesting to dive more deeply into the implications of

this conclusion. Is there a physical relevance to the paths systems take when moving

through extended space to form ordered structures? What is that relevance? What is

the relationship between complexity and entropy in systems in this extended ensem-

ble? What does this observation tell us about the distinct preference for simplicity

that nature generally tends to have? Answering these questions, potentially in the

context of information theory, would be illuminating.
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I’ll close by allowing a beat of Buddhism to creep into this document– I fell in love

with these words many years ago, long before I discovered my passion for statistical

physics and the study of the dance.

Of what is the body made? It is made of emptiness and rhythm. At the ultimate

heart of the body, at the heart of the world, there is no solidity

. . . there is only the dance.

- George Leonard

120



APPENDICES

121



APPENDIX A

The potential of mean force and torque

Here we consider the mathematical framework underlying the potential of mean

force and torque as developed by van Anders et al. [36, 37]. Recall that the potential

of mean force and torque (PMFT) F12 (∆ξ12), associated with a pairwise configuration

∆ξ12 between any two particles, is implicitly defined as follows:

Z ≡
∫
d∆ξ12e

−βF12(∆ξ12) (A.1)

Z is the partition function (where we are ignoring overall constants due to in-

tegration over momentum terms and normalization by any factors proportional to

Planck’s constant), and β ≡ 1/kBT . F12 (∆ξ12) controls the contribution of the state

characterized by ∆ξ12 to the partition function; when it is lower, the contribution is

greater, implying that the state characterized by ∆ξ12 contributes more microstates

to Z.

Van Anders et al. explored the physical meaning of F12 (∆ξ12) by decomposing it

into contributions from (i) the particle pair with configuration ∆ξ12 and (ii) the sur-

rounding sea of particles. They did this by separating the partition function into sums

over pair configurations and sea configurations given a fixed pairwise configuration:
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Z =

∫
drNdqNe−βU(rN ,qN )

=

∫
dr1dr2dq1dq2

∫
drN−2dqN−2e−βU(rN ,qN )

=

∫
dr1dr2dq1dq2e

−βu12(∆ξ12)

∫
drN−2dqN−2e

−β
∑N

i 6=j
i,j 6=1,2

uij(∆ξij)

(A.2)

Line 3 proceeds from line 2 by taking a pairwise approximation of U :

U(rN , qN) ≡
∑
i 6=j

uij(∆ξij) (A.3)

It is most useful to make a change of variables {r1, r2, q1, q2} → {r1, q1, r12,M12},

so that we are integrating over the relative configuration ∆ξ12 of particles 1 and 2;

r12 is the relative displacement between particles 1 and 2, and M12 is the relative

misorientation between particles 1 and 2. We can make the choice of defining r12 and

M12 in the reference frame of particle 1 so that both quantities are invariant under

global rotations and translations. There is a Jacobian associated with this change of

variables under integration:

dr1dr2dq1dq2 = J(∆ξ12)dr1dq1dr12dM12 (A.4)

The Jacobian is written schematically as a function of the pairwise configuration

∆ξ12 because the relative displacement and misorientation are the only new quantities

we introduced in our change of variables, so J must only depend on ∆ξ12. More

precisely,
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J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂r1
∂r1

∂r1
∂r2

∂r1
∂q1

∂r1
∂q2

∂q1
∂r1

∂q1
∂r2

∂q1
∂q1

∂q1
∂q2

∂r12
∂r1

∂r12
∂r2

∂r12
∂q1

∂r12
∂q2

∂M12

∂r1

∂M12

∂r2

∂M12

∂q1

∂M12

∂q2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∂r12
∂r2

0

0 ∂M12

∂q2

∣∣∣∣∣∣∣ (A.5)

∂r12
∂r2

is shorthand for a 3×3 matrix whose ij-th element is the derivative of the i-th

component of r12 with respect to the j-th component of r2. ∂M12

∂q2
is similarly defined

and also a 3 × 3 matrix, since any orientation can be defined by three components.

The Jacobian is generally not straightforward to compute, so I will not explore it

further in any specific sense, but will rather consider its associated physical intuition.

We can write:

Z =

∫
d∆ξ12J(∆ξ12)e−βu12(∆ξ12)

∫
drN−1dqN−1e

−β
∑N

i 6=j
i,j 6=1,2

uij(∆ξij)

(A.6)

We have absorbed the integral over dr1dq1 into the integral over the remaining

particles. Now, this partition function has been separated into a term that depends

only on relative pairwise configuration, given entirely by the position and orientation

of particle 2 in the reference frame of particle 1, and a term that depends on all other

particles aside from particle 2. We can define a free energy, F̃12(∆ξ12), associated with

this latter term. It is the free energy of the sea particles given the fixed configuration

∆ξ12. Then:
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Z =

∫
d∆ξ12J(∆ξ12)e−βu12(∆ξ12)e−βF̃12(∆ξ12)∫

d∆ξ12e
−βF12(∆ξ12) =

∫
d∆ξ12J(∆ξ12)e−βu12(∆ξ12)e−βF̃12(∆ξ12)

F12(∆ξ12) = u12(∆ξ12)− kBT log [J(∆ξ12)] + F̃12(∆ξ12) (A.7)

Finally, the competition between the particle pair and the sea becomes clear:

the Jacobian encodes the contribution to the PMFT (associated with the pairwise

configuration ∆ξ12) from the pair of particles in isolation. The Jacobian is a term that

scales the phase space volume associated with the relative pairwise configuration ∆ξ12,

such that it corresponds to an actual phase space volume in terms of absolute particle

positions and orientations. When the Jacobian is large, then the phase space volume

associated with ∆ξ12 is large, meaning that more pairs of absolute particle positions

and orientations correspond to the relative configuration ∆ξ12. Higher J lowers F12,

as it should, since a larger phase space volume associated with ∆ξ12 means higher

configurational entropy for the particle pair. F̃12, on the other hand, generally grows

larger in hard particle systems as J grows larger, since a higher configurational entropy

for a pair of particles usually means a lower accessible free volume for the surrounding

sea of particles. This effect, however, is density or pressure-dependent. Thus, F12 at

any density is minimized by some ∆ξ12 according to a trade-off between increasing

J(∆ξ12) and decreasing F̃12(∆ξ12). Through the prism of local dense packing, F12 is

minimized by an arrangement of particles 1 and 2 that is dense enough such that it

gives free volume to the surrounding sea, thereby lowering F̃12, but not too dense,

such that J is not too small.
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APPENDIX B

Cluster compression and configuration space at

intermediate pressures: the case of 7 cubes

When generating dense clusters of cubes via spherical confinement, we compared

our results for N = (4− 20) cubes to dense cube clusters obtained in Ref. [107]

and noticed one significant discrepancy. The densest cluster of 7 cubes found in Ref.

[107], a central cube surrounded by 6 cubes in face-face contact with it (Fig. B.1a), is

denser than our densest 7 cube cluster (Fig. B.1b) by ∆φcirc ∼ 4.4×10−2. This value

is about 15 times larger than the next largest value of ∆φcirc. We were surprised by

this high value of ∆φcirc, and unable to achieve the denser cluster in 1000 replicate

runs using our compression protocol. In this appendix, we explore this discrepancy

and its implications for cluster generation via spherical confinement and compression.

We hypothesize that the discrepancy is due to the limited phase space available

to the cluster in its denser configuration in an intermediate pressure range during our

compression. If that is the case, then accordingly the denser cluster is statistically less

likely to be generated via our compression scheme. By the end of the compression, at

high pressure and small container volume, the system has settled into a configuration

that corresponds to a local free energy minimum. It cannot rearrange itself into the
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(a) (b)

Figure B.1:
Comparison of the densest cluster found in the literature of 7 cubes inside
a sphere, and the less dense cluster found by our methods. (a) The denser
packing (DP) of 7 cubes, found in Ref. [107]. (b) Two views of the less
dense packing (LDP) of 7 cubes, which is the densest cluster found via
our compression scheme.

denser cluster and reach the lower free energy minimum, due to high pressure and

the presence of the container; it is trapped in a local free energy basin.

To test this hypothesis, we first ran 50 compression simulations in which we arti-

ficially increased the likelihood of forming the denser configuration (hereafter called

the DP, or denser packing), to check that our compression scheme could in fact find

the DP with a little help. We fixed a central cube in the center of the container, and

did not move it over the course of the simulation, while allowing the other 6 cubes to

move freely. We then compressed the container identically as before. We found that

the DP formed 50/50 times in this case, providing evidence that one cube moving to

the center of the cluster is the barrier to formation of the DP via our compression

scheme.

To analyze this barrier more quantitatively, we constructed the DP by hand, and

melted it via an expansion protocol that was exactly our compression protocol in

reverse. We also melted the densest cluster we found (hereafter called the LDP, or

less dense packing) in the same fashion. We melted each cluster 50 times, and used

data from these melting simulations to investigate the phase space available to each

cluster at intermediate and high pressures (see Fig. B.2, explained in detail in the

following paragraphs). It is a subtle point, but we should note that during our melting
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simulations we did not tune translation, rotation, or box resize move sizes to maintain

constant acceptance ratios, as we did during the compression simulations. Rather,

we kept move sizes fixed and identical across all melting simulations. We did this in

order to accurately compare MC statistics across simulations.

We considered the DP to be fully melted at the pressure at which its central

cube escaped the cage of the six particles surrounding it, and all particles could

explore phase space equally. To approximate this pressure for the DP, we plotted

the position variance σ2
r0
≡
〈
(r0 − 〈r0〉)2〉 as a function of reduced pressure, where

r0 is the position of the center of mass of the central particle and brackets indicate

ensemble averaging over all 50 simulation replicates at each pressure. It is the red

dotted line in Fig. B.2a. We also plotted σ2
r ≡ 1

7

∑
i σ

2
ri

for both the DP and the

LDP. σ2
r is the average position variance σ2

ri
for all seven particles in the cluster. σ2

r0

rises from zero and converges to the average position variance at a pressure of about

p∗ ∼ 1.72, indicated by a vertical black line in Fig. B.2a. At this pressure the central

cube escapes the cage of the six cubes surrounding it.

At intermediate pressures above p∗ ∼ 1.72, we hypothesize that the DP explores

less phase space than the LDP, resulting in a lower probability that the seven cubes

will condense into the DP via the caging of the central particle. Note, however, that

the DP is nevertheless denser than the LDP, and is necessarily entropically favored

over the LDP at infinite pressures. Therefore, the DP should explore more phase

space than the LDP at the highest pressures in our melting simulations. This is

already indicated by the plot of σ2
r for both the DP and LDP. The inset of Fig. B.2a,

a close-up view of the plots at high pressure, shows that the average position variance

for the DP is higher than that for the LDP for pressures higher than p∗ ∼ 80. By

p∗ ∼ 90 this difference in average position variances cannot be explained by the

error affiliated with either value. It is small (as a reference point consider that the

circumsphere radius of a single cube is 1 in our simulations), but consistently present.
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Our hypothesis, that the DP explores less phase space than the LDP at interme-

diate pressures above p∗ ∼ 1.72, is bolstered by comparing particle move acceptance

ratios during the DP and LDP melting simulations. Since our trial move sizes in all

simulations are identical, we may regard our simulation as a numerical MC volume

integration in which the particle move acceptance ratio is proportional to the free

volume available to the particles at a particular pressure. This technique for the

calculation of available free volume to particles in a cluster was used in Ref. [129],

albeit for the contiguous free volume available to a single particle at thermal equilib-

rium. Here, we compare particle move acceptance ratios as a function of pressure for

both the DP and the LDP, to approximately compare the free volume available to

all particles in each cluster. Fig. B.2b shows 〈∆acc〉 ≡ 〈accLDP − accDP 〉, where acc

is the particle move acceptance ratio for the melting of a given cluster, and brack-

ets indicate ensemble averaging over all 50 simulation replicates at each pressure. A

vertical line at p∗ ∼ 1.72, at which the central particle in the DP escapes the cage of

the six particles surrounding it, is also shown for reference. Below p∗ ∼ 1.72, ∆acc is

usually within error of zero, indicating that the free volume available to the particles

in each cluster is approximately equal. Note, however, that ∆acc is distinctly higher

than zero for a range of pressures above p∗ ∼ 1.72, indicating that there is more free

volume available to the particles in the LDP at these pressures. ∆acc distinctly drops

below zero at the highest pressures, however, indicating that the DP is entropically

favored over the LDP at pressures approaching infinity, as it must be.

We believe this evidence strongly indicates that the DP, although entropically

favorable at pressures approaching infinity, is entropically unfavorable in an interme-

diate pressure regime in which the central particle is caged by its six neighbors. This

may explain why our compression scheme could not find the DP even in 1000 tries.

However, our compression scheme did find other dense packings in which a central

particle is surrounded by several neighboring particles. Notably, we found a dense
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packing of 9 octahedra consisting of a central octahedron surrounded by eight neigh-

bors all face-to-face contacted with it (see Fig. 3.7 in Section III for an illustration).

Our compression scheme found this packing once in 50 attempts. We aren’t sure why

we were able to find this packing and not the 7 cube DP; we wonder if we simply

got lucky or if there is some difference in the free volume available to each cluster as

it forms during our compression. A more thorough investigation will be required to

fully elucidate this matter.
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Figure B.2:
Evidence that the densest cluster found in the literature, although entropically
favorable at pressures approaching infinity, is entropically unfavorable in an
intermediate pressure regime in which its central particle is caged by its six
neighbors. (a) σ2

r , position variance per particle, of our dense cluster of 7
cubes (LDP, plotted in blue) and the denser cluster of 7 cubes from Ref.
[107] (DP, plotted in green). Error bars indicate the variance of the position
variance across all 7 particles. The red dotted line is the position variance of
the central particle of the DP; it converges from a value of zero to the average
across all particles when the central cube escapes from the cage of the six
particles around it. A black vertical line indicates the approximate pressure
at which this occurs, p∗ ∼ 1.72. The inset is a close-up view of this plot at
high pressures; note that the position variance of the DP remains higher than
that of the LDP, indicating that it is entropically favorable as pressure tends
toward infinity. (b) 〈∆acc〉 ≡ 〈accLDP − accDP 〉, the difference between the
average particle move acceptance ratio for all LDP melting simulations and
that for all DP simulations. Note that for a range of pressures above the
vertical line at p∗ ∼ 1.72, accLDP > accDP , indicating that there is more free
volume available to the particles in the LDP at these pressures. At the highest
pressures, however, accDP > accLDP , indicating that the DP is entropically
favored over the LDP here.
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APPENDIX C

Non-Gaussianity of Monte Carlo sampling at short

times

Here we provide some justification for the measured increase at short times of the

non-Gaussian parameter α(t) in the glass-forming systems of hard polyhedra detailed

in Section IV. We used Monte Carlo simulations to explore dynamical behavior in

these systems; Monte Carlo methods can simulate a diffusive process if only local

moves are made. In this case, the simulation is effectively a random walk, which

becomes a Gaussian distribution as the number of steps taken on the walk goes to

infinity. As the number of steps taken goes to zero, however, the system becomes

decidedly non-Gaussian, and α > 0.

To show this, we idealize the MC process, and compute α exactly in a toy model.

First let’s start in one dimension, and give our MC sampling method three options:

particles can either remain in place with probability s, move to +L with probability

m/2, or move to −L with probability m/2, with m + s = 1. This is technically a

trinomial distribution. We will follow the treatment of a random walk in Nelson’s

Biological Physics [232]:

Let the displacement of step j be kjL, where kj = 0 with probability s, and
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kj = ±1 with probability m/2. Then consider all possible trajectories of N steps:

〈
x2
N

〉
=
〈
(xN−1 + kNL)2

〉
=
〈
x2
N−1

〉
+ 2L 〈xN−1kN〉+ L2

〈
k2
N

〉
=
〈
x2
N−1

〉
+ L2m . (C.1)

To get from line 2 to line 3 above, note that 〈k2
N〉 = 0s+m/2 +m/2 = m, and that

〈xN−1kN〉 evaluates to zero. This is because xN−1 and kN are uncorrelated, so we

can split that average of a product into a product of averages, and 〈kN〉 = 0. As

another explanation, note that for every value of xN−1, there are 3 contributions to

the ensemble average: kN = 0 with probability s, kN = 1 with probability m/2, and

kN = −1 with probability m/2. These average to zero.

We can compute that 〈x2
1〉 = 〈x2

0〉 + L2m = L2m, and then use the recursion

relation to determine that:

〈
x2
N

〉
= NmL2 . (C.2)

We can also consider 〈x4
N〉:

〈
x4
N

〉
=
〈
(xN−1 + kNL)4

〉
=
〈
x4
N−1

〉
+ 4L

〈
x3
N−1kN

〉
+ 6L2

〈
x2
N−1k

2
N

〉
+ 4L3

〈
xN−1k

3
N

〉
+ L4

〈
k4
N

〉
=
〈
x4
N−1

〉
+ L4m+ 6L2m

〈
x2
N−1

〉
=
〈
x4
N−1

〉
+ L4m (1 + 6m(N − 1)) . (C.3)

To get from line 2 to line 3, first note that 〈k4
N〉 = 0s+m/2 +m/2 = m. The terms

that contain odd powers of kN go to zero as per our previous argument involving
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〈xN−1kN〉. Then, to evaluate
〈
x2
N−1k

2
N

〉
, we can again note that xN−1 and kN are

uncorrelated, and 〈k2
N〉 = m, so

〈
x2
N−1k

2
N

〉
= m

〈
x2
N−1

〉
. Line 4 proceeds from line 3

by the previous result:
〈
x2
N−1

〉
= (N − 1)mL2.

We can compute that 〈x4
1〉 = 〈x4

0〉 + L4m = L4m, and use the recursion relation

to determine that:

〈
x4
N

〉
= L4m

(
N + 6m

N∑
n=1

(n− 1)

)
(C.4)

N∑
n=1

(n− 1) =
N∑
n=0

n−
N∑
n=1

1

=
N

2
(N + 1)−N

=
N

2
(N − 1) . (C.5)

To get from line 1 to line 2, note that the first sum can be broken into pairs, (0 +

N) + (1 +N − 1) + . . . . If N is odd, there are exactly N+1
2

of these pairs, for a total

sum of N N+1
2

. If N is even, there are exactly N
2

of these pairs, and there is a left-over

term N
2

that also contributes to the sum, for a total sum of N N
2

+ N
2

= N
2

(N + 1).

Thus,

〈
x4
N

〉
= L4m

(
N + 6m

N

2
(N − 1)

)
= L4m

(
3mN2 +N(1− 3m)

)
. (C.6)

AsN →∞, the first term dominates the expression, and 〈x4
N〉 / 〈x2

N〉
2 → 3m2L4/m2L4 =

3, a result that can be proven to be true for the Gaussian distribution in 1D. Let’s
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set N = 1 (to mimic the short time limit in our MC simulation):

〈x4
1〉

〈x2
1〉

2 =
L4m

L4m2

=
1

m
. (C.7)

As m→ 0, or the probability of moving becomes increasingly unlikely, this expression

diverges, and the distribution consequently gets increasingly “tail-heavy.”

We now move to 3D by employing a few tricks:

〈
r2

1

〉
=
〈
x2

1 + y2
1 + z2

1

〉
= 3

〈
x2

1

〉
= 3L2m , (C.8)

and

〈
r4

1

〉
=
〈(
x2

1 + y2
1 + z2

1

)2
〉

=
〈
x4

1 + y4
1 + z4

1 + 2x2
1y

2
1 + 2x2

1z
2
1 + 2y2

1z
2
1

〉
= 3

〈
x4

1

〉
+ 6

〈
x2

1

〉2

= 3L4m+ 6L4m2

= 3L4m(1 + 2m) , (C.9)

Thus,

〈r4
1〉

〈r2
1〉

2 =
3L4m(1 + 2m)

9L4m2

=
1

3m
+

2

3
. (C.10)
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The non-Gaussian parameter α is correspondingly:

α =
3 〈r4

1〉
5 〈r2

1〉
2 − 1

=
1

5m
− 3

5
. (C.11)

We can note several things about the above quantity. If m = 1, and a move is always

made, 〈r4
1〉 = 〈r2

1〉
2

and α is negative. The distribution resembles that of a Bernoulli

distributed coin toss, which is known to have a negative excess kurtosis. If m = 1/3,

α = 0. For m < 1/3, however, α > 0, and the system becomes increasingly tail-heavy.

At the reasonable translation acceptance ratio m = 0.1, for example, α = 1.4. Indeed,

this number is comparable to values of α at small times shown in Fig. 4.4.
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APPENDIX D

Misorientation angle distributions and spaces

Misorientation distributions have been extensively studied in the context of poly-

crystalline materials with distributions of grain boundary angles. In our work, notably

in Section IV, we are often concerned with misorientations between anisotropic par-

ticles with various symmetries. We can leverage prior work in the polycrystallinity

community to establish a theoretical framework for this problem. More specifically,

let’s consider how to find a distribution of misorientation angles, given a distribution

of misorientations more generally.

Consider a misorientation r between two unit quaternions p and q, so that p = rq.

r is itself a unit quaternion, and is described fully by a rotation of angle ω about a

rotation axis n̂. Thus, it is a function of three variables, r(ω, θ, φ). It lives on the unit

3-sphere (with antipodal points identified with each other, since r and −r effect the

same rotation). We can define the probability density M(r) ≡M(ω, θ, φ) of observing

the misorientation r. Then, we can compute the probability density p(ω) of observing

the misorientation angle ω by integrating over the part of the hyperspherical volume

element that depends on θ and φ.

Let’s look at the simple example of a uniform distribution of random misorienta-

tions. In this case, M(r) = 1
2π2 , since it must be a constant everywhere and integrate

137



to 1 over the unit 3-sphere. (The area of the unit 3-sphere is 2π2.) Then we can find

p(ω):

p(ω) =

∫ 2π

0

∫ π

0

(
1

2π2

)
sin2

(ω
2

)
sin θdθdφ

=
2

π
sin2

(ω
2

)
(D.1)

The above integral is over the unit 3-sphere; the volume element of the unit 3-

sphere is derivable by noting that an a unit quaternion of rotation angle ω and rotation

axis n̂ can by identified as a vector in the direction of n̂ pointing to a spot on the

surface of a 2-sphere of radius sin
(
ω
2

)
. Thus, an integral over n̂, given a value of ω,

is a surface integral over a sphere of radius sin
(
ω
2

)
.

We can check that indeed p(ω) found above does integrate to 1 over the range

of ω ∈ [0, π]. This distribution goes to zero as ω goes to zero, since there are fewer

and fewer unique misorientations corresponding to smaller and smaller misorientation

angles.

The situation becomes more complicated, however, when crystalline grains (or

particles, in our case) have symmetry; in that case, there is a set of equivalent orien-

tations for each grain/particle, and misorientations between grains or particles must

be treated with more care. Polycrystallinity literature addresses this problem quite

elegantly with the concept of the “misorientation space,” or the unique set of relative

orientations (or unique portion of the surface of the hypersphere) of two objects ac-

cording to the crystal symmetries involved. This space can be projected down into

three dimensions, in the same way that the full hypersphere can be.

Then the set of all unique misorientations of a given angle ω will be the intersection

of this misorientation space and a sphere of radius sin
(
ω
2

)
centered at the origin. We

can call this intersection region Ω(ω), and integrate over it to obtain the proper
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probability distribution:

p(ω) =

∫
Ω(ω)

M(ω, θ, φ) sin2
(ω

2

)
sin θdθdφ (D.2)

p(ω) is then typically a piecewise function of ω, with a characteristic “sharkfin”

shape in many cases. The shape of this distribution is somewhat intuitive: it again

goes to zero as ω goes to zero, as in the case of the random distribution, since particles

don’t know they are symmetric at small misorientation angles. At larger misorien-

tation angles, symmetry restricts the number of available unique misorientations, so

p(ω) again drops to zero. See Fig. 2.1 for examples of this sharkfin-like distribution

for tetrahedral and octahedral symmetry groups.

Luckily for us, the misorientation space and corresponding p(ω) distribution has

already been calculated in a variety of ways for numerous crystallographic symme-

tries. The first distribution was calculated by Mackenzie [233] and then Handscomb

[234] for cubic symmetry. Later, “generalized” Mackenzie distributions for other crys-

tallographic groups were calculated [47, 48, 235].
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