@AGU PUBLICATIONS #### Space Weather ### Supporting Information for ## Model evaluation guidelines for geomagnetic index predictions Michael W. Liemohn¹, James P. McCollough,² Vania K. Jordanova,³ Chigomezyo M. Ngwira,^{4,5} Steven K. Morley,³ Consuelo Cid,⁶ W. Kent Tobiska,⁷ Peter Wintoft,⁸ Natalia Yu. Ganushkia,^{1,9} Daniel T. Welling,^{1,10} Suzy Bingham,¹¹ Michael A. Balikhin,¹² Hermann J. Opgenoorth,¹² Miles A. Engel,³ Robert S. Weigel,¹⁴ Howard J. Singer,¹⁵ Dalia Buresova,¹⁶ Sean Bruinsma,¹⁷ Irina S. Zhelavskaya,^{18,19} Yuri Y. Shprits,^{18,19,20} and Ruggero Vasile¹⁸ ¹ Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA ²Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM USA ³Space Science and Applications, Los Alamos National Laboratory, Los Alamos, NM USA ⁴Department of Physics, The Catholic University of America, Washington, DC USA ⁵NASA Goddard Space Flight Center, Space Weather Laboratory, Greenbelt, MD USA ⁶Department of Physics and Mathematics, Uuniversity of Alcalá, Alcalá de Henares, Madrid, Spain ⁷Space Environment Technologies, Pacific Palisades, CA USA ⁸Swedish Institute of Space Physics, Lund, Sweden ⁹Finnish Meteorological Institute, Helsinki, Finland ¹⁰University of Texas at Arlington, Arlington, TX USA ¹¹UK Met Office, Exeter, Devon, United Kingdom ¹²Department of Automatic Control and System Engineering, University of Sheffield, Sheffield, South Yorkshire UK ¹³Swedish Institute of Space Physics, Uppsala, Sweden ¹⁴Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA ¹⁵Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO USA ¹⁶Institute of Atmospheric Physics, CAS, Prague, Czech Republic ¹⁷Department of Space Geodesy CNES, Toulouse, France ## Contents of this file Table S1 ## Additional Supporting Information (Files uploaded separately) Captions for Tables S1 to Sx (if larger than 1 page, upload as separate file) ## Introduction This supporting information document defines all of the acronyms used in the paper. | Acronym | Definition | Section of 1 st Use/Def. | |----------|---|-------------------------------------| | A | Intercept in linear regression formula | § 3.1 | | ACE | Advanced Composition Explorer | § 3.3 | | AE | Auroral electroject index | § 1 | | AL | Lower auroral electroject index | § 1 | | ARMAX | Autoregressive Moving Average Model With Exogenous Inputs (model) | § 2.3 | | ARE | Absolute relative error, another name for MAE | § 3.1 | | ARV | Average relative variance | § 2.1, § 3.1 | | AU | Upper auroral electrojet index | § 1 | | AUL | Application Usability Level | § 5 | | В | Slope in linear regression formula | § 3.1 | | BFM | Burton et altype analytic model (model) | § 2.1 | | CCMC | Community Coordinated Modeling Center | § 1 | | CMIT | Coupled Magnetosphere-Ionosphere-Thermosphere (model) | § 2.1 | | Cov(M,O) | Covariance of the data and model values | § 3.1 | | DP1 | Substorm current wedge current system | § 2.3 | | DP2 | Ionospheric Hall current system | § 2.3 | | DSCOVR | Deep Space Climate Observatory | § 3.3 | | Dst | Disturbance storm-time index | § 1 | ¹⁸GFZ German Research Centre for Geosciences, Telegraphenberg, Potsdam, Germany ¹⁹Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany ²⁰Department of Earth and Space Sciences, UCLA, Los Angeles, CA USA | Acronym | Definition | Section of 1 st Use/Def. | |----------|--|-------------------------------------| | Ey | Solar wind electric field y-component | § 3.3 | | F | False alarms in a contingency table | § 3.2 | | F10.7 | Solar 10.7 cm radio flux signal | § 2.4 | | FAR | False alarm ratio | § 2.2, § 3.2 | | FB | Frequency bias, or just bias | § 3.2 | | GEM | Geospace Environment Modeling (NSF program) | § 2.1 | | GFZ | German Research Centre for Geosciences | § 4.2 | | Н | Hits in a contingency table | § 3.2 | | HEIDI | Hot Electron and Ion Drift Integrator (model) | § 2.1 | | HWHM | Half width at half maximim | § 2.1 | | HSS | Heidke skill score | § 2.1, § 3.2 | | IRF96 | Impulse Response Function with 96 lags (model) | § 2.1 | | Kp | Planetary K index | § 1 | | LANL | Los Alamos National Laboratory | § 4.3 | | LWS | Living With a Star (NASA Heliophysics Division program) | § 1 | | M, M_i | Model values, model value at index i | § 3.1 | | M | Misses in a contingency table | § 3.2 | | MAE | Mean absolute error | § 3.1 | | ME | Mean error | § 2.1, § 3.1 | | MLT | Magnetic local time | § 4.3 | | N | Number of data-model pairs | § 3.1 | | N | Correct negatives in a contingency table | § 3.2 | | NARMAX | Nonlinear Autoregressive Moving Average Model | § 2.1 | | | With Exogenous Inputs (model) | | | NARX | Nonlinear Autoregressive Model With Exogenous | § 2.2 | | | Inputs (model) | | | NRMSE | Normalized root mean square error | § 2.1 | | O, O_i | Observed values, observed value at index i | § 3.1 | | OMNI | NASA's OMNI solar wind online database | § 3.3 | | OpenGGCM | Open Geospace General Circulation Model (model) | § 2.1 | | PE | Prediction efficiency | § 2.1, § 3.1 | | PC | Polar cap index | § 1 | | POD | Probability of detection | § 2.1, § 3.2 | | POFD | Probability of false detection | § 3.2 | | R | Pearson correlation coefficient | § 2.1 | | RAM-SCB | Ring Current-Atmosphere Interactions Model with | § 2.1, § 4.3 | | | Self-Consistent Magnetic Field (model) | | | RCM | Rice Convection Model (model) | § 2.1 | | RMSE | Root mean square error | § 3.1 | | ROC | Receiver operating characteristic (curve), also relative | § 3.2 | | | operating characteristic, receiver-operator characteristic | | | SS | Skill score | § 2.2 | | SWMF | Space Weather Modeling Framework (model) | § 2.1 | | Acronym | Definition | Section of 1st Use/Def. | |--|--|--------------------------| | SYM-H | Symmetric H index | § 1 | | $\sigma_{\rm O}, \sigma_{\rm M}, \sigma_{\rm X}$ | Standard deviation of observations, model, or other value | § 3.1 | | UPOS | University Partnering for Operational Support | § 4, § 4.2 | | VS | Volland-Stern (model) | § 4.3 | | WINDMI | Solar Wind INteraction with the Magnetosphere and Ionosphere (model) | § 4, § 4.1 | **Table S1.** A list of all acronyms used in the paper, along with the location of their first usage and detailed definition.