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Situational Awareness, Driver’s Trust 
in Automated Driving Systems 
and Secondary Task Performance

Luke Petersen, Lionel Robert, Xi Jessie Yang, and Dawn Tilbury, University of Michigan, USA

Abstract
Driver assistance systems, also called automated driving systems, allow drivers to immerse them-
selves in non-driving-related tasks. Unfortunately, drivers may not trust the automated driving 
system, which prevents either handing over the driving task or fully focusing on the secondary task. 
We assert that enhancing situational awareness (SA) can increase a driver’s trust in automation. SA 
should increase a driver’s trust and lead to better secondary task performance. This study manipu-
lated drivers’ SA by providing them with different types of information: the control condition provided 
no information to the driver, the low condition provided a status update, while the high condition 
provided a status update and a suggested course of action. Data collected included measures of 
trust, trusting behavior, and task performance through surveys, eye-tracking, and heart rate data. 
Results show that SA both promoted and moderated the impact of trust in the automated vehicle 
(AV), leading to better secondary task performance. This result was evident in measures of self-
reported trust and trusting behavior.

© 2019 Regents of the University of Michigan. Published by SAE International. This Open Access article is published under the 
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits distribu-
tion, and reproduction in any medium, provided that the original author(s) and the source are credited.
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1. �Introduction

Driver assistance systems embedded in autonomous 
and semi-autonomous vehicles have the potential to 
increase driving safety while providing human 

drivers with the flexibility to address other pressing issues 
that they could not address while manually driving [29].

Unfortunately, prior research suggests that not all drivers 
trust automated driving systems [2, 42, 46]. This lack of trust 
prevents drivers from either handing over driving responsi-
bility or fully focusing on a secondary (i.e., non-driving) task 
[10]. In the former case, the driver fails to complete the 
secondary task. In the latter, performance in the secondary 
task is hindered because the driver is constantly monitoring 
the driving situation. In order to achieve optimal task perfor-
mance, drivers must be comfortable relying on the vehicle 
automation to drive so they can effectively engage in a 
secondary task. In a civilian setting, typical secondary tasks 
might include interacting with a navigation device or a smart-
phone—instances where task engagement might be trivial but 
can impose sufficiently high attentional demands to make it 
difficult and unsafe to simultaneously drive the vehicle. In a 
military setting, typical secondary tasks might include 
surveillance or mission-critical communications—instances 
in which mission success is highly dependent on both the 
driving and non-driving tasks being accomplished properly.

We assert that situational awareness (SA) is a significant 
determinant of trust in automated vehicle (AV) capabilities. 
Trust is promoted by matching an agent’s ability to a given 
situation [33]. Trust in the agent (the trustee) occurs when the 
trustor believes that the trustee’s ability is equal to or exceeds 
the demands of a given task. However, driving is often 
dynamic and unpredictable, and so to ensure that the situation 
has not exceeded the vehicle’s capability, the driver may 
be tempted to disengage from the secondary task. A driver 
assistance system that supports SA should increase a driver’s 
trust in the automated driving system and allow the driver to 
fully focus on the secondary task, leading to better overall 
task performance and more likely mission success.

We conducted a human-in-the-loop study with thirty 
participants. The experimental design consisted of manipu-
lating driver SA and assigning participants a secondary task 
to complete during a semi-autonomous driving situation. The 
study manipulated SA in three levels: no SA, low SA, and high 
SA. The no SA (control) condition provided no information 
with regard to the driving situation, the low condition 
provided a status update, while the high condition provided 
a status update and a suggested course of action.

Our results show that increased SA promotes trust in 
automation and helps the driver achieve better performance 
on the secondary task. The results of this study contribute to 
the literature on trust in automation by providing new insights 
on the role of SA in driver assistance systems. We discuss 
several of those contributions and suggest next steps. 
We believe that future research could build on our findings 
to further expand our knowledge on SA in driver assistance 
systems and trust in automation.

The remainder of this article is organized as follows. 
Section 2 reviews related work, provides additional back-
ground and motivation, and presents the user study’s expected 
outcomes. Section 3 describes the design of the user study. 
Section 4 presents results from the user study, and Section 5 
discusses these results. Section 6 presents some limitations 
and conclusions from the article.

2. �Background and 
Expected Outcomes

In this section, we discuss measuring trust in automation and 
evaluating SA. We compare our study against related studies 
in the literature and discuss the expected study outcomes.

2.1. �Trust in Automation
Most definitions of trust in automation involve expectations, 
confidence, risk, uncertainty, reliance, and vulnerability [3]. 
No single definition exists for trust in Automated Vehicles, 
or AVs [35]. In this article, we draw from two popular defini-
tions of trust by Mayer, Davis, and Schoorman [22] and Lee 
and See [18]. Mayer et al. [22] defined trust as “the willing-
ness of a party to be vulnerable to the actions of another..., 
irrespective of the ability to monitor or control that other 
party.” Lee and See [18] defined trust in automation as “the 
attitude that an agent will help achieve an individual’s goals 
in a situation characterized by uncertainty and vulnera-
bility.” For our research, we leverage both definitions and 
define trust in AVs as the willingness of an individual to 
be vulnerable to the actions of an AV based on the attitude 
that the AV will help them achieve their goals. Trust in an 
autonomous vehicle has been identified as a vital determi-
nant of whether the driver will employ an autonomous 
vehicle [2, 5, 42, 46].

Previous studies examining approaches to facilitating 
trust in autonomous or semi-autonomous vehicles were 
designed around a common paradigm that assumes that the 
driver is or should be monitoring the vehicle actions at all times 
to take over if needed [4, 12, 20]. As a result, these studies often 
treat secondary (i.e., non-driving) tasks as distractions or chal-
lenges to compensate for or prevent, rather than to support. 
This view is appropriate when the goal is to promote the 
driver’s attention toward the driving. However, this view 
ignores the potential of drivers to fully leverage the benefits of 
autonomous or semi-autonomous driving by intentionally not 
focusing on the vehicle’s driving all the time. In these situa-
tions, secondary tasks are not distractions and should 
be supported.

In our study we  measured trust in several ways. 
Traditionally, trust has been captured via subjective self-
reported rating. We employed one of the most widely accepted 
self-reported measures [27]. We  have also included more 
objective behavioral and physiological measures.
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Behavioral measures associated with trust in our study 
included driver monitoring via eye gaze and compliance with 
the driver assistance systems. Monitoring has normally been 
associated with a lack of trust in many settings [32]. Monitoring 
of automation has been negatively associated with trust in 
automation [12]. Measures of compliance include distance to 
impact with another vehicle and waiting time before taking 
over control of the driving. We expect drivers who trust the 
automated driving system to wait for voice commands from 
the driver assistance systems before acting. This would mean 
that the trusting driver would wait longer before taking 
control over the driving and therefore come closer to hitting 
another vehicle.

We also included measures of heart rate variability (HRV) 
and heart rate (beats per minute, or bpm). HRV has been used 
as an index of perceptions of threat to one’s safety and stress 
[41]. Generally, lower HRV has been associated with greater 
perceptions of threat to safety and stress [40]. Therefore, 
we expected HRV to be positively related to trust in automa-
tion. Increases in the heart rate (bpm) are associated with 
increases in stress [24]. When individuals trust the vehicle, 
they should be less worried and have less concern. Therefore, 
increases in trust in automation should coincide with 
decreases in heart rate.

2.2. �Situational Awareness
SA is defined as the perception and comprehension of infor-
mation that allows an individual to project future courses of 
action needed to respond to a dynamic environment [7]. 
Recently, researchers have suggested that SA might help 
promote trust in automated driving by allowing the driver to 
better understand the environment and predict what future 
actions, if any, are needed [25]. We build on this prior litera-
ture on SA and trust in automation by asserting that driver 
assistance systems that promote SA should increase trust in 
automation and ultimately result in better secondary task 
performance by allowing the driver to focus more on the 
secondary task.

Despite the potential of SA to support the driver’s perfor-
mance on a secondary task, little if any research has been 
directed in this area. Although the research in SA is plentiful 
in the human-robot interaction domain, substantially fewer 
studies have been conducted in the context of automated (or 
semi-automated) driving. Existing studies have looked 
primarily at two areas: graphically displaying some sort of 
“uncertainty” metric to the driver [2, 11, 31, 38] and looking 
at the effect of missed alarms and false alarms on a driver’s 
response to feedback from the vehicle [19, 21]. We addressed 
this research gap in our study and contribute to the field of 
SA research by directly examining the relationship among 
SA, trust in automated driving systems, and secondary 
task performance.

Several common instruments are used to measure SA. 
The two most common are the situation awareness global 
assessment technique (SAGAT), taken from Endsley [8], 
and the situation awareness rating technique (SART), taken 

from Taylor [39]. SAGAT is a freeze online probe that 
requires researchers to pause and intervene during the task 
to make queries about elements in the situation. Queries 
are aligned with the three constructs of SA in Endsley’s 
model of SA [7]. SAGAT minimizes attention bias because 
subjects cannot anticipate the queries in advance; however, 
it can be intrusive because it requires pausing the task at 
critical times of task engagement. Therefore, we employed 
SART, which is administered to participants after they 
perform a task, to determine participant SA. The items 
measured through the SART use a seven-point rating scale 
(1=low, 7=high), which asks participants to rate their expe-
rience in the performed task. SART measures SA via three 
dimensions—demands on attentional resources (SART-
DAR), supply of attentional resources (SART-SAR), and 
understanding of the situation (SART-UOS)—and uses all 
three to create an overall measure of SA [36, 39]. Table 1 
shows the list of abbreviations pertinent to the SA measures.

2.3. �Expected Outcomes
SA in the context of an AV can refer to the degree to which 
the driver is aware of the current and future driving conditions 
facing the vehicle. SA should be particularly important when 
a driver’s secondary task requires them to disengage from the 
driving. The driver must trust the AV while focusing on 
performing a secondary task. Performance on the driver’s 
secondary task is hindered when the driver refuses to trust 
the AV and attempts to engage in the driving and secondary 
tasks simultaneously. When the AV supports SA through 
driver assistance systems, the driver can forecast potential 
problems and take control before these events occur. Under 
these conditions, drivers are more likely to trust the AV and 
focus fully on the secondary task. Therefore, the basic premise 
of our research is this: As the level of SA increases, so should 
the trust in automation.

In our study, we varied SA by changing the content of a 
verbal message presented to the driver. The message provided 
information relative to an upcoming obstacle on the roadway. 
We varied the degree of SA support across three conditions. 
In the control condition, no message was provided. In the low 
SA condition, a simple status update was provided. In the high 
SA condition, the same simple status update was presented 
followed by a suggested course of action. Based on the prior 

TABLE 1 A list of abbreviations.

Abbreviation Terminology
SAGAT situation awareness global assessment technique

SART situation awareness rating technique

SART-DAR situation awareness rating technique-demands 
on attentional resources

SART-SAR situation awareness rating technique-supply of 
attentional resources

SART-UOS situation awareness rating technique-
understanding of the situation

© 2019 Regents of the University of Michigan
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literature on SA and trust, we have the following expected 
outcomes (EOs):

EO1. As we move from the control condition to the high 
SA condition, SA will increase.

EO2. As we move from the control condition to the high 
SA condition, self-reported trust will increase.

EO3. As we move from the control condition to the high 
SA condition, behavioral and physiological measures 
of trust will increase.

EO4. As we move from the control condition to the high 
SA condition, the impact of trust on secondary task 
performance should increase.

3. �User Study
In this research we utilized a human-in-the-loop study to 
evaluate driver trust in automation when the automated 
driving system purposefully augmented the driver’s SA.

3.1. �Participants
A total of thirty-three drivers with valid United States (U.S.) 
driver’s licenses voluntarily participated in the study. 
Participants were recruited from a Midwestern public 
university. Three participants were excluded from analysis 
because of simulation errors during the experiment. The 
remaining thirty participants consisted of twenty-two males 
and eight females with an average age of 25.7 years (standard 
deviation [SD] = 5.5 years) and an average driving experi-
ence of 7.8 years (SD = 5.7 years). Twenty-nine reported 
right-handedness, while one reported left-handedness; this 
information is summarized in Table 2. Prior research has 
not reported consistent gender differences on trust in 
automation [15].

The participants also reported their experience with 
various driver assistance features. Their responses are tabu-
lated in Table 3.

3.2. �Procedure
Participants first completed a consent form to participate in 
the study. Next, participants completed a pre-experiment 
survey. The pre-experiment survey consisted of questions 
about demographic information as well as experience using 
driving aids, such as adaptive cruise control and forward colli-
sion warning. It also included questions to determine each 
participant’s propensity to trust automation, derived from 
Singh, Molloy, and Parasuraman [37].

After completing the pre-experiment survey, participants 
completed a brief training session to become familiar with the 
vehicle controls and the (non-driving) secondary task. Following 
training, the eye-tracker and heart rate monitor were fitted and 
calibrated. Participants then completed three test sessions, one 
corresponding to each of the SA conditions (described in detail 
in the next section). Each driving session lasted approximately 
10 minutes. At the end of each session, participants completed 
the post-condition survey. The post-condition survey included 
measures for SART taken from Taylor [39] as well as questions 
about trust in automation, derived from Muir and Moray [27] 
and adapted to suit this study. All surveys were administered via 
webform. Each experiment lasted approximately 90 minutes.

3.3. �Tasks
Participants were tasked with operating a simulated semi-
automated vehicle while also attending to a visually engaging 
secondary task. The simulated vehicle was equipped with lane-
keeping, speed-maintenance, and automatic emergency 
braking capabilities, corresponding to SAE level 3 automation 
[34]. Additionally, the simulated vehicle delivered auditory 
messages regarding obstacles on the road. The content of these 
messages was varied across the three driving sessions and is 
discussed in detail in the “Study Design” section.

TABLE 3 Self-reported usage of driver assistance features. 
This survey was administered immediately following consent 
and prior to the explanation of the experiment. As shown by 
the bold numbers in the table, most subjects had interacted 
with cruise control; few had utilized higher-level assistance 
features. Percentages may not add to 100% due to rounding.

Frequency of Use of Driver Assistance Features
Driver 
Assistance 
Feature Never Once Periodically Frequently Always
Cruise control 10% 7% 40% 33% 10%
Adaptive 
cruise control

80% 10% 3% 3% 3%

Lane 
departure 
warning

80% 7% 10% 0% 3%

Lane-keeping 
assistance

87% 3% 7% 0% 3%

Forward 
collision 
warning

73% 17% 3% 3% 3%
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TABLE 2 Participant characteristics. A total of thirty-three 
drivers with valid U.S. driver’s licenses voluntarily participated 
in the study. Three participants were excluded from analysis 
because of simulation errors during the experiment.

Gender 8 Females 22 Males
Handedness 29 right-handed 1 left-handed

Mean SD
Age 25.7 years 5.5 years

Driving experience 7.8 years 5.7 years
© 2019 Regents of the University of Michigan
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The virtual driving scenario was a standard two-lane 
highway with a hard shoulder and a posted speed limit of 70 
mph. In lieu of a dashboard, a heads-up display overlaid the 
vehicle speed and driving mode (manual or automated) on the 
driving view (see Figure 1). Participants were told that the simu-
lated vehicle could drive itself, but that given the highway speeds 
it would not be able to maneuver around a stopped obstacle 
obstructing the roadway. In these circumstances, participants 
would have to take over control of the vehicle by turning the 
steering wheel or applying the brake. Failure to do so would result 
in the simulated vehicle automatically emergency braking. No 
other moving traffic was present in the scenario; however, at 
certain points in the simulation, stopped vehicles would appear 
on the road ahead. Participants encountered four such stopped 
vehicles in each of the driving sessions. In each session, either 
two or three of the stopped vehicles would appear in the same 
lane as the driven vehicle, thus requiring action by the partici-
pant. The other stopped vehicle(s) appeared in the opposite lane.

The secondary task (see Figure 2) was a modified version 
of the surrogate reference task [16]. The surrogate reference 

task resembles a target recognition task in which participants 
are required to identify a target item (the letter Q in this study) 
amid a field of distractors (the letter O) and manually select 
it on a touchscreen located to the right of the participant. This 
secondary task is commonly used in studies of this nature 
[2, 12, 17, 30, 38]. The task imposes a controllable level of 
cognitive load and resembles an ordinary activity like inter-
acting with an infotainment system or smartphone.

During the study, participants competed for monetary 
bonuses. Participants earned one point for every completed 
secondary task. Participants were penalized fifteen points if 
the driven vehicle got within 250 feet (76.2 meters) of a stopped 
vehicle before switching lanes. Participants were penalized 
twenty-five points if a collision with a stopped vehicle occurred 
or last-minute automatic braking was induced. The highest-
scoring drivers received cash bonuses. This scoring structure 
forced participants to consider their willingness to rely on the 
vehicle’s driver assistance system so they could focus on the 
secondary task.

3.4. �Study Design
The study employed a one-way within-subjects design. The 
single independent variable in this experiment was the 
content of the auditory message presented to the driver. 
Each participant performed the experiment under all three 
conditions of this messaging, with each condition corre-
sponding to a degree of SA support. The presentation order 
of the three conditions was counterbalanced using a Latin 
square design to minimize learning and ordering effects. 
The control condition is considered as a baseline wherein 
no automation is available [44]. These three conditions are 
tabulated in Table  4. During each driving session, the 
participant encountered four stopped vehicles on the 

 FIGURE 1  Simulated driving view, rendered with ANVEL 
(Autonomous Navigation Virtual Environment Laboratory) 
software. Vehicle speed and driving mode are displayed in a 
heads-up display.
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 FIGURE 2  Example view of secondary task. This task was 
administered on a touchscreen and required subjects to 
manually select the target shape (the letter “Q,” in the upper 
left quadrant).
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 FIGURE 3  Driving simulator and secondary task setup. This 
setup increased the realism of the experimental tasks. Markers 
were placed on each monitor and the touchscreen to identify 
surfaces for eye tracking.
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roadway. As discussed, only a subset of these stopped 
vehicles appeared in the same lane as the driven vehicle and 
thus required driver intervention to prevent a collision. In 
the low SA condition, the message was played 5 seconds 
(512 feet; 156 meters) prior to reaching the stopped vehicle. 
In the high SA condition, the first message was played 6.5 
seconds (656 feet; 200 meters) prior, and the follow-up 
message was played at 5 seconds. Timelines for each of the 
conditions can be seen in Figure 4. Only the sequences for 
the first two stopped cars are shown. This pattern of 
sequences was repeated for each stopped car during 
the simulation.

3.5. �Measures
We collected the following dependent measures:

	 1.	 Eye-tracking data: monitoring ratio (proportion of 
time spent looking at the driving scene) and 
monitoring frequency (rate at which visual attention 
is switched between areas of interest).

	 2.	 Heart rate data: number of heart beats per minute 
(bpm) and HRV (computed as Root Mean Square of 
the Successive Differences), measured with a heart 
rate monitor.

	 3.	 Driving data: simulated vehicle state (position, 
heading, velocity, yaw rate, and acceleration); 
proximity to the nearest upcoming stopped vehicle; 
participant take-over behavior, including steering 
input and pedal input

	 4.	 Participant secondary task engagement, including 
whether selection is correct, selection time, and total 
number of correct selections

	 5.	 Survey responses:
	 a.	 Pre-experiment
	 i.	 Demographic and driving experience
	 ii.	 Propensity to trust automation [37]
	 b.	 After each condition
	 i.	 Self-reported trust via trust in automation 

survey [27]
	 ii.	 Situation awareness via SART [39]

 FIGURE 4  Driving session timelines. During each session, the subject encountered four stopped vehicles. The timing of 
messages, corresponding to the SA condition, were relative to the appearance of each stopped vehicle and the calculated time-to-
collision (i.e., the “Overtake stopped car” marks). The timelines for the first two stopped cars repeated accordingly for the 
subsequent two stopped cars. SA situational awareness.
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TABLE 4 Conditions of the independent variable: auditory 
message content.

Condition Auditory Message Circumstance
Control None

Low SA “Stopped vehicle ahead” For all stopped vehicles

High SA “Stopped vehicle ahead” 
followed by

For all stopped vehicles

“No action needed” For stopped vehicles in a 
lane other than that of 
the driven vehicle

or

“Take control now” For stopped vehicles in 
the same lane as the 
driven vehicle

SA situational awareness.
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3.6. �Apparatus
We conducted the study using a static driving simulator with 
three screens. We used ANVEL [6] to create the virtual envi-
ronment and implement the automated driving behavior. 
The secondary task was administered on a 10.1-inch touch-
screen mounted to the right of the driver, in a position repre-
sentative of where a vehicle’s center console would be in an 
actual vehicle. We  used PEBL (Psychology Experiment 
Building Language) [26] to create this secondary task. 
A  head-mounted eye tracker collected participant gaze 
activity during the study. This device captures a video of the 
wearer’s field of view and of the wearer’s right eye. We used 
paper markers in conjunction with this software to define 
surfaces of interest, namely the three simulator monitors and 
the touchscreen. We also monitored heart rate and HRV 
during the study.

4. �Results
We employed SPSS (Statistical Package for the Social Sciences) 
version 24 mixed linear model package to conduct all our 
analysis. Mixed linear models are statistical models that 
contain both fixed and random effects in their estimations 
[43]. By modeling both fixed and random effects, they can 
accommodate data which is correlated or non-independent. 
Our data consisted of three conditions per participant. 
Therefore, each of the observations per condition was nested 
within an individual, violating one of the assumptions of 
ordinary least squares regarding the independence of observa-
tion. Mixed linear models can account for the lack of inde-
pendence. Table 5 contains the estimated marginal means and 

standard errors of all the analyzed measures. In the next 
sections, we discuss the analysis of each measure in greater 
detail in relation to its respective expected outcomes.

EO1: As we move from the control condition to the high 
SA condition, SA will increase.

We found significant differences among the three condi-
tions (see Table 5) with regard to SART-UOS (p = .03), less so 
with SART-DAR (p = .06) and SART-SAR (p = .07). We found 
no differences between the high SA and low SA conditions 
with regard to SART-DAR (p > .05) or SART-SAR (p > .05). 
However, both conditions were significantly different from 
the control condition with regard to SART-DAR (p < .05) and 
SART-SAR (p < .05). We found significant differences with 
regard to SART-UOS between the high condition and both 
the low (p < .05) and control (p < .05) conditions. There were 
no differences between the low and control conditions with 
regard to SART-UOS (p > .05). In summary, both levels of SA 
seem to reduce demands on attentional resource (SART-DAR) 
and increase supply of attentional resources (SART-SAR) 
when compared to the control condition. But, only the high 
SA condition led to increases in the understanding of the 
situation that were significant (p < .05).

We then calculated an overall score of SA based on similar 
procedures recommended by both Selcon and Taylor [36] and 
Taylor [39]. We calculated a composite SART score using the 
means of each subdimension following this formula: 
SA = SART-UOS + (SART-SAR – SART-DAR). When the 
means were compared, there were clear differences among the 
three conditions (p < .01). However, only the high SA condi-
tion was significantly different from the other conditions 
(p < .05). There was no significant difference between the low 
SA and control SA conditions. Overall, it appears that only 
the high SA condition leads to a significantly higher level of 
SA as measured by SART.

TABLE 5 Estimated marginal means and standard errors using mixed linear modeling; measures in bold are significant.

Category Measure Control Low SA High SA Significance
Situational 
awareness (SA)

SA: demand on attentional resources 
(SART-DAR)

2.8 (SE = .23) 2.3 (SE = 0.16) 2.2 (SE = 0.19) p = 0.06

SA: supply of attentional resources  
(SART-SAR)

3.6 (SE = 0.21) 3.9 (SE = 0.20) 2.2 (SD = 0.23) p = 0.07

SA: understanding (SART-UOS) 4.3 (SE = 0.27) 4.3 (SE = 0.24) 4.7 (SE = 0.23) p = 0.03*

SA: overall 7.9 (SE = 0.32) 8.2 (SE = 0.33) 8.9 (SE = 0.32) p = 0.00**

Trust Self-reported trust 27.8 (SE = 1.2) 30.6 (SE = 0.55) 31.3 (SE = 0.68) p = 0.02*

Behavioral Time to take control after stopped car 
appears (ms)

9,100 (SE = 510) 8,000 (SE = 590) 9,900 (SE = 500) p = 0.04*

In-lane distance from stopped car before 
lane change (meters)

97 (SE = 12) 130 (SE = 14) 85 (SE = 11) p = 0.048*

Physiological Monitoring ratio (proportion of time looking 
on-road)

0.180 (SE = 0.018) 0.120 (SE = 0.013) 0.125 (SE = 0.014) p = 0.025*

Monitoring frequency (Hz; frequency of 
switching fixation between on-road and 
off-road)

0.44 (SE = 0.05) 0.36 (SE = 0.05) 0.36 (SE = 0.04) p = 0.41

Heart rate (bpm) 110 (SE = 9.2) 110 (SE = 9.3) 120 (SE = 9.07) p = 0.81

HRV (ms) 650 (SE = 43) 590 (SE = 43) 620 (SE = 46) p = 0.63
SD standard deviation, SE standard error. P < .05 was significant.
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EO2: As we move from the control condition to the high 
SA condition, self-reported trust will increase.

Next, we examined the impact of the conditions on trust 
in the AV. The reliability of trust in automation was α = .86, 
well above the .70 requirement [28]. As seen in Table 5, the 
high SA condition had the highest mean of self-reported trust 
(31.3), followed by the low SA condition (30.6), and then the 
control condition (27.8). There were no differences between 
the high and low conditions (p > .05); however, the high and 
low conditions were both significantly different from the 
control condition (p < .05). In sum, the low and high SA condi-
tions led to higher trust in the AV than the control condition.

EO3a: As we move from the control condition to the high 
SA condition, behavioral measures of trust will increase.

We then examined trust in the form of behavioral measures. 
We used measures related to driver gaze behavior: (1a) moni-
toring ratio and (1b) monitoring frequency. “Monitoring” refers 
to the extent that the driver glanced at the driving scene. Surface 
trackers were located on the three computer monitors and the 
touchscreen. Glances, defined as a fixation of 120 milliseconds 
[ms] or longer [9], at the monitors were considered “on-road,” 
whereas all other glances were considered “off-road.” The eye-
tracking metrics were benchmarked against prior literature [12]. 
Monitoring ratio was measured as the proportion of time 
drivers spent looking at the road, while monitoring frequency 
was measured as the rate at which drivers switched their view 
between on-road and off-road.

The results showed a significant difference in monitoring 
ratio among the three conditions (see Table 5). Additional 
analysis showed significant differences at the .05 level between 
the control condition (.180; standard error [SE] = 0.018) and 
both the low SA condition (.120; SE = 0.013) and the high SA 
condition (.125; SE = 0.014). However, there were no differences 
between the low and high SA conditions. Differences in moni-
toring frequency were not significant across the three conditions.

Next, we examined two behavioral measures related to 
driving. The measures were operationalized in the form of 
two related variables: (1) the mean time participants waited 
before taking over control of the vehicle after the stopped car 
appeared and (2) the minimum distance between the driven 
vehicle and the stopped car before the drivers changed lanes. 
Larger values of (1) and small values of (2) are indications that 
participants trusted the vehicle enough to wait longer before 
actually taking control and changing lanes. Results show that 
participants waited longer to take over control after the car 
appeared in the high SA condition (mean = 9,900 ms; SE = 
500 ms) compared to the low SA condition (mean = 8,000 ms; 
SE = 590 ms). The difference was significant at p < .05. There 
were no such differences involving the high SA condition and 
the control condition (mean = 9,100 ms; SE = 510 ms). Note 
that in the low SA condition, the time between each stopped 
car appearing and the message playing was about 9 seconds. 
In the high SA condition, this difference was about 7.5 seconds.

Similarly, participants stayed in the lane longer before 
switching lanes in the high SA condition (mean = 85 meters 
[m]; SE = 11) compared to the low SA condition (mean = 
129 m; SE = 13). The difference was significant at p < .05. There 

were no such differences between the high SA condition and 
the control condition (mean = 97 m; SE = 12). In sum, in the 
high SA condition participants waited longer before taking 
control over the vehicle after the stopped car appeared and 
got closer to the stopped car before switching lanes than in 
the low condition. However, there were no such differences 
with respect to the control condition in either case.

EO3b: As we move from the control condition to the high 
SA condition, physiological measures of trust will increase.

We evaluated two physiological measures of trust. The 
first two measures related to heart rate: (2a) heart rate (bpm) 
and (2b) HRV (ms). As shown in Table 5, differences in heart 
rate and HRV among the three conditions were not significant.

EO4: As we move from the control condition to the high 
SA condition, the impact of trust on secondary task perfor-
mance should increase.

We developed three models with performance on the 
secondary task as the dependent variable. Secondary task 
performance was defined as the total number of search tasks 
the driver correctly completed during the driving simulation. 
Our goal was to examine if the impact of SA on secondary task 
performance was dependent on the driver’s trust in the 
autonomy. To accomplish this, we needed to demonstrate that 
not only was the moderation effect significant but also that its 
inclusion into our model provided a significant increase in our 
variance explained. Our first step was to assess how much of 
the variance was due to factors outside of our experimental 
variables. Model 1 only included demographic or control vari-
ables: hand preference, age, experience, and propensity to trust, 
which were not manipulated. Model 2 allowed us to assess the 
variance explained by adding in our experimental variables 
(i.e., trust in the AV and SA) along with the control variables. 
Model 3 included the moderation which we could compare 
against Model 2 to determine if the additional variance 
explained by the inclusion of the moderation was significant 
over and above the impacts of the control and experimental 
variables. All three models were linear as none included any 
polynomial variables. The results of Model 1, Model 2, and 
Model 3 can be seen in Tables 6, 7, and 8, respectively.

TABLE 6 Model 1 with only control variables. None of the 
control variables are significant.

Parameter Estimate SE df T Sig.
Lower 
Bound

Upper 
Bound

Intercept 145.21*** 2.94 22.97 49.31 0.00 139.12 151.31

Hand 
preference

13.37 16.42 22.97 0.81 0.42 −47.34 20.61

Age −10.32 6.62 22.97 −1.56 0.13 −24.00 3.37

Driver 
Experience

4.13 6.63 22.97 0.62 0.54 −9.58 17.85

Propensity 
to trust

1.57 3.01 22.97 0.52 0.61 −4.65 7.80

Dependent variable: performance on secondary task.
* p < .05.
** p < .01.
*** p < .001
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As shown in Table 8, the SA level moderated the impact 
on trust in the autonomy on secondary task performance 
(β = 3.83, p < .001). Figure 5 shows how secondary task perfor-
mance was affected by the SA condition and trust in the 
autonomy. Low trust is represented on the x-axis by one SD 
below the mean, while high trust is represented by one SD 
above the mean. As self-reported trust in the automation 
increases, its relationship with performance on the secondary 

task varies by the SA condition. In the high SA condition, 
trust had a strong positive impact on secondary task perfor-
mance. However, when there was no or low SA (i.e., in the 
control condition, or low SA), trust had little impact on 
secondary task performance. In sum, Figure 5 clearly shows 
that the effects of trust in automation on the performance of 
the secondary task are dependent on the SA condition.

Our results can be organized around four overarching 
findings. One, we found that only the high SA condition led to 
a significantly higher level of measured SA. This difference in 
SA seems to be in large part because of the differences in the 
“understanding of the situation” component of SA as measured 
by the SART. That is, the low SA condition was found to 
be inadequate to improve the drivers’ comprehension of the 
obstacles on the roadway. Two, the use of either the high or low 
SA condition led to increases in trust in automation over the 
control condition. Three, both the high SA and low SA condi-
tions led to more trusting behaviors as measured by monitoring 
ratio but not monitoring frequency, but the high SA condition 
led to significantly higher levels of trusting behavior as reflected 
in driver behavior when compared to the low SA condition. 
Unexpectedly, participants showed the least trusting behavior 
in the low SA condition and not the control condition. Finally, 
the impact of trust on the performance of the secondary task 
depended on the level of SA provided by the vehicle.

5. �Discussion
Overall, the results of this study contribute to the literature 
on trust in automation, particularized to AVs, in several ways. 
First, this study demonstrated the importance of driver assis-
tance systems in supporting SA to facilitate trust in automa-
tion. The ability of drivers to be aware of the driving situation 
is vital to encouraging the effective use of AVs. We provide 
evidence that driver assistance systems that support SA can 
have a positive impact on drivers’ trust in AVs.

Second, this research enhances our understanding of the 
importance of the level of SA supported by driver assistance 
systems. We  show that driver assistance systems need to 
include not only status updates but also projection about 
future events (the high SA condition) to improve the driver’s 
understanding of the situation. We also show that there are 
times when projection (high SA condition) has no clear 
benefits over providing the current status (low SA condition). 
For example, as discussed, there were no significant differ-
ences in self-reported trust between the low SA condition and 
the high SA conditions. This finding is important because 
projection (the high SA condition) might require the use of 
additional computational power. It might be important to 
know under what circumstances additional computational 
power is warranted, to help understand how to design better 
user interfaces to support SA (see [1]).

Although we expected differences between the low and 
high SA conditions, they were not always significant. There 
are at least two explanations. One explanation is that the 

TABLE 7 Model 2 with control variables and independent 
variables. Neither of the independent variables are significant.

Parameter Estimate SE df T Sig.
Lower 
Bound

Upper 
Bound

Intercept 144.75*** 3.06 22.30 0.00 138.42 151.09

Hand 
preference

10.82 17.02 23.33 47.33 0.53 −46.00 24.36

Age −9.60 6.78 22.67 0.00 0.17 −23.63 4.44

Driver 
Experience

3.54 6.80 22.74 -0.64 0.61 −10.54 17.62

Propensity 
to trust

0.77 3.16 24.70 0.53 0.81 −5.74 7.28

SA condition 
(SA)

0.32 1.31 27.47 −1.42 0.81 −2.36 3.00

Trust in 
autonomy 
(TA)

2.80 2.03 49.96 0.17 0.17 −1.28 6.88

Dependent variable: performance on secondary task.
* p < .05.
** p < .01.
*** p < .001.
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TABLE 8 Model 3 with control variables, independent 
variables, and moderation effect. The moderation effect of the 
two independent variables (SA and TA) is significant in 
predicting the performance of the secondary task.

Parameter Estimate SE df T Sig.
Lower 
Bound

Upper 
Bound

Intercept 143.16*** 3.06 23.441 46.718 0.00 136.83 149.49

Hand 
preference

−3.37 17 24.12 −0.198 0.85 −38.45 31.72

Age −8.13 6.69 22.836 −1.215 0.24 −21.97 5.72

Driver 
experience

2.29 6.71 22.918 0.342 0.74 −11.59 16.18

Propensity 
to trust

−0.91 3.16 25.424 −0.289 0.78 −7.41 5.58

SA 
condition 
(SA)

−0.29 1.19 27.286 −0.248 0.81 −2.72 2.14

Trust in 
autonomy 
(TA)

5.71*** 2.08 49.279 2.749 0.00 1.54 9.88

TA*SA 3.83*** 1.27 27.88 3.019 0.00 1.23 6.43
Dependent variable: performance on secondary task.
* p < .05.
** p < .01.
*** p < .001.
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benefits of projection (i.e., high SA) were not always impor-
tant relative to the benefits of just providing status updates 
(i.e., low SA). In other words, letting participants know that 
a vehicle was ahead was enough. Another explanation is that 
participants may have thought that the information provided 
by the low SA condition coupled with their own judgment 
was sufficient. This may explain why there were no signifi-
cant differences with regard to reported trust, but clear 
differences with regard to behavioral measures. One way to 
explore this line of inquiry is to conduct future research 
which varies the difficulty of the task. The differences 
between low and high SA may be  more apparent as the 
degree of task difficulty increases.

Third, surprisingly we found a disconnect between the 
self-reported trust and observed trusting behaviors. There was 
no difference between the high and low SA conditions with 
regard to trust in automation as measured by the self-reported 
survey. However, clear differences were observed between the 
two conditions with regard to trusting behaviors: time and 
distance to take control over the AV. In the high SA condition, 
participants waited longer and allowed the vehicle to come 
closer to the upcoming stopped vehicle before taking control, 
indicating a higher level of trust. Increases in waiting allowed 
participants to focus more on the secondary task and earn 
higher scores. Thus, the benefits of projection might not show 
up by asking participants how much they trust the AV, but 
rather by observing their driving behavior. Future research 
could include a deeper investigation in the relationship 
between trust and trusting behaviors.

We noticed a disconnect between self-reported trust and 
observed trusting behaviors in our study. This study is not the 
first to discover such differences. Scholars have found both 
strong [14] and weak relationships [23] between trust and 

trusting behaviors. In fact, there has long been discussions in 
the field of psychology dedicated to explaining why attitudes are 
often not related to their corresponding behaviors (see [45]). In 
our study, we found evidence of both a strong (i.e., monitoring 
ratio) and a weak (i.e., takeover time, distance to collision, HRV 
measures) relationship between self-reported trust and trusting 
behaviors. One explanation for our weak relationships with 
regard to takeover time and distance could be a disconnection 
between the participant’s attitude regarding trust and those 
measures. More specifically, we assumed that participants who 
trusted the automated driving system more would take over 
driving later at a much closer distance to collision than those 
who did not trust the automated driving system. However, for 
at least some participants, trusting the automated driving system 
may have had little to do with how long they waited before taking 
over the driving. An explanation for the non-significant relation-
ship between HRV and self-reported trust could be due to the 
task complexity involved in our study. We assumed that partici-
pants who trusted the automated driving system more would 
have significantly lower HRV measures. However, regardless of 
the level of trust, participants were actively engaged in a complex 
task which may have kept their heart rate consistent across all 
levels of trust. Future research could include a deeper investiga-
tion in the relationship between trust and trusting behaviors.

It was somewhat surprising to discover that there was no 
difference between the control and high SA condition with 
regard to the time and distance to take over. One might 
wonder about the relative benefits associated with the high 
SA vs. the control condition with regard to the two behavioral 
measures. However, the results related to the monitoring ratio 
may help us better interpret our results relative to the benefits 
of the high SA condition. More specifically, participants had 
a lower monitoring ratio in the high SA condition than in the 
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 FIGURE 5  Moderation of trust by the condition on the secondary task performance. We measured secondary task performance 
by the number of touchscreen tasks completed during the duration of the driving session. This figure shows that trust had a more 
significant influence on performance in the high SA condition as compared to the control condition. This effect was not observed in 
the low SA condition.
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control condition. This indicates that while participants may 
have waited as long to take over the driving and reached 
similar distances before switching lanes, in the high SA condi-
tion participants were able to spend more time focusing on 
the task and less time monitoring the road. Thus, there are 
significant potential benefits to the high SA condition.

Fourth, this study contributes to the literature by exam-
ining the driver performance on a secondary task. Prior 
studies have treated secondary tasks as distractions to avoid. 
However, to fully leverage an automated driving system, the 
driver needs to be able to fully engage in another task while 
the AV is driving. Yet, we know very little about the factors 
that might encourage the driver to effectively engage in 
another task under these conditions. Future studies should 
be conducted along this avenue to further our understanding.

Finally, we found that the effectiveness of trust in automa-
tion on the secondary task performance depends on the level 
of SA. Trust in automation alone did not appear to be sufficient 
to produce better performance. Simply put, trust is not 
enough. When participants trusted the AV and the vehicle 
supported their SA, they were able to fully leverage the capa-
bilities of the AV (see Figure 5). However, when participants 
trusted the AV and it did not project what was needed to 
be done in the future, the AV trust was not associated with 
better secondary task performance. This finding sheds new 
insights into when trusting the AV is important with regard 
to secondary task performance.

6. �Limitations 
and Conclusion

This study has several limitations. Our experimental study 
used a simulated environment. Participants may act and react 
differently in an actual vehicle in a less-controlled environ-
ment. Although there is some evidence which demonstrates 
that individuals respond similarly to both actual and simu-
lated environments [13], we acknowledge that the use of a 
simulator and the experimental setting are both potential 
limitations. The age, gender, and dominant hand of our partic-
ipants may have also been a limitation. The participants’ mean 
age was 25.7, 73% were male and 97% were right handed. 
Therefore, we should be cautious when attempting to gener-
alize the results of this study to other demographics. Another 
limitation of the study is that the participants lacked prior 
experience working with advanced vehicle safety features. 
According to prior research [47], people’s experience with an 
automated technology affects their trust in automation. To 
capture human drivers’ change in trust and behaviors over 
time, a longitudinal study would be required.

In conclusion, drivers are failing to fully leverage the AV 
because of a lack of trust. This study provides evidence that 
driver assistance systems that support SA can help alleviate 
this problem. Results of this study provide an interesting 
starting point. Yet, much more research is needed. We hope 
future research can build on the results of this study and 
expand our knowledge on this important topic.
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