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Abstract: 

 The historically abundant Arctic Grayling (Thymallus arcticus) is a native Michigan 

Salmonid that was extirpated due to many abiotic and biotic factors. Renewed interest in 

reintroducing T. arcticus to Northern Michigan Rivers by the DNR led to an investigation of 

viability of four sites of the Maple River in Emmett County, Michigan. We evaluated the abiotic 

factors and components of Salmonid competition to assess if T. arcticus reintroduction could be 

viable. Analysis of temperature, substrate, macroinvertebrates, fish communities and diet showed 

that suitable habitat characteristics were present in the two West Branch sites of the Maple River. 

In these two sites, there was ample preferred food sources, lower percentages of non-native 

Salmonids and suitable substrate compositions. While two sites were deemed viable, removal of 

a Dam on the Maple River may change river composition. Thus, more research is needed on fish 

communities, diet, and competition post-Dam removal to determine if T. arcticus should be 

reintroduced. 
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Introduction:   

The Arctic Grayling (Thymallus arcticus) is a native Salmonid species that historically 

inhabited waterways throughout Michigan and the Great Lakes Region (GLERL 2018). In the 

late 1800s, populations of T. arcticus began to significantly decline due to multiple interacting 

abiotic and biotic factors (Vincent 1962). Factors such as increased logging and agricultural 

practices caused a multitude of abiotic changes to Arctic Grayling habitat. (Vincent 1962). 

Additionally, overfishing and competition from introduced non-native Brown (Salmo trutta) and 

Rainbow (Oncorhynchus mykiss) trout caused declines in T. arcticus abundance (Vincent, 1962). 

This native salmonid persisted in Michigan until approximately 1936, when its presence was last 

known (McAllister and Harington 1969).  

The decline of T. arcticus populations in Michigan did not go unnoticed, as the State of 

Michigan attempted to stabilize the population by stocking rivers with over 3 million Montana 

sourced T. arcticus from 1900-1933 (Nuhfer 1992). Unfortunately, these stocking efforts were 

not sufficient to save the population. The DNR attempted to restock several Northern Michigan 

rivers yearly from 1987-1991, but populations of T. arcticus did not survive due to many factors 

including competition, predation and illegal fishing (Nuhfer 1992). While populations have been 

unsuccessful in Michigan waters, fluvial T. arcticus still persist in Big Hole river in Montana 

(Lohr et al. 1996). As of 2016, the DNR has expressed renewed interest in re-introducing T. 

arcticus into historical Northern Michigan habitats such as the Maple River (Michigan.gov). 

 

Currently in Michigan, there are two native (Salvelinus fontinalis and Salvelinus 

namaycush) and seven introduced (Oncorhynchus gorbuscha, Oncorhynchus kisutch, 

Oncorhynchus nerka, Oncorhynchus tshawytscha, Oncorhynchus mykiss, Salmo salar and Salmo 
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trutta) salmonid species (GLERL 2018).  The salmonid species that would potentially share river 

habitat with T. arcticus include S. trutta, S. fontinalis and O. mykiss (GLERL 2018). In Montana 

where T. arcticus are currently found, they coexist and compete with S. fontinalis for resources 

(Vincent 1962). While they coexist with S. fontinalis, the effects of non-native O. mykiss and S. 

trutta on T. arcticus survival have been negative in the past (Vincent 1962)  

 Adult Arctic Grayling have optimal temperature ranges between 2.7 ˚C-22 ˚C, with an 

upper incipient lethal temperature of 25˚C (Danhof 2017; Lohr et al. 1996). Juvenile Arctic 

Grayling have a slightly narrower optimal temperature range from 4.3-17.3˚C (Dion & Hughes 

2004; Mallet et al. 1999). During spawning, T. arcticus rely heavily on gravel substrate to both 

lay and fertilize their eggs upon (Bishop 2011).  Additionally, they typically associate with 

coarse sand and gravel as adults (Vincent 1962). Their diet is compromised primarily from drift, 

with some preference for Ephemoptera (mayfly) and Diptera (true flies) (Stewart et al 2007). 

The possibility of reintroducing T. arcticus into Northern Michigan sparked interest in 

evaluating potential habitats. Given the known historical population of T. arcticus in the Maple 

River, we decided to assess abiotic and biotic variables at four different sites along the Maple 

River. Particularly, we were interested in how competition with other Salmonid species may 

affect T. arcticus survival should they be reintroduced. While Salmonid species are widely 

studied, very little research has been conducted on competition between salmonids in the Great 

Lakes Region. Our question was to determine if introduction of T. arcticus would be viable in 

sites along the Maple River considering competition with other species (Salmonidae), habitat 

suitability, and available food sources. 
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Materials and Methods: 

Sites 

 Four sites along the Maple River in Emmett County near Pellston, Michigan were chosen 

for evaluation of suitability for Thymallus arcticus re-introduction. The four sites that were 

chosen based on accessibility were Cold Creek (CC) located at 45˚34’45.793” N, 84˚50’54.221” 

W, Robinson Road (WMRR) at 45˚33’2.901” N, 84˚47’47.167” W, US 31 (WMUS) at 

45˚32’24.244” N, 84˚47’1.048” W, and Pine Trail (MMPT) 45˚30’50.998” N, 84˚46’16.684” W 

(See inset). Each site was flagged every ten meters for a total of 100m to assess. Robinson Road, 

US 31, and Pine Trail were chosen as possible year-round habitats and Cold Creek was chosen as 

a potential rearing tributary. 

  

Figure 1: Map of Michigan with Emmet county depicted by the black box (left). Map of Emmett 

county with approximate locations of CC, WMRR, WMUS, and MMPT marked on the Maple 

River (blue) by yellow stars (right). Note the Dam marked at the mouth of the Maple River from 

Lake Kathleen. Exact GPS coordinates of sites listed above. 
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Abiotic Factors 

Each time we visited a site, we recorded time, air temperature, water temperature, and 

general weather conditions. Water temperature was measured with a Hach pocket pro digital 

conductivity meter and air temperature was recorded with a glass thermometer. Temperature data 

was compiled per site and high, low and average temperatures were recorded. After the 

assumptions of normality and homogeneity of variance were tested, ANOVA tests were 

performed to determine differences in mean temperatures among sites. We also measured 

discharge at each of the four sites using a Hach flow meter. At one open and straight portion of 

each site, we stretched a measuring tape across the river and recorded width. We then assembled 

the flow meter and split the width into ten equally spaced points. At each of the ten points, depth 

was measured and the flow was recorded at 60% depth. Weather conditions were recorded by 

type of cloud cover, sun presence, and precipitation type.  

DNR Data Sheets 

To efficiently help the DNR assess possible habitat for T. arcticus reintroduction, we decided to 

use a selection of their premade data sheets. At one visit for each site, we filled out the DNR 

survey sheet. This survey sheet assessed physical appearance & instream cover characteristics 

for each site. DNR data sheets filled out during habitat analysis were compiled for possible DNR 

use. 

Substrate 

 To measure substrate, sites were split into five 20-meter transects. Within a single 

transect, we estimated substrate type (sand/silt, gravel, pebble, cobble, and wood) and abundance 

to the nearest 5 percent based on visual comparisons of substrate types. To estimate percentage, 

each group member quickly walked the transect estimated substrate types and percentages. After 
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all three field crew estimated, we announced our estimate simultaneously for a given substrate 

type. We came to consensus on substrate type and percentage. 

Macroinvertebrates 

To analyze available prey for T. arcticus, we collected benthic macroinvertebrates using 

Surber samplers. For every 20 meter transect of each site, we first evaluated percent abundance 

of different substrates to the nearest 20 percent to ensure representative sampling of benthic 

invertebrates (more accurate substrate evaluation performed during habitat assessment as 

described above). For each 20% of substrate in a transect, one two-minute macroinvertebrate 

collection was performed with a 30 x 30 cm Surber sampler (5 samples per 20 meters, 25 

samples per site). During each two-minute sample, bottom sediments were kicked/moved around 

and rocks/wood were brushed with toothbrushes into the Surber samplers. After each transect 

collection, samples were combined into an enamel pan and macroinvertebrates were sorted with 

forceps for 30 person-minutes. Any macroinvertebrates sorted were placed in transect-labeled 

jars of 85% isopropyl alcohol for later analysis. Any unsorted material was released directly back 

into the transect, as we moved upstream to the next transect. We later analyzed Shannon 

Diversity Indices of macroinvertebrates diversity and percent abundance of both Ephemoptera 

and Diptera for each site. A hierarchical constellation plot based on centroid distance was created 

using the JMP statistical program to illustrate relatedness of macroinvertebrates communities 

among sites.  

Fish Sampling  

 To evaluate community diversity and competition in the four sites, fish were sampled 

using both single pass backpack electroshockers, and six and ten foot seines. Backpack 

electroshockers were set to 220V with a duty cycle of 25% and a pulse of 50Hz across all sites. 
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Conductivity was measured before sampling to ensure electrofishing settings were appropriate. 

These two methods were chosen to both minimize gear bias and maximize number of species 

captured. At each site, a maximum of 10 salmonids (S. trutta, S. fontinalis, and O. mykiss) were 

collected for stomach analysis. When applicable, one or two larger individuals of abundance 

(Umbra limi, Cottus bairdii, or Cottus cognatus) were collected for diet comparison to 

salmonids. Collected species were first anesthetized in MS 222 and then transferred to 10% 

Formalin while operculation was still occurring. After at least 24 hours in Formalin, collected 

species were transferred to 50% isopropyl alcohol to preserve stomach contents if they were not 

already dissected. All other fishes were released after being counted and recorded by species 

(except overly-shocked fish that would not survive). At Cold Creek, a single backpack 

electroshocker (too narrow & shallow for two) was used for a total of 912 seconds. Robinson 

Road, US 31, and Pine Trail were all double backpack electroshocked for combined shocking 

times of 5,361, 2,824, and 5,163 seconds respectively. Shocking times varied due to differences 

in width, depth, woody debris cover, and maneuverability of sites. A Shannon diversity index 

measuring fish diversity and percent S. trutta, S. fontinalis, and O. mykiss composition (out of all 

species) for each site were compared. Using the JMP statistical program, correlations between 

sites based on hierarchical cluster analyses of fish species diversity were mapped onto a 

dendrogram. Fish count data was assembled using JMP into a centroid-based hierarchical 

constellation plot that illustrated correlations between different species based on Pearson 

correlation coefficients. 

Diet Analysis   

After collection, fishes were dissected and their stomach contents were analyzed under 

microscopes. Each macroinvertebrate or fish was counted, recorded and identified to order using 
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the STROUD Water Research Center Identification Guide to Freshwater Macroinvertebrates 

(STROUD 2018). Fish stomach data and macroinvertebrate data was combined to determine the 

numerical, frequency of occurrence and Ivlev’s Electivity indices (See appendix).  

Results: 

Abiotic Factors 

CC had a mean temperature of 20 ˚C, WMRR had a mean temperature of 16.8 ˚C, 

WMUS had a mean temperature of 16.2 ˚C, and MMPT had a mean temperature of 17.3 ˚C 

(Table 1). ANOVA tests between CC and WMRR, WMUS and MMPT showed that WMCC had 

a statistically significant (p<.05) difference in mean temperature. The p-values of the ANOVA 

teste between CC and WMRR, WMUS and MMPT were .003, .007, and .001 respectively. 

Discharge for CC was .03 m3, WMRR was .76 m3 WMUS was .89 m3 and MMPT was 1.7 m3 

(Table 1). 

Substrate 

Substrate analyses at each site showed differing substrate compositions along the Maple 

River. WMCC had especially high wood (28%) and sand/silt (60%) composition. WMRR had 

large amounts of sand/silt (32.7%), pebble (35.6%) and wood (24.8%). WMUS was mostly 

composed of sand/silt (34%), cobble (29%) and pebble (20%). Lastly, WMPT was compromised 

of mostly pebble (61.6%) and sand/silt (20.2%). Moving downstream, pebble and cobble 

composition increased significantly while sand and wood substrates decreased in abundance 

(Figure 1).  
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Macroinvertebrates 

 Hierarchical centroid-distance based cluster analysis displayed as a constellation plot 

depicts similarity of macroinvertebrate community composition among sites. CC was the most 

dissimilar site, while WMUS and WMRR had the most similar macroinvertebrate communities 

(Figure 2). Shannon diversity indices showed macroinvertebrate community diversity was 

highest at CC (.87) and lowest diversity at WMUS (.58) (Table 2). Percent Ephemeroptera of 

macroinvertebrates was highest at WMRR (27%) and MMPT (25%) while percent Diptera was 

highest at WMRR (35%) and WMUS (33%) (Table 2). 

Fish Sampling 

 Fish sampling yielded 14 different species among all sites. Electrofishing yielded the 

highest number of fishes, but did not capture all species (Micropterus salmoides). Both S. 

fontinalis and Cottus spp. made up most of the yield, at 26% and 32% respectively (Table 3). 

Dendogram analyses of fish communities showed that MMPT and WMRR were most closely 

related, with WMUS slightly less related and CC being even less similar (Figure 3). 

Constellation plot depictions of species relatedness sites based on Pearson correlations showed 

interesting relationships. While O. mykiss and S. trutta clustered closely as both juveniles and 

adults, S. fontinalis was not closely related to the non-native salmonids as juveniles or adults 

(Figure 4). Shannon diversity indices showed WMRR was the most diverse in fish catch (.39), 

then CC (.31), MMPT (.28) and lastly WMUS (.19) (Table 4). Percentages of total catch showed 

the highest percentage of S. fontinalis at CC (53%) and decreased linearly at each site 

downstream, with their lowest abundance at MMPT (3%). Both S. trutta and O. mykiss 
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abundance increased moving downstream, with lowest abundance at CC (0%) and highest 

abundance at downstream MMPT (28% and 6%) (Figure 5). 

Diet  

 Based on calculations of Ivlev’s Electivity for each site and species (See appendix), bar 

graphs were constructed comparing electivity of Ephemeroptera, Diptera and Odonata by species 

and site (Figures 6a-6c). Across all sites and species, there were strong (negative) values of 

avoidance for both Ephemoptera and Diptera. For Odonata, except for S. fontinalis at CC, all 

species across all sites showed a strong (positive) preference for this prey order. Based on 

calculations of Numerical indices for each site and species (See appendix), stacked bar graphs 

indicated diversity and percent composition of prey order for each species and site. At CC, S. 

fontinalis consumed mainly Mollusca and fish. At WMRR, O. mykiss consumed primarily 

Trichoptera while S. fontinalis showed high variability in diet with Mollusca still prominent. At 

WMUS, all three Salmonid species consumed a variety of prey, but prominently Trichoptera. At 

MMPT, Trichoptera and Odonata were consumed heavily by all three species. Notably, S. 

fontinalis consumed a large proportion of Mollusca when compared to S. trutta and O. mykiss at 

WMRR, WMUS and MMPT. 

 Discussion: 

 Abiotic factors and substrate showed possible habitat for T. arcticus reintroduction to the 

Maple River. All four sites had average, minimum and maximum temperatures that were within 

the known range for T. arcticus. Since these temperatures were recorded during one of the 

hottest months of the year, these temperatures are likely towards the maximum water 

temperatures for the Maple River. In terms of substrate, the more downstream sites of WMRR, 
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WMUS, and MMPT with less silt and higher pebble or gravel composition were more 

appropriate for T. arcticus spawning and year-round habitation. CC was warmer and had high 

wood and sand/silt composition, which is not ideal for T. arcticus. 

 Macroinvertebrate composition differed between sites, although WMRR and WMUS 

were very similar. MMPT was also closely related to these two sites while CC differed. 

Interestingly, CC had the highest Shannon Diversity Index due to the presence of many 

macroinvertebrate orders not observed elsewhere. Overall, all four sites had relatively high 

Shannon Diversity Indices (>.50) of macroinvertebrate composition. In terms of known prey 

items of T. arcticus (Stewart et al 2007), WMRR, WMUS, and MMPT had macroinvertebrate 

compositions of more than 50% combined Diptera and Ephemoptera.  

 Fish sampling of the four Maple River sites showed varying community diversity among 

sites. WMRR had the most diverse fish community while WMUS had the least diverse fish 

community. Hierarchical constellation plots based on Pearson correlation coefficients depicted 

promising data for T. arcticus reintroduction. Adult and juvenile O. mykiss and S. trutta clustered 

closely and were far away from S. fontinalis. This shows that there may be room for T. arcticus 

to associate in fish communities with S. fontinalis, while avoiding O. mykiss and S. trutta. 

Salmonid composition by species of total catch further indicated which communities would be 

favorable for T. arcticus. CC, WMRR and WMUS had higher percentages of S. fontinalis and 

lower percentages of both O. mykiss and S. trutta. WMPT had a very small percentage of S. 

fontinalis and a high percentage of S. trutta, which is not a good indicator for T. arcticus 

reintroduction. 
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 Diet analysis using Ivlev’s Electivity at CC, WMRR, WMUS and MMPT showed ample 

preferred food resource availability for T. arcticus. All three Salmonid species heavily avoided 

both Ephemeroptera and Diptera, while instead preferring macroinvertebrates such as Odonata. 

Numerical indices showing diet composition of S. trutta, S. fontinalis and O. mykiss indicated 

highly variable diets between species and sites. At CC, S. fontinalis had a diet consisting 

primarily of Mollusca. At WMRR, O. mykiss consumed Coleoptera and Ephemeroptera while S. 

fontinalis had a much more varied diet. At WMUS and MMPT, O. mykiss and S. trutta 

consumed largely Coleoptera, Odonata and Hymenoptera while S. fontinalis again had a highly 

variable diet of mainly Coleoptera, Mollusca and Odonata. Overall, the trend of S. fontinalis 

consuming Mollusca was observed at all sites of the Maple River. Previous studies investigating 

resource partitioning between S. fontinalis and other sympatric salmonid species indicated that S. 

fontinalis effectively broadened their diet and relied on alternative prey sources in the face of 

competition (Mookerji et al., 2004). Thus, competition with other Salmonids is likely the cause 

of increased Mollusca consumption by S. fontinalis. Consumption of Mollusca by S. fontinalis in 

more downstream sites may indicate that T. arcticus may not be very successful there, since 

Mollusca were not abundant in downstream macroinvertebrate collection. 

 Considering temperature, substrate, macroinvertebrates, fish communities and diet, we 

believe that reintroduction of T. arcticus to the Maple River would be viable. In particular, the 

West Branch sites of WMRR and WMUS would be most appropriate. WMRR and WMUS have 

relatively diverse fish and macroinvertebrate communities with high percentages of both 

Ephemeroptera and Diptera composition. These sites also fall within the known temperature 

range of T. arcticus. In terms of competition, WMRR and WMUS have relatively low 

percentages of O. mykiss and S. trutta, and relatively high percentages of S. fontinalis. All three 
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salmonids showed heavy avoidance of both Diptera and Ephemeroptera. Given these factors 

combined, there appears to be suitable habitat for T. arcticus in the West Branch of the Maple 

River. 

 While some Maple River sites appear to be suitable for T. arcticus reintroduction, the 

suitability may change as the Dam separating MMPT from the upstream sites is being removed. 

This removal may change abiotic and biotic factors in the Maple River. In previous studies, 

removal of dams has caused fish to distribute themselves differently along rivers and show 

increased habitat partitioning (Burroughs et al., 2010). We do not know how the Dam removal 

will change fish communities and competition in the Maple River as future research will be 

needed to assess new habitat composition along the Maple River. It is possible that 

reintroduction of the native Salmonid T. arcticus may become more viable with the removal of 

the dam, but only time will tell. 
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Figures and Tables:  

 

 

 

Figure 1: Pie charts displaying substrate composition estimates of each Maple River site. 

Upstream sites (CC and WMRR) were composed primarily of wood and sand/silt, while 

downstream sites (WMUS and MMPT) were composed primarily of pebble and cobble 

substrates.   
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Figure 2: Hierarchical constellation plot of relationships between macroinvertebrate 

communities among sites, based on centroid distance. CC was the most distantly related 

community, while WMUS and WMRR had tightly related communities. MMPT was pretty 

closely related to both WMUS and WMRR.  
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Figure 3: Dendogram based on hierarchical centroid-distance relationships illustrating 

similarities in fish communities among sites. WMRR and MMPT were tightly related along with 

WMUS, while WMCC was not similar.  
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Figure 4: Hierarchical constellation plot of species relatedness based on Pearson correlations. 

Closer dots indicate closer relatedness in habitat use and the circle shows the point of origin. O. 

mykiss and S. trutta were closely correlated as both adults and young of year, while S. fontinalis 

was not closely related to O. mykiss or S. trutta as young of year or adults. S. fontinalis also 

showed differences in fish community association as young of year and adults.  

 

 

 



Mikela Dean 20 

 

Percent Composition of Fish Communities Among Sites 

 

Figure 5: Stacked bar graph illustrating percent composition of all species versus each S. 

fontinalis, O. mykiss, and S. trutta at each site. Percentage of S. fontinalis was highest at CC, and 

decreased moving downstream. Conversely, percentage composition of O. mykiss, and S. trutta 

increased moving downstream.  
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Figure 6a: Bar graphs depicting Ivlev’s Electivity for Ephemoptera for each species at each site. 

Negative values show avoidance of prey items. All species at all sites showed avoidance for 

Ephemoptera.Tables with all calculated values can be found in the Appendix. 

 

 

 
Figure 6b: Bar graphs depicting Ivlev’s Electivity for Diptera for each species at each site. 

Negative values show avoidance of prey items. All Salmonid species at all four sites showed 

avoidance for Diptera. Tables with all calculated values can be found in the Appendix. 
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Figure 6c: Bar graphs depicting Ivlev’s Electivity for Odonata for each species at each site. 

Positive values show preference while negative values show avoidance of prey items. All species 

at all sites showed preference for Odonata, with the exception of the slight avoidance by S. 

fontinalis at CC. Tables with all calculated values can be found in the Appendix. 
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Figure 7a: Stacked bar graph depicting numerical indices of S. fontinalis (N=6) at CC, with 

different colors representing different macroinvertebrate orders. S. fontinalis consumed mainly 

Mollusca (yellow) and fish (purple). Tables with all calculated values can be found in the 

Appendix. 

 

 
Figure 7b: Stacked bar graph depicting numerical indices of S. fontinalis (N=9) and O. mykiss 

(N=1) at WMRR, with different colors representing different macroinvertebrate orders. S. 

fontinalis consumed mainly Mollusca (yellow), Odonata (green) and Hymenoptera (light blue). 

O. mykiss consumed primarily Trichoptera (red/brown), Ephemoptera (light gray) and Diptera 

(orange). Tables with all calculated values can be found in the Appendix. 
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Figure 7c: Stacked bar graph depicting numerical indices of S. trutta (N=3) , S. fontinalis (N=4) 

and O. mykiss (N=3) at WMUS, with different colors representing different macroinvertebrate 

orders. S. trutta consumed primarily Trichoptera (red/brown), Ephemoptera (light gray), 

Hymenoptera (light blue) and Odonata (green). S. fontinalis consumed mainly Trichoptera 

(red/brown), Mollusca (yellow) and Diptera (orange). O. mykiss consumed primarily Trichoptera 

(red/brown), Coleoptera (blue) and Hymenoptera (light blue). Tables with all calculated values 

can be found in the Appendix. 
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Figure 7d: Stacked bar graph depicting numerical indices of S. trutta (N=6), S. fontinalis (N=2) 

and O. mykiss (N=2) at WMUS, with different colors representing different macroinvertebrate 

orders. S. trutta consumed primarily Trichoptera (red/brown), Odonata (green), Hymeoptera 

(light blue) and Coleoptera (blue). S. fontinalis consumed mainly Odonata (green), Trichoptera 

(red/brown), Mollusca (yellow) and Hymenoptera (light blue). O. mykiss consumed primarily 

Trichoptera (red/brown), Hymenoptera (light blue) and Isopoda (mustard). Tables with all 

calculated values can be found in the Appendix. 
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Tables: 

 

Site Mean Temp (°C) High Temp (°C) Low Temp (°C) Discharge (m3/s) 

  CC 20.7 22.0 18.3  .032 

WMRR 16.8 17.8 15.8  .757 

WMUS 16.2 16.7 15.4  .891 

MMPT 17.3 17.7 16.5  1.65 

 

Table 1: Table showing mean, high and low temperatures, along with discharge for all four 

Maple River sites.  

 

 

 

Site Shannon Diversity 

Index 

% Ephemeroptera % Diptera 

  CC 0.87 6 5 

WMRR 0.67 27 35 

WMUS 0.58 20 33 

MMPT 0.70 25 24 

 

 

Table 2: Table depicting Shannon Diversity Indices for macroinvertebrate communities at each 

site. Larger decimals of Shannon Diversity represent higher species diversity.  Percent 

Ephemoptera and Diptera out of all macroinvertebrates collected for each site are also shown.  

 

 

 

 
Table 3: Table showing species caught, location, method of capture, number, and percentage of 

total catch for all fishes collected during sampling.  

 

 

Species Streams Method of Capture Count Percentage of total catch

Salvelinus fontinalis All All 184 25.95

Salmo trutta WMRR, WMUS, WMPT All 79 11.14

Oncorhynchus mykiss WMRR, WMUS, WMPT All 18 2.54

Catostomus comersonii WMCC, WMRR, WMUS All 39 5.50

Umbra limi WMCC, WMRR, WMPT All 78 11.00

Cottus spp. WMRR, WMUS, WMPT All 227 32.02

Semotilus atromaculatus WMCC, WMRR All 20 2.82

Phoxinus eos WMCC, WMRR All 30 4.23

Pimephales notatus WMRR Electrofisher 1 0.14

Pimephales promelas WMRR Electrofisher 1 0.14

Culaea inconstans WMCC, WMRR All 5 0.71

Lethenteron appendix WMRR, WMUS Electrofisher 18 2.54

Perca flavescens WMPT Electrofisher 6 0.85

Micropterus salmoides WMPT Seines 3 0.42
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Site Shannon Diversity 

Index 

CC 0.31 

WMRR 0.39 

WMUS 0.19 

MMPT 0.28 

 

Table 4: Table showing Shannon diversity indices of fish communities at each site. Larger 

decimals of Shannon Diversity represent higher species diversity.   
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Appendix: 

 

Numerical Index CC 

Macroinvertebrate 

order  

Salvelinus 

fontinalis 

Umbra 

limi 

Coleoptera .07 1.00 

Fish .21 -- 

Mollusca .43 -- 

Hemiptera .07 -- 

Odonata .14 -- 

Tricoptera .07 -- 

Table 1:  Table showing Numerical Index for CC for S. fontinalis and U. limi  

 

Frequency of Occurrence CC 

Macroinvertebrate 

order  

Salvelinus 

fontinalis 

Umbra 

limi 

Coleoptera .17 .50 

Fish .33 -- 

Mollusca .50 -- 

Hemiptera .17 -- 

Odonata .33 -- 

Tricoptera .17 -- 

Table 2: Table showing Frequency of Occurrence Index for CC for S. fontinalis and U. limi  

 

Ivlev’s Electivity CC 

Macroinvertebrate 

order  

Salvelinus 

fontinalis 

Umbra 

limi 

Coleoptera .33 .93 

Diptera -1.00 -1.00 

Ephemeroptera -1.00 -1.00 

Amphipoda -1.00 -1.00 

Mollusca .06 -1.00 

Hemiptera .57 -1.00 

Megaloptera -1.00 -1.00 

Odonata -.02 -1.00 

Plecoptera -1.00 -1.00 

Tricoptera -.30 -1.00 

Decapoda .86 -1.00 

Annelida -1.00 -1.00 

Hirudinea -1.00 -1.00 

Table 3: Table showing Ivlev’s Electivity Index for CC for S. fontinalis and U. limi. Positive 

numbers show preference for a prey while negative numbers show avoidance.  
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Numerical Index WMRR 

Macroinvertebrate 

order  

Oncorhynchus 

mykiss 

Salvelinus 

fontinalis 

Coleoptera .08 .10 

Diptera .17 .03 

Ephemeroptera .17 .03 

Arachnida .04 -- 

Mollusca .04 .16 

Hemiptera -- .06 

Hymenoptera -- .18 

Odonata .04 .18 

Polydesmida .04 .02 

Tricoptera .42 .07 

Amphipoda -- .09 

Decapoda -- .03 

Plecoptera -- .03 

Isopoda -- .03 

Table 4:  Table showing Numerical Index for WMRR for S. fontinalis and O. mykiss. 

 

Frequency of Occurrence WMRR 

Macroinvertebrate 

order  

Oncorhynchus 

mykiss 

Salvelinus 

fontinalis 

Coleoptera 1.00 .78 

Diptera 1.00 .22 

Ephemeroptera 1.00 .11 

Arachnida 1.00 -- 

Mollusca 1.00 .44 

Hemiptera -- .33 

Hymenoptera -- .44 

Odonata 1.00 .89 

Polydesmida 1.00 .22 

Tricoptera 1.00 .56 

Amphipoda -- .44 

Decapoda -- .33 

Plecoptera -- .11 

Isopoda -- .22 
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Table 5: Table showing Frequency of Occurrence Index for WMRR for S. fontinalis and O. 

mykiss 

 

Ivlev’s Electivity WMRR 

Macroinvertebrate 

order  

Oncorhynchus 

mykiss 

Salvelinus 

fontinalis 

Coleoptera .35 .44 

Diptera -.35 -.82 

Ephemeroptera -.23 -.82 

Amphipoda -- 1.00 

Mollusca .63 .89 

Hemiptera -- 1.00 

Hymenoptera -- 1.00 

Megaloptera -1.00 -1.00 

Odonata .31 .79 

Plecoptera -1.00 .25 

Tricoptera .24 -.57 

Decapoda -- 1.00 

Polydesmida 1.00 1.00 

Isopoda -1.00 -.09 

Table 6: Table showing Ivlev’s Electivity Index for WMRR for S. fontinalis and O. mykiss. 

Positive numbers show preference for a prey while negative numbers show avoidance.  

 

Numerical Index WMUS 

Macroinvertebrate 

order  

Salmo trutta Salvelinus 

fontinalis 

Oncorhynchus 

mykiss 

Cottus spp. 

Coleoptera .08 .09 .20 -- 

Diptera .08 .11 -- .50 

Ephemeroptera .20 .09 -- .33 

Fish .03 .01 -- -- 

Mollusca .03 .16 -- -- 

Hemiptera -- .03 -- -- 

Hymenoptera .13 .01 .15 -- 

Odonata .13 .05 .10 -- 

Plecoptera .05 .03 -- -- 

Tricoptera .30 .42 .55 -- 

Isopoda -- -- -- .17 

Table 7:  Table showing Numerical Index for WMUS for S. trutta, S. fontinalis, O. mykiss and 

Cottus spp. 
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Frequency of Occurrence WMUS 

Macroinvertebrate 

order  

Salmo trutta Salvelinus 

fontinalis 

Oncorhynchus 

mykiss 

Cottus spp. 

Coleoptera .67 .75 .67 -- 

Diptera .67 .50 -- 1.00 

Ephemeroptera .67 .25 -- 1.00 

Fish .33 .25 -- -- 

Mollusca .33 .50 -- -- 

Hemiptera -- .25 -- -- 

Hymenoptera .33 .25 .33 -- 

Odonata .67 .50 .33 -- 

Plecoptera .33 .25 -- -- 

Tricoptera 1.00 .75 1.00 -- 

Isopoda -- -- -- .50 

Table 8: Table showing Frequency of Occurrence Index for WMUS for S. trutta, S. fontinalis, 

O. mykiss and Cottus spp. 

 

 

 

Ivlev’s Electivity WMUS 

Macroinvertebrate 

order  

Salmo trutta Salvelinus 

fontinalis 

Oncorhynchus 

mykiss 

Cottus spp. 

Coleoptera .19 .27 .59 -1.00 

Diptera -.63 -.49 -1.00 .21 

Ephemeroptera 0.00 -.39 -1.00 .25 

Fish 1.00 1.00 -- -- 

Mollusca .63 .93 -1.00 -1.00 

Hemiptera -1.00 .80 -1.00 -1.00 

Hymenoptera 1.00 1.00 1.00 -- 

Megaloptera -1.00 -1.00 -1.00 -1.00 

Odonata .91 .80 .89 -1.00 

Plecoptera 1.00 1.00 -- -- 

Tricoptera -.13 .03 .17 -1.00 

Isopoda -- -- -- 1.00 

Table 9: Table showing Ivlev’s Electivity Index for WMUS for S. trutta, S. fontinalis, O. mykiss 

and Cottus spp. Positive numbers show preference for a prey while negative numbers show 

avoidance.  
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Numerical Index MMPT 

Macroinvertebrate 

order  

Salmo trutta Salvelinus 

fontinalis 

Oncorhynchus 

mykiss 

Cottus spp. 

Coleoptera .16 .14 .09 -- 

Diptera .02 .07 .12 .14 

Ephemeroptera .09 .14 .06 .09 

Mollusca .03 .07 -- -- 

Hymenoptera .13 .14 .18 -- 

Odonata .14 .24 .12 -- 

Plecoptera .03 .07 -- -- 

Tricoptera .39 .14 .26 .77 

Amphipoda .02 -- -- -- 

Isopoda -- -- .18 -- 

Table 10:  Table showing Numerical Index for MMPT for S. trutta, S. fontinalis, O. mykiss and 

Cottus spp. 

 

 

 

Frequency of Occurrence MMPT 

Macroinvertebrate 

order  

Salmo trutta Salvelinus 

fontinalis 

Oncorhynchus 

mykiss 

Cottus spp. 

Coleoptera .33 .50 .50 -- 

Diptera .17 .50 .50 .67 

Ephemeroptera .50 1.00 1.00 .33 

Mollusca .17 .50 -- -- 

Hymenoptera .67 1.00 1.00 -- 

Odonata .67 1.00 50 -- 

Plecoptera .17 .50 -- -- 

Tricoptera .83 1.00 1.00 .67 

Amphipoda .17 -- -- -- 

Isopoda -- -- .18 -- 

Table 11: Table showing Frequency of Occurrence Index for MMPT for S. trutta, S. fontinalis, 

O. mykiss and Cottus spp. 
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Ivlev’s Electivity MMPT 

Macroinvertebrate 

order  

Salmo trutta Salvelinus 

fontinalis 

Oncorhynchus 

mykiss 

Cottus spp. 

Coleoptera .41 .35 .14 -1.00 

Diptera -.88 -.55 -.34 -.28 

Ephemeroptera -.46 -.29 -.62 -.47 

Amphipoda .13 -1.00 -1.00 -1.00 

Mollusca .18 .52 -1.00 -1.00 

Hymenoptera .96 .96 .97 -1.00 

Megaloptera -1.00 -1.00 -1.00 -1.00 

Odonata .76 .85 .72 -1.00 

Plecoptera -.04 .34 -1.00 -1.00 

Tricoptera .06 -.43 -.13 .38 

Isopoda -- -- 1.00 -- 

Table 12: Table showing Ivlev’s Electivity Index for MMPT for S. trutta, S. fontinalis, O. 

mykiss and Cottus spp. Positive numbers show preference for a prey while negative numbers 

show avoidance.  

 

 




