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Abstract 

Rates of progression and treatment response in advanced prostate cancer are highly variable, 

necessitating non-invasive methods to assess the molecular characteristics of these tumors in real time. 

The unique potential of circulating tumor cells (CTCs) to serve as a clinically useful liquid biomarker 

is due to their ability to inform via both enumeration and RNA expression. A microfluidic graphene 

oxide based device (GO Chip) is used to isolate CTCs and CTC clusters from the whole blood of 41 

men with metastatic castration-resistant prostate cancer. Additionally, the expression of 96 genes of 

interest is determined by RT-qPCR. Multivariate analyses are conducted to determine the genes most 

closely associated with overall survival, PSA progression, and radioclinical progression. A preliminary 

signature, comprised of high expression of stemness genes and low expression of epithelial and 

mesenchymal genes, potentially implicates an undifferentiated CTC phenotype as a marker of poor 

prognosis in this setting. 

 

Main Text 
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While men with metastatic castration resistant prostate cancer (mCRPC) have a 

median survival of approximately 18 months, there is substantial heterogeneity and time-to-

progression varies widely.
[1]

 Additionally, given the evolving treatment landscape, there is a 

clear need for better biomarkers of progression and treatment response in order to help guide 

therapeutic decisions. While soft tissue and bone biopsies can provide molecular information, 

many men with mCRPC have already undergone multiple prior invasive biopsies, and the 

tissue-based information is representative of only that single disease site.  

Circulating tumor cells (CTCs) shed from tumors can be detected in the blood 

stream
[2]

 and have the potential to serve as a liquid biopsy. This approach offers the potential 

for repeated, non-invasive measurements and may more widely sample the overall disease 

state. In addition to giving insight into the burden of disease, these cells can relate the overall 

molecular state and risk of progression through the analysis of gene expression and  

phenotype of the traveling cells.
[3]

 However, key obstacles to capturing CTCs include their 

rarity among the millions of surrounding white blood cells and red blood cells.
[4]

 To best 

interrogate CTCs, they must be detected with high yield and sufficient purity. 

 This problem has been addressed with a host of isolation technologies.
[5]

 Notably, the 

first FDA approved CTC isolation technology, CellSearch, has been used to establish survival 

differences based on CTC enumeration.
[6]

 This macroscale technology uses a magnetic 

ferrofluid conjugated with an antibody against the epithelial cellular adhesion molecule 

(EpCAM) to capture EpCAM-expressing cells from 7.5 mL whole blood.
[7]

 For increased 

sensitivity and flexibility of downstream analysis, microfluidics and nanomaterials
[8]

 have 

been developed to isolate and study CTCs.
[9-12]
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Prior studies have used cell enrichment technologies coupled with RT-qPCR to study 

prostate CTCs and their RNA. For example, mCRPC patients with AR-V7-positive CTCs 

displayed abiraterone and enzalutamide resistance, indicating the potential for liquid biopsy 

approaches to provide predictive information.
[14]

 The original microfluidic CTC-Chip was 

used to study prostate CTCs in localized and metastatic patients, with CTCs detected in 23/36 

metastatic patients.
[9]

 RT-qPCR was used to detect the TMPRSS2-ERG fusion in 9/20 

metastatic patients. Next-generation CTC chips such as the Herringbone (HB) Chip
[10]

 and 

the geometrically enhanced differential immunocapture (GEDI) chip
[15]

 have also been 

applied to prostate cancer. The HB Chip was used to investigate androgen receptor (AR) 

signaling through immunofluorescence staining for the prostate specific antigen (PSA) and 

the prostate specific membrane antigen (PSMA),
[16]

 while further immunofluorescence 

characterization by the GEDI chip examined ERG expression.
[17]

 Recently the CTC-iChip 

was used to reveal the role of noncanonical Wnt signaling through single-cell RNA-Seq of 

prostate CTCs from 13 patients isolated by negative selection.
[11]

 However, the majority of 

these studies reported on a limited set of genes. 

 The nanomaterial-based graphene oxide chip (GO Chip) affords highly sensitive and gentle 

capture of rare cells with low white blood cell contamination.[18] Optimized with cell line spike-in 

samples with as few as 3-5 cancer cells per milliliter of whole blood, the device showed promise in 

the capture of PC-3 cells under physiologically relevant conditions and concentrations.[18] Coupled 

with the capability for downstream molecular and morphologic analysis, the GO Chip enables CTC 

enumeration, characterization, or RNA expression from as little as 1 mL whole blood of patient 

samples.[18]  The efficiency and sensitivity of this device facilitated our study of CTC enumeration and 
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RNA expression in a clinical cohort using an extensive 96 gene panel. Toward the goal of using CTCs 

to provide clinically relevant molecular information that could eventually be utilized to assist with 

patient management, we undertook a prospective study of 41 men with mCRPC (Figure 1). We 

sought to utilize captured CTCs and extracted RNA from parallel GO Chips to determine CTC 

characteristics associated with progression and survival in advanced prostate cancer. 

 Blood samples were collected with informed consent from 41 patients with mCRPC 

(Table S1) recruited under institutional approved IRB (HUM00052405) between August 

2013 and November 2016 using EDTA tubes. Processing occurred on the day of blood draw. 

Eight healthy male controls were recruited internally and processed in the same manner as 

patient samples. The median patient age was 73 years (range: 50-84 years), while the median 

baseline PSA level was 37.9 ng/mL (range: 1.2-6433 ng/mL). The median number of prior 

treatments other than first-line hormonal therapy was one (range: 0-7), and at the time of 

CTC collection there were 17 patients receiving abiraterone, four receiving cabazitaxel, two 

receiving cabozantinib, seven receiving docetaxel, eight receiving enzalutamide, one 

receiving olaparib, and one receiving pembrolizumab. During the study and follow-up period, 

34 patients experienced PSA progression; 37 experienced radioclinical progression as defined 

by a ≥20% increase in the sum of the soft tissue lesion diameters during computed 

tomography, ≥2 new bone lesions on bone scan, or symptomatic progression (worsening pain 

aggravation or new cancer-related symptoms); and 22 patients died. For surviving patients, 

the median time to last follow-up was 19.1 months (range: 3.3-37.8 months). Median time to 

death was 17.5 months (range: 2.6-39.6 months).  
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In addition to overall survival, PSA at the time of blood draw, radiographic, and 

clinical progression events were recorded. PSA progression was defined using the PCWG3 

criteria of an increase of greater than or equal to 25% from the nadir, with a minimum 

increase of 2 ng/mL.
[19]

 Radioclinical progression was also used as a clinical endpoint using 

the date of whichever happened earliest. Radiographic progression entailed one of three 

events: 20% or more increase in the sum of the diameters of soft-tissue target lesions based 

on RECIST criteria applied to CT scans; an increase of at least 5 mm in the short axis of a 

previously normal lymph node (this lymph node must be at least 1.0 cm in the short axis); or 

at least two new bone lesions. Clinical progression was defined as worsening disease-related 

symptoms or new cancer-related complications. Radioclinical progression was assessed by a 

single reviewer using standard PCWG3 criteria.
[19] 

CTCs were detected in all 41 samples with the number of CTCs ranging from 3-166 

CTCs/mL (median: 20 CTCs/mL, Figure 2A-C). The median number of CTCs detected in 

healthy controls was 3 CTCs/mL (range: 0-14 CTCs/mL). CTC counts for patients were 

significantly higher than those for healthy controls (p = 0.0001). Quantification of 

contaminating WBCs is summarized in Table S2. 

While processing patient samples, we observed groups of two or more adjacent CTCs 

(Figure 2D, E), termed CTC clusters. These clusters were only present in patient samples 

(26/41, 63.4%) and not healthy controls. Both interpatient and intrapatient heterogeneity were 

evident from the captured clusters, as cells within the clusters showed varying size and 

cytokeratin expression. Clusters consisted of up to eight CTCs per cluster (Figure 2F) with 

the majority of the clusters comprising fewer numbers of cells. The percentage of CTCs 
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captured in the form of clusters also varied greatly among patients from 0 to 54.8% (Figure 

2G). While CTC clusters have been observed previously in prostate cancer patient 

samples,
[20, 21, 22]

 the high frequency of CTC clusters reported in the present study suggests 

that the GO Chip may be less disruptive to cell-cell interactions and have greater sensitivity 

for identifying these clusters.  

For 36 of the patients, we had the opportunity to run a parallel microfluidic device that 

ultimately yielded RNA following cell lysis and purification, which was used for RT-qPCR 

(Table S3). Results from one patient sample were discarded due to insufficient expression of 

housekeeping genes suggesting lack of sufficient RNA for analysis. In the remaining 35 

patient samples, 77 of the 96 genes were detectable (CT < 30) in at least one patient, and 58 

genes were detectable at in at least three patients (Table S4, S5). This three-patient cut-off 

was set for two main reasons. The first consideration was to exclude possible technical 

artifact for genes that show expression only in one to two patients. Secondly, as much of our 

subsequent analysis involved comparing relative expression levels between two subgroups of 

patients, we wanted to be able to stratify patients into two groups with at least three patients 

in each subgroup to evaluate. 

 We next examined the relationship between gene expression and CTC counts as well 

as gene expression and the clusters metrics to determine potential associations. The 

associations between gene expression and several relevant CTC metrics from each patient 

sample was examined through linear modeling of these parameters as continuous variables 

(Figure S1A-F). If the relationship between the enumeration variable and the gene 

expression had a negative linear coefficient, the gene expression decreased as the 
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enumeration variable increased (i.e. as the number of CTCs, the number of clusters, or 

percentage of CTCs in clusters increased). FOXC2 and CTNND1 were positively associated 

with the number of CTCs/mL while NFKB1 was negatively associated with CTC counts (p < 

0.05). CTNND1 and ZEB2 were negatively associated with the number of clusters present 

per sample, and CTNND1 and FOXC1 were negatively associated with the percentage of 

CTCs found in clusters (p < 0.05). As overexpression of δ-catenin has been associated with 

increased proliferation,
[23]

 the lower expression and therefore potentially lower proliferation 

would be consistent with an observed stemlike phenotype within the clusters. This is 

consistent with the lower ZEB2 expression. FOXC1 expression is associated with poor 

prognosis, androgen independence, and angiogenesis,
[24]

 potentially indicating aggressive 

properties in CTCs present as single cells in contrast to those in clusters. 

Multivariate analysis was then conducted using a best subset selection method. As 

there were 31 PSA progression events, we opted for subsets of two to three genes, applying 

the “one in ten” rule.
[25]

  Overall survival, PSA progression, and radioclinical progression 

were modeled as a function of these two or three subsets using Cox proportional hazards. 

Models with a global Wald p value of less than 0.05 were selected and sorted by their Akaike 

information criterion (AIC
[26]

), with lower AICs denoting better quality models. In total, 

32509 combinations were assessed. For overall survival, 311 nominally significant gene 

combinations (10 two-gene combinations, 301 three-gene combinations); for PSA 

progression, there were 566 nominally significant gene combinations (16 two-gene 

combinations, 550 three-gene combinations); and for radioclinical survival, there were 160 

nominally significant combinations (six two-gene combinations, 154 three-gene 
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combinations). Some genes appeared in significant models at higher frequencies than other 

(Table S6). 

For overall survival, the three-gene combination of CDH1, CD11B, and STAT3 

showed the best performance based on AIC (HR: 0.78, 95% CI: 0.62-0.99; HR: 2.04, 95% 

CI: 1.32-3.14; and HR: 0.46, 95% CI: 0.30-0.72 respectively). For PSA progression, the 

three-gene combination of CD44, CASP3, and FOXC2 performed best (HR: 1.51, 95% CI: 

1.23-1.87; HR: 0.79, 95% CI: 0.69-0.90; HR: 0.90, 95% CI: 0.82-0.98, respectively).  For 

radioclinical progression, the best model consisted of the three genes CDH1, AR, and CD45 

(HR: 0.84, 95% CI: 0.71-0.98; HR: 1.10, 95% CI: 1.02-1.18; HR: 0.78, 95% CI: 0.66-0.92). 

 To assess the clinical relevance of the experimental data obtained, we compared CTC 

metrics and gene expression with overall survival, PSA progression, and radioclinical 

progression. None of the enumeration variables, including CTC and cluster counts and related 

metrics, were statistically significant in the univariable Cox proportional hazards models. 

However, patients with a high number of clusters relative to the median had a shorter time to 

radioclinical progression than those with a low number of clusters in the Kaplan-Meier 

survival analysis (log rank p < 0.05, Figure S1G). A previous study associated CTC clusters 

detected at any of multiple time points with decreased overall survival;
[24]

 this suggests a 

future direction for our technology, in which serial sampling may provide more prognostic 

information. 

 To construct a bimodal point-based metric relating gene expression (Figure 3) to 

clinical outcomes, we used cut-points to classify patients in to high and low survival groups 

as determined by subsequent Kaplan-Meier analysis. Cut-points were generated using 
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regression tree analysis from the rpart (recursive partitioning) package in the R software 

environment. The rpart package uses regression models based on the input data set to find the 

variable and location that best splits the data into two groups, where best is defined as 

minimizing the risk of misclassification. In this case, the input data consisted of the gene 

expression levels and clinical outcomes. The distribution of expression above or below the 

generated cut-point was visualized using a beeswarm plot, with expression above the cut-

point denoted as “high” and expression below the cut-point denoted as “low.” Genes 

associated with overall survival included CD44, CDH1, EPCAM, ERCC1, IL8, PIK3CA, 

STAT3, TGFβ, TIMP2, and ZEB2 (Figure 3B). The genes CDH1, CD146, FOXC2, and 

ZEB2 were associated with PSA progression, while the genes associated with radioclinical 

progression included ACTB, CDH1, CDH2, CD3D, CD45, CASP3, CD146, CXCR1, KLF4, 

KRAS, MKI67, MMP9, RB1, SPARC, XBP1, and ZEB2. The number of patients in each 

group along with the relevant median survival metrics are included in Table S7. 

 Using these pre-screened genes, we developed a series of prognostic scores to predict 

survival/progression. Based on gene expression relative to the cut-point, we assigned genes a 

point value of 0 or 1 based on whether their gene expression value fell above or below the 

cut-point based on its relationship to shorter survival or progression time. For example, in the 

case of overall survival, patients expressing greater levels of CD44 than the cut-point were 

assigned 1 point, while patients expressing lower levels of CDH1 than the cut-point were 

assigned 1 point. Conversely, patients expressing lower levels of CD44 than the cut-point 

were assigned 0 points, while patients expressing higher levels of CDH1 than the cut-point 

were assigned 0 points. The values for each of the genes were then added in different 
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combinations with all subsets considered and used to generate receiver operating 

characteristic (ROC) curves, with the scores ranging from 0 to the number of genes in the 

score. These curves were then evaluated based on the area under the curve (AUC), with 

AUCs approaching one having greater discriminatory ability. The 95% confidence interval 

(CI) was generated by resampling, with 10
4
 bootstrap samples. Additionally, the Cox 

proportional hazard ratio
[27]

 was calculated for each score. 

 Of the significant genes established for overall survival, a set of eight genes ultimately had 

the best prognostic power: CD44, CDH1, EPCAM, ERCC1, PIK3CA, STAT3, TGFB1, and ZEB2 (Figure 

4A). The relative survival of the patients based on the differential expression of these genes is 

represented in Figure 5A. The group with genes expressed at higher levels than the cut-point is 

shown in red while the other group below the cut-point is shown in blue, clearly demonstrating the 

differences in prognosis between the two groups. The resulting ROC had an AUC of 0.88 (95% CI: 

0.69-0.98, Figure 4B). Assessing the score using the Cox proportional hazard model yielded a hazard 

ratio of 1.83 (95% CI: 1.33-2.51) for overall survival, representing the increased risk between the 

patient groups one unit apart on the numerical score. Three of the genes in the score, CDH1, EPCAM, 

and ZEB2, are reflective of epithelial or mesenchymal phenotypes. The association of the low 

expression of both the epithelial and mesenchymal genes with lower overall survival suggests the 

importance of a transitory phenotype in leading to disease progression. This potentially 

undifferentiated phenotype is in concordance with the high expression of prostate cancer stemness 

marker CD44.[28] Low ZEB2 was also implicated in the scores for PSA progression and radioclinical 

progression, while low CDH1 was implicated in the score for PSA progression, suggesting an 

emerging theme. Additionally, STAT3 is activated by AR signaling loss and is associated with cancer 
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stem cells.[29] These observations are in line with previous descriptions of stemlike tumor-

propagating subpopulations in prostate cancer.[30]  

Using the same methods to relate the subsets of significant genes to radioclinical 

progression produced a five-gene score consisting of CD3D, MMP9, RB1, XBP1, and ZEB2 (AUC: 0.82, 

95% CI: 0.67-0.96, Figure S2). This score carried a hazard of 1.51 (95% CI: 1.19-1.92) for radioclinical 

progression. Finally, investigation of combinations of genes related to PSA progression resulted in a 

three-gene score: CDH1, CD146, and ZEB2 (AUC: 0.69, 95% CI: 0.47-0.87, Figure S3); and a 

proportional hazard of 1.75 (95% CI: 1.17-2.63). 

Overall, our study has important limitations. Without question, this work will 

continue to benefit from longer follow-up and corroboration in larger cohorts. Further work 

to validate this approach and to explore the implications of CTC stemness is ongoing. Our 

results also highlight the importance of examining protein and RNA expression in CTCs, as 

we were able to use anti-EpCAM for capture (indicative of protein expression), but saw low 

expression of EpCAM RNA. While the previous work establishing the device gives us 

confidence in our ability to capture low EpCAM-expressing cells,
[18]

 future work may 

incorporate additional capture antibodies to account for CTC heterogeneity. The recruitment 

of additional controls will be important to examine background levels of cytokeratin positive 

cells. This false positive rate, a marker of the balance between assay sensitivity and 

background noise, will need to continue to be refined. Furthermore, our current study makes 

use of bulk RNA extraction and RT-qPCR. These techniques were selected to efficiently 

study the maximum number of genes from a cohort of this size. While we have taken steps to 
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subtract “background” signal from white blood cells in the form of processed healthy control 

samples, we plan to integrate single-cell techniques into future work to better assess 

intrapatient heterogeneity and reduce our signal to noise ratio. 

CTCs provide an opportunity to study the underlying biology and disease trajectory of 

prostate cancer in a readily-available liquid biopsy. The incorporation of microfluidics into CTC 

research offers substantial promise for overcoming the hurdles of low CTC counts and the immense 

quantity of surrounding normal blood cells. It was our goal to integrate an ultra-sensitive CTC 

isolation technology enabling both immunofluorescence characterization and RNA expression 

analysis in order to investigate the relationship of the CTC-based results with key oncologic 

outcomes. Our work here is an example of a clinically relevant biomarker discovery approach 

utilizing CTC-related metrics. 

 

 

Experimental Section 

 

Device fabrication: Fabrication of the graphene oxide chip (GO Chip) has been described 

previously.
[18]

 Briefly, a suspension was made by probe tip sonicating graphene oxide 

(CheapTubes.com) and tetrabutyl ammonium hydroxide (TBA, Fluka) in dimethylformamide 

(Sigma-Aldrich). A phospholipid-polyethyleneglycol-amine (PEG, NOF America 

Corporation) was added to the resulting suspension and bath sonicated for 1 hour. Silicon 

wafers with gold features fabricated using photolithography were dipped in the suspension to 
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allow self-assembly of the GO-TBA-PEG onto the gold. This pattern was then enclosed in a 

polydimethylsiloxane (PDMS, Dow Corning) microfluidic chamber. The crosslinker N-γ-

maleimidobutyryl-oxysuccinimide ester (GMBS, Pierce) was then added to the devices and 

incubated at which point tubing (Tygon) was inserted. Following a wash, NeutrAvidin 

(Invitrogen) was added to the devices via syringe pump (Harvard Apparatus). The devices 

could be stored at 4º C until use, at which time biotinylated anti-EpCAM (Table S8) in 1% 

bovine serum albumin (BSA, Sigma) was added prior to sample processing. 

 

Patient sample processing: Following blocking with BSA, 1 mL whole blood was introduced 

into the GO Chip at a flow rate of 1 mL/hr. Devices were then flushed with a total volume of 

6 mL phosphate buffered saline (PBS, Gibco) at 100 μl/min immediately following blood 

flow. Subsequent steps were determined based on the ultimate application of the device in the 

work-flow. For devices that would be stained for enumeration, the contents of the PDMS 

chamber were fixed using 4% paraformaldehyde (PFA, ThermoFisher). These devices were 

then stored at 4°C until they were stained. On a parallel device, RNA extraction was 

performed by first flowing RNA extraction buffer (a component of the PicoPure® RNA 

Isolation Kit, Arcturus). The device and syringe were then incubated for 30 minutes at 42°C, 

after which DEPC water (ThermoFisher) was flowed. Collected RNA extraction buffer and 

DEPC water from the device outlet were stored at -80°C until purification.  

 

Immunofluorescence staining: Subsequent to processing and fixation of the sample, 

immunofluorescence staining was performed on-chip using a syringe pump. Cells were 
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permeabilized using Triton X (Sigma) and then blocked a combination of goat serum 

(ThermoFisher) and BSA. See Table S8 for all antibody information. Primary antibodies 

against CD45 and cytokeratin 7/8 were detected using the appropriate secondary antibodies 

labeled with Alexa Fluors 488 and 546. Antibodies were suspended in 1% BSA while 2-(4-

amidinophenyl)-1H-indole-6-carboxamidine (DAPI, Invitrogen) in PBS was used to label cell 

nuclei. Imaging of fluorescence staining was conducted on a Nikon Eclipse Ti fluorescence 

microscope using either a 10x or 20x objective. Images were captured using a QImaging 

cooled mono 12 bit camera and analyzed using NIS-Elements software. Those nucleated cells 

expressing CK but not CD45 (DAPI+/CK+/CD45- cells), were counted as CTCs. 

 

Quantitative reverse-transcription polymerase chain reaction (RT-qPCR): Bulk cell lysates 

extracted during sample processing from 36 patients and four healthy controls were 

subsequently purified using the remaining components of the PicoPure® RNA Isolation Kit; 

five patients were processed only for enumeration and not RNA expression analysis (Table 

S3). Purification was conducted according to the manufacturer’s protocol. Purified RNA was 

reverse transcribed to cDNA according to the manufacturer’s protocol using an Ambion kit 

(ThermoFisher). The cDNA was pre-amplified after which it underwent RT-qPCR using an 

Applied Biosystems
TM

 TaqMan® Gene Expression Assay. Using the BioMark HD qPCR 

platform (Fluidigm), CT levels were determined for 96 genes of interest (complete list, Table 

S4) in the following categories: apoptosis, blood cell, cell cycle, cell junction, cytoskeleton, 

developmental, DNA repair, extracellular matrix, epithelial, growth factor, hormone, 

housekeeping, inflammation/immune system, long noncoding RNA, mesenchymal, 
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oncogene, proliferation, stemness, transcription factor, and tumor suppressor. To visualize 

this data, a heatmap was generated using the heatmap function from the “stats” package in the 

R programming environment. Hierarchical clustering was performed using the complete 

linkage method as a function of Euclidean distance, which is the default setting for that 

function. 

 

Statistical analysis: The primary outcome of interest was overall survival. Data variables 

were related to either enumeration or RNA, and in the case of enumeration included 

CTCs/mL, the presence of clusters, the number of clusters, the percentage of CTCs in 

clusters, the average number of CTCs/cluster, and the maximum number of CTCs/cluster. 

The base ten log or z score of the enumeration variables was taken for the purposes of 

analysis. Analyses were performed using Excel and R  with the following R packages: 

rpart,
[31]

 survival,
[32]

 and survivalROC.
[33]

 The CTC enumeration variables were compared to 

the clinical metrics using Cox proportional hazards models and Kaplan-Meier survival 

analysis. The Wald test was used to determine significance for Cox proportional hazards 

modeling, while the log-rank test was used in the Kaplan-Meier analysis. In other 

comparisons, statistical significance was determined using the Mann-Whitney test. A nominal 

p-value of less than 0.05 was considered statistically significant. RT-qPCR results were first 

normalized to the mean of three housekeeping genes (GAPDH, ACTB, UBB) to obtain a ΔCt 

value, and then background corrected by deducting the mean expression level of each in the 

four healthy controls to obtain a ΔΔCt value, and subsequently analyzed as log2(2
-ΔΔC

t + 1). 

To select genes for the generation of a point-based score, analysis conducted with the rpart 
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package in R was used as a screening mechanism, with nominally significant genes being 

considered. Scores were analyzed using receiver operating characteristic (ROC) curves using 

the survival ROC function. As employed in our analysis, this function plotted the true 

positive rate against the false positive rate for the score’s ability to predict median survival 

time using the Nearest Neighbor Estimation method. A higher area under the curve (AUC) 

from this function denoted better model performance. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Graphene oxide chip enables isolation of prostate circulating tumor cells. A) Sample workflow. 

Two parallel devices were processed, one each for circulating tumor cell enumeration and RNA 

extraction. B) Scanning electron micrograph of PC-3 cell (red pseudocolor) and white blood cells (green 

pseudocolor) on-chip. Flower patter is 100 μm in height and width. 
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Figure 2. Circulating tumor cells and circulating tumor cell clusters isolated by the graphene oxide 

chip. A) Circulating tumor cell (CTC) enumeration results for 41 metastatic castrate resistant prostate 

cancer patient samples (range: 3-166 CTCs/mL, median: 20) and (range: 3-166 CTCs/mL, median: 20) 

and epithelial cells detected in eight healthy controls (range: 0-14 epithelial cells/mL, median: 3). 

***denotes p < 0.001. B, C) Examples of CTCs captured on-chip as well as non-specifically bound 

white blood cells (WBCs). Nuclear staining is shown in blue, cytokeratin 7/8 in red, and CD45 in 

green. D, E) Examples of captured circulating tumor cell (CTC) clusters. CTCs captured within clusters 

had heterogeneous size and cytokeratin expression. The capture pattern is outlined with a dashed 

line for visualization purposes. Scale bar is 10 μm. F) Captured CTC clusters ranged in size from two 

to eight cells per cluster. G) The percentage of captured CTCs present in clusters ranged from 0 to 

54.8%. 
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Figure 3. Relative gene expression for use in a bimodal score. A) Heatmap of log2 fold changes (FC) 

relative to healthy control background for 58 genes detected in patient samples. Associated gene 

categories are shown to the right of the gene list. Color coding above the heatmap indicates the 

presence (orange) or absence (blue) of clusters in a sample. B) Beeswarm plot of expression (2-ΔΔC
t) 

for genes enabling stratification based on overall survival. 

 

 

 

Figure 4. Relationship between RNA expression and overall survival. A) Kaplan-Meier curves for 

genes with statistically significant relationships with overall survival used to construct the optimized 

point-based score. B) Scores were optimized by maximizing the area under the curve (AUC) of the 

associated receiver operating curve. 

 

 

 

A microfluidic graphene oxide based device (GO Chip) is used to isolate CTCs and CTC clusters from 

the whole blood of 41 men with metastatic castration-resistant prostate cancer. A preliminary RNA 

signature, comprised of high expression of stemness genes and low expression of epithelial and 

mesenchymal genes, potentially implicates an undifferentiated CTC phenotype as a marker of poor 

prognosis in this setting. 
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