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Summary. A traditional assumption in the design of chemotherapy Phase I/II trial designs

is that dose increases lead to both more toxicity as well as more efficacy. This assump-

tion of monotonic rates of toxicity and efficacy has come into question as potential cancer

treatments are less likely to be chemotherapy, and are instead biologic agents. These

biologic agents tend to have mechanisms of action that act as “on/off’ switches for cancer

growth, so that giving more of the biologic agents will not necessarily provide any more

benefit (and possibly no further risk) to the patient. We propose the use of a conditional

autoregressive (CAR) model as a way to adaptively estimate the rates of dose-limiting tox-

icities (DLTs) and efficacy by smoothing the data collected for all doses in such a way that

allows for non-increasing rates of either outcome with dose. We present the study design

for our CAR model approach and compare, via simulation, the operating characteristics

of our design to two existing contemporary published approaches. We demonstrate that

our CAR model approach is a viable design for an adaptive Phase I/II trial that is able to

accommodate a variety of toxicity-dose and efficacy-dose patterns.

Keywords: biologically optimal dose; clinical trial; dose finding; immunotherapy;

molecularly targeted agent; randomization

1. Introduction

Classic Phase I trial designs used in cancer research, such as the 3+3 design (Storer,
1989) and the Continual Reassessment Method (CRM) (O’Quigley et al., 1990; Faries,
1994; Goodman et al., 1995), assume that the probability of dose-limiting toxicity (DLT)
strictly increases with dose, with this assumption also made implicitly for the probability
of efficacy. These assumptions were generally acceptable for cytotoxic agents, with the
implication that among doses with acceptable rates of DLTs, the largest dose would have
the highest probability of efficacy; this dose is known as the maximum tolerated dose
(MTD). Thus, the 3+3 method, CRM, and other Phase I trial designs were created that
made dose assignments and selected the MTD based solely on DLTs.

However, with the advent of biologic agents for the treatment of cancer, the assump-
tion of monotonic toxicity and/or efficacy has come into question. To understand this
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2 Muenz et al.

issue, we focus on a specific class of biologic agents known as monoclonal antibodies;
specific members of this class have names with the suffix “-mab.” These agents can be
used to target a specific protein in cancer cells or block specific pathways, such as im-
mune checkpoints, that are believed to be important for cancer cell growth. Through
these actions, monoclonal antibodies allow the immune system to recognize and develop
a response to the cancer; well-known examples include ipilimumab (Lipson and Drake,
2011), nivolumab (Rizvi et al., 2015), and pembrolizumab (Hamid et al., 2013).

Because of their mechanisms of action, biologic agents are viewed as an “on/off”
switch for cancer growth. Once a sufficient amount of the biologic agent has caused
a pathway to be turned off or a specific protein to be targeted, giving more of the
biologic agent will not necessarily provide any more benefit, and possibly no further
risk, to the patient. Thus, it has been suggested that the patterns of toxicity and
efficacy probabilities may plateau (increase and then level off) or peak (increase and
then decrease) (Postel-Vinay et al., 2009; Jain et al., 2010). As a result, a Phase I trial
design for an biologic agent should (i) incorporate both DLTs and efficacy outcomes
when determining dose assignments and (ii) allow the dose patterns for DLTs and/or
efficacy to vary flexibly with dose; see Chapter 2 of Yuan et al. (2016) for a comprehensive
discussion. Since the MTD is no longer assumed to have maximum efficacy, the optimal
dose selected at the end of the trial is instead viewed as the optimal biological dose
(OBD). A visual demonstration of the difference between the MTD and the OBD can
be found in Riviere et al. (2016).

When the goal is to identify the MTD by assuming increasing rates of DLT and
efficacy with dose, there are several methods to model both the probability of DLT and
the probability of efficacy for a single agent, including Thall and Russell (1998), Gooley
et al. (1994), Braun (2002), Thall and Cook (2004), Thall and Nguyen (2012), and Liu
and Johnson (2016). More recent approaches for identifying the OBD by removing the
assumption of increasing rates of DLT or efficacy with dose include the methods of Zang
et al. (2014), Wages and Tait (2015), and Riviere et al. (2016).

To complement these approaches of identifying the OBD, we propose a method in
which we borrow information across doses without imposing a strict parametric form for
either DLT rates or efficacy rates. Separately for each of DLT and efficacy, each dose
level has its own parameter for the probability of the outcome, and these probabilities
for all doses are linked via a covariance matrix that borrows information across doses. In
particular, we model the log-odds of DLT and efficacy with a conditional autoregressive
(CAR) model, which has been used in geospatial analysis of lattice data (Besag, 1974;
Cressie, 2015; Wall, 2004). We introduce our method in Section 2, which describes our
statistical model and dose-finding algorithm and outlines the specific steps needed for a
clinical trial using our design. In Section 3, we compare the operating characteristics of
our design to two existing designs, and we conclude with a discussion in Section 4.

2. Model and Methods

2.1. Defining the Model

Consider J candidate dose levels, ordered by increasing dose from 1 to J . We let nj

denote the number of patients assigned to dose j = 1, 2, . . . J , of whom Y D
j patients
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EffTox CAR for Dose-Finding 3

have experienced DLTs and Y E
j patients have experienced efficacy. We assume that

Y D
j ∼ Bin(nj , π

D
j ) and Y E

j ∼ Bin(nj , π
E
j ). We induce correlation among the elements

of πD = {πD
1 , πD

2 , . . . , πD
J } and among the elements of πE = {πE

1 , π
E
2 , . . . , π

E
J } using a

CAR covariance structure. Both πD and πE will have the same structure; for clarity,
we first describe the structure for πD.

If we define logit(x) = log(x) − log(1 − x), we assume a multivariate normal dis-
tribution for logit(πD) = {logit(πD

1 ), logit(πD
2 ), . . . , logit(πD

J )}, with mean equal to
logit(πD

0 ), where πD
0 = {πD

01 . . . πD
0J} is a set of “skeleton” values for the DLT rates

of the doses. Conditional upon given values of λ and σ2, logit(πD) has covariance ma-
trix Σ

D = σ2(IJ − λW )−1, in which IJ is a J × J identity matrix and W is a matrix
used to define the neighborhood for each dose.

Specifically, W is a JxJ matrix with element (i, j) equal to

wij =







1 if |i− j| = 1
0 if i = j
0 otherwise,

so that W has ones just off the main diagonal, and zeros everywhere else.

The matrix Σ
D is a function of two parameters: (i) σ2, which controls the prior

standard deviation of each logit(πD
j ) and thus of each πD

j , and (ii) λ, which controls
the amount of information borrowed across neighboring doses. Furthermore, as shown
in Wall (2004), the CAR model leads to element j of logit(πD) having a conditional
normal distribution with mean

E{logit(πD
j ) | πD

(j)} = logit(πD
0j) + λ

J
∑

k=1

wjk[logit(π
D
k )− logit(πD

0k)], (1)

and variance

V ar{logit(πD
j ) | logit(πD

(j))} = σ2, (2)

in which πD
(j) is π

D with element j removed.

In this form, we see that the DLT rate of each dose, given its first-order neighbors
(wjk = 1), is conditionally independent of the other doses. We also see that λ con-
trols how much the conditional mean of logit(πD

j ) moves away from the a priori value

logit(πD
0j) as a function the rates of its first-order neighbors. From Equation (1), we

also see that negative values of λ correspond to negative correlations among all directly
neighboring doses, while positive values correspond to positive correlations among all
doses. As negative correlation lacks plausibility in our setting, we will not consider
values of λ < 0.

More importantly, to ensure that ΣD is positive definite, λ is restricted to the interval
(1/wmin, 1/wmax), where wmin < 0 and wmax > 0 are the minimum and maximum
eigenvalues of W (Wall, 2004). Thus, in our methods, we will assume a uniform prior
distribution on λ over the range [0, 1/wmax]. We will consider σ2 to be fixed, treating
it as a tuning parameter whose value is selected by the user, a common approach to
variance parameters in many Phase I trial designs.
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4 Muenz et al.

The marginal CAR model for logit(πD) just described is also used to model the
marginal distribution of logit(πE), with every superscript “D” replaced with super-
script “E.” The CAR model for logit(πE) also requires specification of a skeleton πE

0 =
{πE

01 . . . πE
0J}. In their current formulation, the toxicity and efficacy rate CAR mod-

els use the same values for the parameters σ2 and λ in their corresponding covariance
matrices, although different values among the two models could be used, if desired.

We note that our approach models the marginal distributions of logit(πD) and
logit(πE) and assumes they are independent so that no information is shared between
them. Although we could consider modeling the joint distribution of logit(πD) and
logit(πE) by including an additional association parameter, we refrain from doing so
based on the recommendation of Cunanan and Koopmeiners (2014). They investigated
various copula models to link DLT and efficacy outcomes within-subject and found that
copula association parameters are difficult to estimate with binary outcomes, especially
with the small sample sizes used in Phase I trials. Thus, assuming within-subject inde-
pendence of DLT and efficacy outcomes leads to suitable operating characteristics even
if there is within-subject dependence of the outcomes; see Liu and Johnson (2016) for a
similar discussion.

2.2. Estimation of Model Parameters and Event Probabilities

After m subjects have been observed for DLT and efficacy, we have three vectors of
data: (i) the number of subjects assigned to each dose, n = {n1, n2, . . . , nJ}, such that

m =
∑J

j=1 nj , the number of DLTs observed for each dose, Y D = {Y D
1 , Y D

2 , . . . , Y D
J },

and the number of efficacy outcomes observed for each dose, Y E = {Y E
1 , Y E

2 , . . . , Y E
J }.

Because we choose to model the marginal distributions of πD and πE , each can be
estimated separately using Bayesian methods. For clarity, we first focus on estimation
of πD and then explain how the same estimation procedure is applied to πE .

We wish to find the posterior distribution of ηD = logit(πD), conditional on n and
Y D, in which ηDj = logit(πD

j ). Because of the nature of the CAR model, it is straightfor-
ward to use the Metropolis-Hastings (MH) algorithm (Minh and Minh, 2015) to generate
draws from the posterior distribution of πD, i.e. using the JAGS software (Plummer,
2003). The MH algorithm provides us with draws from the joint posterior distribution
f(πD|Y D,n), which also gives us draws from each marginal posterior f(πD

j |Y D,n).
The mean of each of these J vectors of marginal samples gives us the posterior mean
DLT rate for dose j, which we denote as π̂D

j . An analogous approach for computing

the posterior mean efficacy rate of each dose j, denoted π̂E
j , is found by replacing the

“D” superscripts with an “E” in the posterior computations just described. These two
estimators can be interpreted as the respective posterior expected probabilities of DLT
and efficacy for a new patient assigned to dose j. We let π̂j = (π̂E

j , π̂
D
j ).

2.3. Dose-Finding Algorithm

As is typical for most Phase I/II trial designs, we choose to assign the first cohort of
patients to the lowest dose; all future patients are assigned to a dose determined by the
following algorithm. First, we define a set of acceptable doses as those that meet both
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EffTox CAR for Dose-Finding 5

of the following criteria:

Pr(π̂D
j > π̄D | Y D,n) < pD (3)

Pr(π̂E
j > πE | Y E ,n) > pE , (4)

where πE and π̄D are lower and upper bounds, respectively, for the rates of efficacy and
DLT, and pE and pD are respective thresholds for the posterior cumulative probabilities.
These four quantities are fixed at the beginning of the trial, and is similar to the approach
used in both Wages and Tait (2015) and Liu and Johnson (2016). Based upon the data
from m subjects, if no dose meets these acceptability criteria, the trial is terminated and
no dose is identified as the OBD.

Otherwise, we define S to be the set of safe doses, i.e. those that satisfy Equation (3).
To promote exploration early in the trial, we will randomize the assignments of the first
half of the cohorts (or just over half if an odd number of cohorts), using the posterior
mean efficacy rates to randomize among doses in S, i.e. dose k ∈ S is assigned to the
next cohort of patients with probability

prandk =
π̂E
k

∑

ℓ∈S π̂E
ℓ

.

Randomization is not used with the remaining latter cohorts; instead, we assign each
cohort to the member of S with largest posterior probability of efficacy, a so-called
“greedy” strategy. When the trial has finished collecting data on the desired number of
patients N , the OBD is the member of S with highest posterior mean efficacy.

2.4. Designing a Trial
We now outline the steps necessary to successfully implement our design in an actual
clinical trial:

(1) Identify the number of doses J , the maximum number of patients N , and the cohort
size c;

(2) For each dose j, select a skeleton value πD
0j for the probability of DLT and πE

0j for
the probability of efficacy;

(3) Select values for π̄D, the maximum acceptable probability of DLT, and pD, the
maximum acceptable amount of posterior mass above π̄D used in Equation (3);

(4) Select values for πE , the minimum acceptable probability of efficacy, and pE , the
minimum acceptable amount of posterior mass above π̄E used in Equation (4);

(5) Select a value for the prior standard deviation σ used in the CAR model covariance;

(6) Enroll the first cohort of c patients on the lowest dose;

(7) Use the methods in Sections 2.2 and 2.3 to determine whether the study should
continue, and if so, which dose to assign to the next cohort of c patients;

(8) Repeat step (7) after each successive cohort has been followed for DLT and efficacy;
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6 Muenz et al.

(9) Once all N subjects have been followed for DLT and efficacy, make a final deter-
mination as to which dose is the OBD.

We note that suitable parameter values in steps (3)-(5) will require calibration through
small simulation studies and grid searches over plausible values of each parameter, as is
done in other Phase I trial designs.

3. Simulation Studies

We now compare the operating characteristics of our CAR model design to two existing
designs, one which does not assume monotonicity of efficacy rates with dose and one
that does make this assumption. The methods of Wages and Tait (2015) apply the
traditional CRM to model toxicity rates, while they use a Bayesian model averaging
approach for efficacy by incorporating several vectors of a priori (skeleton) efficacy rates
for each dose. The skeletons vary by the location of the highest efficacy rate, whether
the efficacy rates increase or plateau with dose, and if a plateau exists, at which dose
the plateau occurs. By averaging over all these possible skeletons, it is hoped that the
methods are flexible enough to identify both monotonic and non-monotonic patterns of
efficacy with dose.

The methods of Liu and Johnson (2016) assume monotonically increasing patterns
of both toxicity and efficacy with dose. They create a Markov structure for the toxicity
rates, whereby the toxicity rate of each dose is assumed to be equal to the toxicity rate of
the next-lowest dose plus a random positive quantity, such that all the toxicity rates are
bounded above zero and below one. A similar structure is assumed for the efficacy rates.
Skeleton vectors of toxicity and efficacy rates are used to define prior distributions for
the differences in toxicity and efficacy rates of neighboring doses. No regression model is
used to model the DLT and efficacy rates, so it is hoped that this design is more flexible
than many designs like the CRM that adopt a parametric regression model to enforce
monotonicity.

Our methods can be viewed somewhat as a hybrid of Wages and Tait (2015) and
Liu and Johnson (2016). First, like Wages and Tait (2015), we choose to allow efficacy
rates to possibly be non-monotonic in dose, but adopt a model that allows for non-
monotonicity directly through its parameterization, rather than averaging over many
linear and piecewise linear skeletons. Unlike Wages and Tait (2015), we also allow for
possibly non-monotonic patterns of toxicity with dose. Like the methods of Liu and
Johnson (2016), our approach is a conditional Markov model, in which the toxicity and
efficacy rates of each dose are correlated with the toxicity and efficacy rates, respectively,
of neighboring doses. However, unlike Liu and Johnson (2016), our model does not
enforce strict increases in toxicity and efficacy rates with dose.

For our method and our two comparators, we examine a group of settings that define
the actual rates of DLT and efficacy for each dose. In each setting, if the true values
of DLT and efficacy for dose j are πD∗

j and πE∗

j , we simulate the binary DLT and
efficacy outcomes for subjects assigned to dose j from respective Bernoulli distributions
with probabilities πD∗

j and πE∗

j . The specific values used for the parameters in our CAR
model will be defined in each of the following sections. Unless explicitly stated otherwise,
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EffTox CAR for Dose-Finding 7

we use parameter values for the designs of Wages and Tait (2015) and Liu and Johnson
(2016) as were originally proposed in their respective manuscripts.

We note that the methods of Liu and Johnson (2016) combined the DLT and efficacy
rates of each dose into a utility score and then sought to find the dose that was most
likely to be the dose with greatest posterior mean utility. In contrast, our design and
that of Wages and Tait (2015) are not utility-based, which is the more common approach
adopted in Phase I trial designs; see Thall and Cook (2004) for an exception. Thus, in
the tables that follow, the results for Liu and Johnson (2016) are based upon simulations
that used their Markov model to estimate the posterior mean DLT and efficacy rates.
However, dose assignments and final selection of the OBD are based upon the same rules
as that of the CAR model explained in Section 2.3.

We have two reasons for doing so. First, we are able to directly compare how the
operating characteristics of designs using the CAR model and the Markov model of
Liu and Johnson (2016) differ from each other. Second, we found the utility measure
proposed in Liu and Johnson (2016) to be somewhat subjective regarding what the
OBD should be. For example, in Scenario 1 of their manuscript, the first two doses
have respective DLT rates of 0.15 and 0.32, and respective efficacy rates of 0.28 and
0.30. Their utility metric placed a large penalty on doses with DLT rates above 0.30.
As a result, the lowest dose had greater utility than the second dose. However, in many
settings, it would seem that the second dose is the OBD because it is more effective than
the lowest dose and its DLT rate is only two points above the targeted DLT rate.

3.1. Comparison in Settings Explored in Liu and Johnson (2016)

We first compare the operating characteristics of the three methods in eight settings
described in Liu and Johnson (2016). Each of the settings has toxicity and efficacy rates
that increase monotonically with dose. Thus, we use these settings to examine how our
CAR model design and the design of Wages and Tait (2015), neither of which require
monotonicity, perform when monotonicity exists. The location of the OBD varies among
the eight settings, with one of the settings having no OBD among the doses examined.
The actual rates of toxicity and efficacy in each setting are demonstrated in Figure 1.

[Figure 1 about here]

In each setting, we have a study of five doses that enrolls a total of N = 48 patients
in cohorts of size c = 3. In all three designs, we allocated randomized dose assignments
to the first N/2 = 24 patients, with “greedy” assignments given to the remaining 24
patients. We performed simulations of 1,000 trials in each setting in order to obtain
the operating characteristics of each method. For our CAR design, we used the same
skeleton values for toxicity and efficacy as proposed by Liu and Johnson (2016). The
same toxicity skeleton was used in the method of Wages and Tait (2015). For efficacy, we
defined a set of nine skeletons, five that were unimodal and four with plateaus, modified
from those in Wages and Tait (2015) to only have five doses.

Also following directly from Liu and Johnson (2016), we used the value π̄D = 0.30
for the maximal allowed toxicity rate and π̄E = 0.20 for the minimal allowed efficacy
rate; these values were also used for the corresponding values in the design of Wages and
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8 Muenz et al.

Tait (2015). We also used the values pD = pE = 0.20 for the definition of acceptable
doses in steps (3) and (4) in Section 2.4. The association parameter, λ, in the CAR
model variance matrices is uniformly distributed over [0.00, 0.58]. Finally, through a
grid search over a range of values, we selected the standard deviation in the CAR model
covariance to be σ = 0.75. We found that lower values of σ made the a priori skeleton
rates too informative, leading to larger doses always being preferred in all settings, while
larger values of σ led to much higher rates of early termination because so little a priori
information was available when few patients had been enrolled.

In Table 1, we summarize the performance of the three designs in the eight settings
with two operating characteristics: (i) the proportion of simulations in which each dose
was selected as the OBD at the end of the study, and (ii) the simulation-wide average
number of subjects assigned to the true OBD during the study. In Setting 1, we see that
the lowest two doses have efficacy rates closest to the targeted DLT rate of 0.30; the
CAR model design prefers the second dose to the first dose, while the design of Wages
and Tait (2015) moderately prefers the first dose to the second dose and the design of
Liu and Johnson (2016) strongly prefers the first dose. In terms of patient assignments,
the design of Wages and Tait (2015) assigns the most patients to the first two doses,
while the CAR model design assigns the least. Thus, in this setting, the CAR model is
not competitive with the other designs.

However, in Setting 2, we see that although all three designs equally prefer the second
dose, the design of Liu and Johnson (2016) is predisposed toward the lowest dose, while
the CAR model design and that of Wages and Tait (2015) skew toward the third dose,
which in this setting, seems preferable to the lowest dose. These results support the
findings in Setting 1 where the design of Liu and Johnson (2016) appears to skew selection
toward lower doses. Furthermore, in Setting 6, we one again see that the design of Liu and
Johnson (2016) prefers lower doses, while the CAR model design and that of Wages and
Tait (2015) prefer higher doses, although the differences in the operating characteristics
among the three designs is modest.

In Setting 3, where the highest dose is the OBD, all three designs have similar dis-
tributions of dose assignments, but the CAR model design and that of Liu and Johnson
(2016) both correctly identify the OBD more than the design of Wages and Tait (2015).
Further more, in Settings 4, 5, and 7, the CAR model design has the best operating
characteristics of the three designs, with the design of Liu and Johnson (2016) again
predisposed to lower doses more than the others. Setting 8 has none of the doses being
an OBD, as no dose simultaneously is both safe and effective; again all three designs
have comparable operating characteristics.

We do emphasize that each of the designs could be made to be more preferential to
lower or higher doses by changing some of their corresponding tuning parameters. Thus,
there is no absolute “best” design among the three in all settings. The overall conclusion
from this set of simulations is that all three designs are worthwhile designs for studies
where monotonic rates of DLT and efficacy are expected.

[Table 1 about here]
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EffTox CAR for Dose-Finding 9

3.2. Comparison in Settings Motivated by Wages and Tait (2015)

We next compare the operating characteristics of the three methods in eight settings
motivated by settings in Wages and Tait (2015). Each of the settings is a study of six
doses; the values of the true DLT and efficacy rates are shown in Figure 2. The values
of the true DLT and efficacy rates were selected to cover settings where DLT and/or
efficacy rates that would monotonically increase with dose or plateau prior to the last
dose. Thus, we expect that the methods of Liu and Johnson (2016) will struggle to
correctly identify the OBD in the presence of a plateau in the toxicity and/or efficacy
rates. We note that Settings 1, 2, 3, 5, 6, and 7 in Figure 2 are from the original
manuscript of Wages and Tait (2015), while Settings 4 and 8 are new settings that were
not investigated in that manuscript.

[Figure 2 about here]

We performed 1,000 simulations for each setting to obtain operating characteristics of
all three methods when the six doses were studied with a sample of N = 64 patients who
were enrolled as singleton cohorts (c = 1). Our CAR design and that of Liu and Johnson
(2016) uses a skeleton vector of DLT rates identical to the one proposed inWages and Tait
(2015). We use a skeleton vector of efficacy rates πE

0 = (0.05, 0.18, 0.36, 0.54, 0.60, 0.67),
which is the average value for each dose among the efficacy patterns shown in Figure
2. In all three methods, randomized dose assignments were used for the first N/2 = 32
patients, with the remaining 32 patients receiving “greedy” dose assignments.

Following directly from Wages and Tait (2015), we used the value π̄D = 0.33 for the
maximal allowed toxicity rate and π̄E = 0.05 for the minimal allowed efficacy rate. We
also used the values pD = pE = 0.20 for the definition of acceptable doses in steps (3)
and (4) in Section 2.4. The association parameter, λ, in the CAR model covariance
is uniformly distributed over [0.00, 0.55]. As in Section 3.1, we selected the standard
deviation in the CAR model covariance to be σ = 0.75.

In Table 2, we summarize the same two operating characteristics as in Table 1,
namely: (i) the proportion of simulations in which each dose was selected as the OBD at
the end of the study, and (ii) the simulation-wide average number of subjects assigned
to the true OBD during the study. For Settings 1-3, which were originally examined
in Wages and Tait (2015), we see that the CAR model is able to identify the OBD
better than the design of Wages and Tait (2015), and both designs identify the OBD
better than the design of Liu and Johnson (2016). The CAR model and the design of
Wages and Tait (2015) also assign more patients to the OBD than Liu and Johnson
(2016). Note that these results cover settings in which the DLT rates plateau at an
unacceptable toxicity level (Setting 1), as well as monotonically increase (Settings 2 and
3). Setting 4 was a setting we included to examine a situation when DLT rates plateau
at an acceptable toxicity level, so that the largest of the doses after the plateau would
be the OBD. In this setting, we see the monotonic pattern of efficacy rates allows the
design of Liu and Johnson (2016) to identify the OBD better than the others, with the
design of Wages and Tait (2015) appearing to equally prefer all of doses 4-6.

Settings 5-7 have the same DLT rates as Settings 1-3, respectively, but now have
efficacy rates that plateau at dose 4. As a result, the monotonic assumption of the
design of Liu and Johnson (2016) is too strong, causing it to be much less likely to
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10 Muenz et al.

correctly identify the OBD as compared to the other designs, with the CAR model design
outperforming the design of Wages and Tait (2015). Setting 8 is a setting in which both
DLT rates and efficacy rates plateau together, so that the OBD exists simultaneously at
doses 4-6; here the three designs have similar operating characteristics. Thus, across all
eight settings, we have strong evidence for the benefit of the CAR model over the other
two designs in settings where DLT rates and/or efficacy rates are expected to plateau

[Table 2 about here]

We also ran simulations using these eight settings to assess the sensitivity of our design
to (i) the skeleton values for DLT and efficacy rates and (ii) the value of the variance
parameter σ2 (results not shown). We found that when we increased the skeleton rates
of both DLT and efficacy by 50%, correct selection of the OBD did generally decrease
by a few percentage points, which was expected because the DLT skeleton suggested the
doses were all more toxic than before. But, overall, the performance of our design was
still as good or better than the other designs.

When we halved the value of σ, we found that selection of the BOD was skewed
toward higher doses, so that although our design selected the correct dose more often, it
was also slightly more likely to select overly toxic doses. Conversely, when we doubled of
value of σ, we found that selection of the BOD was skewed toward lower doses, so that
dose 4, which was the BOD in most of the settings, was selected less often. Thus, our
design is sensitive to the value of σ, which is common among most Phase I/II designs,
emphasizing the fact that calibration of σ2 through simulation is an important exercise.

4. Discussion

Our proposed CAR model design is competitive with two contemporary designs and
appears to be the optimal choice when DLT and/or toxicity rates are expected to plateau.
The CAR model design is no more complex than the other two designs, with an equal
number of tuning parameters required. Nonetheless, there are aspects of the CAR model
design, common to the other designs, that we would like to further explore.

First, randomization is used in Phase I trials assessing both toxicity and efficacy
because it encourages greater exploration of the doses and increases a design’s ability
to correctly identify of the OBD. However, there is little current direction on exactly
how to (i) restrict which doses to randomize among, and (ii) compute the randomization
probabilities of the selected doses. We chose to limit randomization among doses that
were deemed safe based upon the data, but many other approaches could be used. Other
designs consider randomizing only among doses that are neighbors of the most-recently
assigned dose or to doses that are deemed to be both safe and effective. An interesting
avenue of research for any design is to compare how operating characteristics of that
design vary with different randomization schemes.

We also chose to use randomization probabilities that were directly proportional to
the value of each dose’s posterior mean efficacy; many other approaches are possible. For
example, we could have randomized using both the posterior rates of DLT and efficacy,
or used transformed values, i.e. square root or exponential of those means. The idea of
exponentiating the posterior means is a specific application of Softmax learning, which is
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EffTox CAR for Dose-Finding 11

often used in multi-armed bandits (Luce, 1959). It also remains unclear if randomization
is needed during the entire trial, or is only needed until a specific proportion of subjects
has been enrolled, after which dose assignments are based upon a“greedy” assignment
algorithm.

As with many Phase I/II trial designs, our method has tuning parameters whose
values need to be selected before starting the trial. We emphasize that the values we
selected in our simulation studies are not necessarily the best values for general use.
However, the number of tuning parameters in our design is no more than that of most
other published Phase I/II trials. The most crucial parameter to calibrate is the value
of σ2, which can be determined rather quickly through small simulation studies of a few
selected values. In our experience, a good value of σ2 across many settings is often in
the interval [0.50, 1.50].

In our simulations, we assumed that the efficacy outcome of each subject occurred
in close temporal proximity to their DLT outcome so that the dose assignment of each
successive subject could be determined from complete data. However, in many settings,
the efficacy outcome may occur much later than the DLT outcome, so that a new sub-
ject might be available for a dose assignment before currently enrolled subjects have
completed follow-up for their efficacy endpoint. In these situations, we suggest that the
posterior distributions of the efficacy rates be computed with a weight that reflects how
much follow-up each subject has completed at the time the new subject is to be enrolled.
Such an approach is akin to the time-to-event CRM (TITE-CRM) approach of Cheung
and Chappell (2000); a latent variable approach to the problem is also possible (Jin
et al., 2014). The work of Liu and Johnson (2016) examined this approach with their
design and found that the design had slightly reduced ability to identify the OBD, but
still had generally good operating characteristics. We would expect the same results for
ours, or any method, that was applied to studies with later follow-up for efficacy relative
to DLT.

Finally, because of the multi-focal nature of cancer, many biologic agents are being
studied in combination with an existing chemotherapy or with a second biologic agent.
As a result, Phase I/II trial designs are needed that model the DLT and efficacy rates
of two agents, as well as allow for non-increasing rates of DLT and/or efficacy for one
or both agents. To that end, some recent designs have been published (Cai et al., 2014;
Riviere et al., 2015; Guo and Li, 2015). We are currently working on a sequel to our
current work that applies our CAR model approach to study the toxicity and efficacy of
combinations of doses of two agents, at least one of which is a biologic agent.
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Fig. 1. DLT and efficacy rates for each of the eight settings examined in Section 3.1. The exact

values for the DLT and efficacy rates can be found in Table 1.
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Fig. 2. DLT and efficacy rates for each of the eight settings examined in Section 3.2. The exact

values for the DLT and efficacy rates can be found in Table 2.
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Table 1. Operating characteristics of the proposed CAR model design (CAR), the design of Wages and Tait (2015)

(WT) and the design of Liu and Johnson (2016) (LJ) in the eight settings shown in Figure 1. Each setting has five

doses D1, D2, . . . D5. For each setting, the first row contains a pair (100x, 100y) for each dose, in which x=DLT rate

and y=efficacy rate. The first six columns present the percentage of simulations (x100) in which each dose was

selected as the MTD at the end of the study. The last five columns present the average number of subjects (out of

48) that were assigned to each dose. The shaded columns for each setting highlight the doses that have DLT rates

closest to the threshold of 0.30 and have minimally acceptable efficacy, making them the best candidates for the OBD.

OBD Selection Patients Assigned
Setting Method D1 D2 D3 D4 D5 None D1 D2 D3 D4 D5

1 (15,28) (32,30) (45,44) (55,60) (62,74)
CAR 36.2 43.1 8.2 0.2 0.1 12.2 8.7 15.5 12.4 6.3 4.4
WT 51.2 43.7 1.8 0.0 0.0 3.3 27.1 16.0 2.9 0.9 0.6
LJ 71.9 10.9 2.1 1.0 0.8 13.3 21.2 13.9 5.4 2.3 1.0

2 (4,10) (18,27) (37,44) (54,58) (67,69)
CAR 3.2 62.5 25.4 0.8 0.0 8.1 6.0 11.9 17.9 7.5 4.3
WT 0.9 55.6 37.2 0.8 0.0 5.5 10.5 19.0 13.7 2.6 1.6
LJ 20.1 58.7 9.8 0.7 0.0 10.7 11.4 18.2 10.8 3.6 1.0

3 (2,5) (5,8) (7,15) (10,28) (12,43)
CAR 0.0 0.0 0.6 10.4 88.3 0.7 5.4 5.7 5.8 6.0 25.0
WT 1.3 2.3 7.1 18.5 64.8 6.0 6.2 4.8 7.0 10.0 19.5
LJ 0.1 0.6 2.1 7.3 88.4 1.5 3.2 3.5 4.1 9.9 26.8

4 (10,15) (12,18) (15,38) (36,40) (65,60)
CAR 1.1 7.3 74.5 15.6 0.0 1.5 5.9 6.2 13.0 17.3 5.6
WT 9.4 10.9 50.8 19.8 1.1 8.0 13.3 10.7 14.7 5.9 2.4
LJ 5.2 18.3 68.9 3.4 0.3 3.9 5.8 10.6 17.7 9.7 3.1

5 (5,10) (7,20) (10,25) (15,50) (35,54)
CAR 0.2 2.0 9.6 67.5 20.4 0.3 5.6 5.9 6.3 12.1 18.1
WT 2.6 6.5 11.0 47.2 30.3 2.4 8.0 6.8 8.8 13.0 11.1
LJ 0.7 3.0 15.6 71.1 8.4 1.2 3.6 4.7 8.7 16.6 13.9

6 (10,5) (15,30) (32,35) (45,35) (55,50)
CAR 0.3 54.7 29.3 5.5 0.4 9.8 5.8 10.1 14.6 10.6 6.4
WT 0.0 58.0 34.4 1.4 0.0 6.2 10.5 20.1 12.4 2.4 1.6
LJ 6.8 75.6 6.7 0.3 0.4 10.2 8.8 18.8 11.3 4.1 1.9

7 (10,2) (12,10) (15,42) (30,45) (60,50)
CAR 0.0 2.2 63.5 32.1 0.0 2.2 5.4 5.8 10.7 19.1 6.8
WT 0.0 2.8 50.2 29.2 2.1 15.7 9.1 9.6 15.4 8.3 3.3
LJ 2.4 6.9 75.4 10.4 0.0 4.9 4.6 8.2 17.5 12.0 4.0

8 (10,2) (25,2) (55,35) (60,40) (70,52)
CAR 1.0 2.7 1.2 0.1 0.0 95.0 6.3 12.3 9.2 4.9 3.3
WT 0.0 5.2 1.1 0.0 0.0 93.7 12.5 14.9 4.2 1.1 1.1
LJ 10.9 3.2 0.6 0.1 0.3 84.9 8.8 8.7 5.0 1.6 0.6
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Table 2. Operating characteristics of the proposed CAR model design (CAR), the design of Wages and Tait (2015) (WT) and the

design of Liu and Johnson (2016) (LJ) in the eight settings shown in Figure 2. Each setting has six doses D1, D2, . . . D6. For each

setting, the first row contains a pair (100x, 100y) for each dose, in which x=DLT rate and y=efficacy rate. The first seven columns

present the percentage of simulations (x100) in which each dose was selected as the MTD at the end of the study. The last six

columns present the average number of subjects (out of 64) that were assigned to each dose. The shaded columns for each

setting highlight the doses that have DLT rates closest to the threshold of 0.33 and have minimally acceptable efficacy, making

them the best candidates for the OBD.

OBD Selection Patients Assigned
Setting Method D1 D2 D3 D4 D5 D6 None D1 D2 D3 D4 D5 D6

1 (5,5) (10,13) (20,25) (28,38) (50,50) (50,63)
CAR 0.0 2.4 28.6 66.9 1.7 0.3 0.1 2.2 4.6 9.3 27.9 11.3 8.6
WT 0.9 4.4 29.0 57.5 8.0 0.2 0.0 6.8 9.5 17.4 21.8 6.7 1.9
LJ 0.5 5.3 32.2 48.0 3.1 1.1 9.8 2.2 5.1 11.6 22.9 9.9 7.9

2 (5,5) (10,13) (20,25) (28,38) (40,50) (55,63)
CAR 0.0 2.5 24 61.1 12.1 0.1 0.2 2.2 4.4 8.7 21.9 19.6 7.1
WT 0.8 4.6 25.3 51.8 17.1 0.4 0.0 6.7 9.2 16.6 19.8 9.4 2.2
LJ 0.2 5.0 26.9 46.2 12.0 0.4 9.3 2.2 4.9 10.1 18.2 15.5 9.2

3 (5,5) (10,13) (15,25) (20,38) (35,50) (40,63)
CAR 0.0 0.5 8.4 53.9 27.8 9.4 0.0 2.1 3.9 6.1 14.8 19.6 17.6
WT 1.0 2.6 11.7 36.7 40.2 7.8 0.0 5.8 7.6 11.4 16.8 15.7 6.7
LJ 0.2 0.6 10.1 40.3 27.1 17.3 4.4 1.9 3.8 7.3 13.8 14.2 20.9

4 (5,5) (10,13) (15,25) (20,38) (20,50) (20,63)
CAR 0.0 0.0 0.3 5.7 20.9 73.1 0.0 2.0 3.6 5.4 7.5 9.8 35.8
WT 1.0 2.7 7.8 20.9 27.8 39.8 0.0 5.5 6.7 9.1 12.7 14.1 16.0
LJ 0.1 0.3 1.7 1.0 2.9 90.8 3.2 1.8 3.4 5.8 7.3 8.1 35.8

5 (5,5) (10,23) (20,47) (28,70) (50,70) (50,70)
CAR 0.1 0.9 24.3 72.3 1.7 0.7 0.0 2.1 4.4 10.0 28.2 11.0 8.3
WT 0.0 2.6 24.0 65.6 7.7 0.1 0.0 7.2 9.5 15.6 23.4 6.6 1.7
LJ 0.2 8.4 29.3 51.3 4.2 0.9 5.7 2.3 6.2 11.8 22.6 10.7 7.9

6 (5,5) (10,23) (20,47) (28,70) (40,70) (55,70)
CAR 0.0 1.2 19.6 68.8 10.4 0.0 0.0 2.0 4.2 9.2 22.8 18.8 6.9
WT 0.0 2.5 22.7 59.5 15.1 0.2 0.0 7.3 9.1 15.6 21.0 8.9 2.0
LJ 0.2 6.0 25.7 48.0 13.6 0.6 5.9 2.1 5.5 10.7 18.3 16.1 8.7

7 (5,5) (10,23) (15,47) (20,70) (35,70) (40,70)
CAR 0.0 0.0 5.9 62.8 24.5 6.8 0.0 2.0 3.9 6.5 15.7 19.6 16.3
WT 0.2 0.7 6.9 49.8 38.5 3.9 0.0 6.1 7.2 9.9 20.2 15.7 4.9
LJ 0.2 1.3 7.8 43.9 27.6 16.6 2.6 2.0 4.4 7.7 14.2 14.3 20.1

8 (5,5) (10,23) (15,47) (20,70) (20,70) (20,70)
CAR 0.0 0.0 0.6 23.3 29.9 46.2 0.0 1.9 3.7 5.8 8.1 10.1 34.4
WT 0.1 1.3 5.2 34.0 34.9 24.5 0.0 5.7 6.5 9.0 15.6 15.4 11.8
LJ 0.1 0.6 1.4 1.7 3.0 90.9 2.3 1.9 3.9 6.5 7.8 7.8 34.7
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