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Abstract
For an estimation with missing data, a crucial step is to
determine if the data are missing completely at random
(MCAR), in which case a complete-case analysis would suf-
fice. Most existing tests for MCAR do not provide a method
for a subsequent estimation once the MCAR is rejected.
In the setting of estimating means, we propose a unified
approach for testing MCAR and the subsequent estimation.
Upon rejecting MCAR, the same set of weights used for
testing can then be used for estimation. The resulting esti-
mators are consistent if the missingness of each response
variable depends only on a set of fully observed auxiliary
variables and the true outcome regression model is among
the user-specified functions for deriving the weights. The
proposed method is based on the calibration idea from sur-
vey sampling literature and the empirical likelihood theory.
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1 INTRODUCTION

Data collected from statistical studies are often incomplete. There are three widely adopted miss-
ingness mechanisms in the missing-data literature (e.g., Little & Rubin, 2002): missing completely
at random (MCAR) where the missingness does not depend on either the observed or the miss-
ing data, missing at random (MAR) where the missingness depends on the observed but not the
missing data, and missing not at random (MNAR) where the missingness depends on both the
observed and the missing data. Most existing methods for missing-data analysis are developed
under the MAR mechanism, largely due to the mathematical triviality of MCAR and the com-
plexity of MNAR. However, in cases where the data are indeed MCAR, a simple complete-case
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analysis would suffice without turning to other possibly complicated methods. Therefore, a
crucial first step for analysis with missing data is to determine if the missingness mechanism
is MCAR.

The most widely used test for the MCAR mechanism was due to Little (1988). Although it
was proposed in the setting of multivariate normal data, the test is asymptotically valid regard-
less of the distribution of the data. The basic idea behind the construction of the test is that if the
data are MCAR, the subjects with each particular missingness pattern can be viewed as a random
sample from the population, and thus, any significant difference between subjects with differ-
ent missingness patterns provides evidence against MCAR. For longitudinal data with dropouts,
Diggle (1989) proposed a nonparametric test, and Ridout (1991) considered a parametric alterna-
tive by modeling the dropout mechanism. Park and Davis (1993) extended the idea of Little (1988)
to the case of incomplete repeated categorical data. Chen and Little (1999) applied similar ideas
and developed a test for longitudinal data with intermittent missingness using the generalized
estimating equation (GEE) method (Liang & Zeger, 1986). The test is carried out by testing the
unbiasedness of the GEE across different missingness patterns and, thus, is not equivalent to test-
ing MCAR. Besides, this test requires the GEE model to be correctly specified. There have been
some recent extensions of Little's (1988) idea by comparing the means, the covariance matrices,
and/or the distributions across different missingness patterns (e.g., Jamshidian & Jalal, 2010; Kim
& Bentler, 2002; Li & Yu, 2015).

Despite the importance of determining the missingness mechanism, the ultimate task of data
analysis is usually the subsequent estimation and inference. All the aforementioned works, how-
ever, treat the testing for MCAR as a stand-alone problem without providing a natural way for a
subsequent estimation once the MCAR mechanism is rejected. The subsequent estimation calls
for some existing methods that may require an implementation that is completely different from
the testing procedure itself. Our contribution in this paper is to propose a test for MCAR that also
takes the subsequent estimation into account, so that an estimator of the quantity of interest with
desirable properties is readily available once the MCAR is rejected. Our test does not impose any
parametric assumptions on the underlying data distribution.

Our proposed unified procedure for testing and subsequent estimation is based on the calibra-
tion idea used in survey sampling literature (Deville & Särndal, 1992; Wu & Sitter, 2001) combined
with the empirical likelihood (EL) method (Owen, 1988, 2001; Qin & Lawless, 1994). Under the
MCAR mechanism, the complete cases are a random sample from the population, and thus, the
calibration weights assigned to the complete cases should be uniform with some random per-
turbation. Therefore, a significant deviation of the calibration weights from the uniform weights
provides evidence against MCAR. Upon rejecting MCAR, the calibration weights can be readily
used to construct a weighted estimator of the quantity of interest. Such an estimation approach
agrees with the multiply robust estimation procedure in recent missing-data literature (e.g., Chan
& Yam, 2014; Han, 2014, 2016a, 2016b; Han & Wang, 2013).

For ease of methodology illustration, we take the quantities of interest to be the population
means of certain response variables that are subject to missingness, whereas some covariates are
fully observed, which is a commonly encountered scenario in practice, especially in survey sam-
pling and causal inference. The calibration weights are derived by matching the weighted average
of certain user-specified functions of the covariates based on the complete cases to the unweighted
average of those functions based on the whole sample. The functions may be certain moments
of the covariates or regression models of the response variables on the covariates. Upon rejecting
MCAR, the calibration weights lead to estimators that are the weighted average of the observed
values of the response variables, and these estimators are consistent if the missingness of each
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response variable depends only on the covariates and the corresponding correct regression model
is among the user-specified functions used for calibration.

2 A REVIEW OF SOME EXISTING TESTS FOR MCAR

Following the notation in Little (1988), let Y i = (Y1i, … ,Ypi)T denote the p-dimensional data
vector we intend to collect from subject i, i = 1, … ,n, and Ri = (R1i, … ,Rpi)T be the vector of
missingness indicators for Yi such that Rki = 1 if Yki is observed and Rki = 0 otherwise, k =
1, … , p. Under MCAR, the probability of observing Yk given the full data vector Y, P(Rk = 1 ∣ Y ),
does not depend on Y. Let 𝜋k ≡ P(Rk = 1) denote this probability and assume that 𝜋k > 0 without
loss of generality. Let L denote the number of distinct missingness patterns in the data set; l the
set of subjects with pattern l, l = 1, … ,L; and ml the number of subjects in l. The test statistic
proposed by Little (1988) for testing MCAR is

D2 =
L∑

l=1
ml(Ȳ obs,l − 𝝁̂obs,l)TΣ̂−1

obs,l(Ȳ obs,l − 𝝁̂obs,l),

where Ȳ obs,l is the vector of sample means for the observed variables for pattern l, and 𝝁̂obs,l and
Σ̂obs,l are the maximum likelihood estimators of the mean vector and the covariance matrix for the
observed variables for pattern l. Under MCAR, Little (1988) showed that D2 has an𝜒2-distribution
with degree of freedom

∑L
l=1 pl − p for Y following a multivariate normal distribution, where pl

is the number of observed variables in pattern l, and that this result is asymptotically true for
Y following other distributions. Little (1988) also raised the issue of possible heteroscedasticity
of covariance matrices across different missingness patterns. For normally distributed data, Kim
and Bentler (2002) proposed a method to address this issue by considering a combined test of
homogeneity of means and covariance matrices with the test statistic

G =
L∑

l=1

[
ml(Ȳ obs,l − 𝝁̂obs,l)TΣ̂−1

obs,l(Ȳ obs,l − 𝝁̂obs,l) +
ml − 1

2
tr
{
(Sobs,l − Σ̂obs,l)Σ̂−1

obs,l

}2
]
,

which asymptotically follows a 𝜒2-distribution with degree of freedom
∑L

l=1 pl(pl + 3)∕2 − p(p +
3)∕2, where Sobs,l is the sample covariance matrix for the observed variables for pattern l and
tr(A) is the trace of a matrix A. Extensions without the normality assumption can be found in
Jamshidian and Jalal (2010) and Li and Yu (2015). Many of the aforementioned tests rely heav-
ily on iterative estimation procedures such as the expectation–maximization algorithm, which
can become computationally burdensome especially when the number of missingness patterns is
not small.

3 THE PROPOSED METHOD

For ease of idea illustration, we first consider the simple scenario where the missingness only
occurs to one variable, denoted by Y, and a vector of auxiliary variables X is fully observed. Let
R denote the missingness indicator such that R = 1 if Y is observed and R = 0 otherwise. For
a random sample of size n, let S = {i ∶ Ri = 1, i = 1, … ,n} denote the set of complete
cases and n1 =

∑n
i=1 Ri the number of complete cases. Under MCAR, S is a random sample from

the population, and thus, the sample mean of X based on the complete cases should be close
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to the sample mean based on the whole sample since both are consistent estimators of E(X). In
other words, if we assign positive weights wi to the subjects in S so that

∑
i∈SwiX i = n−1 ∑n

𝑗=1 X 𝑗

and
∑

i∈Swi = 1, then wi can be chosen to be close to the uniform weight 1∕n1 where the devia-
tion occurs only due to randomness. Therefore, a measure of the deviation from these wi to 1∕n1
provides an assessment of whether MCAR holds.

In practice, the ultimate goal is usually to estimate E(Y) regardless of whether Y is MCAR.
The estimation is often carried out by fitting a regression model for E(Y ∣ X) and then taking
the sample mean of the fitted values over the whole sample. It is clear that the argument in the
previous paragraph on using X to form constraints also applies to regression models viewed as
functions of X. Following the formulation of the EL method (e.g., Owen, 1988; Qin & Lawless,
1994), we consider the weights ŵi that maximize

∏
i∈Swi subject to the following constraints:

wi > 0 (i ∈ S),
∑
i∈S

wi = 1,
∑
i∈S

wih(X i; 𝜽̂) =
1
n

n∑
𝑗=1

h(X 𝑗 ; 𝜽̂), (1)

where h(X;𝜽) is a d-dimensional vector of user-specified functions of X, possibly depending on
some parameter 𝜽 that is estimated by 𝜽̂. For example, h(X;𝜽) may include different moments
of X and/or different regression models for E(Y ∣ X), and in the latter case, 𝜽 is the vector of all
regression parameters. It turns out that, under MCAR, ŵi are the weights we referred to in the
previous paragraph that are close to the uniform weights 1∕n1 where the deviation occurs only
due to randomness.

The constraints in (1) are constructed based on the intuition that S is a random sample from
the population under MCAR. A natural question then is whether these constraints are still com-
patible or, in other words, whether there still exist wi satisfying (1), when Y is not MCAR. The
answer is affirmative. It can be easily shown that (e.g., Han & Wang, 2013)

E (w(Y ,X) [h(X;𝜽) − E {h(X;𝜽)}] ∣ R = 1) = 𝟎,

where w(Y ,X ) = 1∕P(R = 1 ∣ Y ,X). Then, the constraints in (1) are simply the data version of
the above moment equality and, thus, are compatible even when Y is not MCAR.

It follows from the standard EL theory that the ŵi that maximize
∏

i∈Swi subject to (1) are
given by

ŵi =
1

n1

1
1 + 𝝆̂Tĝ(X i; 𝜽̂)

, i ∈ S,

where 𝝆̂ is the Lagrange multiplier solving

1
n1

∑
i∈S

ĝ(X i; 𝜽̂)
1 + 𝝆̂Tĝ(X i; 𝜽̂)

= 𝟎 (2)

and ĝ(X i; 𝜽̂) = h(X i; 𝜽̂) − n−1 ∑n
𝑗=1 h(X 𝑗 ; 𝜽̂). From the EL theory again, under MCAR, we have

𝝆̂ = Op(n−1∕2), which implies that ŵi are indeed equal to 1∕n1 with a higher-order perturbation.
Now, define

T =
−2

∑
i∈S

log(n1ŵi)

1 − n1∕n
, (3)

which is a measure of discrepancy between ŵi and 1∕n1. The following result shows that T can
be used to test for MCAR, the proof of which is given in the Appendix.

Theorem 1. Under H0: Y is MCAR, the test statistic T has an asymptotic 𝜒2-distribution with
d degrees of freedom.
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When the MCAR is rejected, ŵi can be directly used to construct an estimator 𝜇̂ =
∑

i∈SŵiYi
for the quantity of interest 𝜇0 = E(Y). The following proposition states the consistency of 𝜇̂.

Proposition 1. Under MAR where the missingness of Y only depends on X, the estimator 𝜇̂ is
consistent for 𝜇0 if h(X;𝜽) contains a correctly specified regression model for E(Y ∣ X).

This result is easy to see. Let a(X;𝜷) be a correctly specified model such that a(X; 𝜷0) = E(Y ∣
X) for some 𝜷0, then

𝜇̂ =
∑
i∈S

ŵi
{

Yi − a(X i; 𝜷̂)
}
+ 1

n

n∑
𝑗=1

a(X 𝑗 ; 𝜷̂)

p
−→ 1
P(R = 1)

E

[
R
{

Y − a(X; 𝜷0)
}

1 + 𝝆T
∗g(X;𝜽∗)

]
+ E

{
a(X; 𝜷0)

}
= 0 + 𝜇0 = 𝜇0,

where 𝜷̂ is a consistent estimator of 𝜷0 that can be derived based on a complete-case analysis
because E(Y ∣ X) = E(Y ∣ X,R = 1) due to MAR, g(X;𝜽) = h(X;𝜽) − E{h(X;𝜽)}, and 𝜽∗ and 𝝆∗
are the probability limits of 𝜽̂ and 𝝆̂, respectively. Therefore, the usage of the weights ŵi is twofold:
They provide a test for MCAR and an estimator for 𝜇0 and, thus, make our proposed method more
attractive than existing ones.

Now, we consider the case where Y = (Y1, … ,Yp)T and each component of Y is subject to
missingness but the auxiliary variables X are still fully observed. Let Sk denote the set of subjects
with Yk observed and nk the number of subjects in Sk, k = 1, … , p. To test if Yk is MCAR, we can
directly apply the test statistic given in (3) to Yk based on a dk-dimensional vector of user-specified
functions hk(X;𝜽k). Let ŵki, i ∈ Sk, denote the resulting weights for the subjects in Sk. It follows
from Theorem 1 that the test statistic

Tk =
−2

∑
i∈Sk

log(nkŵki)

1 − nk∕n

asymptotically follows the 𝜒2-distribution with dk degrees of freedom if Yk is MCAR. Further-
more, using Tk, we are able to construct a test statistic to test if Y is MCAR as shown in the
following result, the proof of which is given in the Appendix.

Theorem 2. Under H0: Y is MCAR, the test statistic Tsum =
∑p

k=1 Tk has asymptotically the
same distribution as

∑m
l=1 𝜆lQl, where m = d1 + · · · + dp, and for l = 1, … ,m, Ql are

independent 𝜒2-distributed random variables with one degree of freedom and 𝜆l are the eigen-
values of

Σ =

⎛⎜⎜⎜⎜⎝
Id1 Σ12 · · · Σ1p

Σ12 Id2 ⋮

⋮ ⋱

Σ1p · · · Idp

⎞⎟⎟⎟⎟⎠
.

Here, Idk is the identity matrix with dimension dk, and for k, r = 1, … , p and k ≠ r, we have

Σkr = {𝜋k𝜋r(1 − 𝜋k)(1 − 𝜋r)}−1∕2(𝜋kr − 𝜋k𝜋r)

×
[
E
{
gk(𝜽k∗)gk(𝜽k∗)T}]−1∕2 [E{gk(𝜽k∗)gr(𝜽r∗)T}

] [
E
{
gr(𝜽r∗)gr(𝜽r∗)T}]−1∕2

,

𝜋k = P(Rk = 1), 𝜋kr = P(Rk = 1,Rr = 1), and gk(𝜽k) ≡ gk(X;𝜽k) = hk(X;𝜽k) − E{hk(X;𝜽k)}.
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The eigenvalues 𝜆l are not necessarily distinct (e.g., Imhof, 1961). In practice, in order to deter-
mine the critical value for the asymptotic distribution of Tsum, Σkr can be consistently estimated
by replacing 𝜋kr and 𝜋k with nkr∕n and nk∕n, respectively, where nkr is the number of subjects
with Yk and Yr observed simultaneously, and the expectations can be estimated by sample aver-
ages. When the MCAR is rejected, the weights ŵki used for testing can then be used to construct
an estimator for E(Yk):

∑n
i=1 RkiŵkiYki. Following the same argument as before, such an estimator

is consistent if the missingness of Yk depends only on X and one component of hk(X;𝜽k) is the
correctly specified regression model for E(Yk ∣ X).

The construction of constraints in (1) is flexible in the sense that, in principle, any
user-specified functions of X can be considered. The use of moments of X is standard in sur-
vey sampling literature on the calibration method (e.g., Chen & Sitter, 1999; Deville & Särndal,
1992). The use of regression models has become popular in recent literature on calibration-based
missing-data analysis (e.g., Chan & Yam, 2014; Han, 2014, 2016a, 2016b; Han & Wang, 2013; Qin,
Shao, & Zhang, 2008; Qin & Zhang, 2007; Tan, 2010; Wu & Sitter, 2001). Our extensive simu-
lation study shows that using moments of X tends to lead to more power for the proposed test
compared to using regression models only. This makes intuitive sense because (1) holds for any
functions of X, whereas a regression model only represents a particular function. On the other
hand, including a correctly specified regression model helps achieve estimation consistency, as
argued before in this section. Therefore, in practice, we would recommend using both moments
of X and regression models to construct the constraints in (1).

The power of the proposed test is also affected by the missingness mechanism of each Yk. If
the missingness mechanism does not depend on X, then the proposed test has no power detect-
ing deviation from MCAR because the constraints in (1) are all functions of X. In addition, for
estimation, the proposed procedure implicitly assumes a regression model of Y on X. When this
assumption is violated, the proposed weighted estimator will no longer be consistent.

Implementation of the proposed test is straightforward. A crucial step is to calculate 𝝆̂ by
solving (2). It turns out that this 𝝆̂ can be derived by minimizing F(𝝆) ≡ −

∑
i∈S log{1+𝝆Tĝ(X i; 𝜽̂)},

which is a convex minimization problem. See the work of Han (2014) for more discussions on the
implementation and for a Newton–Raphson-type algorithm.

4 EXTENSIONS TO INTERMITTENT MISSINGNESS
PATTERNS

We now consider the most challenging case where every variable in the data set is subject to
missingness and the missingness pattern is intermittent. Without loss of generality, in this case,
we drop the notation X and denote the full data vector by Y. We assume that there exists a subset
of subjects in the sample that have Y fully observed and denote this subset by 1. Let m1 be the
number of subjects in 1. Following the notation in Section 3, we let Sk denote the set of subjects
with Yk observed and nk the number of subjects in Sk, k = 1, … , p. Under MCAR, any subset of
subjects taken from the original sample based only on their missingness patterns forms a random
sample from the population. In particular, for any k = 1, … , p, the subjects in 1 and those in
Sk with Yk observed form two random samples, and thus, the sample mean of Yk based on 1
should be close to the sample mean based on Sk. Such an intuition provides a way to construct
constraints on a set of weights for the subjects in 1, where these weights should be close to the
uniform weights under MCAR.
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More formally, let wi be the weights on the subjects in 1. We consider the ŵi that maximize∏
i∈1

wi subject to the following constraints on wi:

wi > 0,
∑

i∈1

wi = 1,
∑

i∈1

wiYki = Ȳk for k ∈ , (4)

where Ȳk = n−1
k
∑

i∈Sk
Yki and  = {k∗ ∶ 1 ≤ k∗ ≤ p and nk∗ > m1}. Suppose that  = {k1, … , kd}

with d ≤ p. We then have

ŵi =
1

m1

1
1 + 𝝆̂Tĝi

, i ∈ 1,

where 𝝆̂ solves
1

m1

∑
i∈1

ĝi

1 + 𝝆̂Tĝi
= 𝟎 (5)

and ĝi = (Yk1i − Ȳk1 , … ,Ykdi − Ȳkd)
T. A large deviation from ŵi to 1∕m1 will provide evidence

against MCAR. More specifically, we define the test statistic as

TINT = −2
∑

i∈1

log(m1ŵi),

where the subscript “INT” denotes intermittent missingness patterns. The following result gives
the asymptotic distribution of TINT and can be used to test if Y is MCAR. The proof is given in the
Appendix.

Theorem 3. Under H0: Y is MCAR, the test statistic TINT has asymptotically the same distri-
bution as

∑d
l=1 𝛾lQl, where Ql are independent 𝜒2-distributed random variables with one degree

of freedom and 𝛾 l are the eigenvalues of {E(g∗g∗T)}−1V. Here, g∗ = (Yk1 − 𝜇k1 , … ,Ykd − 𝜇kd)
T,

𝜇kr = E(Ykr ) for r = 1, … , d, V = (vrs)r,s= 1,… ,d,

vrr =
(

1 − 𝜋c

𝜋kr

)
E(Ykr − 𝜇kr )

2,

vrs =
(

1 − 𝜋c

𝜋kr

− 𝜋c

𝜋ks

+
𝜋c𝜋kskr

𝜋ks𝜋kr

)
E
{
(Ykr − 𝜇kr )(Yks − 𝜇ks)

}
, r ≠ s,

𝜋c = P(Rc = 1), 𝜋kskr = P(Rks = 1,Rkr = 1), and Rc is the indicator indicating if a subject is
in 1.

For implementation, the quantities needed in Theorem 3 are estimated as follows: 𝜇kr ≃
n−1

kr

∑
i∈Skr

Ykri, E(g∗g∗T) ≃ m−1
1
∑

i∈1
ĝiĝ

T
i , 𝜋c ≃ m1∕n, 𝜋k ≃ nk∕n, 𝜋kskr ≃ nkskr∕n,

E(Ykr − 𝜇kr )
2 ≃ n−1

kr

∑
i∈Skr

(
Ykri − n−1

kr

∑
𝑗∈Skr

Ykr𝑗

)2

,

E
{
(Ykr − 𝜇kr )(Yks − 𝜇ks)

}
≃ n−1

kskr

∑
i∈Skskr

{(
Yksi − n−1

ks

∑
𝑗∈Sks

Yks𝑗

)(
Ykri − n−1

kr

∑
𝑗∈Skr

Ykr𝑗

)}
,

where Skskr is the set of subjects with both Yks and Ykr observed and nkskr is the number of subjects
in Skskr .

Unlike (1) in Section 3 where h(X;𝜽) can include both moments of X and regression mod-
els for E(Y ∣ X ), for the constraints in (4), we only used moments of Y. In principle, regression
models for one component of Y conditional on other components can also be included in (4).
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However, the implementation becomes impractical due to the complexity of intermittent miss-
ingness patterns. When MCAR is rejected by the test in Theorem 3, estimators constructed using
the calibration weights ŵi are not consistent in general. For example, E(Yk) may be estimated
by

∑
i∈1

ŵiYki, which is simply Ȳk = n−1
k
∑

i∈Sk
Yki from (4) and is not a consistent estimator of

E(Yk) unless the missingness of Yk does not depend on any other components of Y. In this case,
similar to all existing methods, some specific model assumptions on both the missingness mech-
anism and/or the data distribution are needed to obtain consistent estimators for the quantities
of interest.

5 SIMULATION STUDIES

5.1 Simulation Study 1
For the scenario considered in Section 3, we use a simulation setup mimicking the one in Chen
and Little (1999) to study the Type I error of the proposed test under MCAR and the power
under different missingness mechanisms. Three covariates are independently generated as X1 ∼
Uniform(−1, 1), X2 ∼ N(0, 1), and X3 ∼ Bernoulli(0.5). Given the covariates, Ỹ1 and Ỹ2 are inde-
pendently generated from N(X1 + 2X2 + 3X3, 1). The two response variables are then generated
as Y1 = Ỹ1 and Y2 = UỸ1 + (1 − U)Ỹ2 where U ∼ Bernoulli{(1 + X1)∕2}.

We follow steps similar to those in Chen and Little (1999) to create missing values. First, each
subject is classified into one of two sets with probabilities ps and 1 − ps, respectively. Then, in
the first set, Y2 is fully observed while Y1 is missing with probability ps

1; in the second set, Y1
is fully observed while Y2 is missing with probability ps

2. The dependence of ps, ps
1, and ps

2 on X
and/or Y determines the missingness mechanism. Table 1 gives a list of some specific combina-
tions of (ps, ps

1, ps
2) we use in the simulation study, where the parameters 𝛼1 and 𝛼2 take different

values corresponding to different degrees of departure from MCAR (𝛼1 = 0 and 𝛼2 = 0). The
missingness mechanism that each specific combination corresponds to is also given. To distin-
guish different combinations and make them easier to be referred to in Tables 2, 3, and 4, each
specific combination, except the one corresponding to MCAR, is assigned a code in the form of
“letter-number,” where “a” and “b” correspond to ps = 0.5 and ps = (1 + X1)∕2 and “1,” “2,” and
“3” correspond to MAR with missingness depending only on X, MAR with missingness depending
on the observed response, and MNAR, respectively.

Since the correct regression models for E(Y1 ∣ X ) and E(Y2 ∣ X ) are linear models with regres-
sors X1, X2, and X3, including both the first moment of X and those linear regression models in

TABLE 1 The combinations of (ps, ps
1, ps

2) used in Simulation Study 1

ps ps
𝟏 ps

𝟐 Mechanism Code

0.5 {1 + exp(0.5)}−1 {1 + exp(0.5)}−1 MCAR
0.5 {1 + exp(0.5 − 𝛼1∕2 + 𝛼1X2)}−1 {1 + exp(0.5 − 𝛼2∕2 + 𝛼2X2)}−1 MAR a-1
0.5 {1 + exp(0.5 − 𝛼1∕2 + 𝛼1Y2)}−1 {1 + exp(0.5 − 𝛼2∕2 + 𝛼2Y1)}−1 MAR a-2
0.5 {1 + exp(0.5 − 𝛼1∕2 + 𝛼1Y1)}−1 {1 + exp(0.5 − 𝛼2∕2 + 𝛼2Y2)}−1 MNAR a-3
(1 + X1)∕2 {1 + exp(0.5 − 𝛼1∕2 + 𝛼1X2)}−1 {1 + exp(0.5 − 𝛼2∕2 + 𝛼2X2)}−1 MAR b-1
(1 + X1)∕2 {1 + exp(0.5 − 𝛼1∕2 + 𝛼1Y2)}−1 {1 + exp(0.5 − 𝛼2∕2 + 𝛼2Y1)}−1 MAR b-2
(1 + X1)∕2 {1 + exp(0.5 − 𝛼1∕2 + 𝛼1Y1)}−1 {1 + exp(0.5 − 𝛼2∕2 + 𝛼2Y2)}−1 MNAR b-3

Note. MAR = missing at random; MCAR = missing completely at random; MNAR = missing not at random.
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TABLE 2 Results on the Type I error under MCAR (missing completely at random) and power under different
missingness mechanisms for Simulation Study 1 based on 1000 replications. The significance level is set to be
5%. The numbers are percentages

n = 𝟏𝟎𝟎 n = 𝟐𝟎𝟎
Little C&L Tsum Little C&L Tsum Little C&L Tsum Little C&L Tsum

𝜶1 𝜶2 (a) ps = 𝟎.𝟓 (b) ps = (𝟏 + X1)∕𝟐 (a) ps = 𝟎.𝟓 (b) ps = (𝟏 + X1)∕𝟐
MCAR MCAR

0 0 4.3 30 5.7 – – – 3.7 18.3 4.1 – – –
a-1 MAR b-1 MAR a-1 MAR b-1 MAR

0.3 −0.3 6.7 31.6 13.9 78.9 33.9 90.6 15.6 16.6 23.2 99 18.6 99.8
0.6 −0.3 15.8 29.6 25 86.8 31.7 95.1 35.1 17.8 47.5 99.7 18.3 99.8
0.3 0.3 11.6 28.8 12.5 84.1 29.3 92.9 23.3 15.5 20.1 99.6 16.1 99.8
0.6 0.3 25.5 26.7 23.6 91.5 27.3 96.9 57.1 16.3 49.9 99.9 17.6 99.9

a-2 MAR b-2 MAR a-2 MAR b-2 MAR
0.3 −0.3 45.2 39.1 55.7 98.7 38.5 99.5 82.1 27.4 86.3 100 27.8 100
0.6 −0.3 79.2 44.5 83 99.8 44.8 99.9 99.1 32.6 99.2 100 40 100
0.3 0.3 67.8 44.3 58.6 96.9 45.9 97.3 97.1 33.4 93.6 100 30.7 99.9
0.6 0.3 93.8 49.3 89.8 99.8 50.7 99.8 100 41.2 99.9 100 40.3 100

a-3 MNAR b-3 MNAR a-3 MNAR b-3 MNAR
0.3 −0.3 39.1 35.2 55.8 98.7 35 99.4 77.6 21.9 87.1 100 21.6 100
0.6 −0.3 72.2 39 85.1 99.4 35.7 99.7 97.7 25.9 98.6 100 24.7 100
0.3 0.3 63.1 40.5 59.8 96.4 44 97.7 95.7 25.7 93.6 100 25.5 100
0.6 0.3 91.7 44.2 89.3 99.7 44.6 99.5 99.9 30.6 99.9 100 27.2 100

Note. Little = the test in Little (1988); C&L = the test in Chen and Little (1999); Tsum = our proposed test; MAR = missing at
random; MNAR = missing not at random.

h(X;𝜽) result in collinearity. Therefore, we simply take h(X;𝜽) = X. We compare the proposed
test with the ones in Little (1988) and Chen and Little (1999). Simulation results are summa-
rized based on 1000 replications with sample size n = 100 and 200 for each replication, and the
significance level is set at 5%.

Table 2 contains results on the Type I error under MCAR and the power under different miss-
ingness mechanisms. The overall performance of the proposed test is quite close to that of Little
(1988), and both are better than the test of Chen and Little (1999). As pointed out by Chen and
Little (1999), their test actually tests the unbiasedness of a set of GEEs rather than the MCAR
mechanism, and thus, the performance depends on the specific form of the estimating equations
and does not always agree with the theoretical behavior of a test for MCAR.

Tables 3 and 4 show the performance of the weighted estimators of E(Y1) and E(Y2) based on
the calibration weights that were used to construct the test statistic, with sample size n = 100
and 200, respectively. Under MCAR, both the proposed estimator 𝜇̂k and the complete-case aver-
age estimator 𝜇̂kcc have negligible bias, k = 1, 2. The estimator 𝜇̂kcc loses consistency when
the missingness mechanism is no longer MCAR, as demonstrated by its nonnegligible rela-
tive bias in those cases. On the contrary, the proposed estimator 𝜇̂k is still consistent in cases
a-1 and b-1 where the missingness depends only on the fully observed covariates. Surpris-
ingly, for the other cases a-2, a-3, b-2, and b-3, although 𝜇̂k is theoretically not consistent, its
relative bias is very small compared to that of 𝜇̂kcc. This observation that calibration-based
estimators have relatively small bias even if their theoretical consistency cannot be formally
shown has also been noted in Han (2014, 2016a) and demonstrates the superiority of these
estimators.



ZHANG ET AL. Scandinavian Journal of Statistics 281

TABLE 3 Results on the estimation of E(Y1) = E(Y2) = 1.5 using the calibration weights for
Simulation Study 1 based on n = 100 and 1000 replications. The numbers have been multiplied by 100

Estimation of E(Y1) Estimation of E(Y2)
𝝁̂𝟏 𝝁̂𝟏cc 𝝁̂𝟐 𝝁̂𝟐cc

𝜶1 𝜶2 rBias RMSE rBias RMSE rBias RMSE rBias RMSE
MCAR

0 0 −1 28 0 31 0 28 0 31
a-1 MAR

0.3 −0.3 −1 28 5 32 0 28 −6 31
0.6 −0.3 −1 28 12 36 0 28 −6 31
0.3 0.3 −1 28 5 32 0 28 6 33
0.6 0.3 −1 28 12 36 0 28 6 33

a-2 MAR
0.3 −0.3 1 28 16 38 −2 28 −20 43
0.6 −0.3 1 28 25 48 −2 28 −20 43
0.3 0.3 1 28 16 38 1 28 16 38
0.6 0.3 1 28 25 48 1 28 16 39

a-3 MNAR
0.3 −0.3 2 28 18 40 −3 29 −22 45
0.6 −0.3 3 28 27 50 −3 29 −22 45
0.3 0.3 2 28 18 40 2 28 17 40
0.6 0.3 3 28 27 50 2 28 17 40

b-1 MAR
0.3 −0.3 0 28 12 36 0 28 −10 33
0.6 −0.3 −1 28 18 42 0 28 −10 33
0.3 0.3 0 28 12 36 0 28 0 30
0.6 0.3 −1 28 18 42 0 28 0 30

b-2 MAR
0.3 −0.3 1 28 21 44 −3 28 −28 52
0.6 −0.3 1 28 31 54 −3 28 −28 52
0.3 0.3 1 28 21 44 1 28 12 35
0.6 0.3 1 28 31 54 1 28 12 35

b-3 MNAR
0.3 −0.3 2 28 23 45 −4 28 −29 53
0.6 −0.3 4 28 33 58 −4 29 −29 53
0.3 0.3 2 28 23 46 2 28 12 35
0.6 0.3 4 28 33 58 2 28 12 35

Note. 𝜇̂k, 𝜇̂kcc = estimators of E(Yk) based on our proposed procedure and based on complete-case analysis, respectively,
k = 1, 2; rBias = relative bias 1000−1 ∑1000

b=1 {𝜇̂kb − E(Yk)}∕E(Yk), where 𝜇̂kb is the estimate of E(Yk) from the bth
replication; RMSE = root-mean-square error; MAR = missing at random; MCAR = missing completely at random;
MNAR = missing not at random.

5.2 Simulation Study 2
For the scenario of intermittent missingness considered in Section 4, we use a simulation setup
similar to that in Little (1988). Random variables Ỹ1, Ỹ2, Ỹ3, and Ỹ4 are generated as

Ỹ1 = Z1
√

1∕q,

Ỹ2 = Z1
√

0.9∕q + Z2
√

0.1∕q,

Ỹ3 = Z1
√

0.2∕q + Z2
√

0.1∕q + Z3
√

0.7∕q,

Ỹ4 = −Z1
√

0.6∕q + Z2
√

0.25∕q + Z3
√

0.1∕q + Z4
√

0.05∕q,
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TABLE 4 Results on the estimation of E(Y1) = E(Y2) = 1.5 using the calibration weights for
Simulation Study 1 based on n = 200 and 1000 replications. The numbers have been multiplied by 100

Estimation of E(Y1) Estimation of E(Y2)
𝝁̂𝟏 𝝁̂𝟏cc 𝝁̂𝟐 𝝁̂𝟐cc

𝜶1 𝜶2 rBias RMSE rBias RMSE rBias RMSE rBias RMSE
MCAR

0 0 0 19 0 21 0 20 0 21
a-1 MAR

0.3 −0.3 0 19 6 23 0 20 −5 22
0.6 −0.3 0 19 12 28 0 20 −5 22
0.3 0.3 0 19 6 23 0 19 7 23
0.6 0.3 0 19 12 28 0 19 7 23

a-2 MAR
0.3 −0.3 1 19 17 33 −1 20 −20 37
0.6 −0.3 2 19 26 44 −1 20 −20 37
0.3 0.3 1 19 17 33 2 19 17 32
0.6 0.3 2 19 26 44 2 19 17 32

a-3 MNAR
0.3 −0.3 2 19 18 34 −3 20 −21 38
0.6 −0.3 4 20 28 46 −3 20 −21 38
0.3 0.3 2 19 18 34 3 20 18 34
0.6 0.3 4 20 28 46 3 20 18 34

b-1 MAR
0.3 −0.3 0 19 12 28 0 20 −10 26
0.6 −0.3 0 19 19 35 0 20 −10 26
0.3 0.3 0 19 12 28 0 20 0 22
0.6 0.3 0 19 19 35 0 20 0 22

b-2 MAR
0.3 −0.3 1 19 21 38 −2 20 −27 46
0.6 −0.3 1 19 31 51 −2 20 −27 46
0.3 0.3 1 19 21 38 2 20 12 27
0.6 0.3 1 19 31 51 2 20 12 27

b-3 MNAR
0.3 −0.3 3 20 23 40 −3 20 −28 48
0.6 −0.3 5 20 34 54 −3 20 −28 48
0.3 0.3 3 20 23 40 3 20 13 28
0.6 0.3 5 20 34 54 3 20 13 28

Note. 𝜇̂k, 𝜇̂kcc = estimators of E(Yk) based on our proposed procedure and based on complete-case analysis, respectively,
k = 1, 2; rBias = relative bias 1000−1 ∑1000

b=1 {𝜇̂kb − E(Yk)}∕E(Yk), where 𝜇̂kb is the estimate of E(Yk) from the bth
replication; RMSE = root-mean-square error; MAR = missing at random; MCAR = missing completely at random;
MNAR = missing not at random.

where (Z1,Z2,Z3,Z4)T ∼ N(0, I). Three different distributions for the final responses Y1, Y2, Y3,
and Y4 are considered: a multivariate normal distribution by setting q = 1 and Y = Ỹ , a log-
normal distribution by setting q = 1 and Y = exp(Ỹ ), and a multivariate t-distribution with
three degrees of freedom by setting q ∼ 𝜒2(3) and Y = Ỹ . The missingness mechanism is set to
be MCAR with 70% of the subjects being complete cases, that is, with the pattern (1, 1, 1, 1) for
R = (R1,R2,R3,R4), and 5% for each of the six patterns (1, 1, 1, 0), (1, 1, 0, 0), (1, 1, 0, 1), (1, 0, 0, 1),
(1, 0, 1, 1), and (1, 0, 1, 0). Therefore, Y1 is always observed but each of Y2, Y3, and Y4 is observed
only in four different patterns.
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For this simulation setup, let wi be the weights on the subjects in 1, that is, the subjects with
pattern (1, 1, 1, 1). The calibration constraints in (4) now become

wi > 0,
∑

i∈1

wi = 1,

∑
i∈1

wiY1i =
1
n

n∑
𝑗=1

Y1𝑗 ,

∑
i∈1

wiY2i =
1

0.85n
∑
𝑗∈S2

Y2𝑗 ,

∑
i∈1

wiY3i =
1

0.85n
∑
𝑗∈S3

Y3𝑗 ,

∑
i∈1

wiY4i =
1

0.85n
∑
𝑗∈S4

Y4𝑗 .

Table 5 contains simulation results on the Type I error summarized based on 1000 replications,
with the test of Little (1988) included as a comparison. While the comparison is inconclusive with
n = 100, it seems to become clear as n increases to 200, 500, and 800. Under the latter three sample
sizes, when the data are normally distributed, both tests have a Type I error close to the nomi-
nal level. When the data distribution is skewed as in the lognormal case, Little's (1988) test tends
to have a Type I error larger than the nominal level when the sample size is not large enough,
whereas the proposed test has a Type I error closer to the nominal level. For the t-distribution
case, the proposed test also has a Type I error closer to the nominal level. The better overall perfor-
mance of the proposed test is partially due to the nature of the EL method that it does not require
assumptions of a specific data distribution. Similar to the work of Little (1988), power analysis is
not included here.

TABLE 5 Results on the Type I error under MCAR (missing completely at random) for
Simulation Study 2 based on 1000 replications. The numbers are percentages

Significance level
𝟏% 𝟓% 𝟏𝟎% 𝟐𝟎%

Distribution n Little TINT Little TINT Little TINT Little TINT

Normal 100 1 3.5 4.6 10.2 10.6 15.4 20.3 25.7
200 0.9 1 5.3 5.9 9.6 10.3 19 20
500 0.7 0.8 5.2 4.4 9.8 9 19.9 19.2
800 0.9 1.2 5 5.8 9.6 10.6 18.3 21.1

Lognormal 100 3.3 1.4 10 5.7 16.3 12.7 25.4 25.2
200 3.6 0.8 9.6 4.3 14.8 9.7 23.4 22.4
500 2.7 0.5 7.5 2.8 14.3 7.9 21.9 19.2
800 2.2 1 5.2 4.5 10.3 10.1 20.2 21.2

t on 3 df 100 2.9 3.2 7.6 7.9 12.1 12.7 21.9 21.7
200 3.1 2 8.3 6.8 12.5 10.9 21.4 19.6
500 2.4 0.8 7.1 3.9 12.6 8.5 22.8 18.6
800 2.2 1.2 7.1 4.7 12.1 10.1 21.4 20.5

Note. Little = the test in Little (1988); TINT = our proposed test; df = degrees of freedom.
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6 DATA APPLICATION

As an application of the proposed method, we consider data collected from the 2002 New York
City Social Indicators Survey. This survey was conducted by the School of Social Work at Columbia
University to study the household demographics of a representative sample from New York City.
Detailed information can be found in the Social Indicators Survey Codebook, downloadable from
http://www.stat.columbia.edu/~gelman/arm/examples/sis/, along with the data set.

We focus on subjects who worked in 2001, with either a regular or an odd job. Our main inter-
est is to estimate the population mean of annual income (N09_d) and total assets (not including
home) (N33). Three auxiliary variables are considered: age with a range from 18 to 80 (age), num-
ber of months worked altogether in 2001 with a range from 1 to 12 (N05), and number of hours
worked per week with a range from 1 to 97 (N06). Our analysis is based on n = 1, 049 subjects for
whom these auxiliary variables are available. For the two variables of interest, N09_d and N33,
values “do not know” and “refused” are also treated as missing data in our analysis. In total, there
are 378 (36%) subjects with N09_d missing and 479 (46%) subjects with N33 missing.

We use the first moment of the auxiliary variables to construct the calibration constraints,
and this is equivalent to fitting a linear regression of the responses on the auxiliary variables
with main effects. For estimation, in addition to our proposed calibration-based estimator (CAL),
we also calculate the inverse probability weighted (IPW) estimator (Horvitz & Thompson, 1952),
the augmented IPW (AIPW) estimator (Robins, Rotnitzky, & Zhao, 1994), and the average of the
complete cases (CC). For the IPW and AIPW estimators, the missingness probability is modeled
by logistic regression, and for the AIPW estimator, the response is modeled by linear regression,
both including main effects of the three auxiliary variables. Standard errors for all estimators are
calculated based on 1000 bootstrap samples.

Table 6 contains results of our analysis. For testing MCAR, both the individual tests and the
overall test are conducted, together with Little's (1998) test. All these tests reject MCAR. For esti-
mation, the estimated values and standard errors of our proposed estimator are very close to those
of the IPW and AIPW estimators. The complete-case analysis produces quite different results,
indicating its bias in estimation. Our proposed estimator is calculated based on the same weights
that were used for testing MCAR. If one were to use existing methods, however, one would need
to apply Little's (1998) test first and then calculate the IPW/AIPW estimator, with completely
different implementations for testing and for estimation.

TABLE 6 Results of the analysis of the 2002 New York City Social Indicators Survey
(n = 1049). The estimates and standard errors are in hundreds

Subsequent estimation
Testing MCAR N09_d N33

Test Value DF p Value Estimator Estimate S.E. Estimate S.E.
TN09_d 49.03 3 <0.0001 CAL 498.90 35.03 1425.63 330.31
TN33 14.69 3 0.0021 CC 521.81 36.80 1358.24 313.12
Tsum 63.72 – <0.0001 IPW 499.00 35.00 1426.61 329.19
Little 87.62 11 <0.0001 AIPW 498.97 35.06 1426.30 330.49

Note. TN09_d, TN33 = our proposed individual test for N09_d and N33, respectively; Tsum = our proposed
overall test; Little = the test in Little (1988); Value = value of the corresponding test statistic; DF = degrees
of freedom of the asymptotic 𝜒2-distribution; CAL = our proposed calibration-based estimator; CC = the
average of the complete cases; IPW = inverse probability weighted estimator; AIPW = augmented inverse
probability weighted estimator; S.E. = bootstrap standard error; MCAR = missing completely at random.

http://www.stat.columbia.edu/~gelman/arm/examples/sis/
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7 CONCLUDING REMARKS

Ascertaining the missingness mechanism is always a crucial step in missing-data analysis. While
the MAR is, in general, not testable, the MCAR is. Under MCAR, data analysis becomes fairly easy
since a complete-case analysis would be sufficient. We have proposed a nonparametric approach
based on the EL method to test MCAR. The proposed approach not only provides an alternative
to existing tests, but more importantly, for the commonly seen scenarios with the presence of
fully observed covariates, it leads to a unified procedure for estimation after the MCAR is rejected
with little extra effort beyond the calculation of the test statistic. Existing tests, on the contrary,
focus exclusively on testing, and the estimation after MCAR is rejected has to invoke possibly
completely different procedures.

In this paper, we considered estimating the population mean of certain response variables that
are subject to missingness. Extensions to estimating parameters defined through estimating equa-
tions can be made. Since the missingness mechanism does not depend on the model for param-
eter estimation, a simple extension is to directly apply the proposed test when the parameters
of interest are defined through estimating equations. The resulting weights can then be used to
weight the estimating equations for estimation. However, estimators derived this way may not be
consistent under MAR because the calibration constraints in this paper are constructed to ensure
consistency under MAR when estimating population means. A more complex extension leading
to consistency under MAR is to follow the idea in Han (2014) and construct calibration constraints
using the estimating functions rather than the moments of fully observed variables. A detailed
account of this extension is beyond the scope of this paper and is of interest for future research.

The numerical performance of the proposed procedure could be jeopardized if the number of
constraints gets too large. This is particularly an issue when the dimension of the fully observed
covariates is high. In this case, the functions used for calibration constraints need to be carefully
chosen. One possible solution would be to use moments of those covariates that are considered
more relevant in explaining the missingness mechanism, instead of moments of all the covari-
ates, combined with some selected regression models, to construct the calibration constraints.
More investigation in the case of high-dimensional covariates is needed, both theoretically and
numerically.
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APPENDIX

Proof of Theorem 1. Let 𝜽∗ denote the probability limit of 𝜽̂ and 𝜋0 = P(R = 1). A Taylor
expansion of (2) at (𝝆 = 0,𝜽∗) yields

𝟎 = 1
n

n∑
i=1

Riĝ(X i;𝜽∗) −

{
1
n

n∑
i=1

Riĝ(X i;𝜽∗)ĝ(X i;𝜽∗)T

}
𝝆̂

+

[
1
n

n∑
i=1

Ri

{
𝜕h(X i;𝜽∗)

𝜕𝜽
− 1

n

n∑
𝑗=1

𝜕h(X 𝑗 ;𝜽∗)
𝜕𝜽

}]
(𝜽̂ − 𝜽∗) + op(n−1∕2)

= 1
n

n∑
i=1

Riĝ(X i;𝜽∗) − 𝜋0E
{
g(X;𝜽∗)g(X;𝜽∗)T} 𝝆̂ + op(n−1∕2),

where g(X;𝜽) = h(X;𝜽) − E{h(X;𝜽)}. This implies

n1∕2𝝆̂ =
[
𝜋0E

{
g(X;𝜽∗)g(X;𝜽∗)T}]−1n−1∕2

n∑
i=1

Riĝ(X i;𝜽∗) + op(1).

On the other hand, simple calculations show that

n−1∕2
n∑

i=1
Riĝ(X i;𝜽∗) = n−1∕2

n∑
i=1

(Ri − 𝜋0)g(X i;𝜽∗) + op(1),

and thus,

n1∕2𝝆̂
d
−→N

(
𝟎, 1 − 𝜋0

𝜋0

[
E
{
g(X;𝜽∗)g(X;𝜽∗)T}]−1

)
.

A Taylor expansion of (3) at (𝝆 = 0,𝜽∗) gives

T =
(

1 − n1

n

)−1 ⎡⎢⎢⎣2

{
n−1∕2

n∑
i=1

Riĝ(X i;𝜽∗)

}T

n1∕2𝝆̂

−n1∕2𝝆̂T

{
1
n

n∑
i=1

Riĝ(X i;𝜽∗)ĝ(X i;𝜽∗)T

}
n1∕2𝝆̂

]
+ op(1)

=
(

1 − n1

n

)−1
n1∕2𝝆̂T

{
1
n

n∑
i=1

Riĝ(X i;𝜽∗)ĝ(X i;𝜽∗)T

}
n1∕2𝝆̂ + op(1)

d
−→𝜒2

d .

Proof of Theorem 2. Some calculations show that Tsum = WTW + op(1), where

W = n−1∕2
n∑

i=1

(
WT

1i, … ,WT
pi

)T

and
W ki = {𝜋k(1 − 𝜋k)}−1∕2[E {

gk(𝜽k∗)gk(𝜽k∗)T}]−1∕2(Rki − 𝜋k)gki(𝜽k∗).
It is easy to check that Var(W k) = Idk and Cov(Wk,Wr) = Σkr. Therefore, we have

W
d
−→N(𝟎,Σ), and thus, the desired result follows (e.g., Imhof, 1961).

Proof of Theorem 3. A Taylor expansion of (5) at 𝝆∗ = 0 yields

n1∕2𝝆̂ =
{

E(Rcg
∗g∗T)

}−1n−1∕2
n∑

i=1
Rciĝi + op(1).
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Some calculations show that

n−1∕2
n∑

i=1
Rciĝi = n−1∕2

n∑
i=1

𝝋i + op(1) ≡ n−1∕2
n∑

i=1
(𝜑k1i, … , 𝜑kdi)T + op(1),

where 𝜑kr = (Rc − Rkr𝜋c∕𝜋kr )(Ykr − 𝜇kr ) for r = 1, … , d. It is easy to see that E(𝝋) = 0 and
Var(𝝋) = 𝜋cV. Therefore, we have

n1∕2𝝆̂
d
−→N

(
𝟎, 𝜋−1

c
{

E(g∗g∗T)
}−1V

{
E(g∗g∗T)

}−1
)
.

A Taylor expansion of TINT at 𝝆∗ = 0 gives

TINT = n1∕2𝝆̂T {
E(Rcg

∗g∗T)
}

n1∕2𝝆̂ + op(1).

The desired result then follows.
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