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1. Comprehensive phylogenetic trees are essential for many ecological and evolutionary studies. 

Researchers may use  existing trees or construct their own. In order to infer new trees, 

researchers often rely on programs that construct datasets from publi cly available molecular data.  

2. Here, we present PyPHLAWD, a phylogenetically guided tool wri tten in Python that crea tes 

molecular datasets for building trees. PyPHLAWD constructs clusters  (putative orthologs) that 

may be used for downstream analyses and  provides users with a set of easy to interpret results. 

PyPHLAWD can conduct both baited (analyses that require the id entification of gene regions a 

priori) and clustering analyses (analyses that do not require a priori identification of gene 

regions).  
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3. PyPHLAWD is extensible, flexible, open source, and available at 

https://github.com/FePhyFoFum/PyPHLAWD , with a detailed website outlining instructions and 

functionality at https://fephyfofum.github.io/PyPHLAWD/.  

4. The utility of PyPHLAWD is highlighted here wit h an example workflow for the plant clade 

Dipsacales and  may be applied to any clade with publicly available data on GenBan k. 

Key-words: phylogenetics, GenBank, sequences, tree of life, Python 

Introduction  

Large phylogenies have become important for addressing outstanding questions in comparative 

ecological and evolutionary studies. While resources are available that offer broadly sampled taxonomies 

and phylogenies (e.g., Open Tree of Life), for many reasons, researchers may want to process the 

available molecular data for the construction of targeted phylogenies. 

Several programs have been developed to process publicly available GenBank data in order to create 

phylogenetic datasets including SUPERSMART (Antonelli et al. 2017), PHLAWD (Smith et al. 2009), 

Phylota (Sanderson et al. 2008), Phylogenerator (Pearse and Purvis 2013), among others. These 

programs can serve as complements/verification of each other, along with providing utility that offers 

greater flexibility in analyses. While automation can simplify many steps, recently, it has been shown that 

human intervention in many of the steps improves the quality of the resulting phylogeny (Beaulieu and 

O’Meara 2018; Smith and Brown 2018). Here, we describe PyPHLAWD, a Python package providing a 

diverse set of tools for constructing datasets using GenBank in a semi-automated fashion. 

PyPHLAWD offers users flexibility throughout an analysis allowing for researchers to intervene at any 

step. The program implements both baited (Smith et al. 2009) and a tip-to-root clustering method (Smith 

and Brown 2018; Walker et al. 2018) for thorough and rapid orthology identification. PyPHLAWD is an 

extensible and flexible tool written in Python that can be easily incorporated into different workflows. 

PyPHLAWD workflow  

PyPHLAWD is an open source, freely available, set of scripts written in Python. The source code and 

instructions are available from https://github.com/FePhyFoFum/PyPHLAWD. PyPHLAWD requires a few, 

easy to install, dependencies including several programs from the phyx (Brown et al. 2017) package, 

ncbi-blast+ (Altschul et al. 1997), mcl (Van Dongen 2000), mafft (Katoh and Standley 2013) and 

several python packages (sqlite, networkx, clint). For increased speed, PyPHLAWD can optionally 

be compiled with cython. Other programs, if installed, may be used such as FastTree (Price et al. 

2010). All of these are freely available, and many through software repositories. Installation and examples 

are available from the website https://fephyfofum.github.io/PyPHLAWD/. 
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PyPHLAWD can be used unsupervised or with human intervention to investigate specific results. It relies 

on a pre-assembled database of sequences that may be created using phlawd_db_maker 

(https://github.com/blackrim/phlawd_db_maker) or downloaded from resources provided on the program 

website. PyPHLAWD allows a user to conduct both clustering analyses, without specifying the genes of 

interest, as well as a baited analysis. 

A baited analysis in PyPHLAWD is done by running setup_clade_bait.py and providing a directory 

of bait sequence files that can be used to filter sequences from the database. A bait sequence file for a 

single gene should contain full length sequence for several species (e.g., 10-20) across the clade of 

interest. This was the standard analysis mode for PHLAWD (Smith et al. 2009) and can be useful when 

there are a few well-known genes sampled for a particular clade. Unlike PHLAWD, however, PyPHLAWD 

will conduct an analysis on each file (i.e., gene) in the bait directory instead of the user having to conduct 

an analysis on each gene separately. 

In contrast to a baited analysis, a clustering analysis does not require a set of identified bait sequences. 

Instead, all genes available for the user specified taxonomic group will be identified and summarized as a 

user-friendly html file. During the process all-by-all BLAST analyses along with markov clustering 

analyses, MCL, are conducted to identify clusters. In PyPHLAWD, a clustering analysis is conducted by 

running setup_clade.py. 

Whether baited or clustered, once gene regions are identified, the remaining analyses are the same (Fig 

1). A set of directories representing the taxonomic hierarchy of the taxon of interest are created. Within 

each of these directories, the sequences representing the taxon of the directory are placed in a file. By 

default, whole genomes are excluded from analyses but are placed in a file in the relevant directory. 

Sequence similarity analyses are conducted from the tip to the root of the folder hierarchy. Because the 

sequence similarity analyses themselves do not impose a taxonomic constraint, only the order of 

analyses, it is unlikely that bias will be introduced by a potentially incorrect taxonomy. However, if there 

are egregious errors in the taxonomy, they may be edited within the database. 

There are several parameters that can be edited to customize analyses. For example, sequences 

associated with misidentified taxa can be excluded by adding their taxonomic or sequence id to the files 

bad_seqs.py or bad_taxa.py. If the user wants to exclude sequences based on patterns in the 

sequence description (e.g., particular collections of sequences), these patterns can be added to the 

exclude_patterns.py or the exclude_desc_patterns.py files. 

PyPHLAWD has a general configuration file, conf.py, that defines several parameters including user 

options like smallest_size meant to define the smallest sequences to exclude as well as several 

parameters related to the BLAST analyses (e.g., length_limit, evalue_limit, evalue_limit_lc, 

perc_identity). PyPHLAWD functions as a set of scripts instead of a python library installed at the 
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system level to encourage users that may be less familiar with library development to add functionality or 

edit scripts. Therefore, the conf.py file also requires that the installation directory of PyPHLAWD be 

specified (as this allows PyPHLAWD to locate the other scripts in the package). 

Demonstration  

We performed two demonstration analyses, a baited and a clustering analysis. Both analyses were 

performed on the plant clade Dipsacales. These runs were conducted on a 3.9Ghz quad-core laptop with 

16 GB RAM and running Xubuntu Linux (kernel 4.16). For both analyses, we set smallest_size = 

400, length_limit = 0.55, and perc_identity = 20. We used a copy of GenBank for the pln 

division built with phlawd_db_maker (website Smith et al. 2009) constructed on 04/11/18. For baited 

analyses, we used rbcL, trnL-trnF, ITS, and matK as bait (files available as part of the examples in the 

distributed source code). For clustering analyses, we conducted analyses with the above parameters. 

Runs for similar methods  

In order to compare the performance of PyPHLAWD, we also conducted analyses using PHLAWD, 

Phylota, SUPERSMART, and Phylogenerator. For PHLAWD, we used the parameters mad = 0.05, 

coverage = 0.55, and identity = 0.2 using the same bait as the PyPHLAWD baited runs. We 

examined Phylota results as available on 05/01/18 using GenBank release 194. For SUPERSMART, we 

conducted runs, without divergence time estimation, on the plant clade Adoxaceae, within the Dipsacales, 

as runs conducted on the entire Dipsacales failed to successfully construct some elements of the tree. 

We, therefore, compared the Adoxaceae results from PyPHLAWD to those of SUPERSMART. 

Phylogenerator was tested using Dipsacales and searching for the genes "rbcL", "matK", "ITS" (alias: 

"internal transcribed spacer 1", fussy: false), and trnLF (alias: "trnL-trnF intergenic spacer", fussy: false). 

The Hawkeye sequence adjustment method was turned off and the minimum reference length was set to 

400bp. 

Results of verification  

For the Dipsacales, there are 33,178 sequences available representing 864 taxa (as of 04/11/18). 

Baited analysis 

We constructed the bait sequences by manually downloading 20 representative sequences for each of 

the target genes on GenBank. The baited analysis took 52 seconds and PyPHLAWD found 299 taxa with 

rbcL, 333 with trnL-trnF, 553 with ITS, and 322 with matK. We constructed a phylogenetic dataset with 

these resulting gene regions that resulted in 641 taxa (173 taxa in Adoxaceae). We constructed a 
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phylogeny using RAxML v. 8.2.11 (Stamatakis 2014) with the -f a option generating 100 rapid 

bootstraps with GTR+G model of evolution and partitioned by gene region. 

Clustered analysis 

The clustered analysis took 5 minutes and 16 seconds and resulted in 684 taxa represented in 617 

clusters. The largest clusters included ITS (559 taxa), trnLF (334 taxa), matK (333 taxa), and rbcL (299 

taxa) with others containing between 268 and fewer taxa (Fig. 1). We constructed a phylogenetic dataset 

with the find_good_clusters_for_concat.py (with at least 20% taxon sampling and at least 20 

taxa) script that identified 16 clusters representing 672 taxa (173 taxa in Adoxaceae). We constructed a 

phylogeny using RAxML v. 8.2.11 with the -f a option generating 100 rapid bootstraps with GTR+G 

model of evolution and partitioned by gene region. The find_good_clusters_for_concat.py script 

can construct a constraint tree. However, this was not used in the construction of the phylogeny 

presented here. 

Results from other methods 

Phylota recovered 536 ITS, 330 matK, 354 trnLF, and 242 rbcL taxa for Dipsacales with a concatenated 

dataset of 581 taxa (155 in Adoxaceae). PHLAWD baited analyses recovered 659 ITS, 329 matK, 349 

trnLF, and 295 rbcL sequences for Dipsacales with a concatenated dataset of 731 taxa (201 in 

Adoxaceae). Run-times were between 16 and 40 seconds. SUPERSMART recovered for 147 taxa for 

Adoxaceae with a run-time of ~4 minutes to perform the taxize, align, orthologize, and bbmerge steps. 

The total run time for Phylogenerator was between 32 minutes and 1.3 hours depending on whether 

alignment and reconstruction was done and resulted in a phylogeny consisting of 627 tips and 347 matK, 

298 rbcL, 325 trnLF, and 566 ITS sequences found. 

Discussion  

PyPHLAWD is a package that can be used for constructing phylogenetic datasets with molecular data. In 

addition to conducting baited analyses, as in PHLAWD, it also allows for clustering sequences without 

bait. PyPHLAWD constructs clusters rapidly by only conducting all-by-all comparisons for the most nested 

taxonomic units (e.g., genera) and then merging these clusters using BLAST. Additionally, PyPHLAWD is 

written as a set of scripts to allow for more flexibility for the user. 

Comparison to other methods 

We compared the results of baited and clustering analyses to those from PHLAWD, Phylota, 

SUPERSMART, and Phylogenerator. PyPHLAWD baited analyses are different than PHLAWD analyses 

in that PyPHLAWD uses the BLAST algorithm instead of the Smith-Waterman algorithm for sequence 

homology analyses. As a result, the specific parameters used in each analysis are not comparable. 
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Nonetheless, given that these parameter values are typical for many analyses, the results are 

comparable. PyPHLAWD and PHLAWD baited results were similar with differences reflecting the 

differences between BLAST and Smith-Waterman and the specific cutoffs used (e.g., sequence length, 

overlap). PHLAWD recovered slightly fewer sequences of rbcL and matK and more sequences of trnLF 

and ITS. In both cases, where more sequences were recovered, it was the result of PHLAWD allowing 

the retrieval of shorter sequences. Including short sequences in the analysis can increase error in 

alignment and so are excluded from PyPHLAWD by default. The phylogenies produced from the 

PyPHLAWD datasets had fewer long branches (i.e., from alignment error) than those from PHLAWD. 

Instead of comparing all of the clusters found by Phylota, we compared the results for ITS, matK, rbcL, 

and trnLF from the PyPHLAWD clustering analyses to the equivalent clusters available through Phylota. 

There were several differences that were due to the differences in the GenBank releases used as Phylota 

covers release 194 while PyPHLAWD used release 224. PyPHLAWD also uses a more stringent 

sequence length cutoff. For example, PyPHLAWD recovered 559 taxa with ITS and Phylota, which 

includes much smaller sequences (e.g., 154 bp the case of ITS), recovered 536 taxa. Similar differences 

were found for other gene regions. 

Phylogenerator and PyPHLAWD baited analyses differ in the method of orthologous sequence detection. 

PyPHLAWD recognizes sequences based on sequence similarity, whereas Phylogenerator uses 

sequence label matching. Phylogenerator requires the user to specify the alias of a sequence and relies 

on proper curation of deposited samples. It, however, does not require a local database and therefore 

downloads sequences at the time the user runs the program. This difference in the time required for 

sequence retrieval helps explain the overall differences in runtime. Otherwise, the results were 

comparable with fewer taxa per gene in certain cases and more in others. 

SUPERSMART provides a comprehensive package for the construction of trees from GenBank data. 

Despite some similarities, there are several differences between SUPERSMART and PyPHLAWD. First, 

SUPERSMART is run as a virtual machine, allowing for fewer steps in installing dependencies. However, 

this comes at the cost of flexibility. There are also methodological differences. For example, 

SUPERSMART relies on initial clusters constructed from Phylota that it then verifies with BLAST. 

PyPHLAWD uses a database created by the user that may be much more up to date. SUPERSMART 

conducts all analyses required for dataset construction, phylogenetic reconstruction, and divergence time 

estimation, presenting the user with the final results. Intermediate outputs are obfuscated to the user. 

PyPHLAWD expects human intervention at any stage. Each output can be used for other analyses. For 

example, PyPHLAWD provides the clustered genes, aligned and unaligned, in folders based on 

taxonomy. The detailed summary of the output given by PyPHLAWD gives users greater ease to conduct 

an array of downstream analyses on the clades. 
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We do not aim to criticize other programs and procedures that may be useful and available to the 

community. Instead, we feel that these programs are complimentary and may serve different purposes for 

diverse goals and analyses. 

On baited vs. clustering analyses 

As shown here, it is possible for baited and clustering analyses to produce different results with 

PyPHLAWD. There are several reasons for this. For example, the behavior of the baited analysis may 

change depending on the quality, size, and taxonomic coverage of the user identified bait files. 

Alternatively, clustering runs will only be dependent on the available sequences in the source database. A 

user should choose the analysis that is the most reasonable given their goals. When common gene 

regions for a clade are unknown, clustering analyses are preferable. 
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Figure Captions  

Figure 1. PyPHLAWD procedure with an example from the plant clade Dipsacales. The 

taxonomy on the left illustrates the clustering order and the folder structure generated from 

PyPHLAWD. The baited analysis panel demonstrates that sequences will be compared to bait 

sequences. Clustering is conducted from tip-to-root as shown in Adoxaceae. Supermatrices 

may be constructed (though not required) from the resulting clusters or bait sequences. A 

phylogeny may be built from these supermatrices (right panel) or from individual gene regions. 
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