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1  | INTRODUCTION

Organisms living in temperate latitudes express seasonal cycles in 
physiology and behaviour (eg, reproduction, metabolism, moult, hi‐
bernation or migration) to adapt to the Earth's seasonally changing 
environment. For successful adaptation, the biological rhythms must 
anticipate the changing seasons. Animals have therefore evolved in‐
trinsically generated long‐term (circannual) rhythms1,2 that proceed 
independently of and can be synchronised by changes in the external 
environment. The highly predictable annual cycle of daylength (pho‐
toperiod) is the predominant synchronising signal (Figure 1A). In the 
laboratory, internal timing can be revealed in the form photoperiodic 

history‐dependent responses or as partial/full circannual rhythms by 
manipulating photoperiodic conditions (Figure 1B,C).

Seasonal species acquire information about previous photope‐
riodic exposure, so‐called “photoperiodic history”, and compare it 
with a subsequent signal. This strategy allows individuals to respond 
appropriately to intermediate daylengths present around the equi‐
noxes, developing the adequate response at each time of the year 
based on their prior experience.3,4 Photoperiodic history‐depen‐
dence is critical for setting up the timing of puberty in newborns. 
In this context, the mother transfers photoperiodic information to 
the pups in utero, modulating the developmental trajectory of the 
young and allowing them to prepare for the upcoming season. This 
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Seasonal rhythms in physiology are widespread among mammals living in temperate 
zones. These rhythms rely on the external photoperiodic signal being entrained to 
the seasons, although they persist under constant conditions, revealing their endog‐
enous origin. Internal long‐term timing (circannual cycles) can be revealed in the labo‐
ratory as photoperiodic history‐dependent responses, comprising the ability to 
respond differently to similar photoperiodic cues based on prior photoperiodic expe‐
rience. In juveniles, history‐dependence relies on the photoperiod transmitted by the 
mother to the fetus in utero, a phenomenon known as “maternal photoperiodic pro‐
gramming” (MPP). The response to photoperiod in mammals involves the nocturnal 
pineal hormone melatonin, which regulates a neuroendocrine network including thy‐
rotrophin in the pars tuberalis and deiodinases in tanycytes, resulting in changes in 
thyroid hormone in the mediobasal hypothalamus. This review addresses MPP and 
discusses the latest findings on its impact on the thyrotrophin/deiodinase network. 
Finally, commonalities between MPP and other instances of endogenous seasonal 
timing are considered, and a unifying scheme is suggested in which timing arises from 
a long‐term communication between the pars tuberalis and the hypothalamus and 
resultant spontaneous changes in local thyroid hormone status, independently of the 
pineal melatonin signal.
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phenomenon is known as maternal photoperiodic programming5‐8 
(MPP).

This review summarises the current knowledge about photo‐
periodic history and MPP in seasonal reproduction, as well as the 
neuroendocrine system underlying MPP in mammals. Finally, the 
regulation of MPP is compared with other instances of endogenous 
rhythmicity with respect to the hypothesis that internal long‐term 
timing arises from the long‐term communication between the pi‐
tuitary and the hypothalamus, resulting in spontaneous changes in 
hypothalamic thyroid status.

2  | MATERNAL PHOTOPERIODIC 
PROGRAMMING: PRIMED BY MATERNAL 
MELATONIN

Long‐day breeding species typically present a breeding season that 
expands from early spring to late summer, with some species of ro‐
dents producing up to three litters in this period. The young of these 
species follow a different pattern of growth and reproductive de‐
velopment depending on the part of the season in which they were 
born (Figure 2).9,10 Individuals born at the beginning of the season 
normally attain reproductive maturity and attempt to breed in the 
same year, whereas progeny born in late summer delay growth and 
reproductive development and overwinter before achieving pu‐
berty.11 Cohorts born very late in the season typically do not sur‐
vive the winter, unless they encounter nutrient rich fluctuations in 
the environment.11 This suggests that the dual strategy could allow 
late summer offspring to sufficiently grow and accumulate energy 
for winter survival, instead of going through the energetically costly 

reproductive process. However, the functional significance of this 
adaptation remains unclear. Similarly, sheep, with a typical breed‐
ing season during autumn and winter (ie, short‐day breeders), are 
normally born in spring and attain sexual maturity the next autumn, 
when they are approximately 30 weeks old. Lambs born out of 
season, in autumn, delay puberty to the following breeding season 
when they are approximately 1 year of age.12

Developmental	 studies	 on	 voles	 and	 hamsters	 (ie,	 long‐day	
breeders) exposed prenatally to long (15‐16 h light [L] day‐1) or short 
photoperiods (SPs; shorter than 12 h L day‐1) and raised postnatally 
in photoperiods of intermediate duration (12.5‐14 h L day‐1) demon‐
strated that the maternally transmitted photoperiodic‐history during 
gestation is critical for setting the individual's growth trajectory and 
reproductive development (delay or advance development, respec‐
tively).5,6,13,14 Contrastingly, alteration of photoperiod during lactation 
does not influence the pubertal development programmed by prena‐
tal experience, demonstrating that prenatal programming works inde‐
pendently of the lactational photoperiod.14,15 Thus, the physiological 
responses elicited by intermediate daylengths after weaning depend 
on a relative interpretation of the photoperiod based on prior photo‐
periodic exposure and not on its absolute duration (Figures 1B and 2).

Photoperiodic history‐dependent responses have been observed 
in the seasonal cycle of reproduction also in adult individuals.3,4 This 
phenomenon has been mostly studied in Siberian hamsters. In these 
species, a minimum of 2 weeks of long photoperiodic exposure is 
necessary to establish an efficient photoperiodic history that deter‐
mines subsequent reproductive responses to intermediate photope‐
riod (IP).16 In adult mammals, the exclusively nocturnal secretion of 
melatonin from the pineal gland inversely reflects daylength dura‐
tion and thus serves as the internal link to measure photoperiod17 

F I G U R E  1   Photoperiodic and internal long‐term timing cycles in physiology as demonstrated in photoperiodic manipulation experiments. 
A, Photoperiodism is the ability to use the seasonal cycle of daylength (photoperiod) to entrain rhythms in physiology to a year. Alternating 
cycles of long (LP) and short photoperiod (SP) (top) are internally represented by the nocturnal secretion of the hormone melatonin from the 
pineal gland (middle), which leads cycles in physiology and behaviour to oscillate between summer and winter states (bottom). B, Internal 
rhythms are revealed as photoperiodic history‐dependent responses when animals kept in either LP (dotted line) or SP (continuous line) are 
transferred to photoperiod of intermediate duration (IP), present in nature around the equinoxes (top). Melatonin secretion under these 
conditions remains similar, reflecting the duration of the prevailing photoperiod (middle). The seasonal physiology elicited in IP depends 
on prior photoperiodic exposure. Animals previously exposed to LP interpret IP as a decrease in photoperiod and show winter physiology, 
whereas animals previously exposed to SP interpret IP as an increase in photoperiod and show summer physiology (bottom). C, Internal 
timing	is	revealed	as	full/partial	circannual	rhythms	when	photoperiod	is	maintained	constant	(top).	Under	these	conditions,	the	profile	of	
melatonin	secretion	also	remains	constant,	reflecting	the	prevailing	fixed	photoperiod	(middle).	Despite	this	continuous	signal,	cycles	in	
physiology become refractory to the constant photoperiod and continue to oscillate between “subjective” summer and winter states (bottom)
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(Figure 1A). Mimicking photoperiodic history‐dependent responses, 
melatonin infusions of intermediate duration (7 h day‐1) in adults 
are interpreted as inhibitory for reproduction in animals with a long 
photoperiodic history or as stimulatory in animals with prior short 
photoperiodic exposure.16 The memory for previously acquired 
photoperiodic history fades with time. In adult pinealectomised 
Siberian hamsters with an acquired long photoperiodic history, 
7 h day‐1 melatonin infusions are no longer effective for inhibiting 
reproduction when initiated 20 weeks after pinealectomy. However, 
unequivocally winter‐like melatonin signals (10 h day‐1) always lead 
to inhibitory reproductive responses. Thus, melatonin appears to be 
necessary to maintain this memory.16	Nevertheless,	 it	 remains	un‐
clear how these observations apply in nature.

The transfer of photoperiodic information from a mother to 
her foetus occurs via melatonin‐dependent mechanisms. Maternal 
melatonin crosses the placenta and acts on melatonin sensitive foe‐
tal brain regions and other tissues.18,19 Also, melatonin injections 
in pregnant rodents are able to entrain pups' disrupted circadian 
rhythms,20,21 showing that melatonin can be used by the mothers 
to signal time to their foetuses.22 In Siberian hamsters, the foetal 
pituitary is responsive to melatonin from gestational day 16.23,24 
How this gestational signal influences postnatal development has 
been studied mostly in these species. Offspring of pinealectomised 
dams kept in a long photoperiod (LP) fail to develop gonads when 
reared in an IP, demonstrating that they do not receive informa‐
tion about the gestational or prior maternal photoperiodic expo‐
sure.25 However, offspring of pinealectomised dams receiving 
8 h day‐1 (long) melatonin infusions during pregnancy interpret 
a postnatal IP as stimulatory for gonadal growth, whereas those 
receiving shorter infusions interpret it as inhibitory.25 These infu‐
sions are maximally effective when given during the last 3‐6 days 

of pregnancy for a minimum of 4 days, defining a narrow sensitive 
window in which the reproductive axis of the foetus is responsive 
to the programming effects of melatonin.26	During	 lactation,	 the	
level of maternal melatonin found in the plasma of pups is very 
low, showing no day‐night differences.27,28 The pups themselves 
do not secrete melatonin rhythmically until postnatal day (P) 15 in 
hamsters, regardless of photoperiodic experience,29,30 supporting 
the concept that they are effectively blind to photoperiod during 
lactation.14,15 Furthermore, reproductive development proceeds 
in accordance with prenatal photoperiodic exposure and inde‐
pendently of pre‐weaning photoperiod in pinealectomised Siberian 
hamsters,31 suggesting that the memory of prenatal photoperiodic 
history is maintained during this time. This indicates that the foetal 
melatonin‐responsive neuroendocrine system is functional prior to 
birth and uses the maternal melatonin rhythm as a calendar signal.

Several alternative hypotheses to account for these history‐de‐
pendent effects have been considered. Based on timed‐melatonin 
infusions, it has been proposed that maternal melatonin could be 
altering the pups’ circadian regulation of juvenile melatonin pro‐
duction.32 Alternatively, the postnatal melatonin pattern could be 
interpreted differently depending on prenatal photoperiodic his‐
tory.33 Functional studies show that the developmental trajectory 
set by the prenatal photoperiodic experience continues in juveniles 
pinealectomised or reared in constant light, and thus in the absence 
of postnatal melatonin.15,31,34,35 In our recent study, we observed 
that juvenile Siberian hamsters gestated in either LP (16 h L day‐1) 
or SP (8 h L day‐1) and transferred to IP (14 h L day‐1) at weaning 
(Figure 3A) presented melatonin peaks of similar duration, regard‐
less of their experience36 (Figure 3B), as observed previously.37 
These results suggest that MPP does not arise from altered circu‐
lating melatonin patterns in juveniles, although it may result from a 
change in their sensitivity to melatonin signalling. To understand this 
phenomenon, we should then focus on the neuroendocrine system 
that transduces the melatonin message.22,33

3  | NEUROENDOCRINE CONTROL OF 
PHOTOPERIODISM IN MAMMALS

3.1 | The pars tuberalis: interface between 
melatonin and the hypothalamus

Several regions of the brain and pituitary were discovered to be 
melatonin sensitive in mammals using both radiolabelled melatonin 
binding assays38,39 and the study of melatonin receptor expression 
and functionality.40,41 The most conserved melatonin sensitive tis‐
sue is the pars tuberalis (PT) of the pituitary gland,42‐45 which has 
subsequently become a central site for the study of the mecha‐
nisms underlying the physiological responses to photoperiod or 
photoperiodism.

The PT is located directly below the basal hypothalamus where 
it is in contact with the nerve endings at the median eminence 
(ME) and with the capillaries of the primary plexus of the por‐
tal system.46 Melatonin receptor 1 in the pituitary is exclusively 

F I G U R E  2   Maternal photoperiodic programming of 
reproduction and growth rate in small mammals. In temperate 
environments, breeding initiates at the beginning of spring, when 
photoperiod (black line) is increasing, and the breeding season lasts 
into the end of the summer when photoperiod decreases. Pups 
born in either part of the season undergo two different life‐history 
strategies.	Dams	pregnant	at	the	beginning	of	the	season	transmit	
a long melatonin (MEL) signal to their pups in utero. These pups 
show fast growth rates (green dashed line) and achieve puberty at 
a	young	age	(blue	dotted	line).	Dams	that	are	pregnant	when	the	
photoperiod is long transmit short melatonin profiles to their pups 
in utero. These pups have low growth rates and delay their time of 
puberty, often until the next season
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expressed on PT‐specific thyrotroph secretory cells that produce 
thyroid‐stimulating hormone (TSH).47‐49 In seasonal species, TSH 
expression in the PT, specifically the β subunit (TSHβ), is rapidly 
induced by exposure to LP and inhibited by SP, which, in mam‐
mals, depends on melatonin.48‐51 Although, in European ham‐
sters, the photoperiodic entrainment of PT‐TSH is also possible 
in the absence of melatonin,52 this phenomenon has not been 
explored in other mammals. In non‐mammalian vertebrates, the 
photoperiodic network is conserved but does not involve mela‐
tonin and, instead, the light‐input is transmitted via deep brain 
photoreceptors in birds or photoreceptive coronet cells in the 
saccus vasculosus in fish.53

PT‐TSH acts in a retrograde fashion on the hypothalamus to re‐
activate summer physiology via functional TSH receptor (TSH‐R) 
expressed in the tanycytes lining the third ventricle (3V).51,54 
Acute i.c.v. TSH injections lead to induction of thyroid hormone 
deiodinase 2 (dio2) expression,51,54 whereas the photoperiodic and 
melatonin‐induced increase in dio2 expression is blocked in TSH‐r 
knockout mice.49 Long‐term TSH i.c.v. infusions in SP‐maintained 
individuals reactivate summer physiology (ie, activation of the re‐
productive axis in hamster and quail and inhibition in sheep) via 
induction of dio2 and decrease in thyroid hormone deiodinase 3 

(dio3) expression in tanycytes.51,54,55 These specialised glial cells, 
for which the bodies are strategically located in the ependymal wall 
of the 3V, extend their projections towards the capillaries in the 
arcuate nucleus (ARC) and to the external border of the ME with the 
PT, forming a functional blood‐brain barrier in this region.56 Several 
other genes and cellular pathways are photoperiodically regulated 
in	 tanycytes,	 such	 as	 neuromedin	 U,	 retinoic	 acid	 or	 glutamate	
transport.56

3.2 | Thyroid hormone: required for expression of 
summer physiology

Dio2	is	the	primary	thyroid	hormone	(TH)	activating	enzyme	in	the	
brain, converting the circulating thyroxine (T4) to the more active 
form	of	TH,	triiodothyronine	(T3).	Contrastingly,	Dio3	is	the	main	TH	
inactivating enzyme, degrading both T3 and T4 to the inactive me‐
tabolites diiodothyronine and reverse T3, respectively.58 Although 
the dynamic regulation of hypothalamic deiodinase expression dif‐
fers between species and experimental protocol (see below), trans‐
fer to LP generally increases dio2 and down‐regulates dio3, whereas 
transfer to SP leads to increased dio3 and decreased dio2 expres‐
sion.49,54,59,60 This change has been associated with a local increase 

F I G U R E  3   Maternal photoperiodic programming neuroendocrine pathway. A, Timeline and photoperiodic conditions used to explore the 
effects of maternal photoperiodic programming.36 Animals gestated and maintained during lactation in either long photoperiod (LP: 16:8 h 
light/dark) or short photoperiod (SP: 8:16 h light/dark) are maintained in the same photoperiod or transferred to an intermediate photoperiod 
(IP: 14:10 h light/dark) at weaning. At 50 days of age, the reproductive development in animals gestated in SP and transferred to IP (SP‐IP) 
is	larger	than	in	animals	gestated	in	LP	and	transferred	to	IP	(LP‐IP).	Different	lowercase	letters	in	the	graph	indicate	significant	differences	
between groups. B, Maternal transfer of melatonin to fetal brain in utero programs developmental pituitary/hypothalamic gene expression 
in offspring independently of the offspring's own melatonin profile. Representative in situ hybridisation autoradiography images of TSHβ and 
dio2 gene expression from birth (P0) to postnatal age (P)50. Average melatonin profiles of offspring at P26‐31. Modified from previous data5‐8

TSHß dio2

LP

SP

Photoperiod

Melatonin

LP

SP

LP-IP

SP-IP

TSHß dio2Melatonin

Birth (P0)

P50
P26-31

8 12 16 20 24 4

Zeitgeber time (h)

(A)

(B)

LP (16:8)

SP (8:16)

Gestation
IP (14:10)

Lactation

Birth
LP a 

b 

c 

d 

0.0 0.2 0.4 0.6 0.8 1.0

LP-IP 

SP-IP 

SP 

Testes mass/body mass



     |  5 of 11SÁENZ dE MIERA

in T3 and T4 levels in LP compared to SP,55,59,61 which is a conserved 
feature in vertebrates, regardless of the breeding season of the spe‐
cies62 (Figure 4).

Locally regulated TH levels controlled by deiodinase activity 
serve as an ancestral signal in vertebrates, being involved in postem‐
bryonic organ development and life‐cycle events such as metamor‐
phosis63 or puberty64; such events are endogenously driven but 
can be environmentally modulated. A role for TH in seasonal re‐
production was first suggested by studies in ducks, where thyroid‐
ectomy blocks the increase in gonadal growth induced by exposure 
to long daylength.65 In sheep, thyroidectomy does not affect the 
onset of the breeding season but prevents the spring transition into 
anoestrous.66,67 This effect can be reversed by T4 treatment,66‐68 
which is effective only during a sensitive window between spring 
and mid‐summer,68 coincident with the increased presence of hy‐
pothalamic dio2 and the absence of dio3 expression.69 T3 injections 
in sexually inhibited Siberian hamsters reactivate the reproductive 
axis.70 T3 microimplants only in the basal hypothalamic region (but 

not in other brain regions) reverse the effects of thyroidectomy or 
transfer to SP on seasonal reproduction,71,72 also restoring growth 
and the metabolic axis.73 TH is thus required for the initiation and 
maintenance of the summer reproductive physiology, comprising 
sexual quiescence in short‐day breeders and activity in long‐day 
breeders, an effect that is explained by the dynamics of tanycyte 
deiodinase activity. The RFamides kisspeptin and RFamide‐related 
peptide (RFRP) expressed in the mediobasal hypothalamus show 
photoperiodic changes in expression and have been implicated in 
the seasonal effects on the reproductive axis. These neuropeptides 
are regulators of gonadotrophin‐releasing hormone (GnRH) secre‐
tion, integrating internal and external cues such as photoperiod, 
sex‐steroid feedback and metabolic cues.74 In hamsters, TSH and 
T3 infusions restore the summer reproductive phenotype and kis‐
speptin and RFRP expression.55,75 Hence, the seasonal TH pattern 
in the hypothalamus, modulated by the PT‐TSH message coordi‐
nates the neuroendocrine systems that regulate reproduction and 
metabolism.55,73

F I G U R E  4   Photoperiodism and internal timing control seasonal changes in physiology via long‐term communication between the pars 
tuberalis (PT) and the hypothalamus that leads to similar regulation of deiodinases and triiodothyronine (T3) status in the hypothalamus. A, 
Cartoon depicting the cytoarchitecture of the ependymal layer of the third ventricle (3V), where tanycytes and ependymal cells are located. 
Tanycytes extend their projections into the mediobasal hypothalamus or to the median eminence, where they contact portal vessels. A 
tanycyte is magnified in the other panels to show changes in deiodinase gene expression. B, The transition to summer physiology involves 
an increase in deiodinase‐induced T3 signalling in the hypothalamus. In photoperiodism, the long photoperiod (LP)‐induced increase in PT 
thyroid‐stimulating hormone (TSH) (black) leads to a high dio2/dio3 expression ratio in tanycytes (blue) and thus increased T3 signalling 
(green arrows). Similarly, in history‐dependent timing, animals in intermediate photoperiod with short photoperiod (SP) history (SP‐IP), show 
a spontaneous increase in the dio2/dio3 ratio in tanycytes, which, in maternal photoperiodic programming, has been linked to intermediate 
PT TSH expression (grey). In circannual rhythms, animals in a subjective summer state show high TSH production in the PT, as observed 
in European hamsters, although this increase has not been observed in short‐day refractory (SP‐R) sheep or Siberian hamsters (dotted). In 
both cases, there is an increase in the dio2/dio3 ratio in tanycytes that leads to increased T3 signalling. C, The transition to winter physiology 
involves a decrease in hypothalamic deiodinase‐induced T3 signalling, mediated by a decrease in PT TSH expression. In photoperiodism, 
the long melatonin profile present in animals in SP inhibits PT TSH expression (white), which leads to a low dio2/dio3 expression ratio 
in tanycytes and a low T3 level in the hypothalamus. Similarly, in history‐dependent timing, animals in IP with LP history (LP‐IP) show a 
spontaneous decrease in the dio2/dio3 ratio in tanycytes, which, in maternal photoperiodic programming, has been linked to intermediate PT 
TSH expression (grey) and reduced sensitivity to its action. In animals displaying circannual rhythms, PT TSH expression is reduced (dotted) 
during the subjective winter state, as observed in European hamsters and long‐day refractory (LP‐R) sheep. This decrease in TSH signalling 
leads to reduced dio2/dio3 ratio in tanycytes and thus reduced T3 signalling
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4  | MATERNAL PHOTOPERIODIC 
PROGRAMMING OCCURS IN TANYCYTES

4.1 | Programming of hypothalamic deiodinases

The neuroendocrine mechanisms involved in photoperiodic history 
and MPP remain unknown. Adult Siberian hamsters transferred from 
LP or SP to IP show history‐dependent changes in hypothalamic dio3 
gene expression, reflecting the subjective interpretation of the pho‐
toperiodic signal, rather than its actual duration. This was the first 
indication that hypothalamic TH signalling reflects photoperiodic 
history dependence.76

We recently investigated the neuroendocrine mechanisms in‐
volved in the MPP response with the working hypothesis that the 
neuroendocrine TSH/dio system downstream of melatonin will re‐
flect the programming effect of photoperiodic history lived in utero. 
Using	a	developmental	approach	to	induce	the	MPP	phenomenon,36 
Siberian hamsters gestated and raised in LP or SP were transferred at 
weaning to IP (LP‐IP and SP‐IP, respectively) (Figure 3A). LP‐gestated 
newborns expressed higher TSHβ in the PT, together with a higher 
dio2	mRNA	level	in	the	tanycytes	than	those	gestated	in	SP,	indicating	
that the maternal melatonin binding to foetal pituitary and the PT‐
hypothalamic retrograde communication lead to regulation of local 
TH metabolism in the newborn's tanycytes (Figure 3B). Dio3 gene ex‐
pression was first observed by mid‐lactation only in the SP animals.36

As soon as 3 days after weaning and transfer to IP, LP‐IP animals 
showed reduced TSHβ expression in the PT and dio2 expression in the 
tanycytes, which was associated with a decrease in follicle‐stimulat‐
ing hormone levels, whereas a strong increase in dio2 and decrease 
in dio3 expression was observed in the SP‐IP animals, although with‐
out any observed increase in TSHβ expression. This result does not 
represent a transitory response to the switch in photoperiod but, 
instead, the initiation of a long‐term programming of the offspring's 
interpretation of its own melatonin pattern. At P50, after 25 days 
in identical IP conditions, SP‐IP animals showed increased gonadal 
development compared to LP‐IP animals. At this time, dio2	mRNA	
expression was strongly stimulated and dio3 inhibited in SP‐IP ani‐
mals, with dio3	mRNA	expression	being	stimulated	in	LP‐IP	animals,	
whereas no changes were observed in PT TSHβ	mRNA	expression	
between these groups (Figure 3B). This result localises the per‐
sistent programming effect to deiodinase expression in tanycytes.

4.2 | Programming changes tanycyte sensitivity 
to TSH

We hypothesised that a switch in tanycyte sensitivity to TSH signal‐
ling underlies the MPP effect. To test this hypothesis, we injected i.c.v. 
increasing doses of TSH previously shown to cause minimal effects on 
dio2 expression.55	Accordingly,	0.5	mIU	of	TSH	 induced	dio2	mRNA	
expression	in	both	LP‐IP	and	SP‐IP	animals,	whereas	1	mIU	of	TSH	fur‐
ther increased dio2	mRNA	expression	in	SP‐IP	animals,	although	not	
in the LP‐IP group, demonstrating a decreased sensitivity to TSH in 
LP‐IP animals, which is an effect that was not associated with changes 

in TSH‐r	mRNA	expression,	nor	circulating	TH	feedback	on	deiodinase	
expression.36 This change in the level of dio2 expression to a given TSH 
mRNA	level	was	recently	reported	in	a	study	exploring	critical	photo‐
periods in sheep.77 The mechanistic origin of this change in sensitiv‐
ity to TSH signalling remains to be determined. Programming effects 
of prenatal stress experience have been associated with epigenetic 
regulation of gene expression.78 Both deiodinase genes are targets of 
epigenetic modifications79,80 and both dio3 promoter methylation and 
the level of epigenetic enzymes are altered by photoperiod in Siberian 
hamsters.81,82 Early photoperiodic exposure, as mediated by TSH‐de‐
pendent or ‐independent signalling, could induce epigenetic mecha‐
nisms that lead to the long‐term shift in TSH sensitivity in tanycytes.

5  | MATERNAL NEUROENDOCRINE 
PROGRAMMING

At present, the study of maternal programming of neuroendocrine 
function focuses primarily on the long‐term consequences of early 
life altered stress and metabolic environments for offspring health, 
where mismatching environments and hormonal status between 
foetal and adult life often lead to pathology. Prenatal stress expo‐
sure produces offspring with increased levels of depressive behav‐
iour and anxiety.83 An excess of glucocorticoids in utero leads to 
impaired negative‐feedback on the hypothalamic‐pituitary‐adrenal 
axis and, consequently, higher vasopressin and corticotrophin‐re‐
leasing hormone expression in the hypothalamus.83 The long‐term 
effects of early‐life stress have been linked to altered epigenetic reg‐
ulation of gene expression in the hypothalamus and lymbic system.78

Maternal undernutrition during pregnancy and lactation pro‐
duces obese and leptin‐resistant offspring, especially when fed a 
high‐fat diet,84 an effect that can be reversed with neonatal leptin 
treatment.84 Similarly, overnutrition during this time leads to meta‐
bolic syndrome in offspring.85 Interestingly, adults born to overfed 
dams develop resistance to leptin, insulin and ghrelin signalling in the 
ARC, reducing the ability of these hormones to induce an intracel‐
lular response,86‐88 as well as altering the development of neuroen‐
docrine projections from the ARC.89 This developmental plasticity, 
considered as pathological in the view of a increasingly obese soci‐
ety, serves as an adaptive response for preparing the physiology to 
match a future environment predicted by the early environmental 
cues: the so‐called predictive‐adaptive response.90 This strategy ap‐
pears of particular value in predictable seasonally changing environ‐
ments,91 accounting for the evolution of MPP as an adaptive trait.

6  | HISTORY‐DEPENDENT CHANGE IN 
HYPOTHALAMIC DEIODINASES:  UNIFYING 
OUTPUT OF INTERNAL LONG‐TERM 
TIMING

In addition to history‐dependent changes in photoperiodic re‐
sponsiveness, endogenous long‐term timekeeping is revealed by 
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exposure to constant photoperiodic conditions. In these conditions, 
full circannual rhythms (Figure 1C) are manifested in seasonal spe‐
cies that normally live for several breeding seasons, although these 
rhythms are only partially manifested in short‐lived species, and 
not likely to survive for more than one or two breeding seasons. 
Short‐lived species typically maintain the ability to spontaneously 
revert to a spring reproductive phenotype under prolonged winter 
daylengths, although without going through a full cycle, comprising 
a phenomenon known as photorefractoriness.92 The term refrac‐
tory is often applied to the individual phase switches in a circannual 
rhythm.93

Similar to the melatonin‐independent switch in the expression of 
hypothalamic deiodinases underlying MPP of seasonal reproduction 
(Figures 3B and 4), recent work on the control of circannual timing 
has also unveiled long‐term switches in the TSH/dio2‐3 system inde‐
pendently of melatonin signalling (Figure 4). In circannually cycling 
sheep, the melatonin signal continues to reflect the prevailing pho‐
toperiod.93 Sheep that become refractory to constant SP exposure 
(SP‐refractory) switching to summer physiology (ie, reproductive 
axis inhibition) show a decrease in dio3 and an increase in dio2	mRNA	
level in the ME, with no increase observed in PT TSHβ expression.69 
Similarly, SP‐refractory Syrian or Siberian hamsters undergo a spon‐
taneous switch to summer physiology94 (ie, reactivation of the repro‐
ductive axis), whereas their melatonin pattern remains unchanged.95 
This switch involves a decrease in dio3 gene expression, with no ob‐
vious change in dio2 or TSHβ expression, followed by reactivation 
of the reproductive axis a few weeks later.96‐99 These endogenous 
switches, which apparently occur independently of TSH signalling, 
mimic the observed change in SP‐IP animals where a strong drive 
towards the recovery of TH signalling (increased dio2 and decreased 
dio3 gene expression) takes place via a greatly enhanced sensitiv‐
ity to TSH signalling. This evidence suggests that the endogenous 
switch to summer physiology is dio2‐dependent and might originate 
in the hypothalamic response to pituitary signals, or be intrinsic to 
the hypothalamus36 (Figure 4B).

When sheep become refractory to constant LP exposure (LP‐
refractory), switching to winter physiology, they show a decrease 
in dio2 and an increase in dio3 expression in the hypothalamus, to‐
gether with a decrease in TSHβ expression in the PT.69,100 Similarly, 
European hamsters kept in constant LP show a decrease in TSHβ and 
dio2 expression during the “subjective winter state”, when they have 
endogenously switched towards a winter nonreproductive state.101 
However, prolonged LP exposure in Syrian or Siberian hamsters does 
not cause a reversion to a winter‐like anestrous state,94 nor a switch 
in dio2 or dio3 expression.97	Nonetheless,	the	switches	observed	in	
LP‐IP animals, where the spontaneous increase in dio3 expression 
is preceded by a dynamic decrease in TSHβ	mRNA	 levels,36 paral‐
lel to other endogenous winter‐like switches. Therefore, species 
considered noncircannual show LP‐refractory phenomena lead‐
ing to decreased hypothalamic TH signalling. Thus, the capacity of 
a species to undergo an entire circannual cycle might reside in the 
ability of the PT to decrease TSH expression in the winter switch 
independently of melatonin signalling, driving an increase in dio3 

expression to decrease hypothalamic TH levels (Figure 4C). Future 
work should aim to test this hypothesis.

7  | HOW DOES HYPOTHALAMIC T3 ACT 
ON SEASONAL REPRODUCTION?

Outstanding challenges include identifying the long‐term (rheostatic) 
neuroendocrine mechanisms downstream of tanycyte programming, 
which lead to history‐dependent changes in reproduction, and un‐
derstanding how T3 availability influences GnRH release. RFamides 
are presently the main candidates for mediation between the pho‐
toperiodic control of T3 and seasonal GnRH regulation.102 However, 
reactivation of gonadal growth in LP‐refractory Siberian and Syrian 
hamsters takes place prior to an increase in expression of the re‐
productive neuropeptides RFRP and kisspeptin.99 This early (home‐
ostatic) step could be more directly mediated by changes in firing 
activity103 leading to GnRH release. Tanycytes are involved in the 
formation of the blood‐brain barrier in the ME, where they undergo 
structural changes that allow regulation of neuroendocrine secre‐
tions.104 Photoperiod and T3 regulate tanycyte endfeet remodelling 
in Siberian hamster and quail, allowing GnRH terminals to access the 
basal lamina in LP and blocking this access in SP.105,106 However, this 
phenomenon is also evident in LP‐refractory sheep with respect to 
reactivating the reproductive axis, and so it is linked to the phase 
of reproduction and not the T3 status.100 A recent study identified 
several genes that are independently regulated by photoperiod and 
TH in sheep tanycytes (Tmt252, evolv3, cndp1), suggesting that they 
could serve as a bridge between the seasonal TH message and the 
regulation of GnRH,107 although this remains to be investigated in 
other species.

T3 plays a direct role in both the control of neural cell prolifera‐
tion and neuroglial differentiation in brain proliferative areas.108,109 
Tanycytes express proliferation and differentiation markers under 
seasonal (eg, vimentin, nestin)105,110 and T3‐mediated control (eg, 
shh)107 and have been proposed as the substrate for neurogenic 
activity in the hypothalamus, stimulated by metabolic cues and 
growth factors.111‐116 Moreover, seasonal differences exist in hypo‐
thalamic cell proliferation117‐119 and neuronal differentiation.114,120 
Although the functional significance of this restructurating remains 
to be demonstrated, seasonal histogenesis has been proposed as a 
mechanism for endogenous timing.121 It could be speculated that, 
in MPP, pools of proliferating cells differently programmed during 
gestation react differently to the same photoperiodic signal per‐
ceived in adults. Cell fate‐mapping studies using reporter genetic 
models in photoperiodic responsive species54,59,60,72 or mice and rat 
strains49,61 would be required to explore this hypothesis.

8  | CONCLUSIONS AND PERSPECTIVES

Despite	dynamic	differences,	all	of	the	studies	conducted	to	date	
highlight the central role of hypothalamic deiodinase regulation 
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and TH metabolism in seasonal timekeeping in mammals, regard‐
less of the life‐history strategies of the species. Internal timing 
is characterised by spontaneous switches towards hypothalamic 
TH signalling in the spring and away from this in autumn, arising 
from the long‐term communication between the PT and the hy‐
pothalamus (Figure 4), independently of the prevailing melatonin 
signal, whereas these switches are driven by melatonin in photo‐
periodism.	Determination	of	the	molecular	mechanisms	responsi‐
ble for the spontaneous changes in endogenous timing strategies 
remains one of the largest challenges in the field. Recent work in 
LP‐refractory sheep has highlighted a number of molecular mark‐
ers, signalling networks and structural changes taking place in 
the PT associated to this endogenous change,100 offering new 
avenues to understand the spontaneous switch to winter physiol‐
ogy. Otherwise, tanycytes appear as a strong cellular candidate for 
exploring the molecular origin of the spontaneous change towards 
summer physiology, as evident in all of the manifestations of en‐
dogenous timing. Furthermore, the characterisation of history‐
dependent and photoperiodic molecular changes taking place in 
tanycytes could shed light on how the equivalent switch in the 
TSH/dio pathway is associated with apparently opposite effects 
on reproductive physiology in long‐day vs short‐day breeders. A 
recent model proposes that this variation would arise from dif‐
ferent dynamics in the net result of two photoneuroendocrine 
processes: a photo‐inductory process dependent on prevailing 
photoperiod and a gradually increasing long‐term photo‐inhibitory 
process.122

Finally, the MPP phenomenon is a strong model for exploring the 
seasonal effects on brain plasticity. Moreover, it is also an effective 
paradigm for understanding how the early environment affects re‐
productive and metabolic development and its hypothalamic control. 
TH are essential for neural postnatal development, being involved 
in processes such as neural progenitor proliferation, migration and 
differentiation of neurones and glia.123 The clear change in hypotha‐
lamic TH signalling and the associated physiological response means 
that MPP comprises a useful nonpathological paradigm for exploring 
the effects of altered endogenous TH signalling during hypothalamic 
development.

ACKNOWLEDGEMENTS

This Young Investigator Perspective was written following the award 
of	 the	 “Prix	 SNE”	 by	 the	 French	 Society	 for	 Neuroendocrinology	
(Société	de	Neuroendocrinologie).	My	work	was	supported	by	funds	
from	Région	d'Alsace,	the	University	of	Aberdeen	and	the	University	
of	Strasbourg	Institute	of	Advanced	Studies.	I	am	grateful	to	David	
Hazlerigg for providing constructive comments on a draft of this ar‐
ticle.	In	addition,	David	Hazlerigg	and	Valérie	Simonneaux	are	both	
thanked for their supervision, advice and support.

CONFLICT OF INTERESTS

The author declares that there are no conflicts of interest.

ORCID

Cristina Sáenz de Miera  https://orcid.org/0000‐0001‐8047‐035X 

REFERENCES

 1. Gwinner E. Circannual Rhythms. Berlin: Springer‐Verlag; 1986.
 2. Pengelley ET, Asmundson SJ. Circannual rhythmicity in hiber‐

nating mammals. In: Pengelley ET, ed. Circannual Clocks: Annual 
Biological Rhythms. London: Academic Press, Inc.; 1974:95‐160.

	 3.	 Hoffmann	K.	Photoperiodic	reaction	in	the	Djungarian	hamster	is	
influenced by previous light history. Biol Reprod. 1984;30(Suppl. 
1):55.

	 4.	 Hastings	MH,	Walker	AP,	Powers	JB,	et	al.	Differential	effects	of	
photoperiodic history on the responses of gonadotrophins and 
prolactin to intermediate daylengths in the male Syrian hamster. J 
Biol Rhythm. 1989;4:335‐350.

 5. Horton TH. Growth and reproductive development of male 
Microtus montanus is affected by the prenatal photoperiod. Biol 
Reprod. 1984;31:499‐504.

	 6.	 Stetson	MH,	 Elliott	 JA,	Goldman	BD.	Maternal	 transfer	 of	 pho‐
toperiodic information influences the photoperiodic response of 
prepubertal	 Djungarian	 Hamsters	 (Phodopus sungorus sungorus). 
Biol Reprod. 1986;34:664‐669.

 7. Ebling FJP, Wood RI, Suttie JM, et al. Prenatal photoperiod in‐
fluences neonatal prolactin secretion in sheep. Endocrinology. 
1989;125:384‐391.

 8. Horton TH, Stachecki SA, Stetson MH. Maternal transfer of pho‐
toperiodic information in Siberian hamsters. IV. Peripubertal re‐
productive development in the absence of maternal photoperiodic 
signals during gestation. Biol Reprod. 1990;42:441‐449.

	 9.	 Negus	 NC,	 Berger	 PJ,	 Forslund	 LG.	 Reproductive	 strategy	 of	
Microtus montanus. J Mammal. 1977;58:347‐353.

 10. Horton TH, Stetson MH. Maternal transfer of photoperiodic infor‐
mation in rodents. Anim Reprod Sci. 1992;30:29‐44.

	 11.	 Negus	NC,	Berger	PJ,	Brown	BW.	Microtine	population	dynamics	
in a predictable environment. Can J Zool. 1986;64:785‐792.

	 12.	 Foster	DL.	Mechanism	for	delay	of	first	ovulation	in	lambs	born	in	
the wrong season (fall). Biol Reprod. 1981;25:85‐92.

 13. Horton TH. Growth and maturation in male Microtus montanus: 
effects of photoperiods before and after weaning. Can J Zool. 
1984;62:1741‐1746.

 14. Horton TH. Cross‐fostering of voles demonstrates in utero effect 
of photoperiod. Biol Reprod. 1985;33:934‐939.

	 15.	 Stetson	MH,	Lynn	Ray	S,	Creyaufmiller	N,	et	al.	Maternal	trans‐
fer of photoperiodic information in Siberian hamsters. II. The 
nature of the maternal signal, time of signal transfer, and the 
effect of the maternal signal on peripubertal reproductive de‐
velopment in the absence of photoperiodic input. Biol Reprod. 
1989;40:458‐465.

 16. Prendergast BJ, Gorman MR, Zucker I. Establishment and per‐
sistence of photoperiodic memory in hamsters. Proc Natl Acad Sci 
USA. 2000;97:5586‐5591.

 17. Simonneaux V, Ribelayga C. Generation of the melatonin endo‐
crine message in mammals: a review of the complex regulation of 
melatonin synthesis by norepinephrine, peptides, and other pineal 
transmitters. Pharmacol Rev. 2003;55:325‐395.

	 18.	 Klein	DC.	Evidence	for	 the	placental	 transfer	of	3H‐acetyl‐mela‐
tonin. Nat New Biol. 1972;237:117‐118.

 19. Reppert SM, Chez RA, Anderson A, et al. Maternal‐fetal transfer of 
melatonin in the non‐human primate. Pediatr Res. 1979;13:788‐791.

	 20.	 Davis	 FC,	 Mannion	 J.	 Entrainment	 of	 hamster	 pup	 circadian	
rhythms by prenatal melatonin injections to the mother. Am J 
Physiol. 1988;255:448.

https://orcid.org/0000-0001-8047-035X
https://orcid.org/0000-0001-8047-035X


     |  9 of 11SÁENZ dE MIERA

 21. Bellavía SL, Carpentieri AR, Vaqué AM, et al. Pup circadian rhythm 
entrainment – effect of maternal ganglionectomy or pinealectomy. 
Physiol Behav. 2006;89:342‐349.

	 22.	 Simonneaux	 V.	 Naughty	 melatonin:	 how	 mothers	 tick	 off	 their	
fetus. Endocrinology. 2011;152:1734‐1738.

	 23.	 Carlson	 LL,	 Weaver	 DR,	 Reppert	 SM.	 Melatonin	 receptors	 and	
signal transduction during development in Siberian hamsters 
(Phodopus sungorus). Dev Brain Res. 1991;59:83‐88.

 24. Rivkees SA, Reppert SM. Appearance of melatonin receptors 
during embryonic life in Siberian hamsters (Phodopus sungorous). 
Brain Res. 1991;568:345‐349.

	 25.	 Weaver	 DR,	 Reppert	 SM.	 Maternal	 melatonin	 communicates	
daylength	 to	 the	 fetus	 in	 Djungarian	 hamsters.	 Endocrinology. 
1986;119:2861‐2863.

	 26.	 Weaver	DR,	Keohan	JT,	Reppert	SM.	Definition	of	a	prenatal	sen‐
sitive period for maternal‐fetal communication of day length. Am J 
Physiol. 1987;253:E701‐E704.

	 27.	 Reppert	 SM,	 Klein	 DC.	 Transport	 of	 maternal	 [3H]melatonin	 to	
suckling rats and the fate of [3H]melatonin in the neonatal rat. 
Endocrinology. 1978;102:582‐588.

	 28.	 Rowe	SA,	Kennaway	DJ.	Melatonin	in	rat	milk	and	the	likelihood	of	
its role in postnatal maternal entrainment of rhythms. Am J Physiol 
Regul Integr Comp Physiol. 2002;282:R797‐R804.

	 29.	 Tamarkin	L,	Reppert	SM,	Orloff	DJ,	et	al.	Ontogeny	of	pineal	mel‐
atonin rhythm in the Syrian (Mesocricetus auratus) and Siberian 
(Phodopus sungorus) hamsters and in the rat. Endocrinology. 
1980;107:1061‐1064.

	 30.	 Yellon	SM,	Tamarkin	L,	Goldman	BD.	Maturation	of	the	pineal	mel‐
atonin	rhythm	in	long‐	and	short‐day	reared	Djungarian	hamsters.	
Experientia. 1985;41:651‐652.

 31. Gunduz B, Stetson MH. Effects of photoperiod, pinealectomy, and 
melatonin implants on testicular development in juvenile Siberian 
hamsters (Phodopus sungorus). Biol Reprod. 1994;51:1181‐1187.

	 32.	 Goldman	 BD.	 Pattern	 of	 melatonin	 secretion	 mediates	 transfer	
of photoperiod information from mother to fetus in mammals. Sci 
STKE. 2003;192:pe29.

	 33.	 Weaver	DR.	The	roles	of	melatonin	in	development.	Adv Exp Med 
Biol. 2000;460:199‐214.

 34. Horton TH, Lynn Ray S, Stetson M. Maternal transfer of photo‐
periodic information in Siberian hamsters. III. Melatonin injections 
program postnatal reproductive development expressed in con‐
stant light. Biol Reprod. 1989;41:34‐39.

 35. Prendergast BJ, Kelly KK, Zucker I, et al. Enhanced reproductive 
responses to melatonin in juvenile Siberian hamsters. Am J Physiol. 
1996;271:R1041‐R1046.

 36. Sáenz de Miera C, Bothorel B, Jaeger C, et al. Maternal photope‐
riod programs hypothalamic thyroid status via the fetal pituitary 
gland. Proc Natl Acad Sci USA. 2017;114:8408‐8413.

	 37.	 Niklowitz	 P,	 Lerchl	 A,	 Nieschlag	 E.	 Photoperiodic	 responses	 in	
Djungarian	 hamsters	 (Phodopus sungorus): importance of light 
history for pineal and serum melatonin profiles. Biol Reprod. 
1994;51:714‐724.

	 38.	 Weaver	DR,	Rivkees	SA,	Reppert	SM.	Localization	and	character‐
ization of melatonin receptors in rodent brain by in vitro autoradi‐
ography. J Neurosci. 1989;9:2581‐2590.

 39. Williams LM, Morgan PJ, Hastings MH, et al. Melatonin receptor 
sites in the Syrian Hamster brain and pituitary. Localization and 
characterization using [125I] lodomelatonin. J Neuroendocrinol. 
1989;1:315‐320.

 40. Masson‐Pévet M, Gauer F. Seasonality and melatonin recep‐
tors in the pars tuberalis in some long day breeders. Biol Signals. 
1994;3:63‐70.

	 41.	 Reppert	SM,	Weaver	DR,	Ebisawa	T.	Cloning	and	characterization	
of a mammalian melatonin receptor that mediates reproductive 
and circadian responses. Neuron. 1994;13:1177‐1185.

	 42.	 Weaver	DR,	Carlson	LL,	Reppert	SM.	Melatonin	receptors	and	sig‐
nal transduction in melatonin sensitive and melatonin‐insensitive 
populations of white‐footed mice (Peromyscus leucopus). Brain Res. 
1990;506:353‐357.

	 43.	 Bittman	 EL,	 Weaver	 DR.	 The	 distribution	 of	 melatonin	 bind‐
ing sites in neuroendocrine tissues of the ewe. Biol Reprod. 
1990;43:986‐993.

 44. Morgan PJ, Barrett P, Howell HE, et al. Melatonin receptors: lo‐
calization, molecular pharmacology and physiological significance. 
Neurochem Int. 1994;24:101‐146.

	 45.	 Masson‐Pévet	M,	George	D,	Kalsbeek	A,	et	al.	An	attempt	to	cor‐
relate brain areas containing melatonin‐binding sites with rhyth‐
mic functions: a study in five hibernator species. Cell Tissue Res. 
1994;278:97‐106.

 46. Wittkowski W, Bockmann J, Kreutz MR, et al. Cell and molecu‐
lar biology of the pars tuberalis of the pituitary. Int Rev Cytol. 
1999;185:157‐194.

	 47.	 Klosen	 P,	 Bienvenu	 C,	 Demarteau	 O,	 et	 al.	 The	 mt1	 melatonin	
receptor and RORbeta receptor are co‐localized in specific TSH‐
immunoreactive cells in the pars tuberalis of the rat pituitary. J 
Histochem Cytochem. 2002;50:1647‐1657.

	 48.	 Dardente	 H,	 Klosen	 P,	 Pévet	 P,	 et	 al.	 MT1	 melatonin	 receptor	
mRNA	expressing	cells	in	the	pars	tuberalis	of	the	European	ham‐
ster: effect of photoperiod. J Neuroendocrinol. 2003;15:778‐786.

 49. Ono H, Hoshino Y, Yasuo S, et al. Involvement of thyrotropin in 
photoperiodic signal transduction in mice. Proc Natl Acad Sci USA. 
2008;105:18238‐18242.

 50. Bockmann J, Böckers TM, Vennemann B, et al. Short photope‐
riod‐dependent down‐regulation of Thyrotropin‐α and ‐β in ham‐
ster pars tuberalis‐specific cells is prevented by pinealectomy. 
Endocrinology. 1996;137:1084‐1813.

	 51.	 Nakao	N,	Ono	H,	Yamamura	T,	et	al.	Thyrotrophin	in	the	pars	tuber‐
alis triggers photoperiodic response. Nature. 2008;452:317‐323.

	 52.	 Sáenz	de	Miera	C,	Sage‐Ciocca	D,	Simonneaux	V,	et	al.	Melatonin‐
independent photoperiodic entrainment of the circannual TSH 
rhythm in the pars tuberalis of the European Hamster. J Biol 
Rhythms. 2018;33:302‐317.

	 53.	 Nakane	 Y,	 Yoshimura	 T.	 Universality	 and	 diversity	 in	 the	 signal	
transduction pathway that regulates seasonal reproduction in ver‐
tebrates. Front Neurosci. 2014;8:1‐7.

 54. Hanon EA, Lincoln GA, Fustin JM, et al. Ancestral TSH mech‐
anism signals summer in a photoperiodic mammal. Curr Biol. 
2008;18:30‐32.

 55. Klosen P, Sébert ME, Rasri K, et al. TSH restores a summer phe‐
notype in photoinhibited mammals via the RF‐amides RFRP3 and 
kisspeptin. FASEB J. 2013;27:2677‐2686.

 56. Rodríguez EM, Blázquez JL, Pastor FE, et al. Hypothalamic tanycy‐
tes: a key component of brain‐endocrine interaction. Int Rev Cytol. 
2005;247:89‐164.

 57. Lewis JE, Ebling FJP. Tanycytes as regulators of seasonal cycles in 
neuroendocrine function. Front Neurol. 2017;8:1‐7.

	 58.	 Bianco	AC,	 Salvatore	D,	Gereben	B,	 et	 al.	 Biochemistry,	 cellular	
and molecular biology, and physiological roles of the iodothy‐
ronine selenodeiodinases. Endocr Rev. 2002;23:38‐89.

 59. Yoshimura T, Yasuo S, Watanabe M, et al. Light‐induced hormone 
conversion of T4 to T3 regulates photoperiodic response of go‐
nads in birds. Nature. 2003;426:178‐181.

 60. Revel FG, Saboureau M, Pévet P, et al. Melatonin regulates type 2 
deiodinase gene expression in the Syrian hamster. Endocrinology. 
2006;147:4680‐4687.

 61. Ross AW, Helfer G, Russell L, et al. Thyroid hormone signalling 
genes are regulated by photoperiod in the hypothalamus of F344 
rats. PLoS ONE. 2011;6:e21351.

	 62.	 Hazlerigg	DG,	Loudon	A.	New	 insights	 into	ancient	seasonal	 life	
timers. Curr Biol. 2008;18:R795‐R804.



10 of 11  |     SÁENZ dE MIERA

 63. Holzer G, Laudet V. Thyroid hormones and postembryonic devel‐
opment in amniotes. In: Shi  YB, ed. Current Topics in Developmental 
Biology.	San	Diego,	CA:	Elsevier	Inc.;	2013:397‐425.

	 64.	 Tsutsui	K,	 Son	YL,	Kiyohara	M,	et	 al.	Discovery	of	GnIH	and	 its	
role in hypothyroidism‐induced delayed puberty. Endocrinology. 
2018;159:62‐68.

 65. Benoît J. Rôle de la thyroïde dans la gonado‐stimulation par la lu‐
mière artificielle chez le canard domestique. C R Seances Soc Biol 
Fil. 1936;123:243‐246.

	 66.	 Nicholls	TJ,	Follett	BK,	Goldsmith	AR,	et	al.	Possible	homologies	
between photorefractoriness in sheep and birds: the effect of 
thyroidectomy on the length of the ewes breeding season. Reprod 
Nutr Dév. 1988;28:375‐385.

 67. Webster JR, Moenter SM, Woodfill CJ, et al. Role of the thy‐
roid gland in seasonal reproduction. II. Thyroxine allows a sea‐
son‐specific suppression of gonadotropin secretion in sheep. 
Endocrinology. 1991;129:176‐183.

 68. Billings HJ, Viguie C, Karsch FJ, et al. Temporal requirements 
of thyroid hormones for seasonal changes in LH secretion. 
Endocrinology. 2002;143:2618‐2625.

	 69.	 Sáenz	de	Miera	C,	Hanon	EA,	Dardente	H,	et	al.	Circannual	vari‐
ation in thyroid hormone deiodinases in a short‐day breeder. J 
Neuroendocrinol. 2013;25:412‐421.

	 70.	 Freeman	DA,	Teubner	BJW,	Smith	CD,	et	al.	Exogenous	T‐3	mim‐
ics long day lengths in Siberian hamsters. Am J Physiol Integr Comp 
Physiol. 2007;292:R2368‐R2372.

 71. Anderson GM, Hardy SL, Valent M, et al. Evidence that thyroid 
hormones act in the ventromedial preoptic area and the premam‐
millary region of the brain to allow the termination of the breeding 
season in the ewe. Endocrinology. 2003;144:2892‐2901.

 72. Barrett P, Ebling FJP, Schuhler S, et al. Hypothalamic thy‐
roid hormone catabolism acts as a gatekeeper for the sea‐
sonal control of body weight and reproduction. Endocrinology. 
2007;148:3608‐3617.

 73. Murphy M, Jethwa PH, Warner A, et al. Effects of manipulating 
hypothalamic triiodothyronine concentrations on seasonal body 
weight and torpor cycles in Siberian hamsters. Endocrinology. 
2012;153:101‐112.

 74. Simonneaux V, Ancel C, Poirel VJ, et al. Kisspeptins and RFRP‐3 act 
in concert to synchronize rodent reproduction with seasons. Front 
Neurosci. 2013;7:22.

	 75.	 Henson	 JR,	 Carter	 SN,	 Freeman	 DA.	 Exogenous	 T3	 elicits	 long	
day‐like alterations in testis size and the RFamides Kisspeptin and 
gonadotropin‐inhibitory hormone in short‐day Siberian hamsters. 
J Biol Rhythms. 2013;28:193‐200.

 76. Kampf‐Lassin A, Prendergast BJ. Photoperiod history‐dependent 
responses to intermediate day lengths engage hypothalamic iodo‐
thyronine	deiodinase	type	III	mRNA	expression.	Am J Physiol Regul 
Integr Comp Physiol. 2013;304:R628‐R635.

	 77.	 Hazlerigg	 D,	 Lomet	 D,	 Lincoln	 G,	 et	 al.	 Neuroendocrine	 cor‐
relates of the critical day length response in the Soay sheep. J 
Neuroendocrinol. 2018;30:e12631.

 78. Mueller BR, Bale TL. Sex‐specific programming of offspring 
emotionality after stress early in pregnancy. J Neurosci. 
2008;28:9055‐9065.

	 79.	 Ambrosio	 R,	 Damiano	 V,	 Sibilio	 A,	 et	 al.	 Epigenetic	 control	 of	
type 2 and 3 deiodinases in myogenesis: role of Lysine‐specific 
demethylase enzyme and FoxO3. Nucleic Acids Res. 2013;41: 
3551‐3562.

 80. Charalambous M, Hernandez A. Genomic imprinting of the type 3 
thyroid hormone deiodinase gene: regulation and developmental 
implications. Biochim Biophys Acta. 2013;1830:3946‐3955.

	 81.	 Stevenson	TJ,	Prendergast	BJ.	Reversible	DNA	methylation	regu‐
lates seasonal photoperiodic time measurement. Proc Natl Acad Sci 
USA. 2013;110:16651‐16656.

 82. Stevenson TJ. Epigenetic regulation of biological rhythms: an evo‐
lutionary ancient molecular timer. Trends Genet. 2017;34:90‐100.

 83. Brunton PJ, Russell JA. Endocrine induced changes in brain func‐
tion during pregnancy. Brain Res. 2010;1364:198‐215.

	 84.	 Vickers	 MH,	 Gluckman	 PD,	 Coveny	 AH,	 et	 al.	 Neonatal	 leptin	
treatment reverses developmental programming. Endocrinology. 
2005;146:4211‐4216.

 85. Levin BE. Metabolic imprinting: critical impact of the perinatal en‐
vironment on the regulation of energy homeostasis. Philos Trans R 
Soc B Biol Sci. 2006;361:1107‐1121.

	 86.	 Bouret	SG,	Gorski	JN,	Patterson	CM,	et	al.	Hypothalamic	neural	
projections are permanently disrupted in diet‐induced obese rats. 
Cell Metab. 2008;7:179‐185.

	 87.	 Collden	 G,	 Balland	 E,	 Parkash	 J,	 et	 al.	 Neonatal	 overnutrition	
causes early alterations in the central response to peripheral 
ghrelin. Mol Metab. 2015;4:15‐24.

	 88.	 Clegg	DJ,	Benoit	SC,	Reed	JA,	et	al.	Reduced	anorexic	effects	of	
insulin in obesity‐prone rats fed a moderate‐fat diet. Am J Physiol 
Regul Integr Comp Physiol. 2005;288:R981‐R986.

	 89.	 Vogt	MC,	Paeger	L,	Hess	S,	et	al.	Neonatal	insulin	action	impairs	
hypothalamic neurocircuit formation in response to maternal high‐
fat feeding. Cell. 2014;156:495‐509.

	 90.	 Gluckman	 PD,	 Hanson	 MA,	 Spencer	 HG,	 et	 al.	 Environmental	
influences during development and their later consequences for 
health and disease: implications for the interpretation of empirical 
studies. Proc R Soc Biol Sci. 2005;272:671‐677.

 91. Horton TH. Fetal origins of developmental plasticity: animal 
models of induced life history variation. Am J Hum Biol. 2005;17: 
34‐43.

 92. Robinson JE, Karsch FJ. Refractoriness to inductive day lengths 
terminates the breeding‐season of the Suffolk ewe. Biol Reprod. 
1984;31:656‐663.

	 93.	 Lincoln	GA,	Johnston	JD,	Andersson	H,	et	al.	Photorefractoriness	
in mammals: dissociating a seasonal timer from the Circadian‐
based photoperiod response. Endocrinology. 2005;146:3782‐3790.

 94. Hoffmann K. Photoperiod, pineal, melatonin and reproduction in 
hamsters. Prog Brain Res. 1979;52:397‐415.

	 95.	 Johnston	JD,	Cagampang	FRA,	Stirland	JA,	et	al.	Evidence	for	an	
endogenous per1‐ and ICER‐independent seasonal timer in the 
hamster pituitary gland. FASEB J. 2003;17:810‐815.

 96. Böckers TM, Bockmann J, Salem A, et al. Initial expression of 
the common alpha‐chain in hypophyseal pars tuberalis‐spe‐
cific cells in spontaneous recrudescent hamsters. Endocrinology. 
1997;138:4101‐4108.

 97. Watanabe T, Yamamura T, Watanabe M, et al. Hypothalamic ex‐
pression of thyroid hormone‐activating and ‐inactivating enzyme 
genes in relation to photorefractoriness in birds and mammals. Am 
J Physiol Regul Integr Comp Physiol. 2007;292:R568‐R572.

 98. Herwig A, de Vries EM, Bolborea M, et al. Hypothalamic ventric‐
ular ependymal thyroid hormone deiodinases are an important 
element of circannual timing in the Siberian hamster (Phodopus 
sungorus). PLoS ONE. 2013;8:e62003.

	 99.	 Milesi	S,	Simonneaux	V,	Klosen	P.	Downregulation	of	deiodinase	
3 is the earliest event in photoperiodic and photorefractory ac‐
tivation of the gonadotropic axis in seasonal hamsters. Sci Rep. 
2017;7:1‐10.

 100. Wood SH, Christian HC, Miedzinska K, et al. Binary switching of 
calendar cells in the pituitary defines the phase of the circannual 
cycle in mammals. Curr Biol. 2015;25:2652‐2662.

 101. Sáenz de Miera C, Monecke S, Bartzen‐Sprauer J, et al. A circan‐
nual clock drives expression of genes central for seasonal repro‐
duction. Curr Biol. 2014;24:1500‐1506.

 102. Milesi S, Klosen P, Simonneaux V. Seasonal control of the GnRH 
neuronal network as a means of uncovering novel central mecha‐
nisms governing mammalian reproduction. In: Herbison AE, Plant 



     |  11 of 11SÁENZ dE MIERA

TM, eds. The GnRH Neuron and its Control. Chichester: John Wiley 
& Sons Ltd; 2018:411‐441.

 103. Coppola A, Liu Z‐W, Andrews ZB, et al. A central thermogenic‐like 
mechanism in feeding regulation: an interplay between arcuate 
nucleus	T3	and	UCP2.	Cell Metab. 2007;5:21‐33.

	104.	 Prevot	 V,	 Croix	 D,	 Bouret	 S,	 et	 al.	 Definitive	 evidence	 for	 the	
existence of morphological plasticity in the external zone of the 
median eminence during the rat estrous cycle: implication of 
neuro‐glio‐endothelial interactions in gonadotropin‐releasing hor‐
mone release. Neuroscience. 1999;94:809‐819.

	105.	 Kameda	Y,	Arai	Y,	Nishimaki	T.	Ultrastructural	 localization	of	vi‐
mentin immunoreactivity and gene expression in tanycytes and 
their alterations in hamsters kept under different photoperiods. 
Cell Tissue Res. 2003;314:251‐262.

 106. Yamamura T, Yasuo S, Hirunagi K, et al. T(3) implantation mimics 
photoperiodically reduced encasement of nerve terminals by glial 
processes in the median eminence of Japanese quail. Cell Tissue 
Res. 2006;324:175‐179.

	107.	 Lomet	D,	Cognié	J,	Chesneau	D,	et	al.	The	impact	of	thyroid	hor‐
mone in seasonal breeding has a restricted transcriptional signa‐
ture. Cell Mol Life Sci. 2018;75:905‐919.

 108. López‐Juárez A, Remaud S, Hassani Z, et al. Thyroid hormone sig‐
naling acts as a neurogenic switch by repressing Sox2 in the adult 
neural stem cell niche. Cell Stem Cell. 2012;10:531‐543.

	109.	 Gothié	JDD,	Sébillot	A,	Luongo	C,	et	al.	Adult	neural	stem	cell	fate	
is determined by thyroid hormone activation of mitochondrial me‐
tabolism. Mol Metab. 2017;6:1551‐1561.

 110. Barrett P, Ivanova EA, Graham ES, et al. Photoperiodic regulation 
of cellular retinol binding protein, GPR50 and nestin in tanycytes 
of the third ventricle ependymal layer of the Siberian hamster. J 
Endocrinol. 2006;191:687‐698.

	111.	 Xu	Y,	Tamamaki	N,	Noda	T,	et	al.	Neurogenesis	in	the	ependymal	
layer of the adult rat 3rd ventricle. Exp Neurol. 2005;192:251‐264.

 112. Bennett L, Yang M, Enikolopov G, et al. Circumventricular organs: 
a novel site of neural stem cells in the adult brain. Mol Cell Neurosci. 
2009;41:337‐347.

 113. Chojnacki AK, Mak GK, Weiss S. Identity crisis for adult periven‐
tricular neural stem cells: subventricular zone astrocytes, ependy‐
mal cells or both? Nat Rev Neurosci. 2009;10:153‐163.

	114.	 Batailler	M,	Droguerre	M,	Baroncini	M,	et	al.	DCX‐expressing	cells	
in the vicinity of the hypothalamic neurogenic niche: a compar‐
ative study between mouse, sheep, and human tissues. J Comp 
Neurol. 2014;522:1966‐1985.

	115.	 Lee	DA,	Bedont	 JL,	 Pak	 T,	 et	 al.	 Tanycytes	 of	 the	 hypothalamic	
median eminence form a diet‐responsive neurogenic niche. Nat 
Neurosci. 2012;15:700‐702.

	116.	 Robins	SC,	Stewart	 I,	McNay	DE,	et	al.	α‐Tanycytes of the adult 
hypothalamic third ventricle include distinct populations of FGF‐
responsive neural progenitors. Nat Commun. 2013;4:2049.

	117.	 Huang	 LY,	 Devries	 GJ,	 Bittman	 EL.	 Bromodeoxyuridine	 label‐
ing in the brain of a seasonally breeding mammal. J Neurobiol. 
1998;36:410‐420.

	118.	 Migaud	M,	Batailler	M,	Pillon	D,	et	al.	Seasonal	changes	in	cell	pro‐
liferation in the adult sheep brain and pars tuberalis. J Biol Rhythms. 
2011;26:486‐496.

	119.	 Hazlerigg	DG,	Wyse	CA,	Dardente	H,	et	al.	Photoperiodic	variation	
in	CD45‐positive	cells	and	cell	proliferation	in	the	mediobasal	
hypothalamus of the Soay sheep. Chronobiol Int. 2013;30: 
548‐558.

	120.	 Butruille	L,	Batailler	M,	Mazur	D,	et	al.	Seasonal	reorganization	of	
hypothalamic neurogenic niche in adult sheep. Brain Struct Funct. 
2017;223:91‐109.

	121.	 Hazlerigg	DG,	Lincoln	GA.	Hypothesis:	cyclical	histogenesis	is	the	
basis of circannual timing. J Biol Rhythms. 2011;26:471‐485.

	122.	 Dawson	A.	Annual	gonadal	 cycles	 in	birds:	modeling	 the	effects	
of photoperiod on seasonal changes in GnRH‐1 secretion. Front 
Neuroendocrinol. 2015;37:52‐64.

 123. Bernal J. Thyroid hormones in brain development and function. 
In:	 De	 Groot	 L,	 Chrousos	 G,	 Dungan	 K,	 et	 al.,	 eds.	 Endotext. 
Birmingham,	AL:	University	of	Alabama;	2015:1‐48.

How to cite this article: Sáenz de Miera C. Maternal 
photoperiodic programming enlightens the internal regulation 
of thyroid‐hormone deiodinases in tanycytes. J Neuroendocrinol. 
2019;31:e12679. https://doi.org/10.1111/jne.12679

https://doi.org/10.1111/jne.12679

