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We congratulate the authors on an interesting paper on an important topic. The impor-

tance for quality improvement of monitoring and profiling is great and this paper offers a

welcome and careful exploration of several aspects of this problem as well as proposing a

potentially important time dependent assessment of facility differences. We note, in par-

ticular, that the paper concentrates on the use of fixed effects methods for estimation of

time-dependent facility effects and uses the empirical null as a way to account for extra

variation in the Z-scores. These ideas also form the basis of the analysis in He et al. (2013),

which is also a key reference to this work.

1. Random Effects and Fixed Effects

Hierarchical models with random provider effects are commonly used as the basis of profiling

methods. In many instances (e.g. Normand and Shahian, 2007; Ohlssen et al., 2007; Ash et al.,

2012), it is proposed that facility effects should be estimated as the mean of the empirical

Bayes posterior distribution. We refer to this as the random effects (RE) approach. This

leads to shrinkage estimators with their advantage over maximum likelihood based on fixed

effects of achieving a smaller mean squared error overall. If, however, one examines the mean

squared error conditional on the size of the facility effect, one finds that the overall gain is

achieved through gains in the center of the distribution of facility effects, whereas the usual

fixed effects estimates are more accurate for the facilities of primary interest, namely those

with extreme effects. In addition, naive use of these models can lead to biased estimation

of regression coefficients when covariates are correlated with the facility effects. Jones and

Spiegelhalter (2011) and Kalbfleisch and Wolfe (2013) discuss these issues in some depth.

In contrast, the fixed effects (FE) approach (e.g. Wolfe et al., 1992; He and Schaubel, 2013)

gives more accurate estimates of facility effects for exceptional facilities, and yields unbiased

estimates regardless of correlations between facility effects and patient case-mix. The FE

approach, however, will tend to identify many more facilities as extreme than one might
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want since it makes no allowance for unexplained variation between facilities. In fact, both

the FE and RE analyses as commonly used entail a test of the sharp null hypothesis that

the facility effects conform to a national norm and as a consequence will tend to identify

as worse than expected, large facilities, even when their true effect is relatively small. This

tends to be a disadvantage of the approach and is one motivation for alternatives such as

the empirical null.

2. Hospital Discharges and Readmission

A primary reason for monitoring hospital readmissions of dialysis patients is to promote

coordination of care between the dialysis facility and the hospital as a patient is discharged

following a period of hospitalization (e.g. Wish, 2014). With good coordination, the facility

can aid in assuring that treatments recommended at discharge are appropriately followed

and that the patient’s dialysis treatments will not be disrupted in moving from one provider

to the other. To some degree, the rate of readmissions following a discharge can be seen as

an indicator of the success of that coordination and post-discharge care. In this view, the

reason for hospitalization is relevant and, as a consequence, one would normally condition

on patient diagnoses and other current conditions in modeling the chance of readmission.

Each time there is a hospital discharge, we begin a new experiment and assess the outcome

of that experiment given the conditions at its baseline, that is at the time of discharge. Estes

et al. argue that only covariates that are available at the beginning dialysis should be used

in assessing readmission. This view may be better justified for assessing such things as the

overall rate of hospitalization or mortality than it is for readmissions, and as noted below,

the readmission measure implicitly conditions on the fact that there is a hospital discharge

at time t.

In fact, another outcome that is monitored for dialysis facilities is the sequence of hospi-

talizations, or alternatively, the sequence of hospital discharges for patient on dialysis. This
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is naturally modeled using a counting process Nij(t), which counts the number of hospital

discharges in the interval (0, t) for the jth patient in the ith facility. Here it could be argued

that it is natural to condition primarily on covariates Xij that are measured at the beginning

of dialysis; as noted in this article, events that occur over time may be related to the quality

of care administered. A standard proportional rate model could be used for analysis as

discussed in Liu et al. (2012) and the aim is to identify facilities whose hospitalization rate

is high compared to a national norm.

The model equation (M1) in Estes et al. could be more precisely written by explicitly

conditioning on the fact that there is a hospital discharge at time t. Thus, the conditioning

event is {Xij, bij, dNij(t) = 1, Sij > t}, where Sij is the death time for the jth subject in

the ith facility, and bij is the subject-specific random effect. One could also define Yij(t) = 0

whenever dNij(t) = 0. In this framework, other covariates available at t could be incorporated

into the condition. Both the sequence of hospitalizations and readmissions are useful in

assessing dialysis facilities.

3. Choice of Time Scale

The addition of the time-dependent facility effect is potentially an important idea. Estes et

al. choose the time origin as the beginning of dialysis instead of monitoring the potential

variation in facility effects over chronological time. When changes in staffing or management

or infection control occur, they are likely to affect all patients in the facility regardless of

the time since they began dialysis, so in a way this seems the more natural time scale

for assessing variation in facility effects. It seems that it would be possible to revise the

analysis to this alternative time scale. One could also entertain models which allow both

time scales by adjusting for specific parametric functions of chronological time in the model

(M1). Exploration of these two time scales, as discussed for example in Farewell and Cox

(1979), could be a useful direction to pursue.
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In the example, the patients are all incident and followed for an extended period of time.

In most profiling applications, one is more interested in the possibility of quality problems

arising over shorter periods of time of perhaps one or two years. In addition, one would

normally want to include prevalent patients who are already at risk at the beginning of the

observation period in the analysis. Are there any difficulties with extending these methods

to this situation? The main difference would seem to be to allow for left truncation to

incorporate the prevalent patients.

4. Between-Facility Variation and the Empirical Null

A key issue in profiling is the variation in the facility effects, which are denoted by γi(t)

in this paper. Although widely used, the term facility effect is a poor one since it carries

a connotation of causality that may not be true. In many instances, the majority of the

variation in the facility effects is not due to the quality of care but rather to other factors

outside the facility’s control. For example, there may be differences among the patients

treated by different facilities that are not accounted for in the risk adjustment and that

affect outcomes; these include such things as genetic makeup or aspects of socio-economic

status or co-morbidities that can vary widely across facilities and are not well measured. Such

unexplained variation in facility effects would account for at least some of the over dispersion

of the Z-statistics, and unadjusted use of the FE or RE analysis can lead to inappropriately

high flagging rates, especially among larger providers. The empirical null provides one way

to address this issue.

Insight can be obtained by considering a linear hierarchical model with no covariates,

Yij = µ + αi + εi, where Yij is the outcome of interest, αi ∼ N(0, σ2
α) and εij ∼ N(0, σ2

w),

independently for i = 1, . . . , I and j = 1 = . . . , ni. For simplicity, assume that σα, σw

and µ = 0 are known or estimated with great accuracy as is the case when I is large.

Then the mean response in the ith facility, α̂i = Ȳi =
∑ni

j=1 Yij/ni, is the fixed effects
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estimate of αi. To account for all the variation among providers, Jones and Spiegelhalter

(2011) suggest assessing α̂i with reference to its marginal distribution N(0, σ2
α + σ2

w/ni),

including the between-provider variation. We refer to this as the fixed effects analysis with

random intercept (FERE). Essentially, this approach allows for the natural variation between

providers and does not flag a provider unless it is extreme with reference to the total variation.

This substantially reduces the tendency to flag large providers with moderate values of αi and

the bias against large providers in the FE and the RE approaches is reduced. If ni = n, for all

i = 1, . . . , I, then it can be seen that the empirical null approach would yield asymptotically

the same result as FERE, so that it also accounts for the total variation. This is similar

to arguments in Efron (2004). As Estes et al. note, the empirical null distribution depends

on the sample size and the approach can be implemented within strata in order to obtain

relatively homogeneous groups of facilities. See also Kalbfleisch and Wolfe (2013) and He et

al. (2013) for additional discussion on this point.

We make a few comments regarding the empirical null approach:

(1) In practice, we encounter various types of patient outcomes, and the FERE approach

may be difficult to implement. The empirical null approach generalizes relatively easily

as is illustrated in this paper.

(2) The empirical null approach is more robust against outliers. The existence of outliers will

result in an over-estimate of the between-facility variance in the normal case discussed

above, but will affect much less the robust estimation used in the empirical null.

(3) Stratification on sample size is not a fully satisfactory approach since the number of bins

selected is arbitrary and will affect flagging rules. A related problem is the discontinuity

of the critical line at the boundaries between the strata where, for example, two providers

near a boundary may have similar Z-scores and sample sizes, but different flagging status.

To overcome these issues, with our colleagues Lu Xia and Yanming Li, we have been
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developing smoothed estimates of the mean and variance of the Z-scores as a function

of sample size so that each provider has an individualized empirical null distribution.

(4) For profiling, both FERE and the empirical null techniques allow for all of the between-

facility variation. On the other hand, the FE and RE approaches essentially assume that

all the between-facility variation is due to quality of care and allows for no unexplained or

natural variation. Kalbfleisch et al. (2017) consider intermediate approaches that specify

some proportion of the between-facility variation as being due to the quality of care

provided.

5. Some Issues with Standardized Measures

In developing readmission measures for dialysis facilities, an important consideration is that

both hospitals and dialysis facilities play a key role in averting unnecessary readmissions.

Further, patients from a dialysis facility may be admitted to various hospitals and similarly,

hospitals may receive patients from multiple dialysis facilities. In addition, hospitals vary

in their readmission rates as documented in the Hospital Compare measure of the Centers

for Medicare and Medicaid Services (CMS) (see Horwitz et al., 2011). In order to account

for this, He et al. (2013) included hospital as a random effect and found that this resulted

in a substantial improvement in fit. It should be noted that several previous studies have

suggested an influence of multiple types of providers on treatment practices and outcomes

among ESRD patients (Hirth et al., 2009; Hirth et al., 2010; Turenne et al., 2010). Estes et

al. includes a random effect for patients, which seems particularly appropriate and important

when patients are followed over a long period of time. He et al. (2013) examine readmission

on prevalent patients over a shorter period of time where random effects for patients seemed

less important. Computational issues in fitting models with random effects for both patients

and hospitals and potentially for another providers would be of substantial interest.

Estes et al. caution that it is generally wrong to compare indirect standardized measures
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between two facilities, because each facility’s indirect standardized measure is essentially

adjusted to a different (facility-specific) covariate distribution. In effect, we can define a

standardized ratio measure with respect to any distribution of the covariates that we wish,

so that we could define the SDRR for facility i with reference to the patient population in

facility i′. This would be estimated with

ŜDRRi(t; i
′) =

∑
j∈Ni′t

g−1(γ̂i(t) + b̂i′j + ZT
i′jβ̂)∑

j∈Ni′t
g−1(γ̂M(t) + b̂i′j + ZT

i′jβ̂)
.

This quantity would be directly comparable to ŜDRRi′(t). As noted in Estes et al., the

SDRR of facility i will not change much if the covariate distribution in i′ is similar to that

in i, but this gives a more formal check. Note that one could also argue that the comparison

of the SDRR at time t to that at a different time t′ is also subject to the same change

in covariate distribution and the same cautions. An alternative approach is to adjust all

measures to the overall distribution of covariates combining across all facilities. This makes

all measures comparable and corresponds to direct standardization. The potential difficulties

with comparisons across facilities notwithstanding, we prefer indirect standardization as

giving a more meaningful measure to each facility comparing their results with the national

norm for the patients they actually treat.

Finally, we want to thank these authors for their work on this important problem and

for considering some generalizations of standard profiling approaches that are potentially

important in applications.
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