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Abstract

This paper proposes simple axioms that characterize a generalization of backward

induction. At any node of a decision tree, the decision maker looks forward a fixed

number of stages perfectly. Beyond that, the decision maker aggregates continuation

values according to a function that captures reasoning under unpredictability. The

model is uniquely identified from the decision maker’s preference over decision trees.

Confronting a decision tree, the decision maker iteratively revises her plan for the future

as she moves forward in the decision tree. A comparative measure of unpredictability

aversion and several examples are discussed.

1 Introduction

Backward induction has been used to analyze decision makers’ behavior in dynamic decision

problems. In a typical dynamic decision problem, fully rational backward induction begins

by identifying the optimal choice for the last stages of the problem, and then rolls back to
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the first stage. The solution is taken as a prediction of how decision makers behave in such

a context. It is well known, however, that decision makers cannot perform fully rational

backward induction in reality.1

To accommodate deviations from fully rational backward induction, many economists

have considered the idea that perhaps the decision maker can only see a few stages ahead

perfectly.2 The difficulty, however, is to understand how the decision maker evaluates the

part of the decision problem that is beyond her perfect foresight. Suppose a decision maker

can only see one stage ahead perfectly, and is confronted with the following decision problem

depicted by a decision tree (Figure 1). Without knowing the value the decision maker assigns

to the subtree beyond the first stage, we do not know how the decision maker would roll

back the first stage to evaluate the decision tree.

2
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Figure 1: The value of the second-stage subtree that is beyond the decision maker’s perfect

foresight determines how she compares 2 and {0, 1.5, 3}, and hence determines the backward

induction solution for the entire decision tree. Since the decision maker no longer fully

rationally backward inducts beyond the first stage, the value of the second-stage subtree

may not be max{0, 1.5, 3} = 3.

This paper takes a revealed-preference approach to analyze how the decision maker may

1A simple way to see this is to note that if both players in chess perform fully rational backward induction,
then either white can force a win, or black can force a win, or both sides can force at least a draw, according
to the classic theorem by Zermelo (1913). This prediction is far from what we observe. For more examples,
see Güth and Tietz (1990); Rubinstein (1990); McKelvey and Palfrey (1992); Camerer, Johnson, Rymon,
and Sen (1993); Binmore (1999); Binmore, McCarthy, Ponti, Samuelson, and Shaked (2002); Asheim and
Dufwenberg (2003); Palacios-Huerta and Volij (2009); Levitt, List, and Sadoff (2011); Mantovani (2014);
and Rampal (2018).

2See, for example, Jéhiel (1995, 1998, 2001); Gabaix, Laibson, Moloche, and Weinberg (2006); and Rampal
(2018).
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evaluate subtrees beyond her perfect foresight. The decision maker’s preference over indi-

vidual decision trees is taken as the primitive. We impose simple and testable axioms that

describe how the preference may vary with the presentation/frame of the decision problem,

that is, the structure of the decision tree. Then, we characterize the class of models that

are consistent with the axioms. Note that in previous literature on backward induction,

most studies take place in extensive-form games. However, there exist many confounders

in extensive-form games.3 To avoid this, we focus on the simplest choice environment that

allows us to study backward induction: the set of individual deterministic finite decision

trees.

Confronting a decision tree, the decision maker makes a sequence of choices until she

reaches a lottery. Decision trees are defined recursively: A depth-1 decision tree is a finite

set of lotteries, a depth-2 decision tree is a finite set of lotteries and depth-1 decision trees,

and so on. Thus, a decision tree is represented by a set a = {a1, . . . , an} consisting of subtrees

a1, . . . , an. Each subtree may be a lottery or yet another decision tree; that is, another set

of subtrees and lotteries.

1.8

2 0 1

0 1.5 3

0 1 2

0 1.5 3

a b c

Figure 2: Think of the numbers at the end of decision trees as the utility of lotteries. The

first decision tree a is a depth-1 decision tree. The second decision tree b is a depth-2 decision

tree. The last decision tree c is a depth-3 decision tree, and c = {1.8, a, b}.
3For example, it is often found that players do not end the centipede game immediately, unlike what fully

rational backward induction predicts. However, this could happen because, although players have backward
inducted rationally, they believe that other players will make mistakes, or they have social preferences for
fairness, etc.
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The axioms we impose on the preference yield a new class of models that generalize

fully rational backward induction. In the resulting model, the decision maker performs fully

rational backward induction to evaluate the first 0 ≤ κ ≤ +∞ stages of a decision tree.

For subtrees beyond κ stages, it is as if the decision maker uses a general aggregator to

aggregate the subtree values. For a subtree a = {a1, . . . , an} that is beyond κ stages, the

aggregator takes the following form:

U(a) = f−1
(

1

n

∑
f(U(ai))

)
, (1)

in which U(·) is the utility function. Depending on f , the aggregator ranges from the

maximum function to the minimum function. Both κ and f are uniquely identified from the

decision maker’s preference. We call this representation the κ-Boundedly-Rational-Backward-

Induction (κ-BRBI) representation.

We offer two interpretations of (1). First, note that the aggregator in fully rational

backward induction is the maximum function. In our model, instead of the maximum, (1)

is a general notion of average. Thus, (1) captures the idea that beyond the decision maker’s

perfect foresight, she evaluates subtrees according to some “foggy” overall impression.

In the second interpretation, it is as if the decision maker knows the structure of the

decision tree, but is unable to predict or does not trust her future selves’ choices beyond κ

stages. First, she envisions that she will choose uniformly randomly after κ stages, captured

by 1/n in (1). Such a belief is called Laplacian, as Laplace (1824) suggests that the uniform

prior should be applied to unknown events from “the principle of insufficient reason.” Second,

the decision maker’s attitude toward the Laplacian belief is captured by f ◦U , in which f is

a second-order expected utility function. We show that the concavity of f is a comparative

measure of unpredictability aversion; that is, the extent to which the decision maker avoids

unpredictable situations.

The example in Figure 3 illustrates how the model assigns values to decision trees. Sup-
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pose κ = 1 and the aggregator is the simple average function (f(u) = u). For the degenerate

decision tree 1.8 (the left-hand side) and the depth-1 decision tree {0, 1} (the right-hand

side), the decision maker’s evaluation is identical to fully rational backward induction. For

the depth-2 decision tree, the decision maker uses (1) to aggregate the subtree beyond the

first stage, and then rolls back the first stage using fully rational backward induction.

1.8

2 0 1

0 1.5 3

max{2, 1.5}
= 2

(0 + 1.5 + 3)/3
= 1.5

max{0, 1}
= 1

Figure 3: The decision maker with κ = 1 and f(u) = u evaluates subtrees 1.8, {2, {0, 1.5, 3}},

and {0, 1}.

The preference also describes how the decision maker actually chooses in a decision tree.

Confronting a decision tree a = {a1, . . . , an}, the decision maker chooses her most preferred

subtree ai. If the chosen subtree ai is also a decision tree, she continues to choose her most

preferred subtree from ai = {b1, . . . , bm}. By using this choice procedure, we have made a

history-independence assumption: The decision maker’s preference over subtrees does not

depend on how she reaches the current decision tree. Such a choice procedure implies that

the decision maker’s perfect foresight moves forward as she makes choices; that is, if the

decision maker can see the κth stage of a perfectly when choosing from {a1, . . . , an}, she can

now see the (κ + 1)th stage of a perfectly when choosing from {b1, . . . , bm}. This procedure

continues iteratively until she reaches a lottery.
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0 1.5 3

max{2, 1.5}
= 2

(0 + 1.5 + 3)/3
= 1.5

max{0, 1}
= 1

2
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max{0, 1.5, 3}
= 3

Figure 4: Suppose κ = 1 and f(u) = u. First, the decision maker chooses one of the subtrees

from 1.8, {2, {0, 1.5, 3}}, and {0, 1}. Since the value of {2, {0, 1.5, 3}} is 2, which is the

highest among the three subtrees, the decision maker chooses it from the original (the left-

hand) decision tree. Once she moves on to the chosen subtree {2, {0, 1.5, 3}} (the right-hand

tree), the subtree {0, 1.5, 3} is no longer beyond the decision maker’s perfect foresight. The

value of {0, 1.5, 3} becomes 3 instead of 1.5, and the decision maker chooses {0, 1.5, 3}. She

will end up with 3.

Figure 4 shows how the decision maker with κ = 1 and f(u) = u chooses in a decision

tree. Notice that according to the subtree values that the decision maker assigns when

making the first choice (in the left-hand-side decision tree), the decision maker would have

assumed that she would choose 2 from {2, {0, 1.5, 3}} next. However, as she moves on to the

next stage, she ends up noticing that the value of {0, 1.5, 3} is 3 instead of 1.5. Thus, the

decision maker may iteratively revise her plan as she makes choices.

Our model has four main axioms. One states that if the decision maker can solve all

depth-k decision trees correctly, she can also solve depth-j trees correctly whenever j ≤ k.

This allows us to identify κ—the boundary of the decision maker’s perfect foresight. Next,

we consider three axioms for subtrees beyond the perfect foresight. Suppose b is a subtree

that is beyond κ stages. First, if we replace a subtree of b with a better one, b becomes

better. Second, combining a good subtree with a bad subtree yields a new subtree that is

ranked in between. The last main axiom is built on a simple idea: When a depth-1 tree

contains fewer lotteries, each of its lotteries commands more attention. Therefore, swapping
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a better lottery from a subtree of b that has more branches for a worse lottery from a subtree

of b that has fewer branches accentuates the better lottery and hides the worse lottery, which

makes subtree b better. Figure 5 illustrates this idea.

Draw Win Lose Win DrawLose

Figure 5: Suppose both subtrees are beyond κ stages. Compared to the left-hand tree,

the right-hand tree accentuates “Win” and hides “Draw.” The decision maker prefers the

right-hand tree.

1.1 Related Literature

Our work belongs to the bounded rationality literature on choices in complex situations. Sev-

eral papers have examined specific heuristics or reasoning processes. Jéhiel (2001) considers

a stochastic value function beyond a player’s imperfect foresight, and studies an equilbrium

notion in which the players’ forecasts within the imperfect foresight are correct. Gabaix

et al. (2006) study a reasoning procedure in which the decision maker evaluates continuation

problems as if they end right away. Based on the heuristic, the reasoning procedure endoge-

nously determines the optimal number of stages the decision maker should look forward.

Rampal (2018) assumes that the decision maker uses the simple average of the maximum

and the minimum payoffs to evaluate actions beyond κ stages. He introduces an equilibrium

notion that features uncertainty over the opponents’ numbers of stages of perfect foresight.

Our paper does not start with a specific heuristic or reasoning process. We propose simple

and testable axioms on the decision maker’s preference over decision trees and provide the

representation theorem.
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Fudenberg and Strzalecki (2015) also adopt the revealed-preference approach to study

the decision maker’s choices in individual deterministic finite decision trees. They propose a

dynamic extension of the logit model in which the decision maker is averse to large decision

trees. Their measure of choice aversion is based on the size of the decision tree (recursively)

and takes a specific functional form. Our decision maker chooses deterministically and does

not necessarily avoid large decision trees. She avoids decision trees with inferior subtrees, and

the extent to which she avoids them is captured by the concavity of a general second-order

expected utility function.

Our Disjoint Set Betweenness axiom is related to several existing axioms. Bolker (1966)

is the first to use this type of axiom. He studies a generalization of the concept of expected

value in mathematics. The axiom is not imposed on the preference. Bolker’s resulting

formula is different from ours, but similar to Ahn (2008), who uses a similar axiom to study

ambiguity. Gul and Pesendorfer (2001) use a related axiom to model temptation and self-

control. In their model, the decision maker may prefer a smaller choice set to a larger one

because the larger one contains tempting bad lotteries. Their axiom is stronger than ours,

as it applies to the case in which choice sets have nonempty intersections.

The rest of the paper is organized as follows. The setup is introduced in Section 2. A

special case of the model is presented in Section 3 and the general case in Section 4. Section

5 discusses a few behavioral predictions of the model.

2 Setup

We consider a decision maker who makes a series of choices until a lottery is reached. A

decision tree describes this choice situation. Let X be a compact separable metric space and

D0 := ∆(X) be the set of lotteries (Borel probability measures) on X, endowed with the

Prokhorov metric.4 Generic lotteries are denoted by p, q, r, s.

4The main results of the paper will go through if we replace D0 with a convex set of real numbers
representing monetary payoffs. The difference is that we will replace the utility of lotteries with monetary
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A depth-1 decision tree is a nonempty finite subset of lotteries. When the decision maker

confronts a depth-1 decision tree a ⊂ D0, she chooses one of its lotteries. For any set Z,

let K(Z) denote the collection of all nonempty finite subsets of Z. Then, D1 := K(D0)

denotes the set of depth-1 decision trees. A depth-2 decision tree is a nonempty finite subset

of lotteries and depth-1 decision trees. We require that a depth-2 decision tree be different

from a depth-1 decision tree. Let

D2 := K(D0 ∪D1) \D1

denote the set of depth-2 decision trees. By definition, in Figure 6, decision tree a = {p, q} is

a depth-1 decision tree, and decision tree b = {r, a} = {r, {p, q}} is a depth-2 decision tree.

p q r

p q

a b

a

Figure 6: The depth-2 decision tree b = {r, a} = {r, {p, q}} ∈ D2 consists of a lottery r and

a depth-1 decision tree a = {p, q} ∈ D1.

Recursively, we define the set of depth-k decision trees as

Dk := K

(
k−1⋃
j=0

Dj

)∖(
k−1⋃
j=0

Dj

)
.

The definition has two implications: When the decision maker confronts a depth-k decision

tree, (i) she makes at most k choices to reach a lottery, and (ii) there exists some lottery

that takes exactly k choices to reach. Let D :=
⋃∞
j=1Dj be the set of all decision trees.

According to the construction, a typical decision tree a = {a1, . . . , an} ∈ D is represented

as a finite set of subtrees, a1, . . . , an. For example, in Figure 6, the depth-2 decision tree b

payoffs. Considering lotteries allows us to discuss decision trees with nonmonetary payoffs, and allows us
to separately identity the decision maker’s attitude toward objective uncertainty and her attitude toward
subjective uncertainty about her own future choices, as will be shown below.
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consists of subtrees a ∈ D1 and r ∈ D0. A subtree could either be another decision tree or a

lottery. Let D := D ∪D0 denote the set of all subtrees. It can be verified that D = K(D).

The decision maker has a binary relation/preference % on D, the set of decision trees

and lotteries. We say that % is nontrivial if there exist some subtrees a, b ∈ D such that

a � b. We assume throughout the paper that X is rich; that is, for any x ∈ X, there exist

countably many distinct consequences that are indifferent to x. We need richness to ensure

that it is always possible to have an arbitrary number of indifferent lotteries in a decision

tree. For example, since we use sets to construct decision trees, if there is a unique best

consequence in X, it cannot appear more than once in a depth-1 decision tree.5 Lastly,

when restricted to D0, % is a preference over lotteries. We say that % on D0 has an expected

utility representation if there is a continuous function U : D0 → R representing % on D0

such that

U(p) =

∫
X

U dp (2)

for each p ∈ D0.
6 We call a function Û : D → R an expected utility function if, when

restricted to D0, Û is an expected utility representation of % on D0.

Throughout the paper, we impose two axioms on %.

Axiom 1 (Weak Order) % is complete and transitive.

Axiom 2 (vNM) % on D0 has an expected utility representation.

The first axiom is standard. The second axiom is equivalent to the three well-known von

Neumann–Morgenstern axioms in expected utility theory.

The remaining axioms will pin down a representation of the decision maker’s preference

in which the decision maker looks forward κ stages perfectly. Beyond κ stages, to evaluate

subtrees, the decision maker will use an aggregator that is different from the one used by

fully rational backward induction. To understand how the aggregator is revealed from the

5Alternatively, we can use multisets to define decision trees without assuming richness.
6As usual, we identify X with the set of degenerate lotteries. For each x ∈ X, the degenerate lottery that

gives the decision maker x with probability 1 is denoted by δx. Equation (2) means that U(p) =
∫
X
U(δx) dp.
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decision maker’s preference, in the next section we first investigate a special case of the model

in which κ = 0. Then, we will characterize the general case with 0 ≤ κ ≤ +∞.

3 0-Stage Perfect Foresight

We consider the following testable axioms on the decision maker’s preference, which encap-

sulate how the decision maker’s preference is allowed to deviate from full rationality when

the decision maker cannot even evaluate depth-1 trees perfectly.

Axiom 3 (Monotonicity) For any a = {a1, a2, . . . , an}, a′ = {a′1, a2, . . . , an} ∈ D, a1 % a′1

implies a % a′, and a1 � a′1 implies a � a′.

A fully rational decision maker satisfies the first part of Monotonicity (a1 % a′1 implying

a % a′), but violates the second part (a1 � a′1 implying a � a′). To see this, suppose

a = {p, q}, a′ = {p′, q}, and q � p � p′. A fully rational decision maker is indifferent

between a and a′, since they have the same best lottery q. Monotonicity requires that

a � a′; that is, the decision maker avoids decision trees with inferior subtrees.

a1 a2 a′1

a a′

. . .

an

. . .

a2 an

Figure 7: Monotonicity requires that a1 % a′1 if and only if a % a′.

The next axiom, Disjoint Set Betweenness, considers two decision trees a and b that

have no subtree in common.7 For example, suppose a = {Win}, b = {Draw,Lose}, and

the decision maker prefers {Win} to {Draw,Lose}. Disjoint Set Betweenness states that

{Win,Draw,Lose} is ranked in between; that is, {Win} is preferred to {Win,Draw,Lose},

which in turn is preferred to {Draw,Lose}.
7However, two subtrees with no subtree in common may have common (terminal) lotteries.
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Win Draw LoseWin Draw Lose

Figure 8: The decision maker should have the following preference: {Win} %

{Win,Draw,Lose} % {Draw,Lose}.

Axiom 4 (Disjoint Set Betweenness) For any a, b ∈ D such that a ∩ b = ∅, a % b implies

a % a ∪ b % b.

When a % b, a fully rational decision maker should be indifferent between a and a ∪ b,

since they both contain the same best subtree from a. Disjoint Set Betweenness allows the

decision maker to strictly prefer a to a∪b because a∪b contains inferior subtrees that a does

not have. Similarly, a∪b may be strictly preferred to b because a∪b contains better subtrees

that b does not have. Thus, as in Monotonicity, the decision maker in our model is averse

to decision trees with inferior subtrees. This means that Disjoint Set Betweenness may be

violated if the decision maker simply dislikes large decision trees. For example, {p} ∼ {q}

and the decision maker prefers {p}, {q} to {p, q}.

To rule out some uninteresting deviations from full rationality, we impose the following

two axioms that a fully rational decision maker satisfies. The first requires that the decision

maker not be fooled by trivial extensions of decision trees.

Axiom 5 (Indifference to Trivial Extensions) For any a ∈ D, a ∼ {a}.

12



p q

p q

a

a

{a}

Figure 9: The decision maker is indifferent between the two decision trees, a = {p, q} and

{a} = {{p, q}}.

The second axiom is a continuity condition. Intuitively, we want a decision tree’s utility

to not change much when its subtree values are slightly perturbed. For example, for depth-1

trees a and b, this means that if a and b share the same size and the utility of a’s lotteries is

close to that of b’s pairwisely, a’s utility should be close to b’s. This idea can be formalized

as follows. Let | · | denote the cardinality of a set. Define Dn
1 := {a ∈ D1 : |a| = n} for each

positive integer n. Recall that the distance between two lotteries p and q is given by the

Prokhorov metric d(p, q). Analogous to the Hausdorff metric, we define the following metric

on Dn
1 : For any a, b ∈ Dn

1 ,

dn(a, b) = max

{
max
p∈a

min
q∈b

d(p, q), max
q∈b

min
p∈a

d(p, q)

}
.

We may also continue to define the metric for depth-k trees, but this turns out to be unnec-

essary.

Axiom 6 (Continuity) For any a ∈ D1,
{
b ∈ D|a|1 : b � a

}
and

{
b ∈ D|a|1 : a � b

}
are open

in D
|a|
1 .

To better understand the implication of the final axiom, we use the following lemma

to summarize the behavioral implication of the axioms presented so far. We first define a

representation.

Definition 1 The preference % has a Recursive Average (RA) representation if there exists

an expected utility function U : D → R and a sequence of continuously strictly increasing
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symmetric functions gn : U(D)n → R for n ∈ N such that (i) for any a1, a2 ∈ D, a1 % a2 if

and only if U(a1) ≥ U(a2); (ii) for any b = {b1, . . . , bn} ∈ D, U(b) = gn(U(b1), . . . , U(bn));

and (iii) for any u1, . . . , un ∈ U(D), minui ≤ gn(u1, . . . , un) ≤ maxui.

The representation is recursive. For example, suppose a = {p, q, r} and b = {s, a} =

{s, {p, q, r}}. Then,

U(b) = g2(U(s), U(a)) = g2(U(s), g3(U(p), U(q), U(r))).

Moreover, the utility of b is always between the utility of b’s best subtree and the utility of

b’s worst subtree.

Lemma 1 The preference % has an RA representation if and only if % satisfies Axioms

1–6.

Disjoint Set Betweenness ensures that gn’s are between the maximum and the minimum.

Monotonicity not only ensures that the gn’s are well defined and increasing, but also implies

their recursivity.8 To see this, consider a = {p, q, r} and b = {s, a}. Suppose there is a

lottery p′ such that p′ ∼ a. According to Monotonicity, p′ ∼ a implies that b ∼ {s, p′}. In

other words, U(b) = U({s, p′}) = g2(U(s), U(p′)) = g2(U(s), U(a)).

The RA representation is very general, because there are few restrictions on gn’s. Our

last axiom pins down the form of gn’s, which significantly reduces the number of parameters

of the model. The last axiom is built on a simple idea: When a depth-1 tree contains fewer

lotteries, each of its lotteries commands more attention. To see what attention has to do

with choices, let us first introduce a notion of a swap.

Definition 2 For any a = {a1, a2, . . . , an} ∈ D2 such that a1, a2 ∈ D1, |a1| ≥ |a2|, p ∈

a1\a2, q ∈ a2\a1, a′1 := a1\{p} ∪ {q} 6∈ {a3, . . . , an}, and a′2 := a2\{q} ∪ {p} 6∈ {a3, . . . , an},

a swap of p for q is

∆p
q(a) := a\{a1, a2} ∪ {a′1, a′2}.

8More discussions about Monotonicity and Disjoint Set Betweenness can be found in Ke (2018).
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See Figure 5 for an example of a swap of “Win” for “Draw.” The definition requires that

a ∈ D2 be a depth-2 tree. Hence, a1, a2 are two sets of lotteries. In the definition, the lottery

p originally belongs to a larger subtree (a1) than the subtree (a2) containing q. We assume

that lotteries from a smaller subtree command more attention. Therefore, the swap of p for

q accentuates p and masks q. If p is preferred to q, we call this swap an accentuating swap

to emphasize the fact that after the swap, the better lottery p is more salient and the worse

lottery q is less. When we write ∆p
q(a) to denote the swap of p for q, implicitly we have

imposed the assumptions in Definition 2.

Axiom 7 (Preference for Accentuating Swaps) If a ∈ D2 and p % q, then ∆p
q(a) % a.

While the axiom is satisfied by a fully rational decision maker, it allows for departures

from full rationality. Consider the example in Figure 5. There is a depth-2 decision tree

a = {a1, a2} where a1 = {Win,Lose}, a2 = {Draw}. For a fully rational decision maker,

it does not matter which lottery is presented at which part of the tree; that is, she is

indifferent between a and {{Draw,Lose}, {Win}}. In contrast, when a boundedly rational

decision maker looks forward in decision tree a, since |a1| > |a2|, there are more (degenerate)

lotteries competing for attention in a1 than in a2. An accentuating swap of “Win” for “Draw”

makes “Win” more salient and “Draw” less. Therefore, the swapped decision tree appears

to be better. This axiom may be violated if, for example, the decision maker prefers “well-

organized” decision trees. Suppose x1, x2, x3 are bags, y1, y2 are jackets, and x1 is better

than y1. The decision maker who prefers well organized decision trees may strictly prefer

{{x1, x2, x3}, {y1, y2}} to {{x1, y2}, {y1, x2, x3}}, which violates Preference for Accentuating

Swaps.

The theorem below identifies the class of aggregators that are consistent with the axioms.

We first define the representation.

Definition 3 The preference % has a 0-Stage Boundedly Rational Backward Induction (0-

BRBI) representation if there exists an expected utility function U : D → R and a continu-
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ously strictly increasing function f : U(D) → R such that (i) for any a1, a2 ∈ D, a1 % a2 if

and only if U(a1) ≥ U(a2); and (ii) for any b = {b1, . . . , bn} ∈ D,

U(b) = f−1

(
1

n

n∑
i=1

f(U(bi))

)
. (3)

Due to equation (3), U and f are not independent. However, if we restrict the domain of

U to the set of lotteries D0, U (defined on D0) does not depend on f ; that is, equation (3)

uniquely extends the utility of lotteries to the utility of all finite decision trees. To see how

the representation works, for example, suppose again that a = {p, q, r} and b = {s, a} =

{s, {p, q, r}}. Knowing the utility of lotteries p, q, r, s, we can apply (3) to derive the utility

of a,

U(a) = f−1
(

1

3
f(U(p)) +

1

3
f(U(q)) +

1

3
f(U(r))

)
,

which in turn is used to derive the utility of b,

U(b) = f−1
(

1

2
f(U(s)) +

1

2
f(U(a))

)
(4)

= f−1
(

1

2
f(U(s)) +

1

2
f

(
f−1

(
1

3
f(U(p)) +

1

3
f(U(q)) +

1

3
f(U(r))

)))
= f−1

(
1

2
f(U(s)) +

1

6
f(U(p)) +

1

6
f(U(q)) +

1

6
f(U(r))

)
.

Theorem 1 The preference % has a 0-BRBI representation if and only if % satisfies Axioms

1–7. In the 0-BRBI representation of a nontrivial %, the expected utility function U is unique

up to a positive affine transformation, and fixing any U , the function f is unique up to a

positive affine transformation.

We offer two interpretations of the aggregator (3). The first interpretation is below, and

the second will be introduced in Section 4. In the first interpretation, note that the aggregator

in fully rational backward induction is the maximum function; that is, U(b) = maxi U(bi)

for any decision tree b = {b1, . . . , bn} ∈ D. In our model, instead of the maximum function,
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the aggregator (3) is a general notion of average.9 The decision maker evaluates subtrees

as if she applies (3) recursively. The average aggregator (3) captures the idea that if the

decision maker does not perform backward induction, she evaluates subtrees according to

some “foggy” overall impression. As f gets arbitrarily convex (concave), (3) converges to the

maximum (minimum) function. For example, suppose U(D0) = R++. As γ →∞, f(u) = uγ

(γ > 0) yields the maximum function and f(u) = −u−γ (γ > 0) yields the minimum function.

3.1 Nonrecursive Aggregation

Although equation (3) and the previous example of evaluating b = {s, a} = {s, {p, q, r}}

suggest that the aggregator works recursively, there is an equivalent but nonrecursive way

to apply the aggregator. Nonrecursive aggregation may provide a better interpretation of

the representation. In recursive aggregation, it is natural that the decision maker adopts

some average aggregator—but perhaps less so that the decision maker does this recursively.

In the equivalent nonrecursive aggregation introduced below, the decision maker applies the

average aggregator only once to evaluate the decision tree, but the aggregator’s weights over

(terminal) lotteries will depend on the structure of the tree.

Consider b = {s, a} = {s, {p, q, r}} again. As shown by the third equality of equation

(4), rather than first evaluating a and then b recursively, an alternative way to evaluate b is

to aggregate the utility b’s lotteries s, p, q, r directly:

U(b) = f−1
(

1

2
f(U(s)) +

1

6
f(U(p)) +

1

6
f(U(q)) +

1

6
f(U(r))

)
.

Note that instead of using the uniform weights (1/n) as in equation (3), each lottery’s weight

now depends on the structure of the decision tree. In this example, s has weight 1/2 and

the other lotteries have weight 1/6.

Intuitively, we can think of the weight of a lottery as the share of attention that the

9In mathematics, Kolmogorov (1930) proposes an equation that is similar to (3) to define average.
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lottery receives. The decision maker’s attention is equally split at every node of a decision

tree. Therefore, s will receive half of the attention and p, q, r will each receive 1/6 of the

attention. This observation can be easily generalized.

3.2 Sketch of the Proof

The construction of the function f is similar to how one calibrates an expected utility function

from the data on certainty equivalents for 50-50 gambles (see Machina (1987)). Recall that

D0 = ∆(X) is the set of Borel probability measures on a compact set X. The axiom vNM

states that % has an expected utility representation on D0. Let U : D0 → R be an expected

utility representation of % on D0. Since U is continuous and X is compact, find one of the

best lotteries ph and one of the worst lotteries pl. Consider the nontrivial case in which

U(ph) = 1 and U(pl) = 0.

From Disjoint Set Betweenness, one can show recursively that for any subtree c, ph %

c % pl. To see this, for example, consider a depth-1 decision tree a = {p, q} ∈ D1 and

suppose p % q. By Disjoint Set Betweenness, ph % p % a % q % pl. Next, consider

some depth-2 decision tree b = {r, a}. As explained in Lemma 1, Monotonicity implies the

recursivity of the representation; that is, if for some lottery s, a ∼ s, then Monotonicity

implies b ∼ {s, r}. Since we already know that ph % a % pl, we know that s exists. Then,

we can apply Disjoint Set Betweenness again to show that ph % b % pl. By induction, we

can show for every decision tree c, ph % c % pl, which implies that we can find some αc such

that αcph + (1 − αc)pl ∼ c. Let U(c) = αc. Now, we have extended the domain of U from

D0 to D. The question is whether the function U is consistent with equation (3).

We construct f as follows. Let f(0) = f(U(pl)) = 0 and f(1) = f(U(ph)) = 1. Define

f(U({ph, pl})) :=
1

2
f(U(ph)) +

1

2
f(V (pl)) =

1

2
;

that is, if, for example, U({ph, pl}) = 1/5, the equation above defines f(1/5) to be 1/2. To
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see why this construction of f is similar to the calibration of an expected utility function,

think of U(ph) and U(pl) as x dollars and y dollars; U({ph, pl}) as the certainty equivalent

of the 50-50 gamble between x and y; and f as the expected utility function. Then, the

equation above is similar to stating that the utility of the certainty equivalent is equal to

the expected utility expression on the right-hand side.

Next, consider {ph, {ph, pl}} and define

f(U({ph, {ph, pl}})) :=
1

2
f(U({ph, pl})) +

1

2
f(U(ph)) =

3

4
.

Similarly, consider {pl, {ph, pl}} and set f(U({pl, {ph, pl}})) = 1
2
f(U({ph, pl}))+ 1

2
f(U(pl)) =

1
4
. We can continue in this fashion and define f on some subset of [0, 1]. Denote all the binary

decision trees of this kind (whose terminal lotteries are either ph or pl) by D̂. The subset of

[0, 1] on which f has been defined is U
(
D̂
)

.

We want to verify that equation (3) holds on D̂, and a key consequence of equation (3)

to be verified is a bisymmetry property. Consider two binary decision trees, {{a, b}, {c, d}}

and {{a, c}, {b, d}}, that belong to D̂. For equation (3) to hold on D̂, it must be true that

{{a, b}, {c, d}} ∼ {{a, c}, {b, d}}, (5)

because

U({{a, b}, {c, d}}) = U({{a, c}, {b, d}}) = f−1
(

1

4
f(U(a)) + · · ·+ 1

4
f(U(d))

)
.

Preference for Accentuating Swaps ensures that (5) holds. Consider {{a, b}, {c, d}} and sup-

pose b % c. First, find lotteries p1, . . . , p4 such that p1 ∼ a, . . . , p4 ∼ d. Thus, p2 % p3 By

Monotonicity, {{a, b}, {c, d}} ∼ {{p1, p2}, {p3, p4}} and {{a, c}, {b, d}} ∼ {{p1, p3}, {p2, p4}}.

According to Preference for Accentuating Swaps, since |{p3, p4}| ≥ |{p1, p2}|, an accen-

tuating swap of p2 for p3 should be weakly preferred to {{p1, p2}, {p3, p4}}. Therefore,
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{{p1, p3}, {p2, p4}} % {{p1, p2}, {p3, p4}}. However, we can swap p2 back for p3, and apply

Preference for Accentuating Swaps again to conclude that {{p1, p2}, {p3, p4}} % {{p1, p3}, {p2, p4}}.

Thus, we have (5).

Using Monotonicity and Disjoint Set Betweenness, it can be shown that the subset must

be dense. By Continuity, we can extend the domain of f to the entire set [0, 1]. The

construction so far only deals with binary decision trees D̂. In the last step, we show that

(3) holds not only for D̂, but also for all finite decision trees under the same f function.

4 κ-Stage Perfect Foresight

To accommodate violations of fully rational backward induction, many economists have

considered the idea that the decision maker can perform fully rational backward induction

only for a few stages, and then she uses some other aggregator/value function to evaluate

subtrees beyond her perfect foresight (see footnote 2). Below, we characterize the model in

which the decision maker has perfect foresight for κ stages, and uses the aggregator (3) to

evaluate subtrees beyond κ stages.

To state the axioms, we first introduce some terminology and notations. For each decision

tree a ∈ D, we use π(a) to denote the set of lotteries that can be reached by making a series

of choices in a. Since a is finite, π(a) is finite. Because the preference % is complete and

transitive, we can find the best lotteries of π(a). Denote one of the best lotteries among π(a)

by π̄(a). For a lottery p ∈ D0, let π(p) = {π̄(p)} = {p}.

Confronting a ∈ D, we say that a subtree b is a j-stage subtree of a if

b ∈ a(j−1) ∈ · · · ∈ a(1) ∈ a.

We say that a is a 0-stage subtree of a. Next, suppose b is a j-stage subtree of a. We use

φcb(a) ∈ D to denote the tree that differs from a only by replacing b with a subtree c (see
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Figure 10).10 By definition, c is a j-stage subtree of φcb(a).

We first introduce a simple axiom that allows us to identify κ.

Axiom 8 (Limited Perfect Foresight) For some j ∈ N, if a ∼ π̄(a) for all a ∈ Dj, then

b ∈ Dk and k ≤ j imply b ∼ π̄(b).

The axiom says that if a decision maker can solve all depth-j decision trees perfectly, she

can also solve any depth-k decision tree perfectly as long as k ≤ j. This axiom enables us

to define κ and a preference %∗ for subtrees beyond the decision maker’s perfect foresight.

Definition 4 Let κ be the number such that (i) for any a ∈ Dκ, π̄(a) ∼ a; and (ii) there

exists some b ∈ Dκ+1 such that π̄(b) 6∼ b. When κ < +∞, we write b %∗ c if for any j ≥ κ

and a ∈ D such that b is a j-stage subtree of a, a % φcb(a). When κ = +∞, b %∗ c for any

b, c ∈ D.

1.8

2 0 1

0 1.5 3

b

1.8

2 0 1

0

c

1.5

a φcb(a)

Figure 10: By replacing the 2-stage subtree b = {0, 1.5, 3} of a with c = {0, 1.5}, we obtain

a new decision tree φcb(a). Suppose κ ≤ 2. Then, b %∗ c implies that a % φcb(a).

Since p ∼ π̄(p) for any lottery p, we know that κ ≥ 0. If κ = +∞, the decision maker

performs fully rational backward induction. The definition of %∗ implies that if b %∗ c,

replacing a subtree b beyond perfect foresight with another subtree c always makes the

original decision tree worse. The next axiom requires that %∗ be well-behaved.

10More precisely, φcb(a) should also keep track of the choice path in a that leads to b; that is, φcb(a) should
also depend on a(j−1), . . . , a(1) if we are considering subtree b ∈ a(j−1) ∈ · · · ∈ a(1) ∈ a. This is because in
general, subtree b may appear multiple times in a decision tree a. For simplicity, we omit the choice path
that leads to b in the notation.
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Axiom 9 (κ-Consistent Weak Order) %∗ is complete, transitive, and for any p, q ∈ D0,

p % q if and only if p %∗ q.

This axiom implies that if replacing a j-stage (j ≥ κ) subtree b of a with another subtree

c makes a better, then whenever b is beyond perfect foresight in any decision tree, replacing

b with c improves the tree. Moreover, %∗ coincides with % on D0; that is, the risk attitude

stays constant no matter where the lotteries are located in decision trees.

Lastly, we impose axioms from Section 3 to %∗.

Axiom 10 (κ-Aggregator) %∗ satisfies Axioms 3–7.

Axioms 1 and 2 together with the axioms in this section lead to the following represen-

tation of the decision maker’s preference.

Definition 5 The preference % has a κ-Stage Boundedly Rational Backward Induction (κ-

BRBI) representation if there exists a constant κ ∈ N ∪ {+∞}; expected utility functions

U∗ : D → R and Uj : D → R for each j ≤ κ; and a continuously strictly increasing function

f : U∗(D)→ R such that

(i) for any a, a′ ∈ D, a % a′ if and only if U0(a) ≥ U0(a
′);

(ii) Uj(p) = U∗(p) for any j ≤ κ and p ∈ D0;

(iii) if b = {b1, . . . , bn} ∈ D is a j-stage subtree of a decision tree c,


Uj(b) = maxi Uj+1(bi) if j < κ,

Uj(b) = U∗(b) = f−1
(
1
n

∑
i f(U∗(bi))

)
if j = κ,

U∗(b) = f−1
(
1
n

∑
i f(U∗(bi))

)
if j > κ.

(6)

Part (i) of the definition says that U0 is the utility function that represents the preference.

Part (ii) implies that no matter where a lottery is located in a decision tree, its expected

utility does not change. Hence, let us define an expected utility function for lotteries; that

is, for any κ-BRBI representation, we define U : D0 → R to be the function such that for
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any p ∈ D0,

U(p) := U0(p) = · · · = Uκ(p) = U∗(p). (7)

What the structure of a decision tree affects is how the decision maker aggregates the

utility of lotteries, which is reflected in part (iii). The first case in part (iii) is the aggregator

within the decision maker’s perfect foresight, in which the utility of a j-stage subtree b

depends on j. To see why, suppose b = {s, {p, q, r}} and κ = 2. If b is a 0-stage subtree, the

utility of b should be equal to its best lottery’s utility. However, if b is a 1-stage subtree, b’s

subtree {p, q, r} is beyond the decision maker’s perfect foresight. Hence, the utility of b may

differ from its best lottery’s utility. The second case in part (iii) is the transition stage, in

which b is at the boundary of perfect foresight, and b’s subtrees are beyond perfect foresight.

Beyond perfect foresight, the utility function U∗ is used instead, which is no longer aggregated

through the maximum function. Lastly, note that although part (iii) works recursively, our

discussion in Section 3.1 again applies.

To see how the representation works, consider again, for example, a = {p, q, r} and

b = {s, a} = {s, {p, q, r}}. We derive the utility of b. The case of κ = 0 is identical to the

example in the previous section, except for some notational differences.11 Suppose κ = 1.

Since a is a 1-stage subtree of b, the second case of the definition’s part (iii) implies that

U1(a) = U∗(a) = f−1
(

1

3
f(U(p)) +

1

3
f(U(q)) +

1

3
f(U(r))

)
.

However, for the 0-stage subtree b (of b), we will apply the first case of the definition’s part

(iii):

U0(b) = max {U(s), U1(a)} .

The theorem below establishes the equivalence between the κ-BRBI representation and

11Suppose κ = 0. First, because b is a 0-stage subtree of b, the second case of the definition’s part (iii)
implies that U0(b) = U∗(b) = f−1

(
1
2f(U∗(s)) + 1

2f(U∗(a))
)
. Since s is a lottery, part (ii) of the definition

and equation (7) imply that U∗(s) = U(s). The same applies to lotteries p, q, r. Next, a is a 1-stage subtree of
b. The third case of the definition’s part (iii) applies: U∗(a) = f−1

(
1
3f(U∗(p)) + 1

3f(U∗(q)) + 1
3f(U∗(r))

)
=

f−1
(
1
3f(U(p)) + 1

3f(U(q)) + 1
3f(U(r))

)
, which can be plugged into the equation for U0(b) above.
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the axioms.

Theorem 2 The preference % has a κ-BRBI representation if and only if % satisfies Axioms

1, 2, and 8–10. In the κ-BRBI representation of a nontrivial %, κ is unique; the expected

utility functions Uj’s (j ≤ κ) and U∗ are unique up to a positive affine transformation; and

fixing Uj’s and U∗, the function f is unique up to a positive affine transformation.

Now, we introduce the second interpretation of the κ-BRBI representation. In this in-

terpretation of (6), it is as if the decision maker knows the structure of a decision tree but

is unable to predict or does not trust her future selves’ choices beyond κ stages. Concep-

tually, knowing the structure of a decision tree does not imply that she can identify the

optimal path and keep track of it. In particular, when evaluating a decision tree b, she

envisions that beyond κ stages, she will choose uniformly randomly among a1, . . . , an for

each j-stage subtree a = {a1, . . . , an} of b (j ≥ κ). As discussed previously, such a belief is

called Laplacian; it captures the idea that the uniform prior should be applied to unknown

events based on “the principle of insufficient reason” (Laplace (1824)). The Laplacian belief

is biased/unsophisticated, because the decision maker does not actually randomize at future

stages. The decision maker’s attitude toward the Laplacian belief is captured by f ◦ U∗,

because (3) implies that

f ◦ U∗(b) =
n∑
i=1

1

n
· f ◦ U∗(bi).

Therefore, f is a second-order expected utility function, and captures the difference between

how the decision maker treats objective risk (captured by U∗) and the subjective uncertainty

perceived in the Laplacian belief. As will be shown, the concavity of f describes the decision

maker’s unpredictability aversion, the same way the concavity of the expected utility function

describes the decision maker’s risk aversion.

Note that by definition, Uj(p) = U∗(p) for any lottery p and j ≤ κ. Therefore, Uj’s

and U∗ are jointly unique up to a positive affine transformation. Similar to the case with

κ = 0 in the previous section, κ and f uniquely extend the utility of lotteries to the utility of
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decision trees. The three parameters—the expected utility function for lotteries U as defined

in equation (7), κ, and f—are independent. When the decision maker’s preference can be

represented by the κ-BRBI representation, as in Definition 5, we say that (U, κ, f) represents

%.

4.1 A Comparative Measure of Unpredictability Aversion

In the second interpretation of the κ-BRBI representation, the decision maker is unable to

predict her choices beyond κ stages. However, if what lies beyond κ stages is a degenerate

subtree, the decision maker does not need to make any prediction. Suppose there are two

decision makers, labeled 1 and 2, who only look forward 0 stages perfectly for simplicity;

that is, they are unable to predict their future choices in any nondegenerate decision tree.

Confronting the same lottery and decision tree, if compared to decision maker 1, decision

maker 2 is always more inclined to choose the lottery over the decision tree, decision maker

2 reveals that she is more averse to the situation in which she cannot make predictions. This

idea can be extended to the case in which both decision makers can look forward more stages

perfectly.

Formally, suppose %i is decision maker i’s preference. Recall that we write b %∗i c if

decision maker i always prefers to replace subtree c with b whenever c is beyond her perfect

foresight.

Definition 6 %2 is more unpredictability-averse than %1 if for any p ∈ D0, a ∈ D, a %∗2 p

implies a %∗1 p.

We say that a function f2 is more concave than f1 if f2 = g◦f1 for some strictly increasing

and concave function g. The following theorem characterizes the comparative measure of

unpredictability aversion.

Theorem 3 Suppose
(
Ûi, κi, f̂i

)
represents the nontrivial preference %i and κi < +∞.

Then, %2 is more unpredictability-averse than %1 if and only if there exist (U, κ1, f1) and
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(U, κ2, f2) that represent %1 and %2, respectively, such that f2 is more concave than f1.

Therefore, the concavity of f characterizes a decision maker’s attitude toward unpre-

dictability, the same way that the concavity of an expected utility function characterizes

the decision maker’s attitude toward objective risk. Similar to the measure of absolute risk

aversion, when f1 and f2 are twice differentiable, −f ′′/f ′ can be used as the comparative

measure of unpredictability aversion.

4.2 Choices in Decision Trees and Iterative Revisions of Plans

Confronting a decision tree a = {a1, . . . , an}, the most preferred subtree ai should be chosen.

If ai is not a lottery, it is natural to assume that the decision maker will continue to choose

her most preferred subtree from ai = {b1, . . . , bm}, and so on. Thus, we can apply the

preference iteratively to describe the decision maker’s choices (see Figure 4 for example).

By doing so, we have assumed history independence: The decision maker’s preference over

subtrees does not depend on her past choices.

Under history independence, the decision maker’s perfect foresight moves forward as

she makes choices. She can see the first κ stages of a perfectly when choosing from a =

{a1, . . . , an}. After choosing ai ∈ a, she will be able to see the (κ+ 1)th stage of a perfectly.

Therefore, the decision maker may iteratively revise her plan. In Figure 4, initially, the

decision maker may believe that she will choose 2 at the next stage, but at the next stage,

she realizes that 2 is not optimal.

Intuitively, at every stage, the decision maker has an “optimal” plan for the next κ choices

following the current one, and the current one constitutes the first step of the plan. Our

revealed preference theory, together with history independence, thus characterizes a decision

maker who does not realize that her actual future choices may differ from her plan. The

decision maker mistakenly believes that she is able to control her future choices, and as she

makes choices, she may even revise what she believes she will do in the future. Therefore, our
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approach is similar to an approach to modeling choices under imperfect foresight discussed

in Section 4 of Chapter 7 in Rubinstein (1998).

This approach is in contrast with an alternative approach discussed in Rubinstein (1998),

the “multiselves” approach first suggested by Strotz (1955). The multiselves approach as-

sumes that the decision maker at each stage chooses the utility-maximizing subtree taking

her next κ selves’ strategies as given. The decision maker becomes a set of “selves” whose

strategies form some equilibrium. The equilibrium describes how the decision maker chooses

in the decision tree. For example, in Jéhiel (1995), at each stage, a player of an infinite-

horizon alternate-move game forms a finite forecast of the moves of the player’s and her

opponent’s future selves. Although the forecast is limited, the equilibrium requires that the

forecast be correct.

Both approaches have pros and cons. In addition to Rubinstein’s (1998) discussion of

why the multiselves approach may be inappropriate, it is also not clear whether the decision

maker’s first self should know her second self’s strategy, because the second self’s strategy is

determined based on the (κ+ 1)th self’s strategy, which the first self should not know.12 For

example, when an amateur plays a Rubik’s Cube, she often has an initial plan for the next

few moves, but as the configuration of the Rubik’s Cube changes, the plan may no longer

be appealing. This seems consistent with our approach. On the other hand, Rubinstein

(1998) points out a difficulty in our approach that will arise in games: Since the decision

maker does not know her own future choices, it is not clear whether we should assume that

in equilibrium the decision maker knows the strategies of opponents who move after her.

Iterative revisions of plans lead to time inconsistency. Many other models generate time

inconsistency too, such as models of changing tastes (see Strotz (1955)). There are three

main differences between models of changing tastes and ours. First, in our model, the utility

function over lotteries never changes. Therefore, our model has a clear welfare criterion.

In contrast, the utility function over lotteries in models of changing tastes may change over

12However, see Jéhiel (1998) for a learning foundation for this approach.
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time, and it is less clear how to choose the welfare criterion. Second, in our model, dominated

lotteries affect the decision maker’s evaluation and choices, because all lotteries beyond the

perfect foresight are aggregated with equal weights. In models of changing tastes, if a lottery

is always dominated regardless of tastes (for example, a degenerate lottery of losing a billion

dollars in the presence of a degenerate lottery of losing zero dollars), it should not matter.

Third, our decision maker applies the Laplacian belief to her future choices beyond the

perfect foresight. In models of changing tastes, the decision maker can have a deterministic

and complete plan for her future choices, even though the plan may not match her actual

future choices. Lastly, sometimes decision trees can be viewed as frames of decision problems

that unfold in a short period of time. In this situation, models of changing tastes may not

be suitable.

Models of temptations (see Gul and Pesendorfer (2001), Dekel, Lipman, and Rustichini

(2009), and Stovall (2010)) may also generate time inconsistency.13 First, compared to our

model, models of temptations usually implicitly assume that the decision maker is correct

about her second-stage (tempted) preferences, while in our model, the decision maker can

be wrong about her future choices. Second, the second point in the previous discussion

continues to apply to models of temptations. Lastly, it can be shown that our model violates

the independence axiom that is often imposed in models of temptations. However, it should

be noted that our model satisfies the temptation-related axioms in, for example, Dekel

et al. and Stovall. Those axioms are rather weak. Hence, they have temptation-based

interpretations, and may also have imperfect-foresight-based interpretations.

5 κ and f in Decision Trees

We use a few examples below to illustrate that first, as κ increases or f becomes more convex,

it is not necessarily the case that the decision maker will reach better lotteries in decision

13See Dekel and Lipman (2012) for the relation between models of random changing tastes and models of
random temptations.
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trees; second, a more convex f may be more helpful for the decision maker to reach better

lotteries in decision trees with higher depth, and a higher κ, in contrast, may be more helpful

in decision trees with lower depth.

As κ increases, the decision maker looks forward more stages perfectly. As f becomes

more convex, the decision maker is less unpredictability-averse; that is, her aggregator beyond

the perfect foresight is closer to the fully rational decision maker’s. Whether a higher κ or a

more convex f implies that the decision maker will reach better lotteries, however, depends

on the decision tree.14

Suppose (U, κ, f) represents the decision maker’s preference, U(x) = x whenever x ∈ X

is a real number, κ = 0, and f is the identity function. Consider the following decision tree,

a = {{{3, 1}, 4}, {2, 4 + ε}},

in which ε is a small positive number. Since {{3, 1}, 4} is indifferent to {2, 4}, the decision

maker will choose {2, 4+ε} and end up with 4+ε. Now, if f becomes convex, it can be shown

that as long as ε is sufficiently small, the decision maker will choose {{3, 1}, 4} over {2, 4+ε}

and end up with 4. This is because when f is convex, the subtree {3, 1} from {{3, 1}, 4}

appears better than 2 from {2, 4 + ε}. The decision maker with a “better” aggregator gets

distracted by 3 and misses 4 + ε.

Increasing κ may also cause the decision maker to turn away from the best lottery.

Consider another decision tree

b = {{3, {2, 4 + ε}}, {2, 4}}.

The value of {3, {2, 4 + ε}} is 3 + ε/4, which is higher than the value of {2, 4}. Therefore,

the decision maker will reach 4 + ε. Now, suppose κ becomes 1. The value of {3, {2, 4 + ε}}

becomes 3 + ε/2, while the value of {2, 4} becomes 4. The decision maker ends up with 4.

14Jéhiel (1995) also finds that decision makers who can see fewer stages may perform better.
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The decision maker who sees more stages perfectly gets distracted by 4 and misses 4 + ε.

Of course, fixing any ε > 0, if κ becomes sufficiently high or the aggregator becomes close

enough to the maximum function, the decision maker should not be worse off. In general,

however, the κ-BRBI representation is flexible enough to interact with the decision tree and

generate interesting behavioral predictions.

The next example illustrates how κ’s role may differ from f ’s. Suppose the decision

maker needs to go to a building. She can either take a taxi or drive. If she takes a taxi,

the utility is t. If she drives, there is a series of exits along the way. For simplicity, assume

that only one exit leads to the building and the others are equally bad. The utility of the

correct exit is 2 and the utility of other exits is 0. By driving and choosing the correct exit,

the decision maker obtains the highest utility.

Suppose the following decision tree

c = {t, {0, {0, . . . , {0,︸ ︷︷ ︸
n−1

{2, {0, {0, . . . , {0, 0}}}︸ ︷︷ ︸
m

}}}}}

describes this situation.15 It can be verified that regardless of what κ and f are, once the

decision maker chooses to drive herself, she will reach the correct exit. However, the decision

maker may not understand at early stages that she is able to do that if κ < n.

Suppose there are two decision makers. Decision maker 1 has κ1 = κ (0 < κ ≤ n) and

f1(u) = u. Decision maker 2 has κ2 = 0 and f2(u) = uγ (γ > 1). At the first stage, for

decision maker 1, the utility of driving is 2κ · 21−n, and for decision maker 2, the utility of

driving is
(

1
2n

2γ
)1/γ

= 21−n/γ. Let us vary n. The smallest n is n = κ, in which case

2κ · 21−n = 2 > 21−n/γ.

Therefore, there exists some t ∈ (0, 2) such that decision maker 1 will choose to drive, but

15Although eventually m does not play any role, we include the variable m so that this example better
fits the description of the problem; that is, it is not necessarily the case that the final exit is the correct one.
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decision maker 2 will take a taxi. The situation will change as n increases. Whenever n is

larger than κ
1−1/γ , 21−n/γ will be higher than 2κ ·21−n; that is, there exists some t ∈ (0, 2) such

that decision maker 2 will drive but decision maker 1 will take a taxi. Hence, intuitively, if

n is large, the difference between κ1 and κ2 is less important and the decision maker with a

more convex f is likely to do better, and vice versa.
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A Appendix

We first prove Lemma 1, which will be used to establish Theorem 1. Theorem 1, in turn,

will be used to establish Theorem 2.

Proof of Lemma 1: We only show that the axioms imply the representation. According

to vNM, let U : D0 → R be a continuous function such that

U(p) =

∫
X

U dp

represents % on D0. Since X is compact, U(D0) is compact and there exists a best lottery

and a worst lottery in X. Let us use xh and xl to denote the best and the worst lottery,

respectively. From the expected utility function U , we construct a utility representation of

%. To do this, we first prove two lemmas.

Lemma 2 For any decision tree a = {a1, . . . , an} ∈ D, and distinct lotteries p1, . . . , pn. The

following statements are true:

1. If pi % ai for each i, {p1, . . . , pn} % a;

2. If pi % ai for each i and for some j, pj � aj, then {p1, . . . , pn} � a;

3. If ai % pi for each i, a % {p1, . . . , pn};

4. If ai % pi for each i and for some j, aj � pj, then a � {p1, . . . , pn};

5. If pi ∼ ai for each i, {p1, . . . , pn} ∼ a;

Proof. We only show the first statement; the rest are similar. Applying Monotonicity re-

peatedly, we have {p1, . . . , pn} % {a1, p2, . . . , pn} % {a1, a2, p3, . . . , pn} % · · · % {a1, . . . , an}.

For any decision tree a = {a1, . . . , an}, we use πh(a) to denote the best subtree among

a1, . . . , an, and use πl(a) to denote the worst subtree among a1, . . . , an.
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Lemma 3 For any decision tree a, xh % πh(a) % a % πl(a) % xl.

Proof. We show that for any a ∈ D,

xh % πh(a) % a % πl(a) % xl (8)

by two inductions. First, suppose a ∈ D1. Clearly, (8) holds if |a| = 1. If for any a ∈ D1

such that |a| < n, (8) holds. Take any b ∈ D1 and |b| = n. Let c = b \ {πh(b)}. By

defintion, b = {πh(b)}∪ c and |c| < n. By definition, πh(b) % πh(c). Since |c| < n, πh(c) % c.

It must be true that πh(b) % c. By Indifference to Trivial Extensions, πh(b) ∼ {πh(b)}.

By Disjoint Set Betweenness, πh(b) ∼ {πh(b)} % b % c. We know that xh % πh(b) and

πh(c) % c % πl(c) % πl(b) % xl. Therefore, (8) holds for b. By induction, we know that for

any a ∈ D1, (8) holds.

Next, we show that for any a ∈ D, (8) holds. Suppose that for some 1 < k ∈ N, we

have shown that for any b ∈ Dj such that j < k, (8) holds. We want to show that for any

a = {a1, . . . , an} ∈ Dk, (8) holds. By definition, each ai ∈ a must belong to one and only

one Dki such that ki < k. Therefore, xh % ai % xl. Clearly, there exists some αi ∈ [0, 1] such

that

ai ∼ αix
h + (1− αi)xl =: p̂i. (9)

We want to apply Lemma 2 to show that a is indifferent to some depth-1 decision tree.

At this point, it is possible that there are some ai, aj ∈ a such that ai ∼ aj, which means

that p̂i and p̂j are identical and prevents us from applying Lemma 2. However, by richness

of X, there are countably infinitely many elements of X that are indifferent to xh and xl,

respectively. Therefore, we can always find different xhi , x
l
i ∈ X such that xhi ∼ xh and

xli ∼ xl to construct the mixture in (9) for each ai. Denote the lottery αix
h
i + (1− αi)xli by

pi. We can ensure that p1, . . . , pn are distinct. By Lemma 2,

a ∼ {p1, . . . , pn} =: b.
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Note that b ∈ D1. Therefore, xh % πh(b) % b % πl(b) % xl. Since πh(b) ∼ πh(a) and

πl(b) ∼ πl(a), we know that (8) holds for any a ∈ Dk. By induction, for any a ∈ D, (8)

holds.

Therefore, for each decision tree a ∈ D, we can find a unique α ∈ [0, 1] such that

a ∼ αxh + (1 − α)xl. Define U(a) := αU(xh) + (1 − α)U(xl). Then, we have extended U ’s

domain from D0 to D. It is straightforward to verify that U represents % on D.

Next, we want to show that there exist a sequence of continuously strictly increasing

symmetric functions gn : U(D)n → R for n ∈ N such that for any b = {b1, . . . , bn} ∈ D,

U(b) = gn(U(b1), . . . , U(bn)). (10)

If we can show (10), it is automatically true that for any u1, . . . , un ∈ U(D),

minui ≤ gn(u1, . . . , un) ≤ maxui,

because by Lemma 3, for any b = {b1, . . . , bn} ∈ D, minU(bi) ≤ U(b) ≤ maxU(bi).

Lemma 2 ensures that gn is well defined, because for any a, b ∈ D such that a 6= b and

U(ai) = U(bi), we must have U(a) = U(b). Lemma 2 also implies that gn is increasing.

Since decision trees are defined using sets, the function gn’s are clearly symmetric. Con-

tinuity implies that gn is continuous. To see this, suppose that in U(D0)
n, a sequence of

n-tuples
((
u
(j)
1 , . . . , u

(j)
n

))∞
j=1

converges to some (u1, . . . , un). For each
(
u
(j)
1 , . . . , u

(j)
n

)
and

(u1, . . . , un), we can find an n-tuple of lotteries giving the desired n-tuple of utility such that

each lottery’s support is {xh, xl}. It can be verified that these lotteries converge in dn. Then,

standard arguments will follow.

�

Proof of Theorem 1: We first show that the axioms imply the representation. First,

we can apply Lemma 1 and know that there exist a sequence of continuously strictly increas-
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ing functions gn : U(D)n → R for n ∈ N and an expected utility function U : D → R such

that (i) U represents %, (ii) for any b = {b1, . . . , bn} ∈ D, U(b) = gn(U(b1), . . . , U(bn)), and

(iii) minui ≤ gn(u1, . . . , un) ≤ maxui for any ui ∈ U(D). Note that part (iii) implies that

g1(u) = u and gn(u, . . . , u) = u for any u ∈ U(D).

Let us first focus on g2. We use Preference for Accentuating Swaps to prove a property

of g2 in the following lemma. Next, we will apply a result from Aczél (1966), which shows

that there exists a continuously strictly increasing function f : U(D)→ R such that

g2(u1, u2) = f−1
(

1

2
f(u1) +

1

2
f(u2)

)
. (11)

The main steps of Aczél’s proof are described in Section 3.2.

Lemma 4 For any u1, . . . , u4 ∈ U(D), g2(g2(u1, u2), g2(u3, u4)) = g2(g2(u1, u3), g2(u2, u4)).

Proof. For any u1, . . . , u4 ∈ U(D), by the richness assumption of X, we can find four

distinct lotteries p1, . . . , p4 such that U(pi) = ui. Consider the depth-1 decision trees a =

{{p1, p2}, {p3, p4}} and b = {{p1, p3}, {p2, p4}}. Without loss of generality, assume that

u2 ≥ u3; that is, p2 % p3. Since |{p1, p2}| ≥ |{p3, p4}|, b = ∆p2
p3

(a). Therefore, by Preference

for Accentuating Swaps, b % a. Now, also note that |{p2, p4}| ≥ |{p1, p3}|, and hence

a = ∆p2
p3

(b). We apply Preference for Accentuating Swaps again, and find that a % b. Since

a ∼ b,

U(a) = g2(U({p1, p2}), U({p3, p4})

= g2(g2(u1, u2), g2(u3, u4))

= U(b) = g2(U({p1, p3}), U({p2, p4})

= g2(g2(u1, u3), g2(u2, u4)).

Therefore, g2 is symmetric, strictly increasing, and continuous, and satisfies g2(u, u) = u

38



and g2(g2(u1, u2), g2(u3, u4)) = g2(g2(u1, u3), g2(u2, u4)). If % is trivial, that is, U(D) consists

of only one number, then equation (11) is trivially true for any f . Otherwise, according

to Aczél (1966), we know that there exists a continuously strictly increasing function f :

U(D)→ R such that (11) holds. Thus, for any decision tree a = {a1, a2} ∈ D,

U(a) = g2(U(a1), U(a2)) = f−1
(

1

2
f(U(a1)) +

1

2
f(U(a2))

)
.

Since g1(u) = u, for any b = {b′} ∈ D, it is trivially true that U(b) = f−1(f(U(b′))). Hence,

gn(u1, . . . , un) = f−1

(
1

n

∑
i

f(ui)

)
(12)

holds for n = 1, 2.

To prove (12) for the case of n > 2, we need the following two lemmas. To state the

first lemma, let us extend our definition of swaps. For any a = {a1, a2, . . . , an} ∈ D such

that a1, a2 ∈ D, |a1| ≥ |a2|, b ∈ a1\a2, c ∈ a2\a1, a′1 := a1\{b} ∪ {c} 6∈ {a3, . . . , an}, and

a′2 := a2\{c} ∪ {b} 6∈ {a3, . . . , an}, a swap of b for c is

∆b
c(a) := a\{a1, a2} ∪ {a′1, a′2}.

When we write ∆b
c(a) to denote the swap of b for c, implicitly we have imposed the as-

sumptions in the definition. The difference between this definition of swaps and our original

definition in Section 3 is that in Section 3, we require swaps to be defined only for some

depth-2 decision trees.

Lemma 5 For any decision tree a = {a1, . . . , an} such that b ∈ a1\a2, c ∈ a2\a1, and

|a1| ≥ |a2|, if b % c, then ∆b
c(a) % a. Moreover, if |a1| = |a2|, then ∆b

c(a) ∼ a.

Proof. Let us relabel subtrees b and c by b1 and c1, respectively. Suppose a = {a1, . . . , an},

a1 = {b1, . . . , bm1} and a2 = {c1, . . . , cm2}. We know that m1 ≥ m2 and b1 % c1. By richness

of X, we find distinct lotteries p3, . . . , pn such that pi ∼ ai for i = 3, . . . , n. Then, we find
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distinct lotteries q1, . . . , qm1 and r1, . . . , rm2 such that qj ∼ bj for j = 1, . . . ,m1 and rk ∼ ck

for k = 1, . . . ,m2. By Lemma 2, a1 ∼ {q1, . . . , qm1} =: â1, and a2 ∼ {r1, . . . , rm2} =: â2.

Again, by Lemma 2, we know that a ∼ {â1, â2, p3, . . . , pn} =: â. Clearly, â ∈ D2. Since

b1 % c1, q1 % r1. Then, we can apply Preference for Accentuating Swaps and find that

∆q1
r1

(â) % â ∼ a. Lastly, showing that ∆q1
r1

(â) ∼ ∆b
c(a) is similar to how we show that â ∼ a.

Next, suppose |a1| = |a2|. We still have ∆b
c(a) % a, as shown in the previous para-

graph. Moreover, in ∆b
c(a) = {a′1, a′2, a3, . . . , an}, we know that |a′1| = |a′2|, b ∈ a′2\a′1,

c ∈ a′1\a′2. Then, we can apply the argument from the previous paragraph again, and show

that ∆b
c(∆

b
c(a)) % ∆b

c(a). Obviously, ∆b
c(∆

b
c(a)) = a. Therefore, ∆b

c(a) ∼ a.

Lemma 6 Suppose a = {a1, . . . , an} is a decision tree such that (i) for some m ≥ 1, ai =

{ai,1, . . . , ai,m} for every i = 1, . . . , n, and (ii) ai ∩ aj = ∅ for any i, j ∈ {1, . . . , n}. Then,

a ∼
⋃n
i=1 ai.

Proof. First, we find for each ai,k, i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, n×m distinct copies

of lotteries that are indifferent to ai,k; that is, by richness of X, we find {pτi,k}n×mτ=1 ⊂ ∆(X) for

each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} such that (i) pτi,k ∼ ai,k for all i, k, τ , and (ii) pτi,k’s are

distinct for all i, k, τ . Define aτi := {pτi,1, . . . , pτi,m} for each i, τ , and define aτ := {aτ1, . . . , aτn}

for each τ . According to Lemma 2,

ai ∼ aτi (13)

for each i, τ , and a ∼ aτ for each τ . Also according to Lemma 2, {a1, . . . , amn} ∼ {a}. By

Indifference to Trivial Extensions, a ∼ {a}. Therefore, a ∼ {a1, . . . , amn} =: b.

Note that by construction, every aσi is a 2-stage subtree of b, since aσi ∈ aσ ∈ b. Consider

any aσ and aτ , σ, τ ∈ {1, . . . ,mn}. Note that |aσ| = |aτ | = n. Therefore, according to

the second part of Lemma 5, ∆
aσi
aτj

(b) ∼ b for any i, j ∈ {1, . . . , n}; that is, if we swap any

2-stage subtree aσi of b for another 2-stage subtree aτj of b, the swapped decision tree ∆
aσi
aτj

(b)

is indifferent to the original decision tree b. Moreover, every 1-stage subtree of the swapped

decision tree ∆
aσi
aτj

(b) has the same cardinality. Therefore, we can continue to swap any two
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2-stage subtrees of ∆
aσi
aτj

(b), and end up with a new swapped decision tree that is indifferent

to ∆
aσi
aτj

(b) and, hence, to b. We can keep swapping 2-stage subtrees of b until we obtain

the following decision tree: c = {c1, . . . , cmn} in which c(i−1)m+1 = {a1i , . . . , ani }, c(i−1)m+2 =

{an+1
i , . . . , a2ni }, . . . , c(i−1)m+k =

{
a
(k−1)n+1
i , . . . , akni

}
, . . . , cim =

{
a
(m−1)n+1
i , . . . , amni

}
, for

each i = 1, . . . , n. Moreover, b ∼ c.

It can be verified that we can indeed perform swaps to convert b into c. First, decision

tree c has as many (mn) 1-stage subtrees as b. Second, each 1-stage subtree of c has as many

(n) subtrees as each 1-stage subtree of b. Third, each 2-stage subtree of c has as many (m)

subtrees as each 2-stage subtree of b. Lastly, every aσi shows up once in some subtree of c

and only once.

Because of (13), subtrees of c(i−1)m+k =
{
a
(k−1)n+1
i , . . . , akni

}
are indifferent to each other

for any i = 1, . . . , n and k = 1, . . . ,m. According to Lemma 3, c(i−1)m+k ∼ ai ∼ aki for any

i = 1, . . . , n and k = 1, . . . ,m. Therefore, by Lemma 2,

c ∼ {a11, . . . , am1 , a12, . . . , am2 , . . . , a1n, . . . , amn } =: d.

Lastly, we want to apply Lemma 5 to d. Since d = {{a11,1, . . . , a11,m}, {a21,1, . . . , a21,m}, . . . ,

{am1,1, . . . , am1,m}, {a12,1, . . . , a12,m}, {a22,1, . . . , a22,m}, . . . , {am2,1, . . . , am2,m}, . . . , {a1n,1, . . . , a1n,m},

{a2n,1, . . . , a2n,m}, . . . , {amn,1, . . . , amn,m}}, each subtree aki = {aki,1, . . . , aki,m} of d is of size m.

The second half of Lemma 5 implies that swapping any two 2-stage subtrees of d will yield a

new decision tree that is indifferent to the original decision tree. Again, we can swap 2-stage

subtrees of d many times, and obtain

d′ := {{a11,1, . . . , am1,1}, {a11,2, . . . , am1,2}, . . . , {a1n,m, . . . , amn,m}} ∼ d.

Since aσi,k ∼ aτi,k for any σ, τ ∈ {1, . . . ,m}, we can apply Lemma 3 and show that

{a1i,j, . . . , ami,j} ∼ {ai,j} ∼ ai,j
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for each i, j. Hence, d′ is indifferent to {a1,1, a1,2, . . . , an,m} =
⋃n
i=1 ai. Since we have a ∼

b ∼ c ∼ d ∼ d′, we know that a ∼
⋃n
i=1 ai.

Now suppose that (12) works for all m ≤ n for some n > 1. Take any a = {a1, . . . , an+1}.

By richness of X, let us find distinct lotteries p1, . . . , pn−1 such that none of them be-

longs to a and pi ∼ a for i = 1, . . . , n − 1. By Lemma 2, {p1, . . . , pn−1} ∼ pi ∼ a.

Thus, by Disjoint Set Betweenness, a ∼ a ∪ {p1, . . . , pn−1}. Now, consider a decision

tree b := {{a1, . . . , an}, {an+1, p1, . . . , pn−1}}. According to Lemma 6, b ∼ {a1, . . . , an} ∪

{an+1, p1, . . . , pn−1} = a∪{p1, . . . , pn−1} ∼ a. Define b1 := {a1, . . . , an}, and b2 := {an+1, p1, . . . , pn−1}.

Since |b| = 2, |bi| = n, and U(pi) = U(a) = U(b), we know that

f(U(a)) = f(U(b)) =
1

2
f(U(b1)) +

1

2
f(U(b2))

=
1

2

(
1

n

n∑
i=1

f(U(ai)) +
1

n
f(U(an+1)) +

1

n

n−1∑
j=1

f(U(pj))

)

=
1

2n

(
n+1∑
i=1

f(U(ai)) +
n−1∑
j=1

f(U(pj))

)

=
1

2n

n+1∑
i=1

f(U(ai)) +
n− 1

2n
f(U(a)).

Thus,

U(a) = f−1

(
1

n+ 1

n+1∑
i=1

f(U(ai))

)
.

This shows that (12) works for all n using the same f function. The idea behind this step is

illustrated in the figure below.
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a1 a2 a3 a1 a2 a3 p1 a1 a2 a3 p1

Figure 11: Since equation (12) holds for n = 2, we can compute the utility of the right-hand

decision tree by applying g2 for the second stage and then for the first stage. We use it to

show that (12) holds for n = 3. Disjoint Set Betweenness is used to show that the left-hand

decision tree is indifferent to the decision tree in the middle, because p1 ∼ a. Lemma 6 shows

that the decision tree in the middle is indifferent to the right-hand decision tree. By letting

the utility of the left-hand decision tree be equal to the utility of the right-hand decision

tree, we show that (12) holds for n = 3.

Next, we show that the representation implies the axioms. We only show that Disjoint

Set Betweenness and Preference for Accentuating Swaps hold. Consider any a, b ∈ D such

that a∩ b = ∅, say a = {a1, . . . , am} and b = {b1, . . . , bn}. If a % b, then U(a) ≥ U(b). Since

f(U(a)) = 1
m

∑m
i=1 f(U(ai)) and f(U(b)) = 1

n

∑n
i=1 f(U(bi)),

f(U(a ∪ b)) =
1

m+ n

(
m∑
i=1

f(U(ai)) +
n∑
i=1

f(U(bi))

)
=

m

m+ n
f(U(a)) +

n

m+ n
f(U(b)).

Thus, U(a) ≥ U(a ∪ b) ≥ U(b), and hence Disjoint Set Betweenness is satisfied.

For a = {a1, . . . , an} such that a1, a2 ∈ D1, |a1| ≥ |a2|, p ∈ a1\a2, q ∈ a2\a1, a′1 :=

a1\{p} ∪ {q} 6∈ {a3, . . . , an}, and a′2 := a2\{q} ∪ {p} 6∈ {a3, . . . , an}, we have

|a| × (f(U(∆p
q(a)))− f(U(a))) = f(U(a′1)) + f(U(a′2))− f(U(a1))− f(U(a2))

= (f(U(p))− f(U(q)))

(
1

|a2|
− 1

|a1|

)
≥ 0.
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Therefore, Preference for Accentuating Swaps is satisfied.

Lastly, we show the uniqueness of the representation. Since % is nontrivial and X is

compact, we know that U(D) = [ul, uh] for some ul < uh. Since U is an expected utility

function on D0, we know that U is unique up to a positive affine transformation. Fix the

expected utility function U . To show f ’s uniqueness, suppose that f and g both satisfy

equation (3). Consider p, q ∈ D0. Define u1 := U(p), u2 := U(q), and u3 := U({p, q}). We

have

f−1
(

1

2
f(u1) +

1

2
f(u2)

)
= g−1

(
1

2
g(u1) +

1

2
g(u2)

)
. (14)

Define t1 := f(u1) and t2 := f(u2). Equation (14) becomes

g ◦ f−1
(

1

2
t1 +

1

2
t2

)
=

1

2
g ◦ f−1(t1) +

1

2
g ◦ f−1(t2).

Since u1 and u2 are arbitrarily chosen from some nontrivial interval [ul, uh], by Jensen’s

inequality, it must be true that

g ◦ f−1(t) = αt+ β,

and hence g(u) = αf(u) + β. Since both f and g are strictly increasing, α > 0.

�

Proof of Theorem 2: We only show that the axioms imply the representation. First,

let U : D0 → R be an expected utility representation of % on D0 implied by vNM. Under

Limited Perfect Foresight, κ is uniquely determined from the preference. If κ = +∞, then

for any a, a ∼ π̄(a); that is, the decision maker evaluates a decision tree using fully rational

backward induction. Define a function U0 : D → R such that for a lottery p ∈ D0, U0(p) =

U(p), and for a decision tree b = {b1, . . . , bn},

U0(b) = max
i
U0(bi). (15)
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This definition is recursive.16 It can easily be seen that U0 is the recursive value function

used by fully rational backward induction, and U0 represents %. To fit the representation

definition, for each j ∈ N ∪ {+∞}, we define Uj : D → R to be the function such that

Uj(a) = U0(a) for each subtree a ∈ D; that is, the other Uj’s play no role when κ = +∞.

Suppose κ < +∞. Then, %∗ is not trivially defined. First, the axiom κ-Aggregator

implies that the preference %∗ on D satisfies Monotonicity, Disjoint Set Betweenness, Indif-

ference to Trivial Extensions, Continuity, and Preference for Accentuating Swaps. The axiom

κ-Consistent Weak Order implies that %∗ satisfies Weak Order and vNM, because % on D0

satisfies vNM and %∗ coincides with % on D0. Therefore, according to Theorem 1, we can

find an expected utility function U∗ : D → R and a continuously strictly increasing function

f : U∗(D)→ R such that (i) for any a1, a2 ∈ D, a1 %∗ a2 if and only if U∗(a1) ≥ U∗(a2), and

(ii) for any b = {b1, . . . , bn} ∈ D,

U∗(b) = f−1

(
1

n

n∑
i=1

f(U∗(bi))

)
.

According to κ-Consistent Weak Order and the uniqueness of U∗, we can, without loss of

generality, assume that U∗ and U coincide on D0. As we have seen in the proof of Theorem

1, for every decision tree a, we can find a lottery pa such that a ∼∗ pa.

If κ = 0, according to the definition of %∗, % becomes identical to %∗. In this case,

Theorem 2 reduces to Theorem 1: Define U0 : D → R such that U0 = U∗, and we know that

U0 represents %.

Next, suppose that 0 < κ < +∞. For any â, b̂ ∈ D such that â is a j-stage subtree of b̂

and j ≥ κ, according to the definition of %∗, we know that

φp
â

â

(
b̂
)
∼ b̂, (16)

16The utility of lotteries is given by U . Then, equation (15) defines the utility of all depth-1 decision
trees; this, in turn, defines the utility of depth-2 decision trees, because depth-2 decision trees only consist
of lotteries and depth-1 decision trees, and so on.
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in which pâ ∼∗ â. Take any depth-k decision tree b such that k > κ. By definition, b has

at least one κ-stage subtree that is not a lottery. Denote all its κ-stage subtrees that are

not lotteries by a1, . . . , an. We can replace ai’s with lotteries pai ’s one after another; that

is, we construct decision trees c1 := φp
a1

a1
(b), c2 := φp

a2

a2
(c1), . . . , cn−1 := φp

an−1

an−1
(cn−2), and

bκ := φp
an

an (cn−1). Due to (16), b ∼ c1 ∼ c2 ∼ · · · ∼ cn−1 ∼ bκ. By construction, bκ is a

depth-κ decision tree. Hence, according to Limited Perfect Foresight and the definition of κ,

π̄(bκ) ∼ bκ ∼ b. (17)

Define functions Uj : D → R for each integer 0 ≤ j ≤ κ such that (i) Uj(p) = U∗(p) for

any p ∈ D0 and any j, and (ii) if b = {b1, . . . , bn} ∈ D is a j-stage subtree of a decision tree

c, then 
Uj(b) = maxi Uj+1(bi) if j < κ,

Uj(b) = U∗(b) = f−1
(
1
n

∑
i f(U∗(bi))

)
if j = κ,

U∗(b) = f−1
(
1
n

∑
i f(U∗(bi))

)
if j > κ.17

(18)

We want to show that U0 represents %. Recall that for any decision tree b, π(b) is the set of

lotteries that can be possibly reached in b. Let πκ(b) denote the lotteries that can possibly

be reached in b within κ stages. First, take any depth-k (k > κ) decision tree b in which

a1, . . . , an are all its κ-stage subtrees that are not lotteries. Clearly, πκ(b)∩ π(ai) = ∅ for all

i, and

πκ(b) ∪ π(a1) ∪ · · · ∪ π(an) = π(b).

Since U∗ represents %∗, U∗(ai) = U∗(pai), i = 1, . . . , n. Then, the second line of (18) implies

that Uκ(ai) = U∗(ai) = U∗(pai). Therefore, it can easily be verified that (18) implies that

U0(b) = U0(b
κ) = max

p∈πκ(b)∪{pai}ni=1

U∗(p) = max
p∈π(bκ)

U∗(p) = U∗(π̄(bκ)). (19)

Lastly, for any depth-k′ decision tree c (k′ ≤ κ), we know that c ∼ π̄(c). Equation (18)
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implies that U0(c) = U∗(π̄(c)).

Now, we need to consider three cases. First, suppose a1, a2 ∈
⋃κ
i=0Di. Then, a1 ∼

π̄(a1) ∈ D0 and a2 ∼ π̄(a2) ∈ D0. Note that U∗ represents% onD0. Therefore, π̄(a1) % π̄(a2)

if and only if U∗(π̄(a1)) = U0(a1) ≥ U∗(π̄(a2)) = U0(a2) implies that a1 % a2 if and only

if U0(a1) ≥ U0(a2). Second, suppose a1, a2 ∈
⋃+∞
i=κ+1Di. Then, a1 ∼ π̄(aκ1) ∈ D0 and

a2 ∼ π̄(aκ2) ∈ D0. According to (19), since π̄(aκ1) % π̄(aκ2) if and only if U∗(π̄(aκ1)) =

U0(a1) ≥ U∗(π̄(aκ2)) = U0(a2), we have a1 % a2 if and only if U0(a1) ≥ U0(a2). The last

case, in which one subtree is in
⋃κ
i=0Di and the other is in

⋃+∞
i=κ+1Di, follows from similar

arguments. Lastly, the uniqueness of the representation follows from the uniqueness result

in Theorem 1.

�

Proof of Theorem 3: First, we prove sufficiency. Suppose that %1 and %2 can be

represented by (U, κ1, f1) and (U, κ2, f2), respectively, and κj’s are finite. Then, %∗1 must

coincide with %∗2 on D0. Take any p ∈ D0 and a = {q1, . . . , qn} ∈ D1. Let U∗j be the utility

function that decision maker j uses for subtrees beyond κ stages, and let ui := U∗j (qi) = U(qi).

Since f2 = g ◦ f1,

f2(U
∗
2 (a)) =

1

n

n∑
i=1

f2(ui)

g ◦ f1(U∗2 (a)) =
1

n

n∑
i=1

g ◦ f1(ui).

On the other hand, f1(U
∗
1 (a)) = 1

n

∑
i f1(ui). By Jensen’s inequality,

f2(U
∗
2 (a)) =

1

n

∑
g ◦ f1(ui) ≤ g

(
1

n

∑
f1(ui)

)
= g ◦ f1(U∗1 (a)) = f2(U

∗
1 (a)).

Therefore, U∗1 (a) ≥ U∗2 (a), and hence a %∗2 p implies a %∗1 p. Next, suppose we have shown

that for some m, a %∗2 p implies a %∗1 p for any p ∈ D0 and a ∈
⋃m
k=0Dk. Consider
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b = {b1, . . . , bn} ∈ Dm+1. By the induction hypothesis, we have U∗1 (bi) ≥ U∗2 (bi) for each i,

and thus

U∗1 (b) = f−11

(
1

n

∑
f1(U

∗
1 (bi))

)
≥ f−11

(
1

n

∑
f1(U

∗
2 (bi))

)
≥ f−12

(
1

n

∑
f2(U

∗
2 (bi))

)
= U∗2 (b).

The second inequality is similar to what we previously derive for the case of a ∈ D1. There-

fore, again we know that b %∗2 p implies b %∗1 p.

Next, we prove necessity. The definition of unpredictability aversion implies that for any

two lotteries p, q ∈ D0,

q %∗2 p⇒ q %∗1 p. (20)

Since %∗j on D0 satisfies vNM, it is well known that (20) implies that %∗1 and %∗2 must coincide

on D0 (see, for example, Ghirardato, Maccheroni, and Marinacci (2004)). Suppose U repre-

sents %∗1 on D0 and %∗2 on D0. We know from the uniqueness of the κ-BRBI representation

that there exist (U, κ1, f1) and (U, κ2, f2) that represent %∗1 and %∗2, respectively.

Define g := f2 ◦ f−11 . The function g is strictly increasing. We know that for any p ∈ D0

and a = {q1, . . . , qn} ∈ D1, a %∗2 p implies a %∗1 p. Again, let ui := U∗j (qi) = U(qi).

The proof of Theorem 1 shows that there exists a lottery r such that a ∼∗2 r; that is,

U∗2 (a) = f−12 ( 1
n

∑
f2(ui)) = U(r). We know that U∗1 (a) ≥ U(r), which implies that

f−11

(
1

n

∑
f1(ui)

)
≥ f−12

(
1

n

∑
f2(ui)

)
g

(
1

n

∑
f1(ui)

)
≥ 1

n

∑
f2(ui).

Define ti := f1(ui). The inequality above becomes 1
n

∑
g(ti) ≤ g( 1

n

∑
ti), which implies that

g is concave.

�
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