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Purpose: Time of �ight (TOF) PET reconstruction is well known to statistically improve
the image quality compared to non-TOF PET. Although TOF PET can improve the overall
signal to noise ratio (SNR) of the image compared to non-TOF PET, the SNR disparity
between separate regions in the reconstructed image using TOF data becomes higher than
that using non-TOF data. Using the conventional ordered subset expectation maximization
(OS-EM) method, the SNR in the low activity regions becomes signi�cantly lower than in the
high activity regions due to the di�erent photon statistics of TOF bins. A uniform recovery
across di�erent SNR regions is preferred if it can yield an overall good image quality within
small number of iterations in practice. To allow more uniform recovery of regions, a spatially
variant update is necessary for di�erent SNR regions.
Methods: This paper focuses on designing a spatially variant step size and proposes a

TOF-PET reconstruction method that uses an non-uniform separable quadratic surrogates
(NUSQS) algorithm, providing a straightforward control of spatially variant step size. To
control the noise, a spatially invariant quadratic regularization is incorporated, which by
itself does not theoretically a�ect the recovery uniformity. Nesterov's momentum method
with ordered subsets (OS) is also used to accelerate the reconstruction speed. To evaluate the
proposed method, an XCAT simulation phantom and clinical data from a pancreas cancer
patient with full (ground truth) and 6× downsampled counts were used, where a Poisson
thinning process was employed for downsampling. We selected tumor and cold regions of
interest (ROIs) and compared the proposed method with the TOF-based conventional OS-
EM and OS-SQS algorithms with an early stopping criterion.
Results: In computer simulation, without regularization, hot regions of OS-EM and OS-

NUSQS converged similarly, but cold region of OS-EM was noisier than OS-NUSQS after
24 iterations. With regularization, although the overall speeds of OS-EM and OS-NUSQS
were similar, recovery ratios of hot and cold regions reconstructed by OS-NUSQS were more
uniform compared to those of the conventional OS-SQS and OS-EM. The OS-NUSQS with
Nesterov's momentum converged faster than others while preserving the uniform recovery.
In the clinical example, we demonstrated that the OS-NUSQS with Nesterov's momentum
provides more uniform recovery ratios of hot and cold ROIs compared to OS-SQS and OS-EM.
Although the cost function of all methods are equivalent, the proposed method has higherThis	article	is	protected	by	copyright.	All	rights	reserved
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structural similarity (SSIM) values of hot and cold regions compared to other methods after
24 iterations. Furthermore, our computing time using graphics processing unit was 80×
shorter than the time using quad-core CPUs.
Conclusion: This paper proposes a TOF PET reconstruction method using OS-NUSQS

with Nesterov's momentum for uniform recovery of di�erent SNR regions. In particular, the
spatially non-uniform step size in the proposed method provides uniform recovery ratios of dif-
ferent SNR regions, and Nesterov's momentum further accelerates overall convergence while
preserving uniform recovery. The computer simulation and clinical example demonstrate
that the proposed method converges uniformly across ROIs. In addition, tumor contrast and
SSIM of the proposed method were higher than those of conventional OS-EM and OS-SQS
in early iterations.

I. INTRODUCTION

Time of �ight (TOF) positron emission tomography
(PET) has been developed to improve image quality
and reduce image acquisition time1,2. The noise reduc-
tion has been studied using TOF and non-TOF data in
many papers3,4,5,6. One of the main advantages using
TOF information is to improve the signal-to-noise ratio
(SNR) of the reconstructed image. The SNR of an image
voxel reconstructed by �ltered back-projection (FBP) is
approximately7:

SNR = k ·N−
1
2

(

T 2

T + S +R

)
1
2

, (1)

where k is a physically de�ned constant and N is the
number of voxels in an image. T is the number of true
counts in a back-projected image, S and R are the num-
bers of scatter and random counts, respectively, in a
back-projected image. The noise equivalent count rate
(NEC), de�ned by T 2/(T + S +R) with measurements,
is also used as the e�ective sensitivity considering noise
contributions, such as scatter and random events8. For
example, in a cylinder of diameter D with uniform ac-
tivity, the improvements of SNR and NEC gains of TOF
PET are estimated as follows8:

SNRT =

√

D

∆x
SNRn-T, NECT =

D

∆x
NECn-T, (2)

where T and n-T denote TOF and non-TOF, respec-
tively, ∆x is the full-width-half-maximum (FWHM) cal-
culated by an intrinsic time resolution (∆t) as ∆x =
c∆t/2. Here, c is the speed of light. Therefore, TOF
information improves the image quality with higher SNR
and NEC8. In addition, Karp et al.

9 demonstrated that
the contrast recovery coe�cient (CRC) using TOF data
converges faster than the CRC using non-TOF data
in the maximum likelihood expectation maximization
(MLEM) algorithm, and observed that CRCs using TOF
data are larger than those using non-TOF data. Here,
the CRC is de�ned as (H − B)/B, where H is a hot
region and B is a background.

In general, due to non-uniform activity in an image,
SNRs di�er between regions. The standard iterative algo-
rithms such as OS-EM10 and OS-SQS11 converge slowly

for the low-SNR region, and regions with di�erent SNRs
converge to di�erent recovery ratios. Although TOF
PET can improve image contrast in high SNR regions,
the disparity of SNRs between elements in an image be-

comes considerably wider by at least
√

D
∆x

times com-

pared to that in non-TOF PET. For example, speci�c
regions, such as low activity regions, can be very noisy
after a few iterations, potentially degrading the overall
noise distribution within an image and making it di�cult
to terminate an iterative method early. Therefore, devel-
opment of an algorithm that provides fast and uniform
recovery of ROIs without sacri�cing the overall conver-
gence speed is necessary, which can help minimize the
total number of iterations needed in practice.

In iterative image reconstruction, there are two pos-
sible ways to encourage the uniform recovery for dif-
ferent SNR regions: 1) spatially variant regularization
based on the noise statistics of data and 2) spatially non-
uniform step size method for the gradient-based update.
The spatially variant regularization has been used to en-
courage uniform image resolution12,13,14. Based on our
knowledge, there is no spatially variant regularization for
achieving uniform recovery. Due to the complexity in de-
veloping a spatially variant regularization satisfying the
requirement of uniform recovery, a spatially non-uniform
step size method is more straightforward to control the
uniform recovery.

Algorithms using spatially variant step size have been
developed to promote faster covergence by non-uniformly
updating the image in iterations15,16. Non-homogeneous
iterative coordinate descent (NH-ICD) was proposed to
accelerate the conventional ICD algorithm15. However,
NH-ICD is di�cult to parallelize because each voxel is up-
dated sequentially. Van Slambrouck and Nuyts proposed
a group-wise non-uniform coordinate descent update for
faster convergence speed16, which is more amenable to
parallelization than ICD-type methods, but is still lim-
ited by its group size. On the other hand, Kim et al.

proposed a non-uniform separable quadratic surrogates
(NUSQS) algorithm17, in which the step size is spatially
non-uniform and the update is parallelizable, accelerating
the convergence speed. The non-uniform update in that
work was used to accelerate CT reconstruction, whereas
here we use a similar idea to encourage spatially uniformThis	article	is	protected	by	copyright.	All	rights	reserved
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recovery ratio, and extend the NUSQS method for TOF
PET reconstruction.

For additional acceleration, it is useful to combine
the ordered subsets (OS)10 and Nesterov's momentum
method18 that uses previous descent updates to provide
momentum. Kim et al. exploited both OS and Nes-
terov's momentum for CT reconstruction19, where the
convergence speed using both OS and momentum was
signi�cantly higher than speeds of conventional meth-
ods in early iterations. Similarly, we propose a TOF-
PET reconstruction exploiting the ordered subsets non-
uniform separable quadratic surrogates (OS-NUSQS) al-
gorithm with Nesterov's momentum method. To further
reduce the computation time, we implemented the pro-
posed method using a graphics processing unit (GPU),
particularly forward and backward projectors for TOF
reconstruction and the quadratic regularization.

To validate the proposed algorithm, we performed
computer simulations using an XCAT phantom20 un-
der various conditions, and compared the recovery ra-
tios of ROIs and the reconstructed image qualitatively
and quantitatively. We also performed an experiment
with a patient having pancreatic and other metastatic
tumors. The image reconstructed after 300 iterations of
one-subset version of EM using full data is used as the
ground truth, and reconstructed images using data with
6× downsampled counts are used for validating the per-
formance. Here, a Poisson thinning process is used for
downsampling the counts of prompt raw data21. The
proposed method is compared with the conventional OS-
SQS and OS-EM methods after certain number of iter-
ations. More speci�cally, reconstructed images are com-
pared after 24 iterations. Note that the OS-SQS has
a relatively uniform step size compared to OS-EM and
OS-NUSQS, and the OS-EM is the standard method in
iterative PET reconstruction, having a spatially variant
update in iteration. We select both tumor and cold ROIs,
and compared recovery ratios of ROIs and structural sim-
ilarity (SSIM) values. Our results demonstrate that the
proposed method can achieve uniform recovery ratios of
ROIs, and provides a good image quality after a �nite
number of iterations.

This paper is organized as follows. Section II gives
the problem formulation and the proposed method: OS-
NUSQS and Nesterov's momentum for TOF PET recon-
struction. Section III provides experimental setup details
of computer simulation, clinical example, evaluation and
GPU implementation. Section IV demonstrates simu-
lation and clinical results for various aspects. Section
V discusses several technical issues and Section VI con-
cludes.

II. THEORY

II.A. Problems

We reconstruct a non-negative image x =
(x1, ..., xNv

) ∈ R
Nv

+ from a time of �ight (TOF)

measurement Y = [y1, y2, ..., yt, ..., yNT ] ∈ Z
Nm×NT

+ ;

yt = (yt1, ..., y
t
Nm

) ∈ Z
Nm

+ . Nv, Nm and NT denote the
numbers of voxels, sinogram bins and TOF time bins,
respectively. Y is the number of photon counts and
contains true, scatter and random coincidence events in
which we assume a Poisson statistical model:

yti ∼ Poisson{[Atx]i + rti}, (3)

where yti is the number of counts with the ith sinogram at
the tth time bin. rti is the mean value of scatter and ran-
dom events22, with the ith sinogram at the tth time bin.
At = (A ◦Wt) is the TOF system matrix at the tth time
bin; A ∈ R

Nm×Nv

+ is the conventional system matrix that
computes the line integral of a line of response (LOR),
Wt ∈ R

Nm×Nv

+ is the Gaussian kernel along all LORs
calculated by the TOF time response function, and ◦ is
the Hadamard product. The TOF time response func-
tion is a one-dimensional Gaussian function centered at
the emission position23. Thus, [Atx]i =

∑Nv

j=1 aijw
t
ijxj

represents the Gaussian weighted line integral of a LOR
for the tth time bin and w is the Gaussian weight. Here,
aij denotes the probability that a pair of annihilation
photons emitted from the jth voxel is detected at the ith
sinogram bin, and wt

ij is the Gaussian weight along the
line of �ight at tth time bin. Throughout the paper, we
use atij = aijw

t
ij .

For regularized TOF PET image reconstruction, we
minimize the following cost function Ψo(x):

Ψo(x) = L(x) +R(x) (4)

=

NT
∑

t=1

Nm
∑

i=1

hti([Atx]i) +

Nv
∑

j=1

ψj(x), (5)

where L(x) denotes the negative log-likelihood function
from the Poisson statistics and R(x) is a quadratic rough-
ness regularization24. hti(k) = k + rti − yti log(k + rti),
ψj(x) =

β
2

∑

j′∈Ωj
ρjj′(xj − xj′)

2 and β > 0 is a regular-
ization parameter that controls the noise variance of the
reconstructed image. ρjj′ is the reciprocal of Euclidean
distance between voxels j and j′, and Ωj is the neighbor
of center voxel j. For Ωj , we use 26 neighbor voxels in a
3-D space.

II.B. Non-uniform Separable Quadratic Surrogates for TOF

PET

In TOF-PET reconstruction, because the negative log-
likelihood function L(x) is di�cult to minimize directly, a
separable quadratic surrogates (SQS) algorithm for solv-
ing L(x) is widely used with a regularization for reducing
noise11,25.

First, the quadratic surrogate function of L(x) is as
follows:

L(x) ≤ Q
(n)
L (x) ,

NT
∑

t=1

Nm
∑

i=1

p
t,(n)
i ([Atx]i), (6)

This	article	is	protected	by	copyright.	All	rights	reserved
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where

p
t,(n)
i (k) , h

t
i(k

t,(n)
i )+ḣt

i(k
t,(n)
i )(k−k

t,(n)
i )+

v
t,(n)
i

2
(k−k

t,(n)
i )2.

(7)

k
t,(n)
i = [Atx

(n)]i at n-th iteration, and v
t,(n)
i is the cur-

vature of p
t,(n)
i (k). The �rst and second derivatives of hti

are as follows11:

ḣti(k
t,(n)
i ) = 1−

yti

k
t,(n)
i + rti

, (8)

ḧti(k
t,(n)
i ) =

yti

(k
t,(n)
i + rti)

2
. (9)

For v
t,(n)
i , the optimal curvature25 is

v
t,(n)
i (kt,(n)) =











[

2
ht
i(0)−ht

i(k
t,(n))+ḣt

i(k
t,(n))(kt,(n))

(kt,(n))
2

]

+
, kt,(n) > 0

[

ḧt
i(0)

]

+
, kt,(n) = 0.

(10)

[ ]+ denotes an operator that sets negative values
to zero. To reduce the computing cost, we can

use the Newton curvature ḧti([Atx
(n)]i), or precom-

pute as 1/max(yti , ϵ), or approximately compute as
1/max([Atx

(n)]i, ϵ) (see Discussion). Here, many of TOF
measurements are zero, thus we set ϵ as a small positive
value.

We next review a separable surrogate of the quadratic
surrogate function11, which uses the following trick:

[Atx]i =

Nv
∑

j=1

a
t
ijxj =

Nv
∑

j=1

g
t,(n)
ij

(

atij

g
t,(n)
ij

(xj − x
(n)
j ) + [Atx

(n)]i

)

,

(11)

where gtij = atij/
(

∑Nv

j′=1 a
t
ij′

)

is a non-negative real value

(gtij = 0 only if atij = 0 for all i, j), and
∑Nv

j=1 g
t,(n)
ij = 1.

By using the convexity of p
t,(n)
i , the convexity inequality

can be expressed as:

p
t,(n)
i ([Atx]i) ≤

Nv
∑

j=1

g
t,(n)
ij p

t,(n)
i

(

atij

g
t,(n)
ij

(xj − x
(n)
j ) + [Atx

(n)]i

)

.

(12)

Combined with equation (5), we have the following ma-
jorizer:

L(x) ≤ Q
(n)
L (x) ≤ ϕ

(n)
L (x) ,

NT
∑

t=1

Nv
∑

j=1

ϕ
t,(n)
L,j (xj), (13)

where

φ
t,(n)
L,j (xj) ,

Nm
∑

i=1

g
t,(n)
ij p

t,(n)
i

(

atij

g
t,(n)
ij

(xj − x
(n)
j ) + [Atx

(n)]i

)

.

(14)

The second derivative of the surrogate function ϕ
(n)
L,j(xj)

is

d
(n)
L,j ,

∂2

∂x2j
ϕ
(n)
L,j(xj) =

NT
∑

t=1

Nm
∑

i=1

v
t,(n)
i (atij)

2/gtij . (15)

We next derive a separable surrogate of the quadratic
roughness regularization R(x)25:

R(x) =

Nv
∑

j=1

ψj(x) =

Nv
∑

j=1

β

2

∑

j′∈Ωj

ρjj′(xj − xj′)
2
, (16)

=

Nv
∑

j=1

∑

j′∈Ωj

βρ
jj′

2





(2xj−x
(n)
j

−x
(n)

j′
)

2
+

(−2x
j′

+x
(n)
j

+x
(n)

j′
)

2





2

,

(17)

≤

Nv
∑

j=1

∑

j′∈Ωj

βρ
jj′

4

(

(2xj−x
(n)
j

−x
(n)

j′
)2+(2xj′−x

(n)
j

−x
(n)

j′
)2

)

,

(18)

=

Nv
∑

j=1

∑

j′∈Ωj

βρjj′

2
(2xj − x

(n)
j − x

(n)

j′
)2, (19)

,

Nv
∑

j=1

φ
(n)
R,j(xj) = φ

(n)
R (x). (20)

Here, we use the convexity inequality in (17) and sym-
metry of quadratic function (ψj(k) = ψj(−k)) in (18).
The regularizing factor between two voxels of j and j′

is computed twice when switching center and neighbor,
thus we can simplify the equation for xj in (19). First

and second derivatives of ϕ
(n)
R (x) at the point x(n) are as

follows:

ϕ̇
(n)
R,j(x

(n)) = 2β
∑

j′∈Ωj

ρjj′(x
(n)
j − x

(n)
j′ ), (21)

ϕ̈
(n)
R,j(x) = 4β

∑

j′∈Ωj

ρjj′ = dR,j . (22)

Now, the majorizer Ψ(x) is:

Ψo(x) ≤ Ψ(x) = ϕ
(n)
L (x) + ϕ

(n)
R (x) , (23)

=

NT
∑

t=1

Nv
∑

j=1

ϕ
t,(n)
L,j (xj) +

Nv
∑

j=1

ϕ
(n)
R,j(xj). (24)

The SQS with quadratic regularization provides the
voxel-wise update at each iteration as follows:

x
(n+1)
j = x

(n)
j −

φ̇
(n)
L,j(x

(n)
j ) + φ̇

(n)
R,j(x

(n)
j )

d
(n)
L,j + dR,j

, ∀j ∈ [1, ..., Nv].

(25)

Then, the step size of SQS with quadratic regularization
has this relationship26:

∆
(n)
j = x

(n+1)
j − x

(n)
j ∝

1

d
(n)
L,j + dR,j

. (26)

Because the dR,j does not change in iterations as shownThis	article	is	protected	by	copyright.	All	rights	reserved
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in equation (22), the step size is mainly decided by d
(n)
L,j .

To accelerate the SQS algorithm, a larger value of g
t,(n)
ij

(or equivalently smaller value of d
(n)
L,j) can encourage

larger step size. Here, we choose g
t,(n)
ij =

at
iju

(n)
j

∑Nv
j′=1

at
ij′

u
(n)

j′

using the non-uniform (NU) based update factor (u
(n)
j )

as follows17,27:

u
(n)
j = max{|x

(n−1)
j − x

(n)
j |, δ}, (27)

where δ is a small positive value. Note that the u
(n)
j

is an approximation of the oracle non-uniform factor

|x
(n)
j − x

(∞)
j |. Our experimental results show that ap-

plying Gaussian �ltering to noisy u(n) empirically pro-
vides a better approximation to the oracle non-uniform
factor. The Gaussian �ltering does not a�ect the �nal
image quality but a�ects the convergence speed at early
iterations. The corresponding non-uniform denominator
is

d̂
(n)
L,j =

1

u
(n)
j

NT
∑

t=1

Nm
∑

i=1

v
t,(n)
i atij





Nv
∑

j′=1

atij′u
(n)
j′



 , (28)

which leads to the NU-based update relationship of

∆
(n)
j ∝ u

(n)
j that encourages the voxel-wise non-uniform

step size. This is a key property that allows one to con-
trol the recovery ratio of each voxel by using non-uniform
step size; Section IV demonstrates numerically that a
suitable NU step size can provide similar ROI recovery
ratios across iterations in TOF-PET reconstruction.
The NUSQS method exploits the surrogate function

with a diagonal Hessian matrix D(n) of Ψ(x)26. Speci�-

cally, the jth diagonal element of D(n) is D
(n)
j = d̂

(n)
L,j +

dR,j . Algorithm 1 presents the pseudo code for NUSQS
(one-subset version).

Algorithm 1 NUSQS

1: Initialize x(0) = 1 and u(0) = 1.
2: for n = 0, 1, ... do
3: for j = 1, 2, ..., Nv do

4: D
(n)
j = d̂

(n)
L,j + dR,j

5: x
(n+1)
j =

[

x
(n)
j −∇jΨ(x(n))/D

(n)
j

]

+

6: u
(n+1)
j = max{|x

(n+1)
j − x

(n)
j |, δ}

7: end for

8: end for

II.C. Nesterov's Momentum and Ordered Subsets Methods

To further accelerate the convergence speed, we ex-
ploit the Nesterov's momentum and ordered subsets
(OS) methods. Iterative TOF-PET reconstruction re-
quires the forward A (= [A1, ..., AT ]) and backward AH

(= [AH
1 , ..., A

H
T ]) projection operators. We set Ns as

the number of subsets and the sth-subset forward As

(= [As1, ..., AsT ]) and backward AH
s (= [AH

s1, ..., A
H
sT ])

projection operators. Subsets are equally distributed
over the angular bins. The computing cost per sub-
iteration decreases almost linearly with the number of
subsets Ns.
Now, the (approximate) majorizer with ordered sub-

sets for TOF reconstruction is

Ψ(x) =

Ns
∑

s=1

Ψs(x) , (29)

where

Ψs(x) = φ
(n)
sL (x) +

1

Ns

φ
(n)
R (x) , (30)

=

NT
∑

t=1

Nv
∑

j=1

φ
t,(n)
sL,j (xj) +

1

Ns

Nv
∑

j=1

φ
(n)
R,j(xj), (31)

φ
t,(n)
sL,j (xj) =

∑

i∈Ωs

g
t,(n)
ij p

t,(n)
i

(

atij

g
t,(n)
ij

(xj − x
(n)
j ) + [Astx

(n)]i

)

,

(32)

d̂
t,(n)
sL,j =

1

uj

∑

i∈Ωs

v
t,(n)
i a

t
ij





Nv
∑

j′=1

a
t
ij′u

(n)

j′



 . (33)

Ωs denotes the sth subset and we evenly distribute the
subsets in azimuthal bins. Algorithm 2 presents the
pseudo code of OS-NUSQS. The subset balance can be
approximately described as follows10,19,26:

∇Ψ(x) ≈ Ns∇Ψs(x), (34)

D(n) ≈ NsD
(n)
s , (35)

where s = [1, ..., Ns] and Ds is a diagonal Hessian of the

surrogate function of Ψs(x) for the sth subset; D
(n)
sj is a

jth diagonal component of D
(n)
s .

Algorithm 2 OS-NUSQS

1: Initialize x(0) = 1 and u(0) = 1.
2: for n = 0, 1, ... do
3: for s = 0, 1, ..., Ns − 1 do

4: k = n×Ns + s
5: for j = 1, 2, ..., Nv do

6: D
(k)
sj = d̂

(k)
sL,j + dR,j/Ns

7: x
(k+1)
j =

[

x
(k)
j −∇jΨs(x

(k))/D
(k)
sj

]

+

8: u
(k+1)
j = max{|x

(k+1)
j − x

(k)
j |, δ}

9: end for

10: end for

11: end for

Next, we consider OS-NUSQS combined with Nes-
terov's momentum18,19. Speci�cally, the Nesterov's
momentum18 exploits the previous descent updates for
additional acceleration. By combining with the OS
method, we expect the convergence speed O(1/(nNs)

2)
in early iterations that is signi�cantly faster than the
speeds of NUSQS O(1/n) and OS-NUSQS O(1/(nNs)).
This is one of the main advantages of the OS in the mo-This	article	is	protected	by	copyright.	All	rights	reserved
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mentum method, which accelerates approximately (Ns)
2

times in early iterations19. Also, the momentum fac-
tor does not require additional memory because the non-
uniform factor (u) can be reused in the momentum com-
putation. In algorithm 3, the non-uniform factor (u) is
calculated in each iteration; to save computation, we �rst

calculate the variation x
(k+1)
d = (x(k+1) − x(k)) for mo-

mentum (line 10 in algorithm 3), and then we update

u(k+1) = max{|x
(k+1)
d |, δ} (line 11 in algorithm 3).

Algorithm 3 OS-NUSQS with Nesterov's Momentum

1: Initialize x(0) = 1, z(0) = 1, u(0) = 1 and b0 = 1;
tγ ∈ [0, 1].

2: for n = 0, 1, ... do
3: for s = 0, 1, ..., Ns − 1 do

4: k = n×Ns + s
5: for j = 1, 2, ..., Nv do

6: bk+1 = 1
2

(

1 +
√

1 + 4b2k

)

7: γk = tγ
bk−1
bk+1

8: D
(k)
sj = d̂

(k)
sL,j + dR,j/Ns

9: x
(k+1)
j =

[

z
(k)
j −∇jΨs(z

(k))/D
(k)
sj

]

+

10: z
(k+1)
j =

[

x
(k+1)
j + γk(x

(k+1)
j − x

(k)
j )

]

+

11: u
(k+1)
j = max{|x

(k+1)
j − x

(k)
j |, δ}

12: end for

13: end for

14: end for

In addition, a relaxation factor tγ in algorithm 3 is ap-
plied. Although the momentum method can practically
improve the convergence speed, the OS-NUSQS with mo-
mentum algorithm can sometimes diverge due to OS19,
as will be presented in Discussion. Therefore, we set the
relaxation factor, such as tγ ∈ [0, 1], to avoid divergence
in the proposed method.

III. EXPERIMENTAL SETUP

III.A. Computer simulation

We performed a computer simulation using an XCAT
phantom20 and the simulation geometry of a clinical Bi-

Fig. 1 XCAT phantom simulation setup using (a) three tumor
ROIs with high intensity components at (b) lung, (c) spine and (d)
liver. A cold ROI in (d) was used for comparison.

ograph mCT TOF PET/CT scanner (Siemens Medical
Solutions USA, Inc.). In a TOF sinogram, the number of
radial bins with a 2.005 mm pixel size and azimuthal bins
are 336, and the number of time bins is 13 with a 560 ps
time resolution; the radius of scanner is 427.6 mm and
data was acquired with span 11. In the reconstructed
image, the number of image voxels is 336×336×109 with
a 2.005×2.005×2.027 mm3 voxel size. To evaluate ROI-
based convergence, we chose three hot ROIs and one cold
ROI at lung, spine and liver as shown in Fig. 1. In each
region, a high intensity component assumed as a tumor
is added. Speci�cally, di�erent tumor shapes and intensi-
ties were applied for evaluation of uniform recovery under
di�erent conditions. We put a sphere with a 7 mm radius
and 0.4 intensity in lung, a sphere with a 6 mm radius
and 0.3 intensity in spine and an ellipsoid with axes of
length (15,7,7) mm and 0.3 intensity in liver as shown
in Figs. 1(b)�(d), respectively. The muscle (background)
intensity is 0.02. For ROI-based metric comparison, all
ROIs were extracted by the shape of sphere with a 20 mm
radius at the centers of tumors. The ground truths of tu-
mor to muscle ratios (TMRs) are 20 in lung, 15 in spine,
15 in liver, respectively. We imposed Poisson noise to the
prompt (attenuated) sinogram with signal to noise ratio
(SNR) of 8 dB in which the number of counts was 3.3
×107. In simulation, detector-pair sensitivities, scatter
and random counts were not considered.
We also conducted experiments to evaluate the recov-

ery ratio. We used the same regularization (β = 0.2) for
all methods. To consider not only tumor but also dif-
ferent background regions, we selected four sphere-shape
ROIs with 20 mm radius, as shown in Fig. 1. Speci�-
cally, we considered spine ROI with complex structures,
lung ROI with very low intensity and liver ROI with high
intensity backgrounds.

III.B. Clinical example

A pancreas-focused scan was performed for 45 minutes
with a TOF PET/MR (SIGNA, GE Healthcare) scanner.
A bolus injection of 196.1 MBq of 18F-FDG was admin-
istered. The protocol of this experiment was approved
by the Institutional Review Board (IRB) of University
of California, San Francisco (UCSF). The SIGNA scan-
ner has 357×224×1981×27 (radial, angle, plane, TOF)
bins with time of �ight resolution of 420 ps. The scan-
ner radius is 640 mm and the �eld-of-view (FOV) is 600
mm. The reconstructed image size was 256×256×89 with
2.34×2.34×2.78 mm3 resolution.
For evaluation, we used the full dose image as the

ground truth and 6× downsampled data as a measure-
ment. The full dose image was acquired by EM (one-
subset version of OS-EM) after 300 iterations. To gen-
erate 6× downsampled sinograms, a Poisson thinning
process was used21 in which coincidence events can be
randomly discarded by a predetermined sampling factor.
The Poisson thinning process has been applied to ini-
tial prompt data (listmode or sinogram) before random,This	article	is	protected	by	copyright.	All	rights	reserved
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scatter, normalization and attenuation corrections. We
selected three tumor and one cold ROIs extracted by a
sphere with a 12.5 mm radius. In patient data, detector-
pair sensitivities (normalization), scatter and random
counts were fully considered.

III.C. Evaluation

In this paper, we compared the OS-NUSQS with con-
ventional OS-EM and OS-SQS. The step size of OS-SQS
does not consider spatially di�erent SNRs nor recov-
ery variations. OS-EM has a spatially variant step size,
however, the step size of OS-EM does not take into ac-
count the recovery variation. We compared algorithms
without regularization (β = 0) and with regularization
(β > 0). For regularized OS-EM algorithm, a De Pierro's
EM algorithm28 is used for comparison, in which the
quadratic regularization was equivalently used as in other
methods. Throughout this paper, the iteration in result
plots denotes the sub-iteration (k), and we used 8 subsets
in reconstruction.

The normalized root mean square error (NRMSE)
√

∑Nv
j=1(x

∗

j−x
(n)
j )2

√

∑Nv
j=1(x

∗

j )
2

was computed using the ground truth

image (x∗). To compare convergences of ROIs, we also
calculated the ROI-based normalized root mean square

di�erence (NRMSD) as

√

∑

j∈Ωr
(x

(∞)
j −x

(n)
j )2

√

∑

j∈Ωr
(x

(∞)
j )2

, where n is

the iteration, x(∞) is the converged image after 300
iterations with one-subset version of OS-EM and Ωr

is the rth ROI. The recovery ratio was measured by
√

∑

j∈Ωr
(x∗

j−x
(∞)
j )2

√

∑

j∈Ωr
(x∗

j−x
(n)
j )2

. Here, the distance between the

ground truth and the converged image (x∗ − x(∞)) was
used for calculating the recovery ratio (i.e., the recovery
ratio approaches 1 with increasing iterations). Further-
more, we measure the ROI-based structural similarity
(SSIM) index for comparing image quality. The SSIM is

de�ned by (2µr∗µr+c1)(2σr∗r+c2)
(µ2

r∗
+µ2

r+c1)(σ2
r∗

+σ2
r+c2)

, where r∗ and r denote

the ROIs of the ground truth and the reconstructed im-
age, respectively. µ is the average, σ2 is the variance and
σr∗r is the covariance of intensity within the ROIs r∗ and
r. c1 = 2.5× 10−5 and c2 = 2.25× 10−4 were used.

III.D. Implementation

Parallel computing technologies are commonly used
to speed up computations. In particular, the general
purpose graphics processing unit (GPGPU) has been
widely used for medical applications, such as 3-D CT and
PET reconstructions29,30,31,32. To speed up the proposed
method, we implemented TOF reconstruction using the
GPU and compute uni�ed device architecture (CUDA),
similar to previous work33. Speci�cally, we implemented
our TOF system model with ray-driven forward projector
and a matched (transpose) back projector with a time re-

Fig. 2 Comparison of global NRMSEs for OS-SQS, OS-EM, OS-
NUSQS and OS-NUSQS with momentum. β = 0 was used in
simulation.

sponse function that is a typical Gaussian function with
FWHM based on the timing resolution. In GPU kernels
of TOF forward and backward projectors, each thread
corresponds to a line-of-response (LOR); thus, all time
bins are updated or used in each thread. Technically,
we use the atomic operator to avoid interference from
other threads when accessing a speci�c address at the
same time, and the 3-D linear interpolation using the
texture memory is exploited for line integrals. A Gaus-
sian coe�cient table for the time response function is
pre-calculated before the reconstruction process, and is
assigned to the constant memory. All geometrical param-
eters are also assigned to the constant memory. The sur-
rogate function of quadratic roughness regularization is
easily parallelizable because the calculation of each voxel
is independent, thus each thread in a GPU kernel can be
assigned to each voxel. One main di�erence compared to
the conventional PET reconstruction is that the denom-
inator D in algorithms [1, 2, 3] cannot be pre-computed
due to the the non-uniform factor. Thus, the proposed
method requires two forward and backward projections
in each iteration. To further reduce the computing cost,
our code calculates Ax(n) and Au(n) at the same time in
forward projection of GPU kernel that can share all ge-
ometrical computations; and the ∇Ψ(x) and D are also
calculated at the same time and share the geometrical
computations in backward projection of GPU kernel as
similarly done by Kim et al

19. This approach was 1.5 ∼
1.7 times faster than separate calculations.

IV. RESULTS

IV.A. Computer simulation

IV.A.1. No regularization (β = 0)

First, to observe the convergence speed of di�erent al-
gorithms, we performed experiments without regulariza-
tion, as a special case of β = 0 in Eq. (5). The conver-This	article	is	protected	by	copyright.	All	rights	reserved
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Fig. 3 (a) Ground-truth, and reconstructed images of (b) OS-SQS,
(c) OS-EM, (d) OS-NUSQS and (e) OS-NUSQS with momentum
at 24 iterations. Standard deviations for a �at region of interest in
coronal view were compared. β = 0 was used in simulation.

gence speed of OS-NUSQS and OS-EM were similar as
shown in Fig. 2. However, the OS-EM diverged faster
than the OS-NUSQS. The OS-SQS at 24 iterations did
not reach the minimum NRMSE. Figure 3 shows recon-
structed images of OS-SQS, OS-EM, OS-NUSQS and OS-
NUSQS with momentum methods at 24 iterations. The
OS-EM image was noisier than other images, particu-
larly in the lower intensity region. We compared the
standard deviations in the �at region with low intensity,
a circle in coronal view as shown in Fig. 3. The stan-
dard deviations of the �at region were 0.0111, 0.0168,
0.0132 and 0.0134 for the OS-SQS, OS-EM, OS-NUSQS
and OS-NUSQS with momentum methods, respectively.
The reconstructed images of OS-NUSQS with and with-
out momentum were visually similar to the image of
OS-EM, and we con�rmed that OS-NUSQS has reduced
noise compared to OS-EM in early iterations of TOF re-
construction. The OS-SQS method did not reach con-
vergence at 24 iterations, particularly at high intensity

Fig. 4 Pro�les of tumor ROIs in (i) lung, (ii) spine and (iii) liver
as described in Fig. 3(a). Dot line is the ground truth. Pro�les
were measured with β = 0 at 24 iterations in simulation.

regions, such as tumors in lung and spine as shown in
Fig. 3(b). For high intensity regions, Fig. 4 compares pro-
�les of tumors in liver, lung and spine regions as shown
in Fig. 3(a). In Fig. 4, we observed that the pro�les of
OS-SQS did not reach convergence after 24 iterations,
and demonstrated that the contrast of OS-NUSQS was
higher than that of OS-EM at 24 iterations. Although
the intensity of OS-EM in liver ROI was similar to that
of NUSQS, OS-EM needed more iterations for ROIs in
lung and spine. Note that pro�les of OS-NUSQS with
and without momentum were almost identical.

IV.A.2. With regularization (β > 0)

Figure 5 compares NRMSDs for whole images of OS-
SQS, OS-EM, OS-NUSQS and OS-NUSQS with momen-
tum. The per-iteration convergence speed of OS-SQS
was the slowest, and that of OS-NUSQS with momentum
(tγ = 0.7) was the fastest. In Fig. 6, NRMSDs of tumor
ROIs with OS-NUSQS converged much faster than those
of OS-EM. We compared tumor to muscle ratios (TMR)
of OS-SQS, OS-EM, OS-NUSQS and OS-NUSQS with
momentum after 24 iterations in table I. TMRs of the
proposed method were slightly higher than those of OS-This	article	is	protected	by	copyright.	All	rights	reserved
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Fig. 5 Comparison of NRMSDs for OS-SQS, OS-EM, OS-NUSQS
and OS-NUSQS with momentum algorithms with quadratic regu-
larization. β = 0.2 was used in simulation.

Fig. 6 Comparison of NRMSDs of OS-SQS, OS-EM, OS-NUSQS
and OS-NUSQS with momentum algorithms using quadratic regu-
larizations for tumor ROIs in (a) lung, (b) spine, (c) liver and (d)
cold region as shown in Fig. 1. β = 0.2 was used in simulation.

SQS and OS-EM.

Figure 7 compares the recovery ratios of OS-SQS, OS-
EM, OS-NUSQS and OS-NUSQS with momentum for
four ROIs. In general, similar ratios of ROIs illustrate
the uniform recovery of ROIs. We observed that the OS-
NUSQS and OS-NUSQS with momentum methods show
uniform recovery ratios after 5 iterations for both hot
and cold ROIs. In Fig. 8, the bias and standard devia-
tion plots of OS-SQS and OS-NUSQS methods at 24 it-
eration were compared using 10 simulations (same SNR)
with random Poisson noise. Fig. 8 used β parameters
between 0.08 to 0.3 for both OS-SQS and OS-NUSQS,
which demonstrates that the non-uniform method can
improve the image quantitatively in early iteration. Here,
the bias and standard deviation values of OS-EM, OS-
NUSQS and OS-NUSQS with momentum were almost

Fig. 7 ROI-based recovery ratio comparisons of (a) OS-SQS, (b)
OS-EM, (c) OS-NUSQS and (d) OS-NUSQS with momentum. β =

0.2 was used in simulation.

Fig. 8 Bias and standard deviation plots of OS-SQS and OS-
NUSQS methods at 24 iterations. β parameters between 0.08 to
0.3 were used in simulation.

the same after 24 iterations. Note that after convergence
with su�cient number of iterations, bias and standard
deviation values of OS-SQS and OS-NUSQS are approxi-
mately equivalent since they solve the same optimization
problem.

In the proposed method, the voxel-wise non-uniform

factor (u
(n)
j = max{|x

(n)
j − x

(n−1)
j |, δ}) is calculated at

each iteration. We used Gaussian �ltering on the non-
uniform factor to provide a better approximation of the
oracle non-uniform factor in our experiment, which lead
to higher convergence speed at early iterations. To ob-
serve the relationship between noise levels and the op-
timal FWHM of Gaussian �ltering, we compared NRM-
SEs of reconstructed images using the non-uniform fac-
tors without and with Gaussian �ltering with FWHM
of 2, 4 and 6 mm, as shown in Fig. 9. Two noise lev-
els with total counts of (a) 1.98 × 107 and 4.62 × 107

were used. Note that the total photon counts used in the
simulation was 3.3 × 107. The non-uniform factor usingThis	article	is	protected	by	copyright.	All	rights	reserved
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TMR OS-SQS OS-EM OS-NUSQS OS-NUSQS-mom

Lung 13.7 14.4 14.5 14.5

Spine 10.7 11.7 11.8 11.8

Liver 12.7 12.7 12.8 12.8

Table I Tumor to muscle ratios of (a) OS-SQS, (b) OS-EM, (c)
OS-NUSQS and (d) OS-NUSQS with momentum. β = 0.2 was
used in simulation.

Fig. 9 NRMSE comparison without and with Gaussian �ltering
of FWHM 2, 4, 6 mm for di�erent noise levels with total counts of
(a) 1.98× 10

7 and (b) 4.62× 10
7. β = 0.2 was used in simulation.

Gaussian �ltering showed fast decrease of NRMSEs at
early iterations. The performance with Gaussian �lter-
ing of FWHM larger than 4 mm was almost the same.
We observed that the FWHM of Gaussian �ltering was
not highly related to the noise level, thus an FWHM of 4
mm was used for Gaussian �ltering in non-uniform based
algorithms.

IV.B. Clinical example

To evaluate the recovery ratio with converged images,
we performed reconstructions with quadratic regulariza-
tion having β = 0.03 and relaxation factor of 0.5 for Nes-
terov's momentum. We will additionally discuss e�ects
of parameters such as the number of subsets, relaxation
factor in Section V.
Figure 10 shows the reconstructed images of OS-SQS,

OS-EM, OS-NUSQS and OS-NUSQS with momentum
methods at 24 iterations. Figure 10(a) is the ground
truth of full dose EM image after 300 iterations, and
Fig. 10(b) is the converged EM image of 6× downsam-
pled data after 300 iterations. OS-SQS was not fully con-
verged in Fig. 10(c) (see arrow), however, other methods
converged after 24 iterations.
Figure 11 compares the recovery ratios of OS-SQS, OS-

EM, OS-NUSQS and OS-NUSQS with momentum for
four ROIs. The OS-NUSQS and OS-NUSQS with mo-
mentum methods show uniform recovery ratios after 24
iterations for both hot and cold ROIs. In Fig. 12, we
also compared the recovery images of OS-SQS, OS-EM,
OS-NUSQS and OS-NUSQS with momentum, where the
voxel-wise recovery ratio was calculated at 24 iterations
and the saggital view in Fig. 10 was used. Because of the

Fig. 10 (a) Ground truth of full dose EM image, and reconstructed
images of (b) converged OS-EM image with 300 iterations, (c) OS-
SQS, (d) OS-EM, (e) OS-NUSQS and (f) OS-NUSQS with momen-
tum. (b)�(f) used 6× downsampled data. Three hot ROIs (spine
1, kidney, spine 2) were extracted at centers of tumors and a cold
region was also extracted. β = 0.03 was used with patient data.

high noise of recovery image, a Gaussian �ltering with
FWHM 2.5 mm was additionally applied only for visu-
alization in Fig. 12. Boundaries and inner regions in re-
covery images of OS-SQS and OS-EM were not uniform
at 24 iterations. Although the recovery ratios of speci�c
ROIs of OS-NUSQS and OS-NUSQS with momentum
were similar, the recovery image of OS-NUSQS with mo-
mentum was more uniform than the recovery image of
OS-NUSQS.

For image quality comparison, we compared ROI-
based SSIM values as shown in table II. The SSIMs of
NUSQS combining with or without momentum were the
highest for all ROIs. Here, SSIM considers mean (bias)
and variance (noise). We con�rmed that the mean values
of hot regions of OS-EM, OS-NUSQS, OS-NUSQS with
momentum were almost identical. We additionally com-
pared biases for a cold region in Fig. 10(b) (see arrow),
where biases of OS-SQS, OS-EM, OS-NUSQS and OS-
NUSQS with momentum were 0.8%, 0.6%, 0.09% and
0.12%. We con�rmed that the OS-NUSQS has fasterThis	article	is	protected	by	copyright.	All	rights	reserved
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Fig. 11 ROI-based recovery ratio comparisons of (a) OS-SQS, (b)
OS-EM, (c) OS-NUSQS and (d) OS-NUSQS with momentum. β =

0.03 was used with patient data.

Fig. 12 Comparison of recovery images of (a) OS-SQS, (b) OS-
EM, (c) OS-NUSQS and (d) OS-NUSQS with momentum at 24
iterations. The saggital view of Fig. 10 was used. The intensity
window is [0,1.5].

convergence of lower SNR region compared to OS-EM.
Although the momentum method can increase the

computing speed while preserving the uniform recovery,
the reconstructed image can diverge when combined with
ordered subsets, thus the relaxation factor was incorpo-
rated into the momentum method. We performed an em-
pirical comparison of relaxation factor, e�ect of subsets
and β, as similarly done by Berker et al

34. Figures 13(a�
c) show NRMSE comparisons for various number of sub-
sets of 1, 8 and 16 with relaxation factors (tγ) of 0 (with-
out momentum), 0.3, 0.5 and 0.7, where the patient data
and �xed β = 0.03 were used. Without ordered sub-
sets in Fig. 13(a), the OS-NUSQS with momentum de-
creased NRMSE monotonically with relaxation factors
less than 0.7. With 8 or 16 subsets, NRMSEs diverge
with high relaxation factors (see arrows in Figs. 13(c)
and (d)). Figure 13(d) shows NRMSE comparison for
various β with 16 subsets and relaxation factor of 0.7. In

SSIM OS-SQS OS-EM OS-NUSQS OS-NUSQS-mom

Spine 1 0.841 0.850 0.852 0.840

Kidney 0.727 0.741 0.748 0.724

Spine 2 0.688 0.690 0.694 0.683

Cold 0.942 0.953 0.963 0.982

Table II ROI-based SSIM comparisons of OS-SQS, OS-EM, OS-
NUSQS and OS-NUSQS with momentum. β = 0.03 was used with
patient data.

Fig. 13 Comparison of NRMSEs using di�erent number of subsets
of (a) 1, (b) 8 and (c) 16 combining with relaxation factors (tγ) of
0 (without momentum), 0.3, 0.5 and 0.7, and (d) NRMSEs of β =

0.01, 0.02, 0.03 and 0.05 with 16 subsets and relaxation factor of
0.7.

our observations, the proper hyper-parameter and relax-
ation factor for 16 subsets were β = 0.05 and tγ = 0.5,
respectively. Similarly, the proper parameters for 8 sub-
sets were β = 0.03 and tγ = 0.5. The results indicated
that higher β is required for higher relaxation factors to
enable the convergence, however, di�erent βs converge to
di�erent solutions.

IV.C. Execution time

In our iterative algorithms, the most time-consuming
operations are forward and backward projectors. Ta-
ble III compares the computing time using quad-core
CPU with 3.5 GHz, 48-core CPU server with 2.4 GHz
and GPU (Geforce GTX 1080, Nvidia). Here, GE SIGNA
TOF data without subset was used. For implementation,
we used OpenMP for CPU and CUDA for GPU, specif-
ically, 4-cores with 3.5 GHz of a personal computer, 48-
cores with 2.4 GHz of a cluster server and Nvidia Geforce
GTX 1080 were compared. We observed that the overall
acceleration is about 80×.
We also compared computing time (sec) of OS-EM,

OS-NUSQS and OS-NUSQS with momentum, which in-This	article	is	protected	by	copyright.	All	rights	reserved
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Forward Backward Acceleration

CPU(4) 1920 2063 1.0×

CPU(48) 368 480 5.0×

GPU 25 25.1 80.0×

OS-EM OS-NUSQS OS-NUSQS+mom

GPU 14.1 15.8 16.0

Table III Computing time (sec) of TOF forward and backward
projectors without subsets using CPU and GPU. Speci�cally, 4-
cores with 3.5 GHz of a personal computer, 48-cores with 2.4 GHz
of a cluster server and Nvidia Geforce GTX 1080 for GPU imple-
mentation were compared. Computing time (sec) of OS-EM, OS-
NUSQS and OS-NUSQS with momentum were compared. GPU
time indicates one sub-iteration (one of 8 subsets) computing time
including TOF forward and backward projectors and quadratic
penalty.

Fig. 14 (a)(i) Ground truth image and non-uniform factors at
iterations of (ii) 10 and (iii) 24, and (b) comparison of NRMSEs of
the reconstructed images over time using the Newton, approximate
and optimal curvatures. β = 0.2 was used in simulation.

dicates one sub-iteration time of 8 subsets including TOF
forward and backward projectors and quadratic penalty.
We observed that the OS-EM was 12% faster than the
OS-NUSQS.

V. DISCUSSION

In Fig. 14(a), we observed variations of the non-
uniform factor (u in Eq. (27)) by iterations. In early
iterations, high intensity regions have larger non-uniform
factors, indicating larger step size. After reaching sim-
ilar recovery ratios, we observed that the step size
in non-uniform factor became more uniform, which
means non-uniform updates yield uniform recovery in
early iterations. Figure 14(b) compares the New-

ton curvature (ḧti([Atx
(n)]i) ), approximate curvature

(1/max([Atx
(n)]i, ϵ)) and optimal curvature in equa-

tion (10). Although the optimal curvature is the fastest
at early iterations, optimal curvature requires additional
computations when [Atx

(n)]i = 0. Because the NRMSE
of optimal curvature became similar to NRMSEs of oth-
ers after 10 iterations and the approximate curvature can
be directly calculated by re-projected values in each it-
eration, we used the approximate curvature in this pa-
per. Note that although the approximate curvature does

Fig. 15 Recovery ratio comparisons of (a) OS-EM and (b) OS-
NUSQS. Here, the same initial image far from the ground truth
was used in both (a) and (b). β = 0.03 was used with patient data.

not hold inequalities of Eqs. (6), (12), (13) and (23) in
general, we can reduce the computing time (13% in our
implementation).

In Figs. 7 and 11, the uniformity of recovery ratio was
achieved at di�erent number of iterations and we ob-
served that the fast reaching of uniformity depends on
the distance between the initial value and the converged
value in reconstruction. We used 1 as an initial value for
all voxels in both simulated data and real data in which
the initial value of the cold region in the simulation was
closer to the converged value and thus the uniformity was
achieved faster. To investigate the impact of the initial
value, particularly when it is very far from the solution,
we compared recovery ratios of OS-EM and OS-NUSQS
using di�erent initial values in Fig. 15. We used a back-
projected image as an initial image and same ROIs in Fig.
11 to compute the recovery ratio. Fig. 15(a) showed that
the cold region of OS-EM converged slower than hot re-
gions. The uniformity of recovery ratios of OS-NUSQS
was achieved around 15 iterations in Fig. 15(b) com-
pared to 24 iterations in Fig. 11(c), which demonstrated
that the fast reaching of uniformity depends on the initial
value.

The momentum method can speed up convergence in
early iterations particularly when it is combined with the
ordered subset approach. However, because the gradient
at each iteration is updated from a subset of whole data,
the algorithm can diverge. Fig. 13 demonstrated that
the relaxation factor can achieve relatively faster conver-
gence speed compared to non-momentum method. The
selection of the relaxation factor is still an open question.
We empirically selected the optimal relaxation factor and
the number of subsets, and will further investigate the re-
lationship of optimal parameters and noise.

VI. CONCLUSIONS

In conclusion, we derived an ordered subset based non-
uniform separable quadratic surrogates (OS-NUSQS)
with the Nesterov's momentum method for TOF PET re-
construction. The spatially non-uniform step size in the
proposed method provided uniform recovery ratios of dif-This	article	is	protected	by	copyright.	All	rights	reserved
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ferent SNR regions. The computer simulation and clini-
cal example showed that the proposed method converged
uniformly regardless of hot and cold ROIs, and the con-
trast and SSIM were higher at early iterations using the
proposed method than using conventional OS-EM and
OS-SQS methods. Furthermore, our GPU implementa-
tion was able to achieve 80× acceleration compared to
the implementation using 4-core CPU.
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