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Abstract

For estimation with missing data, a crucial step is to determine if the data are missing

completely at random (MCAR), in which case a complete-case analysis would suffice. Most

existing tests for MCAR do not provide a method for subsequent estimation once the MCAR is

rejected. In the setting of estimating means, we propose a unified approach for testing MCAR

and the subsequent estimation. Upon rejecting MCAR, the same set of weights used for testing

can then be used for estimation. The resulting estimators are consistent if the missingness of

each response variable depends only on a set of fully observed auxiliary variables and the true

outcome regression model is among the user-specified functions for deriving the weights. The

proposed method is based on the calibration idea from survey sampling literature and the

empirical likelihood theory.
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1 Introduction

Data collected from statistical studies are often incomplete. There are three widely adopted miss-

ingness mechanisms in the missing-data literature (e.g., Little and Rubin 2002): missing completely

at random (MCAR) where the missingness does not depend on either the observed or the missing

data, missing at random (MAR) where the missingness depends on the observed but not the missing

data, and missing not at random (MNAR) where the missingness depends on both the observed

and the missing data. Most existing methods for missing-data analysis are developed under the
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MAR mechanism, largely due to the mathematical triviality of MCAR and complexity of MNAR.

However, in cases where the data are indeed MCAR, a simple complete-case analysis would suffice

without turning to other possibly complicated methods. Therefore, a crucial first step for analysis

with missing data is to determine if the missingness mechanism is MCAR.

The most widely used test for MCAR mechanism was due to Little (1988). Although it was

proposed in the setting of multivariate normal data, the test is asymptotically valid regardless of the

distribution of the data. The basic idea behind the construction of the test is that, if the data are

MCAR, the subjects with each particular missingness pattern can be viewed as a random sample

from the population, and thus any significant difference between subjects with different missingness

patterns provides evidence against MCAR. For longitudinal data with dropouts, Diggle (1989)

proposed a nonparametric test and Ridout (1991) considered a parametric alternative by modeling

the dropout mechanism. Park and Davis (1993) extended the idea of Little (1988) to the case of

incomplete repeated categorical data. Chen and Little (1999) applied similar ideas and developed a

test for longitudinal data with intermittent missingness using the generalized estimating equations

(GEE) method (Liang and Zeger 1986). The test is carried out by testing the unbiasedness of the

GEE across different missingness patterns, and thus is not equivalent to testing MCAR. Besides,

this test requires the GEE model to be correctly specified. There have been some recent extensions

of Little (1988)’s idea by comparing the means, the covariance matrices and/or the distributions

across different missingness patterns (e.g., Kim and Bentler 2002; Jamshidian and Jalal 2010; Li

and Yu 2015).

Despite the importance of determining the missingness mechanism, the ultimate task of data

analysis is usually the subsequent estimation and inference. All the aforementioned works, however,

treat the testing for MCAR as a stand-alone problem without providing a natural way for subsequent

estimation once the MCAR mechanism is rejected. The subsequent estimation calls for some existing

methods that may require an implementation that is completely different from the testing procedure

itself. Our contribution in this paper is to propose a test for MCAR that also takes the subsequent

estimation into account, so that an estimator of the quantity of interest with desirable properties is

readily available once the MCAR is rejected. Our test does not impose any parametric assumptions

on the underlying data distribution.

Our proposed unified procedure for testing and subsequent estimation is based on the calibration

idea used in survey sampling literature (Deville and Särndal 1992; Wu and Sitter 2001) combined

with the empirical likelihood method (Owen 1988, 2001; Qin and Lawless 1994). Under the MCAR

mechanism, the complete cases are a random sample from the population, and thus the calibration

weights assigned to the complete cases should be uniform with some random perturbation. There-

fore, a significant deviation of the calibration weights from the uniform weights provides evidence

against MCAR. Upon rejecting MCAR, the calibration weights can be readily used to construct a

weighted estimator of the quantity of interest. Such an estimation approach agrees with the multi-

ply robust estimation procedure in recent missing-data literature (e.g., Han and Wang 2013; Chan
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and Yam 2014; Han 2014; Han 2016a, 2016b).

For ease of methodology illustration, we take the quantities of interest to be the population

means of certain response variables that are subject to missingness whereas some covariates are

fully observed, a commonly encountered scenario in practice, especially in survey sampling and

causal inference. The calibration weights are derived by matching the weighted average of certain

user-specified functions of the covariates based on the complete cases to the unweighted average

of those functions based on the whole sample. The functions may be certain moments of the

covariates or regression models of the response variables on the covariates. Upon rejecting MCAR,

the calibration weights lead to estimators that are the weighted average of the observed values

of the response variables, and these estimators are consistent if the missingness of each response

variable depends only on the covariates and the corresponding correct regression model is among

the user-specified functions used for calibration.

2 A Review of Some Existing Tests for MCAR

Following the notation in Little (1988), let Yi = (Y1i, · · · , Ypi)T denote the p-dimensional data vector

we intend to collect from subject i, i = 1, · · · , n, and Ri = (R1i, · · · , Rpi)
T the vector of missingness

indicators for Yi such that Rki = 1 if Yki is observed and Rki = 0 otherwise, k = 1, · · · , p. Under

MCAR the probability of observing Yk given the full data vector Y , P(Rk = 1 | Y ), does not

depend on Y . Let πk ≡ P(Rk = 1) denote this probability and assume that πk > 0 without loss of

generality. Let L denote the number of distinct missingness patterns in the data set, Ml the set

of subjects with pattern l, l = 1, · · · , L, and ml the number of subjects in Ml. The test statistic

proposed by Little (1988) for testing MCAR is

D2 =
L∑
l=1

ml(Ȳobs,l − µ̂obs,l)
TΣ̂−1obs,l(Ȳobs,l − µ̂obs,l),

where Ȳobs,l is the vector of sample means for the observed variables for pattern l, and µ̂obs,l and

Σ̂obs,l are the maximum likelihood estimators of the mean vector and the covariance matrix for the

observed variables for pattern l. Under MCAR, Little (1988) showed that D2 has an χ2-distribution

with degree of freedom
∑L

l=1 pl−p for Y following a multivariate normal distribution, where pl is the

number of observed variables in pattern l, and that this result is asymptotically true for Y following

other distributions. Little (1988) also raised the issue of possible heteroscedasticity of covariance

matrices across different missingness patterns. For normally distributed data, Kim and Bentler

(2002) proposed a method to address this issue by considering a combined test of homogeneity of

means and covariance matrices with the test statistic

G =
L∑
l=1

[
ml(Ȳobs,l − µ̂obs,l)

TΣ̂−1obs,l(Ȳobs,l − µ̂obs,l) +
ml − 1

2
tr
{

(Sobs,l − Σ̂obs,l)Σ̂
−1
obs,l

}2
]
,
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which asymptotically follows a χ2-distribution with degree of freedom
∑L

l=1 pl(pl+3)/2−p(p+3)/2,

where Sobs,l is the sample covariance matrix for the observed variables for pattern l and tr(A) is

the trace of a matrix A. Extensions without the normality assumption can be found in Jamshidian

and Jalal (2010) and Li and Yu (2015). Many of the aforementioned tests rely heavily on iterative

estimation procedures such as the EM algorithm, which can become computationally burdensome

especially when the number of missingness patterns is not small.

3 The Proposed Method

For ease of idea illustration, we first consider the simple scenario where the missingness only occurs

to one variable, denoted by Y , and a vector of auxiliary variables X is fully observed. Let R

denote the missingness indicator such that R = 1 if Y is observed and R = 0 otherwise. For a

random sample of size n, let S = {i : Ri = 1, i = 1, . . . , n} denote the set of complete cases

and n1 =
∑n

i=1Ri the number of complete cases. Under MCAR, S is a random sample from the

population, and thus the sample mean of X based on the complete cases should be close to the

sample mean based on the whole sample since both are consistent estimators of E(X). In other

words, if we assign positive weights wi to the subjects in S so that
∑

i∈S wiXi = n−1
∑n

j=1Xj

and
∑

i∈S wi = 1, then the wi can be chosen to be close to the uniform weight 1/n1 where the

deviation occurs only due to randomness. Therefore, a measure of the deviation from these wi to

1/n1 provides an assessment of whether MCAR holds.

In practice, the ultimate goal is usually to estimate E(Y ) regardless of whether Y is MCAR.

The estimation is often carried out by fitting a regression model for E(Y |X) and then taking the

sample mean of the fitted values over the whole sample. It is clear that the argument in the previous

paragraph on using X to form constraints also applies to regression models viewed as functions of

X. Following the formulation of the empirical likelihood (EL) method (e.g., Owen, 1988; Qin and

Lawless 1994), we consider the weights ŵi that maximize
∏

i∈S wi subject to the constraints

wi > 0 (i ∈ S),
∑
i∈S

wi = 1,
∑
i∈S

wih(Xi; θ̂) =
1

n

n∑
j=1

h(Xj; θ̂), (1)

where h(X;θ) is a d-dimensional vector of user-specified functions of X, possibly depending on

some parameter θ that is estimated by θ̂. For example, h(X;θ) may include different moments

of X and/or different regression models for E(Y | X), and in the latter case θ is the vector of all

regression parameters. It turns out that, under MCAR, the ŵi are the weights we referred to in the

previous paragraph that are close to the uniform weights 1/n1 where the deviation occurs only due

to randomness.

The constraints in (1) are constructed based on the intuition that S is a random sample from the

population under MCAR. A natural question then is whether these constraints are still compatible,
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or in other words whether there still exist wi satisfying (1), when Y is not MCAR. The answer is

affirmative. It can be easily shown that (e.g., Han and Wang 2013)

E (w(Y,X) [h(X;θ)− E{h(X;θ)}] | R = 1) = 0,

where w(Y,X) = 1/P(R = 1 | Y,X). Then the constraints in (1) are simply the data version of

the above moment equality, and thus are compatible even when Y is not MCAR.

It follows from standard EL theory that the ŵi that maximize
∏

i∈S wi subject to (1) are given

by

ŵi =
1

n1

1

1 + ρ̂Tĝ(Xi; θ̂)
i ∈ S,

where ρ̂ is the Lagrange multiplier solving

1

n1

∑
i∈S

ĝ(Xi; θ̂)

1 + ρ̂Tĝ(Xi; θ̂)
= 0 (2)

and ĝ(Xi; θ̂) = h(Xi; θ̂)− n−1
∑n

j=1 h(Xj; θ̂). From the EL theory again, under MCAR, we have

ρ̂ = Op(n
−1/2), which implies that the ŵi are indeed equal to 1/n1 with a higher order perturbation.

Now define

T =

−2
∑
i∈S

log(n1ŵi)

1− n1/n
, (3)

which is a measure of discrepancy between the ŵi and 1/n1. The following result shows that T can

be used to test for MCAR, the proof of which is given in the Appendix.

Theorem 1. Under H0: Y is MCAR, the test statistic T has an asymptotic χ2-distribution with d

degrees of freedom.

When the MCAR is rejected, the ŵi can be directly used to construct an estimator µ̂ =
∑

i∈S ŵiYi

for the quantity of interest µ0 = E(Y ). The following proposition states the consistency of µ̂.

Proposition. Under MAR where the missingness of Y only depends on X, the estimator µ̂ is

consistent for µ0 if h(X;θ) contains a correctly specified regression model for E(Y |X).

This result is easy to see. Let a(X;β) be a correctly specified model such that a(X;β0) =

E(Y |X) for some β0, then

µ̂ =
∑
i∈S

ŵi{Yi − a(Xi; β̂)}+
1

n

n∑
j=1

a(Xj; β̂)

p−→ 1

P(R = 1)
E

[
R{Y − a(X;β0)}
1 + ρT

∗ g(X;θ∗)

]
+ E{a(X;β0)} = 0 + µ0 = µ0,

where β̂ is a consistent estimator of β0 that can be derived based on a complete-case analysis

because E(Y |X) = E(Y |X, R = 1) due to MAR, g(X;θ) = h(X;θ)−E{h(X;θ)} and θ∗ and ρ∗
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are the probability limits of θ̂ and ρ̂, respectively. Therefore, the usage of the weights ŵi is two-fold:

they provide a test for MCAR and an estimator for µ0, and thus make our proposed method more

attractive than existing ones.

Now we consider the case where Y = (Y1, · · · , Yp)T and each component of Y is subject to

missingness but the auxiliary variables X are still fully observed. Let Sk denote the set of subjects

with Yk observed and nk the number of subjects in Sk, k = 1, . . . , p. To test if Yk is MCAR, we can

directly apply the test statistic given in (3) to Yk based on a dk-dimensional vector of user-specified

functions hk(X;θk). Let ŵki, i ∈ Sk, denote the resulting weights for the subjects in Sk. It follows

from Theorem 1 that the test statistic

Tk =

−2
∑
i∈Sk

log(nkŵki)

1− nk/n

asymptotically follows the χ2-distribution with dk degrees of freedom if Yk is MCAR. Furthermore,

using the Tk, we are able to construct a test statistic to test if Y is MCAR as shown in the following

result, the proof of which is given in the Appendix.

Theorem 2. Under H0: Y is MCAR, the test statistic Tsum =
p∑

k=1

Tk has asymptotically the same

distribution as
∑m

l=1 λlQl, where m = d1 + · · · + dp and, for l = 1, . . . ,m, the Ql are independent

χ2-distributed random variables with 1 degree of freedom and the λl are the eigenvalues of

Σ =


Id1 Σ12 · · · Σ1p

Σ12 Id2
...

...
. . .

Σ1p · · · Idp

 .

Here Idk is the identity matrix with dimension dk and, for k, r = 1, . . . , p and k 6= r,

Σkr = {πkπr(1− πk)(1− πr)}−1/2(πkr − πkπr)

×
[
E{gk(θk∗)gk(θk∗)

T}
]−1/2 [

E{gk(θk∗)gr(θr∗)
T}
] [
E{gr(θr∗)gr(θr∗)T}

]−1/2
,

πk = P(Rk = 1), πkr = P(Rk = 1, Rr = 1) and gk(θk) ≡ gk(X;θk) = hk(X;θk)− E{hk(X;θk)}.

The eigenvalues λl are not necessarily distinct (e.g., Imhof 1961). In practice, in order to deter-

mine the critical value for the asymptotic distribution of Tsum, Σkr can be consistently estimated

by replacing πkr and πk with nkr/n and nk/n, respectively, where nkr is the number of subjects

with Yk and Yr observed simultaneously, and the expectations can be estimated by sample averages.

When the MCAR is rejected, the weights ŵki used for testing can then be used to construct an

estimator for E(Yk):
∑n

i=1RkiŵkiYki. Following the same argument as before, such an estimator

is consistent if the missingness of Yk depends only on X and one component of hk(X;θk) is the

correctly specified regression model for E(Yk |X).
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The construction of constraints in (1) is flexible in the sense that, in principle, any user-specified

functions of X can be considered. The use of moments of X is standard in survey sampling

literature on the calibration method (e.g., Deville and Särndal 1992; Chen and Sitter 1999). The

use of regression models has become popular in recent literature on calibration-based missing data

analysis (e.g., Wu and Sitter 2001; Qin and Zhang 2007; Qin et al. 2008; Tan 2010; Han and

Wang 2013; Chan and Yam 2014; Han 2014, 2016a, 2016b). Our extensive simulation study shows

that, using moments of X tends to lead to more power for the proposed test compared to using

regression models only. This makes intuitive sense because (1) holds for any functions of X whereas

a regression model only represents a particular function. On the other hand, including a correctly

specified regression model helps to achieve estimation consistency, as argued before in this section.

Therefore, in practice we would recommend using both moments of X and regression models to

construct the constraints in (1).

The power of the proposed test is also affected by the missingness mechanism of each Yk. If

the missingness mechanism does not depend on X, then the proposed test has no power detecting

deviation from MCAR because the constraints in (1) are all functions of X. In addition, for

estimation, the proposed procedure implicitly assumes a regression model of Y on X. When this

assumption is violated, the proposed weighted estimator will no longer be consistent.

Implementation of the proposed test is straightforward. A crucial step is to calculate ρ̂ by solving

(2). It turns out that this ρ̂ can be derived by minimizing F (ρ) ≡ −
∑
i∈S

log{1 +ρTĝ(Xi; θ̂)}, which

is a convex minimization problem. See Han (2014) for more discussions on the implementation and

for a Newton-Raphson-type algorithm.

4 Extensions to Intermittent Missingness Patterns

We now consider the most challenging case where every variable in the data set is subject to

missingness and the missingness pattern is intermittent. Without loss of generality, in this case we

drop the notation X and denote the full data vector by Y . We assume that there exits a subset

of subjects in the sample that have Y fully observed and denote this subset by M1. Let m1 be

the number of subjects in M1. Following the notation in Section 3, we let Sk denote the set of

subjects with Yk observed and nk the number of subjects in Sk, k = 1, . . . , p. Under MCAR, any

subset of subjects taken from the original sample based only on their missingness patterns form a

random sample from the population. In particular, for any k = 1, . . . , p, the subjects in M1 and

those in Sk with Yk observed form two random samples, and thus the sample mean of Yk based on

M1 should be close to the sample mean based on Sk. Such an intuition provides a way to construct

constraints on a set of weights for the subjects in M1, where these weights should be close to the

uniform weights under MCAR.

More formally, let wi be the weights on the subjects in M1. We consider the ŵi that maximize
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∏
i∈M1

wi subject to the following constraints on wi:

wi > 0,
∑
i∈M1

wi = 1,
∑
i∈M1

wiYki = Ȳk for k ∈ K, (4)

where Ȳk = n−1k

∑
i∈Sk

Yki and K = {k∗ : 1 ≤ k∗ ≤ p and nk∗ > m1}. Suppose that K = {k1, . . . , kd}
with d ≤ p. We then have

ŵi =
1

m1

1

1 + ρ̂Tĝi
, i ∈M1,

where ρ̂ solves
1

m1

∑
i∈M1

ĝi
1 + ρ̂Tĝi

= 0 (5)

and ĝi = (Yk1i − Ȳk1 , · · · , Ykdi − Ȳkd)T. A large deviation from the ŵi to 1/m1 will provide evidence

against MCAR. More specifically, we define the test statistic as

TINT = −2
∑
i∈M1

log (m1ŵi) ,

where the subscript “INT” denotes intermittent missingness patterns. The following result gives

the asymptotic distribution of TINT and can be used to test if Y is MCAR. The proof is given in

the Appendix.

Theorem 3. Under H0: Y is MCAR, the test statistic TINT has asymptotically the same distribution

as
∑d

l=1 γlQl, where the Ql are independent χ2-distributed random variables with 1 degree of freedom

and the γl are the eigenvalues of {E(g∗g∗T)}−1V . Here g∗ = (Yk1 − µk1 , . . . , Ykd − µkd)T, µkr =

E(Ykr) for r = 1, . . . , d, V = (vrs)r,s=1,...,d,

vrr =

(
1− πc

πkr

)
E(Ykr − µkr)

2,

vrs =

(
1− πc

πkr
− πc
πks

+
πcπkskr
πksπkr

)
E{(Ykr − µkr)(Yks − µks)}, r 6= s,

πc = P(Rc = 1), πkskr = P(Rks = 1, Rkr = 1) and Rc is the indicator indicating if a subject is in

M1

For implementation, the quantities needed in Theorem 3 are estimated as follows: µkr '
n−1kr

∑
i∈Skr

Ykri, E(g∗g∗T) ' m−11

∑
i∈M1

ĝiĝ
T
i , πc ' m1/n, πk ' nk/n, πkskr ' nkskr/n,

E(Ykr − µkr)
2 ' n−1kr

∑
i∈Skr

(Ykri − n−1kr

∑
j∈Skr

Ykrj)
2,

E{(Ykr − µkr)(Yks − µks)} ' n−1kskr

∑
i∈Skskr

{(Yksi − n−1ks

∑
j∈Sks

Yksj)(Ykri − n−1kr

∑
j∈Skr

Ykrj)},
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where Skskr is the set of subjects with both Yks and Ykr observed and nkskr is the number of subjects

in Skskr .

Unlike (1) in Section 3 where h(X;θ) can include both moments of X and regression models

for E(Y |X), for the constraints in (4) we only used moments of Y . In principle, regression models

for one component of Y conditional on other components can also be included in (4). However, the

implementation becomes impractical due to the complexity of intermittent missingness patterns.

When MCAR is rejected by the test in Theorem 3, estimators constructed using the calibration

weights ŵi are not consistent in general. For example, E(Yk) may be estimated by
∑

i∈M1
ŵiYki,

which is simply Ȳk = n−1k

∑
i∈Sk

Yki from (4) and is not a consistent estimator of E(Yk) unless the

missingness of Yk does not depend on any other components of Y . In this case, similar to all

existing methods, some specific model assumptions on both the missingness mechanism and/or the

data distribution are needed to obtain consistent estimators for the quantities of interest.

5 Simulation Studies

5.1 Simulation Study 1

For the scenario considered in Section 3, we use a simulation setup mimicing the one in Chen

and Little (1999) to study the type I error of the proposed test under MCAR and the power

under different missingness mechanisms. Three covariates are independently generated as X1 ∼
Uniform(−1, 1), X2 ∼ N(0, 1) and X3 ∼ Bernoulli(0.5). Given the covariates, Ỹ1 and Ỹ2 are

independently generated from N(X1+2X2+3X3, 1). The two response variables are then generated

as Y1 = Ỹ1 and Y2 = UỸ1 + (1− U)Ỹ2 where U ∼ Bernoulli{(1 +X1)/2}.
We follow steps similar to those in Chen and Little (1999) to create missing values. First, each

subject is classified into one of two sets with probabilities ps and 1− ps, respectively. Then, in the

first set, Y2 is fully observed while Y1 is missing with probability ps1; in the second set, Y1 is fully

observed while Y2 is missing with probability ps2. The dependence of ps, ps1 and ps2 on X and/or

Y determines the missingness mechanism. Table 1 gives a list of some specific combinations of

(ps, ps1, p
s
2) we use in the simulation study, where the parameters α1 and α2 take different values

corresponding to different degrees of departure from MCAR (α1 = 0 and α2 = 0). The missingness

mechanism that each specific combination corresponds to is also given. To distinguish different

combinations and make them easier to be referred to in Tables 2, 3 and 4, each specific combination,

except the one corresponding to MCAR, is assigned a code in the form of “letter-number”, where

“a” and “b” correspond to ps = 0.5 and ps = (1 +X1)/2 and “1”, “2” and “3” correspond to MAR

with missingness depending only on X, MAR with missingness depending on the observed response

and MNAR, respectively.

Since the correct regression models for E(Y1|X) and E(Y2|X) are linear models with regressors

X1, X2 and X3, including both the first moment of X and those linear regression models in h(X;θ)
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results in collinearity. Therefore, we simply take h(X;θ) = X. We compare the proposed test with

the ones in Little (1988) and Chen and Little (1999). Simulation results are summarized based on

1000 replications with sample size n = 100 and 200 for each replication, and the significance level

is set at 5%.

Table 2 contains results on the type I error under MCAR and the power under different miss-

ingness mechanisms. The overall performance of the proposed test is quite close to that of Little

(1988), and both are better than the test of Chen and Little (1999). As pointed out by Chen and

Little (1999), their test actually tests the unbiasedness of a set of generalized estimating equations

rather than the MCAR mechanism, and thus the performance depends on the specific form of the

estimating equations and does not always agree with the theoretical behaviour of a test for MCAR.

Tables 3 and 4 show the performance of the weighted estimators of E(Y1) and E(Y2) based

on the calibration weights that were used to construct the test statistic, with sample size n =

100 and 200, respectively. Under MCAR, both the proposed estimator µ̂k and the complete-case

average estimator µ̂kcc have negligible bias, k = 1, 2. The estimator µ̂kcc loses consistency when

the missingness mechanism is no longer MCAR, demonstrated by its non-negligible relative bias in

those cases. On the contrary, the proposed estimator µ̂k is still consistent in cases a-1 and b-1 where

the missingness depends only on the fully observed covariates. Surprisingly, for the other cases a-2,

a-3, b-2 and b-3, although µ̂k is theoretically not consistent, its relative bias is very small compared

to that of µ̂kcc. This observation that calibration-based estimators have relatively small bias even

if their theoretical consistency cannot be formally shown has also been noted in Han (2014, 2016a)

and demonstrates the superiority of these estimators.

5.2 Simulation Study 2

For the scenario of intermittent missingness considered in Section 4, we use a simulation setup

similar to that in Little (1988). Random variables Ỹ1, Ỹ2, Ỹ3 and Ỹ4 are generated as

Ỹ1 = Z1

√
1/q,

Ỹ2 = Z1

√
0.9/q + Z2

√
0.1/q,

Ỹ3 = Z1

√
0.2/q + Z2

√
0.1/q + Z3

√
0.7/q,

Ỹ4 = −Z1

√
0.6/q + Z2

√
0.25/q + Z3

√
0.1/q + Z4

√
0.05/q,

where (Z1, Z2, Z3, Z4)
T ∼ N(0, I). Three different distributions for the final responses Y1, Y2, Y3

and Y4 are considered: multivariate normal distribution by setting q = 1 and Y = Ỹ , lognormal

distribution by setting q = 1 and Y = exp(Ỹ ), and multivariate t-distribution with 3 degrees of

freedom by setting q ∼ χ2(3) and Y = Ỹ . The missingness mechanism is set to be MCAR with 70%

of the subjects being complete cases, i.e., with the pattern (1, 1, 1, 1) for R = (R1, R2, R3, R4), and

5% for each of the six patterns (1, 1, 1, 0), (1, 1, 0, 0), (1, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 1) and (1, 0, 1, 0).
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Therefore, Y1 is always observed but each of Y2, Y3 and Y4 is observed only in four different patterns.

For this simulation setup, let wi be the weights on the subjects in M1, i.e., the subjects with

pattern (1, 1, 1, 1). The calibration constraints in (4) now become

wi > 0,
∑
i∈M1

wi = 1,

∑
i∈M1

wiY1i =
1

n

n∑
j=1

Y1j,

∑
i∈M1

wiY2i =
1

0.85n

∑
j∈S2

Y2j,

∑
i∈M1

wiY3i =
1

0.85n

∑
j∈S3

Y3j,

∑
i∈M1

wiY4i =
1

0.85n

∑
j∈S4

Y4j.

Table 5 contains simulation results on type I error summarized based on 1000 replications, with

the test of Little (1988) included as a comparison. While the comparison is inconclusive with

n = 100, it seems to become clear as n increases to 200, 500 and 800. Under the latter three sample

sizes, when the data are normally distributed, both tests have type I error close to the nominal

level. When the data distribution is skewed as in the lognormal case, Little (1988)’s test tends to

have type I error larger than the nominal level when the sample size is not large enough, whereas

the proposed test has type I error closer to the nominal level. For the t-distribution case, the

proposed test also has type I error closer to the nominal level. The better overall performance of

the proposed test is partially due to the nature of the empirical likelihood method that it does not

require assumptions of a specific data distribution. Similar to Little (1988), power analysis is not

included here.

6 Data Application

As an application of the proposed method, we consider data collected from 2002 New York City

Social Indicators Survey. This survey was conducted by School of Social Work at Columbia Uni-

versity to study the household demographics of a representative sample from New York City. De-

tailed information can be found in the Social Indicators Survey Codebook, downloadable from

http://www.stat.columbia.edu/~gelman/arm/examples/sis/, along with the data set.

We focus on subjects who worked in 2001, with either a regular or an odd job. Our main interest

is to estimate the population mean of annual income (N09 d) and total assets (not including home)

(N33 ). Three auxiliary variables are considered: age (age) with a range from 18 to 80, number of

months worked altogether in 2001 with a range from 1 to 12 (N05 ), and number of hours worked
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per week with a range from 1 to 97 (N06 ). Our analysis is based on n = 1049 subjects for whom

these auxiliary variables are available. For the two variables of interest, N09 d and N33, values “do

not know” and “refused” are also treated as missing data in our analysis. In total, there are 378

(36%) subjects with N09 d missing and 479 (46%) subjects with N33 missing.

We use the first moment of the auxiliary variables to construct the calibration constraints,

and this is equivalent to fitting a linear regression of the responses on the auxiliary variables with

main effects. For estimation, in addition to our proposed calibration-based estimator (CAL), we

also calculate the inverse probability weighted (IPW) estimator (Horvitz and Thompson 1952), the

augmented IPW (AIPW) estimator (Robins et al. 1994) and the average of the complete cases (CC).

For the IPW and AIPW estimators, the missingness probability is modeled by a logistic regression,

and for the AIPW estimator, the response is modeled by a linear regression, both including main

effects of the three auxiliary variables. Standard errors for all estimators are calculated based on

1000 bootstrap samples.

Table 6 contains results of our analysis. For testing MCAR, both the individual tests and the

overall test are conducted, together with Little’s (1998) test. All these tests reject MCAR. For

estimation, the estimated values and standard errors of our proposed estimator are very close to

those of the IPW and AIPW estimators. The complete-case analysis produces quite different results,

indicating its bias in estimation. Our proposed estimator is calculated based on the same weights

that were used for testing MCAR. If one were to use existing methods, however, one would need

to apply Little’s (1998) test first and then calculate the IPW/AIPW estimator, with completely

different implementations for testing and for estimation.

7 Concluding Remarks

Ascertaining the missingness mechanism is always a crucial step in missing data analysis. While

the MAR is in general not testable, the MCAR is. Under MCAR, data analysis becomes fairly easy

since a complete case analysis would be sufficient. We have proposed a nonparametric approach

based on the empirical likelihood method to test MCAR. The proposed approach not only provides

an alternative to existing tests, but more importantly, for the commonly seen scenarios with the

presence of fully observed covariates, it leads to a unified procedure for estimation after the MCAR

is rejected with little extra effort beyond the calculation of the test statistic. Existing tests, on

the contrary, focus exclusively on testing, and the estimation after MCAR is rejected has to invoke

possibly completely different procedures.

In this paper we considered estimating the population mean of certain response variables that are

subject to missingness. Extensions to estimating parameters defined through estimating equations

can be made. Since the missingness mechanism does not depend on the model for parameter

estimation, a simple extension is to directly apply the proposed test when the parameters of interest

are defined through estimating equations. The resulting weights can then be used to weight the
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estimating equations for estimation. But estimators derived in this way may not be consistent under

MAR because the calibration constraints in this paper are constructed to ensure consistency under

MAR when estimating population means. A more complex extension leading to consistency under

MAR is to follow the idea in Han (2014) and construct calibration constraints using the estimating

functions rather than the moments of fully observed variables. A detailed account of this extension

is beyond the scope of this paper and is of interest for future research.

Numerical performance of the proposed procedure could be jeopardized if the number of con-

straints gets too large. This is in particular an issue when the dimension of the fully observed

covariates is high. In this case, the functions used for calibration constraints need to be carefully

chosen. One possible solution would be to use moments of those covariates that are considered

more relevant in explaining the missingness mechanism, instead of moments of all the covariates,

combined with some selected regression models, to construct the calibration constraints. More in-

vestigation in the case of high dimensional covariates is needed, both theoretically and numerically.
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Appendix

Proof of Theorem 1. Let θ∗ denote the probability limit of θ̂ and π0 = P(R = 1). A Taylor

expansion of (2) at (ρ = 0,θ∗) yields

0 =
1

n

n∑
i=1

Riĝ(Xi;θ∗)−

{
1

n

n∑
i=1

Riĝ(Xi;θ∗)ĝ(Xi;θ∗)
T

}
ρ̂

+

[
1

n

n∑
i=1

Ri

{
∂h(Xi;θ∗)

∂θ
− 1

n

n∑
j=1

∂h(Xj;θ∗)

∂θ

}]
(θ̂ − θ∗) + op(n

−1/2)

=
1

n

n∑
i=1

Riĝ(Xi;θ∗)− π0E
{
g(X;θ∗)g(X;θ∗)

T
}
ρ̂+ op(n

−1/2),
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where g(X;θ) = h(X;θ)− E{h(X;θ)}. This implies

n1/2ρ̂ =
[
π0E

{
g(X;θ∗)g(X;θ∗)

T
}]−1

n−1/2
n∑

i=1

Riĝ(Xi;θ∗) + op(1).

On the other hand, simple calculations show that

n−1/2
n∑

i=1

Riĝ(Xi;θ∗) = n−1/2
n∑

i=1

(Ri − π0)g(Xi;θ∗) + op(1),

and thus

n1/2ρ̂
d−→ N

(
0,

1− π0
π0

[
E
{
g(X;θ∗)g(X;θ∗)

T
}]−1)

.

A Taylor expansion of (3) at (ρ = 0,θ∗) gives

T = (1− n1

n
)−1

2

{
n−1/2

n∑
i=1

Riĝ(Xi;θ∗)

}T

n1/2ρ̂

−n1/2ρ̂T

{
1

n

n∑
i=1

Riĝ(Xi;θ∗)ĝ(Xi;θ∗)
T

}
n1/2ρ̂

]
+ op(1)

= (1− n1

n
)−1n1/2ρ̂T

{
1

n

n∑
i=1

Riĝ(Xi;θ∗)ĝ(Xi;θ∗)
T

}
n1/2ρ̂+ op(1)

d−→ χ2
d.

Proof of Theorem 2. Some calculations show that Tsum = W TW + op(1), where

W = n−1/2
n∑

i=1

(W T
1i , . . . ,W

T
pi )

T

and

W ki = {πk(1− πk)}−1/2
[
E{gk(θk∗)gk(θk∗)

T}
]−1/2

(Rki − πk)gki(θk∗).

It is easy to check that Var(W k) = Idk and Cov(W k,W r) = Σkr. Therefore we haveW
d−→ N(0,Σ)

and thus the desired result follows (e.g., Imhof 1961).

Proof of Theorem 3. A Taylor expansion of (5) at ρ∗ = 0 yields

n1/2ρ̂ = {E(Rcg
∗g∗T)}−1n−1/2

n∑
i=1

Rciĝi + op(1).
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Some calculations show that

n−1/2
n∑

i=1

Rciĝi = n−1/2
n∑

i=1

ϕi + op(1) ≡ n−1/2
n∑

i=1

(ϕk1i, . . . , ϕkdi)
T + op(1),

where ϕkr = (Rc − Rkrπc/πkr)(Ykr − µkr) for r = 1, . . . , d. It is easy to see that E(ϕ) = 0 and

Var(ϕ) = πcV . Therefore

n1/2ρ̂
d−→ N

(
0, π−1c {E(g∗g∗T)}−1V {E(g∗g∗T)}−1

)
.

A Taylor expansion of TINT at ρ∗ = 0 gives

TINT = n1/2ρ̂T{E(Rcg
∗g∗T)}n1/2ρ̂+ op(1).

The desired result then follows.
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Table 1: The combinations of (ps, ps1, p
s
2) used in Simulation Study 1

ps ps1 ps2 Mechanism code

0.5 {1 + exp(0.5)}−1 {1 + exp(0.5)}−1 MCAR

0.5 {1 + exp(0.5− α1/2 + α1X2)}−1 {1 + exp(0.5− α2/2 + α2X2)}−1 MAR a-1

0.5 {1 + exp(0.5− α1/2 + α1Y2)}−1 {1 + exp(0.5− α2/2 + α2Y1)}−1 MAR a-2

0.5 {1 + exp(0.5− α1/2 + α1Y1)}−1 {1 + exp(0.5− α2/2 + α2Y2)}−1 MNAR a-3

(1 +X1)/2 {1 + exp(0.5− α1/2 + α1X2)}−1 {1 + exp(0.5− α2/2 + α2X2)}−1 MAR b-1

(1 +X1)/2 {1 + exp(0.5− α1/2 + α1Y2)}−1 {1 + exp(0.5− α2/2 + α2Y1)}−1 MAR b-2

(1 +X1)/2 {1 + exp(0.5− α1/2 + α1Y1)}−1 {1 + exp(0.5− α2/2 + α2Y2)}−1 MNAR b-3
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Table 2: Results on Type I error under MCAR and power under different missingness mechanisms
for Simulation Study 1 based on 1000 replications. The significance level is set to be 5%. The

numbers are percentages.

n = 100 n = 200

Little C&L Tsum Little C&L Tsum Little C&L Tsum Little C&L Tsum

α1 α2 (a) ps = 0.5 (b) ps = (1 +X1)/2 (a) ps = 0.5 (b) ps = (1 +X1)/2

MCAR MCAR

0 0 4.3 30 5.7 − − − 3.7 18.3 4.1 − − −
a-1 MAR b-1 MAR a-1 MAR b-1 MAR

0.3 -0.3 6.7 31.6 13.9 78.9 33.9 90.6 15.6 16.6 23.2 99 18.6 99.8

0.6 -0.3 15.8 29.6 25 86.8 31.7 95.1 35.1 17.8 47.5 99.7 18.3 99.8

0.3 0.3 11.6 28.8 12.5 84.1 29.3 92.9 23.3 15.5 20.1 99.6 16.1 99.8

0.6 0.3 25.5 26.7 23.6 91.5 27.3 96.9 57.1 16.3 49.9 99.9 17.6 99.9

a-2 MAR b-2 MAR a-2 MAR b-2 MAR

0.3 -0.3 45.2 39.1 55.7 98.7 38.5 99.5 82.1 27.4 86.3 100 27.8 100

0.6 -0.3 79.2 44.5 83 99.8 44.8 99.9 99.1 32.6 99.2 100 40 100

0.3 0.3 67.8 44.3 58.6 96.9 45.9 97.3 97.1 33.4 93.6 100 30.7 99.9

0.6 0.3 93.8 49.3 89.8 99.8 50.7 99.8 100 41.2 99.9 100 40.3 100

a-3 MNAR b-3 MNAR a-3 MNAR b-3 MNAR

0.3 -0.3 39.1 35.2 55.8 98.7 35 99.4 77.6 21.9 87.1 100 21.6 100

0.6 -0.3 72.2 39 85.1 99.4 35.7 99.7 97.7 25.9 98.6 100 24.7 100

0.3 0.3 63.1 40.5 59.8 96.4 44 97.7 95.7 25.7 93.6 100 25.5 100

0.6 0.3 91.7 44.2 89.3 99.7 44.6 99.5 99.9 30.6 99.9 100 27.2 100

Little: the test in Little (1988). C&L: the test in Chen and Little (1999). Tsum: our proposed test.
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Table 3: Results on estimation of E(Y1) = E(Y2) = 1.5 using the calibration weights for Simulation
Study 1 based on n = 100 and 1000 replications. The numbers have been multiplied by 100.

Estimation of E(Y1) Estimation of E(Y2)
µ̂1 µ̂1cc µ̂2 µ̂2cc

α1 α2 rBias RMSE rBias RMSE rBias RMSE rBias RMSE
MCAR

0 0 -1 28 0 31 0 28 0 31
a-1 MAR

0.3 -0.3 -1 28 5 32 0 28 -6 31
0.6 -0.3 -1 28 12 36 0 28 -6 31
0.3 0.3 -1 28 5 32 0 28 6 33
0.6 0.3 -1 28 12 36 0 28 6 33

a-2 MAR
0.3 -0.3 1 28 16 38 -2 28 -20 43
0.6 -0.3 1 28 25 48 -2 28 -20 43
0.3 0.3 1 28 16 38 1 28 16 38
0.6 0.3 1 28 25 48 1 28 16 39

a-3 MNAR
0.3 -0.3 2 28 18 40 -3 29 -22 45
0.6 -0.3 3 28 27 50 -3 29 -22 45
0.3 0.3 2 28 18 40 2 28 17 40
0.6 0.3 3 28 27 50 2 28 17 40

b-1 MAR
0.3 -0.3 0 28 12 36 0 28 -10 33
0.6 -0.3 -1 28 18 42 0 28 -10 33
0.3 0.3 0 28 12 36 0 28 0 30
0.6 0.3 -1 28 18 42 0 28 0 30

b-2 MAR
0.3 -0.3 1 28 21 44 -3 28 -28 52
0.6 -0.3 1 28 31 54 -3 28 -28 52
0.3 0.3 1 28 21 44 1 28 12 35
0.6 0.3 1 28 31 54 1 28 12 35

b-3 MNAR
0.3 -0.3 2 28 23 45 -4 28 -29 53
0.6 -0.3 4 28 33 58 -4 29 -29 53
0.3 0.3 2 28 23 46 2 28 12 35
0.6 0.3 4 28 33 58 2 28 12 35

µ̂k and µ̂kcc: estimators of E(Yk) based on our proposed procedure and based on complete-case analysis, respec-

tively, k = 1, 2. rBias: relative bias 1000−1
∑1000

b=1 {µ̂kb−E(Yk)}/E(Yk), where µ̂kb is the estimate of E(Yk) from
the bth replication. RMSE: root mean square error.
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Table 4: Results on estimation of E(Y1) = E(Y2) = 1.5 using the calibration weights for Simulation
Study 1 based on n = 200 and 1000 replications. The numbers have been multiplied by 100.

Estimation of E(Y1) Estimation of E(Y2)
µ̂1 µ̂1cc µ̂2 µ̂2cc

α1 α2 rBias RMSE rBias RMSE rBias RMSE rBias RMSE
MCAR

0 0 0 19 0 21 0 20 0 21
a-1 MAR

0.3 -0.3 0 19 6 23 0 20 -5 22
0.6 -0.3 0 19 12 28 0 20 -5 22
0.3 0.3 0 19 6 23 0 19 7 23
0.6 0.3 0 19 12 28 0 19 7 23

a-2 MAR
0.3 -0.3 1 19 17 33 -1 20 -20 37
0.6 -0.3 2 19 26 44 -1 20 -20 37
0.3 0.3 1 19 17 33 2 19 17 32
0.6 0.3 2 19 26 44 2 19 17 32

a-3 MNAR
0.3 -0.3 2 19 18 34 -3 20 -21 38
0.6 -0.3 4 20 28 46 -3 20 -21 38
0.3 0.3 2 19 18 34 3 20 18 34
0.6 0.3 4 20 28 46 3 20 18 34

b-1 MAR
0.3 -0.3 0 19 12 28 0 20 -10 26
0.6 -0.3 0 19 19 35 0 20 -10 26
0.3 0.3 0 19 12 28 0 20 0 22
0.6 0.3 0 19 19 35 0 20 0 22

b-2 MAR
0.3 -0.3 1 19 21 38 -2 20 -27 46
0.6 -0.3 1 19 31 51 -2 20 -27 46
0.3 0.3 1 19 21 38 2 20 12 27
0.6 0.3 1 19 31 51 2 20 12 27

b-3 MNAR
0.3 -0.3 3 20 23 40 -3 20 -28 48
0.6 -0.3 5 20 34 54 -3 20 -28 48
0.3 0.3 3 20 23 40 3 20 13 28
0.6 0.3 5 20 34 54 3 20 13 28

µ̂k and µ̂kcc: estimators of E(Yk) based on our proposed procedure and based on complete-case analysis, respec-

tively, k = 1, 2. rBias: relative bias 1000−1
∑1000

b=1 {µ̂kb−E(Yk)}/E(Yk), where µ̂kb is the estimate of E(Yk) from
the bth replication. RMSE: root mean square error.
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Table 5: Results on Type I error under MCAR for Simulation Study 2 based on 1000 replications.
The numbers are percentages.

significance level

1% 5% 10% 20%

Distribution n Little TINT Little TINT Little TINT Little TINT

Normal 100 1 3.5 4.6 10.2 10.6 15.4 20.3 25.7

200 0.9 1 5.3 5.9 9.6 10.3 19 20

500 0.7 0.8 5.2 4.4 9.8 9 19.9 19.2

800 0.9 1.2 5 5.8 9.6 10.6 18.3 21.1

Lognormal 100 3.3 1.4 10 5.7 16.3 12.7 25.4 25.2

200 3.6 0.8 9.6 4.3 14.8 9.7 23.4 22.4

500 2.7 0.5 7.5 2.8 14.3 7.9 21.9 19.2

800 2.2 1 5.2 4.5 10.3 10.1 20.2 21.2

t on 3 df 100 2.9 3.2 7.6 7.9 12.1 12.7 21.9 21.7

200 3.1 2 8.3 6.8 12.5 10.9 21.4 19.6

500 2.4 0.8 7.1 3.9 12.6 8.5 22.8 18.6

800 2.2 1.2 7.1 4.7 12.1 10.1 21.4 20.5

Little: the test in Little (1988). TINT: our proposed test.
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Table 6: Results of the analysis of the 2002 New York City Social Indicators Survey (n = 1049).
The estimates and standard errors are in hundreds

Subsequent Estimation
Testing MCAR N09 d N33

Test Value DF p-value Estimator Estimate S.E. Estimate S.E.
TN09 d 49.03 3 <0.0001 CAL 498.90 35.03 1425.63 330.31
TN33 14.69 3 0.0021 CC 521.81 36.80 1358.24 313.12
Tsum 63.72 − <0.0001 IPW 499.00 35.00 1426.61 329.19
Little 87.62 11 <0.0001 AIPW 498.97 35.06 1426.30 330.49

TN09 d and TN33: our proposed individual test for N09 d and N33 respectively. Tsum: our proposed overall test.
Little: the test in Little (1988).
Value: value of corresponding test statistic. DF: degrees of freedom of the asymptotic χ2-distribution.
CAL: our proposed calibration-based estimator. CC: the average of the complete cases. IPW: inverse probability
weighted estimator. AIPW: augmented inverse probability weighted estimator. S.E.: bootstrap standard error.
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