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BACKGROUND: The authors evaluated mocetinostat (a class I/IV histone deacetylase inhibitor) in patients with urothelial carcinoma 

harboring inactivating mutations or deletions in CREB binding protein [CREBBP] and/or E1A binding protein p300 [EP300] histone 

acetyltransferase genes in a single-arm, open-label phase 2 study. METHODS: Eligible patients with platinum-treated, advanced/meta-

static disease received oral mocetinostat (at a dose of 70 mg 3 times per week [TIW] escalating to 90 mg TIW) in 28-day cycles in a 

3-stage study (ClinicalTrials.gov identifier NCT02236195). The primary endpoint was the objective response rate. RESULTS: Genomic 

testing was feasible in 155 of 175 patients (89%). Qualifying tumor mutations were CREBBP (15%), EP300 (8%), and both CREBBP and 

EP300 (1%). A total of 17 patients were enrolled into stage 1 (the intent-to-treat population); no patients were enrolled in subsequent 

stages. One partial response was observed (11% [1 of 9 patients; the population that was evaluable for efficacy comprised 9 of the 15 

planned patients]); activity was deemed insufficient to progress to stage 2 (null hypothesis: objective response rate of ≤15%). All patients 

experienced ≥1 adverse event, most commonly nausea (13 of 17 patients; 77%) and fatigue (12 of 17 patients; 71%). The median duration of 

treatment was 46 days; treatment interruptions (14 of 17 patients; 82%) and dose reductions (5 of 17 patients; 29%) were common. 

Mocetinostat exposure was lower than anticipated (dose-normalized maximum serum concentration [Cmax] after TIW dosing of  

0.2 ng/mL/mg). CONCLUSIONS: To the authors’ knowledge, the current study represents the first clinical trial using genomic-based 

selection to identify patients with urothelial cancer who are likely to benefit from selective histone deacetylase inhibition. Mocetinostat 

was associated with significant toxicities that impacted drug exposure and may have contributed to modest clinical activity in these pre-

treated patients. The efficacy observed was considered insufficient to warrant further investigation of mocetinostat as a single agent in 

this setting. Cancer 2019;125:533-540. © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.  
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INTRODUCTION
Worldwide, urothelial carcinoma of the upper urinary 
tract and bladder results in 165,000 deaths annually.1 The 
majority of patients with metastatic disease experience 
disease progression despite platinum-based chemother-
apy, and salvage chemotherapy is reported to have only 
modest efficacy.2,3 Recently, 5 immune checkpoint inhib-
itors were approved for patients with platinum-refractory 
urothelial carcinoma and, although the anti–programmed 
cell death protein 1 (PD-1) agent pembrolizumab has im-
proved overall survival (OS) versus chemotherapy in this 
setting, many patients do not benefit from such therapy.4 
Consequently, new treatment options are needed.

Dysregulated histone acetylation is implicated in 
the pathogenesis of several cancers, including urothelial 
carcinoma. Acetylation of chromatin by histone acetyl-
transferases (HATs) generally is associated with elevated 
transcription, whereas deacetylation, mediated by histone 
deacetylases (HDACs), is associated with repressed tran-
scription.5,6 Histone acetylation can become dysregu-
lated through the upregulation of HDACs and/or genetic 
inactivation of HATs, resulting in the silencing of tumor 
supressor and other genes.5,6 Inhibition of HDAC1 and 
HDAC2 resulted in antitumor activity in urothelial car-
cinoma in vitro, whereas elevated HDAC1 is linked with 
poor prognosis in patients with urothelial carcinoma.7,8 
HDAC inhibitors have demonstrated promise in clinical 
trials across a range of tumor types, and several have been 
approved by the US Food and Drug Administration, 
including vorinostat for patients with cutaneous T-cell 
lymphoma, romidepsin for patients with cutaneous 
T-cell lymphoma and peripheral T-cell lymphoma, beli-
nostat for patients with peripheral T-cell lymphoma, and 
panobinostat for patients with multiple myeloma.9

Mocetinostat is an investigational HDAC inhibitor 
that targets class I and class IV HDACs (isoforms 1, 2, 3, 
and 11),10 and has demonstrated antitumor activity in pa-
tients with hematologic malignancies.11-13 In vivo, moceti-
nostat induces cell cycle arrest and apoptosis and inhibits 
tumor growth.10 Furthermore, a HAT inactivation signa-
ture associated with muscle-invasive bladder cancer was 
found to be inversely influenced by mocetinostat in breast 
cancer cells.14 Mocetinostat also demonstrated preferential 
activity in CREB binding protein (CREBBP)–mutated 
and/or E1A binding protein p300 (EP300)–mutated (HAT 
genes) xenograft models and solid tumor cell lines, includ-
ing urothelial cell carcinoma (see Supporting Tables S1 and 
S2 and Supporting Fig. S1). Thus, we hypothesized that 
treating patients with urothelial carcinoma harboring in-
activating mutations in CREBBP and EP300 with selective 

HDAC inhibitors may restore the expression of tumor  
suppressor genes, resulting in antitumor responses.

This phase 2 study investigated single-agent moce-
tinostat in patients with locally advanced or metastatic 
urothelial carcinoma who previously were treated with 
platinum-based chemotherapy and inactivating tumor 
mutations or deletions in CREBBP and/or EP300.

MATERIALS AND METHODS

Patients and Study Design
The current phase 2, open-label, single-arm, 3-stage, mul-
ticenter study was conducted between November 2014 and 
July 2016 (ClinicalTrials.gov identifier NCT02236195). 
Patients with histologically confirmed, locally advanced, 
unresectable or metastatic urothelial (transitional cell) 
carcinoma who developed disease progression after receipt 
of platinum-based chemotherapy were recruited. Eligible 
patients had adequate bone marrow, hepatic, and renal 
function and an inactivating mutation or deletion (ho-
mozygous or hemizygous) in CREBBP and/or EP300 (see 
Supporting Materials). Genomic prescreening of tumor 
tissue (primary or metastatic; archival tissue was permit-
ted if a fresh biopsy was not available) was performed 
centrally using next-generation sequencing (Foundation 
Medicine, Cambridge, Massachusetts) or a sponsor-
approved, local sequencing platform (FoundationOne 
[Foundation Medicine] and MSK-IMPACT [Memorial 
Sloan Kettering Cancer Center, New York, New York]) 
or next-generation sequencing (Oncopanel; Center for 
Advanced Molecular Diagnostics, Brigham and Women’s 
Hospital, Boston, Massachusetts) capturing the full cod-
ing regions for CREBBP and EP300. Key exclusion criteria 
included prior or current treatment with an HDAC inhib-
itor and symptomatic or uncontrolled brain metastases.

Oral mocetinostat (Mirati Therapeutics Inc, San 
Diego, California) was administered in continuous 28-day 
cycles at a starting dose of 70 mg 3 times per week (TIW) 
for stage 1 of the study. Escalation to 90 mg TIW on day 
1 of cycle 2 was planned for patients without treatment-re-
lated grade ≥3 adverse events (AEs), and 90 mg TIW was 
the planned starting dose for the cohorts in stage 2 and 
stage 3 of the study. Mocetinostat was continued until 
disease progression or unacceptable AEs occurred.

The protocol was approved by the institutional re-
view boards at each institution, and the study was con-
ducted in accordance with the Declaration of Helsinki 
and the International Conference on Harmonisation 
Good Clinical Practice guidelines. All patients provided 
written informed consent.
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Study Endpoints and Assessments
The primary endpoint was the objective response rate 
(ORR; complete response and partial response [PR] 
as per Response Evaluation Criteria in Solid Tumors 
[RECIST], version 1.1 ). Secondary endpoints included 
duration of response, progression-free survival (PFS; over-
all and at month 4), OS, 1-year survival rate, safety, and 
pharmacokinetics.

Computed tomography scans for tumor evaluation 
were performed at baseline and at 8-week intervals for 
the first 12 months and at 12-week intervals thereafter.  
AEs were graded as per National Cancer Institute 
Common Terminology Criteria for Adverse Events  
(version 4.03).

Plasma concentrations of mocetinostat were deter-
mined using high-performance liquid chromatography 
and tandem mass spectrometry during stage 1 (before the 
dose and 1 hour after the dose on day 1 of cycles 1 and 2) 
with more timepoints planned for stage 2.

Tumor total mutation burden was estimated 
retrospectively in the 322 target genes included in 
FoundationOne for patients with central testing (see 
Supporting Materials).

Statistical Analyses
The primary endpoint, ORR, was assessed using an exact 
test for a single proportion (2-sided α=0.05; ORR ≤15% 
[H0] vs >15% [H1]) in a 3-stage study design to include 
15 patients, 18 patients, and 67 patients, respectively, in 
the population that was evaluable for efficacy (patients 
meeting the entry criteria who received mocetinostat and 
had at least baseline and one on-study disease assessment) 
(see Supporting Materials). Safety was assessed in patients 
receiving ≥1 dose of mocetinostat. Pharmacokinetics 
were evaluated in all patients with sufficient data. Time-
to-event efficacy endpoints were estimated using Kaplan-
Meier methodology (see Supporting Materials).

RESULTS

Patient Disposition and Baseline Disease 
Characteristics
Of the 175 patients who consented to undergo genomic 
screening, testing was feasible for 155 (89%; sam-
ple quantity/quality was insufficient for 20 patients). 
Frequently altered genes included TP53, AT-rich interac-
tion domain 1A [ARID1A], MLL2 (KMT2D), KDM6A, 
MLL3 (KMT2C), retinoblastoma protein (RB1), and 

Figure 1.  OncoPrint of genetic alterations in 150 of the 155 patients in whom genetic profiling of the tumor was feasible. Alterations 
included truncating mutations, gene amplifications, homozygous deletions, annotated recurrent missense mutations, and missense 
variants of uncertain significance (variants of unknown significance were excluded from the main study analysis) that were present 
in ≥10% of the population. The 150 patients included 144 patients who were tested centrally at Foundation Medicine and 6 patients 
who were tested at local institutions. An arrow (↓) denotes a patient enrolled in the clinical trial (reports from 5 patients tested 
locally were not available, including 4 patients who were prescreened using FoundationOne testing and including 2 enrolled 
patients). aIn cases of CCND1 amplification, this co-occurred with fibroblast growth factor 3 (FGF3), FGF4, or FGF19 amplification 
in >80% of cases. In addition, a significant correlation for the co-occurrence of retinoblastoma protein (RB1) and TP53 mutations 
and CREB binding protein (CREBBP) and STAG2 mutations and the mutual exclusivity of cyclin-dependent kinase inhibitor 2A 
(CDKN2A) homozygous deletion and TP53 mutation or mouse double minute 2 homolog (MDM2) amplification and TP53 mutation 
was observed. ARID1A indicates AT-rich interaction domain 1A; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; EP300, E1A 
binding protein p300; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha.

CREBBP 19%

EP300 15%

TP53 52%

CDKN2A/B 34%

ARID1A 31%

MLL2 (KMT2D) 29%

MLL3 (KMT2C) 21%

KDM6A 26%

RB1 20%

FGFR3 19%

ERBB2 17%

MDM2 17%

PIK3CA 15%

CCND1a  13%

STAG2 10%

Genetic alteration No alterations Amplification Deep deletion Fusion Truncating mutation Missense mutation
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cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) 
(Fig. 1).

Thirty-three patients (21%) had ≥1 of the 40  
qualifying tumor mutations in CREBBP or EP300 iden-
tified: 27 CREBBP mutations were identified among 
23 patients (15%), 13 EP300 mutations were identified 
among 12 patients (8%), and mutations in both genes 
were identified in 2 patients (1%). Each qualifying muta-
tion was observed only once within the study. Qualifying 
CREBBP alterations were most commonly nonsense  
(5% [8 patients]), frameshift (5% [7 patients]), or mis-
sense (3% [5 patients]) mutations. EP300 mutations were 
most commonly missense mutations (3% [5 patients]). 
Nonqualifying mutations in CREBBP and EP300 (pu-
tative passenger mutations) were detected in 18 patients 
(12%) (see Supporting Table S3).

Seventeen of 33 patients with qualifying mutations 
were enrolled into stage 1 (Fig. 2); baseline demographic 
and disease characteristics of the enrolled patients are 
shown in Table 1. Twenty-two qualifying mutations were 
identified in these 17 patients: 14 CREBBP mutations in 
12 patients and 8 EP300 mutations in 7 patients, and 
2 patients had qualifying mutations of both CREBBP 
and EP300 (see Supporting Table S3). Sixteen patients 
with qualifying mutations were not enrolled, most often  
because they were receiving an earlier line of therapy 

(Fig. 2). The patients received a median of 2 prior sys-
temic therapies (range, 1-5 prior systemic therapies) 
(Table 1) and all had discontinued mocetinostat at the 
time of analysis, most due to disease progression (53%) 

Figure 2.  Patient disposition. aThe safety population and 
intent-to-treat (ITT) population included all patients who 
received at least 1 dose of the study medication. bThe 
population evaluable for efficacy included all patients in the 
ITT population who met prespecified entry criteria and had at 
least a baseline and 1 on-study disease assessment that were 
adequate for evaluation using Response Evaluation Criteria in 
Solid Tumors (RECIST; version 1.1).

Patients consenting to genomic
prescreening (N=175 ) 

Enrolled (n=17)
• Safety population (n=17)a

• ITT population (n=17)a

• Efficacy evaluable population (n=9)b

Discontinued (n=17)
• Objective disease progression (n=9)
• Adverse event (n=4)
• Symptomatic deterioration (n=3)
• Patient decision (n=1)

Not enrolled (n=158)
• No qualifying mutation detected (n=142)
• Receiving earlier line of therapy (n=6)
• Died prior to screening (n=3)
• Health deterioration prior to screening (n=3)
• Patient decision (n=1)
• Other (n=3)

TABLE 1.  Patient Demographics and Disease 
Characteristics in the ITT Population

Patient Characteristics

Mocetinostat

N=17

Median age (range), y 67 (35-83)
Male sex, no. (%) 15 (88)
Race, no. (%)

White 15 (88)
Asian 1 (6)
Black 1 (6)

Smoking history, no. (%)
Past smoker 8 (47)
Never smoker 7 (41)
Current smoker 2 (12)

AJCC/UICC TNM stage of disease, no. (%)a

IVA 1 (6)
IVB 16 (94)

ECOG PS, no. (%)
0 5 (29)
1 10 (59)
2 2 (12)

Scores according to Bellmunt et al, no. (%)b

0 5 (29)
1 7 (41)
2 5 (29)

Median baseline albumin (range), g/dL 4.1 (3.1-4.7)
Median baseline hemoglobin (range), g/dL 12.5 (9.0-14.5)
Time from diagnosis of urothelial carcinoma 

(range), mo
26.4 (4.3-95.5)

Location of disease, no. (%)c

Lung 13 (77)
Liver 6 (35)
Lymph noded 15 (88)
Bladder 3 (18)
Bone 4 (24)
Other 8 (47)

Prior systemic therapy, no. (%) 17 (100)
Median no. of prior regimens (range) 2 (1-5)
Patients with prior neoadjuvant/adjuvant 

regimens, no. (%)
10 (59)

Patients with prior advanced disease regimens, 
no. (%)

12 (71)

Patients who completed prior systemic  
therapy ≤3 mo before initiating study treatment, 
no. (%)

7 (41)

Prior RT, no. (%) 6 (35)
Prior surgery, no. (%)c 15 (88)

Cystectomy 10 (59)
Transurethral resection of bladder tumor 9 (53)
Urethrectomy 4 (24)
Other 4 (24)

Abbreviations: AJCC/UICC TNM, American Joint Committee on Cancer/
Union for International Cancer Control (T) Tumor-(N) Lymph Node-(M) 
Metastasis; ECOG PS, Eastern Cooperative Oncology Group performance 
status; ITT; intent to treat (all patients receiving study medication); RT, 
radiotherapy.
aDisease subsite (bladder, ureter, or renal pelvis) and disease stage were 
not specifically collected in the current study; disease stage using defini-
tions for bladder cancer was assessed retrospectively.
bScores according to Bellmunt et al were assessed retrospectively.15

cPatients may have >1 disease location or surgery.
dBaseline disease was confined only to the lymph nodes in 2 patients.
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or AEs (24%) (Fig. 2). Based on the decision of the spon-
sor, the current study was closed after the enrollment of  
17 patients, including 9 patients in the population that 
was evaluable for efficacy (8 patients withdrew from 
mocetinostat treatment prior to the on-study disease 
assessment [4 due to AEs and 3 due to symptomatic 
deterioration, and 1 patient withdrew consent]); patients 
were not recruited for stages 2 and 3 of the current study.

Efficacy
One objective response was observed in the population 
of patients who were evaluable for efficacy. This PR 
lasted 3.9 months and occurred in a 67-year-old man 
with disease restricted to the lymph nodes. His primary 
tumor contained 2 qualifying EP300 missense mutations 
(G1347E and P925T) and other mutations (truncating 
mutations in ARID1A, MLL2 [KMT2D], and CHEK2; a 
missense mutation in ATM; and amplification of TERC 
and PRKCI). The ORR of 11% (95% confidence inter-
val [95% CI], 0.3%-48%) was not statistically significant 
(null hypothesis of ≤15% could not be rejected; P=1.00). 
Two patients (22%) were found to have achieved stable 
disease lasting 3.5 months and 3.8 months, respectively, 
and progressive disease was reported in 6 patients (67%) 
(see Supporting Fig. S2). The median PFS was 57 days 
(95% CI, 23-117 days) in the population of patients who 
were evaluable for efficacy. The estimated PFS at 4 months 
was 10% (95% CI, 0%-40%); the PFS at 1 year could not 
be estimated. The median OS was 3.5 months (95% CI, 
2.1-15.7 months) and the 1-year survival rate was 30% 
(95% CI, 10%-60%) in the intent-to-treat (ITT) popu-
lation (all patients who received the study medication). 
Similar efficacy results were observed in the population 
that was evaluable for efficacy and the ITT population.

Safety
The median duration of mocetinostat therapy was  
46 days (range, 8-225 days), and the cumulative median 
dose administered was 930 mg (range, 280-7730 mg). 
The median relative dose intensity was 99% (range, 37%-
117%) during cycle 1 and was 84% (range, 14%-117%) 
in subsequent cycles. Eleven of the 17 enrolled patients in-
itiated ≥2 treatment cycles. The dose of mocetinostat was 
escalated from 70 mg TIW to 90 mg TIW in 9 patients 
(4 of whom received ≤1 full cycle of mocetinostat at a 
dose of 90 mg TIW). Five patients (29%) underwent dose 
reductions due to AEs (3 patients; 18%) or other reasons  
(2 patients; 12%), and 14 patients (82%) had at least 
1 dose interruption, most commonly due to AEs (11  
patients; 65%).

All patients experienced ≥1 treatment-emergent (all 
causality) AE, and the majority of patients (14 patients; 
82%) experienced ≥1 treatment-related AE. The most fre-
quent treatment-emergent AEs were nausea (13 patients; 
77%), fatigue (12 patients; 71%), decreased appetite  
(8 patients; 47%), and diarrhea (8 patients; 47%) (Table 2);  
these events also were the most frequent treatment- 
related AEs. Grade ≥3 treatment-related AEs were fatigue 
and hyponatremia (in 2 patients each, respectively; 
12%). A total of 21 treatment-emergent serious AEs were 
reported in 10 patients (59%), including vomiting, lower 
gastrointestinal hemorrhage, abdominal pain, and peri-
cardial effusion (2 patients each; 12%). One serious AE 
of pericardial effusion was assessed as being related to 
mocetinostat (both pericardial effusion events resolved). 
Ten patients died during the study, all due to their  
underlying disease.

Pharmacokinetics
Due to the limited blood sampling schedule for stage 
1 of the current study, the 1-hour post-dose sample 
was considered representative of the maximum serum 
concentration (Cmax) based on data from prior studies  

TABLE 2.  Treatment-Emergent (All Causality) 
Adverse Events Occurring in at Least 3 Patients 
(Safety Population)

MedDRA Preferred Term All Gradesa Grade 3/4a

No. (%) N=17 N=17
Nausea 13 (77) 1 (6)
Fatigue 12 (71) 3 (18)
Decreased appetite 8 (47) NR
Diarrhea 8 (47) NR
Hyponatremia 6 (35) 3 (18)
Vomiting 6 (35) 1 (6)
Abdominal pain 5 (29) 2 (12)
Anemia 5 (29) 2 (12)
Back pain 5 (29) NR
Constipation 5 (29) NR
Hypoalbuminemia 5 (29) NR
Hematuria 4 (24) NR
Muscular weakness 4 (24) NR
Alkaline phosphatase 

increased
3 (18) NR

Chills 3 (18) NR
Cough 3 (18) NR
Creatinine increased 3 (18) NR
Dehydration 3 (18) 1 (6)
Dizziness 3 (18) NR
Dysgeusia 3 (18) NR
Hypocalcemia 3 (18) NR
Lymphocyte count decreased 3 (18) 1 (6)
Pain 3 (18) 1 (6)
Urinary tract infections 3 (18) NR

Abbreviations: MedDRA, Medical Dictionary for Regulatory Activities; NR, 
not reported.
aAdverse events were graded as per National Cancer Institute Common 
Terminology Criteria for Adverse Events (version 4.03).



Original Article

538 Cancer    February 15, 2019

(see Supporting Information), and pharmacokinetic 
analyses were restricted to Cmax and time to Cmax.

After a single 70-mg dose of mocetinostat, the 
mean Cmax was found to be 105 ng/mL. The mean dose- 
normalized Cmax was 1.2 ng/mL/mg and intersubject 
variability (coefficient of variation, geometric mean) was 
90%. After multiple TIW doses of mocetinostat of 50 mg 
and 90 mg, respectively, the mean Cmax was 41 ng/mL  
and 39 ng/mL (see Supporting Table S4). The mean 
dose-normalized Cmax was 0.2 ng/mL/mg and the inter-
subject variability was 423%.

DISCUSSION
Inactivating alterations of CREBBP and EP300 are rela-
tively frequent (approximately 13% and approximately 
15%, respectively) in patients with urothelial carci-
noma14,16,17 and are implicated in the dysregulation of 
key acetylation pathways and oncogenesis.18,19 Based on  
promising findings in urothelial carcinoma cell lines 
and tumor models (see Supporting Tables S1 and S2 
and Supporting Fig. S1), we postulated that patients 
with urothelial carcinoma and inactivating alterations in 
CREBBP and/or EP300 could be treated by class I HDAC 
inhibition via a mechanism of increased histone acetyla-
tion leading to an open chromatin state with decreased 
transcriptional repression of tumor suppressor genes. 
Although the maximum tolerated dose of mocetinostat as 
a single agent was determined to be 110 mg TIW in other 
tumor settings, a lower recommended dose of 90 TIW was 
considered for the current study based on prior observa-
tions of pericardial infusion and balancing pharmacody-
namic and clinical data as well as regulatory guidance.20 
However, single-agent mocetinostat at doses up to 90 mg 
TIW demonstrated only modest activity in this cohort 
of heavily pretreated patients with factors indicative of a 
poor prognosis. The ORR of 11% and the finding that of  
9 evaluable patients, only 1 patient (with lymph node–
only disease and multiple genomic alterations) was alive 
and free of disease progression for 4 months was not con-
sistent with meaningful clinical activity. Although mocet-
inostat-related AEs, including gastrointestinal events and 
fatigue, were consistent with the safety profiles reported 
in other settings,11,12,21 frequent dose interruptions and 
reductions were required. Mocetinostat exposure (mean 
dose-normalized Cmax of 0.2 ng/mL/mg) was lower than in 
prior trials of mocetinostat TIW (range, 0.8-1.6 ng/mL/mg).  
It is feasible that underlying disease and prior treatments 
may have contributed to limited functional reserve, 
resulting in poor tolerability. These findings underscore 
the limitations of preclinical models in predicting clinical 

activity and toxicity issues related to anticancer treatments. 
Further evaluation of mocetinostat at lower doses may be 
useful for guiding dose reduction in future study protocols 
to maximize each patient’s exposure to treatment.

Studies of other HDAC inhibitors in patients 
with urothelial carcinoma reported mixed results, with 
responses noted with single-agent vorinostat but not 
when vorinostat was combined with doxorubicin or 
docetaxel.22-24 An ORR of 20% was reported in a small 
study of belinostat or panobinostat, and prolonged stable 
disease was noted in 1 of 3 patients with urothelial carci-
noma who were treated with entinostat plus 13-cis-reti-
noic acid.25,26 These data suggest that HDAC inhibitors 
can be active in patients with urothelial carcinoma, but 
predictive biomarkers are needed for patient selection. 
To our knowledge, data regarding genomic predictors 
of response to HDAC inhibitors are limited. In a phase  
2 study of panobinostat in patients with recurrent diffuse 
large B-cell lymphoma, mutations in MEF2B were found 
to be associated with response, whereas 14 genes, includ-
ing TOX4, PSMD13, and CCNK, were associated with 
resistance to vorinostat based on a study of human colon 
cancer cell lines.27,28 To our knowledge, this is the first 
clinical trial using genomic-based selection to identify 
patients with urothelial carcinoma for treatment with 
selective HDAC inhibition. The results of the current 
study demonstrate the feasibility of this approach while 
also providing genomic tumor characterization for this 
population of patients.

There was considerable genomic variation in 
CREBBP and EP300, with each qualifying mutation 
observed only once in the current study. It is interest-
ing to note that the patient with a confirmed PR har-
bored 2 EP300 mutations in trans, P925T, and G1347E, 
suggesting that biallelic loss of function in this pathway 
could be therapeutically significant; however, this patient 
had lymph node–only metastasis, which is a favorable 
prognostic factor. It is feasible that mocetinostat activ-
ity might be greater as an earlier line of therapy when 
a longer duration of treatment may be feasible and po-
tentially confer meaningful disease-modifying activity. 
Furthermore, we hypothesized a mechanism of action 
of mocetinostat to reactivate the transcription of tumor 
suppressor genes, but a relatively high frequency of inac-
tivating alterations in the tumor suppressor genes TP53, 
CDKN2A/B, and RB1 may have limited the potential of 
epigenetic modulation by mocetinostat to induce tumor 
response. Potential future treatment strategies could in-
clude combining mocetinostat with an inhibitor of PD-1/
programmed death–ligand 1 (PD-L1) to take advantage 
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of the former’s potential immunomodulatory effects. 
Indeed, mocetinostat has been shown to increase the ex-
pression of PD-L1 and augment PD-1/PD-L1 checkpoint 
blockade immunotherapy.29 Other combination partners 
could be considered within the appropriate molecular 
context.

In summary, single-agent mocetinostat was found 
to be associated with significant toxicities and limited ac-
tivity in heavily pretreated patients with advanced/met-
astatic urothelial carcinoma and poor prognostic factors. 
Few patients received the intended dose of 90 mg TIW, 
which may have compromised efficacy. Nevertheless, the 
clinical activity observed does not warrant the further 
investigation of mocetinostat as a single agent in this 
setting. Mocetinostat currently is being investigated in 
other tumors and in combination with immunotherapy.
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