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ABSTRACT

Aim: The effects of past climatic shifts remain enigmatic for the Amazon region, especially for
islands of'savanna within the tiogl forest known as “Amazonian savannas” (AS). These
disjunct savanna areas share many plant and animal species with the Cerrado biome in central
Brazil (thes€€)yfuelling debate over historical connections. We evatyateghesized corridors
between thes€€ and the AS, and specifically investigate whether a history of isolation versus

recent connections are supported by genetic tests.
Location: Cerrado and Amazon biomes
Taxon: Two woedy plant specie®yrsonimacoccolobifoliaandB. crassifolia(Malpighiaceae)

Methods: Analyses of genomic data (SNPs from more than 4,500 loci) in 28 populations, as
well as chloroplast DNA (cpDNA), were used to test for parallel geographic structuring between
the CC and AS- an expected structure if putative corridors provided regional connections
betweenudifferent areas of the CC and AS, and divergence times between the CC and AS were
estimatedusing @ composite-likelihood method based on the site frequency spectrum.

Results: Genomic data, in contrast with cpDNA, generally show strong;ardant genetic
structurebetween the CC and AS in both species, rather than regional grouping of CC with AS

populations. In‘addition, divergenbetween the CC and AS predates the last glacial maximum.

Main conclusions. Our results suggest the AS haveegned relatively isolated from the CC
even though'the strong structure of genomic variation is not shared by cpDNA. Weatqiast
evidence of putative corridors between the CC and AS based solely on cpDNA should be
interpreted cautiously since the lack of structure may reflect limited genetic resolution rather
than gene flowsrAs such, the uniqueness of AS may be more pronounced than previously
thought, highlighting the importance of protecting these highly threatened areas.

Keywords. Amazon,Byrsonima Cerradogorridor,Malpighiaceae, phylogeograpHAD-seq,

relict, savanna
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INTRODUCTION

Climate change hasduced historical shifts itandscapes, including the fragmentation of
once widespread biomaso relatively isolate¢patchesThe persistence ofuch populations and
the evolutionary dynamics shaping their current genetic struatacommonly considered in
studies of-thesnerthern hemisphésbowing the glacial retreat of the Pleistocghwitt, 2004;
Knowles& Massatti, 2017Pielou, 1992)However, the impact of past climatic shigsot
unique to these areabhe effects of climatic extremes are worldwide, with documented shifts of
biomes leaving behind relict populations (e.g., Bonatelli et al.,;2@iglore et al., 2013
Ornelas, Ruiz-Sanchez, & Sosa, 20H)wever, tropical regions remain critically understudied
relative to their northern counterpart$ie evolutionary history of margopicalbiomesis also
enigmatic becausaf particularlysparsegpalynological or fossil evidence (e.garamillo et al.,

2010) anddimited or inconsistent support for a ranfgdifferenthypotheses regarding the
magnitude of-climate-induced distributional shifts.

Suchuncertainty is exemplified by debates over the evolutionary history atritralc
Cerrado (CCand Amazonian savannas (AS) of BrdEilg. 1) TheCCis a hyper-diverse, yet
relatively Understudiedavanndiomethatcovers over 2 million ki Many plant and animal
taxa(including.over 70 woody speciegdepresent irthe CC and ASwith some AS displaying
higher floristic similarity tdocations withinthe CC than togeographically proximat&S
(Ratter Bridgewater, & Ribeirp2003), suggesting past connections betweeg@and AS
(Prance ,1996; Silva, 1995; Silva & Bates, 2002ather than independent ledgstance dispersal
events (see Penningtdrewis, & Rattey 2006). However, different hypotheses narrate how the
retraction ‘of the Cerrado from its former maximum extent might bagerred, which include
past connections that is, corridors- between the Cerrado and areas where AS persist today.
Where such carridors might have existed, and which geographic areas they might have
connected arstill debated. For example, three different corridors between the CC and AS have
been preposed coastal corridora central Amazonian corridor and an Andes corriditaffer,
1967;1974; Webb, 1991 Depending on the study, support for hypothesized corridors differ, as
does the purported timing of past connections between the CC and AS (e.g., Bueno et al., 2017;
QuijadaMascarefias et al., 2007; Savit & Bates, 2015; VaRmmirez, Maran, & Fritz, 2010;
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Werneck, Nogueira, Colli, Sites, & Costa, 2012). That is, the uncertainty over thegeogra
location of corridors is paralleled by debate over when such connections might hawvedcc

(e.g., diring the Miocene anBliocene Pascual & Jaureguizar, 199rsus théleistoceng

Haffer, 1969; Prance, 1982; van der Hammen, 1991), including whether such connections might

have been forged during theer climateof the las glacial maximum, LGMespecially given
the lack. of suppoffor suchlate Pleistocenexpansion based on palynological evidence
(Colinvaux;lrion, Rasanen, Bush, & de Mello, 2001; Kastner & Goni, 2003; Mayle, Burn,
Power, & Urrego, 2009).

Here we address the extent to which the AS khiabsed in isolation from the CC by
guantifying populatiomgenetic structure of two widely distributed tree species that are common
in both the"CCand AS Byrsonima coccolobifoli&unth andByrsonima crassifoligl.) Kunth
(Ratter etal’;"20035pecifically,we test the degree to whicerrado populations are genetically
distinct fram the ASas opposed to exhibiting parallel geographic structuring of genetic variation
within the CC and among AS, as expected if multiple corridors provided regional tonsec
between different areas of the CC and different subsets.ofM&Sonducted this tests using
genomicrdata‘(ire., more than 7,000 and 4,500 loci sequenced in 86 and 68 indiviBuals of
coccolobifoliaandB. crassifolig respectively), as well as assays of the geographic structure of
chloroplast DNA (cpDNA) across an even broader sampling of populations. In addition to the
individualhistories, we consider the degree to which the taxa show concpattants of
genetic variation. As ecologicalfimilar,dominant and co-distributed taxa, concordance would
lend suppert to.commadiactors struturing thehistory of constituent taxan this diverse biome
(Avise, 2004);therebypverridingstochastic processes associated with the biomes dynamic
history (Behling& Hooghiemstra, 2001; Ledru, 2002; but Bessatti & Knowles2014; 2016).
Lastly, we estimate divergence times between the CC and AS to detbownineng the AS may

have been evolving independently of the CC.
MATERIAL AND METHODS

Study species
ByrsonimaRich. Ex Kunth is a common genuwsgith most of its diversity represented by

SouthAmerican savanna taxemany of whichco-occur @nderson, Anderson & Davis, 2006;
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84  Ratter et al 2003).Byrsonima coccolobifoliandB. crassifoliaare the most common species
85 from the genus in the Cerrado and in the Amazonian savéRater et al.2003) with the

86 range ofB. crassifoliaextendng into thesavanna woodlands of Central America and Mexico
87 (Anderson, 1981)is fleshy fruits are birdlispersed (Anderson, 1983) and flowers are

88  pollinated by oileollecting bees, especialentrisspecies (Vinson, Williams, Frankie &

89  Shrum, 1997; Benezar & Pessoni, 2006).

90 Sampling and DNA extraction

91 Population sampling d8. coccolobifoliaandB. crassifoliacoveredboth species’ ranges
92 across the CC and AS (Fig.fbr details see Table S1.Appendix S1 in Supporting

93 Information)andwasinformed byoccurrencelatafrom NeoTropTre&Oliveira-Filho, 2017)

94  and theNCT - Virtual Herbarium of Flora and Fungi (http://inct.splink.org.br/indéxtotal of

95 158 individualsacross 16 populationsBofcoccolobifoliaand 15 populations @&. crassifolia
96 were sequenced using RADseq (described below; see also Table 1 anjdIRigddition,
97 cpDNA was sequenced in a larget of populations (i.e., 46 populations and 218 individuals;
98 for detailed sampling information see Appen8®. Voucher specimens of all sampled
99  populations'were deposited in the Herbarium of Departamento de Botéanica, Universidade
100 Federalde Minas Gerais (BHCB) and the Herbarium of Universidade Estadual do Oeste do
101  Parana (UNOP).
102 DNAwas extractedising aCTAB protocol(Novaes, Rodrigues, & Lovato, 200@pm
103  silica-gel driedleaves that werstored at20°Cuntil DNA extraction. DNA quality was
104  evaluatedvith Nanodrop® (Thermo Scientific, Walthham, USA) and quantified with Qubit®

105  (Thermo Scientific).

106  Genomic dataset

107 Two genomic libraries were preparguhe for each specipfllowing the doubledigest
108  restriction siteassociated DNA sequencing (ddRADseq) protocol of Peterson, Weber, Kay,
109  Fisher, &'Hoekstrg2012) Briefly, genomic DNA was digested with the restriction enzymes
110 EcdRl andMsd, ligated to adaptors with unique barcodes, pooled andssieetedising Pippin
111 Prep (Sage Science, Beverly, USAhdsequencedn an Illumina HiSeq2500 to generate
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single-end 50bp reads at The Centre for Applied Genomics, Toronto, Ganatdaol details
given in Appendix S3).

Genomic datdor each species was processed separately using the pipsiicks 1.35
(Catchen, Hohenlohe, Bassham, Amores, & Cresko, 28E2)ds were demultiplexed and
filtered using the programROCESS RADTAGS, with sequences from each individual assembled
de novan USTACKS to identify putative logiand acatalog of consensus loci built@sTACKS
Individual genotypes were identified wiisTACKS(for details of raw data processisge
AppendixS3). Individuals were grouped according to their sampling localiti@®RrULATIONS
(Stacks pipeline) and biallelic loci from a minimum dfvo populations were used in
population genetic analysis (described below). We chose this parameter to maximize the number
of loci retained (i.e for any given minimum of missing data, there is a drop out of loci as the
number ofindividuals increases; Huang & Knowles, 20A&)ustom script (available on
https://github.com/KnowlesLalf;homaz, Malabarba, & Knowles, 20lwas usedn R 3.2.2(R
Core Team, 2017) to exclude loci with high theta values (located within the upper 95%egjuantil
and SNPs fram the two last nucleotides (Fig. S1.1 in Appendix S1) to guard against sequencing
and assembly“errarfollowing this step, the softwareink 1.07 (Purcell et al., 200Was used
to identify SNPs with a maximum of 20% of missing data and with a minimum stadk ukapt
individual (m) offive for inclusion in the finatlataset.

Processed genomic data resulted in 28,487 SN fayccolobifoliaand 14,855 SNPs
for B. crassifolig and a total of 7,115 and 4,543 loci with one biallelic SNP per locus in each
species, respectivelhereafter we refer to this genetic variation sampled across the genome as
“genomic’svariationor structure An average of 81% of reads per individual were retained, with
a mean-coverage depth per locus of 23.6 + 8.8x after processing and asgsmchlys
considered adequate for population genomicseénte (see Buerkle & Gompert 28 for
details) These loci were identified from the 226 million reads for the 183 individuals rsesglie
on two llluminasdanes (average of 1,236,269.5 + 684,965.7 reads per individual; 29 individuals
were excluded due to large amounts of missing d&tadetails see Table S1i2 Appendix
S)).

Characterizations of genomic variation and structure
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Genetic sructure was investigated using two different strategies: principal components
analysis (PCA), which does not require any assumptions about the underlying genetic model
(Jombart, Pontier, & Dufour, 20099nd Bayesian clustering, which applies a coalescent model
for inferences about genetic structure. The packages “adegene(Jo@bart, 2008Jombart &
Ahmed, 2011) and “ade4” v.1.7-2 (Dray & Dufour, 2007) were used to perform a PRECA in
missingdata were replaced by the mean frequency of the most frequent allele. The robustness of
PCA results was evaluated using datasets with different levels of missing data (5 and 20%; see
Huang & Knowles, 2016) and with an additional minimum stack depth per individual of 10.
Because these results were qualitatively similar (Fig. ®83Abpendix SJ3, the results are not
discussed furtheBayesian clustering was performed with the softvearCTURE2.3.4
(Pritchard;"Stephens, & Donnelly, 200@)th only one SNP per locus. These analyses included
admixture"among populations and a correlation among allele frequencies with 1 to i® genet
clusters(K) tested. Ten independent runs were performed for aactiue, with 100,000 burn-in
and 300,000 MEMC iterations (the number of burand MCMC iteration were increased when
necessary.to reach convergence). The most probable number of cluster was iddtitified
STRUCTUREHARVESTER (Earl & Vonholdt, 2012), and the posterior probability of individual
assignment tereach cluster was permuted across different runs and visually disfitayed
CLumPAK (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 281&5grarchical
analysis with subsets of populations from each inferred genetic cluster was tsst for
additional structure within the initial clusters identifieddnrUCTURE(e.g.Massatti & Knowles,
2014; Papadopoulou & Knowles, 2016)ierarchical analyses were performed with the same
parameterssettings described above, Wivalues ranging from 1 to the maximum number of
populationstinreackequentiabnalysis. Note that analyses of genetic structuie in
coccolobifoliasuggestdthe presence of a cryptic taxon (i.e., PCA analysis revealed that the
individuals were quite dergent, and distinct, from all the other populations; see Fig. 2). Because
inclusion of these populations (specifically, cOAGN, coNAT and coFOR populations) would
confoundwcomparisons of CC to AS (e.g., compare PCA with and without these individuals; Fig.
2), the populations were removed and are not includdteigeographic structuresults

Tests of the association between geography anetigstructure were performed using

two approachem each speciessolationby-distance (IBD) wasested byevaluating whether
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171  there was a significant correlation between geographic distance and genetic distahte (

172 Fsy, Slatkin, 1995) based on 100,000 permutations with the package “vegan” &3-1 in

173  (Oksanen et al., 2017). Additionally,Procrustes analysis, which retains the relative longitudinal
174  and latitudinal position of populations test for arassociatiorbetween genetic variation and

175 geography was used (for additional details see AppendpwiB the significance of the

176  associationte,.(Wang, Zdlliner, & Rosenberg, 201&jaluatedy 10,000 permutations (package
177  “vegan”). Jhe.robustness of the association between genes and geography was assessed using a
178  sequential population drop out proced(see Knowles and Massatti 201Beographic

179  structuring of genetic variatiomas also assessed watditional Procrustes analyses conducted
180 onthe CCandAS separately

181 Lastly;,levels of genetic diversity were characterized for each populatiupthe

182  dataset withrall SNPs (i.e., not the dataset with only a single SNP per locug)iridhede

183  estimation of standard population genetics statistics such as nucleotidéyd{#¢rexpected

184  heterozygosityHlexp), observed heterozygositi ¢ss), and Wright'sF-statistics Fis and

185  pairwiseFsy), which were calculated using thepuLATIONSModule from the $ACKsS pipeline

186  (Catcheret-aly2013)

187  Estimatesof.diver gence times

188 Divergence timesvere estimatetietween the CC and AS using a composite-likelihood
189  method basedson the site frequency spectrum (SFS) and implemenieaSIMEOALZ

190  (Excoffierf Dupanloup, Huert&anchez, Sousa, & Foll, 2013; Excoffier & Foll, 2011). To

191  improve the aagracy of parameter estimates from the SFS (and following the recommendations
192  of the program; see Excoffier & Foll, 2011), we fixed the effective population size 6Ghe

193  which was.calculated directly from the empirical data, whereas the other parameters were

194  estimated’(i;ethe population size of A®as, the ancestral population si2éync, and the

195 divergencetimeTpy). Specifically, the population size of CC wasceddited from the

196  nucleotide"diversityz, of fixed and variable sites using a nuclear genomic mutation rate of 7x10
197 ? subs/site/generatidiDssowski et al., 2010Y his mutation rate was estimated based on

198  spontaneous mutations Afabidopsis thalianaa herbaceous annual plant, and therefore

199 divergence times estimated here will tend to be relatively more recent than expected if mutation
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rates inB. coccolobifolisandB. crassifoliaare lower, as suggested for other woody plants
(Smith & Donoghue, 2008; Yang et al., 2015).

Point estimatefor each parameter were obtained from the run with the highest maximum
likelihood from 40 RASTSIMCOALZ2 runs with 100,000 to 250,000 simulations per run, and 10 to
40 expectation-conditional maximization (ECM) cycles based upon a stoppingordaéf.001
as a minimum, relative difference between two iterations. Confidence intervals were calculated
for each parameter from 100 parametric bootstrap replicates of simulated SFS under a model
based on the point estimat&nce here is nditeratureabout generatiotime for those species,
divergence time estimates were converted from generations to years assuming a generation time
of threeyears, which was observed by a domestication programttelsgeof first fruiting in
natural populationdNascimento W. M. O & Carvalho J. E. Bmbrapa Amazonia Oriental,
personal comm, )although we recognize time estimates may be considerably ofparafation
times of 10-15 years fdCerrado trees were appliéde Lima, LimaRibeiro, Tinoco, Terribile,

& Collevatti, 2014; Collevatti Terribile, Rabelo, & LimeRibeiro,2015).

Analyses were run with 15 individuals selected from each of the sampled populadibns t
had thersmallest amount of missing data (see Table S3.1 in AppendSirgeB.
coccolobifoliadisplayed some admixture between the CC and AS, we estimated divergence
times withand without the populations that displayed admixture (i.e., populatic@AA,
coCHG and coVHA). We used a python script to calculate the folded joint SE® dxashe vcf
file from POPULATIONS (script is available on https://github.com/KnowlesLBBpadopoulou &
Knowles, 2015)Only loci with a minimum coverage of 10 that were present in all selected
individualsrwere used to calculate the SFS. Divergence times were estimated excluding
monomerphiessites (i.e., using tfremoveZeroSFS’option in FASTSIMCOAL2) and assuming no
migration between the CC and AS (this assumption is corroborated by other anageses -
below), note that any violation of this assumption would result in underestimated divergence
times (i.e., thissassumption is conservative with respect to evaluating whether the ASdas had
relativelysshorhistory of isolation from the CC).

Chloroplast DNA data and analysis
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ThetrnS4rnG (Hamilton, 1999) andrnH-trnK (Demesure, Sodzi, & Petit, 1995) regions
of chloroplast DNA were sequenced following protocols described in Redémeéra et al.
(2017) on the ABI 3730XL DNA Analyzer (ThermoFisher Scientific, Walthan, USA). A tdta
126 sequences &. coccolobifolialincluding 49 sequares from Resendgloreira et al. 2017)
and 116 sequencesBf crassifolia with 1 to 6 individuals per population (Table S2.1 in
Appendix S2)were analyzedSequences were aligned using the softwaisCLE implemented
in MEGA 5.2 (Tamura et al., 2011) and all polymorphisms confirmed by visualct@peWe
excluded polymorphisms in microsatellites, which are prone to homoplasy, and indels and
inversions were recoded as one mutational step. Haplotypes were identifiedSP 510
(Librado & Rozas, 20099rd ther distribution plotted geographically to highlight haplotype
diversity across the range of each species, as well as the distribution of widespread versus
localized haplotypes. Additional analyses were performed with cpDNA data to calculate

diversity indicesand to evaluate population structure (see AppenglifoSdetails).
RESULTS

Measures of genomic diversity were generally similar across populations in bagsspe
(Table 1), whereas cpDNA diversity varied somewhat between taxa and among populati
(Tade S2.1 in Appendix S2), including the fixatioha single cpDNA haplotyp® some
populations (Fig. 3), which contrasts with genomic diversity estinfagesTable 1)Populations
with fixed cpBNA were not disproportionately represented by AS populations (i.e., 18ost A
populations,were polymorphic in cpDNA), despite their relatively small sidegaographic
fragmentation.

In"both species the CC populations were genetically differentiated from the AS
populations. $RUCTURE analyses (Fig. 4) identifieseparate ancess for the CC and th&S
(with the exception of coHTA iB. coccolobifolid, which was corroborated by pairwiEer-
values, whichwere generallyigher between populations from the CC and AS than among
populations,within the respective regions (Tables S3.2 and S3.3 in Appendix S3). Likewise,
Procrustes analyses showed genetically distinct clusters separating the CC and AS regions,
except for the coHTA iB. coccolobifolia which clustered with individuals from the CC (Fig.

4a), with a significant association between genes and geogitaph.770,P < 0.0001 foB.
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257  coccolobifoliaandty = 0.795,P < 0.0001 foiB. crassifolig. Sequential population drop-out

258 analysis showed the results from the Procrustes analyses are robust (i.e. enoogialgition had
259 adisproportionate effect on the strength of the association between genes anchgedglde

260 S3.4 in Appendix S3). Little admixture between the CC and AS regions were detected in

261  STRUCTURE analyses, with only one AS population of egobcses A-coHTA in B.

262  coccolabifoliaand AcrSVA in B. crassifolig showing any appreciable sign of admixture when
263  all individuals.were analysed (Fig. 4). Significant IBD was also detected in a correlation analysis
264  betweergenetic differentiatiofmeasured b¥st) and geographic distances among populations
265 in both species (= 0.64 and = 0.61,P < 0.001, inB. coccolobifoliaandB. crassifolia

266  respectively).

267 Within'the CC and AS regions, both species showed significant geographic structure
268  Within theCCithis local substructure was evident in both the hierarcBiealcTUREanalysis

269 (Fig. 5), and the separate Procrustes analyses (Fig. 6¢ and 6d), which showed thicee gene
270  clusters in both,species. Note thatBorcoccolobifoliaone of the groups is based on only one
271  population because this is the area where the other three sampled populationt dygleag to
272  a previausly'unrecognized species (see FigS@paratemalyses of the AS populatioaso

273 detected substructureith three genetic clustens STRUCTURE analysis (Fig. 5) anthe

274  Procrustes analyses (Fig. 6a and 6b). With the primary axes of genetic variatidgherom

275  Principle €omponents Analyssesparating the CC and AS regions in both species (Fig. 4; as
276 well as hierechical structure detected in the sequer8i@ucTURE analyses; Fig. 5), the

277  substructure observed within the AS and within the CC clearly accumulatedaftsaparation

278  of AS populations from the CC.

279 Comparing geographic structuring of genomic data with cpDNA, the genomic variation
280 in B. coccolobifoliawas generally congruent with the cpDNA (Fig. S2.1 and Tables S2&in

281  Appendix S2), evewith broader sampling of thepDNA datasefFig. 1). In contrast, cpDNA

282  results forB. crassifoliadifferedfrom the genomic results and showed a lack of regional or local
283  geographie structure (Figs. 3 and S2.1, and Tables S2.3 and S2.5 in Appgndix S2

284 Divergencedime estimatedetween the CC and A8erel119,379 and 290,541 yeds

285  B. coccolobifolisandB. crassifoliarespectively. These resultkarly do not support a LGM

286  divergenceevenconsideringhatthe shortest possibgeneration timef three yearsvas used
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We also note the confidence intervals surrounding the parameter estintate fat overlap

with the LGM. This conclusion is also robust to inclusion of admixed populatidds of
coccolobifolia(Table 2). Even with considering potential errors in the mutation rate, the
mutation rate would have to be six to twetiraes faster than the oagplied here to
accommodate a divergence time consistent with the LGM. However, as noted in the methods,
mutation rates.in woody plants are thought to be slowet faster than the one applied here,

so a LGM divergence is extremely unlikely
DISCUSSION

The.genomic distinctiveness of the CC populations from the disjunct AS and lack of any
regional structure that group populations from the two regions indicate the Amazonia
populations have evolved independently (for the most part) from the Cerradahi\& $si
isolation and notecentconnectiongeithervia longdistance dispersalr expansion/retraction
via corridorg.that dominates in this tropical biome; substantial admixture was limited to a single
populationithatborders the Cerrado (see also Buzatti, Lemos, Bueno & Lovat®r2017
localizedstudy of anotheplant species from this focal ajedhe extent to whit these results
are generalizable to other taxa from the Cerrado and Amazonian savannas are discussed below,
as is what our results suggest about the evolutionary dynamics of relictual moysulatiropical
systems. In both discussions we advocate faoee nuanced approach to tests of the relative
isolation versus connections of AS populations. In addition, with reference to our ows, result
we highlight.how some refined hypotheses might provide more insight about why one process
might predominate over the other in particular taxa or geographic regions. Lastly hgiven t
general lack of phylogeographic steslof the AS we reflect ortherelevanceof our results on
the processes contributihg savannapecies diversity, as well asftdure conservation efforts.

Past conmnections ver susisolation of Amazonian savannas

To explain the similarity between CC and AS, three regional connections or corridor
wereproposed: the coastal, the central Amazonian, and the Andean corridor (Haffer, 1967, 1974;
Silva & Bates, 2002; Webb, 199T)hese corridors are hypothesized to have connected the CC
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315 and AS duringvaves of Pleistocene savanna exparssietaffer, 1969; Silva & Bates, 2002),

316  possibly as recent as the Holocene @é€reitas et al., 2001). However, our genomic data did

317 not provide strongupport for the existence of such corridors in either species. Instead, analyses
318 suggest ahistory of restricted gene flow between the CC and AS (Fig. 4), with the A8&gvolvi
319 in relativelisolation from the CC over a history of divergencepredateshe LGM (Table 2).

320 This is corroborated byalynological evidence that draws into question any recent large savanna
321 expansions.that might have served as connections between the CC and AS (CdDiivaun®,

322 Moreno,Miller,"& Bush, 1996; Colinvaux et al., 2001; Kastner & Goni, 2003; Mayle et al.,

323  2009). The only exception is the admixture detected in one southwestern Amazon population
324  (see Fig. 4),/which is a region where joint analysdsNi¥ls and cpDNA data ian unrelated

325 plant also'found evidence of a connection to the CC (see Buzatti et al., 2017; note this study
326 focused only"en this singkgteso it is not possible to determine if other AS populations in the

327  species remained isolated from the CC).

328 The independent evolutionary history of CC and AS has important implications for

329 questions.beyond those focused on genetic structure per se. AlBynsginimaspecies are

330 suggestedtordisplay effective ledgstance dispersal (Willis et al. 201#)ere is no clear

331 evidence of recergene flow inB. coccolobifoliaandB. crassifolia indicatingthatlong distance

332 dispersal is not commoiThegeneticisolation of CCfrom AS (Fig. 5, in addition to the

333 compositignal similarities in their constitugsiant communitieswith over 70 woodyspeciesn

334 common Ratter et al.2003) suggest more ancient common history, rather than the

335 maintenance by corridors per se. Moreover, it implies that the differences in species composition
336  between the"AS and CC migiefflect the cumulative loss of species in the AS (community

337 relaxation="Connor & McCoy, 1979)ather than differences in the maintenance of diversity

338 through successful/unsuccessful utilization of corridadgitional circumstantial evidenad

339 localized extinctionsests in the observation that few Cerrado taxa are found across all AS

340 populationgRatter et al., 2003 Alternatively, with many taxa restricted in distribution to the

341  CC, theresmight have been historical restrictions to expansion for many taxaaiitiey were

342  never part of the AS, even when Cerragachedts broadest historical distribution. Additional

343  tests will be needed to evaluate this hypathd@hese nght includetesting for evidence of

344  environmental filtering or differences in the dispersal capabilities of exclusively CC taxa
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compared with those distributed across the AS, although no significant differened in se
dispersal syndromes for species present in CC and AS has been suggested in past studies (see

Vieira, Aquino, Brito, Fernandes-Bulhdo, & Henriques, 2002).

Conflicting'support for connections of the CC and AS

Whenscomparing our results to past studies purported to support hypothesized
connections between the CC and AS, several non-mutually exclusive explanagbhacoount
for such contrasting support of the corridor hypothesis. These include: (i) difgliartbe
resolution‘ef genetic markers, (ii) relying solely upon applications of distriblitiwreological-
niche models, and (iii) differences among taxa in access to the codigotshistorical
contingencies or differences in the taxa themselves §ipeciespecific traits). Below we
consider each of these explanations in turn with reference to resultsdranalyses ds.
coccolobifeliaandB. crassifolia.

The'genetic marker applied to test a phylogeographic hypothesis can impact the
likelihoodthat a study might find support for or refute a particular hypothesis (Knowles, 2009).
In paricular, tests that rely upon genetic structaseevidence of idation (e.g., when support for
putative corriders is based on the lack of genetic differentiation between CC ardi&iss;

Savit &Bates,.2015) may be obscured by limited genetic resolution, including an insufficient
time for the sorting of ancestral polymorphism or the lack of mutation variatiatetecting
historical divisiens (Ball, Neigel, & Avise, 1990; Papadopoulou & Knowles, 2015; Thomaz et
al., 2017)/For example, sharing of chloroplast haplotypes between CC and AS populdions in
coccolobifoliaandB. crassifolia(Fig. 3) could suggest recent gene flow or connections, as might
the lack of regional cpDNA clades separating the CC and AS regions (Fig. S2.1 in Appendix
S2). However.analysis of genomic data clearly shows tb@tand AS regions are genetically
distinct in‘bothispecies (Fig. 4). In other words, if chloroplast data by itselfrig tmbe used to
refute ahypothesis of isolationt is important to test whether the data nb@yconsistent with a
history efsisolation, which can be evaluated using computer simulationkrisedes &

Maddison, 2002). Alternatively, and as we apply here, additional markers can be osmtet

the divergence history of the species (as opposed to the history of a single lo&ussles,
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2009) Here thgparameterized divergeaenodelssupport a long history of isolation between CC
and AS regionghatpredae the LGM (Table 2).

For the Cerrado, evidence for the existence of corridors connecting areas north and south
of Amazon comes primarily from distributiahdata(e.g.,Avila-Pires, 1995; Nogueira &

Rodrigues, 2006; Silva & Bates, 2002), with some support for distinct routes of movement
suggested.by a few phylogeographic studies @Bwzatti et al.2017; Quijadaviascarefias et al.,
2007; Savit.& Bates, 20150s with concerns regarding inferences based on a single locus,
inferences based on ENMs alone might &dleanisleading (as opposed to considering ENMs
jointly with molecular data; reviewed lvaradoSerrano & Knowles, 2014). Specifically,
although ENMs might be used to identify possible connections, without genetic datatit is
possible to'test whether species actually utilizegquied corridors (i.e., gene flow might not
have been"associated with the corridors inferred from ENMs for many of the different reasons
discussed abovellere we advocate that, as with the interpretation of single locus data, extreme
caution is needed. Me specifically, studies based solely on ENMs should be used to generate
hypotheses, but do not (by themselves) constitute evidence for supporting the corridors
hypothesis:

Assuming that such corridors existed, it is possible that some species just by chance,
found themselves in the right place at the right time to have access to a corridor, whereas others
did not. On the other hand, the lack of consistent support for corridors could alsb refle
deterministic_processes related to spesjgcific diffeenceqdMassatti & Knowles, 2014, 2016;
Papadopoulou& Knowles, 2016). Indeed, the organisms investigated in the phylogeographic
studies that'sampled broadly the ASlude different taxonomic groups (e.g., birds, snakes and
this study-withrplants) with distinct dispersal abilities and the distribution of some investigated
taxa are not restricted to the savannas (e.g., Savit & Bates, 20thsugh it is possible th&.
coccolobifoliaandB. crassifoliadiffer from taxa for which future genomic analyses might show
corridorsbetweerthe CC and AS regions, it is not obvious vhycoccolobifoliaandB.
crassifoliawould not have utilized corridors (if they existed). First, they are very common
species and widely distributéBig. 1), so unlike rare or patchily distributed species, they most

probably would have had access to any putative corridor. Second, these attributexkealfo
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402 less likely that any speciepecific traits would have restricted their movement (i.e., they
403  obviously can readily disperse to occupy vast areas of the Cerrado biome).

404  Scale-specific effects of climate-induced distributional shifts?

405 As possible remnants of a dynamic historical past, the tropical Amazonian savannas ar
406  similar toreliet‘populations in northern latitudes (Pielou, 1991). However, this dynamicyhistor
407  with cycles of climag-induced distributionahifts, contributes to the enigmatic nature of

408 tropical relicts,and debate over their role as drivers of divergence (e.g.uClapet al., 2013).

409 By rejecting hypothesized periods of connectivity between CC and AS through putative

410 expansions duringlaciatinterglacial period¢Prance, 1996; Silva & Bates, 2002), our study
411  raises some intriguing questions about divergence of Cerrado spémiesve make the

412  argument that connections forged during cycles of expansion, while not extensive enough to
413 support corridoers between the CC and Ay have played an important eoin divergence

414  within the CC=and within the AS. In other wordggographic scale determines whettianatic

415  oscillationspromote connection&ikewise, we note that the existence of regional structure itself
416  within both the CC and AS, suggests a limit on the level of connectiveness across upulati
417  the past (otherwise, the regional structure would have been lost, and theumtlystwould be
418  the population.level structure that was also observed; see Fig. 5).

419 What might limit the role of climatenduced distributional shifts at the larger scatbat

420 is, why weresdistributional shifts not associated with connections betweeCthrdXte AS?

421  The most/obvious answer is that the extent of savanna expansion (or conversely forest

422  contraction) may have been more limited than previous proposals. For example, snggésti
423  fairly stable forestluring the LGM, especially for the western pafrdmazon (e.g., Bush,

424  Silman, &Urrego, 2004; Cheng et al., 2013; Colinvaux, Oliveira, & Bush, 2000), offer an

425 alternativeto'Haffer's (1969) scenario of forest fragmentation during glacial periods. ioraddit
426  recent isotopic data sampled from the Amazon dry corridor (i.e., an area of current lower
427  precipitation within the Amazon, Haffer, 1969) suggests forest physiognomies durin@the

428  consistent withithe maintenance of rainfo®gang et al., 2017), and/or its replacement by dry-
429 forest habitats, instead of savanna (Bush, 2017; Pennington, Prado, & Pendry, 2000).
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Within the CC, past phylogeographic studies of plants have documented arestast-
split thatis generallyconcordant wittByrsonima(Fig. 6¢ and 6d)reviewed inLeal, Palma
Silva, & Pinheiro, 2016)L.ikewise, a regional genetic structuring of individuals sampled in
southern, central-northern and north-western portions of Cerrado have been observed in other
organisms, including frogs and lizards (Prado, Haddad, & Zamudio, 2012; Santos, Nogueira,
Giugliano, & Colli, 2014).This spatial concordance across studies highlights how these CC
communities.may be shaped by similar historical processes. Similarly, an@A& t
populations, regional divergence is clear, as is differentiation among individudhops!
(Figs. 5 and 6). However, it is not clear what accounts for the observed regionafstofi&S
populations of botiByrsonimaspeciedecause nfortunately, unlike th€C, there is extremely
limited data‘in‘terms of genetic analyses of broadly sampled AS populationet (indaare not
aware of any“other studies besides ours). We note that in other types of open habitaté.g., bi
inhabiting white sand vegetation), genetic data provides evidence of recent popuiadiosi@n
during the late Pleistoceri€apurucho et al., 2013; Matos et al., 2016), suggesting that the
connections we proposenong AS populations based on regional structuring of genetic variation
may notiberananomallt.is clear that future research will be charting new directions about the
drivers of divergence within the CC and AS as the focus shifts from one built on a history of
corridors connections, to the independent evolutionary trajectories of thed&Sa

Conservationsef:Cerrado and Amazonian savannas

Despite the high endemism and species diversity, the Casagjpidly being losfless
than 20% remains undisturbed; Strassburg et al., 2017), especially with the expansion of
agriculture, cattle ranching, and charcoal production, and conservation of the ®&raddas
received little agntion. Although rates of loss have decreased over the last several years (i.e.,
since 2010);"we are nevertheless loosing Cerrado faster than AmazonfFamresbso et al.,
2015).

Given the extent of the biome, covering 2 million*@ssessments of genetic diversity
and populationsstructure arguably could provide important guidance in conservatio ¥égrt
with relatively sparse geographic sampling, and limited genomic study, such inforrsation i

rarely considered in conserving this highly threatened biome. Analyses of broadkythst
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taxain particularlike B. coccolobifoliaandB. crassifolia could be used to devise conservation
strategies that protect not only the constituent taxa, but also preserve diversity generating
processes (sdédoritz, 2002). For example, our study revealed an unexpected cryptic species in
B. coccolabifoliafrom the central and northern areas of the &Careaeporedly of high

species richnedRatter et al., 2003). Other phylogeographic studies on Cerrado trees shggest
highest genetic diversity occurs in central areas of the Cerrado gg\gelCollevatti, Castro,

Lima, & Telles,.2012; Novaes, Ribeiro, Lemos-Filho, & Lovato, 2010; Souza, Collevatti; Lima
Ribeiro, Lemos:Filho, & Lovato, 201;7/however, many of these have limited sampling of
northern areas. Our results, as those with more extensive saf@uiteyatti, Terribile, Dinz,

& Lima-Ribeirg, 2015; Ribeiro, Lemos, Buzatti, LovatoHeuertz 2016)have revealed high
genetic diversity in north-eastern plant populations, highlighting the importance efifeas to
conservation‘efforts of the Cerrado, especially since these areas are part of an expanding
agricultural frontier.

Perhaps. most importantly, our broad sampling of plant specieslioAS identifies a
number of factors relevant to developing conservation priofirethe AS First, we show that
these populations display levels of genetic diversity similar to CC populatiordd) ighi
somewhat reassuring about their general health from a genetic prospectitteef.do not show
disproportionately depressed levels of diversity; see Fig. 3 and Tablewgver their apparent
genetic iselation does place them at substantial risk (Fig. 4). Moreoverptiagdations
arguably should be considered as unique Cerrado environments in conservation efforts of the
biome, given theirelativelylongisolatedhistory from the CC (see Table 2). Even though most
AS display'much less species diversity than the CC (buRater et al., 2008r exceptions),
someASreontain more than 250 plant taxa (Miranda, Absy, & Rebelo, 2003; Sanaiotti, 1D97)
addition to vulnerable and endemic species of birds, reptiles, amphibians and Hans4B
Campos, Pinto, & Fearnside, 2007; Carvalho, 1997; Franca, Mesquita, & Colli, 2006; Rocha &
Miranda, 2014)it is also important to note that the number of species in the AS most likely is
larger considering that these areas are highly understu@izggdalho & Mustin, 2017)Lastly,

AS areunder particularly high anthropogenic disturbabeeause they armaisleadingly

considered as natural pastures in an environment largely dominated byNurasstia et al.,
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2003), making immediate attention as conservation aniimperativgCarvalho & Mustin,
2017).

Conclusions

Ourresults show independent evolution of the CC and AS populations of both broadly
distributed-tree species studied hadedqoccolobifoliaandB. crassifolig), casting doubt on the
importance of corridors in structuring Cerrado plant communities. In thextafte
understanding,the evolutionary historyA$ populations in particular, it is possible that climatic
change in‘the tropics, and/or diféerces in the traits of the species themselves, might make
certain cofridors more or less accessible during different geologic periods &ates, 2002;
Wister et al., 2005), but careful consideration of this hypothesis will require exgahéi
dataset to other broadly distributed taxa. Specifically, our genomic data sumgtstvelylong
history of iselation between the CC and AS regions that predates the LGM, as poguéation
structuring'ef-genetic variation within regions in both spedibs.contrast between genetic
structure of genomic versus chloroplast dataalets highlightdhe need for cautious
interpretation of what constitutes evidence for the corridor hypothesis. Ourgansliggest that
methodologysnot biology, may contribute to some of the differences in support for the corridor
hypothesis.reported across studies. Lastly, as a biodiversity hotspot, thesédassuitisect
implications for diversification in the Cerrado, as well as its conservasgpecially given
extensiveandsengoing habitat destruction (Carvalho & Mustin, 2017; Mittermeier2QG4).
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TABLES

Table 1. Number of individuals sampledl, and estimates of genetic diversity per population of

Byrsonima coccolobifolieand B. crassifolia(see Figure 1 for distributional map of sampled

populations). Amazonian savanna populations are identified with pneceding the population

label. Estimates of genetic diversity per population are based on all polymorpléotitiec

positions _of filterd genomic data Hogs oObserved heterozygosityHexp, expected

heterozygosity;z, nucleotide diversity.

Pop N Hoes Hexp T
Byrsonimad‘coccolobifolia

A-coBON 4  0.053 0.049 0.058
A-coBVT 5 0.056 0.052 0.059
A-coCNE,__ 6 0.059 0.054 0.059
A-cOMCPR=s=6  0.059 0.056 0.063
A-coSAN® %6 0.057 0.053 0.060
A-coHTA.._ 5 0.063 0.060 0.067
coCAl 5 0.065 0.064 0.071
CoOVHA 6 0.064 0.065 0.072
coCHG 5 0.064 0.060 0.068
coCGD 6 0.062 0.062 0.068
coJPO 6 0.067 0.068 0.075
coUDA 6 0.063 0.064 0.070
cOPRA 5 0.068 0.062 0.070
Byrsonima. crassifolia

A-crATA 5 0.060 0.055 0.063
A-crPAC_"1  0.057 0.029 0.057
A-crCNE= .5 0.065 0.067 0.076
A-crMCP 6  0.067 0.070 0.078
A-crSAN 6 0.065 0.068 0.075
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A-CrSVA
crPRI
crAGN

6 0.067 0.071 0.079
2 0.065 0.051 0.070
5 0.055 0.055 0.062
CrSLA 6 0.056 0.055 0.061
crMAG 6 0.059 0.061 0.068
crFOR 5 0.064 0.064 0.072
crCHG 5 0.058 0.059 0.067
crCVE 2 0.059 0.044 0.062
crPPB 2 0.056 0.040 0.060
criTl 6 0.057 0.059 0.066
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Table 2. Divergence time estimatéassuming a minimum @threeyear generation time; see methods for dgtaitsl other

demographic parameters for ed&yrsonimaspecies based on the model of divergence between the Amazonian savannas (AS) and
central Cerrado (CC) regions usingsFsIMCOAL2. Specifically, we show results for divergence tiffigy,, ancestral effective
population=sizeNanc, effective population sizior AS, Nas, and number of loci used to calculate the folded joint site frequency
spectrum (SFS). Confidence intervals based on 100 parametric boostraps arm gfaremtheses. Note that effective popolasize

of the CC-N¢c) was calculated directlydm the empirical data (i.e., was a fixed parameter in the model) to improve the accuracy of

the other.parameters estimated from the SFS (following the recommendatitmes frogram; see Excoffier & Foll, 2011).

SpECiES Loci Tow (years) Nanc Ncc Nas
Byrsonima.coccolobifolia 109,611 100,400 343,875

2285 978,571
(all populations) (87,432-143,886) (60,069-176,369) (263,662-502,760)

Byrsonima,coccolobifolia

(excliding-admixed 119,379 56,282 210,635
1945 992,857
populationsA-coHTA, (96,195-169,311) (31,697-102,681) (162,674-322,062)

coCHG and coVHA)
290,541 117,638 399,628

Byrsonima. crassifolia 1032 1,000,000
(240,696-355,920) (80,184-166,741) (331,352-498,123)
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Figure 1. Geographic location of sampl&d coccolobifoliaandB. crassifoliapopulations (white
and black symbols, respectively) across the Cerrggit ¢rey) and Amazonian savannas (dark

grey). Populations with both genomic and cpDNA sequences are marked by squares, whereas

those with"enly cpDNA are marked by circles.
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Figure2«Principle Components Analysis (PCA)Byrsonima coccolobifoliancluding (3 and excludinglf) populations that
revealed Cryptic genetic diversitydicative of potentially different species (i.e., the three divergenpleahpopulations:
coAGN, coNAT and coFOR). The amount of variation explained by each axis is given ithpaesmand colors indicate

population identity.
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Figure3. Geographic distribution of cpDNA haplotypes (sampling location is marked by sachl ddt)of Byrsonima
coccolobifolia(a) andB. crassifolia(b), with each distinct haplotype represented by a different color and the number of
individuals sampled in each population indicated by the size of the circles. Sheaedgproximate the distribution of the

Cerrado (hoth the central Cerrado and Amazonian savannas).
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Figure 4. Population structure dyrsonima coccolobifoli§a) andB. crassifolia(b). Barcharts
show the most probable number of grougsdccording tdSTRUCTUREresults for each species
as different colors along with Procrustes analysis of genetic variation. Each individual in the
barchart'is demarcated by a white dashed line, and the posterior probability ofddadbatis
ancestry is depicted as the proportion of each color perddily whereas populations are
labelled.and separated by black lines. In each map, the position of an individual ina@genom
space (shown.as circles) relative to sampled locality (show as triangles) is indicated (with
individuds'color.coded by populationyhe lines connecting individuals (circles) to localities
(triangles) indicate the deviation of an individual genetically from expeatwbased on their
geographic location (i.e., departures from isolation by distance). Amazonian spepuetions
are identified'with a\. Photographs dB. coccolobifoliaandB. crassifoliawere provided by
Mauricio Mercadante and Daniel Nickrent (source: http://www.phytoimagesisju.e

respectively.
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Amazonian savannas Central Cerrado

Figure ierarchical population structure Bffrsonima coccolobifoliga) andB. crassifolia(b) based on sequential, and

separ RUCTUREanalyses of Amazonian savanna and central Cerrado datasets (i.e., data subsets identified from global
ana@see Fig. 4). The most probable number of grlipsdisplayed as different colours in each plot, with populations
marked-by thin black lines, and white lines demarcating sampled individuals wjthstegior probability of belonging to each
clusteBicted as the proportion of each colour in the bar. Amazonian savanna poaraitidestified with an A.

<
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Figure®6. Plots of Procrustes analyses carried out separately on regionatslatate Amazoan savanna (a and b)dan
central Cerrado populations (c andofiByrsonima coccolobifoliandB. crassifolig respectively. The lines connect individuals
(shown agircles) to sampling locatiorsiiown adriangles) indicate deviations from the expected pattern of genetic variation

based onsisolation by distance, where longer lines indicate greater departuresdemtations based on where an individual

was sampled geographically. Colors indicate population identity.
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