@AGU PUBLICATIONS

Space Weather

Supporting Information for

Model evaluation guidelines for geomagnetic index predictions

Michael W. Liemohn¹, James P. McCollough,² Vania K. Jordanova,³ Chigomezyo M. Ngwira,^{4,5} Steven K. Morley,³ Consuelo Cid,⁶ W. Kent Tobiska,⁷ Peter Wintoft,⁸ Natalia Yu. Ganushkia,^{1,9} Daniel T. Welling,^{1,10} Suzy Bingham,¹¹ Michael A. Balikhin,¹² Hermann J. Opgenoorth,¹² Miles A. Engel,³ Robert S. Weigel,¹⁴ Howard J. Singer,¹⁵ Dalia Buresova,¹⁶ Sean Bruinsma,¹⁷ Irina S. Zhelavskaya,^{18,19} Yuri Y. Shprits,^{18,19,20} and Ruggero Vasile¹⁸

¹ Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA

²Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM USA

³Space Science and Applications, Los Alamos National Laboratory, Los Alamos, NM USA

⁴Department of Physics, The Catholic University of America, Washington, DC USA

⁵NASA Goddard Space Flight Center, Space Weather Laboratory, Greenbelt, MD USA

⁶Department of Physics and Mathematics, Uuniversity of Alcalá, Alcalá de Henares, Madrid, Spain

⁷Space Environment Technologies, Pacific Palisades, CA USA

⁸Swedish Institute of Space Physics, Lund, Sweden

⁹Finnish Meteorological Institute, Helsinki, Finland

¹⁰University of Texas at Arlington, Arlington, TX USA

¹¹UK Met Office, Exeter, Devon, United Kingdom

¹²Department of Automatic Control and System Engineering, University of Sheffield, Sheffield, South Yorkshire UK

¹³Swedish Institute of Space Physics, Uppsala, Sweden

¹⁴Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA

¹⁵Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO USA

¹⁶Institute of Atmospheric Physics, CAS, Prague, Czech Republic

¹⁷Department of Space Geodesy CNES, Toulouse, France

Contents of this file

Table S1

Additional Supporting Information (Files uploaded separately)

Captions for Tables S1 to Sx (if larger than 1 page, upload as separate file)

Introduction

This supporting information document defines all of the acronyms used in the paper.

Acronym	Definition	Section of 1 st Use/Def.
A	Intercept in linear regression formula	§ 3.1
ACE	Advanced Composition Explorer	§ 3.3
AE	Auroral electroject index	§ 1
AL	Lower auroral electroject index	§ 1
ARMAX	Autoregressive Moving Average Model With Exogenous Inputs (model)	§ 2.3
ARE	Absolute relative error, another name for MAE	§ 3.1
ARV	Average relative variance	§ 2.1, § 3.1
AU	Upper auroral electrojet index	§ 1
AUL	Application Usability Level	§ 5
В	Slope in linear regression formula	§ 3.1
BFM	Burton et altype analytic model (model)	§ 2.1
CCMC	Community Coordinated Modeling Center	§ 1
CMIT	Coupled Magnetosphere-Ionosphere-Thermosphere (model)	§ 2.1
Cov(M,O)	Covariance of the data and model values	§ 3.1
DP1	Substorm current wedge current system	§ 2.3
DP2	Ionospheric Hall current system	§ 2.3
DSCOVR	Deep Space Climate Observatory	§ 3.3
Dst	Disturbance storm-time index	§ 1

¹⁸GFZ German Research Centre for Geosciences, Telegraphenberg, Potsdam, Germany

¹⁹Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany

²⁰Department of Earth and Space Sciences, UCLA, Los Angeles, CA USA

Acronym	Definition	Section of 1 st Use/Def.
Ey	Solar wind electric field y-component	§ 3.3
F	False alarms in a contingency table	§ 3.2
F10.7	Solar 10.7 cm radio flux signal	§ 2.4
FAR	False alarm ratio	§ 2.2, § 3.2
FB	Frequency bias, or just bias	§ 3.2
GEM	Geospace Environment Modeling (NSF program)	§ 2.1
GFZ	German Research Centre for Geosciences	§ 4.2
Н	Hits in a contingency table	§ 3.2
HEIDI	Hot Electron and Ion Drift Integrator (model)	§ 2.1
HWHM	Half width at half maximim	§ 2.1
HSS	Heidke skill score	§ 2.1, § 3.2
IRF96	Impulse Response Function with 96 lags (model)	§ 2.1
Kp	Planetary K index	§ 1
LANL	Los Alamos National Laboratory	§ 4.3
LWS	Living With a Star (NASA Heliophysics Division program)	§ 1
M, M_i	Model values, model value at index i	§ 3.1
M	Misses in a contingency table	§ 3.2
MAE	Mean absolute error	§ 3.1
ME	Mean error	§ 2.1, § 3.1
MLT	Magnetic local time	§ 4.3
N	Number of data-model pairs	§ 3.1
N	Correct negatives in a contingency table	§ 3.2
NARMAX	Nonlinear Autoregressive Moving Average Model	§ 2.1
	With Exogenous Inputs (model)	
NARX	Nonlinear Autoregressive Model With Exogenous	§ 2.2
	Inputs (model)	
NRMSE	Normalized root mean square error	§ 2.1
O, O_i	Observed values, observed value at index i	§ 3.1
OMNI	NASA's OMNI solar wind online database	§ 3.3
OpenGGCM	Open Geospace General Circulation Model (model)	§ 2.1
PE	Prediction efficiency	§ 2.1, § 3.1
PC	Polar cap index	§ 1
POD	Probability of detection	§ 2.1, § 3.2
POFD	Probability of false detection	§ 3.2
R	Pearson correlation coefficient	§ 2.1
RAM-SCB	Ring Current-Atmosphere Interactions Model with	§ 2.1, § 4.3
	Self-Consistent Magnetic Field (model)	
RCM	Rice Convection Model (model)	§ 2.1
RMSE	Root mean square error	§ 3.1
ROC	Receiver operating characteristic (curve), also relative	§ 3.2
	operating characteristic, receiver-operator characteristic	
SS	Skill score	§ 2.2
SWMF	Space Weather Modeling Framework (model)	§ 2.1

Acronym	Definition	Section of 1st Use/Def.
SYM-H	Symmetric H index	§ 1
$\sigma_{\rm O}, \sigma_{\rm M}, \sigma_{\rm X}$	Standard deviation of observations, model, or other value	§ 3.1
UPOS	University Partnering for Operational Support	§ 4, § 4.2
VS	Volland-Stern (model)	§ 4.3
WINDMI	Solar Wind INteraction with the Magnetosphere and Ionosphere (model)	§ 4, § 4.1

Table S1. A list of all acronyms used in the paper, along with the location of their first usage and detailed definition.