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ABSTRACT

Seasonal rhythms in physiology are widespread among mammals living in
temperate zones. These rhythms rely on the external photoperiodic signal to be
entrained to the seasons, but persist under constant conditions, revealing their
endogenous origin. Internal lostgrm timing (circannual cycles) can be revealed in

the lab as_photoperioditstory dependent responses.e. the ability to respond
differently to similar photoperiodic cues based on prior photoperiexiperience.

In juvenilesiyhistorydependence relies on the photoperiod transmitted by the
mother tosthe fetusn uterg a phenomenon known as “maternal photoperiodic
programming” (MPP). The response to photoperiod in mammals involves the
nocturnal_pineahormone melatonin, which regulates a neuroendocrine network
including_thyrotropin in thepars tuberalis(PT) and deiodinases in tanycytes, and
results insehanges in thyroid hormone (TH) in the mediobasal hypothalamus. This
review addresses MPP and dis@assshe latest findings on its impact on the
thyrotropin/deiodinase network. Finally, commonalities between MPP and other
instances of*endogenous seasonal timing are considered, and a unifying scheme in
which timing arises from a loAgrm communication between the PT and the
hypothalamus and resultant spontaneous changes in local TH status, independently

of the pineal melatonin signal IS suggested
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Organisms living in temperate latitudes express seasonal ¢yghdgysiology and
behaviour (e.g. reproductipmetabolism, moult, hibernation or migration) to adapt

to the Earth’s seasonally changing environment. For successful adaptation, the
biological rhythms must anticipate the changing seasdmsnals have therefore
evolved sintrinsically generated lofigrm (circannual) rhythm's, that proceed
independenthpf and can be synchroniség changes in the external environment.
The highly*“predictable annual cycle of daylength (photoperiod) is the predominant
synchronising signal (Fig 1A). In the lab, internal ihgh can be revealed as
photoperiodic historngdependent responses or as partial/full circannual rhythms by

manipulatingphotoperiodic conditions (Fig 1B, C).

Seasonal speciexcquireinformation about previous photoperiodic exposure, SO
called “phetoperiodic history” and compare it to a subsequent signal. This strategy
allows individuals to respond appropriately to intermediate daylengths present
around the equinoxes, developing the adequate response at each time of the year
based on*their prior experiefide Photoperiodic histordependence is critical to

set up the timing of puberty in newborns. In this context, the mother transfers
photoperiodic information to the pupe uterg modulating the developmental
trajectory=ef_the young allowing them to prepare for the upcoming season. This
phenomeénon is known as maternal photoperiodic programmiihPP).

This review summarizes the current knowledge about photoperiodic history and
MPP in“seasonal reproduction, as well as the neuroendocrine system underlying
MPP inflmammals. Finally, | compare the regulatioM®fP to other instancesfo
endogenous rhythigity to discuss the hypothesis that internal lbigm timing

arises from the longerm communication between the pituitary and the
hypothalamusyand results in spontaneous changes in hypothalamic thyroid status.

M ater nal"photoperiodic programming: primed by mater nal

melatonin

Long-day breeding species typically present a breeding season that expands from
early spring to late summer, with some species of rodents producing up to three
litters in this period. The young tiese specie®llow a different pattern of growth

and reproductive development depending on the part of the season in which they
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were borA'® (Fig 2). Individuals born at the beginning of the season normally
attain reprodctive maturity and attempt to breed in the same year; while progeny
born in late summer delay growth and reproductieeelopment anaverwinter
before achieving puberty Cohorts born very late in the seasgpitally do not
surviver the=winter unless they encountenutrient rich fluctuatiors in the
environment®) This suggestshat the dual strategy could allow late summer
offspring to“sufficiently grow and accumulate energy for winter suryvinatead of

going through the energetically costly reproductive procddswever, the
functional significance of this adaptation remains uncl8amilarly, sheep-with a

typical breeding season during autumn amdter, ie. short dayreeders are
normally*bornin spring and attain sexual maturity the next autumn, when they are
about 30"weeks old. Lambs born out of season, in autumn, delay puberty to the
following breeding season when they are about 1 year 6f.age

Developmental studiesnovoles and hamsterslong-day breeders exposed
prenatally to long (18.6h light (L)/day) or short photoperiods (shorter than 12h
L/day) and.raised postnatally in photoperiods of intermediate duréthb-14h
L/day) demonstrated that the maternally transmitted photoperfostiory during
gestationis“critical for setting the individual’'s growth trajectory and reproductive
development(delay or advance development, respectiVéf}* Contrastingly,
alteration of ' photoperiod during lactation does not influence the pubertal
development programmed by prenatal experience, demonstrating that prenatal
programiming” works independently of the lactational photop¥rtadThus, the
physiolagical responses elicited by intermediate daylengths after weaning depend
on a relative interpretation of the photoperiod based on prior photoperiodic
exposure and not on its absolute duration (Fig 1B, 2).

Photoperiodic’ historglependent responses have been observed in the seasonal
cycle ofsreproduction also in adult individusfsThis phenomenon has been mostly
studied sin=Siberian hamsterk these speciess minimum of 2 weles of long
photoperiodiCc exposur@enecessaryo establish an efficient photoperiodic history
that detéfmines subsequent reproductive responses to internpédiatperiod®. In

adult mammals, the exclusively nocturnal secretion of mdlativom the pineal

gland inversely reflects daylength duration and thus serves astéheal link to
measure photoperidd (Fig 1A). Mimicking photoperiodiehistory dependent
responses, melatonin infusions of intermediate duration (7h/day) in adults are
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interpreted asnhibitory for reproduction in animals with a long photoperiodic
history or as stimulatory in animals with prior shqtotoperiodic exposute The
memory for previously acquired photoperiodic history fades with time.duit a
pineabctomized Siberian hamsters with an acquired long photoperiodic history,
7h/daysmelatonin infusions are no longer effective to inhibit reproduction when
initiatedt 20 “weeks after pinealectomydowever, unequivocally wintetike
melatonin‘signals (10h/day) alwalgd to inhibitory reproductive responses. Thus
melatonin appears necessary to maintain this mefhaxevertheless, it remains
unclear how,these observations apply in nature.

The transfer.of photoperiodic information from a mother to her fetus occurs via
melatonindependent mechanisms. Maternal melatarniosses the placenta and
acts on melatonin sensitifetal brainregionsand other tissig>*° Also, melatonin
injections in hpregnant rodentare able toentrain pups disrupted circadian
rhythmg®?. showing thamelatonincan be used by the mothers to tell time to their
fetuse.In Siberian hamster the fetal pituitary is responsive to melatonin from
gestational,.day T8** How this gestational signal influences postnatal
development. has been studied rostin these species Offspring of
pinealectomized dams kept in a long photoperiod fail to develop gonads when
reared in_an intermediate photoperiod, demonstrating that they do not receive
information about the gestational or prior maternal photoperiodic expOsure
However, offspring of pinealectomized dams receiving 8h/dayg) melatonin
infusions during pregnancy interpret a postnatal IP as stimulatory for gonadal
growth While ‘those receiving shorter infusionseipret it as inhibitory”. These
infusions are maximally effective when given during the 3a8tdays of pregnancy

for a mimimum of 4 days, defining a narrow sensitive window in which the
reproductive Jaxis of the fetus is responsive to the programming effects of
melatoni®=During lactation, tie level of maternal melatonin found in the plasma
of pupssissvery low, showing no dayght differenceS?® The pups themselves do
not secrete melatonin rhythmically until postnatal dayl@in hamsters, regardless

of photoperiodic experiente® supporting the concept that they are effectively
blind to photoperiod during lactatiti'> Furthermore, reproductive development
proceeds according to prenatal photoperiodic exposure and independemtiy of
weaningphotoperiod inpinealectomizedSiberianhamster, suggesting that the
memory of prenatal photoperiodic history is maintained during this. tirhés
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indicates that the fetal melatoniesponsive neuroendocrine system is functional
prior to birth and uses the maternal melatonin rhythm as a calendar signal.

Several alternative hypotheses to account for these hidémendent effects have
been considered. Based on timmadlatonin infusions, it has been proposed that
maternal=melatonin could be altering the pups’ circadian regulation of javenil
melatonin productioff. Alternatively, the postnatal melatonin pattern could be
interpreted diffefently depending on prenatal phatiogéc history™®. Functional
studiesgshow that the developmental trajectory set by the prenatal photoperiodic
experience continues in juveniles pinealectomized or reared in constant ight, a
thus in the absence of postnatal melatbrth®* > In our recent study, we observed
that juvenile Siberian hamsters gestated in eithreg photoperiodl(P; 16h L/day)

or short“photoperiod (SP; 8h L/day) and transferred to intermediate photoperiod
(IP; 14h L/day) at weaning (Fig 3A) @sented melatonin peaks of similar duration,
regardless of their experierié€Fig 3B), as observed previoudly These results
suggest.thaMPP does not arise from altered circulatimglatonin patters in
juveniles.but.itmay result froma change in thie sensitivity to melatoninignaling.

To understand this phenomenon, we should then focus on the neuroendocrine
systemrthattransduces the melatonin me$édye

Neur oendocrine control of photoperiodism in mammals

The parstuberalis: interface between melatonin and the hypothalamus

Several‘regionsf the brain and pituitary were discovered to be melatonin sensitive
in mammals tsing both radiolabelled melatonin binding ad$&and the study of
melatoninfeceptor expression and functiondlity The most conserved melatonin
sensitive tissue is thears tuberaligPT) of the pituitary glaritf *°, which has since
become a central site for the study of the mechanisms underlyingytkielpbical
responses to.photoperiod or photoperiodism.

The PT istdecated directly below the basal hypothalamus where it is in contact with
the nerve endings at the median eminence (ME) and with the capillaries of the
primary plexus of the portal systéimMelatonin receptoll (MT1) in the pituitary

is exclusively expressed on Bspecific thyrotroph secretory cells that produce
thyroid-stimulating hormone (TSH™. In seasonal species, TSH expression in the
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PT, specifically the 3 subunit (TSHR), is rapidly induced by exposuké tand
inhibited by SP, which in mammals depsndn melatonif®>. Although in
European hamsters the photoperiodic entrainment of$H is also possible in the
absence of melatoriify this phenomenon has not been explored in other mammals.
In nommammalian vertebrates, the photoperiodic network is conserved but does
not invalve melatonin, and, instead the lighput is transmitted via deep brain
photoreceptorgnbirds or photoreceptive coronet cells in #aEcus vasculosus

fish>,

PT-TSH actsin a retrograde fashion on the hypothalamus to reactivate summer
physiology via functional TSH receptor (TSR) expressed in the tanycytes lining
the third ventricle (3y"*** Acute intracerebroventricular (ICV) TSH injections
lead to indugtion of thyroid hormone deiodinasel®2) expression>% while the
photoperiodiec and melatoninduced increase imio2 expression is blockk in

TSHr knockout micé’. Longterm TSH ICV infusions in Skhaintained
individuals“reactivate summer physiologgctivation of the reproductive axis in
hamster and quadnd inhibition in sheepvia induction ofdio2 and decrease in
thyroid hormone deiodinase 3di¢3) expressionin tanycyte3>**> These
specialized.glial cells, whose bodies are strategically located in the ependgiinal w
of the 3V, extend their projections towards the capillaries in the arcuate nucleus
(Arc) and to the external border of the ME with the PT, forming a functional blood
brain barrier in this regich Several other genes and cellular pathways are
photoperiodically regulated in tanycytes, such as neuromedin U, retinoic acid, or
glutamate. transport (rexived ir").

Thyroid hormone: required for expression of summer physiology

Dio2 is  the primary thyroid hormone (TH) activating enzyme in the brain,
converting the circulating thyroxine (T4) to the more active form of TH,
triiodothyronine (T3).Contrastingly, Dio3 is the main TH inactivating enzyme,
degrading ‘both T3 and T4 to the inactive metabolitiézdothyronine (T2) and
reverse T3 (rT3)respectiveli?. Although the dynamic regulation of hypothalamic
deiodinase expression differs betweencgge and experimental protoc@bee
below), transfer to LPgenerallyincreasesdio2 and downregulas dio3, while

transfer to SP leads to increas#d3 and decreasedio2 expressioff>*°%®° This
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changehas beerassociated with a local increase in T3 and T4 lewrelsP as
compared to SP°%°! a conserved feature in vertebrategjardless of thepecies
breeding seas6h(Fig 4A).

Localy regulatedTH levels controlled by deiodinase activity serveansancestral
signal in vertebratesnvolved in postembryonic organ development anddifele
events such as metamorph&i puberty* —events that are endogenously driven
but canbesenvironmentally modulated. A role for TH in seasonal reproduction was
first suggested by studies tucks where thyroidectomylocks the increase in
gonadal‘growih induced by exposure to long dayléfigth sheep, thyroidectomy
does not affect the onset the breeding season, but preventsgpengtranstion

into anestrou8°”. This effect can be reversed by T4 treatiffefit effective only
during assensitive window between spring and +sitnme?®, coinddent withthe
increased,presence of hypothalamiio?2 andthe absence afio3 expressioff. T3
injections"if"Sexually inhibite@iberianhamsters reactivate the reproductive 2xis

T3 microimplants only in the basal hypothalamic regimut not in other brain
regions~reverse the effects of thyroidectomy or transfer to SP on seasonal

AY"2 restoring also growth and the metabolic &igH is thus

reproductio
required*for,the initiation and maintenance of the summer reproductive physiology
—sexual“quiescence in shalay breeders and activity in lomgy breeders an

effect explained by the dynamics of tanycyte deiodinase actiVitg. RFamides
kisspeptin Kiss) and RFamide related peptifidrp) expressedn the mediobasal
hypothalamushow photoperiodic changes in expression and have been implicated
on the seasonal effects on the reproductive &kisse neuropeptidese regulators

of GnRH secretionvhich integrae internal and externaluessuchasphotoperiod,
sexsteroid“feedback anchetabolic cued. In hamsters, TSH and T3 infusions
restore © the summer reproductive phenotype and kisspeptin and RFRP
expressiorT>)Hence, the seasonal TH pattern in the hypothalamadulatecby

the PFTSH _message coordinates the neuroendocrine systems that regulates

reproduction and metabolisr®

M ater nal photoperiodic programming occursin tanycytes

Programming of hypothalamic deiodinases
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The neuroendocrine mechanisms involved pimotoperiodic history and MPP
remain unknownAdult Siberian hamsters transferred from LP or SP to IP show
history-dependent changes in hypothalardio3 gene expression, reflecting the
subjective interpretation of the photoperiodic signal, rather than its actual duration.
This wassthe-first indicatn that hypothalamic TH signalling reflects photoperiodic
history-dependendé,

We recently investjated the neuroendocrine mechanisms involved in the MPP
response with the working hypothesis that the neuroendocrine TSH/dio system
downstream_of melatonin will reflect the programming effect of photoperiodic
history ‘lived4n utera Using a developmentalpproach to induce the MPP
phenomenoify Siberian hamsters gestated and raised in LP or SP were transferred
at weaning to IP (LFPP and SHP, respectively; Fig 3A). Ligestated newborns
expresed higherTSHRIn the PT, together with highelio2 mRNA level in the
tanycytes than those gestated in SP, indicating that the maternal melatonin binding
to fetal' pituitary and the RMypothalamic retrograde communication lead to
regulation.of local TH ntabolism in the newborn’s tanycytes (Fig 3Bjo3 gene
expression was first observed by ndtation only in the SP animéafs

As soon‘as‘3"days after weaning and transfer to IRPL&himals showed reduced
TSHRexpressionn the PT andlio2 expressionn the tanycytes-associateavith a
decrease in FSH levelswhile a strong increase idio2 and decrease idio3
expression was observed in the-l®Panimals, albeit no increase observed $HNR
expression. This result does not represent a transitory response to ttre iswit
photoperiod, but rather the initiation of a letegm programming of the offspring’s
interpretration of its own melatonin pattern. At P&fler 25 days in identical IP
conditions, SAP animals showed increased gonadal development as compared to
LP-IP animals. At this timegdio2 mMRNA expression was strongly stimulated and
dio3 inhibited=in SPIP animals,dio3 mMRNA expression was stimulated in 4P
animals;=while no changes were observed inNTBHBMRNA expression between
these greups (Fig 3B). This result localizes the persistent programming effect to

deiodinase expression in tanycytes.
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Programming changes tanycyte sensitivity to TSH

We hypothesized that a switch in tanycyte sensitivity to TSH signalling urslerlie
the MPP effect. To test this hypothesis, we injected ICV increasing doses of TSH
previously shown to cause minimal effects din2 expressiofr. 0.5mIU TSH
induceddio2mRNA expression in both LR and SHP animals, while 1mIU TSH
further increasedlio2 MRNA expression in SHP animals, but not in the LHP
group, demonstrating a decreased sensitivity to TSH #PL&imals, an effect not
associated*to'changes i Hr mRNA expression nor to circulating TH feedback
on deiodinase expressfnThis change in the level dio2 expression to a given
TSH mRNA. level has recently been observed in a study exploring critical
photoperiods/in sheép The mechanistic origin of this change in sensitivity to TSH
signalling remains to be elucidatedProgramming effects of prenatal stress
experence~have been associated with epigenetic regulation of gene expfession
Both deiodinase genes are targets of epigenetic modificafrend both,dio3
promoter methylation and the level ofpigenetic enzymes are altered by
photoperiod ih Siberian hamst&r&. Early photoperiodic exposure, mediated by
TSH-dependent orindependent signalling, could induce epigenetic mechanisms
that lead to'the lonterm shift in TSH sensitivity in tanycytes.

M ater nal neuroendocrine programming

At present, the study of maternal programming of neuroendocrine function focuses
primarily on the longerm consequences of early life altered stress and metabolic
environments for offspring health, where mismatching environments and hormonal
status between fetal and adult life often lead to pathology. Prenatalestpessire
produces.offspring with increased levels of depressive behaviour and &hxety
excess ofglucocorticoida uteroleads to impaired negative feedback on the HPA
axis and=eonsequently higher vasopiressnd corticotropifreleasing hormone
expression’in the hypothalanitisThe longterm effects of earlife stress have

been linked,to altered epigenetic regulation of gene expression in the hypothalamus

and lymbic systef#.

Maternal undernutrition during pregnancy and lactation produces obese and leptin

resistant offspring, especially when fed with a high fat®Yien effect that can be

This article is protected by copyright. All rights reserved



274
275
276
277
278
279
280
281
282
283
284

285

286
287
288
289
290
291
292
293
294
295
296

297
298
299
300
301
302
303
304
305

reversed with neonatal leptin treatnf&nSimilarly, overnutrition during this time
leads to metabolic syndrome in offspfinginterestingly, adults born to overfed
dams develop resistance to leptin, insulin and ghrelin signalling in the Arc,
reducing the ability of these hormones to induce an intracellular re§p&haad
altering’ the=fevelopment of neuroendocrine projections from thé&. Afhis
developmental plasticity, seen as pathological in the view of a growingly obese
society,"servesas adaptive response preparing the physiology to match a future
environment predicted by the early environmental cues, trealkal predictive
adaptive_respong® This strategy appears of fiaular value in predictable
seasonally changing environmetitsaccounting for the evolution of MPP as an

adaptivertrait

History-dependent change in hypothalamic deiodinases: unifying

ouptut ofnternal long-term timing

In addition™to historydependent dges in photoperiodic responeness,
endogenous " lonterm timekeeping is revealed by exposure to constant
photoperiodic conditions. In these conditions, full circannual rhythms (Fig 1C) are
manifestedin_seasonal species which normally live for several breedingoss;
while_these rhythms are only partially manifested in slivetd species, not likely

to survive for more than one or two breeding seasons.-#edtspecies typically
maintain, the ability to spontaneously revert to a spring reproductive phenotype
under proloenged winter daylengths, but without going through a full cycle, a
phenomenon'known as photorefractoriffesghe term refractory is often applied to
the individtal'phase switches in a circannual rhythm

Similar ito_the melatonimdependent switch in the expression of hypothalamic
deiodinasessunderlying MPP of seasonal reproduction, (Fig 3B, 4); recent work on
the contrelwof circannual timing has also unveiled gmgn switches in the
TSH/dio23 system idependently of melatonin signalling (Fig 4). In circannually
cycling “sheep, the melatonin signal continues to reflect the prevailing
photoperiod® Sheep that become refractory to constant SP exposure (SP
refractory) switching to summer physiologgeproductive axis inhibition show a
decrease imio3 andan increase ilio2 mRNA level in the ME with no increase
observed in PTTSHR expressioff. Similarly, SPRrefractory Syrian or Siberian
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hamsters undergo a spontaneous switch to summer physiblaggctivation of

the reproductive axis while their melatonin pattern remains uncharigedhis
switch involves a decreasedip3 gene expression, with no obvious changdia®2

or TSHR3expression, followed by reactivation of the reproductive axis a few weeks
late®®2-These endogenous switches, that apparently occur independently of TSH
signalling, mimic the observed change in-I®Panimals where a strong drive
towards* recovery of TH signalling (increaseib2 and dereaseddio3 gene
expression) takes place via a greatly enhanced sensitivity to TSH signalling. This
evidence_ suggests that the endogenous switch to summer physislaljy2
dependent and might originate in the hypothalamic response to pituitary sggnals,
be intrinsicA6ithe hypothalamiigFig 4A).

When sheep:become refractory to constant LP exposureettdetory), switching

to winter physiology, they show a decreasedin2 and an increase idio3
expression in'the hypothalamus, together with a decredseHflexpression in the
PT*91% “Similarly, European hamsters kept in constant LP, show a decrease in
TSHRand dio2 expression during the “subjective wen state”, when they have
endogenously switched towards a winter -neproductive stat8. However,
prolonged:L.P exposure Byrian or Siberiatmamsters does not cause a reversion to

a wintetlike anestrous stat’, nor a switch indio2 or dio3 expressioH.
Nonetheless, the switches observed inlRPanimals, where the spontaneous
increase. indio3 expression is preceded by a dynamic decreaseSHIEmMRNA
levels®, _parallel other endogenous wintike switches. Therefore, species
considered_nowircannual show L#Pefractory phenomena leading to decreased
hypothalamic TH signalling. Thus, the capacity of a species to undergo an entire
circannual'cycle might reside in the ability of the PT to decrease TSH expression in
the winter switch independently of melatonin signalling, driving an increagie3n
expresion to decrease hypothalamic TH levels (Fig 4B). Future work should be

aimed at testing this hypothesis.

How does hypothalamic T3 act on seasonal reproduction?
Outstanding challenges include identifying théongterm (rheostatic)
neuroendocrine mechanisms downstream of tanycyte programming, which lead to

history-dependent changes in reproduction, and understanding how T3 availability

This article is protected by copyright. All rights reserved



338 influences GnRH release. RFamides are at present the main candidates for
339 mediation between the photoperiodic control of T3 and seasonal GnRH
340 regulatiort> However, reactivation of gonadal growth in-té¥ractory Siberian

341 and Syrianhamsters takes place prior to an increase in expression of the
342 reproductivesneuropeptides RFRP and kissp&ptifhis early(homeostatic) step

343 could bé more directly mediated by changes in firing actftgading to GnRH

344 releaseTanycytes are involved in forming the blood brain barrier in the ME, where
345  they undergo structural changes that allow regulating neuroendocrine set¥etions
346  Photoperiod. and T3 regulate tanycyte endfeet remodefii®iberian hamster and

347 quail, allewing GnRH terminals to access the basal lamina in LP and blocking this
348  access jin S#'% However, this phenomenon is also evident inré&factory

349  sheep reactivating the reproductive axis, so it is linked to the phase of reproduction
350 and not the T8 stattf. A recent study found several genes that are independently
351 regulated by photoperiod and TH in sheep tanycylestd52, evolv3, cndpl

352 suggesting that they could serve as a bridge between the seasonal TH message and

353  the regulationsof GNRHE’, but this remains to be investigated in other species.

354 T3 plays a direct role in both the control of neural cell proliferation and neuroglial
355 differentiation in brain proliferative ared&'%® Tanycytes express proliferation and
356 differentiation markers under seasona.g. vimentin, nestf*'% and T3

357 mediated control-e.g. shi%— and have been proposed as the substrate for
358 neurogenic activity in the hyplmalamus, stimulated by metabolic cues and growth
359  factors* 8., Moreover, seasonal differences exist imypothalamic cell

360 proliferatiod?™*'° and neuronal differentiatiol"'?> While the functional

361 significance of this restructurating remains to be demonstrated, seasonal
362 histogenesisthas been proposed as a mechanism for endogenou¥tifBing

363 could speculate that in MPP, pools of proliferating cells differently programmed
364 during gestation could react differently to the same photoperiodic signalveerce
365 in adults. Cell. fatanapping studies using reporter genetic models in photoperiodic

9,60,72

366 responsive speci¥ or mice and rat straifts®* would be required to explore

367 this hypothesis.
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Conclusions and per spectives

Despite dynamic differences, all studies to date highlight the central role of
hypothalamic deiodinase regulation and TH metabolism in seasonal timekeeping in
mammals, regardless of species” -history stategies. Internal timing is
characterized by spontaneous switches towards hypothalamic TH signalling in
spring and away in autumn, arising from the kb@gn communication between the

PT and the hypothalamus (Fig 4), independently of the prevailing melatonin signal,
while these switches are driven by melatonin in photoperiodism. Understanding
which are the molecular mechanisms underlying the spontaneous changes in
endogeneuss<timing strategies remains one of the largest challenges in the field.
Recent/work  in LPRefractory sheep has highlighted a number of molecular
markers, signalling networks and structural changes taking place in the PT
associated to'thisndogenous chant& offering new avenues to understand the
spontaneous.switch to winter physiology. Otherwise, tanycytes appear as a strong
cellular ‘eandidate to explore the molecular origin of the spontaneous change
towardsssummer physiology, evident in all the manifestations of endogenous
timing. Furthermore, the charactexion of historydependent and photoperiodic
molecular changes taking place in tanycytes could shed light on how the equivalent
switch in.the TSH/dio pathway is associated with seemingly opposite effects on
reproductive physiology in londay vs. shortay breeders. A recent model
proposes that this variation would arise from different dynamics in the net result of
2 photoneuroendocrine processes: a plmdactory process dependent on
prevailing photoperiod and a gradually increasing {tergh photeinhibitory

proces¥?

Finally, the MPP phenomenon issaong model for exploring the seasonal effects
on brain plasticity. Moreover, it is also an effective paradigm for undersgand
how the early environment affects reproductive and metabolic development and its
hypothalamiescontrol. TH are essential fogunal postnatal development, being
involved. in processes such as neural progenitor proliferation, migration and
differentiation of neurons and gifd The clear change in hypothalamic TH
signalling and the associated physiological response render MPP a useful non
pathological paradigm to explore the effects of altered endogenous THismnal

during hypothalamic development.
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704 FIGURELEGENDS

705  Figure 1. Photoperiodic and internal lostgrm timing cycles in physiology as evidenced in
706  photoperiodic manipulation experimentd. Photoperiodism is the ability to use the
707  seasonal cycle of daylength (photoperiod) to entrythms inphysiology to a year.

708  Alternating cycles of long (LP) and short photoperiod (SP) (top) are ifiterepresented

709 by the nocturnal secretion of the hormone melatonin from the pineal gland (middig), whi
710 leads cycles in physiology and behavior to oscillate between summer and statés

711  (bottom).B. Internal rhythms are revealed as photoperitistory dependent responses
712 when animals kept in either LP (dotted line) or SP (continuous line) are tredsterr

713  photoperiod of intermediate duration (IP), present in nature around the equinoxes (top).
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Melatonin secretion under these conditions remains similar, reflecting thigoduré the
prevailing photoperiod (middle). The seasonal physiology elicited in IP depends on prior
photoperiodic exposure. Animals previously exposed to Liergret IP as a decrease in
photoperiod and show winter physiology, while animals previously exposed to SP interpret
IP as angincrease in photoperiod and show summer physiology (ba@toimjernal timing

is revealedgas full/partial circannual rhythms whehotoperiod is maintained constant
(top). Under these conditions, the profile of melatonin secretion also remairtantpns
reflecting.the prevailing fixed photoperiod (middle). Despite this coatiasignal, cycles

in physiology become refractory to the constant photoperiod and continue to oscillate

between “subjective” summer and winter states (bottom).

Figure 2. Maternal photoperiodic programming of reproduction and growth rate in small
mammals. In temperate environments, breeding initiates at the beginningnaof, sgnen
photoperied=(black line) is increasing, and the breeding season lasts into the end of the
summer when/photoperiod decreases. Pups born in either part of the season undergo two
different lifeshistory strategies. Dams pregnant at the beginning of the seasamitrans

long melatonin, (MEL) signal to their puis utera These pups show fast growthtes

(green dashed line) and achieve puberty at short age (blue dotted line). Dams pregnant
when the,photoperiod is long, transmit short melatonin profiles to their ipuptera
Theserpupsthave low growth rates and delay their time of puberty, ofiemhanbhext

season.

Figure 3. Maternal photoperiodic programming neuroendocrine path&ayimeline and
photoperiodic conditions used to explore the effects of maternal photoperiodic
programmind®.  Animals gestated and maintained during lactation in either long
photoperiod (LP: 16h light:8h dark) or short photoperiod (SP: 16h light:8h daek)
maintained in the same photoperiod or transferred at to an intermediate photoperiod (IP
14h light;10h dark) at weaning. At 50 days of age, the reproductive development insanimal
gestated,in SP,and transferred to IP-[BPis larger than in animals geséd in LP and
transferred to IP (L#P). B. Maternal transfer of melatonin to fetal brainuteroprograms
developmental)) pituitary/hypothalamic gene expression in offspring independently of
offspring’s own melatonin profile. Representatiwve situ hybridization autoradiography
images ofT SH anddio2 gene expression from birth (PO) to postnatal age (P)50. Average

melatonin profiles of offspring at P2&L. Modified from data orf.

Figure 4. Photoperiodism and internal timing control seasonal changes in physiology via
long-term communication between tpars tuberaligPT) and the hypothalamus that leads

to similar regulation of deiodinases and T3 status in the hypothalafmu€artoon

This article is protected by copyright. All rights reserved



749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

depictng the cytoachitecture of the ependymal layer of the third ventricle, whergtiesmyc
and ependymal cells are located. Tanycytes extend their projections into the avaldiob
hypothalamus or to the median eminence, where they contact yestalls. A tanyde is
“magnified” in the other panels of this figure to show changes in deiodinase gene
expressionB. The transition to Summer physiology involves an increase in deiodinase
induced T3ssignaling in the hypothalamus. In photoperiodism, the long photofigfipd
induced'increase in PT TSH (black) leads to a klig2/dio3expression ratio in tanycytes
(blue).and, thus increased T3 signaling (green arrows). Similarly, in hitpendent
timing, animals in intermediate photoperiod with SP historyI®Pshow a spontaneous
increase n theio2/dio3ratio in tanycytes, which in maternal photoperiodic programming
has beenlinked to intermediate PT TSH expression (grey). In circarytfains, animals

in Subjective summer state show high TSH production in the PT, as observed in Europea
hamsters,“but‘this increase has not been observed indsiyoréfractory (SHR) sheep or
Siberianhamsters (dotted). In both cases, there is an increase mia®lio3 ratio in
tanycytes that leads to increased T3 signalidgThe transition to Winter physiology
involves' a decrease in hypothalamic deiodiriadeced T3 signaling, mediated by a
decrease in PT TSH expression. In photoperiodism, the long melatonin profile pnesent
short photoperiods (SP) inhibits PT TSH expi@sgwhite) what leads to a lodio2/dio3
expression ratio in tanycytes and low T3 level in the hypothalamus. Similarly tamyhis
dependent,timing, animals in intermediate photoperiod with LP histoniR).Bhow a
spontaneous decrease in the2/dio3ratio in tanycytes, which in maternal photoperiodic
programming has been linked to intermediate PT TSH expression (grey) and reduced
sensitivity to its action. In animals displaying circannual rhythms, PT TSH exprassion
reduced (dotted) during the sutlige winter state, as observed in European hamsters and
long-day refractory (LFR) sheep. This decrease in TSH signaling leads to reduced

dio2/dio3ratio in tanycytes and thus, reduced T3 signaling.

This article is protected by copyright. All rights reserved



Melatonin  Photoperiod

Physiology

jne_12679_f1.pdf

A Photoperiodism Photoperiodic history C Circannual rhythm
LP LP LT EET LRI
-| ‘ Sernnnnnnnn: P -|
SP SP _I_
Refractoriness
Summer ---------- " Summer SUbJeCtive
-W\/ W\/’ o
Winter — “*eu.s Winter I
Subjective
> winter

Time

This article is protected by copyright. All rights reserved



Photoperiod =

jne_12679_f2.pdf

1
I
1

Winter Spring Summer Autumn Winter

This article is protected by copyright. All rights reserved



jne_12679_f3.pdf

Birth
LP (16:8) y eassssssssanmassnnnnnnnsp [P b

—— IP (14:10) _LP-IP-NNN b

Gestation | Lactation

[— " SP-IP c
SP (8:16) B Y T
— ]

B

00 02 04 06 08 1.0
Testes mass/body mass

Melatonin  TSHfS dio2

¢ : /
' e | 47
Photoperiod I LP 3
TSHSf dio2 -
" 4 ) : 5
. LP-IP
- _ l
3 | —
ISP-IP f\“
| .
Birth (PO) |
¥ ii
t
| sp m ;
I g 2
P26-31 P50

This article is protected by copyright. All rights reserved



jne_12679_f4.pdf

Photoperiodism Photoperiodic history  Circannual rhythm

Ependymakeell

® ) Tanycytes

Summer physiology

)

C

Pars tuberalis

Winter physiology

This article is protected by copyright. All rights reserved



