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Purpose: We are developing a computerized segmentation tool for the inner and outer bladder wall
as a part of an image analysis pipeline for CT urography (CTU).
Materials and Methods: A data set of 172 CTU cases was collected retrospectively with Institu-
tional Review Board (IRB) approval. The data set was randomly split into two independent sets of
training (81 cases) and testing (92 cases) which were manually outlined for both the inner and outer
wall. We trained a deep-learning convolutional neural network (DL-CNN) to distinguish the bladder
wall from the inside and outside of the bladder using neighborhood information. Approximately,
240 000 regions of interest (ROIs) of 16 9 16 pixels in size were extracted from regions in the train-
ing cases identified by the manually outlined inner and outer bladder walls to form a training set for
the DL-CNN; half of the ROIs were selected to include the bladder wall and the other half were
selected to exclude the bladder wall with some of these ROIs being inside the bladder and the rest
outside the bladder entirely. The DL-CNN trained on these ROIs was applied to the cases in the test
set slice-by-slice to generate a bladder wall likelihood map where the gray level of a given pixel repre-
sents the likelihood that a given pixel would belong to the bladder wall. We then used the DL-CNN
likelihood map as an energy term in the energy equation of a cascaded level sets method to segment
the inner and outer bladder wall. The DL-CNN segmentation with level sets was compared to the
three-dimensional (3D) hand-segmented contours as a reference standard.
Results: For the inner wall contour, the training set achieved the average volume intersection, aver-
age volume error, average absolute volume error, and average distance of 90.0 � 8.7%,
�4.2 � 18.4%, 12.9 � 13.9%, and 3.0 � 1.6 mm, respectively. The corresponding values for the
test set were 86.9 � 9.6%, �8.3 � 37.7%, 18.4 � 33.8%, and 3.4 � 1.8 mm, respectively. For the
outer wall contour, the training set achieved the values of 93.7 � 3.9%, �7.8 � 11.4%,
10.3 � 9.3%, and 3.0 � 1.2 mm, respectively. The corresponding values for the test set were
87.5 � 9.9%, �1.2 � 20.8%, 11.9 � 17.0%, and 3.5 � 2.3 mm, respectively.
Conclusions: Our study demonstrates that DL-CNN-assisted level sets can effectively segment blad-
der walls from the inner bladder and outer structures despite a lack of consistent distinctions along
the inner wall. However, even with the addition of level sets, the inner and outer walls may still be
over-segmented and the DL-CNN-assisted level sets may incorrectly segment parts of the prostate
that overlap with the outer bladder wall. The outer wall segmentation was improved compared to our
previous method and the DL-CNN-assisted level sets were also able to segment the inner bladder
wall with similar performance. This study shows the DL-CNN-assisted level set segmentation tool
can effectively segment the inner and outer wall of the bladder. © 2018 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.13326]
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1. INTRODUCTION

The American Cancer Society estimates that in 2017, 76 900
people will be diagnosed with bladder cancer (58 950 in men
and 18 010 in women) and that bladder cancer will be respon-
sible for 16 390 deaths (11 820 in men and 4570 in women).1

Early detection of bladder cancer is possible using a multi-
detector row CT (MDCT) urography exam, which can image
the bladder, kidneys, and ureters in a single scan.2–6 Unfortu-
nately, the interpretation of a CT urography (CTU) exam is a
time-intensive process. A CTU scan has on average 300 slices

in each examwith a range of 200 to 600 slices. Since multiple
lesions are possible in different areas of the scan, the entire
set of slices must be carefully examined by the radiologist to
determine if a lesion is present, which involves frequent
adjustment of images in order to best view each slice. Addi-
tionally, CTU scans often have many urinary anomalies and
the radiologist must determine the likelihood that each anom-
aly is benign or cancerous. These challenges in CTU interpre-
tation lead to large variance among radiologists in detecting
bladder cancer. Studies showed that the sensitivity ranges
from 64% to 97% among radiologists.7,8
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Due to the large inter-radiologist variability and the sub-
stantial chance that a radiologist may miss a potentially
cancerous lesion, it is imperative to develop techniques that
make diagnosing bladder cancer easier and more accurate. To
accomplish this goal, we are developing a computer-aided
detection (CAD) system to assist with diagnosis of urothelial
neoplasms including asymmetrical bladder wall thickenings.
A critical step in developing a CAD system is the segmenta-
tion of the bladder and bladder wall as it determines the
search region for the subsequent steps. If the bladder is
under-segmented such that parts of the bladder are not
included within the segmented region, the search may miss
the lesions that appear outside the segmented region. Without
segmentation or with an over-segmented bladder, nonbladder
structures may be identified as lesions and also distract the
detection of true lesions, thereby increasing the chance of
both false positives and false negatives. Additionally, lesions
typically manifest in the wall of the bladder. For these rea-
sons, accurate segmentation of the bladder wall from the inte-
rior of the bladder and the outer structures is a crucial step in
the development of a CAD system for urinary cancer.

Segmentation of the bladder wall in CTU is a challenging
task due to a number of confounding factors. Bladders may
be partially or completely filled with intravenous contrast
material or have no contrast material at all. The different con-
ditions create an inconsistent boundary between the wall of
the bladder, the interior, and the outside structures. The
boundary between the contrast material inside the bladder,
the bladder wall, and the surrounding structures is a weak
boundary and the CTU images are often very noisy. A com-
mon difficulty in segmenting the bladder wall is the prostate
in male patients. For some cases, the prostate protruding into
the bladder has a similar appearance as the bladder wall.
Often the interface between the bladder wall and the prostate
is difficult to distinguish. A bladder wall segmentation
method based on simple thresholding tends to leak into the
portions of the prostate and the surrounding structures.
The boundary between the noncontrast and contrast regions
of the bladder interior strongly resembles a wall, further con-
founding the segmentation process. Adding to these problems
is the irregular sizes and shapes of the bladder. Even healthy
bladders can be shaped oddly or appear to have anomalies,
making it extremely difficult to accurately segment the blad-
ders with any conventional methods.

Previous researchers have attempted to segment the blad-
der. Li et al.9 and Duan et al.10 used magnetic resonance
(MR) images to segment the bladder wall. Duan et al.11 used
a window setting scheme to segment and detect tumors in
MR images. Han et al.12 used a Markov random field model
and level sets to segment MR images. Chai et al.13 developed
a segmentation system for cone beam CT, but relied on popu-
lation data as prior knowledge which can cause errors in
cases that deviate from the training set. These methods have
the advantage of being relatively fast on modern hardware,
but these studies all employed small data sets of no more than
22 patients. Other researchers have attempted to use level sets
to segment the bladder wall. Ma et al.14 used level sets to

segment the inner wall in MR images, but relied on a separate
Chan–Vese model to segment the outer wall. Chi et al. used
coupled level sets to segment the bladder wall in MR images,
but only on a small data set of 11 patients.15 Hadjiiski
et al.16,17 initially proposed a level set segmentation method
for bladders in CTU. Hadjiiski et al.18 subsequently devel-
oped a new system based on the characteristics of bladder
CTU images called conjoint level set analysis and segmenta-
tion system (CLASS). Cha et al.19 further improved the seg-
mentation accuracy of the CLASS method and expanded the
data set to the one used in the current study. This method
showed improved results over previous attempts to segment
the bladder, but relied on two manually marked bounding
boxes for the contrast-filled and noncontrast-filled regions,
respectively human inputs as a starting point.

In this study, we explored the use of a deep-learning con-
volutional neural network (DL-CNN) to segment the bladder
wall. Convolutional neural network (CNN)20 was first applied
to medical image pattern recognition by Lo et al.21 for lung
nodule detection and has been used for the detection of breast
lesions22–30 since the early 1990’s. These early applications
used relatively shallow CNN and typically trained with smal-
ler data sets due to the extensive training time and limited
availability of medical images. As graphical processing units
(GPUs) become more commonly available and powerful, in
combination with the design of better convergence and regu-
larization techniques, the application of CNN with large
number of layers and trained with larger data sets to complex
pattern recognition tasks becomes more practical. Krizhevsky
et al.31,32 demonstrated the effectiveness of a DL-CNN in
image classification on the ImageNet ILSVRC-2010 and
ILSVRC-2012 data sets,33 and the CIFAR-10 data set.34 Since
then, there have been strong interests in applying DL-CNN to
all kinds of medical imaging problems.35 We explored the
use of a DL-CNN in the segmentation of the entire bladder36

and the bladder wall in previous pilot studies37. In Cha et al.,
a DL-CNN with level sets was shown to be more effective in
segmenting the bladder than previous level set systems or
other standard image segmentation techniques. In the current
study, we further investigated the segmentation of the bladder
wall as a step toward bladder lesion detection. The DL-CNN
in this study was trained to distinguish the bladder wall and
the output of the DL-CNN was used to guide level set
segmentation of the inner and outer bladder wall.

This paper is organized as follows. First, the data set for
this study is described. Second, the details and use of the
DL-CNN is described. Third, the level set segmentation
method is presented and lastly, the results are reported and
discussed.

2. MATERIALS AND METHODS

A DL-CNN was trained to distinguish between ROIs inside
the bladder wall and ROIs not within the bladder wall. The
DL-CNN outputs a likelihood map where the brightness of a
given pixel represents the likelihood that the pixel falls within
the bladder wall. The likelihood map is then used as a gradient
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image in cascaded level sets to segment the inner and outer
bladder wall. The process is shown in the flowchart in Fig. 1.

2.A. Data set

With IRB approval, a data set of 172 patients who had
undergone CTU was collected for this study. The cases were
collected retrospectively from the Abdominal Imaging Divi-
sion of the Department of Radiology at Michigan Medicine.
All cases were acquired with established CTU protocol dur-
ing the patients’ clinical care. Within this set of 172 cases, we
designated 81 as part of the training set and the remaining 91
as part of the test set. The cases were balanced in difficulty
by appearance and shape of the bladder between the training
and the test set.

In the training set, 42 bladders contained focal mass-like
lesion, 21 had wall thickenings and 18 were normal. Forty of
the bladders that contained focal mass-like lesion were malig-
nant. Sixteen of the wall thickened bladders were also malig-
nant. Sixty-one bladders in the training set were partially filled
with IV contrast material, 8 were fully filled, and 12 were not
filled. In the test set, 42 bladders contained focal mass-like
lesion, 36 had wall thickenings and 13 were normal. Forty-two
of the bladders that contained focal mass-like lesion and 23 of
the bladders with wall thickenings were malignant. Eighty-
four of the test set bladders were partially filled with contrast
material, four were fully filled, and three were not filled.

The inner and outer bladder walls were hand-outlined by
an abdominal radiologist with more than 20 yr of experience
for both the training and the test sets using an in-house devel-
oped graphical user interface that we named MiViewer. The
hand outlines of the training set were used to classify the
regions of interest (ROIs) for the DL-CNN training. The outli-
nes were also used as the reference standard for the evaluation
of the segmentation performance (see Section 2.D). Both the

outer bladder wall and the inner bladder wall were outlined on
each two-dimensional (2D) slice to form a three-dimensional
(3D) surface contour of both bladder walls. The 172 bladders
contained a total of approximately 16 000 slices, which
equates to about 100 slices per bladder.

2.B. Bladder likelihood map generation using deep-
learning convolutional neural network (DL-CNN)

We applied the DL-CNN called Cuda-Convnet developed
by Krizhevsky31 to the classification of voxels of 2D CTU
slices as being inside the bladder wall or outside the bladder
wall. The DL-CNN was trained using ROIs extracted from
the 2D slices of the training cases and labeled as within or
not within the bladder wall. After training, the DL-CNN was
applied to all pixels of the CTU images in the training and
test set to estimate the likelihood that an ROI was within the
bladder wall. The output was then assigned to the center pixel
of the ROI, resulting in a likelihood map where brighter pix-
els were more likely to be within the bladder wall and the
stack of the resulting 2D likelihood maps on the CT slices
formed a 3D likelihood map for the bladder wall.

2.B.1. DL-CNN components

The components and layers of the DL-CNN are described
here. More information on these components can be found in
the literature.31,36

Neurons: A neuron is defined by the following function,

f ðxÞ ¼ maxð0; xÞ (1)

where x is the sum of the weighted inputs to the neuron. The
activation function used in the DL-CNN is a RE-LU

FIG. 1. Flowchart of deep-learning convolutional neural network (DL-CNN) segmentation that shows generation of a bladder wall likelihood map and use of
level sets to obtain inner and outer wall contours. The DL-CNN likelihood map was used as a gradient image in the energy equation of a cascaded level sets
method. [Color figure can be viewed at wileyonlinelibrary.com]
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[Eq. (1)], which converges faster than the typically used sig-
moid activation function.38

Convolution layer: The convolutional layer uses convo-
lutional kernels to convolve with the input ROI. The resulting
values are then input to the corresponding neurons in the
kernel maps within the convolutional layer. The output of these
neurons is determined by the activation function in Eq. (1).

Locally connected convolutional layer: The locally con-
nected convolutional layer performs the same set of opera-
tions as the convolutional layer, but different convolutional
kernels are applied at each location of the input image and
then collected into the corresponding neurons instead of
using a single convolutional kernel.

Fully connected layer: The fully connected layer connects
all inputs from the previous layer. Every map element multi-
plied by a trained weight is used as input. The fully connected
layer outputs values, which are passed onto the next fully
connected layer or finally to a Softmax layer to obtain the
final output of the DL-CNN. There can be one or more fully
connected layers before the Softmax layer in a DL-CNN
architecture.

Pooling layer: Pooling layers summarize and reduce the
outputs of groups of neighboring neurons. Our pooling layers
use overlapping pooling due to its tendency to reduce over-
training.

Local response normalization layer: Local normalization
layers aid in the generalization of training by normalizing
input parameters to subsequent layers of the DL-CNN.39

The output of neurons was normalized by the following
equation:

bix;y ¼
aix;y

1þ s
N

Pmin n;iþN
2ð Þ

j¼max 0;i�N
2ð Þ ajx;y
� �2� �e (2)

where bix;y is the response-normalized neuron activity, aix;y
is the neuron activity computed by applying the kernel i
at the coordinates (x, y), n is the number of kernel
maps, and N, s, and e are constants. Our implementation
of the DL-CNN used N = 9, s = 0.001, and ɛ = 0.75,
which was demonstrated to be effective.31,36 These
parameters were taken from Krizhevsky et al.31 and were
further reinforced as ideal choices from our own experi-
mentation.

2.B.2. DL-CNN architecture

The architecture of the DL-CNN used in this study con-
sists of five main layers: two convolutional layers, two locally
connected convolutional layers, and one fully connected
layer, in that order (Fig. 2). The first two convolutional layers
are followed by a pooling and by a normalization layer before
proceeding to the next layer.

The first two convolutional layers consist of 64 kernels
of size 5 9 5. An ROI is input to the first convolutional
layer. The output of the first layer is pooled and normal-
ized and then used as input in the second convolutional
layer. After another pooling and normalization layers, the
output of the second convolutional layer is sent to a
locally connected convolutional layer with 64 kernels of
size 3 9 3. The second locally connected convolutional
layer contains 32 kernels of size 3 9 3. The fully con-
nected layer outputs two values used as input to the Soft-
max layer defined by the function:

f ðxiÞ ¼ exiP
j e

xj
(3)

where xi is each input value. The layer outputs a single value
in [0,1], which represents the likelihood of the input ROI
being in the bladder wall.

FIG. 2. Block diagram showing our deep-learning convolutional neural network (DL-CNN) architecture. The input layer is the classified ROIs and the output of
the trained DL-CNN creates a likelihood map.
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2.B.3. DL-CNN training

The DL-CNN was trained using the 81 cases in the train-
ing set. Each 2D axial slice of the CTU scan was divided into
overlapping ROIs of M x M pixels. Following the inner and
outer wall of the bladder of each slice hand-outlined by a
radiologist, the ROIs were labeled as within or outside the
bladder wall. Three ROI sizes, M = 8, 16, and 32 were stud-
ied and the size of 16 9 16 pixels was chosen. For each
16 9 16 ROI, the central 8 9 8 pixel image was used in the
labeling criterion. If 70% of the inner 8 9 8 pixel image fell
within the bladder wall, that is, the pixels were located
between the hand-outlined contours of the inner wall and the
outer wall, the ROI was labeled as inside the bladder wall.
Seventy percent was chosen to ensure that a large fraction of

the ROI area was within the wall, while not making the clas-
sification requirement so strict as to having too few ROIs that
could be labeled as within the wall because some of the walls
were very thin. If 95% of the inner ROI fell within the interior
of the bladder, or if less than 10% of the ROI was located
inside the bladder delineated by the outer wall contour, the
ROI was labeled as not within the bladder wall. These classi-
fication requirements were chosen to properly label ROIs
along the wall as not within the wall while still obtaining a
sufficient number of ROIs within the wall. Figure 3 shows a
bladder with the ROI images superimposed on top.

Approximately, 240 000 ROIs were extracted from the train-
ing cases after balancing. Exactly half of the ROIs were labeled
as within the bladder wall and the other half as not within the
bladder wall. Subsets of the ROIs are presented in Fig. 4.

The DL-CNN was trained for 1500 iterations based on our
previous experience36 on the training set to produce the blad-
der likelihood maps. The training process typically took
about 7 to 8 h to complete with a Nvidia Tesla K20 GPU.

2.B.4. Bladder likelihood map generation

We applied the trained DL-CNN to the CTU scans to esti-
mate the likelihood of a given voxel being within the bladder
wall. For each scan, a rectangular box enclosing the bladder
was drawn to denote the volume of interest (VOI). The trained
DL-CNN was applied to each voxel within the VOI. For each
voxel, a 16 9 16 pixel ROI of the axial slice centered at that
voxel was input to the DL-CNN, which output a likelihood
score between 0 and 1 that represented the likelihood that the
center pixel of the ROI was within the wall. The scores for
each ROI were assigned to the center voxel in order to create
a map of the output scores from the DL-CNN. The collection
of likelihood scores for all voxels in the VOI provided the 3D
bladder wall likelihood map. Examples of bladder wall likeli-
hood maps on the axial slices are shown in Fig. 5.

2.C. Segmentation of bladder walls using level sets

After the generation of the bladder likelihood maps, we
developed a system to segment the inner and outer bladder

FIG. 3. Regions of interest (ROIs) superimposed on a CTU slice. The darker
boxes are ROIs determined to be within the wall and the lighter boxes are
ones determined not to be within the wall. The number of ROIs is balanced,
so that the training ROIs contain exactly half within each category. [Color
figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIG. 4. 16 9 16 pixel regions of interest (ROIs). (a) ROIs labeled as being within the wall; (b) ROIs labeled as not within the wall.
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wall using level sets. The system takes in the 3D bladder wall
likelihood map and incorporates it within the level set energy
functions to guide the segmentation and creates a contour of
the inner or outer wall depending on which set of parameters
is used. The system consists of four stages: (a) preprocessing,
(b) initial segmentation, (c) 3D level set segmentation, and
(d) 2D level set segmentation.

The first stage consists of preprocessing techniques to cre-
ate a set of gradient vector images. Smoothing, anisotropic
diffusion, gradient filters, and the rank transform of the gradi-
ent magnitude are applied to slices within the VOI. The vec-
tor images created at this stage are used during the
propagation of the 3D level sets.

The second stage generates the initial segmentation sur-
face and consists of three parts. First, we apply a threshold to
the bladder wall likelihood maps to create a binary mask. The
mask DLMask is generated according to the following
criterion:

DLMaskðx; yÞ ¼ 1; DLScore x; yð Þ� h
0; DLScore x; yð Þ\h

�
(4)

where x and y are coordinates in the image, DLMask is the
value of the resulting binary mask at the given coordinate,
DLScore is the value of the likelihood map score at the given

coordinate, and h is a chosen value for the threshold. The
value of h was determined experimentally36 by histogram
analysis. By using the training cases, a histogram of the DL-
CNN likelihood scores for the pixels inside and outside of
the bladder within the VOIs was generated. The threshold of
0.85 provided a good separation of the two classes and the
best contours that did not leak to the outside of the bladder
wall while closely approaching the hand segmentation for
cases in the training set.

The second part of the initial segmentation process is the
creation of an ellipsoid as the object region for segmentation.
An ellipsoid with major and minor axis 1.5 times the width
and height of the VOI, respectively, is placed at the centroid
of the bladder mask. The intersection between this ellipsoid
and bladder mask is the object region. This ellipsoid prevents
the segmentation from leaking into the surrounding structures
outside the bladder by limiting the area to which the contours
can expand. This limited object region prevents interference
from nonbladder structures and solves the problem of high
likelihood scores on other regions of the CT scan such as the
pelvic bone, which often receives high likelihood scores.

Finally, neighboring components in the object region are
connected using a morphological dilation filter with a 2-
voxel-radius spherical structuring element, a 3D flood fill

(a)

(c) (d)

(b)

FIG. 5. Bladder wall likelihood maps (b), (d) shown with the CTU slices (a), (c) from which they were generated. The brighter pixels represent a higher likeli-
hood of that pixel occurring in the wall.
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algorithm, and a morphological erosion filter with a 2-voxel-
radius spherical structuring element. This process allows for
the extraction of an initial segmentation surface /0ðx~Þ from
the bladder wall likelihood map for use in the level set propa-
gation.

The third stage of the system propagates the initial seg-
mentation toward the inner or outer bladder wall using cas-
cading level sets. The level set contours are generated
according to the chosen level set equation:

@

@t
Wðx~Þ ¼ �aAðx~ÞrWðx~Þ � bPðx~Þ rWðx~Þj j

þ cjðx~Þ rWðx~Þj j; (5)

Wðx; n ¼ 0Þ ¼ /0ðx~Þ
a, b, and c are the coefficients for the advection, propagation,
and curvature terms, respectively. (Aðx~Þ is a vector field
image where each voxel in the image is a vector. (Px~) is a sca-
lar speed term between 0 and 1.23 j(x~) is the mean curvature
of the level set at the point x~and can be defined as

jðx~Þ ¼ divðrWðx~Þ=jrWðx~ÞjÞ (6)

The symbol ∇ denotes the gradient operator, div is the
divergence operator, /0ðx~Þ is the initial segmentation, and
n is the number of iterations. The bladder wall likelihood
map is used as the Wðx~Þ term in the fourth level set as an
integral part of the advection, propagation, and curvature
terms, while the original CTU volume is used for the first
three level sets.

The advection term drives the contour toward regions
of high gradient according to the Aðx~Þ vector. The propa-
gation term controls the expansion of the contours accord-
ing to local pixel information. The curvature term causes
the contour to maintain relative shape and curvature while
expanding.

Four different 3D level sets are applied sequentially. The
first level set expands the initial contours slightly and
smooths edges. The second level set brings the contours
toward sharp edges and draws it slightly in regions of low
gradient. The third level set finishes drawing the contour
toward edges. The fourth level set draws the contours toward
the inner and outer bladder walls, using the bladder wall like-
lihood map for the rWðx~Þ term in Eq. (5). The level set
equations are run twice, once for the outer contour and once
for the inner contour, using different parameters.

As the final step in the level set system, 2D level sets are
applied to each slice of the 3D segmented object, using the
3D level set generated contours on each slice as an initial
contour, to further refine the contours. Further details on the
methods of cascading level sets and the necessity of 2D level
sets to refine segmentation can be found in our previous pub-
lications.16,36,40

Table I shows the coefficient information for each round
of level sets. The differences in the runs for outer and inner
wall segmentation are the parameters a, b, and c and the
number of iterations (n) in the fourth level sets. Notably, the

propagation coefficient b is positive when running the level
set equations for the outer wall, so the contour expands to the
outer wall and negative for the inner wall, so the contour
propagates inwards. The coefficients used for the first 3
rounds of level sets are the same as those used in our
previous bladder segmentation.36 The parameter q in Table I
is defined by the linear function rM þ /, where M is the
2D diagonal distance of the VOI in mm,
r ¼ 0:06; and / ¼ �0:11 as shown in previous work.36

2.D. Evaluation methods

Segmentation performance was evaluated by comparing
the generated contours to 3D hand-segmented contours. The
inner and outer walls were each independently compared to
the hand-outlined inner and outer wall contours. We calcu-
lated the volume intersection ratio, the volume error, the
absolute volume error, and the minimum distance as perfor-
mance metrics, defined below. Additionally, we compared
the area between the inner and outer wall contours to that of
the hand-outlined contours using the volume intersection, the
volume error, and the absolute volume error.

The volume intersection is the ratio of the intersection
between the given volume enclosed by the contour generated
by the level sets and the reference volume enclosed by the
reference contour, to the reference volume:

R3D ¼ VR \VU

VR
(7)

where VU is the given volume and VR is the reference vol-
ume.

The volume error is defined as the ratio of the difference
between the reference volume and the given volume to the
reference volume:

E3D ¼ VR � VU

VR
(8)

Since the given volume is segmented by the level sets, a
positive error represents under-segmentation of the bladder
wall, while a negative error indicates over-segmentation. We
also calculate the absolute volume error |E3D| to show the
average deviation from the reference contours. Other perfor-
mance indicators can be derived from the volume intersection
ratio and the volume error.41

AVDIST is the average distance between the closest points
on the reference and the given contours:

TABLE I. Level set parameters. The parameters listed in the “Fourth” row are
listed as inner wall parameter/outer wall parameter.

Level sets a b c n

First 1 2 1 10

Second 1 0.6 q 150

Third 0 1 0 10

Fourth 4.5/3 �2.5/2 2/2 150/100

2D slices 4 0.2 0.5 100
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AVDIST¼
1
2

P
x2Rmin d x;yð Þ :y2Uf g

NR
þ
P

y2Umin d x;yð Þ :x2Rf g
NU

� �

(9)

R is the reference contour, U is the given contour, and
NR and NU are the number of voxels along each respec-
tive contour. The function d is the minimum Euclidian
distance between a given voxel x on the contour R to a
voxel y~ on the contour U. The minimum distances of all
points along R are calculated and then averaged. The min-
imum distances of all points along U are also calculated
and averaged by repeating the process with the roles of R
and U switched. The overall average distance AVDIST
between the two contours is then calculated from the two
average minimum distances.

The volume intersection ratio, the volume error, and the
absolute volume error are also calculated for the region
between the inner and outer wall contours. These metrics are
calculated in the same way as for the outer and inner wall
contours, except that VR and VU are the volume of the shell
enclosed between the outer wall contour and the inner wall
contour.

The volume intersection ratio is also calculated for the
lesions and the outer wall contour to determine what percent
of the lesions is successfully enclosed by the segmentation.

3. RESULTS

3.A. Segmentation performance of inner and outer
wall contours

Examples of segmentation results from the test cases
are shown in Fig. 6. The DL-CNN bladder wall likeli-
hood maps that were used to guide the segmentation are
also shown.

Histograms for the training and test sets for the volume
intersection ratio, the volume error, and the average distance
are shown in Fig. 7.

The average segmentation performances for the training
and test sets using the different performance metrics are
shown in Table II.

For the training set, the inner wall contour achieved aver-
age volume intersection ratio, average volume error, average
absolute volume error, and average distance of 90.2 � 8.7%,
�4.3 � 18.2%, 12.6 � 13.7%, and 3.0 � 1.6 mm, respec-
tively. For the test set, the inner wall achieved values of
87.2 � 10.5%, �5.3 � 28.2%, 15.6 � 24.0%, and 3.2 �
1.7 mm, respectively. For the training set, the outer wall con-
tour achieved the values of 93.2 � 5.8%, �7.2 � 12.3%,
10.4 � 9.6%, and 3.0 � 1.2 mm, respectively. For the test
set, the outer wall contour achieved values of 89.5 � 9.8%,
�6.2 � 20.5%, 14.6 � 15.6%, and 3.5 � 2.0 mm,
respectively.

(a)

(c) (d)

(b)

FIG. 6. (a) and (c) are bladder wall likelihood maps generated from CTU scans from the test set (b) and (d), respectively. The level set contours are overlaid on
the CTU slices. [Color figure can be viewed at wileyonlinelibrary.com]
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3.B. Performance of combined wall contours

For the segmented bladder wall, the training set achieved
volume intersection ratio, volume error, and absolute volume
error of 61.0 � 11.3%, �13.7 � 49.1%, and 34.5 � 37.3%,
respectively. The test set achieved values of 54.6 � 10.4%,
10.7 � 28.0%, and 25.1 � 15.8%, respectively.

Due to the small volume of the wall compared to the entire
bladder volume enclosed by either the inner or the outer

walls, small differences between the contours lead to large
fluctuations in the measured values, which is the main reason
that the performance metrics are worse for the segmented
wall than the individual inner and outer wall contours.

3.C. Lesion intersection

To determine if the DL-CNN with level sets enclosed
bladder lesions within the contours, we evaluated the volume
intersection between the lesion as the reference contour and
the outer wall as the given contour. Histograms of the result
are shown in Fig. 8. For the DL-CNN-outlined walls, the
average volume intersection ratio is 80.3 � 23.8% for the
training set and 81.6 � 16.6% for the test set. Of the lesions,
70.2% have a volume intersection ratio over 75% with the
DL-CNN-assisted level sets contours compared to 89.1% for
the hand-outlined contours.

3.D. Level set method comparison

Table III shows a comparison between performing seg-
mentation by using the likelihood map as the Wðx~Þ term in

FIG. 7. Histograms of the volume intersection % (a, b), volume % error (c, d), and average distance (e, f) for the training and test sets, respectively.

TABLE II. Summary of the performance metrics for the inner and outer
bladder walls.

Volume
intersection (%)

Volume
error (%)

Absolute
volume
error (%)

Average
distance (mm)

Training

Inner 90.2 � 8.7 �4.3 � 18.2 12.6 � 13.7 3.0 � 1.6

Outer 93.2 � 5.8 �7.2 � 12.3 10.4 � 9.6 3.0 � 1.2

Test

Inner 87.2 � 10.5 �5.3 � 28.2 15.6 � 24.0 3.2 � 1.7

Outer 89.5 � 9.8 �6.2 � 20.5 14.6 � 15.6 3.5 � 2.0
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only the fourth level set and by using the likelihood map as
the Wðx~Þ term in all four stages of the cascading level sets.
When the likelihood map was used only in the fourth level
set, the volume intersection index was significantly better
(P < 0.01) for the outer wall in both the training and test set.
For the inner wall, the difference was not significantly differ-
ent in either the training or the test set.

To further demonstrate the effectiveness of the level set
method with the DL-CNN, we compared the DL-CNN with
level sets method to contours created using the DL-CNN
without level sets (Table IV). The DL-CNN without level sets
tended to over-segment the inner wall but under-segment the
outer wall. With the refinement by the level sets, both the
over-segmentation of the inner wall and under-segmentation
of the outer wall were reduced significantly (P < 0.01), as
indicated by the volume error, absolute volume error, and
average distance.

4. DISCUSSION

We developed a segmentation method to extract the blad-
der wall from the interior of the bladder and the surrounding
structures. The method uses a deep-learning convolutional
neural network combined with a series of cascading level sets
to detect the contours for the inner and outer walls of the
bladder in CTU scans. Segmentation of the wall presents
many challenges; some are associated with segmentation
of the bladder in general, and others are unique to the

segmentation of the wall specifically. The training and test
sets of CTU scans contain bladders completely filled with
contrast material, partially filled, and not filled. The bound-
ary between the wall and the interior of the bladder is drasti-
cally different depending on whether contrast material is
present. The combination of the DL-CNN and level sets is
able to account for the difference in the regions, demonstrat-
ing that the DL-CNN can overcome the strong barrier
between regions, even for narrow regions such as the bladder
wall.

The small thickness of the bladder wall presents other
problems for segmentation as well. Bladder walls can vary in
thickness drastically compared to the full bladder. Thin walls
can be only few pixels wide compared to bladder walls with
urothelial thickenings. The DL-CNN often has difficulties
with this variation while the level sets are able to account for
this difference. The DL-CNN and the level sets play comple-
mentary roles in segmenting the bladder wall and generating
the likelihood maps.

The presence of lesions also presents another confounding
factor for segmentation of the wall. Our DL-CNN-assisted
level sets method often generates inner wall contours through
the lesions rather than around them (Fig. 9), although the
bladder wall likelihood maps typically include the lesions
accurately during the estimation of the bladder wall.

The 16 9 16 ROI size was chosen after experimenting
with ROIs of 8 9 8, 16 9 16, and 32 9 32 pixels in size.
The 8 9 8 pixel ROIs tended to generate too much noise in

FIG. 8. Histogram of the lesion volume intersection. The graph (a, b) shows results both for the radiologist hand-outlined contours and the deep-learning
convolutional neural network with level set contours for the training and test set, respectively.

TABLE III. Comparison between using the likelihood map for all level sets and using the likelihood map for only the fourth level set.

Volume intersection (%) Volume error (%) Absolute volume error (%) Average distance (mm)

Training

Inner All level sets 93.5 � 4.5 �14.0 � 25.0 16.5 � 23.3 3.0 � 1.4

4th level set only 90.2 � 8.7 �4.3 � 18.2 12.6 � 13.7 3.0 � 1.6

Outer All level sets 81.8 � 8.0 13.3 � 9.8 14.1 � 8.5 3.8 � 1.5

4th level set only 93.2 � 5.8 �7.2 � 12.3 10.4 � 9.6 3.0 � 1.2

Test

Inner All level sets 88.5 � 10.3 �8.0 � 27.7 16.8 � 23.4 3.3 � 1.7

4th level set only 87.2 � 10.5 �5.3 � 28.2 15.6 � 24.0 3.2 � 1.7

Outer All level sets 76.1 � 11.9 18.0 � 15.5 19.8 � 13.0 4.7 � 2.4

4th level set only 89.5 � 9.8 �6.2 � 20.5 14.6 � 15.6 3.5 � 2.0
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the bladder wall likelihood maps, specifically along the bar-
rier between the contrast and noncontrast region. The 8 9 8
pixel ROIs also had the tendency to create gaps in parts of
the wall that were extremely thin [Fig. 10(b)]. The 32 9 32
pixel ROIs resulted in walls that were far too thick in the
bladder likelihood maps. Due to the small thickness of the
wall, ROIs of 32 9 32 pixels were too large to accurately
represent the wall [Fig. 10(d)]. The 16 9 16 pixel ROIs were
chosen as a middle ground because they provided bladder
wall likelihood maps that did not have as many gaps or as
much noise as those obtained with the 8 9 8 pixel ROIs, but
provided thinner walls that resulted in more accurate contours
than the 32 9 32 pixel ROIs [Fig. 10(c)].

To further prevent holes in the bladder wall likelihood
maps, we developed a method for the generation of the ROIs
that can capture the thin regions of the bladder wall, while
still using an ROI size large enough to accurately capture the
wall features in thicker walls. In this method, a 16 9 16-pixel
ROI is used to train the deep-learning algorithm, but only the
central 8 9 8-pixel area of the ROI is used for the labeling of
the ROI, referred to as 8 9 8 jittering. If 70% of this inner
8 9 8 pixel area falls between the hand-outlined outer and
inner wall contours, the ROI is labeled as within the bladder
wall; otherwise, the ROI is classified as not within the blad-
der wall. Using the central smaller area rather than the whole
ROI allows more ROIs to be correctly labeled as within a thin
wall, while preventing more ROIs outside the wall from being
mislabeled as within the wall.

This jittering technique and the added level set equa-
tion were important methodological changes from the method
used in Cha et al.36 The addition of another round of level
sets that incorporate the DL-CNN likelihood map in the
equation allows the level sets to segment both the inner and
outer bladder wall as opposed to just the entire bladder as a
whole.

The only small drawback in the use of 16 9 16 ROIs is a
slight increase in the training time; an increase from 5.5 to
6.5 h due to an increase in the number of training ROIs com-
pared to the use of 32 9 32 ROIs. However, both 16 9 16
and 32 9 32 ROI sizes take about 4 min to generate a blad-
der likelihood map during deployment, so this drawback is a
minor one. The ROI size does not affect the time required for
running the level sets either, which takes about 2 to 5 min per
contour.

The likelihood map was chosen to be used only in this
fourth level set based on our experimental results (Table III).
When the likelihood map was used only in the fourth level
set, the segmentation results were more accurate. The fourth
level set is crucial to differentiating between the outer wall
and the inner wall for the level set segmentation.

In the cascaded level sets pipeline, each level set shows
progressively improved results over the previous level set,
justifying the need for each subsequent level set. Table V

TABLE IV. Comparison between bladder contours generated by using the DL-CNN with level sets and contours generated directly from the DL-CNN likelihood
map without applying level sets.

Volume intersection (%) Volume error (%) Absolute volume error (%) Average distance (mm)

Training

Inner DL-CNN without level sets 97.6 � 2.1 �33.8 � 36.1 33.8 � 36.1 4.0 � 1.9

DL-CNN with level sets 90.2 � 8.7 �4.3 � 18.2 12.6 � 13.7 3.0 � 1.6

Outer DL-CNN without level sets 72.8 � 8.7 24.3 � 8.8 24.3 � 8.8 5.2 � 1.6

DL-CNN with level sets 93.2 � 5.8 �7.2 � 12.3 10.4 � 9.6 3.0 � 1.2

Test

Inner DL-CNN without level sets 94.2 � 8.0 �29.3 � 32.6 30.9 � 31.1 4.1 � 2.2

DL-CNN with level sets 87.2 � 10.5 �5.3 � 28.2 15.6 � 24.0 3.2 � 1.7

Outer DL-CNN without level sets 76.5 � 12.0 17.7 � 15.2 19.5 � 13.0 4.6 � 2.5

DL-CNN with level sets 89.5 � 9.8 �6.2 � 20.5 14.6 � 15.6 3.5 � 2.0

FIG. 9. Segmented contours on a CTU slice. The inner contour goes through
the lesion rather than around it. The small contours in the lower right of the
image are ignored. [Color figure can be viewed at wileyonlinelibrary.com]
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shows the volume intersection ratios from the third to the last
level sets.

The inclusion of lesions within the bladder wall contours
is important for the bladder wall segmentation as the seg-
mented wall defines the search region for bladder lesions in
the subsequent steps of a CAD system. A segmentation
method that can reliably include all lesions is therefore criti-
cal for the CAD system to identify cancerous lesions or find

wall thickenings. The results of this study show that our pro-
posed method is promising for this application.

Compared to the study by Cha et al.36 on the same data
set, the current study showed better performance. The pur-
pose of the study by Cha et al.36 was to segment the entire
bladder, so that they only needed to segment the outer blad-
der wall and also used a DL-CNN with level sets. The
volume intersection ratios for the training set and test set
achieved in the current study were significantly better
(P < 0.01) than those in the previous study. The volume
intersection ratios were 93.7% and 89.5% for the training and
test sets, respectively, in this study compared to 84.2% and
78.0%, respectively, by Cha et al.36 The differences in the
absolute percent volume errors for the training set and test set
are not significant, however.

In order to demonstrate the effectiveness of our proposed
deep-learning approach to this problem, we compared the
performance for the outer wall segmentation from this study
with the previous attempt at segmenting the same data set
using an adaptive level set system (CLASS).16 We also
applied a commonly used image segmentation tool, ITK-
SNAP, to a subset of our CTU data as it was used by Ma
et al.13,14 to segment the bladder walls in T2-wieghted MR
images. The performance of the DL-CNN with level sets is
significantly better (P < 0.01) than that of ITK-SNAP and
CLASS for the metrics of volume intersection and absolute
volume error. Table VI shows the comparison of the perfor-
mances by CLASS and DL-CNN. CLASS is a level set sys-
tem that does not use a DL-CNN to assist with segmentation.
The improved results of the DL-CNN with level sets show
the value of a deep-learning approach to bladder segmenta-
tion. Table VII shows the average values for a smaller data
set of 30 bladders used for ITK-SNAP alongside values from
the same data set for CLASS and DL-CNN. Even with the
limited scope of previous experiments, the performance of
the DL-CNN with level sets is significantly better than that
of ITK-SNAP and CLASS with a P < 0.01 for the metrics of
volume intersection and absolute volume error on the smaller
data set.

One limitation of our current segmentation method was
observed for CT scans with thick slices and an unusually

(a) (b) (c) (d)

FIG. 10. Likelihood maps of the CTU slice shown in (a). (b) was generated using 8 9 8 regions of interest (ROIs), (c) by 16 9 16 ROIs, and (d) by 32 9 32
ROIs. All likelihood maps were shown with the same brightness and contrast window settings.

TABLE V. The volume intersection ratios after the 3rd level set, the 4th level
set, and the full level set cascade. The segmentation by the full cascaded level
sets achieved the best performance.

After 3rd
level set (%)

After 4th
level set (%)

Full level set
cascade (%)

Outer training set 77.7 � 7.9 89.7 � 6.8 93.2 � 5.8

Inner training set 77.7 � 7.9 79.3 � 7.0 90.2 � 8.7

Outer test set 72.4 � 11.8 84.3 � 11.4 89.5 � 9.8

Inner test set 72.3 � 11.5 74.9 � 10.6 87.2 � 10.5

TABLE VI. Comparison of the outer wall segmentation using CLASS versus
the proposed DL-CNN-assisted level set method.

Volume
intersection (%)

Volume
error (%)

Absolute
volume
error (%)

Average
distance (mm)

DL-CNN 89.5 � 9.8 �6.2 � 20.5 14.6 � 15.6 3.5 � 2.0

CLASS 84.0 � 11.4 8.2 � 17.4 13.0 � 14.1 3.5 � 1.9

TABLE VII. Comparison of the outer wall segmentation by the proposed DL-
CNN-assisted level set method to those using the ITK-SNAP and CLASS on
30 cases.

Volume
intersection (%)

Volume
error (%)

Absolute
volume
error (%)

Average
distance
(mm)

DL-CNN 94.4 � 3.2 �8.5 � 9.8 10.0 � 8.3 3.0 � 1.2

ITK-SNAP 78.8 � 16.3 8.3 � 33.1 24.2 � 23.7 5.2 � 2.6

CLASS 79.0 � 8.2 16.1 � 16.3 19.9 � 11.1 3.5 � 1.3
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small bladder. For small bladders, the level sets cannot
change fast enough to account for the rapid differences
between slices when slices are 5 mm thick. This problem
could potentially be overcome by selecting a different set of
parameters that is optimized for thick slices and the small
bladders. An automated preprocessing triage stage that can

recognize small bladders with thick slices has to be devel-
oped and call for the specific set of parameters for the seg-
mentation of these outlier cases. We will continue to optimize
the parameters of the level sets in future studies.

The small thickness of the wall also presents problems in
the evaluation of the DL-CNN and level set contours. While

(a) (b)

(d)(c)

(e) (f)

FIG. 11. Comparisons between the hand-outlined contours and the computer-segmented contours. (a), (c), and (e) show the outer wall contour, and (b), (d), and
(f) the inner contour. The dark and light contours in each image represent the hand-outlined contour and the computer-segmented contour, respectively. The 2D
area intersection ratio of the thin wall between the inner and outer wall contours (a) 50.0%, (c) 53.0%, and (e) 55.9%. [Color figure can be viewed at wileyonline
library.com]
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the outer and inner contours individually achieved good
results compared to the reference standard, the overlap of the
wall between the inner and outer contours achieved much
lower results in terms of the volume intersection and the vol-
ume error. Since the bladder wall can be very thin, small
deviations in the wall contours can lead to massive errors that
are not observed when comparing the bladder as a whole.
Cases in both the training and the test sets with good perfor-
mance for the inner and outer wall contours had noticeably
poorer performance in the wall between the two contours due
to these small deviations. Examples of bladder wall segmen-
tations are presented in Fig. 11.

Another limitation associated with the method is the reli-
ance on hand outlines from a single radiologist. Generating
outlines from multiple radiologists and taking the average
will reduce the bias for the reference standard, which will
allow better estimation of the DL-CNN performance. How-
ever, due to the excessive time required to generate manual
hand outlines for such a large data set (a total of approxi-
mately 16 000 slices of bladder outlines), only one set of
hand outlines was obtained and used for evaluation.

5. CONCLUSIONS

Our results in this study show that the DL-CNN-
assisted level set method is useful for segmentation of the
bladder wall in CTU scans. This method can specifically
segment the bladder wall by detecting both the inner and
outer wall contours of the bladder. The DL-CNN can
accurately differentiate the bladder wall from the interior
of the bladder and the surrounding structured background.
The segmentation of the wall is an important first step for
automated lesion detection and bladder analysis. Further
studies are underway to improve the performance of the
wall segmentation process, especially for the inclusion of
lesions within the wall contours. This study lays the
important groundwork for further efforts to develop com-
puterized decision support systems for diagnosis and treat-
ment of bladder cancer.
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