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Abstract

In genetic association analysis, a joint test of multiple distinct phenotypes can increase power to
identify sets of trait-associated variants within genes or regions of interest. Existing multi-phenotype
tests for rare variants make specific assumptions about the patterns of association with underlying
causal variants and the violation of these assumptions can reduce power to detect association. Here
we develop a general framework for testing pleiotropic effects of rare variants on multiple continuous
phenotypes using multivariate kernel regression (Multi-SKAT). Multi-SKAT models effect sizes of
variants on the phenotypes through a kernel matrix and performs a variance component test of
association. We show that many existing tests are equivalent to specific choices of kernel matrices
with the Multi-SKAT framework. To increase power of detecting association across tests with
different kernel matrices, we developed a fast and accurate approximation of the significance of the
minimum observed p-value across tests. To account for related individuals, our framework uses
random effects for the kinship matrix. Using simulated data and amino acid and exome-array data
from the METSIM study, we show that Multi-SKAT can improve power over single-phenotype
SKAT-O test and existing multiple phenotype tests, while maintaining type I error rate.
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Introduction

Since the advent of array genotyping technologies, genome-wide association studies (GWAS) have iden-
tified numerous genetic variants associated with complex traits. Despite these many discoveries, GWAS
loci explain only a modest proportion of heritability for most traits. This may be due, in part, to the
fact that these association studies are underpowered to identify associations with rare variants(Korte
and Farlow, 2013). To identify such rare variant associations, gene- or region-based multiple variant
tests have been developed(Lee et al., 2014). By jointly testing rare variants in a target gene or region,
these methods can increase power over a single variant test and are now used as a standard approach
in rare variant analysis .

Recent GWAS results have shown that many GWAS loci are associated with multiple traits (Solovieff
et al., 2013). Nearly 17% of variants in National Heart Lung and Blood Institute (NHLBI) GWAS cate-
gories are associated with multiple traits (Sivakumaran et al., 2011). For example, 44% of autoimmune
risk single nucleotide polymorphisms (SNPs) have been estimated to be associated with two or more
autoimmune diseases (Cotsapas et al., 2011). Detecting such pleiotropic effects is important to under-
stand the underlying biological structure of complex traits. In addition, by leveraging cross-phenotype
associations, the power to detect trait-associated variants can be increased.

Identifying the cross-phenotype effects requires a suitable joint or multivariate analysis framework that
can leverage the dependence of the phenotypes. Various methods have been proposed for multiple
phenotype analysis in GWAS (Ferreira and Purcell, 2009; Huang et al., 2011; Zhou and Stephens, 2014;
Ried et al., 2012; Ray et al., 2016). Extending them, several groups have developed multiple phenotype
tests for rare variants (Wang et al., 2015; Broadaway et al., 2016; Wu and Pankow, 2016; Lee et al., 2016;
Sun et al., 2016; Maity et al., 2012; Yan et al., 2015; Zhan et al., 2017). For example, Wang et al. (2015)
proposed a multivariate functional linear model (MFLM); Broadaway et al. (2016) used a dual-kernel
based distance-covariance approach to test for cross phenotype effects of rare variants by comparing
similarity in multivariate phenotypes to similarity in genetic variants (GAMuT)(Chiu et al., 2017); Wu
et al. (Wu and Pankow, 2016) developed a score based sequence kernel association test for multiple
traits, MSKAT, which has been shown to be similar in performance to GAMuT(Broadaway et al.,
2016); and Zhan et al. (2017) proposed DKAT, which uses the dual kernel approach as in GAMuT but
provides more robust performance when the dimension of phenotypes is high compared to the sample
size.

Despite these developments, existing methods have important limitations. Most methods were devel-
oped under specific assumptions regarding the effects of the variants on multiple phenotypes, and hence
lose power if the assumptions are violated (Ray et al., 2016). For example, if genetic effects are heteroge-

neous across multiple phenotypes, methods assuming homogeneous genetic effects can lose a substantial
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amount of power. Although there has been a recent attempt to combine analysis results from different
models (Zhan et al., 2017), no scalable methods have been developed to evaluate the significance of the
combined results in genome-wide scale analysis. In addition, most existing methods and software cannot
adjust for relatedness between individuals; thus, to apply these methods, related individuals must be
removed from the analysis to maintain type I error rate. For example, in the METabolic Syndrome In
Men (METSIM) study ~ 15% of individuals are estimated to be related up to the second degree.
Here, we develop Multi-SKAT, a general framework that extends the mixed effect model-based kernel
association tests to a multivariate regression framework while accounting for family relatedness. Mixed
effect models have been widely used for rare-variant association tests. Popular rare variant tests such
as SKAT(Wu et al., 2011) and SKAT-O(Lee et al., 2012b) are based on mixed effect models. By
using kernels to relate genetic variants to multiple continuous phenotypes, Multi-SKAT allows for
flexible modeling of the genetic effects on the phenotypes. The idea of using kernels for genotypes and
phenotypes were previously used by the dual kernel approaches such as GAMuT and DKAT. However,
in contrast to these two similarity-based methods, Multi-SKAT is multivariate regression based and
hence provides a natural way to adjust for covariates and also can account for sample relatedness
by incorporating random effects for the kinship matrix. Many of the existing methods for multiple
phenotype rare variant tests can be viewed as special cases of Multi-SKAT with particular choices of
kernels. Furthermore, to avoid loss of power due to model misspecification, we develop computationally
efficient omnibus tests, which allow for aggregation of tests over several kernels and provide fast p-value
calculation (Demarta and McNeil, 2005).

The article is organized as follows: in the first section, we present the multivariate mixed effect model
and kernel matrices. We particularly focus on the phenotype-kernel and describe omnibus procedures
that can aggregate results across different choices of kernels and kinship adjustment. In the next
section we describe the simulation experiments that clearly demonstrate that Multi-SKAT tests have
increased power to detect associations compared to existing methods like GAMuT, MSKAT and others
in most of the scenarios. Further we applied Multi-SKAT to detect the cross-phenotype effects of rare
nonsynonymous and protein-truncating variants on a set of nine amino acids measured on 8,545 Finnish

men from the METSIM study.

Material and Methods

Single-phenotype region-based tests

To describe the Multi-SKAT tests, we first present the existing model of the single-phenotype gene or

region-based tests. Let yr = (Y1k, Y2k, »Ynk) " be an n x 1 vector of the k" phenotype over n individ-
uals; X an n x ¢ matrix of the ¢ non-genetic covariates including the intercept; G; = (Gi;, - - - ,an)T is
an nx 1 vector of the minor allele counts (0, 1, or 2) for a binary genetic variant j; and G = [G1,- -, Gp)]

is an m X m genotype matrix for m genetic variants in a target region. The regression model shown in

equation (1) can relate m genetic variants to phenotype k,

yr = Xag + GBk + € (1)

This article is protected by copyright. All rights reserved.



Running header: Multi-SKAT

where ay, is a ¢ x 1 vector of regression coefficients of ¢ non-genetic covariates, Sx = (Bik,- - » Bmk) L
is an m x 1 vector of regression coefficients of the m genetic variants, and € is an n x 1 vector of
non-systematic error term with each element following N (O,ai). To test for Hy : B = 0, a variance
component test under the mixed effects model have been proposed to increase power over the usual
F-test(Wu et al., 2011). The variance component test assumes that the regression coefficients, (.,
are random variables and follow a centered distribution with variance 72X (see below). Under these

assumptions, the test for 8 = 0 is equivalent to testing 7 = 0. The score statistic for this test is
Q = (yx — i) " GG (yr. — fin) (2)

where fi = X @y is the estimated mean of y; under the null hypothesis of no association. The test
statistic @@ asymptotically follows a mixture of chi-squared distributions under the null hypothesis and
p-values can be computed by inverting the characteristic function (Davies, 1980).

The kernel matrix ¥ plays a critical role; it models the relationship among the effect sizes of the
variants on the phenotypes. Any positive semidefinite matrix can be used for X providing a unified
framework for the region-based tests. A frequent choice of ¥ is a sandwich type matrix X = WRgW,
where W = diag(ws, .., wy,) is a diagonal weighting matrix for each variant, and Rg is a correlation
matrix between the effect sizes of the variants. Rg = I,,xm implies uncorrelated effect sizes and
corresponds to SKAT, and Rg = 1,,1,,° corresponds to the burden test, where I,y iS an m x m
diagonal matrix and 1,, = (1,---1)7 is an m x 1 vector with all elements being unity. Furthermore, a
linear combination of these two matrices corresponds to Rg = plmlmT + (1 — p)Luscm, which is used
for SKAT-O (Lee et al., 2012b).

Multiple-phenotype region-based tests

Extending the idea of using kernels, we build a model for multiple phenotypes. The multivariate linear

model shown in equation (3) can relate genetic variants to K correlated phenotypes,
Y=XA+GB+FE (3)

where Y = (y1, -+ ,yk) is an n x K phenotype matrix; A is a ¢ x K matrix of coefficients of X; B
= (B;;) is an m x K matrix of coefficients where j3;; denotes the effect of the i*" variant on the ;"
phenotype and E is an nx K matrix of non-systematic errors. Let vec(-) denote the matrix vectorization
function, and then vec(E) follows N (0, I,, ® V'), where V is a K x K covariance matrix and ® represents
the Kronecker product.

In addition to assuming that 5 follows a centered distribution with covariance 725, we further assume
that B;. = (Bi1,---,Bix)", which is the vector of regression coefficients of variant i for K multiple
phenotypes, follows a centered distribution with covariance 72%p, which implies that vec(B) follows a
centered distribution with covariance 72X ® Xp. As before, the null hypothesis Hy : vec(B) = 0 is

equivalent to 7 = 0. The corresponding score test statistic is

Q = {vec(v) —vee(@)}” {(GRaGT) & (V712pV )} {vee(V) - vee(@)} (4)
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where & and V are the estimated mean and covariance of Y under the null hypothesis.

Y. p plays a similar role as ¥ but with respect to phenotypes. ¥ p represents a kernel in the phenotypes
space and models the relationship among the effect sizes of a variant on each of the phenotypes. Any
positive semidefinite matrix can be used as Xp.

The proposed approach provides a double-flexibility in modeling. Through the choice of structures for
3¢ and Y p, we can control the dependencies of genetic effects. Additionally, similar to SKAT, the use
of a sandwich type matrix WReW for X allows us to upweight rare variants by using Beta(1,25)
weights as in Wu et al (Wu et al., 2011). Most of our hypotheses about the underlying genetic structure

of a set of phenotypes can be modeled through varying structures of these two matrices.

Phenotype kernel structure Yp

The use of ¥ has been extensively studied previously in literature (Wu et al., 2011; Lee et al., 2012b,a).

Here we propose several choices for X p and study their effect from a modeling perspective.

Homogeneous (Hom) Kernel

It is possible that effect sizes of a variant on different phenotypes are homogeneous, in which case

Bj1 = -+ = Bjk. Under this assumption,
SpHom = lrlk (5)

Under £ p mom, the effect sizes B, (k =1, - K) for a variant j are the same for all the phenotypes.

Heterogeneous (Het) Kernel

Effect sizes of a variant on different phenotypes can be heterogeneous in which §j; # -+ # k. Under

this assumption, we can construct
YpHet = Tixk (6)

The ¥ p prer implies that the effect sizes (81, , JTK) are uncorrelated among themselves. This also

indicates that the correlation among the phenotypes is not affected by this particular region or gene.

Phenotype Covariance (PhC) Kernel

We may model ¥ p as proportional to the estimated residual covariance across the phenotypes as,
Ypprhc=V (7)

where V is the estimated covariance matrix among the phenotypes. This model assumes that the cor-
relation between the effect sizes is proportional to that between the residual phenotypes after adjusting

for the non-genetic covariates.

Principal Component (PC) Kernel

Principal component analysis (PCA) is a popular tool for multivariate analysis. In multiple phenotype
tests, PC-based approaches have been used to reduce the dimension in phenotypes (Aschard et al.,

2014). Here we show that PC-based approach can be included in our framework. Let L = (L1, , L)
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be the loading matrix with each column L; produces the i*" PC score. In Appendix A, we show that

using Xppc = ‘7L\//;_1‘7;_1LT‘7 is equivalent to assuming heterogeneous effects with all PCs as
phenotypes. Instead of using all the PC’s, we can use selected PC’s that represent the majority of
cumulative variation in phenotypes. For example, we can jointly test the PC’s that have cumulative
variance of 90%. If the top ¢ PC’s have been chosen for analysis using % cumulative variance as cutoff,
we can use

Sppc—y = VLV 'Va ' LT,V

sel

where Lge; = [L1,-++, Lt,0,- -+ ,0] and 0 represents a vector of 0’s of appropriate length.

Relationship with other Multiple-Phenotype rare variant tests

We have proposed a uniform framework of Multi-SKAT tests that depend on X and X p. There are

certain specific choices of kernels that correspond to other published methods.

e Using Xp ppe and g = W1, W7 is identical to the GAMuT (Broadaway et al., 2016) with the
projection phenotype kernel and the MSKAT with the @ statistic (Wu and Pankow, 2016).

e Using $p = V2 and B¢ = W1, W7 is identical to GAMuT(Broadaway et al., 2016) with the
linear phenotype kernel and the MSKAT with the @’ statistic (Wu and Pankow, 2016).

e Using Xp gom and Xg = WI,,WT is identical to hom-MAAUSS (Lee et al., 2016).

e Using Yp e and Xg = W, W' is identical to het-MAAUSS (Lee et al., 2016) and MF-KM
(Yan et al., 2015).

For the detailed proof, please see Appendix B.

Minimum p-value based omnibus tests (minP & minP.q,, )

The model and the corresponding test of association that we propose has two parameters, ¥ and Xp,
which are absent in the null model of no association. Since our test is a score test, X and X p cannot
be estimated from the data. One possible approach is to select Y and ¥ p based on prior knowledge;
however, if the selected ¢ and X p do not reflect underlying biology, the test may have substantially
reduced power (Ray et al., 2016; Lee et al., 2016). In an attempt to achieve robust power, we aggregate
results across different Y and X p using the minimum of p-values from different kernels.

Although this omnibus test approach has been used in rare variant tests and multiple phenotype analysis
for combining multiple kernels from genotypes and phenotypes (Zhan et al., 2017; Wu et al., 2013;
Urrutia et al., 2015; He et al., 2017), it is challenging to calculate the p-value, since the minimum p-value
does not follow the uniform distribution. One possible approach is using permutation or perturbation
to calculate the monte-carlo p-value (Urrutia et al., 2015; Zhan et al., 2017); however, this approach is
computationally too expensive to be used in genome-wide analysis. To address it, here we propose a
fast copula based p-value calculation for Multi-SKAT, which needs only a small number of resampling
steps to calculate the p-value.

Suppose py, is the p-value for @, with given ht" Yg and Xp, h = 1,--- b, and Tp = (p1,--- ,pp)"

is an b x 1 vector of p-values of b such Multi-SKAT tests. The minimum p-value test statistic after
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the Bonferroni adjustment is b X Dpyin, Where ppi, is the minimum of the b p-values. In the presence
of positive correlation among the tests, this approach is conservative and hence might lack power of
detection. Rather than using Bonferroni corrected p,,;,, more accurate results can be obtained if the
joint null distribution or more specifically the correlation structure of Tp can be estimated. Here we
adopt a resampling based approach to estimate this correlation structure. Note that our test statistic

is equivalent to

Q=9 {(GZgGT) ® (?—%zpff—%)} s, (8)

where S = (I, ® V=2) {vec(Y) — vec(fi)}. Under the null hypothesis S approximately follows an

uncorrelated normal distribution N (0, I,k ). Using this, we propose the following resampling algorithm

e Step 1. Generate nK samples from an N(0,1) distribution, say Sg.

e Step 2. Calculate b different test statistics as Qr = S% {(GZGGT) ® (IA/_%ZPXA/_%)} Sg for all

the choices of ¥ p and calculate p-values.

e Step 3. Repeat the previous steps independently for R(= 1000) iterations, and calculate the

correlation between the p-values of the tests from the R resampling p-values.

With the estimated null correlation structure, we use a Copula to approximate the joint distribution
of Tp (Demarta and McNeil, 2005; He et al., 2017). Copula is a statistical approach to construct joint
multivariate distribution using marginal distribution of each variable and correlation structure. Since
marginally each test statistic @) follows a mixture of chi-square distributions, which has a heavier tail
than normal distribution, we propose to use a t-Copula to approximate the joint distribution, i.e, we
assume the joint distribution of T to be multivariate t with the estimated correlation structure. The
final p-value for association is then calculated from the distribution function of the assumed t-Copula.
When calculating the correlation across the p-values, Pearson’s correlation coefficient can be unreliable
since it depends on normality and homoscedasticity assumptions. To avoid such assumptions we rec-
ommend estimating the null-correlation matrix of the p-values through Kendall’s tau (7), which is a
non-parametric approach based on concordance of ranks.

The minimum p-value approach can be used to combine different ¥ p given ¥, or combine both ¥ p
and Yg. For example two Y¢’s corresponding to SKAT (WW) and Burden kernels (W1,,1Z W) and
four £p’s (Xp,Hom, LP,Het, 2P,PhCs 2P, PC—0.9) can be comnibed, which results in the omnibus test of
these eight different tests. To differentiate the latter, we will call it minP,,, which combines SKAT
and Burden type kernels of Y.

Adjusting for relatedness

We formulated equation (3) and corresponding tests under the assumption of independent individuals.
If individuals are related, this assumption is no longer valid, and the tests may have inflated type I error
rate. Since our method is regression-based, we can relax the independence assumption by introducing
a random effect term to account for the relatedness among individuals.

Let ® be the kinship matrix of the individuals and Vj is a co-heritability matrix, denoting the shared

heritability between the phenotypes. Extending the model presented in equation(3), we incorporate ®
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and V; as
Y=XA+GB+Z+E 9)

where Z is an n x K matrix with vec(Z) following N (0, ®®V,). Z represents a matrix of random effects
arising from shared genetic effects between individuals due to the relatedness. The remaining terms are

the same as in equation (3). The corresponding score test statistic is

Qkin = SEL V2 {(GEGT) @ Sp ) V28K, (10)

where Sin = Vo /2 {vec(Y) — vec(f)} and V., = & @ f/; + I, ® V is the estimated covariance matrix
of vec(Y') under the null hypothesis. Similar to the previous versions for unrelated individuals, Q kn
asymptotically follows a mixture of chi-square under the assumption of no association.

This approach depends on the estimation of the matrices ®, V; and V. The kinship matrix ® can be
estimated using the genome-wide genotype data (Manichaikul et al., 2010). Several of the published
methods like LD-Score(Bulik-Sullivan et al., 2015), PHENIX(Dahl et al., 2016) and GEMMA (Zhou and
Stephens, 2014; Zhou et al., 2013) can jointly estimate V; and V. In our numerical analysis, we have
used PHENIX. This is an efficient method to fit local maximum likelihood variance components in a
multiple phenotype mixed model through an E-M algorithm.

Once the matrices ®, V; and V' are estimated, we compute the asymptotic p-values for Q g, by using
a mixture of chi-square distribution. The computation of Q;, requires large matrix multiplications,
which can be time and memory consuming. To reduce computational burden, we employ several
transformations. We perform an eigen-decomposition on the kinship matrix ® as ® = UAUT, where U
is an orthogonal matrix of eigenvectors and A is a diagonal matrix of corresponding eigenvalues. We
obtain the transformed phenotype matrix as Y =YU , the transformed covariate matrix as X=X U,
the transformed random effects matrix Z = ZU and transformed residual error matrix £ = EU.

Rquation (9) can be transformed into

Y = XA+GB+Z+E; vec(Z)~N(0,A®V,); wvec(E)~ N(O,I®V) (11)

All the properties of the tests developed from equation (3) are directly applicable to those from equation

(11). Qkin can be computed from this transformed equation as,

Qrcin = SiinVe/? {(éZGéT) ® EP} Vo2 Skin, (12)
where Siim = Vo /? {vec(f/) - vec(ﬁ)}, [i is the estimated mean of Y under the null hypothesis
and 176 =A® ‘79 + 1, ® V. Asymptotic p-values can be obtained from the corresponding mixture
of chi-squares distribution. Further, omnibus strategies for the tests developed from equation (3) are
applicable in this case with similar modifications. For example, the resampling algorithm for minimum

p-value based omnibus test can be implemented here as well by noting that S Kin approximately follows

an uncorrelated normal distribution.
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Simulations

We carried out extensive simulation studies to evaluate the type I error control and power of Multi-SKAT
tests. For type I error simulations without related individuals and all power simulations, we generated
10,000 chromosomes over 1Mbp regions using a coalescent simulator with European demographic model
(Schaffner et al., 2005). The MAF spectrum of the simulated variants is shown in Supplementary Figure
S6, showing that most of the variants are rare variants. Since the average length of the gene is 3 kbps
we randomly selected a 3 kbps region for each simulated dataset to test for associations. For the type I
error simulations with related individuals, to have a realistic kinship structure, we used the METSIM
study genotype data.

Phenotypes were generated from the multivariate normal distribution as
yi ~ MVN{(B1G1+ -+ BrnGm) I, V'} (13)

where y; = (yi1,- -+ ,vir)? is the outcome vector, G; is the genotype of the j* variant, and j3; is the
corresponding effect size, and V is a covariance of the non-systematic error term. We use V to define
level of covariance between the traits. I is a k x 1 indicator vector, which has 1 when the corresponding
phenotype is associated with the region and 0 otherwise. For example, if there are 5 phenotypes and
the last three are associated with the region, I = (0,0,1,1,1)7.

To evaluate whether Multi-SKAT can control type I error under realistic scenarios, we simulated a
dataset with 9 phenotypes with a correlation structure identical to that of 9 amino acid phenotypes
in the METSIM data (See Supplementary Figure S1). Phenotypes were generated using equation (13)
with 8 = 0. Total 5,000,000 datasets with 5,000 individuals were generated to obtain the empirical
type-I error rates at a = 107%,107° and 2.5 x 1079, which are corresponding to candidate gene studies
to test for 500 and 5000 genes and exome-wide studies to test for all 20,000 protein coding genes,
respectively.

Next, we evaluated type I error controls in the presence of related individuals. To have a realistic
related structure we used the METSIM study genotype data. We generated a random subsample of
5000 individuals from the METSIM study individuals and generated null values for the 9 phenotypes
from MVN(0,V,), where V, = @5, @ Vysp + I @ Vap, s is the estimated kinship matrix of the
5000 selected individuals, \A/g;% and ‘75k are estimated co-heritability and residual variance matrices
respectively for these individuals as estimated using the MPMM function in the PHENIX R-package
(version 1.0). For each set of 9 phenotypes, we performed the Multi-SKAT tests for a randomly selected
5000 genes in the METSIM data. For the details about the data, see next section. We carried out this
procedure 1000 times and obtained 5,000, 000 p-values, and estimated type I error rate as proportions
of p-values smaller than the given level a.

Our simulation studies focus on evaluating the power of the proposed tests when the number of phe-
notypes are 5 or 6. Power simulations were performed both in situations when there was no pleiotropy
(i.e., only one of the phenotypes was associated with the causal variants) and also when there was
pleiotropy. Under pleiotropy, since it is unlikely that all the phenotypes are associated with genotypes
in the region, we varied the number of phenotypes associated. For each associated phenotype, 30% or
50% of the rare variants (MAF < 1%) were randomly selected to be causal variants. We modeled the
rarer variants to have stronger effect, as |3;| = c|logio(M AFj)|. We used ¢ = 0.3 which yields |3;| = 0.9
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for variants with MAF= 10~3. Our choice of 3 yielded the average heritability of associated phenotypes
between 1% to 4%. We also considered situations that all causal variants were trait-increasing variants
(i.e. positive 8) or 20 % of causal variants were trait-decreasing variants (i.e. negative ). Empirical
power was estimated from 1000 independent datasets at exome-wide oo = 2.5 x 1076,

In type I error and power simulations, we compared the following tests:

e Bonferroni adjusted minimum p-values from gene-based test (SKAT, Burden or SKAT-O) on each

phenotype (minPhen)
o Multi-SKAT with ¥p rrom (Hom)
o Multi-SKAT with p e, (Het)
o Multi-SKAT with Xp ppc (PhC)
o Multi-SKAT with Xp pc_g.9 (PC-Sel)
e Minimum P-value of Hom, Het, PhC and PC-Sel using Copula (minP)

e Minimum P-value of Hom, Het, PhC and PC-Sel with ¥ being SKAT and Burden, using Copula

(minPeom)

For the Multi-SKAT tests, we used two different X’s corresponding to SKAT (i.e. ¥ = WW) and
Burden tests (i.e. ¢ = W1,1LW). For the variant weighting matrix W = diag(wy, - ,w,,), we
used w; = Beta(M AFj;, 1,25) function to upweight rarer variants, as recommended by Wu et al. (Wu
et al., 2011).

Computation Time

We estimated the computation time of Multi-SKAT tests and the existing methods. Using simulated
datasets of 5000 related and unrelated individuals with 10 phenotypes and 20 genetic variants, we esti-
mated the computation time of Multi-SKAT tests with and without kinship adjustments. To compare
the computation performance of Multi-SKAT tests with the existing methods, we generated datasets of
unrelated individuals with five different sample sizes (n = 1000, 2000, 5000, 10000, 15000 and 20000)
and four different number of variants (m = 10, 20,50, 100). For each simulation setup, we generated

100 datasets and obtained the average value of the computation time.

Analysis of the METSIM study exomechip data

To investigate the cross-phenotype roles of low frequency and rare variants on amino acids, we ana-
lyzed data on 8545 participants of the METSIM study on whom all 9 amino acids (Alanine, Leucine,
Isoleucine, Glycine,Valine, Tyrosine, Phenylalanine, Glutamine, Histidine) were measured by proton
nuclear magnetic resonance spectroscopy(Teslovich et al., 2018). Individuals were genotyped on the
Illumina ExomeChip and OmniExpress arrays and we included individuals that passed sample QC
filters (Huyghe et al., 2013). The kinship between the individuals was estimated via KING (version
2.0) (Manichaikul et al., 2010). We adjusted the amino acid levels for age, age? and BMI and inverse-

normalized the residuals. The phenotype correlation matrix after covariate adjustment is shown in
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Figure 3 and Supplementary Figure S1. Subsequently, we estimated the genetic heritability matrix and
the residual covariance matrix using the MPMM function from PHENIX (Dahl et al., 2016) R package.

We included rare (MAF < 1%) nonsynonymous and protein-truncating variants with a total rare minor
allele count of at least 5 for genes that had at least 3 rare variants leaving 5207 genes for analysis. We
set a stringent significance threshold at 9.6 x 10~ corresponding to the Bonferroni adjustment for 5207
genes. Further, we also considered a less stringent threshold of 10~%, corresponding to a candidate gene
study of 500 genes, as suggestive to study the associations which were not significant but close to the
threshold.

Results

Type I Error simulations

We estimated empirical type I error rates of the Multi-SKAT tests with and without related individuals.
For unrelated individuals, we simulated 5,000 individuals and 9 phenotypes based on the correlation
structure for the amino acids phenotypes in the METSIM study data. For related individuals, we
simulated 5,000 individuals using the kinship matrix for randomly chosen METSIM individuals (see
the Method section). We performed association tests and estimated type I error rate as the proportion
of p-values less than the specified « levels. Type I error rates of the Multi-SKAT tests were well
maintained at o = 107%,107° and 2.5 x 1076 for both unrelated and related individuals (Table 1),
which correspond to candidate gene studies of 500 and 5000 genes and exome-wide studies to test for
all 20,000 protein coding genes, respectively. For example, at level o = 2.5 x 1076, the largest empirical
type I error rate from any of the Multi-SKAT tests was 3.4 x 10~%, which was within the 95% confidence
interval (CI = (1.6 x 1079, 4 x 1079)).

Power simulations

We compared the empirical power of the minPhen (Bonferroni adjusted minimum p-value for the phe-
notypes) and Multi-SKAT tests. For each simulation setting, we generated 1,000 sequence datasets of
5,000 unrelated individuals and for each test estimated empirical power as the proportion of p-values
less than o = 2.5 x 1075, reflecting Bonferroni correction for testing 20,000 independent genes. Since
the Hom and Het tests are identical to hom-MAAUSS and het-MAAUSS, respectively, and using PhC
is identical to both GAMuT (with projection phenotype kernel) and MSKAT, our power simulation
studies effectively compare the existing multiple phenotype tests.

In Figure 1, we show the results for 5 phenotypes with compound symmetric correlation structure with
the correlation 0.3 or 0.7, where 30% of rare variants (MAF < 0.01) were positively associated with
1,2 or 3 phenotypes. Since it is unlikely that all the phenotypes are associated with the region, we
restricted the number of associated phenotypes to at most 3. In most scenarios, PhC, PC-Sel and Het
had greater power among the Multi-SKAT tests with fixed phenotype kernels (i.e. Hom, Het, PhC
and PC-Sel) while minP, maintained high power as well. For example, when the correlation between
the phenotypes was 0.3 (i.e. p = 0.3) and SKAT kernel was used for the genotype kernel g, if 3

phenotypes were associated with the region, minP and PhC were more powerful than the other tests. If
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the correlation between the phenotypes was p = 0.7 and Burden kernel was used for genotype kernel X¢,
Het, PC-Sel and minP had higher power than the rest of the tests when 2 phenotypes were associated.
It is noteworthy that Hom had the lowest power in all the scenarios of Figure 1.

Figure 2 demonstrates scenarios involving 6 phenotypes and clustered correlation structures where PhC
was outperformed by other choices of the phenotype kernel ¥p. When all three phenotype clusters had
associated phenotypes and the correlation within the clusters was low (p = 0.3) (Figure 2, upper panel),
Hom and minP tests outperformed PhC when the SKAT kernel was used. This may be because that the
phenotype correlation structure did not reflect the genetic association pattern. When 2 small clusters
had high within-cluster correlation (p = 0.7) and one large cluster had low within-cluster correlation
(p = 0.3) (Figure 2, lower panel), Het and minP had higher power than PhC.

When 20% of causal variants were trait-decreasing variants (80% trait-increasing), the power of Multi-
SKAT tests with Burden ¥ was reduced (Supplementary Figure S2 and S3). This is because the
association signals were attenuated due to the mix of trait-increasing and trait-decreasing variants. Since
SKAT is robust regardless of the association direction, power with SKAT Y was largely maintained.
The relative performance of methods with different Xp given ¥ was quantitatively similar to the
results without trait-decreasing variants.

Further, we estimated power of minP..y,, which combines tests across phenotype (Xp) and genotype
Y.¢ kernels. The power of minP.,,, was evaluated for the compound symmetric phenotype correlation
structure presented in Figure 1 and was compared with the two minP tests of SKAT (minP-SKAT) and
Burden (minP-Burden) ¥ kernels. Figure 3 shows empirical power with and without trait-decreasing
variants. When all genetic effect coefficients were positive (Figure 3, left panel) the performances of
minP-SKAT and minP-Burden were similar for both the situations where the correlation between the
phenotypes were low (i.e. p = 0.3) and high (i.e. p = 0.7). When 20% of genetic effect coefficients were
negative (Figure 3, right panel), as expected, the power of minP-Burden was substantially decreased.
Across all the situations, the power of minP.y, was similar to the most powerful minP with fixed
genotype kernel ¥¢. When 50% of variants were causal variants and all genetic effect coefficients were
positive (Supplementary Figure S4, left panel), minP-Burden was more powerful than minP-SKAT, and
minP.on, had similar power than minP-Burden.

Overall, our simulation results show that the omnibus tests, especially minP.y,,, had robust power
throughout all the simulation scenarios considered. When Y and ¥Xp were fixed, power depended
on the model of association and the correlation structure of the phenotypes. Overall, the proposed
Multi-SKAT tests generally outperformed the single phenotype test (minPhen), even when only one

phenotype was associated with genetic variants.

Application to the METSIM study exomechip data

Inborn errors of amino acid metabolism cause mild to severe symptoms including type 2 diabetes(Stanckova
et al., 2012; Wiirtz et al., 2012, 2013) and liver diseases(Tajiri and Shimizu, 2013) among others. Amino
acid levels are perturbed in certain disease states, e.g., glutamic and aspartic acid levels are reduced in
Alzheimer disease brains(Allan Butterfield and Pocernich, 2003); Isoleucine, glycine, alanine, phenylala-
nine, and threonine levels are increased in cerebo-spinal fluid (CSF) of individuals with motor neuron
disease(de Belleroche et al., 2003). To find rare variants associated with the 9 measured amino acid
levels, we applied the Multi-SKAT tests to the METSIM study data(Teslovich et al., 2018). The MAF
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spectrum of the genotyped variants is shown in Supplementary Figure S6, showing that most of the
variants are rare variants. We estimated the relatedness between individuals by KING (Manichaikul
et al., 2010), and coheritability of the amino acid phenotypes and the corresponding residual variance
using PHENIX(Dahl et al., 2016) (Supplementary Figure S1). Among the 8,545 METSIM partici-
pants with non-missing phenotypes and covariates, 1,332 individuals had a second degree or closer
relationship with one or more of the METSIM participants. A total of 5,207 genes with at least
three rare variants were included in our analysis. The Bonferroni corrected significance threshold was
a = 0.05/5207 = 9.6 x 1075, Further we used a less significant cutoff of & = 10~ for a gene to be sug-
gestive. After identifying associated genes, we carried out backward elimination procedure (Appendix
C) to investigate which phenotypes are associated with the gene. This procedure iteratively removes
phenotypes based on minP .., p-values.

QQ plots for the p-values obtained by minPhen and Multi-SKAT omnibus tests (minP and minP .o, )
are displayed in Figure 4. Due to the presence of several strong associations, for the ease of viewing,
any p-value < 10712 was collapsed to 107'2. The QQ plots are well calibrated with slight inflation
in tail areas. The genomic-control lambda (Ag¢c) varied between 0.97 and 1.04, which indicates no
inflation of test statistics. Table 2 shows genes with p-values less than 10~ for minPhen or minP.qy,.
Table 5 shows SKAT-O p-values for each of the gene - amino acid pairs. Among the eight significant
or suggestive genes displayed in Table 2, minP.,,, provides more significant p-values than minPhen
for six genes: Glycine decarboxylase (GLDC [MIM: 238300]), Histidine ammonia-lyase (HAL [MIM:
609457]), Phenylalanine hydroxylase (PAH [MIM: 612349]), Dihydroorotate dehydrogenase (DHODH
[MIM: 126064]), Mediator of RNA polymerase II transcription subunit 1 (MED1 [MIM: 604311]),
Serine/Threonine Kinase 33 (STK33 [MIM: 607670]). Interestingly, PAH and MED1 are significant by
minP .y, but not significant by minPhen. PAH encodes an Phenylalanine hydroxylase, which catalyzes
the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine. MED] is involved
in the regulated transcription of nearly all RNA polymerase II-dependent genes. This gene does not
show any single phenotype association, but cross-phenotype analysis produced evidence of association.
Using backward elimination we find that Phenylalanine and Tyrosine are the last two phenotypes to
be eliminated (Supplementary Table S2). We have provided a detailed description of the function and
clinical implications of the significant and suggestive genes in Supplementary Table S4.

Among other genes, GLDC has the smallest p-value. Variants in GLDC are known to cause glycine
encephalopathy (MIM: 605899) (Hughes, 2009). To investigate whether our results were supported by
single phenotype associations, we applied SKAT-O to each of the 9 amino acid phenotypes. Univariate
SKAT-O test with each of these phenotype reveals that this gene has a strong association with Glycine
(p-value = 2.5 x 107%4, Table 5). Among the variants genotyped in this gene, rs138640017 (MAF =
0.009) appears to drive the association (single variant p-value = 1.0 x 1075%). Variants in HAL cause
histidinemia (MIM: 235800) in human and mouse. This gene shows significant univariate association
with Histidine (SKAT-O p-value = 3.2 x 1078, Table 5) which in turn is influenced by the association
of 1s141635447 (MAF = 0.005) with Histidine (single variant p-value = 3.7 x 10713). Similarly, variants
in DHODH, which have been previously found to be associated with postaxial acrofacial dysostosis
(MIM: 263750), have significant cross-phenotype association although the result us mostly driven by
the association with Alanine (SKAT-O p-value =1.4x107°7, Table 5). ALDHIL1 catalyzes conversion of
10-formyltetrahydrofolate to tetrahydrofolate. Published results show that common variant rs1107366,
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5kb upstream of ALDHILI, is associated with Glycine-Seratinine ratio (Xie et al., 2013). Down-
regulation of BCAT2 in mice causes elevated serum branched chain amino acid levels and features of
maple syrup urine disease.

Table 3 shows p-values of Multi-SKAT kernel and minP with two genotype kernels (SKAT and Burden).
Among phenotype kernels, PhC and Het generally produced the smallest p-values. We further applied
Multi-SKAT tests without kinship adjustment on the whole METSIM study individuals. As expected,
this produced inflation in QQ plots (Supplementary Figure S5).

To directly compare our results with existing methods we applied GAMuT, DKAT and MSKAT to
the METSIM dataset. Since these methods cannot be applied to related individuals, we eliminated
1332 individuals that were related up to second degree, leaving us 7213 individuals. Table 4 shows
p-values of different methods on the eight significant or suggestive genes displayed in Table 2. Since
DKAT and GAMuT had nearly identical p-values when the same kernels were used, DKAT p-values
were not shown in Table 4. For unrelated individuals, as expected, p-values produced by MSKAT with
Q statistic, GAMuT with projection phenotype kernel and PhC (with SKAT X.) were very similar,
and minPq,, provided similar or more significant p-values than PhC. Interestingly MSKAT with Q’
statistic and GAMuT with linear phenotype kernel have less significant p-values than the other tests.
We found that in 5 of the 8 genes in Table 4, using all individuals with kinship correction produced more
significant PhC and minP.., p-values than using only unrelated individuals. Further, we have listed
the top 10 genes for each of PhC, GAMuT and MSKAT with unrelated individuals (Supplementary
Table S4). Except for the genes in Table 4, no other genes were found to be significant or suggestive.
Overall, our METSIM amino acid data analysis suggests that the proposed method can be more powerful
than the single phenotype tests as well as existing tests, while maintaining type I error rate even in the
presence of the relatedness. It also shows that the omnibus tests (minP and minP.y,) provides robust

performance by effectively aggregating results of various kernels.

Computation Time

When Yp and X are given, p-values of Multi-SKAT are computed by the Davies method (Davies,
1980), which inverts the characteristic function of the mixture of chi-squares. On average, Multi-SKAT
tests for a given ¥p and X required less than 1 CPU sec (Intel Xeon 2.80 GHz) when applied to a
dataset with 5000 independent individuals, 20 variants and 10 phenotypes (Supplementary Table S1).
With the kinship adjustment for 5000 related individuals, computation time was increased to 3 CPU
sec. Since minP.qp, requires only a small number of resampling steps to estimate the correlation among
tests, it is still scalable for genome-wide analysis. In the same dataset, minP.,, required 4 and 10
CPU sec on average without and with the kinship adjustment, respectively. Further, Multi-SKAT given
¥p and Xq, is computationally equivalent to MSKAT and takes less than 1 CPU-sec for up to 20,000
samples, with 20 variants (Supplementary Figure S7 A), while GAMuT takes considerably more time
than these two. The performance of minP ..y, is similar to GAMuT for small and moderate sample sizes
(7.5 and 7.1 CPU-secs respectively for 10,000 samples) and performs better than GAMuT for larger
sample sizes (14.9 and 34.6 CPU-secs respectively for 20,000 samples). Computation time of all the
methods were slightly increased when the number of variants were 100 (Supplementary Figure S7 B).

Analyzing the METSIM dataset with minP ., required 10 hours when parallelized into 5 processes.
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Discussion

In this article, we have introduced a general framework for rare variant tests for multiple phenotypes.
As demonstrated, Multi-SKAT gains flexibility with regard to modeling the relationship between phe-
notypes and genotypes through the use of the kernels ¥p and ¥. Many published methods, including
GAMuT, MSKAT and MAAUSS, can be viewed as special cases of the Multi-SKAT test with corre-
sponding values of ¥p and ¢, which illuminates the underlying assumptions of these methods and
their relationships. In addition, by unifying existing methods to the common framework, our approach
provides a way to combine different methods through the minimum p-value based omnibus test. Our
method can also adjust for sample relatedness. From simulation studies we have found that the proposed
method is scalable to genome-wide analysis and can outperform the single phenotype test and exist-
ing multiple phenotype tests. The METSIM data analysis demonstrated that the proposed methods
perform well in practice.

It is natural to assume that different genes follow different models of association. For some genes, the
effect of the variants on the phenotypes might be independent of each other, thus best detected by the
Het phenotype kernel for ¥ p, while for others, the effects might be nearly the same and best detected
by the Hom phenotype kernel. If the kernel structures are chosen based on prior knowledge and the
selected X and X p do not reflect underlying biology, the test may have substantially reduced power.
The omnibus test, which uses the minimum p-value from the various choices of kernels, has been a useful
approach under such situations in genetic association analysis (Lee et al., 2012b; Urrutia et al., 2015;
Zhan et al., 2017). We applied this ominibus test to Multi-SKAT and used a Copula to obtain p-values.
As seen in simulation studies and real data analysis, our omnibus approaches (minP and minP..,) are
scalable to genome-wide analysis and provide robust power regardless of underlying genetic models.
Multi-SKAT retains most of the desirable properties of SKAT. The asymptotic p-values of all the
Multi-SKAT tests, other than minP and minP.,, can be analytically obtained via Davies’ method.
The p-value calculations for minP and minP.,,, depend on a resampling based approach but a reliable
estimate can be obtained using a small number of resampling steps. Thus, computationally all the
Multi-SKAT tests are scalable at the genome-wide level. This method also allows the inclusion of prior
information through weighting of variants.

Additionally, Multi-SKAT can adjust for the relatedness among study individuals by accounting for
their kinship matrix. As shown in Supplementary Figure S5, in the presence of related individuals, lack
of adjustment for relatedness can produce inflated type I error rate. Since Multi-SKAT is a regression
based approach, it effectively incorporates the relatedness by including a random effect term for kinship.
Type I error simulation and METSIM data analysis show that our approach produced more significant
p-values than alternative methods, like GAMuT and MSKAT, while controlling type I error rates.
Although Multi-SKAT provides a general framework for gene-based multiple phenotype tests, the cur-
rent approach is limited to continuous phenotypes. In the future, using a generalized mixed effect model
framework, we aim to extend Multi-SKAT to binary phenotypes.

In summary, we have developed a powerful multiple phenotype test for rare variants. The proposed
method has robust power regardless of the underlying biology and can adjust for family relatedness.
Our method can be a scalable and practical solution to test for multiple phenotypes and will contribute

to detecting rare variants with pleiotropic effects. All our methods are implemented in the R package
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MultiSKAT (see Web Resource).

Web Resources

MultiSKAT R-package: https://github.com/diptavo/MultiSKAT

GAMuT R-package: https://epstein-software.github.io/GAMuT

MSKAT R-package: https://github.com/baolinwu/MSKAT

PHENIX R-package: https://mathgen.stats.ox.ac.uk/genetics_software/phenix/phenix.html
Online Mendelian Inheritance in Man (OMIM): http://www.omim.org
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Figure 2: Power for Multi-SKAT tests when phenotypes have clustered correlation structures. Empir-
ical powers for minPhen, Hom, Het, PhC, PC-Sel, minP are plotted under different levels of association
with a total of 6 phenotypes and with clustered correlation structures. Middle column shows the em-
pirical powers for different combinations of phenotypes associated with SKAT kernel YX¢; the rightmost
column shows the corresponding results with Burden kernel; left column shows the corresponding corre-
lation matrices for the phenotypes. The associated phenotypes are indicated in red cross marks across
the correlation matrices. All the causal variants were trait-increasing variants.
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Figure 3: Power for Multi-SKAT by combining tests with Xp as Hom, Het, PhC, PC-Sel and X as
SKAT and Burden when phenotypes have compound symmetric correlation structures. Empirical powers
for minP-Burden, minP-SKAT and minP..m are plotted against the number of phenotypes associated
with the gene of interest with a total of 5 phenotypes under consideration. Upper row shows the results
for p = 0.3 and lower row for p = 0.7. Left column shows results when all the causal variants were
trait-increasing variants, and right column shows results when 80%/20% of the causal variants were
trait-increasing/trait-decreasing variants.
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Figure 4: QQplot of the p-values of minPhen and Multi-SKAT omnibus tests for the METSIM data.
For the ease of viewing, any associations with p-values < 1072 have been collapsed to 10712
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Appendices

A. Principal Component (PC) Kernel

Let L; be the loading vector for the i** PC, which produces the i PC score P; = Y L;. In PCA-based
analysis, PC scores are used as outcomes instead of original Y. Since the genetic information regarding
the phenotypes may not be confined to the top few PCs (Aschard et al., 2014), we first consider using
all PCs. Let P = (P, - Px). Since PCs are orthogonal, we assume genetic effects to multiple PCs are

heterogeneous, which resulted in
Q = {vec(P) — vec(fip)}" {(GZGGT) ® (171;1171;1)} {vec(P) — vec(fip)} (14)

where fip is the mean of P under the null hypothesis and ‘7]3 is the estimated covariance matrix between

the PC’s. Vp will be a diagonal matrix since PCs are orthogonal. Equation (14) can be written as
Q = {vec(Y) — vee(p)}" {(GZgGT) ® (LX7151171;1LT)} {vec(Y) — vee()} (15)

where L = (L1,--- ,Lk) is a K x K PC loading matrix. Equation (15) shows that by using Xp pc =
~ ~—1-~-—1 ~

VLVp Vp LTV, we can carry out PC-based tests. It is to be noted that the genetic effects of the
PC’s do not need to be assumed to be heterogeneous. Any kernel structure that is applicable to the

test statistic in equation 4 can be applied here as well.

B. Relationship between Multi-SKAT and existing methods

For the ease of algebraic expressions, we will consider that all the K phenotypes have residual variance
1. For the general case of different residual variances, X p should be replaced by T, 'YX pT, 1 where

T, = diag(o1,- -+ ,0K), op being the residual standard error of £** phenotype.

B.1. MSKAT

The @ statistic of MSKAT(Wu and Pankow, 2016) is given by
Quskar = vec(S)T(WW @ V" wec(S,), (16)

where S. = GT(Y — i) is a matrix of score statistics (Wu and Pankow, 2016). Using row-vectorization

properties
vec(S,) = vee(GT(Y — i) = (GT @ Nvec(Y — i) = (GT @ T) {vec(Y) — vec(fi)}
Then @Qyskx a7 can be written as

{vee(Y) — vee(fi)} " {(GWWGT) ® 17*1} {vee(Y) — vec(R)}

This article is protected by copyright. All rights reserved.
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~

which is the Multi-SKAT test statistics with g = WW and Xp = V.
Further, the Q' of MSKAT is given by

Qhrsicar = vec(Se)T (WW @ Ivec(S,). (17)
Using the similar algebra as above, this can be written as
{vec(Y) — vec(i)}* {(GWWGT) ® I} {vec(Y) — vec(fn)}
which is the Multi-SKAT test statistics with X = WW and Xp = V2.

B.2. GAMuT

Suppose Y — i =Y,4; = HY and G.q; = HG are covariate adjusted phenotype and genotype matrices
where H = I — X(XTX)7'XT. With the intercept in X, Yoqj and Goq; are mean centered. The

covariate adjusted GAMuT test statistics is

tr(P.X.)
Qcamur = Y
where
P Yadj(YanYadj)‘lYan for projection phenotype kernel
Yadean for linear phenotype kernel

and X, = Gqqj WWngj. Using the fact that YanYadj /n = V is the estimate of variance after adjusting
covariates and Gfdeadj = GTHY = GTY,q; (since H is a symmetric idempotent matrix), we show, for

the projection kernel

tr(P.X.)/n = tr(YogV 'Y 5Gay WWGT,)
= tr(V2YL,GWWGTY, V%)

= vec(WGTYadeA/_%)Tvec(WGTYadeA/_%)
= {we"e ?—%)vec(yadj)}T (WG @V yvec(Vay) |
= {vec(Y) —vec(i)} (GWWGT @ V1) {vec(Y) — vec(fi)}

which is the same as the Multi-SKAT test statistic with Xg = WW and Xp = V.

Similarly for the linear kernel,

tr(P.X.)/n

tr(Yaq Yo Gati WWG L)
{(WGT ® I)vec(Yadj)}T {(WGT ® Ivec(Yaai) }
{vec(Y) — vec(i)}Y (GWWGT @ I) {vec(Y) — vec(i)}

which is the Multi-SKAT test statistic with ¥ = WW and Xp = V2.
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B.3. MAAUSS and MF-KM

There exists two different version of the MAAUSS tests. The homogeneous version of MAAUSS assumes

that the effects of a variant on multiple phenotypes are identical and uses the following test statistic

Qiraavss—mom = (vec(Y) fvec(ﬁ))T(In(@‘A/*l)(G@I) (WW@1,,17 ) (GT®I) (In®‘7*1)(vec(Y) —vec(j1))
(18)

which is identical to the Multi-SKAT test statistic with Xg = WW and Xp = 1m1£. The heterogeneous

version of MAAUSS assumes that the effects of a variant on multiple phenotypes are independent, and

uses the following test statistic

Quaavss—uer = (vec(Y) —vec(i)T (L@ VYNGR DWW @ I)(GT @ I)(I, @ V1) (vec(Y) —vee(fi))

(19)
which is identical to the Multi-SKAT test statistic with X = WW and ¥ p = I. Note that the test
statistic of MF-KM is exactly the same as Qpyaauss—_HET-

C. Backward elimination procedure to identify associated phenotypes

After identifying the gene or region associated with multiple phenotypes, next question would be iden-
tifying truly associated phenotypes. Here we present a simple backward elimination algorithm to iter-
atively remove relatively less important phenotypes. A similar method has previously been applied to

identify rare causal variants in an associated gene (Ionita-Laza et al., 2014).

e Step 1. Start with a set of k phenotypes Phencyrrent = {Y1, %2, - yr} and compute a Multi-
SKAT test association p-value for the set Phencyrrent denoted by powrrent-

e Step 2. Remove each of the phenotypes one at a time from the set Phencyyrent. The resulting
set is Phen_; = {y1,¥2,* Yi—1,Yit1- - yx} for i = 1,2,--- 'k and compute the corresponding
p-values p_; for that same Multi-SKAT test.

e Step 3. Remove the phenotype j that leads to the smallest p-value, i.e. j = argmin{p_1,p—2, - ,p_r}
Update Phencyrrent to Phen_;.

e Step 4. Continue removing phenotypes till only 1 phenotype is left.

Supplementary Table S2 shows the backward elimination results of 5 most significant and suggestive
genes in the METSIM study data analysis as per the p-values reported by minP.yy,. Although this
procedure does not provide a set of phenotypes truly associated, it provides the relative importance
of the phenotypes in driving association signals. For example, the minP.,, p-value for GLDC was
2.3 x 10772, When each of the phenotypes were removed one at a time and the minP.., p-values
were calculated on the remaining 8 phenotypes, we found that eliminating Isoleucine (Ile) actually
improved the signal. The minP,,, p-value of the set of 8 amino acids leaving out Ile was 2.8 x 10773,
This indicates that Isoleucine has very minimal contribution to the association between the amino
acids and GLDC. Subsequently, Valine was the next phenotype to be eliminated indicating that it
has the next lowest contribution after Isoleucine. Carrying out this procedure further, we find that

Glycine is the last phenotype to remain indicating that it is the strongest driver of the signal. This
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is in agreement to the single phenotype SKAT-O results (Table 5). Similary for genes HAL, DHODH,
PAH and MED1, Histine, Alanine, Phenylalanine and Tyrosine were the most associated phenotypes,
respectively. Interestingly for PAH and MEDI, single phenotype p-values are not significant, which
suggests that multiple phenotypes are associated with these genes.
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