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Summary. A traditional assumption in the design of chemotherapy phase |-l trial designs is
that dose increases lead to both more toxicity as well as more efficacy. This assumption of
monotonic rates of toxicity and efficacy has come into question as potential cancer treatments
are less likely to be chemotherapy and are instead biologic agents. These biologic agents tend
to have mechanisms of action that act as ‘on—off’ switches for cancer growth, so giving more of
the biologic agents will not necessarily provide any more benefit (and possibly no further risk)
to the patient. We propose the use of a conditional auto-regressive (CAR) model as a way to
estimate adaptively the rates of dose limiting toxicities (DLTs) and efficacy by smoothing the data
collected for all doses in such a way that allows for non-increasing rates of either outcome with
dose.We present the study design for our CAR model approach and compare, via simulation, the
operating characteristics of our design with two existing contemporary published approaches.
We demonstrate that our CAR model approach is a viable design for an adaptive phase |-l trial
that can accommodate a variety of toxicity—dose and efficacy—dose patterns.

Keywords: Biologically optimal dose; Clinical trial; Dose finding; Immunotherapy; Molecularly
targeted agent; Randomization

1. Introduction

Classical phase I trial designs that are used in cancer research, such as the 3+3 design (Storer,
1989) and the continual reassessment method (CRM) (O’Quigley et al., 1990; Faries, 1994;
Goodman et al., 1995), assume that the probability of dose limiting toxicity (DLT) strictly
increases with dose, with this assumption also made implicitly for the probability of efficacy.
These assumptions were generally acceptable for cytotoxic agents, with the implication that,
among doses with acceptable rates of DLTSs, the largest dose would have the highest probability
of efficacy; this dose is known as the maximum tolerated dose (MTD). Thus, the 3+3 method,
CRM and other phase I trial designs were created that made dose assignments and selected the
MTD based solely on DLTs.

However, with the advent of biologic agents for the treatment of cancer, the assumption of
monotonic toxicity and/or efficacy has come into question. To understand this issue, we focus on
a specific class of biologic agents known as monoclonal antibodies; specific members of this class
have names with the suffix ‘mab’. These agents can be used to target a specific protein in cancer
cells or to block specific pathways, such as immune checkpoints, that are believed to be important
for cancer cell growth. Through these actions, monoclonal antibodies enable the immune system
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to recognize and develop a response to the cancer; well-known examples include ipilimumab
(Lipson and Drake, 2011), nivolumab (Rizvi et al., 2015) and pembrolizumab (Hamid et al.,
2013).

Because of their mechanisms of action, biologic agents are viewed as an ‘on—off” switch for
cancer growth. Once a sufficient amount of the biologic agent has caused a pathway to be turned
off or a specific protein to be targeted, giving more of the biologic agent will not necessarily
provide any more benefit, and possibly no further risk, to the patient. Thus, it has been suggested
that the patterns of toxicity and efficacy probabilities may plateau (increase and then level off)
or peak (increase and then decrease) (Postel-Vinay et al., 2009; Jain et al., 2010). As a result, a
phase I trial design for a biologic agent should

(a) incorporate both DLTs and efficacy outcomes when determining dose assignments and
(b) allow the dose patterns for DLTs and/or efficacy to vary flexibly with dose; see chapter 2
of Yuan et al. (2016) for a comprehensive discussion.

Since the MTD is no longer assumed to have maximum efficacy, the optimal dose that is
selected at the end of the trial is instead viewed as the optimal biological dose (OBD). A visual
demonstration of the difference between the MTD and the OBD can be found in Riviere ef al.
(2016).

When the goal is to identify the MTD by assuming increasing rates of DLT and efficacy
with dose, there are several methods to model both the probability of DLT and the probability
of efficacy for a single agent, including Thall and Russell (1998), Gooley et al. (1994), Braun
(2002), Thall and Cook (2004), Thall and Nguyen (2012) and Liu and Johnson (2016). More
recent approaches for identifying the OBD by removing the assumption of increasing rates of
DLT or efficacy with dose include the methods of Zang et al. (2014), Wages and Tait (2015) and
Riviere et al. (2016).

To complement these approaches of identifying the OBD, we propose a method in which
we borrow information across doses without imposing a strict parametric form for either DLT
rates or efficacy rates. Separately for each of DLT and efficacy, each dose level has its own
parameter for the probability of the outcome, and these probabilities for all doses are linked
via a covariance matrix that borrows information across doses. In particular, we model the
log-odds of DLT and efficacy with a conditional auto-regressive (CAR) model, which has been
used in geospatial analysis of lattice data (Besag, 1974; Cressie, 2015; Wall, 2004). We introduce
our method in Section 2, which describes our statistical model and dose finding algorithm and
outlines the specific steps that are needed for a clinical trial using our design. In Section 3, we
compare the operating characteristics of our design with two existing designs, and we conclude
with a discussion in Section 4.

2. Model and methods

2.1. Defining the model
Consider J candidate dose levels, ordered by increasing dose from 1 to J. We let n; denote
the number of patients who are assigned to dose j=1,2,...,J, of whom YP patlents have
experienced DLTs dnd YE patients have experienced efﬁcacy We assume that Y’ ~ Bln(n s D)

and YE~ Bin(n; T Ey We induce correlation between the elements of 7P = {7r1 ,7r2 ,. IS}
and between the elements of 7f = {xF, 7%, ..., 7%} by using a CAR covariance structure Both

7P and #F will have the same structure; for clar1ty, we first describe the structure for 7P.

If we define logit(x) =log(x) —log(l — x), we assume a multivariate normal distribution for

logit(wP) = {logit(ﬂ})),logit(ﬂ?), .. 10g1t(7rj )}, with mean equal to loglt(ﬂ' ), where 7r(])3 =
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{nD... 78} is a set of ‘skeleton’ values for the DLT rates of the doses. Conditionally on given

values of \ and 02, logit(wP) has covariance matrix £° =o2(I; — A\W)~!, in which Iy isa J x J

identity matrix and W is a matrix that is used to define the neighbourhood for each dose.
Specifically, W is a J x J matrix with element (i, j) equal to

1 ifli—jl=1,
WijZ{O ifi=j,
0 otherwise,

so that W has 1s just off the main diagonal, and Os everywhere else.
The matrix XP is a function of two parameters:

(a) o2, which controls the prior standard deviation of each logit(ﬂ?) and thus of each 7T}),
and
(b) A, which controls the amount of information that is borrowed across neighbouring doses.

Furthermore, as shown in Wall (2004), the CAR model leads to element j of logit(w?) having
a conditional normal distribution with mean

J
E{logit(r?) | w0, } =logit(m()) + A k; w i {logit(rP) — logit(m{))}, )

and variance
var{logit(r?) [logit(w(})} = o2, )

in which 71'?-) is 7P with element j removed.

In this form, we see that the DLT rate of each dose, given its first-order neighbours (wjx =1),
is conditionally independent of the other doses. We also see that A controls how much the con-
ditional mean of logit(ﬂ?) moves away from the a priori value logit(w(]?j) as a function of the
rates of its first-order neighbours. From equation (1), we also see that negative values of A corre-
spond to negative correlations between all directly neighbouring doses, whereas positive values
correspond to positive correlations between all doses. As negative correlation lacks plausibility
in our setting, we shall not consider values of A < 0.

More importantly, to ensure that P is positive definite, ) is restricted to the interval (1/wpin,
1/Wmax), Wwhere wiin < 0and wpax > 0 are the minimum and maximum eigenvalues of W (Wall,
2004). Thus, in our methods, we shall assume a uniform prior distribution on A over the range
[0, 1/Wmax]. We shall consider o2 to be fixed, treating it as a tuning parameter whose value is
selected by the user, which is a common approach to variance parameters in many phase I trial
designs.

The marginal CAR model for logit(sP) just described is also used to model the marginal
distribution of logit(sF), with every superscript ‘D’ replaced with superscript ‘E’. The CAR
model for logit(7F) also requires specification of a skeleton 71'(];: = {77(];:1 e ng}. In their current
formulation, the toxicity and efficacy rate CAR models use the same values for the parameters
o2 and X in their corresponding covariance matrices, although different values among the two
models could be used, if desired.

We note that our approach models the marginal distributions of logit(7P) and logit(7F) and
assumes that they are independent so that no information is shared between them. Although
we could consider modelling the joint distribution of logit(swP) and logit(sF) by including an
additional association parameter, we refrain from doing so on the basis of the recommendation
of Cunanan and Koopmeiners (2014). They investigated various copula models to link DLT
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and efficacy outcomes within subject and found that copula association parameters are difficult
to estimate with binary outcomes, especially with the small sample sizes that are used in phase
I trials. Thus, assuming within-subject independence of DLT and efficacy outcomes leads to
suitable operating characteristics even if there is within-subject dependence of the outcomes;
see Liu and Johnson (2016) for a similar discussion.

2.2. Estimation of model parameters and event probabilities
After m subjects have been observed for DLT and efficacy, we have three vectors of data:

(a) the number of subjects assigned to each dose, n={ny,ns,...,ns}, such that m= Ejj.zlnj,
(b) the number of DLTs observed for each dose, YO = {YP,¥YP,...,¥YP} and
(c) the number of efficacy outcomes that are observed for each dose, YE = {Y IE, Yf, e, Y}E}

Because we choose to model the marginal distributions of 772 and #E, each can be estimated
separately by using Bayesian methods. For clarity, we first focus on estimation of 7w° and then
explain how the same estimation procedure is applied to 7F.

We wish to find the posterior distribution of 5 =logit(wP), conditionally on n and YP, in
which 77? = logit(ﬁ})). Because of the nature of the CAR model, it is straightforward to use the
Metropolis—Hastings algorithm (Minh and Minh, 2015) to generate draws from the posterior
distribution of 7P, i.e. using the JAGS software (Plummer, 2003). The Metropolis—Hastings
algorithm provides us with draws from the joint posterior distribution f(7wP[YP, n), which also
gives us draws from each marginal posterior f(w?|YD, n). The mean of each of these J vectors
of marginal samples gives us the posterior mean DLT rate for dose j, which we denote as #7. An
analogous approach for computing the posterior mean efficacy rate of each dose j, denoted ﬁ?, is
found by replacing the ‘D’ superscripts with an ‘E’ in the posterior computations just described.
These two estimators can be interpreted as the respective posterior expected probabilities of

DLT and efficacy for a new patient assigned to dose j. We let 7; = (7%]]7:, 7%]]-)).

D),

2.3. Dose finding algorithm

As is typical for most phase I-1I trial designs, we choose to assign the first cohort of patients
to the lowest dose; all future patients are assigned to a dose that is determined by the following
algorithm. First, we define a set of acceptable doses as those that meet both of the following
criteria:

Pr(z? > 7P| YP m) < pP, (3)

Pr(7% > x| Y5 m) > pt, @)

where 7F and 7P are lower and upper bounds respectively, for the rates of efficacy and DLT,
and pF and pP are respective thresholds for the posterior cumulative probabilities. These four
quantities are fixed at the beginning of the trial, and this is similar to the approach that was
used in both Wages and Tait (2015) and Liu and Johnson (2016). On the basis of the data from
m subjects, if no dose meets these acceptability criteria, the trial is terminated and no dose is
identified as the OBD.

Otherwise, we define S to be the set of safe doses, i.e. those that satisfy equation (3). To
promote exploration early in the trial, we shall randomize the assignments of the first half of
the cohorts (or just over half if an odd number of cohorts), using the posterior mean efficacy
rates to randomize among doses in S, i.e. dose k € S is assigned to the next cohort of patients
with probability
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~E
rand Tk
Py = ~E
> 7
leS

Randomization is not used with the remaining latter cohorts; instead, we assign each cohort
to the member of S with largest posterior probability of efficacy: a so-called ‘greed’ strategy.
When the trial has finished collecting data on the desired number of patients N, the OBD is the
member of S with highest posterior mean efficacy.

2.4. Designing a trial
We now outline the steps that are necessary to implement our design successfully in an actual
clinical trial.

Step 1: identify the number of doses J, the maximum number of patients N and the cohort
size c.

Step 2: for each dose j, select a skeleton value w(l)jj for the probability of DLT and ng for
the probability of efficacy.

Step 3: select values for 77, the maximum acceptable probability of DLT, and pP, the
maximum acceptable amount of posterior mass above 72, used in equation (3).

Step 4: select values for 7F, the minimum acceptable probability of efficacy, and pE, the
minimum acceptable amount of posterior mass above 7=, used in equation (4).

Step 5: select a value for the prior standard deviation o used in the CAR model covariance.
Step 6: enrol the first cohort of ¢ patients on the lowest dose.

Step 7: use the methods in Sections 2.2 and 2.3 to determine whether the study should
continue and, if so, which dose to assign to the next cohort of ¢ patients.

Step 8: repeat step 7 after each successive cohort has been followed for DLT and efficacy.
Step 9: once all N subjects have been followed for DLT and efficacy, make a final determi-
nation about which dose is the OBD.

We note that suitable parameter values in steps 3—5 will require calibration through small
simulation studies and grid searches over plausible values of each parameter, as is done in other
phase I trial designs.

3. Simulation studies

We now compare the operating characteristics of our CAR model design with two existing
designs: one which does not assume monotonicity of efficacy rates with dose and one that does
make this assumption. The methods of Wages and Tait (2015) apply the traditional CRM to
model toxicity rates, whereas they use a Bayesian model averaging approach for efficacy by
incorporating several vectors of a priori (skeleton) efficacy rates for each dose. The skeletons
vary by the location of the highest efficacy rate, whether the efficacy rates increase or plateau
with dose, and, if a plateau exists, at which dose the plateau occurs. By averaging over all
these possible skeletons, it is hoped that the methods are sufficiently flexible to identify both
monotonic and non-monotonic patterns of efficacy with dose.

The methods of Liu and Johnson (2016) assume monotonically increasing patterns of both
toxicity and efficacy with dose. They create a Markov structure for the toxicity rates, whereby
the toxicity rate of each dose is assumed to be equal to the toxicity rate of the next-lowest dose
plus a random positive quantity, such that all the toxicity rates are bounded above 0 and below
1. A similar structure is assumed for the efficacy rates. Skeleton vectors of toxicity and efficacy
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rates are used to define prior distributions for the differences in toxicity and efficacy rates of
neighbouring doses. No regression model is used to model the DLT and efficacy rates, so it is
hoped that this design is more flexible than many designs like the CRM that adopt a parametric
regression model to enforce monotonicity.

Our methods can be viewed somewhat as a hybrid of those of Wages and Tait (2015) and Liu
and Johnson (2016). First, like Wages and Tait (2015), we choose to allow efficacy rates to be
possibly non-monotonic in dose, but we adopt a model that allows for non-monotonicity di-
rectly through its parameterization, rather than averaging over many linear and piecewise linear
skeletons. Unlike Wages and Tait (2015), we also allow for possibly non-monotonic patterns of
toxicity with dose. Like the methods of Liu and Johnson (2016), our approach is a conditional
Markov model, in which the toxicity and efficacy rates of each dose are correlated with the
toxicity and efficacy rates respectively of neighbouring doses. However, unlike Liu and Johnson
(2016), our model does not enforce strict increases in toxicity and efficacy rates with dose.

For our method and our two comparators, we examine a group of settings that define the actual
rates of DLT and efficacy for each dose. In each setting, if the true values of DLT and efficacy

for dose j are 77}-) and 7r}<E , we simulate the binary DLT and efficacy outcomes for subjects who

are assigned to dose j from respective Bernoulli distributions with probabilities 7" and 7E .
The specific values that are used for the parameters in our CAR model will be defined in each
of the following sections. Unless explicitly stated otherwise, we use parameter values for the
designs of Wages and Tait (2015) and Liu and Johnson (2016) as they originally proposed.

We note that the methods of Liu and Johnson (2016) combined the DLT and efficacy rates
of each dose into a utility score and then sought to find the dose that was most likely to be the
dose with greatest posterior mean utility. In contrast, our design and that of Wages and Tait
(2015) are not utility based, which is the more common approach that is adopted in phase I trial
designs; see Thall and Cook (2004) for an exception. Thus, in the tables that follow, the results
for Liu and Johnson (2016) are based on simulations that used their Markov model to estimate
the posterior mean DLT and efficacy rates. However, dose assignments and final selection of
the OBD are based on the same rules as that of the CAR model explained in Section 2.3.

We have two reasons for doing so. First, we can directly compare how the operating char-
acteristics of designs using the CAR model and the Markov model of Liu and Johnson (2016)
differ from each other. Second, we found that the utility measure that was proposed in Liu and
Johnson (2016) was somewhat subjective regarding what the OBD should be. For example, in
scenario 1 of Liu and Johnson (2016) the first two doses have respective DLT rates of 0.15 and
0.32, and respective efficacy rates of 0.28 and 0.30. Their utility metric placed a large penalty
on doses with DLT rates above 0.30. As a result, the lowest dose had greater utility than the
second dose. However, in many settings, it would seem that the second dose is the OBD because
it is more effective than the lowest dose and its DLT rate is only two points above the targeted
DLT rate.

3.1. Compatrison in settings explored in Liu and Johnson (2016)

We first compare the operating characteristics of the three methods in eight settings that were
described in Liu and Johnson (2016). Each of the settings has toxicity and efficacy rates that
increase monotonically with dose. Thus, we use these settings to examine how our CAR model
design and the design of Wages and Tait (2015), neither of which requires monotonicity, perform
when monotonicity exists. The location of the OBD varies among the eight settings, with one of
the settings having no OBD among the doses examined. The actual rates of toxicity and efficacy
in each setting are demonstrated in Fig. 1.
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Fig. 1. DLT (@) and efficacy (O) rates for each of the eight settings examined in Section 3.1 (the exact
values for the DLT and efficacy rates can be found in Table 1): (a) setting 1; (b) setting 2; (c) setting 3; (d)
setting 4; (e) setting 5; (f) setting 6; (g) setting 7; (h) setting 8
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In each setting, we have a study of five doses that enrols a total of N =48 patients in cohorts
of size ¢ =3. In all three designs, we allocated randomized dose assignments to the first N/2 =24
patients, with ‘greedy’ assignments given to the remaining 24 patients. We performed simulations
of 1000 trials in each setting to obtain the operating characteristics of each method. For our
CAR design, we used the same skeleton values for toxicity and efficacy as proposed by Liu and
Johnson (2016). The same toxicity skeleton was used in the method of Wages and Tait (2015).
For efficacy, we defined a set of nine skeletons, five that were unimodal and four with plateaus,
modified from those in Wages and Tait (2015) to have only five doses.

Also following directly from Liu and Johnson (2016), we used the value 7° = 0.30 for the
maximal allowed toxicity rate and 7F = 0.20 for the minimal allowed efficacy rate; these values
were also used for the corresponding values in the design of Wages and Tait (2015). We also
used the values pP = pF =0.20 for the definition of acceptable doses in steps 3 and 4 in Section
2.4. The association parameter A in the CAR model variance matrices is uniformly distributed
over [0.00,0.58]. Finally, through a grid search over a range of values, we selected the standard
deviation in the CAR model covariance to be 0 =0.75. We found that lower values of 0 made
the a priori skeleton rates too informative, leading to larger doses always being preferred in all
settings, whereas larger values of o led to much higher rates of early termination because so
little a priori information was available when few patients had been enrolled.

In Table 1, we summarize the performance of the three designs in the eight settings with two
operating characteristics:

(a) the proportion of simulations in which each dose was selected as the OBD at the end of
the study, and
(b) the simulationwide average number of subjects assigned to the true OBD during the study.

In setting 1, we see that the two lowest doses have efficacy rates that are closest to the targeted
DLT rate of 0.30; the CAR model design prefers the second dose to the first dose, whereas the
design of Wages and Tait (2015) moderately prefers the first dose to the second dose and the
design of Liu and Johnson (2016) strongly prefers the first dose. In terms of patient assignments,
the design of Wages and Tait (2015) assigns the most patients to the first two doses, whereas the
CAR model design assigns the least. Thus, in this setting, the CAR model is not competitive
with the other designs.

However, in setting 2, we see that, although all three designs equally prefer the second dose,
the design of Liu and Johnson (2016) is predisposed towards the lowest dose, whereas the CAR
model design and that of Wages and Tait (2015) skew towards the third dose, which, in this
setting, seems preferable to the lowest dose. These results support the findings in setting 1 where
the design of Liu and Johnson (2016) appears to skew selection towards lower doses. Further-
more, in setting 6, we once again see that the design of Liu and Johnson (2016) prefers lower
doses, whereas the CAR model design and that of Wages and Tait (2015) prefer higher doses,
although the differences in the operating characteristics among the three designs is modest.

In setting 3, where the highest dose is the OBD, all three designs have similar distributions of
dose assignments, but the CAR model design and that of Liu and Johnson (2016) both correctly
identify the OBD more than the design of Wages and Tait (2015). Furthermore, in settings 4, 5
and 7, the CAR model design has the best operating characteristics of the three designs, with
the design of Liu and Johnson (2016) again predisposed to lower doses more than the others.
Setting 8 has none of the doses being an OBD, as no dose simultaneously is both safe and
effective; again all three designs have comparable operating characteristics.

We emphasize that each of the designs could be made to be more preferential to lower or
higher doses by changing some of their corresponding tuning parameters. Thus, there is no
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Table 1. Operating characteristics of the proposed CAR model design, the design of Wages and Tait (2015)
(WT) and the design of Liu and Johnson (2016) (LJ) in the eight settings shown in Fig. 1}

Setting  Method Results for OBD selection Results for patients assigned
DI D2 D3 D4 D5 None DI D2 D3 D4 D5
1 (15,28) (32,30) (45,44) (55,60) (62,74)
CAR 36.2 43.1 8.2 0.2 0.1 12.2 87 155 124 63 44
WT 51.2 43.7 1.8 0.0 0.0 33 271 160 29 09 0.6
LJ 71.9 10.9 2.1 1.0 0.8 133 212 139 54 23 1.0
2 (4,100 (18,27) (37,44) (54,58) (67,69)
CAR 32 62.5 25.4 0.8 0.0 8.1 60 119 179 75 43
WT 0.9 55.6 37.2 0.8 0.0 55 105 190 137 26 1.6
LJ 20.1 58.7 9.8 0.7 0.0 107 114 182 108 3.6 1.0
3 (2,5) (5.8) (7,15)  (10,28) (12,43)
CAR 0.0 0.0 0.6 10.4 88.3 0.7 54 57 58 6.0 250
WT 1.3 2.3 7.1 18.5 64.8 6.0 62 48 70 100 195
LJ 0.1 0.6 2.1 7.3 88.4 1.5 32 35 41 99 268
4 (10,15) (12,18) (15,38) (36,40) (65,60)
CAR 1.1 7.3 74.5 15.6 0.0 1.5 59 62 130 173 56
WT 9.4 10.9 50.8 19.8 1.1 80 133 107 147 59 24
LJ 5.2 18.3 68.9 34 0.3 3.9 58 106 177 9.7 3.1
5 (5,100 (7,200 (10,25) (15,50) (35,54)
CAR 0.2 2.0 9.6 67.5 204 0.3 56 59 63 121 181
WT 2.6 6.5 11.0 47.2 30.3 2.4 80 68 88 13.0 11.1
LJ 0.7 3.0 15.6 71.1 8.4 1.2 36 47 87 16.6 139
6 (10,5  (15,30) (32,35) (45,35) (55,50)
CAR 0.3 54.7 29.3 5.5 0.4 9.8 58 10.1 146 106 6.4
WT 0.0 58.0 34.4 14 0.0 62 105 201 124 24 1.6
LJ 6.8 75.6 6.7 0.3 0.4 10.2 88 188 113 4.1 1.9
7 (10,2)  (12,10) (15,42) (30,45) (60,50)
CAR 0.0 22 63.5 32.1 0.0 22 54 58 107 191 6.8
WT 0.0 2.8 50.2 29.2 2.1 15.7 91 96 154 83 33
LJ 2.4 6.9 75.4 10.4 0.0 4.9 46 82 175 120 40
8 (10,2) (25,2)  (55,35) (60,40) (70,52)
CAR 1.0 2.7 1.2 0.1 0.0 95.0 63 123 92 49 33
WT 0.0 5.2 1.1 0.0 0.0 937 125 149 42 1.1 1.1
LJ 10.9 32 0.6 0.1 0.3 84.9 88 87 50 16 06

tEach setting has five doses D1, D2,...,DS5. For each setting, the first row contains a pair (100x, 100y) for each
dose, in which x is the DLT rate and y is the efficacy rate. The six columns under OBD selection present the
percentage of simulations (times 100) in which each dose was selected as the MTD at the end of the study. The
five columns under patients assigned present the average number of subjects (out of 48) who were assigned to
each dose. The blocks in bold for each setting highlight the doses that have DLT rates closest to the threshold of
0.30 and have minimally acceptable efficacy, making them the best candidates for the OBD.

absolute ‘best’ design among the three in all settings. The overall conclusion from this set of
simulations is that all three designs are worthwhile designs for studies where monotonic rates
of DLT and efficacy are expected.

3.2. Comparison in settings motivated by Wages and Tait (2015)

We next compare the operating characteristics of the three methods in eight settings motivated
by settings in Wages and Tait (2015). Each of the settings is a study of six doses; the values of
the true DLT and efficacy rates are shown in Fig. 2. The values of the true DLT and efficacy
rates were selected to cover settings where DLT and/or efficacy rates that would monotonically
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Fig. 2. DLT (@) and efficacy (O) rates for each of the eight settings examined in Section 3.2 (the exact
values for the DLT and efficacy rates can be found in Table 2): (a) setting 1; (b) setting 2; (c) setting 3; (d)
setting 4; (e) setting 5; (f) setting 6; (g) setting 7; (h) setting 8
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increase with dose or plateau before the last dose. Thus, we expect that the methods of Liu and
Johnson (2016) will struggle to identify the OBD correctly in the presence of a plateau in the
toxicity and/or efficacy rates. We note that settings 1, 2, 3, 5, 6 and 7 in Fig. 2 are from Wages
and Tait (2015), whereas settings 4 and 8 are new settings that were not investigated in Wages
and Tait (2015).

We performed 1000 simulations for each setting to obtain operating characteristics of all three
methods when the six doses were studied with a sample of N =64 patients who were enrolled as
singleton cohorts (c=1). Our CAR design and that of Liu and Johnson (2016) use a skeleton
vector of DLT rates identical to that proposed in Wages and Tait (2015). We use a skeleton vector
of efficacy rates 71'(';: =(0.05,0.18,0.36,0.54,0.60, 0.67), which is the average value for each dose
among the efficacy patterns that are shown in Fig. 2. In all three methods, randomized dose
assignments were used for the first N/2 =32 patients, with the remaining 32 patients receiving
greedy dose assignments.

Following directly from Wages and Tait (2015), we used the value 72 =0.33 for the maximal
allowed toxicity rate and 7F = 0.05 for the minimal allowed efficacy rate. We also used the
values pP = pE =0.20 for the definition of acceptable doses in steps 3 and 4 in Section 2.4. The
association parameter A in the CAR model covariance is uniformly distributed over [0.00, 0.55].
Asin Section 3.1, we selected the standard deviation in the CAR model covariance to be 0 =0.75.

In Table 2, we summarize the same two operating characteristics as in Table 1, namely

(a) the proportion of simulations in which each dose was selected as the OBD at the end of
the study and
(b) the simulationwide average number of subjects assigned to the true OBD during the study.

For settings 1-3, which were originally examined in Wages and Tait (2015), we see that the CAR
model can identify the OBD better than the design of Wages and Tait (2015), and both designs
identify the OBD better than the design of Liu and Johnson (2016). The CAR model and the
design of Wages and Tait (2015) also assign more patients to the OBD than does the model of
Liu and Johnson (2016). Note that these results cover settings in which the DLT rates plateau
at an unacceptable toxicity level (setting 1), as well as monotonically increase (settings 2 and 3).
Setting 4 was a setting that we included to examine a situation when DLT rates plateau at an
acceptable toxicity level, so that the largest of the doses after the plateau would be the OBD. In
this setting, we see that the monotonic pattern of efficacy rates enables the design of Liu and
Johnson (2016) to identify the OBD better than the others, with the design of Wages and Tait
(2015) appearing to prefer all doses 4-6 equally.

Settings 5-7 have the same DLT rates as settings 1-3 respectively but now have efficacy rates
that plateau at dose 4. As a result, the monotonic assumption of the design of Liu and Johnson
(2016) is too strong, causing it to be much less likely to identify the OBD correctly compared
with the other designs, with the CAR model design outperforming the design of Wages and
Tait (2015). Setting 8 is a setting in which both DLT rates and efficacy rates plateau together,
so the OBD exists simultaneously at doses 4-6; here the three designs have similar operating
characteristics. Thus, across all eight settings, we have strong evidence for the benefit of the
CAR model over the other two designs in settings where DLT rates and/or efficacy rates are
expected to plateau.

We also ran simulations using these eight settings to assess the sensitivity of our design to

(a) the skeleton values for DLT and efficacy rates and
(b) the value of the variance parameter o (the results are not shown).

We found that, when we increased the skeleton rates of both DLT and efficacy by 50%, correct
selection of the OBD did generally decrease by a few percentage points, which was expected
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Table 2. Operating characteristics of the proposed CAR model design, the design of Wages and Tait (2015)
(WT) and the design of Liu and Johnson (2016) (LJ) in the eight settings shown in Fig. 27

Setting Method Results for OBD selection Results for patients assigned

DI D2 D3 D4 D5 D6  None DI D2 D3 D4 D5 D6

1 (5,5 (10,13) (20,25 (28,38) (50,50) (50,63)
CAR 00 24 286 669 1.7 03 01 22 46 93 279 113 86
WT 09 44 290 575 80 02 00 68 95 174 21.8 67 19
LJ 05 53 322 480 3.1 11 98 22 51 11.6 229 99 79
2 (5,5 (10,13) (20,25) (28,38) (40,50) (55,63)
CAR 00 25 24 61.1  12.1 01 02 22 44 87 219 196 7.1
WT 08 46 253 518 171 04 00 67 92 166 198 94 22
Ly 02 50 269 462 120 04 93 22 49 101 182 155 92
3 (5,5 (10,13) (15,25) (20,38) (35,50) (40,63)
CAR 00 05 84 539 278 94 00 21 39 61 148 196 176
WT 1.0 26 117 367 402 78 00 58 7.6 114 168 157 6.7
Ly 02 06 101 403 271 173 44 19 38 73 138 142 209
4 (5,5 (10,13) (15,25) (20,38) (20,50) (20,63)
CAR 00 00 03 57 209 731 00 20 36 54 75 98 358
WT 1.0 27 78 209 278 398 00 55 67 9.1 127 141 16.0
Ly 01 03 1.7 10 29 908 32 18 34 58 73 8.1 358
5 (5,5 (10,23) (20,47) (28,70) (50,70) (50,70)
CAR 0.1 09 243 723 1.7 07 00 21 44 100 282 11.0 83
WT 00 26 240 656 77 01 00 72 95 156 234 66 1.7
LJ 02 84 293 513 42 09 57 23 62 118 226 107 7.9
6 (5,5 (10,23) (20,47) (28,70) (40,70) (55,70)
CAR 00 12 196 688 104 00 00 20 42 92 228 188 69
WT 00 25 227 595 15.1 02 00 73 91 156 21.0 89 20
Ly 02 60 257 480 136 06 59 21 55 107 183 161 8.7
7 (5,5 (10,23) (1547) (20,70) (35,70) (40,70)
CAR 00 00 59 628 245 68 00 20 39 65 157 196 163
WT 02 0.7 69 498 385 39 00 61 72 99 202 157 49
LJ 02 13 78 439 276 166 26 20 44 77 142 143 20.1
8 (5,5 (10,23) (1547) (20,70) (20,70) (20,70)
CAR 00 00 06 233 299 462 00 19 37 58 81 10.1 344
WT 01 1.3 52 340 349 245 00 57 65 90 156 154 118
L 01 06 14 17 30 99 23 1939 65 78 7.8 347

tEach setting has six doses D1, D2,..., D6. For each setting, the first row contains a pair (100x, 100y) for each
dose, in which x is the DLT rate and y is the efficacy rate. The seven columns under OBD selection present the
percentage of simulations (times 100) in which each dose was selected as the MTD at the end of the study. The six
columns under patients assigned present the average number of subjects (out of 64) who were assigned to each
dose. The blocks in bold for each setting highlight the doses that have DLT rates closest to the threshold of 0.33
and have minimally acceptable efficacy, making them the best candidates for the OBD.

because the DLT skeleton suggested that the doses were all more toxic than before. But, overall,
the performance of our design was still as good as or better than those of the other designs.

When we halved the value of o, we found that selection of the BOD was skewed towards
higher doses, so that, although our design selected the correct dose more often, it was also
slightly more likely to select overly toxic doses. Conversely, when we doubled the value of o,
we found that selection of the BOD was skewed towards lower doses, so dose 4, which was the
BOD in most of the settings, was selected less often. Thus, our design is sensitive to the value
of o, which is common among most phase I-II designs, emphasizing the fact that calibration
of o2 through simulation is an important exercise.
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4. Discussion

Our proposed CAR model design is competitive with two contemporary designs and appears to
be the optimal choice when DLT and/or toxicity rates are expected to plateau. The CAR model
design is no more complex than the other two designs, with an equal number of tuning param-
eters required. Nonetheless, there are aspects of the CAR model design, which are common to
the other designs, that we would like to explore further.

First, randomization is used in phase I trials assessing both toxicity and efficacy because it
encourages greater exploration of the doses and increases a design’s ability to identify the OBD
correctly. However, there is little current direction on exactly how

(a) to restrict which doses to randomize among and
(b) to compute the randomization probabilities of the selected doses.

We chose to limit randomization among doses that were deemed safe on the basis of the data,
but many other approaches could be used. Other designs consider randomizing only among
doses that are neighbours of the most recently assigned dose or to doses that are deemed to
be both safe and effective. An interesting avenue of research for any design is to compare how
operating characteristics of that design vary with different randomization schemes.

‘We also chose to use randomization probabilities that were directly proportional to the value of
each dose’s posterior mean efficacy; many other approaches are possible. For example, we could
have randomized using both the posterior rates of DLT and efficacy, or used transformed values,
i.e. the square root or exponential of those means. The idea of exponentiating the posterior means
is a specific application of Softmax learning, which is often used in multiarmed bandits (Luce,
1959). It also remains unclear whether randomization is needed during the entire trial or is only
needed until a specific proportion of subjects has been enrolled, after which dose assignments
are based on a greedy assignment algorithm.

As with many phase I-1I trial designs, our method has tuning parameters whose values need
to be selected before starting the trial. We emphasize that the values that we selected in our
simulation studies are not necessarily the best values for general use. However, the number of
tuning parameters in our design is no more than that of most other published phase I-II trials.
The most crucial parameter to calibrate is the value of o2, which can be determined quite quickly
through small simulation studies of a few selected values. In our experience, a good value of o2
across many settings is often in the interval [0.50, 1.50].

In our simulations, we assumed that the efficacy outcome of each subject occurred in temporal
proximity to their DLT outcome so that the dose assignment of each successive subject could
be determined from complete data. However, in many settings, the efficacy outcome may occur
much later than the DLT outcome, so a new subject might be available for a dose assignment
before currently enrolled subjects have completed follow-up for their efficacy end point. In these
situations, we suggest that the posterior distributions of the efficacy rates be computed with a
weight that reflects how much follow-up each subject has completed at the time that the new
subject is to be enrolled. Such an approach is akin to the time-to-event CRM approach of
Cheung and Chappell (2000); a latent variable approach to the problem is also possible (Jin
etal.,2014). The work of Liu and Johnson (2016) examined this approach with their design and
found that the design had slightly reduced ability to identify the OBD but still had generally
good operating characteristics. We would expect the same results for our, or any, method, that
was applied to studies with later follow-up for efficacy relative to DLT.

Finally, because of the multifocal nature of cancer, many biologic agents are being studied in
combination with an existing chemotherapy or with a second biologic agent. As a result, phase
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I-1ITI trial designs are needed that model the DLT and efficacy rates of two agents, as well as
allow for non-increasing rates of DLT and/or efficacy for one or both agents. For that, some
recent designs have been published (Cai et al., 2014; Riviere et al., 2015; Guo and Li, 2015). We
are currently working on a sequel to our current work that applies our CAR model approach
to study the toxicity and efficacy of combinations of doses of two agents, at least one of which
is a biologic agent.

Acknowledgement

This research was supported by US National Institutes of Health grant CA 83654.

References

Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Statist.
Soc. B, 36, 192-236.

Braun, T. M. (2002) The bivariate continual reassessment method: extending the CRM to Phase I trials of two
competing outcomes. Contr. Clin. Trials, 23, 240-256.

Cai, C., Yuan, Y. and Ji, Y. (2014) A Bayesian dose finding design for oncology clinical trials of combinational
biological agents. Appl. Statist., 63, 159-173.

Cheung, Y. K. and Chappell, R. (2000) Sequential designs for Phase I clinical trials with late-onset toxicities.
Biometrics, 56, 1177-1182.

Cressie, N. A. C. (2015) Statistics for Spatial Data, vol. 11, Lattice Data, ch. 6. Hoboken: Wiley.

Cunanan, K. and Koopmeiners, J. S. (2014) Evaluating the performance of copula models in Phase I-1I clinical
trials under model misspecification. BMC Med. Res. Methodol., 14, no. 51, 1-11.

Faries, D. (1994) Practical modifications of the continual reassessment method for Phase I cancer clinical trials.
J. Biopharm. Statist., 4, 147-164.

Goodman, S. N., Zahurak, M. L. and Piantadosi, S. (1995) Some practical improvements in the continual re-
assessment method for Phase I studies. Statist. Med., 14, 1149-1161.

Gooley, T. A., Martin, P. J,, Fisher, L. D. and Pettinger, M. (1994) Simulation as a design tool for Phase I/11
clinical trials: an example from bone marrow transplantation. Contr. Clin. Trials, 15, 450-462.

Guo, B. and Li, Y. (2015) Bayesian dose-finding designs for combination of molecularly targeted agents assuming
partial stochastic ordering. Statist. Med., 34, 859-875.

Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W. J., Kefford, R., Wolchok, J. D., Hersey, P.,, Joseph, R. W.,
Weber, J. S., Dronca, R., Gangadhar, T. C., Patnaik, A., Zarour, H., Joshua, A. M., Gergich, K., Elassaiss-
Schaap, J., Algazi, A., Mateus, C., Boasberg, P., Tumeh, P. C., Chmielowski, B., Ebbinghaus, S. W., Li, X. N.,
Kang, S. P. and Ribas, A. (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma.
New Engl. J. Med., 369, 134-144.

Jain, R. K., Lee, J. J., Hong, D., Markman, M., Gong, J., Naing, A., Wheler, J. and Kurzrock, R. (2010) Phase I
oncology studies: evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin.
Cancer Res., 16, 1289-1297.

Jin, L., Liu, S., Thall, P. and Yuan, Y. (2014) Using data augmentation to facilitate conduct of Phase I/II clinical
trials with delayed outcomes. J Am. Statist. Ass., 109, 525-536.

Lipson, E. J. and Drake, C. G. (2011) Ipilimumab: an anti-ctla-4 antibody for metastatic melanoma. Clin. Cancer
Res., 17, 6958-6962.

Liu, S. and Johnson, V. E. (2016) A robust Bayesian dose-finding design for phase I/I1 clinical trials. Biostatistics,
17, 249-263.

Luce, D. (1959) Individual Choice Behavior. New York: Wiley.

Minh, D. D. L. and Minh, D. L. P. (2015) Understanding the Hastings algorithm. Communs Statist. Simuln
Computn, 44, 332-349.

O’Quigley, J., Pepe, M. and Fisher, L. (1990) Continual reassessment method: a practical design for Phase 1
clinical trials in cancer. Biometrics, 46, 33-48.

Plummer, M. (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proc.
3rd Int. Wrkshp Distributed Statistical Computing (eds K. Hornik, F. Leisch and A. Zeileis).

Postel-Vinay, S., Arkenau, H.-T., Olmos, D., Ang, J., Barriuso, J., Ashley, S., Banerji, U., De-Bono, J., Judson,
I. and Kaye, S. (2009) Clinical benefit in Phase-I trials of novel molecularly targeted agents: does dose matter?
Br. J. Cancer, 100, 1373-1378.

Riviere, M.-K., Yuan, Y., Dubois, F. and Zohar, S. (2015) A Bayesian dose finding design for clinical trials
combining a cytotoxic agent with a molecularly targeted agent. Appl. Statist., 64, 215-229.



Phase |-l Trial Design for Biologic Agents 345

Riviere, M.-K., Yuan, Y., Jourdan, J.-H., Dubois, F. and Zohar, S. (2016) Phase I/II dose-finding design for
molecularly targeted agent: plateau determination using adaptive randomization. Statist. Meth. Med. Res., 27,
466-479.

Rizvi, N. A., Mazieres, J., Planchard, D., Stinchcombe, T. E., Dy, G. K., Antonia, S. J., Horn, L., Lena, H.,
Minenza, E., Mennecier, B., Otterson, G. A., Campos, L. T., Gandara, D. R., Levy, B. P., Nair, S. G., Zalcman,
G., Wolf, J., Souquet, P. J., Baldini, E., Cappuzzo, F., Chouaid, C., Dowlati, A., Sanborn, R., Lopez-Chavez,
A., Grohe, C., Huber, R. M., Harbison, C. T., Baudert, C., Lestini, B. J. and Ramalingam, S. S. (2015) Activity
and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory
squamous non-small-cell lung cancer (CheckMate 063): a Phase 2, single-arm trial. Lancet Oncol., 16,257-265.

Storer, B. E. (1989) Design and analysis of Phase I clinical trials. Biometrics, 45, 925-937.

Thall, P. F. and Cook, J. D. (2004) Dose-finding based on efficacy-toxicity trade-offs. Biometrics, 60, 684—693.

Thall, P. F. and Nguyen, H. Q. (2012) Adaptive randomization to improve utility-based dose-finding with bivariate
ordinal outcomes. J. Biopharm. Statist., 22, 785-801.

Thall, P. F. and Russell, K. E. (1998) A strategy for dose-finding and safety monitoring based on efficacy and
adverse outcomes in Phase I/11 clinical trials. Biometrics, 54, 251-264.

Wages, N. A. and Tait, C. (2015) Seamless Phase I/II adaptive design for oncology trials of molecularly targeted
agents. J. Biopharm. Statist., 25, 903-920.

Wall, M. M. (2004) A close look at the spatial structure implied by the CAR and SAR models. J. Statist. Planng
Inf., 121, 311-324.

Yuan, Y., Nguyen, H. Q. and Thall, P. F. (2016) Bayesian Designs for Phase I-II Clinical Trials. Boca Raton:
Chapman and Hall-CRC.

Zang, Y., Lee, J. J. and Yuan, Y. (2014) Adaptive designs for identifying optimal biological dose for molecularly
targeted agents. Clin. Trials, 11, 319-327.



