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Circulating tumor cells (CTCs) shed 
from tumors can be detected in the blood 
stream[2] and have the potential to serve 
as a liquid biopsy. This approach offers 
the potential for repeated, non-invasive 
measurements and may more widely 
sample the overall disease state. In addi-
tion to giving insight into the burden of 
disease, these cells can relate the overall 
molecular state and risk of progression 
through the analysis of gene expression 
and phenotype of the traveling cells.[3] 
However, key obstacles to capturing CTCs 
include their rarity among the millions of 
surrounding white blood cells (WBCs) and 
red blood cells.[4] To best interrogate CTCs, 
they must be detected with high yield and 
sufficient purity.

This problem has been addressed 
with a host of isolation technologies.[5] Notably, the first FDA-
approved CTC isolation technology, CellSearch, has been used 
to establish survival differences based on CTC enumeration.[6] 
This macroscale technology uses a magnetic ferrofluid conju-
gated with an antibody against the epithelial cellular adhesion 
molecule (EpCAM) to capture EpCAM-expressing cells from 
7.5 mL whole blood.[7] For increased sensitivity and flexibility of 
downstream analysis, microfluidics and nanomaterials[8] have 
been developed to isolate and study CTCs.[9–12]

Prior studies have used cell enrichment technologies cou-
pled with reverse-transcription polymerase chain reaction 
(RT-qPCR) to study prostate CTCs and their RNA. For example, 

Rates of progression and treatment response in advanced prostate cancer are 
highly variable, necessitating non-invasive methods to assess the molecular 
characteristics of these tumors in real time. The unique potential of circu-
lating tumor cells (CTCs) to serve as a clinically useful liquid biomarker is 
due to their ability to inform via both enumeration and RNA expression. A 
microfluidic graphene oxide-based device (GO Chip) is used to isolate CTCs 
and CTC clusters from the whole blood of 41 men with metastatic castration-
resistant prostate cancer. Additionally, the expression of 96 genes of interest 
is determined by RT-qPCR. Multivariate analyses are conducted to determine 
the genes most closely associated with overall survival, PSA progression, and 
radioclinical progression. A preliminary signature, comprising high expres-
sion of stemness genes and low expression of epithelial and mesenchymal 
genes, potentially implicates an undifferentiated CTC phenotype as a marker 
of poor prognosis in this setting.

Circulating Tumor Cell Analysis

1. Introduction

While men with metastatic castration-resistant prostate cancer 
(mCRPC) have a median survival of approximately 18 months, 
there is substantial heterogeneity, and time-to-progression varies 
widely.[1] Additionally, given the evolving treatment landscape, 
there is a clear need for better biomarkers of progression and 
treatment response in order to help guide therapeutic decisions. 
While soft tissue and bone biopsies can provide molecular 
information, many men with mCRPC have already undergone 
multiple prior invasive biopsies, and the tissue-based informa-
tion is representative of only that single disease site.
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mCRPC patients with AR-V7-positive CTCs displayed abira-
terone and enzalutamide resistance, indicating the potential for 
liquid biopsy approaches to provide predictive information.[13] 
The original microfluidic CTC-Chip was used to study prostate 
CTCs in localized and metastatic patients, with CTCs detected 
in 23/36 metastatic patients.[9] RT-qPCR was used to detect 
the TMPRSS2-ERG fusion in 9/20 metastatic patients. Next-
generation CTC chips such as the Herringbone (HB) Chip[10] 
and the geometrically enhanced differential immunocap-
ture (GEDI) chip[14] have also been applied to prostate cancer. 
The HB Chip was used to investigate androgen receptor (AR) 
signaling through immunofluorescence staining for the pros-
tate specific antigen (PSA) and the prostate specific membrane 
antigen (PSMA),[15] while further immunofluorescence char-
acterization by the GEDI chip examined ERG expression.[16] 
Recently, the CTC-iChip was used to reveal the role of nonca-
nonical Wnt signaling through single-cell RNA-Seq of prostate 
CTCs from 13 patients isolated by negative selection.[11] How-
ever, the majority of these studies reported on a limited set of 
genes.

The nanomaterial-based graphene oxide chip (GO Chip) 
affords highly sensitive and gentle capture of rare cells with 
low WBC contamination.[17] Optimized with cell line spike-in 
samples with as few as 3–5 cancer cells per milliliter of whole 
blood, the device showed promise in the capture of PC-3 
cells under physiologically relevant conditions and concentra-
tions.[17] Coupled with the capability for downstream molecular 
and morphologic analysis, the GO Chip enables CTC enumera-
tion, characterization, or RNA expression from as little as 1 mL 
whole blood of patient samples.[17] The efficiency and sensitivity 
of this device facilitated our study of CTC enumeration and 
RNA expression in a clinical cohort using an extensive 96 gene 
panel. Toward the goal of using CTCs to provide clinically 
relevant molecular information that could eventually be utilized 
to assist with patient management, we undertook a prospective 
study of 41 men with mCRPC (Figure 1). We sought to utilize 
captured CTCs and extracted RNA from parallel GO Chips to 
determine CTC characteristics associated with progression and 
survival in advanced prostate cancer.

2. Results

2.1. Clinical Cohort

Blood samples were collected with informed consent from 
41 patients with mCRPC (Table S1, Supporting Information) 
recruited under institutional approved IRB (HUM00052405) 
between August 2013 and November 2016 using EDTA tubes. 
Processing occurred on the day of blood draw. Eight healthy 
male controls were recruited internally and processed in the 
same manner as patient samples. The median patient age 
was 73 years (range: 50–84 years), while the median base-
line PSA level was 37.9  ng  mL−1 (range: 1.2–6433  ng  mL−1). 
The median number of prior treatments other than first-line 
hormonal therapy was one (range: 0–7), and at the time of 
CTC collection there were 17 patients receiving abiraterone, 
four receiving cabazitaxel, two receiving cabozantinib, seven 
receiving docetaxel, eight receiving enzalutamide, one receiving 
olaparib, and one receiving pembrolizumab. During the study 
and follow-up period, 34 patients experienced PSA progres-
sion; 37 experienced radioclinical progression as defined by a 
≥20% increase in the sum of the soft tissue lesion diameters 
during computed tomography, ≥2 new bone lesions on bone 
scan, or symptomatic progression (worsening pain aggrava-
tion or new cancer-related symptoms); and 22 patients died. 
For surviving patients, the median time to last follow-up was 
19.1 months (range: 3.3–37.8 months). Median time to death 
was 17.5 months (range: 2.6–39.6 months).

In addition to overall survival, PSA at the time of blood 
draw, radiographic, and clinical progression events were 
recorded. PSA progression was defined using the PCWG3 
criteria of an increase of greater than or equal to 25% from 
the nadir, with a minimum increase of 2 ng mL−1.[18] Radio-
clinical progression was also used as a clinical endpoint using 
the date of whichever happened earliest. Radiographic pro-
gression entailed one of three events: 20% or more increase 
in the sum of the diameters of soft-tissue target lesions based 
on RECIST criteria applied to CT scans; an increase of at 
least 5  mm in the short axis of a previously normal lymph 
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Figure 1.  Graphene oxide chip enables isolation of prostate CTCs. A) Sample workflow. Two parallel devices were processed, one each for circulating 
tumor cell enumeration and RNA extraction. B) Scanning electron micrograph of PC-3 cell (red pseudocolor) and WBCs (green pseudocolor) on-chip. 
Flower patter is 100 µm in height and width.
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node (this lymph node must be at least 1.0  cm in the short 
axis); or at least two new bone lesions. Clinical progres-
sion was defined as worsening disease-related symptoms or 
new cancer-related complications. Radioclinical progression 
was assessed by a single reviewer using standard PCWG3 
criteria.[18]

2.2. Circulating Tumor Cell Detection, Enumeration, and Gene 
expression Analysis by RT-qPCR in Clinical Samples

CTCs were detected in all 41 samples with the number of 
CTCs ranging from 3–166 CTCs mL−1 (median: 20 CTCs mL−1, 
Figure  2A–C). The median number of CTCs detected in 
healthy controls was 3 CTCs  mL−1 (range: 0–14 CTCs  mL−1). 
CTC counts for patients were significantly higher than those 
for healthy controls (p  =  0.0001). Quantification of contami-
nating WBCs is summarized in Table S2 in the Supporting 
Information.

2.3. Circulating Tumor Cell Cluster Detection in Patient Samples

While processing patient samples, we observed groups of two 
or more adjacent CTCs (Figure  2D,E), termed CTC clusters. 
These clusters were only present in patient samples (26/41, 
63.4%) and not healthy controls. Both interpatient and intra-
patient heterogeneity were evident from the captured clusters, 
as cells within the clusters showed varying size and cytokeratin 
expression. Clusters consisted of up to eight CTCs per cluster 
(Figure 2F) with the majority of the clusters comprising fewer 
numbers of cells. The percentage of CTCs captured in the form 
of clusters also varied greatly among patients from 0% to 54.8% 
(Figure 2G). While CTC clusters have been observed previously 
in prostate cancer patient samples,[19–21] the high frequency of 
CTC clusters reported in the present study suggests that the 
GO Chip may be less disruptive to cell–cell interactions and 
have greater sensitivity for identifying these clusters.

For 36 of the patients, we had the opportunity to run a par-
allel microfluidic device that ultimately yielded RNA following 
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Figure 2.  CTCs and CTC clusters isolated by the graphene oxide chip. A) CTC enumeration results for 41 mCRPC patient samples (range: 3–166 CTCs mL−1, 
median: 20) and epithelial cells detected in eight healthy controls (range: 0–14 epithelial cells mL−1, median: 3). ***denotes p < 0.001. B,C) Examples  
of CTCs captured on-chip as well as non-specifically bound WBCs. Nuclear staining is shown in blue, cytokeratin 7/8 in red, and CD45 in green. D,E) 
Examples of captured CTC clusters. CTCs captured within clusters had heterogeneous size and cytokeratin expression. The capture pattern is outlined 
with a dashed line for visualization purposes. Scale bar is 10 µm. F) Captured CTC clusters ranged in size from two to eight cells per cluster. G) The 
percentage of captured CTCs present in clusters ranged from 0% to 54.8%.
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cell lysis and purification, which was used for RT-qPCR 
(Table S3, Supporting Information). Results from one patient 
sample were discarded due to insufficient expression of house-
keeping genes, suggesting lack of sufficient RNA for analysis. 
In the remaining 35 patient samples, 77 of the 96 genes were 
detectable (CT < 30) in at least one patient, and 58 genes were 
detectable at in at least three patients (Tables S4 and S5, Sup-
porting Information). This three-patient cut-off was set for two 
main reasons. The first consideration was to exclude possible 
technical artifact for genes that show expression only in one 
to two patients. Second, as much of our subsequent analysis 
involved comparing relative expression levels between two sub-
groups of patients, and we wanted to be able to stratify patients 
into two groups with at least three patients in each subgroup to 
evaluate.

2.4. Gene-CTC Enumeration Metric Association

We next examined the relationship between gene expression 
and CTC counts as well as gene expression and the clusters 
metrics to determine potential associations. The associations 
between gene expression and several relevant CTC metrics 
from each patient sample were examined through linear mode-
ling of these parameters as continuous variables (Figure S1A–F, 
Supporting Information). If the relationship between the enu-
meration variable and the gene expression had a negative linear 
coefficient, the gene expression decreased as the enumeration 
variable increased (i.e., as the number of CTCs, the number of 
clusters, or percentage of CTCs in clusters increased). FOXC2 
and CTNND1 were positively associated with the number of 
CTCs  mL−1 while NFKB1 was negatively associated with CTC 
counts (p  <  0.05). CTNND1 and ZEB2 were negatively asso-
ciated with the number of clusters present per sample, and 
CTNND1 and FOXC1 were negatively associated with the per-
centage of CTCs found in clusters (p < 0.05). As overexpression 
of δ-catenin has been associated with increased proliferation,[22] 
the lower expression and therefore potentially lower prolifera-
tion would be consistent with an observed stemlike phenotype 
within the clusters. This is consistent with the lower ZEB2 
expression. FOXC1 expression is associated with poor prog-
nosis, androgen independence, and angiogenesis,[23] potentially 
indicating aggressive properties in CTCs present as single cells 
in contrast to those in clusters.

2.5. Multivariate Cox Proportional Hazards Modeling

Multivariate analysis was then conducted using a best subset 
selection method. As there were 31 PSA progression events, 
we opted for subsets of two to three genes, applying the “one 
in ten” rule.[24] Overall survival, PSA progression, and radio-
clinical progression were modeled as a function of these two 
or three subsets using Cox proportional hazards. Models with 
a global Wald p-value of less than 0.05 were selected and sorted 
by their Akaike information criterion (AIC),[25] with lower AICs 
denoting better quality models. In total, 32  509 combinations 
were assessed. For overall survival, 311 nominally significant 
gene combinations (10 two-gene combinations, 301 three-gene 

combinations); for PSA progression, there were 566 nominally 
significant gene combinations (16 two-gene combinations, 
550 three-gene combinations); and for radioclinical survival, 
there were 160 nominally significant combinations (6 two-
gene combinations, 154 three-gene combinations). Some genes 
appeared in significant models at higher frequencies than other  
(Table S6, Supporting Information).

For overall survival, the three-gene combination of CDH1, 
CD11B, and STAT3 showed the best performance based on AIC 
(HR: 0.78, 95% CI: 0.62–0.99; HR: 2.04, 95% CI: 1.32–3.14; and 
HR: 0.46, 95% CI: 0.30–0.72, respectively). For PSA progres-
sion, the three-gene combination of CD44, CASP3, and FOXC2 
performed best (HR: 1.51, 95% CI: 1.23–1.87; HR: 0.79, 95% 
CI: 0.69–0.90; HR: 0.90, 95% CI: 0.82–0.98, respectively). For 
radioclinical progression, the best model consisted of the three 
genes CDH1, AR, and CD45 (HR: 0.84, 95% CI: 0.71–0.98; HR: 
1.10, 95% CI: 1.02–1.18; HR: 0.78, 95% CI: 0.66–0.92).

2.6. Exploratory Single Variable Analysis

To assess the clinical relevance of the experimental data 
obtained, we compared CTC metrics and gene expression with 
overall survival, PSA progression, and radioclinical progres-
sion. None of the enumeration variables, including CTC and 
cluster counts and related metrics, were statistically significant 
in the univariable Cox proportional hazards models. However, 
patients with a high number of clusters relative to the median 
had a shorter time to radioclinical progression than those with 
a low number of clusters in the Kaplan–Meier survival anal-
ysis (log-rank p  <  0.05, Figure S1G, Supporting Information).  
A previous study associated CTC clusters detected at any of 
multiple time points with decreased overall survival;[23] this 
suggests a future direction for our technology, in which serial 
sampling may provide more prognostic information.

To construct a bimodal point-based metric relating gene 
expression (Figure 3) to clinical outcomes, we used cut-points 
to classify patients into high and low survival groups as deter-
mined by subsequent Kaplan–Meier analysis. Cut-points were 
generated using regression tree analysis from the rpart (recur-
sive partitioning) package in the R software environment. The 
rpart package uses regression models based on the input data 
set to find the variable and location that best splits the data 
into two groups, where best is defined as minimizing the risk 
of misclassification. In this case, the input data consisted of 
the gene expression levels and clinical outcomes. The distri-
bution of expression above or below the generated cut-point 
was visualized using a beeswarm plot, with expression above 
the cut-point denoted as “high” and expression below the cut-
point denoted as “low.” Genes associated with overall survival 
included CD44, CDH1, EPCAM, ERCC1, IL8, PIK3CA, STAT3, 
TGFβ, TIMP2, and ZEB2 (Figure  3B). The genes CDH1, 
CD146, FOXC2, and ZEB2 were associated with PSA progres-
sion, while the genes associated with radioclinical progression 
included ACTB, CDH1, CDH2, CD3D, CD45, CASP3, CD146, 
CXCR1, KLF4, KRAS, MKI67, MMP9, RB1, SPARC, XBP1, and 
ZEB2. The number of patients in each group along with the 
relevant median survival metrics are included in Table S7 in the 
Supporting Information.

Adv. Sci. 2019, 6, 1801254
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Figure 3.  Relative gene expression for use in a bimodal score. A) Heatmap of log2 fold changes (FC) relative to healthy control background for  
58 genes detected in patient samples. Associated gene categories are shown to the right of the gene list. Color coding above the heatmap indicates 
the presence (orange) or absence (blue) of clusters in a sample. B) Beeswarm plot of expression (2−ΔΔC

t) for genes enabling stratification based on 
overall survival.
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2.7. Multivariate Analysis Derived from Univariate Survival and 
Progression Analysis

Using these pre-screened genes, we developed a series of prog-
nostic scores to predict survival/progression. Based on gene 
expression relative to the cut-point, we assigned genes a point 
value of 0 or 1 based on whether their gene expression value 
fell above or below the cut-point based on its relationship to 
shorter survival or progression time. For example, in the case of 
overall survival, patients expressing greater levels of CD44 than 
the cut-point were assigned 1 point, while patients expressing 
lower levels of CDH1 than the cut-point were assigned 1 point. 
Conversely, patients expressing lower levels of CD44 than the 
cut-point were assigned 0 points, while patients expressing 
higher levels of CDH1 than the cut-point were assigned 
0 points. The values for each of the genes were then added in 
different combinations with all subsets considered and used to 
generate receiver operating characteristic (ROC) curves, with 
the scores ranging from 0 to the number of genes in the score. 
These curves were then evaluated based on the area under the 
curve (AUC), with AUCs approaching one having greater dis-
criminatory ability. The 95% confidence interval (CI) was gener-
ated by resampling, with 104 bootstrap samples. Additionally, 
the Cox proportional hazard ratio[26] was calculated for each 
score.

Of the significant genes established for overall survival, a set 
of eight genes ultimately had the best prognostic power: CD44, 
CDH1, EPCAM, ERCC1, PIK3CA, STAT3, TGFB1, and ZEB2 
(Figure 4A). The relative survival of the patients based on the dif-
ferential expression of these genes is represented in Figure 5A 
in the Supporting Information. The group with genes expressed 
at higher levels than the cut-point is shown in red while the 
other group below the cut-point is shown in blue, clearly 
demonstrating the differences in prognosis between the two 
groups. The resulting ROC had an AUC of 0.88 (95% CI: 0.69–
0.98, Figure 4B). Assessing the score using the Cox proportional 
hazard model yielded a hazard ratio of 1.83 (95% CI: 1.33–2.51) 
for overall survival, representing the increased risk between the 
patient groups one unit apart on the numerical score. Three of 

the genes in the score, CDH1, EPCAM, and ZEB2, are reflective 
of epithelial or mesenchymal phenotypes. The association of the 
low expression of both the epithelial and mesenchymal genes 
with lower overall survival suggests the importance of a tran-
sitory phenotype in leading to disease progression. This poten-
tially undifferentiated phenotype is in concordance with the 
high expression of prostate cancer stemness marker CD44.[27] 
Low ZEB2 was also implicated in the scores for PSA progres-
sion and radioclinical progression, while low CDH1 was impli-
cated in the score for PSA progression, suggesting an emerging 
theme. Additionally, STAT3 is activated by AR signaling loss and 
is associated with cancer stem cells.[28] These observations are in 
line with previous descriptions of stemlike tumor-propagating 
subpopulations in prostate cancer.[29]

Using the same methods to relate the subsets of significant 
genes to radioclinical progression produced a five-gene score 
consisting of CD3D, MMP9, RB1, XBP1, and ZEB2 (AUC: 0.82, 
95% CI: 0.67–0.96, Figure S2, Supporting Information). This 
score carried a hazard of 1.51 (95% CI: 1.19–1.92) for radio-
clinical progression. Finally, investigation of combinations of 
genes related to PSA progression resulted in a three-gene score: 
CDH1, CD146, and ZEB2 (AUC: 0.69, 95% CI: 0.47–0.87, 
Figure S3, Supporting Information); and a proportional hazard 
of 1.75 (95% CI: 1.17–2.63).

3. Discussion

Overall, our study has important limitations. Without ques-
tion, this work will continue to benefit from longer follow-up 
and corroboration in larger cohorts. Further work to validate 
this approach and to explore the implications of CTC stemness 
is ongoing. Our results also highlight the importance of exam-
ining protein and RNA expression in CTCs, as we were able to 
use anti-EpCAM for capture (indicative of protein expression), 
but saw low expression of EpCAM RNA. While the previous 
work establishing the device gives us confidence in our ability 
to capture low EpCAM-expressing cells,[17] future work may 
incorporate additional capture antibodies to account for CTC 

Adv. Sci. 2019, 6, 1801254

Figure 4.  Relationship between RNA expression and overall survival. A) Kaplan–Meier curves for genes with statistically significant relationships with 
overall survival used to construct the optimized point-based score. B) Scores were optimized by maximizing the AUC of the associated ROC curve.
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heterogeneity. The recruitment of additional controls will be 
important to examine background levels of cytokeratin positive 
cells. This false positive rate, a marker of the balance between 
assay sensitivity and background noise, will need to continue to 
be refined. Furthermore, our current study makes use of bulk 
RNA extraction and RT-qPCR. These techniques were selected 
to efficiently study the maximum number of genes from a 
cohort of this size. While we have taken steps to subtract “back-
ground” signal from WBCs in the form of processed healthy 
control samples, we plan to integrate single-cell techniques 
into future work to better assess intrapatient heterogeneity and 
reduce our signal-to-noise ratio.

4. Conclusion

CTCs provide an opportunity to study the underlying biology 
and disease trajectory of prostate cancer in a readily-available 
liquid biopsy. The incorporation of microfluidics into CTC 
research offers substantial promise for overcoming the hurdles 
of low CTC counts and the immense quantity of surrounding 
normal blood cells. It was our goal to integrate an ultra-sensi-
tive CTC isolation technology enabling both immunofluores-
cence characterization and RNA expression analysis in order to 
investigate the relationship of the CTC-based results with key 
oncologic outcomes. Our work here is an example of a clinically 
relevant biomarker discovery approach utilizing CTC-related 
metrics.

5. Experimental Section
Device Fabrication: Fabrication of the graphene oxide chip (GO 

Chip) was described previously.[17] Briefly, a suspension was made 
by probe tip sonicating graphene oxide (CheapTubes.com) and 
tetrabutylammonium hydroxide (TBA, Fluka) in dimethylformamide 
(Sigma-Aldrich). Phospholipid-polyethyleneglycol-amine (PEG, NOF 
America Corporation) was added to the resulting suspension and bath 
was sonicated for 1 h. Silicon wafers with gold features fabricated using 
photolithography were dipped in the suspension to allow self-assembly 
of the GO-TBA-PEG onto the gold. This pattern was then enclosed in a 
polydimethylsiloxane (PDMS, Dow Corning) microfluidic chamber. The 
crosslinker N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS, Pierce) 
was then added to the devices and incubated at which point tubing 
(Tygon) was inserted. Following a wash, NeutrAvidin (Invitrogen) was 
added to the devices via syringe pump (Harvard Apparatus). The devices 
could be stored at 4 °C until use, at which time biotinylated anti-EpCAM 
(Table S8, Supporting Information) in 1% bovine serum albumin (BSA, 
Sigma) was added prior to sample processing.

Patient Sample Processing: Following blocking with BSA, 1 mL whole 
blood was introduced into the GO Chip at a flow rate of 1  mL  h−1. 
Devices were then flushed with a total volume of 6  mL phosphate 
buffered saline (PBS, Gibco) at 100  µL  min−1 immediately following 
blood flow. Subsequent steps were determined based on the ultimate 
application of the device in the work-flow. For devices that would be 
stained for enumeration, the contents of the PDMS chamber were 
fixed using 4% paraformaldehyde (PFA, ThermoFisher). These devices 
were then stored at 4  °C until they were stained. On a parallel device, 
RNA extraction was performed by first flowing RNA extraction buffer  
(a component of the PicoPure RNA isolation kit, Arcturus). The device 
and syringe were then incubated for 30 min at 42 °C, after which DEPC 
water (ThermoFisher) was flowed. Collected RNA extraction buffer and 
DEPC water from the device outlet were stored at −80 °C until purification. 

Research involving human subjects was performed in accordance with the 
requirements of the University of Michigan’s Human Research Protection 
Program. Signed and informed consent was obtained from all subjects 
under institutional approved IRB (HUM00052405).

Immunofluorescence Staining: Subsequent to processing and fixation 
of the sample, immunofluorescence staining was performed on-chip 
using a syringe pump. Cells were permeabilized using Triton X (Sigma) 
and then blocked with a combination of goat serum (ThermoFisher) 
and BSA. See Table S8 in the Supporting Information for all antibody 
information. Primary antibodies against CD45 and cytokeratin 7/8 
were detected using the appropriate secondary antibodies labeled with 
Alexa Fluors 488 and 546. Antibodies were suspended in 1% BSA while 
2-(4-amidinophenyl)-1H-indole-6-carboxamidine (DAPI, Invitrogen) in 
PBS was used to label cell nuclei. Imaging of fluorescence staining was 
conducted on a Nikon Eclipse Ti fluorescence microscope using either 
a 10x or 20x objective. Images were captured using a QImaging cooled 
mono 12 bit camera and analyzed using NIS-Elements software. Those 
nucleated cells expressing CK, but not CD45 (DAPI+/CK+/CD45− cells), 
were counted as CTCs.

Quantitative RT-qPCR: Bulk cell lysates extracted during sample 
processing from 36 patients and four healthy controls were subsequently 
purified using the remaining components of the PicoPure RNA isolation 
kit; five patients were processed only for enumeration and not RNA 
expression analysis (Table S3, Supporting Information). Purification was 
conducted according to the manufacturer’s protocol. Purified RNA was 
reverse transcribed to cDNA according to the manufacturer’s protocol 
using an Ambion kit (ThermoFisher). The cDNA was pre-amplified after 
which it underwent RT-qPCR using an Applied Biosystems TaqMan Gene 
Expression Assay. Using the BioMark HD qPCR platform (Fluidigm), CT 
levels were determined for 96 genes of interest (complete list, Table S4, 
Supporting Information) in the following categories: apoptosis, blood 
cell, cell cycle, cell junction, cytoskeleton, developmental, DNA repair, 
extracellular matrix, epithelial, growth factor, hormone, housekeeping, 
inflammation/immune system, long noncoding RNA, mesenchymal, 
oncogene, proliferation, stemness, transcription factor, and tumor 
suppressor. To visualize this data, a heatmap was generated using 
the heatmap function from the “stats” package in the R programming 
environment. Hierarchical clustering was performed using the complete 
linkage method as a function of Euclidean distance, which was the 
default setting for that function.

Statistical Analysis: The primary outcome of interest was overall 
survival. Data variables were related to either enumeration or RNA, 
and in the case of enumeration included CTCs  mL−1, the presence of 
clusters, the number of clusters, the percentage of CTCs in clusters, 
the average number of CTCs/cluster, and the maximum number of 
CTCs/cluster. The base ten log or z score of the enumeration variables 
was taken for the purposes of analysis. Analyses were performed 
using Excel and R with the following R packages: rpart,[30] survival,[31] 
and survivalROC.[32] The CTC enumeration variables were compared 
to the clinical metrics using Cox proportional hazards models and 
Kaplan–Meier survival analysis. The Wald test was used to determine 
significance for Cox proportional hazards modeling, while the log-rank 
test was used in the Kaplan–Meier analysis. In other comparisons, 
statistical significance was determined using the Mann–Whitney 
test. A nominal p-value of less than 0.05 was considered statistically 
significant. RT-qPCR results were first normalized to the mean of three 
housekeeping genes (GAPDH, ACTB, UBB) to obtain a ΔCt value, 
and then background corrected by deducting the mean expression 
level of each in the four healthy controls to obtain a ΔΔCt value, and 
subsequently analyzed as log2(2−ΔΔC

t  +  1). To select genes for the 
generation of a point-based score, analysis conducted with the rpart 
package in R was used as a screening mechanism, with nominally 
significant genes being considered. Scores were analyzed using ROC 
curves using the survival ROC function. As employed in our analysis, 
this function plotted the true positive rate against the false positive rate 
for the score’s ability to predict median survival time using the nearest 
neighbor estimation method. A higher AUC from this function denoted 
better model performance.
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