On The Evolution of Distyly and Morph Ratio Distortion in Lithospermum Caroliniense

Cody Ladd \& Miriam Llamas

University of Michigan Biological Station
EEB 392: Natural History and Evolution August, 2018
Prof. Jordan Price

Abstract

Two conflicting models presently exist describing the evolutionary history of heterostyly, a condition in which there presents two morphs-- different plant sexual organ structure that some individuals within the same species exhibit as a means of promoting outcrossing. The charlesworth model (1979) and the Lloyd-Webb model (1992) differ in that the latter assumes the ancestral character state was one of approach herkogamy, whereas the former assumes it was homostyly. One such heterostylic species, Lithospermum caroliniense (Walt.) MacMill. (Boraginaceae), is unique in that it additionally exhibits morph ratio distortion, that is, in natural populations, one morph is disproportionately represented over the other morph, which is of particular interest because inverse frequency dependent selection should presumably shape a $1: 1 \mathrm{morph}$ ratio. In this paper, we discuss the Levin (1968) model of morph ratio distortion in L. caroliniense, and propose the superthrum model, in which we hypothesize the existence of superthrums, a genetically unique form of the thrum morph that, after 5 generations, produces distortion to the degree recorded by several field studies (Cartmill \& Murray 2011; Levin 1968; Levin 1972).

I grant the Regents of the University of Michigan the non-exclusive right to retain, reproduce, and distribute my paper, titled in electronic formats and at no cost throughout the world.

The University of Michigan may make and keep more than one copy of the Paper for purposes of security, backup, preservation and access, and may migrate the Paper to any medium or format for the purpose of preservation and access in the future.

Signed,

On The Evolution of Distyly and Morph Ratio Distortion in Lithospermum Caroliniense

Introduction

Heterostyly is the differential length of the style within the same plant species. Species that have two style lengths are said to be distylic, while species that have three style lengths are said to be tristylic. Species that to not exhibit heterostyly are said to be homostylic. Darwin first commented upon the different morphologies of flower types in his 1877 book The different forms offlowers on plants of the same species, where he used the term 'pin' and 'thrum', the former having stigma above the anthers by means of a longer style, and the latter having stigma below the anthers, by means of a shorter style.

Lithospermum caroliniense is a herbaceous distylic species exhibiting the two floral morphs pin and thrum. Pin morph pollen grains are relatively smaller and more elongate, whereas thrum pollen are relatively larger and more ovicular (Levin 1968). Dimorphism in plant sexual organs is adaptive in that it acts to reduce the prevalence of inbreeding; that is, negative assortative mating is established in plant populations that exhibit heterostyly because pins can only successfully mate with thrums, and thrums can only successfully mate with pins (Darwin 1877; Levin 1968).
L. caroliniense is of particular interest because it displays both chasmogamous and cleistogamous flowers. Chasmogamous flowers are open for pollination and viable for wind pollination, while cleistogamous flowers are closed and have high rates of selfing. The prevalence of cleistogamous flowers, which can be found on pin or thrum individuals, occur relatively later in the season and do not exhibit the stigma and anther
morph of the plant they are on. A 1:1 ratio is expected in distylus species because distyly is a self-incompatibility mechanism that prevents selfing. In other words, it promotes negative assortative mating, and the morph ratio is under the pressure of inverse frequency dependent selection. In L. caroliniense, several studies have found that the pin:thrum ratio deviates from the expected 1:1 (Cartmill \& Murray 2011;Levin 1968; Levin 1972). The authors will propose a new model for understanding morph ratio distortion in L. caroliniense that predicts the existence of superthrums, thrums that exhibit dominant homozygosity in distylic-associated genes.

On the Evolution of Distyly in Lithospermum caroliniense

Heterostyly has evolved independently at least 23 times (Ganders 1979). While the evolution of heterostyly, specifically distyly, (in which there are two floral morphs), is obscure, there are two prevailing hypotheses regarding the evolution of distyly: The Charlesworth model maintains that self-incompatibility, not stigma height polymorphism, evolved first (Charlesworth \& Charlesworth 1979). It posits that because of extensive inbreeding from homostyly, sterile pollen would arise. A subsequent mutation affecting the stigma, both altering its height and making it compatible with the previously sterile pollen, would generate dimorphism, and the dimorphic self-incompatibility system. There would be selective pressure on the degree of distinction between the morphs due to negative assortative mating, thereby further perpetuating and establishing dimorphic self-incompatibility.

Conversely, a model proposed by Lloyd and Webb (1992) suggests that dimorphism occured before self-incompatibility. Inherent in this model is the notion that the ancestral condition was one of herkogamy, which refers to the strategy of spatially separating anthers and stigma in order to reduce the prevalence of selfing, a form of inbreeding which is usually detrimental to a population. This is supported further by additional floral morphological characteristics, including, in species of 22 families that exhibit heterostyly, tubular corollas, an indicator of herkogamy (Webb \& Lloyd 1986). If herkogamy, specifically, approach herkogamy, where the stigma is above the anthers, was the ancestral condition, then a mutation of this form causing opposite spatial separation, in what is called reverse herkogamy, could generate dimorphism, at which point negative assortative mating would act to reinforce the dimorphism.

In either model, it is supposed that the evolution of heterostyly did not occur via the variation or mutation upon stigma or anther height if the ancestral state was one without herkogamy. However, a difficulty in the Lloyd-Webb model (1992), from an evolutionary perspective, is that while it provides an answer and associated mechanism, it also begs further questions about how approach herkogamy could have fixated in ancestral populations. Given that the majority of angiosperms do not exhibit approach herkogamy, and indeed the most parsimonious explanation of heterostyly is one when it evolved independently in each instance, this in effect is pushing the answer further back in evolutionary time. The question of when approach herkogamy first evolved, sufficiently ancient so as to include all instances of present heterostyly, would be less parsimonious than to assume it evolved independently from an ancestral homostyly,
because it would require the evolution of homostyly from an ancestral heterostyly to have occurred more often than if heterostyly evolved from an ancestral homostyly. A phylogeny of heterostyly is necessary to address these questions, and a revision of these models may thusly occur.

We contend that the Lloyd-Webb model, amid the aforementioned unresolved questions, is still a useful explanation for the evolution of heterostyly because of the additional morphological evidence, namely tubular corollas, that are present in the majority (88%) of families that have representatives of heterostyly, and that are indicators of herkogamy (Webb \& Lloyd 1986).

Evidence readily applicable to hairy (Carolina) Puccoon, Lithospermum caroliniense, a herbaceous distylic species found throughout the Midwestern United States, for the evolution of distyly must be considerate of the inherent assumptions that models make, particularly for selective pressure and fixation of heterostylic alleles, when those models use different vectors for pollen dispersal. Indeed, L. caroliniense are primarily pollinated by bee and lepidopteran pollinators, not wind (Kerster \& Levin 1968).

A study testing the Lloyd-Webb model by looking at bee pollination patterns between artificially constructed approach, reverse, and thrum herkogamy found that a stigma-height polymorphism could be established in a population because the total pollen transfer between morphs was greater than twice the total pollen transfer between members of the same morph (Stone \& Thompson 1994). This indicates that should a mutation arise in stigma height, it could establish due to the differential pollen
deposition it would cause. This offers a pollinator-mediated mechanism that could explain the evolution of heterostyly via the Lloyd-Webb model, and is applicable to L. caroliniense.

On Morph Ratio Distortion in Lithospermum Caroliniense

Morph ratios operate like sex ratios insofar as they are subjected to the same type of selection-- inverse frequency dependent selection, which acts to maintain a 50:50, or 1:1 ratio by nature of the rarer morph or sex having advantage over the more common morph or sex. However, several studies have shown that in L. caroliniense, there is a distortion of the expected 1:1 ratio; thrums tend to represent a higher proportion of the overall population. In Levin (1968), a population of L. caroliniense in Zion Illinois consisted of 62% thrums and 38% pins; 12 other populations included in the study consisted of $55-67 \%$ thrum. In a study in northern lower Michigan, 4 populations were surveyed, and collectively they consisted of 70\% thrum and 30\% pin (Cartmill \& Murray 2011).

There presently exists a model that succeeds in predicting this distortion. Levin (1968) proposes a model in which there are 6 assumptions. These assumptions will be listed and directly quoted to ensure proper representation. (1) thrum is heterozygous, (2) both forms produce 27% fo their seed via cleistogamy, (3) 18% of the thrum seed is from chasmogamic selfing, (4) outcrossing is between pin and thrum, (5) SS genotypes are inviable, and (6) gene frequencies are not altered by selection or drift. Given population structure noted in Levin's study, this model, upon the fifth iteration,
calculates 45.7% thrum and 54.3% pin. Given in the above model that the pin is represented genotypically as $s s$, and the thrum $S s$, the observed ratio was not obtained. Levin noted that if a single assumption were changed and all else held constant, that the thrum is a homozygote and not a heterozygote, the results after 5 generations were drastically different; the thrum proportion reaches 62.3% and the pin proportion 37.7%.

While this model seems sufficiently explicative of observed ratios, we propose a slightly different hypothesis that supposes that thrums can genotypically present both in the dihybrid and in the dominant homozygous condition. Additionally, using the S / s system of discussing the genetics of distyly is misleading because while the two loci controlling stigma and anther height (alleles G / g, and A / a respectively) are in linkage disequilibrium, the results of selfing are difficult to see using a single letter representation (Futuyma 2013). Therefore, for the duration of this paper, the pin morph will be represented as $g a / g a$, that is, homozygous recessive at both loci, and the thrum morph will be represented as $G A / g a$. Note that individuals that have $G a$ or $A g$ are homostylous, and are very rare in populations of L. caroliniense

The superthrum model of L. caroliniense morph ratio distortion

The thrum is $G g A a$ and the pin is $g g a a$. In a single gene cross between genotypes $G g$ and $g g$, the resulting ratio will be 1:1 $\mathrm{Gg}: g \mathrm{~g}$. When a thrum crosses with a pin, the resulting ratio is a 1:1:1:1 ratio between 4 genotypes: GgAa, Ggaa, ggAa, and ggaa. The first genotype is a thrum, and the fourth genotype is a pin, the middle two genotypes are a homostylic individuals, and due to distyly, these resulting genotypes are very rare. If
the homostylic genotypes are removed from consideration, the resulting ratio is a $1: 1$ thrum:pin. In this way, there must be some piece missing. This is where the idea of the superthrum is useful.

Pins are unable to self cross. In one study, Levin found that pin selfing contributed o\% to the selfed seed set, indicating complete inbred breakdown (1968). In the same study, Levin found that thrum selfing contributed approximately 25% to the selfed seed set (1968). If thrums are able to self cross, understanding the resulting genotypes ratios that can arise is useful. When two thrums cross, a 9:3:3:1 genotype ratio is observed because it is a dihybrid cross (Fig. 1 \& 2)

					In figure 1, the phenotypic results of a thrum
Cross: GgAa \times GgAa					self cross are shown. 9/16ths would be a
	GA	Ca	gA	ga	thrum, 6/16ths would be homostylic, and
gA	Ggat	GGaA	gGAA	gGaA	$1 / 16$ th would be a pin. The $6 / 16$ ths that are
Ga	GGAa	GGaa	gGAa	gGaa	homostylic and can be expected to always
gA	GgAA	GgaA	ggAA	ggaA	self, therefore, in any thrum self cross,
					9/10ths would be viable thrum, and only
ga	CgAa	Ggaa	ggaa	ggaa	1/10th would be viable pin. Every time a
					thrum self crosses, it will have a 90\% chance

Figure 1^{1} : Phenotype ratios of thrum self cross.
to produce a thrum nutlet. Considering several inflorescences per individual, a thrum self cross would contribute disproportionately to the thrum population.

[^0]Genotypically, something more interesting happens. While there are still 6/16ths homostyly and $1 / 16$ th pin, $1 / 16$ th of the $9 / 16$ ths thrum will be homozygous dominant for G and A, this individual can be found in the top left square in Fig. $1 \& 2$. Notice in Fig. 2, it is the only dark red color, indicating that it is the only individual of that genotype. This is the superthrum, $G G A A$. The superthrum represents $1 / 16$ ths of the proportion of seeds produced via thrum selfing. When the superthrum is crossed with a pin, all offspring, or in other words, $16 / 16$ ths of offspring will be $G g A a$, or a thrum (Fig. 3). This distorts the morph ratio because when a superthrum mates with a pin, the resulting probability of thrum is 100% versus 0% probability of a pin. This is significantly different than a 50:50 probability when a regular thrum and pin cross. Therefore, as the number of superthrums increases in a population, the distortion effect increases (Appendage A).

Figure 2^{2} : Genotype ratios of thrum self cross. cross

Figure 3^{3} : Genotype/phenotype ratios of between superthrum and pin.

Discussion

The evolutionary context of heterostyly is not of particular importance to the superthrum model; indeed, we chose to discuss it as a means of introducing the unique population genetics and ecology of distylic species. Understanding the evolutionary history of heterostyly is important, nonetheless, because the self-incompatibility system put it place as a result of heterostyly is an adaptation that reduces inbreeding, and therefore the inbreeding depression that afflicts many homostylic plant species. We propose a study looking into the relative fitness benefits derived from having a self-incompatibility system, whether other such systems exist that do not use heterostyly as a means of achieving it, and a phylogeny of heterostyly in angiosperms.

The superthrum model is the same from the Levin (1968) model in that both use $S S$ or $G G A A$ as a means of distorting the morph ratio, but the former uses it as a special case of thrum selfing, whereas the latter assumes all thrums are homozygous dominant. The implications of the superthrum model in L. caroliniense can be applied to any distlylic species, insofar as it predicts the existence of a special class of 1 of the 2 morphs that acts to distort the ratios of its progeny, and when members of this special class are breeding individuals within a population, they are the cause of the population tending toward more of its morph.

[^1]Superthrums are necessary because without them the distortion functionally limits at a morph ratio significantly different than observed. Without superthrums, the thrum morph increased to 56.11% in F 3 and 56.12% in F 4 -- the increase becomes negligible. But once superthrums are added to the population by a calculated amount, the proportion of thrum in the F5 generation increases to 58.31 \%, with additional iterations further increasing that proportion (see Appendage A).

This model can be tested in the field with any distylic species with simple genetic crosses between thrums and pins, assuming the genotypes of the morphs are the same. While revisiting sites included in a study done in 2011 in northern lower Michigan by Cartmill and Murray, we did not observe any unique thrum phenotype that would indicate a GGAA genotype. However, a superthrum will produce only thrums when crossed with a pin, whereas a thrum will produce a 1:1 ratio of thrums:pins. In our model population, we calculated only 2.089 superthrums in the F5 generation, indicating that these individuals are very rare. Therefore, should a study be devised that crosses thrums and pins, large numbers of crosses would be necessary. We propose a study of this fashion in order to test the superthrum model. If superthrums could be found, subsequent crossing of these individuals with pins to ensure that no pins are created would offer compelling evidence in support of the model.

References

Cartmill, M, K., \& Murray L, G. (2011). Heterostyly and wind speed in carolina puccoon (Lithospermum caroliniense. Deep blue. University of Michigan repository.

Charlesworth, D. \& Charlesworth, B. (1979). A model for the evolution of distyly. American Naturalist 114: 467-498.

Darwin, C. (1877). The different forms of flowers on plants of the same species. Murray, London.

Futuyma, D, J. (2013). Sinauer Associates. Sunderland, MA. USA. Pg. 236-239.
Ganders, F. R. (1979). The biology of heterostyly. New Zealand Journal of Botany 17 607-635.

Kerster, H. W. \& Levin, D, A. (1968). Neighborhood size in Lithospermum caroliniense. Genetics 60: 577-587.

Levin, D, A. (1968). The Breeding System of Lithospermum caroliniense: Adaptation and Counteradaptation, American Naturalist 102(927): 427-441.

Levin, D, A. (1972). Plant density, cleistogamy, and self-fertilization in natural populations of Lithospermum caroliniense. American Journal of Botany 59:71-77.

Lloyd, D, G., \& Webb, C, J. (1992). The evolution of heterostyly. Pp. 152-178 in S. C. H. Barrett, ed. The evolution and function of heterostyly. Springer, Berlin.

Stone, J., \& Thomson, J. (1994). The evolution of distyly: Pollen transfer in artificial flowers. Evolution, 48(5), 1595-1606. doi:10.2307/2410250

Webb, C, J., \& Lloyd, D, G. (1986). The avoidance of interference between the presentation of pollen and stigma in angiosperms. II. Herkogamy. New Zealand Journal of Botany 24:163-178.

Appendage A

A mathematical walkthrough of the superthrum model

In order to see the effects of thrum selfing and the superthrum, a mathematical model may be useful. Assuming a population of 100 individuals, where 50 are pin and 50 are thrum, and $\mathbf{2 0 \%}$ of thrums undergo selfing, there will be 40 crosses between thrum and pin (hereafter abbreviated T and P) individuals, and 10 thrum x thrum selfing events. In the F1 generation, the $40 \mathrm{~T} \times \mathrm{P}$ crosses will yield equal numbers T and P (20 each assuming 1 offspring per cross), while the $10 \mathrm{~T} \times \mathrm{T}$ crosses will generate $<1 / 16$ th P and 5.125 T . When we total the number of T , we get $20+5.125=25.625$, and when we total the P, we get $20+$ approximately 1 from the $1 / 16$ th $=21$. Now to see the relative proportion of T, we divide T by (T+P), $25.625 / 46.625=.5496=54.96 \% \mathrm{~T}$. When we use the relative proportion of T as a starting number of T for the next generation, we can calculate F2 from a starting population of 55 T and 45 P . The crosses are changed from 40 Tx P and 10 Tx T to 39 Tx P and 11 TxT calculated considering the higher proportion of T selfing, which is directly correlated to the higher proportion of T in the population. In F2, the proportion of T increases to 56% and P decreases to 44%. In $\mathrm{F} 3, \mathrm{~T}=56.11 \%$ and $\mathrm{P}=43.89 \%$. In $\mathrm{F} 4 \mathrm{~T}=56.12 \%$ and P decreases to 43.88%.

Just looking at these generations, the increase in the proportion T becomes negligible. The superthrum is a mechanism to increase further the proportion T beyond this apparent functional limit. If we were to add this variable in F 5 , we would need calculate the number of superthrums present in the T population. This calculation would multiply the number of $\mathrm{T} x \mathrm{~T}$ crosses by the proportion of the progeny exhibiting the $G G A A$ genotype, which is $1 / 16$, for each generation, and then sum the generations. Thus: $11(1 / 16)+11.2(1 / 16)+11.222(1 / 16)=2.089$ superthrums.

In the F 5 generation, there are $54.12 \mathrm{~T}, 2$ (rounded down from 2.089) superthrums, and 43.88 P . There are $38.778 \mathrm{~T} \times \mathrm{P}$ and $11.224 \mathrm{~T} \times \mathrm{T}$ crosses. In an interest to simplify the numbers, let us suppose instead we have 20 individuals, 10 T and 10 P , and of the $10 \mathrm{~T}, 2$ of them are superthrums. As was previously stated, when a $\mathrm{T} \times \mathrm{P}$, there is a 50% ratio of T and P in the progeny because in each $\mathrm{T} \times \mathrm{P}$, there is a equal 50% chance that the cross will yield a T or a P . Therefore, if we look at 10 crosses between T and P , we should expect to see 5 T and 5 P because in each of the 10 crosses there is a 50% chance of a T or P, it is like flipping a coin, and so with enough iterations of 10 crosses, the mean T and P will be 5 .

However, we mentioned that 2 of the 10 T are superthrums, that, as we recall, are $G G A A$, and when they cross with pins (see Fig. 3), they produce 100% thrums. If we go back to the 10 crosses between T and P, and we suppose that 2 of the 10 T are superthrums, than 2 of the 10 crosses do not have an equal 50:50 T and P , but instead a 100% chance at yielding a T. Therefore, there are 2 crosses that yield a 100% T, and 8
crosses that will yield 50:50 T:P. With the superthrums included, the end result is 6 T and 4 P , and morph ratio distortion has occurred.

If we go back to the F5 data, recall that there are $54.12 \mathrm{~T}, 2$ uperthrums, and 43.88 P. There are $38.778 \mathrm{~T} \times \mathrm{P}$ and $11.224 \mathrm{~T} \times \mathrm{T}$ crosses. If we apply the same methods in the above, simple example, than we would take the number of crosses, 38.778 , subtract the 2 superthrums, and divide the difference by 2 to reflect the equal chance T or P: 38.778-2 = 36.778, and $36.778 / 2=18.389 \mathrm{~T}$ and 18.389 P. Adding back the two crosses we subtracted, which always produce thrums, we need to add 2 to the resulting number of $\mathrm{T}: 18.389+2=20.389 \mathrm{~T}$ and 18.389 P . When we calculate the T and P resulting from the 11.224 T selfing, we obtain 6.3135 T and .7 P . When we add the T together we get $20.389+6.3135=26.7025 \mathrm{~T}$, and when we add the P together, we get $18.389+.7=19.089 \mathrm{P}$. When we calculate the relative proportion of T we get .5831 or $58.31 \% \mathrm{~T}$, an increase of over 2% from the rather stagnant previous generation where we were reaching a limit of approximately 56.12%.

The proportion T would increase in the next generation the same way it increases in F5, that is, the number of superthrums, would increase by a factor of the amount of T selfing (recall, we let that be 20% of all T) multiplied by the proportion of the selfing progeny that has the superthrum genotype (1/16), see the dark red square in fig. 2. In other words, 20% of the T population in F6 is $58.31^{*} .2=11.662$, and when we multiply that by $1 / 16$ we get .729 , which we can add to the 2.089 in F 5 to equal 2.818 superthrums in the next generation, which, running the model again, would calculate $59.48 \% \mathrm{~T}$ and 40.52% P. Sufficient iterations of the model will increase further the
proportion T. The proportion T will limit as a function of the average number of flowering seasons, which we presume to be sufficiently high to match T and P proportions observed in the field.

Appendage B

Mathematical terms

$\frac{1}{2} N_{t}$ is the number of thrums in population N. This term is equivalent to the number of pins because the proportions are assumed to be 50:50.
T_{s} is the number of superthrums in the population
T_{n} is the total number of thrums calculated using formula B, and is used as a term in formula C
P_{n} is the total number of pins calculated from formula A, and is used as a term in formula C

Formula A

$\left[\frac{1}{5}\left(\frac{1}{2} N_{t}\right] \cdot \frac{1}{16}\right]+\left\{\left[\frac{4}{5}\left(\frac{1}{2} N_{t}\right]-T_{s}\right\} \div 2=\right.$ Number of Pins from 8o\% dimorphic thrum crossing and 20% thrum selfing in a parent population with N individuals, assuming equal numbers thrum and pin, with superthrums T_{s}

Formula B

$\left[\frac{1}{5}\left(\frac{1}{2} N_{t}\right] \cdot \frac{9}{16}\right]+\left(\left\{\left[\frac{4}{5}\left(\frac{1}{2} N_{t}\right)\right]-T_{s}\right\} \div 2\right)+T_{s}=$ Number of thrums from 80% dimorphic thrum crossing and 20% thrum selfing in a parent population with N individuals, assuming equal numbers thrum and pin, with superthrums T_{s}

Formula C

$100 \cdot \frac{T_{n}}{T_{n} \cdot P_{n}}=$ percent T_{n} in the next generation, necessary in calculating additional iterations.

[^0]: ${ }^{1}$ Image generated using Punnett Square Calculator; scienceprimer.com © Andrew Staroscik 2018.

[^1]: ${ }^{2}$ Image generated using Punnett Square Calculator; scienceprimer.com © Andrew Staroscik 2018.
 ${ }^{3}$ Image generated using Punnett Square Calculator; scienceprimer.com © Andrew Staroscik 2018.

