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Abstract: Extracellular DNA is engulfed by innate 6 

immune cells and digested by endosomal DNase II 7 

to generate an immune response. Quantitative 8 

information on endosomal stage-specific cargo 9 

processing is a critical parameter to predict and 10 

model the innate immune response. Biochemical 11 

assays quantify endosomal processing but lack 12 

organelle-specific information, while fluorescence 13 

microscopy has provided the latter without the 14 

former. Here, we report a single molecule counting 15 

method based on fluorescence imaging that 16 

quantitatively maps endosomal processing of 17 

cargo DNA in innate immune cells with organelle-18 

specific resolution. Our studies reveal that 19 

endosomal DNA degradation occurs mainly in 20 

lysosomes and was negligible in late endosomes. 21 

This methodology is applicable to study cargo 22 

processing in diverse endocytic pathways and 23 

measure stage-specific activity of processing 24 

factors in endosomes. 25 

 26 

Macrophages are innate immune cells that 27 

endocytose single- and double-stranded DNA 28 

through scavenger receptors. Endocytosed DNA 29 

cargo is trafficked along the endolysosomal 30 

pathway, progressing from the early endosome to 31 

the late endosome, finally reaching the lysosome 32 

where it is degraded. The stage-specific processing  33 

of endocytic cargo has important implications for 34 

pathogen evasion of the immune system, antigen 35 

cross-presentation, as well as in differentiating 36 

“self” i.e., molecules of host origin, and non-self 37 

i.e., molecules of foreign or pathogenic origin (1–38 

3). DNA is distinguished as self or non-self by host 39 

immune cells based on their relative rates of 40 

digestion in endocytic organelles (2). 41 

Immunogenic CpG containing DNA (CpG-DNA) 42 

is processed in endolysosomes of dendritic cells by 43 

DNase II such that the digestion-resistant DNA 44 

fragments activate Toll like receptor-9 (TLR-9) (4). 45 

However, it is still unclear in which organelle these 46 

processes occur due to the paucity of quantitative 47 

assays in cargo processing while retaining 48 

organelle-specific localization information. 49 

Endosomal processing is mainly studied using 50 

biochemical assays such as sulfation, radio 51 

labeling, RT-PCR and transient or induced 52 

protein expression.(5–8)  While these methods 53 

quantitate cargo processing  in cell extracts 54 

lacking organelle-specific spatial information 55 

cannot be obtained.  In contrast, fluorescence 56 

microscopy provides organelle-specific spatial 57 

information but without the ability to quantitate 58 

endocytosed cargo (5,9,11,12,30). Although 59 

super-resolution microscopy has been used to 60 

quantitate marker proteins in organelles,(13,14) 61 

one still cannot quantitatively map the processing 62 

of endocytic cargo.   63 

 64 

Here, we have developed a method to count 65 

endosomal cargo by photobleaching by targeting 66 

fluorescently labeled DNA to specific subcellular 67 

compartments (15). Photobleaching has been used 68 

to count cytosolic microRNA copy number (16).  69 

Here, we expand this concept to include organelle-70 

specific information and thereby address cargo 71 

processing by developing a method called 72 

organellar single-molecule, high-resolution 73 

localization and counting (oSHiRLoC). Using 74 
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oSHiRLoC we combine the molecular precision 75 

afforded by synthetic DNA reporters, spatial 76 

information provided by fluorescence microscopy 77 

and the quantitative information yielded by 78 

photobleaching-based counting to map the DNase 79 

II-mediated DNA processing along the 80 

endolysomal pathway. 81 

 82 

  83 

Fig 1: Work flow for counting the number of cargo DNA 84 

molecules in endosomes of J774 cells. (a) Schematic illustration 85 

of a cell labeled with a 19:1 ratio of dsDNA-A488 (fiducial 86 

marker) : dsDNA-Cy5 (reporter) along the endolysosomal 87 

pathway. (b) Representative TIRF image of early endosomes (EE) 88 

of J774A.1 cells labeled with cargo DNA cocktail imaged in 89 

Alexa 488 channel and Cy5 channel. (c) Representative 90 

photobleaching steps measured in Cy5 channel for the highlighted 91 

endosome. (d) Histogram of number of photobleaching steps 92 

observed for n = 200 lysosomes. Number of devices per 93 

compartment = number of photobleaching steps observed × 94 

dilution factor. 95 

 96 

In order to construct organelle specific maps of 97 

endosomal DNA processing, we incubated (a 98 

“pulse” step) alveolar macrophages J774A.1 cells 99 

with a 57 base pair double-stranded (ds)DNA 100 

reporter cargo labeled with Alexa 488 (dsDNA-101 

A488)  in a mixture of 19:1 ratio of a reference 102 

tracer, i.e., the same dsDNA sequence labeled with 103 

Cy5 fluorophore (dsDNA-Cy5) (Figure 1a). Cells 104 

were washed, incubated for a specified duration (a 105 

“chase” step), fixed and imaged using total internal 106 

reflection fluorescence (TIRF) microscopy. The 107 

brighter, more photostable Alexa488 channel was 108 

used as a fiducial marker of the endocytic 109 

compartment; while the Cy5 channel was used to 110 

generate photobleaching reporter time traces, 111 

leveraging the low cellular autofluorescence in this 112 

channel (Figure 1b). Given the TIRF penetration 113 

depth of ~250 nm [29], approximately 51.66% of 114 

early endosomes (n=6 cells), 37.34% of late 115 

endosomes (n=5 cells) and 23.47% of lysosomes 116 

(n=5 cells) were found to be illuminated. To 117 

eliminate artefacts arising from autofluorescence, 118 

only those compartments with both Alexa 488 and 119 

Cy5 signal were analyzed. Since both DNA probes 120 

have identical sequences, and scavenger receptors 121 

uptake dsDNA mainly based on the overall 122 

negative charge (17), uptake efficiency and 123 

organelle localization is expected to be similar, 124 

with all organelles showing similar ratios of 125 

Cy5:Alexa488 labels (Supplementary Figure 9). 126 

Cy5-labeled ssDNA was not retained in endosomes, 127 

either due to its rapid degradation or endosomal 128 

translocation.(18) This worked in our favor, 129 

creating a clean system to report on the abundance 130 

of dsDNA cargo which does not undergo 131 

endosomal translocation (15). We then extracted 132 

the number of photobleaching steps for every Cy5 133 

time-trace (Figure 1c, Supplementary Figure 7). 134 

The average number of DNA duplexes in a given 135 

compartment, could then be computed from the 136 

product of the number of photobleaching steps 137 

observed and the probe dilution factor i.e., the ratio 138 

of dsDNA-A488 to dsDNA-Cy5 (Figure 1d).  139 

 140 

     To assign cargo DNA molecules to specific 141 

stages of endosomal maturation, we standardized 142 

pulse and chase times for cargo DNA to reach the 143 

early endosome, the late endosome and the 144 

lysosome in J774A.1 cells. Using transferrin-145 

Rhodamine B as a marker for early/sorting 146 

endosomes, (19,20) we found maximal 147 

colocalization of transferrin-Rhodamine B (500 148 

nM) and cargo DNA (500 nM) in early endosomes 149 

(Figure 2a and d) and no colocalization in late 150 

endosomes and lysosomes for a 10 min pulse 151 

followed by a ~5-10 min chase  (Supplementary 152 

Figure 1). Similarly, ovalbumin marks late 153 
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endosomes in J774A.1 cells.(8) We found 154 

significant cargo DNA colocalization with 155 

ovalbumin-FITC with a 10 min pulse and a 30 min 156 

chase highlighting significant localization in late 157 

endosomes (Figure 2b and e) and insignificant 158 

colocalization in early endosomes and lysosomes  159 

(Supplementary Figure 2). Finally for lysosomes, 160 

we used Dextran-TMR, which is known to mark 161 

lysosomes in J774A.1 cells using a 16 h pulse and 162 

a 4 h chase. Cells treated with cargo DNA and 163 

labeled with Dextran-TMR colocalized in 164 

lysosomes (Figure 2c and f) and the DNA cargo 165 

displayed lack of colocalization in early and late 166 

endosomes (Supplementary Figure 3). Next, we 167 

established that extraneously added dsDNA was 168 

endocytosed specifically via the scavenger receptor 169 

(SR) pathway by using a competition assay (17). 170 

We showed that Cy5 labeled cargo dsDNA (termed 171 

I4Cy5) uptake was competed out by 25-fold excess 172 

of maleylated BSA which targets SRs (Figure 2g). 173 

 174 

175 

Fig 2 | Trafficking of cargo DNA along endocytic pathways. (a) 176 

Representative single-plane confocal images showing co-177 

localization of cargo with various compartment markers (a-c).  178 

J774A.1 cells were co-pulsed with I4Cy5 and (a) EE/SE marker 179 

transferrin-Rhodamine B (TfRhod), (b) LE marker Ovalbumin-FITC 180 

(OvaFITC), and (c) Lysosomal marker Dextran-TMR (DexTMR) 181 

followed by 2 hours chase. Cell boundaries are demarcated by 182 

yellow outlines. (d-f) Quantification of co-localization (Pearson’s 183 

Correlation Coefficient, PCC) between cargo DNA and endosomal 184 

markers used in a-c. Values indicate mean of n~20 cells. (g) I4Cy5 185 

internalization by J774A.1 cells in the presence (+mBSA) and 186 

absence (−mBSA) of excess competitor ligand maleylated BSA 187 

(mBSA, 10 μM) with autofluorescence control (AF). Error bars 188 

indicate the mean of independent experiments ± s.e.m. (n=30 cells). 189 

Scale bars, 10 μm and 1 μm for inset. 190 

 191 

Knowing the time-points of residence of cargo 192 

DNA at each stage along the endolysosomal 193 

pathway, we mapped cargo DNA abundance as a 194 

function of endosomal maturation 195 

(Supplementary Figure 4). We observed that 196 

early endosomes showed two kinds of populations, 197 

with endosomes containing ~200 or ~700 198 

molecules. Overall, early endosomes showed a 199 

mean of 340 ± 60 cargo dsDNA molecules per 200 

endosome (Figure 3a, top panel, green line). As 201 

DNA is endocytosed via clathrin coated vesicles 202 

(~100 nm), we speculate the population of 203 

endosomes showing fewer cargo DNA molecules 204 

correspond to these smaller vesicles, while those 205 

endosomes showing larger amounts of cargo DNA 206 

could correspond to the larger sorting/early 207 

endosomes. Late endosomes revealed a fairly broad 208 

distribution of cargo DNA abundance with a mean 209 

of 320 ± 80 cargo dsDNA molecules per 210 

compartment (Figure 3a, middle panel, green 211 

line). Significantly, in lysosomes the abundance of 212 

cargo DNA molecules showed an overall decrease, 213 

with most compartments having a mean of 103 ± 7 214 

(Figure 3a, bottom panel, green line) cargo DNA 215 

molecules, indicative of degradation or processing.  216 

 217 

DNase II is known to be responsible for digestion 218 

of endocytosed DNA in macrophages. However, 219 

the specific endocytic organelle/s within which it is 220 

active, is still unknown.  To probe for organelle-221 

specific activity of DNase II in immune cells, we 222 

treated the cells with a well-characterized specific 223 

peptide inhibitor of DNase II, ID2-3, and 224 

performed molecule counting experiments at each 225 

stage of endosomal maturation (Supplementary 226 

Figure 5). Upon DNase II inhibitor treatment, 227 

counting experiments on early endosomes revealed 228 

that the mean abundance of cargo dsDNA 229 

molecules in early endosomes decreased to 233±12 230 

upon DNase II inhibition (Figure 3b) suggesting a 231 

possible slowdown of endosomal maturation but 232 

not uptake. However, single endosome information 233 

on cargo abundances revealed that the population 234 

containing ~200 cargo dsDNA molecules had 235 
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increased at the expense of the population 236 

containing ~700 cargo dsDNA molecules (P-value 237 

< 0.05). This suggests delayed endosomal 238 

maturation and homotypic fusion, as an overall 239 

decrease in DNA cargo due to degradation was not 240 

observed. Further, cargo DNA abundance in late 241 

endosomes (LE) was not affected by DNase II 242 

inhibition (Figure 3a, middle panel and 3b). 243 

Importantly, when we inhibited DNase II we 244 

observed a significant accumulation of undigested 245 

cargo DNA in lysosomes (Ly), showing a mean 246 

centered at 230 ± 80 cargo DNA molecules (Figure 247 

3a, bottom panel and 3b). Interestingly, our 248 

statistical data pinpoint that during DNase II 249 

inhibition, cells undergo reduced 250 

uptake/trafficking in the early endosomes 251 

(Supplementary Figure 8). This supports the 252 

current hypothesis (10) that DNase II based 253 

endosomal DNA processing occurs mainly in 254 

lysosomes (Figure 3c).  255 

 256 

 257 

 258 

Fig 3: Quantitative maps of endosomal DNA processing by 259 

single molecule counting. (a) Histograms of number of DNA 260 

devices observed per compartment in early endosomes (EE, 2 min 261 

post endocytosis), late endosomes (LE, 30 min post endocytosis) and 262 

lysosomes (Ly, 2h post endocytosis) in presence and absence of 10 263 

M Dnase II inhibitor within J774A.1 cells. (b) Average number of 264 

DNA devices per compartment as a function of time. Blue shade 265 

indicates EE, orange indicates LE while grey corresponds to Ly. 266 

Total number of devices per compartment (*N ) = number of 267 

photobleaching steps observed × dilution factor. n = 200 endosomes 268 

(duplicate) (c) Proposed model of DNase II activity in endosomes.  269 

 270 

     Further, delayed endosomal maturation  as a 271 

result of cargo accumulation in lysosomes is also 272 

observed in the context of several lysosomal 273 

storage disorders e.g., trafficking of acid 274 

sphingomyelinase (ASM) to the lysosome is 275 

impeded in ASM knock out cells due to lysosomal 276 

accumulation of sphingomyelin.(21) Undigested 277 

DNA in endosomes of immune cells comprises one 278 

of many important triggers of the immune response. 279 

In mice, defective digestion of chromosomal DNA 280 

activates phagocytes, leading to anaemia in the 281 

embryo and chronic arthritis in adults (22). 282 

Digestion of immunogenic CpG DNA in dendritic 283 

cells showed that endosomally localized DNase II 284 

activity is necessary to trigger TLR-9 mediated 285 

cytokine production.(4) Loss of DNase II activity 286 

results in autoimmune disorders such as systemic 287 

lupus erythomatosus, for which, one of the 288 

hallmarks is the production of autoantibodies 289 

against dsDNA.(22,23) Our capacity to model the 290 

immune response using predictive computational 291 

models has been hindered by our inability to 292 

accurately specify the location and abundance of 293 

ligands such as dsDNA that trigger the immune 294 

response. The endosomal load of unprocessed 295 

dsDNA cargo is a function of the rate of 296 

endocytosis, concentration of exogenous dsDNA, 297 

receptor density on plasma membrane and 298 

organelle-specific DNase II activity along the 299 

endolysosomal pathway.(4,24) Current methods to 300 

analyze DNA processing quantitate processing 301 

efficiency albeit without organelle-specific 302 

information, or organelle-specific information 303 

without the ability to quantitate processing. (25) 304 

       305 

      oSHiRLoC provides quantitative information 306 

on cargo DNA processing at an organellar 307 

resolution. Endosomal cargo quantification using 308 

oSHiRLoC is not limited to dsDNA, and can be 309 

applied to a range of externally added endocytic 310 

ligands. It can also be used to assay the location and 311 

activity of regulators of endosomal cargo 312 

processing. Given the burgeoning use of 313 

biologically active, synthetic DNA and RNA 314 

nanostructures, circulating endogenous DNA and 315 

RNA molecules, methods to understand their 316 

differential processing within the cell would be 317 

critical to uncover their mechanisms of action. The 318 

ability to determine the concentration of 319 

immunogens in specific endocytic organelles and 320 

correlate these with the strength of the 321 

downstream immune response would enable us to 322 

quantitatively model the immune response.  323 
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