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As a follow-up to genome-wide association analysis of common variants associated with ovarian carcinoma (cancer), our study

considers seven well-known ovarian cancer risk factors and their interactions with 28 genome-wide significant common genetic

variants. The interaction analyses were based on data from 9971 ovarian cancer cases and 15,566 controls from 17 case–
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control studies. Likelihood ratio and Wald tests for multiplicative interaction and for relative excess risk due to additive

interaction were used. The top multiplicative interaction was noted between oral contraceptive pill (OCP) use (ever vs. never)

and rs13255292 (p value = 3.48 × 10−4). Among women with the TT genotype for this variant, the odds ratio for OCP use was
0.53 (95% CI = 0.46–0.60) compared to 0.71 (95%CI = 0.66–0.77) for women with the CC genotype. When stratified by

duration of OCP use, women with 1–5 years of OCP use exhibited differential protective benefit across genotypes. However, no

interaction on either the multiplicative or additive scale was found to be statistically significant after multiple testing

correction. The results suggest that OCP use may offer increased benefit for women who are carriers of the T allele in

rs13255292. On the other hand, for women carrying the C allele in this variant, longer (5+ years) use of OCP may reduce the

impact of carrying the risk allele of this SNP. Replication of this finding is needed. The study presents a comprehensive

analytic framework for conducting gene–environment analysis in ovarian cancer.

What’s new?
Genetic and environmental risk factors for ovarian cancer have been identified separately but interactions between both

remain largely unexplored. The authors identified a new gene x environment interaction between oral contraceptive pill (OCP)

use and a single nucleotide polymorphism in the PVT1 gene, a long-noncoding RNA located on chromosome 8. The data

suggest that the protective benefit of OCP use may be strongest in women with the T allele of PVT1 underscoring the need to

tailor prevention strategies to individual genotypic profiles.

Introduction
Ovarian carcinoma (cancer) is a disease with high mortality;
most women are diagnosed with advanced stage disease where
five-year survival is less than 50%.1 Effective screening modal-
ities have been elusive,2 and therefore primary prevention
strategies remain the most promising avenue to minimize the
incidence and mortality of ovarian cancer.

Several factors consistently associated with reduced or
increased risk have been identified for ovarian cancer, including
some that represent opportunities for chemoprevention or surgi-
cal intervention. Factors associated with reduced risk include oral
contraceptive pill (OCP)3 use, aspirin use,4 tubal ligation,5

parity,3 salpingectomy6–9 and bilateral salpingo-oophorectomy
(BSO). Common germline genetic variation,10–20 first-degree
family history of ovarian cancer,21,22 menopausal hormone ther-
apy use,23–25 greater body mass index (BMI)26 and endometri-
osis27 are risk factors for the disease. OCPs and aspirin use
represent feasible chemoprevention strategies whereas salpingect-
omy is now recommended by many gynecologic societies as an
ovarian cancer prevention approach for women seeking tubal
sterilization, having a hysterectomy, or having other pelvic
surgery.

Average lifetime risk of ovarian cancer diagnosis for women
in the U.S. is 1.3%,28 but this number varies greatly depending
on the composite exposure history of risk factors.29 Pearce et al.
estimated the lifetime risk for women in the general population
ranges from 0.35% (95%CI = 0.29% to 0.42%) to 8.8% (95%
CI = 7.1% to 10.9%) depending on exposure history for six fac-
tors: OCP use, parity, tubal ligation, endometriosis, first degree
family history of ovarian cancer and genetic risk score quintile.29

However, these lifetime risk estimates were limited to six
risk factors and did not consider their interaction with

individual genetic variants identified through genome-wide
association studies (GWAS).28 The multiplicative scale is
commonly used for gene–environment interaction (G × E)
analysis. Additive interaction analysis has been suggested for
case–control studies in many recent papers for a more mecha-
nistic interpretation.30–34 Validity of a truly multiplicative
model implies existence of additive interaction when the two
factors under consideration have non-null main effects.35

Thus, failure to detect G × E interaction on multiplicative
scale may imply there exists interaction on additive scale, but
the ability to detect it depends on the sample size and the
main and interaction effect sizes.35 We present here our
efforts to evaluate both multiplicative and additive gene–
environment interactions in ovarian cancer using data from
the international Ovarian Cancer Association Consortium
(OCAC) comprising 17 case–control studies.

We have included 28 common genetic variants previously
associated with risk of ovarian cancer in genome-wide associa-
tion analyses for our G × E analyses.36 Environmental factors
included in our analysis are OCP use, parity, tubal ligation,
breastfeeding, menopausal hormone therapy, usual adult BMI,
and endometriosis. A small number of studies in OCAC had
data available on aspirin use and thus we have not included
this risk factor in our analysis here. Among our list of envi-
ronmental factors, BMI, OCP use, tubal ligation, breastfeed-
ing, and menopausal hormone therapy are of special interest
because they are modifiable targets for prevention.

Methods
Study population
The OCAC is an international multidisciplinary consortium
formed in 2005 (http://apps.ccge.medschl.cam.ac.uk/consortia/

2194 G x E analysis in ovarian cancer

Int. J. Cancer: 144, 2192–2205 (2019) © 2018 UICC

C
an

ce
r
G
en
et
ic
s
an

d
E
pi
ge
n
et
ic
s

http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/


ocac/) with a goal of sharing data from worldwide ovarian
cancer studies to establish reliable estimation of association
between environmental and genetic factors related to risk of
ovarian cancer.23,37 Cases were defined as women with ovar-
ian carcinoma (i.e., invasive epithelial ovarian cancers), fallo-
pian tube cancer and primary peritoneal cancer. Controls
were women without ovarian cancer and who had at least one
ovary. For both cases and controls, individuals with prior can-
cers except non-melanoma skin cancers were excluded.

Genetic association analysis
In total, 28 single nucleotide polymorphisms (SNPs) previ-
ously identified through GWAS were included from 75 OCAC
sites (Table 1). The first 26 SNPs were found to be signifi-
cantly associated with either ovarian cancer overall or one or
more histotypes.36 In addition, rs13255292 and rs10962643
were included because they were in the same region as two
other significant SNPs but showed a strong independent asso-
ciation with ovarian cancer risk. The SNP at locus 15q26
(rs8037137), which was found to be genome-wide signifi-
cant,13 was not included because not enough non-carriers
were present in our analytic dataset for examining interac-
tions. The genetic data included both genotyped and imputed
variants (imputation being carried out using phase 2 Hapmap
reference panel). More details regarding genotyping and
imputation of the genetic data have been previously
described.12,17,18,20 The methods for analyzing the SNP data in
the OCAC have also been described previously.12,17,18,20

Briefly, logistic regression models were fit to examine the asso-
ciation between ovarian cancer and each genetic variant under
an additive model (using risk allele dosage). The models were
adjusted for ethnicity, genotyping panel and the leading prin-
cipal components for each ethnicity. The summary results are
shown in Table 1 and are also available through the OCAC
website (http:/apps.ccge.medschl.cam.ac.uk/consortia/ocac/).

Environmental association analysis
Environmental variables (E). A total of seven established
environmental risk factors for ovarian cancer were of primary
interest (Table 2), including four associated with decreased
risk and three with increased risk for ovarian cancer or one
specific histotype. These included: OCP use, measured as both
ever/never and duration of OCP use (never users including <1
one year of use, 1- < 5, 5+ years), tubal ligation (yes/no),
breastfeeding (ever/never), parity (0, 1–2, 3+ full-term births
lasting ≥6 months), type of menopausal hormone therapy use
for more than 1 year after age 50 (never user, menopausal
estrogen therapy only, any use of menopausal estrogen + pro-
gestin therapy), BMI (<25, 25- <30, 30+), and a history of
endometriosis (yes/no).

Four other environmental variables were included in our
analysis, as covariates: baseline age (<50, 50- <55, 55- <60,
60- <65, 65–70, 70+ years), Ethnic group (non-Hispanic

white, Hispanic White, Black, Other), education (less than
high school, high school graduate, some college, college gradu-
ate) and first-degree family history of ovarian cancer (yes/no).
In addition to these four covariates, study site, OCP use, tubal
ligation, parity, BMI and endometriosis were also included in
all models for the environmental association analysis and gene
by environment interaction analysis.

Harmonization and imputation of environmental data. A
brief description of environmental data harmonization across
OCAC study sites is provided in eMethod 1 in the Supporting
Information. To optimize power and enhance the chance for
discovery, we carried out multiple imputation of the environ-
mental data. The maximal amount of data was used for
imputation (see eMethod 1 and eFig. 1 in the Supporting
Information for details). A total of 19 studies comprising
13,722 cases and 22,975 controls with partially missing data
were included for imputation. Of these 19 studies, 12 were
from the US, 4 from Europe, 2 from Canada and 1 from
Australia (see Supporting Information, eTable 1 for a descrip-
tion of study sites). Further details for these 19 studies have
been previously described (see Supporting Information). The
environmental variables included in our analysis were
multiply imputed by chained equations (MICE) to produce
10 imputed datasets. See details of imputation model in
eMethod 2.1 in the Supporting Information.

All analyses were performed on each of the 10 imputed
datasets, and coefficients/test statistics were properly com-
bined to account for uncertainty due to imputation, after the
recommended combination rule for multiply imputed data-
sets38 (see details in eMethod 2.3 in the Supporting Informa-
tion). Our marginal environmental association analysis was
based on combined inference from the 10 imputed versions of
this harmonized E data. Logistic regression models were used
for evaluating marginal associations between the environmen-
tal risk factors with ovarian cancer after adjusting for covari-
ate. The estimated ORs, their 95% CIs, as well as two-sided
Wald tests after accounting for imputation uncertainty are
presented in Table 2 along with summary statistics of com-
plete cases before imputation. Full results of the complete
cases analysis using logistic regression models are presented in
Supporting Information, eTable 2.

Gene by environment interaction analysis
After marginal analysis of the genetic and environmental risk
factors, we considered gene by environment (G × E) interac-
tion analysis both on the multiplicative (odds ratio/relative
risk) and the additive (relative excess risk due to interaction/
absolute risk) scale.39 From the 19 studies with imputed envi-
ronmental data, a subset of 17 case–control studies with 9971
cases and 15,566 controls had available genetic data, thus G ×
E analyses were carried out on these 17 studies. Each imputed
environmental dataset was merged with the genetic data for
subsequent G × E analyses. Interaction analyses were then
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carried out separately on the 10 imputed G × E datasets, and
then all tests and coefficients reported were combined using
appropriate multiple imputation combination rules.38

For both multiplicative and additive interaction analysis, we
started with global likelihood ratio tests (LRTs) for each G × E
pair as several environmental factors had multiple categories
resulting in tests for interactions with multiple degrees of freedom
(df). These global joint tests, serving as a screening step for G × E
interactions, were carried out for a total of 196 (7 × 28 = 196) G
× E pairs. After the global tests, we then followed up on the sug-
gestive interactions (with global test p value <0.2) and carried out
a two-sidedWald test for interactions involving each separate cat-
egory of an environmental risk factor.

For the k-th SNP Gk (k = 1, …, 28), coded as a continuous
allelic dosage, the j-th environmental risk factor Ej ( j = 1, …, 7),
and a set of confounders/covariates {Cq} (q = 1, …, Q), the

basic fitted model for the probability of ovarian cancer of the
i-th subject, namely, πi, is of the after form:

logit πi jGki,Eji,C1i,…,CQi

� �

¼ β0 + βGGki +
XL

l¼1

βElI Eji ¼ l
� �

+
XL

l¼1

βGElI Eji ¼ l
� �

Gki +
XQ

q¼1

XMq

m¼1

βCqmI Cqi ¼m
� �

,

ðM1Þ

where L = (levels of Ej) – 1, Mq = (levels of Cq) – 1, and Q is
the number of adjusted covariates.

Multiplicative interaction tests. For testing the multiplicative
interaction between Gk and Ej, we first used the global LRT
with L degrees of freedom to test for the joint null hypothesis

Table 1. Odds ratios for marginal associations of 28 genetic susceptibility variants with ovarian cancer.

SNP

Previously

published best hit1 Chr Position

Risk

Allele

Baseline

Allele RAF OR2 p Value2

rs12023270 rs5872217015 1 38,086,578 T C 0.264 1.08 (1.05,1.10) 2.65 × 10−8

chr2:111818658 rs216510918 2 111,818,658 C A 0.277 1.06 (1.04,1.09) 2.03 × 10−6

rs874898 rs75259014 2 113,974,196 C G 0.262 1.00 (0.98,1.03) 7.36 × 10−1*

rs1562314 rs71183014 2 177,045,560 T A 0.638 1.10 (1.07,1.13) 2.84 × 10−14

rs11207182018 3 138,849,110 allele 1 G 0.270 1.03 (1.00,1.06) 5.17 × 10−2*

chr3:156397692 rs6227404117 3 156,397,692 T C 0.048 1.47 (1.39,1.55) 7.73 × 10–47*

rs987020718 3 190,525,516 A G 0.666 1.05 (1.03,1.08) 2.95 × 10−5

rs7705526 rs1006969010 5 1,285,974 A C 0.343 1.10 (1.07,1.12) 5.52 × 10−14

chr5:66121089 rs55502517918 5 66,121,089 allele2 G 0.526 1.03 (1.00,1.05) 2.61 × 10−2*

chr8:82653644 8:8266881817 8 82,653,644 G A 0.064 1.18 (1.12,1.23) 3.25 × 10–12*

rs988665118 8 128,817,883 G A 0.435 1.06 (1.03,1.08) 2.89 × 10–6*

rs1325529218 NA 8 129,076,573 C T 0.700 1.07 (1.05,1.10) 3.57 × 10–8*

rs10103314 rs140048212 8 129,560,744 A C 0.883 1.15 (1.11,1.20) 5.76 × 10–15*

chr9:16915105 rs1096269220 9 16,915,105 C G 0.834 1.24 (1.20,1.28) 4.54 × 10–41*

rs10962643 NA 9 16,857,403 C A 0.699 1.17 (1.14,1.20) 1.13 × 10–35*

rs32020318 9 104,943,226 C A 0.842 1.03 (1.00,1.06) 5.21 × 10−2

chr9:13613876515 9 136,138,765 G allele 3 0.176 1.12 (1.08,1.15) 1.49 × 10–12*

rs7084454 rs14496237617 10 21,821,274 A G 0.301 1.07 (1.05,1.10) 3.32 × 10–8*

rs790258718 10 105,694,301 T C 0.091 1.08 (1.03,1.12) 4.54 × 10–4*

chr12:121403724 rs795324918 12 121,403,724 A G 0.570 1.05 (1.03,1.07) 2.58 × 10–5*

chr15:91531995 rs803713713 15 91,531,995 C T 0.829 1.08 (1.05,1.12) 1.18 × 10–6*

rs11658063 rs740577619 17 36,103,872 G C 0.614 1.04 (1.02,1.07) 2.98 × 10–4*

chr17:43552537 rs187958617 17 43,552,537 A G 0.164 1.12 (1.08,1.15) 2.22 × 10–12*

rs7217120 rs720782616 17 46,484,755 C T 0.275 1.10 (1.07,1.13) 8.69 × 10–13*

rs809824418 18 21,405,553 G A 0.741 1.04 (1.01,1.07) 4.23 × 10–3*

rs480807511 19 17,390,291 C T 0.268 1.13 (1.10,1.16) 1.49 × 10–20*

rs74597329 rs68818714 19 39,739,155 G T 0.301 1.02 (0.99,1.04) 2.63 × 10−1

rs600580718 22 28,934,313 T C 0.095 1.09 (1.04,1.13) 3.35 × 10–5*

Analysis used data with 26,864 cases and 48,034 controls from 75 study sites. Abbreviations: SNP, single-nucleotide polymorphism; RAF, risk allele
frequency; Chr, chromosome; OR, odds ratio; allele1, GCCAGATTCAGAAT; allele2, GACACACAC; allele3, GCGCCCACCACTA.
1 If not specified, the previously published best hit is the same as the current best hit.
2 Logistic regression for ovarian cancer overall (regardless of histology), adjusted for ethnicity, study panel and leading principal components for each
ethnicity (using a total of 47 principal components).
* p Value >0.01.
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H0: βGE1 = βGE2 = … = βGEL = 0. If the global test p value
<0.2, we further assessed the multiplicative interaction at each
level of Ej by using a Wald test with one degree of freedom
for the null hypothesis H0 : βGEl = 0 for the l-th level.

Additive interaction tests. Due to limitations of existing soft-
ware (CGEN)40 for testing additive interactions with continuous

dosage data, we used the maximal probable genotype for
imputed SNPs. We further conducted the LRTs with
binary collapsing of SNPs assuming a dominant genetic
susceptibility model (given the constraints in software).31

For a given SNP Gk and an environmental risk factor Ej
with L categories, a global LRT with L df was used for the
after joint null hypothesis

Table 2. Odds ratios for marginal associations of seven environmental risk factors with ovarian cancer risk with 13,722 cases and 22,975

controls from 19 study sites

Environmental risk factor

Before Imputation1 After Imputation2

Control Case Control Case OR3 p Value3

OCP use

Never 0.347 0.444 0.351 0.452 Ref

Ever 0.645 0.536 0.649 0.548 0.62 (0.59,0.66) 5.24 × 10−73

(missing) 0.008 0.020

Duration of OCP use

Never users (including <1 year) 0.425 0.542 0.430 0.554 Ref

1- <5 year 0.229 0.208 0.232 0.215 0.70 (0.66,0.74) 8.23 × 10−32

5+ year 0.332 0.222 0.338 0.231 0.48 (0.45,0.51) 2.20 × 10−133

(missing) 0.014 0.028

Tubal ligation

No 0.693 0.777 0.762 0.824 Ref

Yes 0.208 0.160 0.238 0.176 0.73 (0.69,0.78) 1.81 × 10−23

(missing) 0.098 0.063

Breastfeeding

No 0.239 0.294 0.380 0.515 Ref

Yes 0.532 0.410 0.620 0.485 0.76 (0.71,0.80) 4.80 × 10−21

(missing) 0.229 0.296

Parity (number of full-term births)

0 0.148 0.241 0.149 0.243 Ref

1–2 0.487 0.434 0.489 0.438 0.59 (0.55,0.63) 1.94 × 10−65

3+ 0.359 0.315 0.362 0.319 0.50 (0.46,0.53) 4.91 × 10−90

(missing) 0.006 0.011

Type of HT using more than 1 year after age 50

Never use 0.687 0.647 0.789 0.782 Ref

ET only 0.060 0.075 0.066 0.084 1.22 (1.12,1.34) 2.65 × 10−5

Any EPT 0.131 0.118 0.145 0.134 0.97 (0.90,1.04) 3.55 × 10−1

(missing) 0.121 0.160

BMI

<25 0.392 0.370 0.516 0.485 Ref

25- <30 0.209 0.213 0.284 0.286 1.03 (0.98,1.09) 2.55 × 10−1

30+ 0.144 0.174 0.200 0.229 1.15 (1.08,1.22) 6.11 × 10−6

(missing) 0.255 0.243

Endometriosis

No 0.703 0.695 0.937 0.902 Ref

Yes 0.047 0.076 0.063 0.098 1.60 (1.46,1.75) 3.41 × 10−23

(missing) 0.250 0.230

Abbreviations: OR, odds ratio; OCP, oral contraceptive pills; BMI, body mass index; HT, menopausal hormone therapy; ET, menopausal estrogen
therapy; EPT, menopausal estrogen + progestin therapy; Ref, reference group.
1 Harmonized environmental data before imputation. Results of the complete cases analysis are provided in Supporting Information eTable 2.
2 Based on 10 imputed E datasets.
3 Logistic regression model adjusted for reference age, Ethnic group, education, family history, OCP use, tubal ligation, parity, BMI, endometriosis and
study site.
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H0 :
exp βE1ð Þ+ exp βGð Þ−1f g

exp βE1 + βGð Þ ¼ exp βGE1ð Þ,

…,
exp βELð Þ+ exp βGð Þ−1f g

exp βEL + βGð Þ ¼ exp βGELð Þ,

where the regression coefficients (β) are log odds ratio parame-
ters described in model [M1]. This null hypothesis is based on a
rare disease assumption,41 which is tenable for our study (life-
time risk of ovarian cancer in the US is approximately 1.3%).42

If the global LRT p value <0.2, we further assessed the additive
interaction at each level of Ej through the relative excess risk
due to interaction (RERI).41 At the l-h level of Ej, a Wald test
with one degree of freedom35 was used to test for the null
hypothesis:H0:RERIGEl=0,whereRERIGEl= exp (βEl+ βGEl+βG)
− exp (βEl) − exp (βG) + 1.

After the screening step, we further explored the structure
of the most promising interactions (defined as global test
p value <0.01). This was accomplished by exploring odds
ratios corresponding to E in sub-groups defined by G (for the
multiplicative interaction) or absolute risks for ovarian cancer
in each configuration of the values of (G, E) (for the additive
interaction). To better understand these two different scales of
interaction, we also compared the observed joint ORs with the
corresponding expected ORs under the multiplicative and the
additive nulls.

To estimate sub-group specific absolute risk (AR) for each
stratum defined by a given SNP Gk and environmental risk
factor, we need the relative risk and the joint distribution of
Gk and Ej. The former was estimated from the fitted model
[M1], and the latter was empirically estimated from the
observed joint frequency of Ej and Gk in the control popula-
tion (details in eMethod3 from the Supporting Information).
Table 4 presents the bootstrap confidence intervals for the
estimated ARs and the risk differences (RDs) (see details in
eMethod4 in the Supporting Information). The results for G
× E analysis are presented in Table 3 (multiplicative interac-
tion), Table 4 (additive interaction) and Supporting Informa-
tion, eTable 5 (observed and expected joint OR under the two
different nulls). All calculations were performed in the statisti-
cal software R.30,40

Results
The marginal G analysis was carried out on 26,864 cases and
48,034 controls and the results are shown in Table 1. These
results are available through the OCAC website (http://apps.
ccge.medschl.cam.ac.uk/consortia/ocac/). A total of 36,697
women with 13,722 ovarian cancer cases from 19 sites were
included in the marginal E analysis using the imputed data-
sets. All seven environmental risk factors were associated with
ovarian cancer in the expected direction (Table 2). OCP use
for five or more years was associated with a 52% decrease in
risk of ovarian cancer compared to never users (OR = 0.48,
95%CI = 0.45 to 0.51). Tubal ligation (OR = 0.73, 95%CI = 0.69

to 0.78) and breastfeeding (OR = 0.76, 95%CI = 0.71 to 0.80)
showed similar magnitudes of decreased risk. Also, having
more than 3 children (vs. none) was associated with a 50%
(OR = 0.5, 95%CI = 0.46 to 0.53) reduction in risk of ovarian
cancer. Using menopausal estrogen therapy only for more
than one year (OR = 1.22, 95%CI = 1.12 to 1.34), being obese
(OR = 1.15, 95%CI = 1.08 to 1.22), and history of endometri-
osis (OR = 1.60, 95%CI = 1.46 to 1.75) were all associated
with increased risk of ovarian cancer. The inference remained
robust before and after imputation (Supporting Information,
eTable 2.).

Gene by environment interaction results
Global likelihood ratio tests. The global LRT essentially serves
as a screening approach to identify a list of potentially interest-
ing interactions. All interactions with global LRT p value <0.2
(40 on multiplicative scale and 41 on additive scale) are listed in
Supporting Information, eTable 3, while more detailed analysis
of the top interactions, which showed the strongest significance
(p value < 0.01; 4 on multiplicative and 2 on additive scale), are
shown in Tables 3 and 4, respectively.

According to Global LRT results, the top interaction on
the multiplicative scale was identified with the SNP
rs13255292 and OCP use (ever and never use: p value = 3.48
× 10−4; duration of use [<1 year, 1–5 years, 5+ years]:
p value = 7.26 × 10−3) (Table 3). None of the observed inter-
actions were significant based on a Bonferroni threshold of
0.05/(28 × 7) = 2.55 × 10−4.

Wald tests for multiplicative interactions. For the most
promising multiplicative interactions reported in Table 3 we
carried out an in-depth analysis to better understand the struc-
ture of interactions by estimating the ORs (with accompanying
Wald CIs and tests) corresponding to E in strata defined by
G. For example, the OR for OCP use among women with the
TT genotype for rs13255292 is estimated to be 0.53 (95%
CI = 0.46 to 0.60), whereas for the CC genotype the estimated
OR is 0.71 (95%CI = 0.66 to 0.77) suggesting a stronger protec-
tive effect of OCP use among TT genotypes (Table 3, Fig. 1a).

When OCP use was further stratified by duration, we
observed an interesting pattern in its interaction with
rs13255292. The estimated OR corresponding to 1–5 year of
OCP use vs. <1 year use in the TT genotype group was 0.58
(95%CI = 0.50 to 0.69) compared to an OR of 0.79 (95%
CI = 0.72 to 0.87) among women with CC genotype, showing
effect modification by the risk allele (C) of rs13255292
(Table 3, Fig. 1b). This is akin to the result with ever/never
user. However, the OR corresponding to 5+ years of OCP use
vs. <1 year of use for the TT genotype group was 0.43 (95%
CI = 0.37 to 0.50) and for the CC genotype was 0.53 (95%
CI = 0.49 to 0.58) (Table 3, Fig. 1c). With overlapping confi-
dence intervals, there is no significant difference in the odds
ratios for long-term OCP users across genotype sub-groups.
Table 3 shows that the p value of the Wald test for interaction
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of rs13255292 and 1–5 years of OCP use (vs. <1 year) was
lower (p value = 4.74 × 10−3), when compared to the p value
for interaction of the same variant with 5+ years of OCP use
(vs. <1 year) (p value = 2.43 × 10−2).

Wald test for additive interaction/RERI. For the most sta-
tistically significant additive interactions in Table 4, we esti-
mated the sub-group specific absolute risks (ARs) and risk

differences (RDs) in each E by G stratum. For example, for
the strongest additive interaction based on the global likeli-
hood ratio tests in Table 4, there was suggestive evidence that
rs11658063 modified the effect of menopausal estrogen ther-
apy use, compared to never use of menopausal hormone ther-
apy (p value = 3.01 × 10−2). Among women with the GG
genotype, never users of menopausal hormone therapy had an
estimated AR of 1.33% (95%CI = 1.26% to 1.40%) while

Figure 1. (a–c) ORs of oral contraceptive (OCP) use, marginally, or stratified by number of risk allele of rs13255292. The ORs were calculated
from a logistic regression model assuming log-additive effect of SNPs. (a) OR of OCP (ever vs. never) (b) OR of 1 to 5 years of OCP use
(vs. <1 year) (c) OR of more than 5 years of OCP use (vs. <1 year).
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women who used menopausal estrogen therapy had an esti-
mated AR of 1.96% (95%CI = 1.59% to 2.33%), leading to an
absolute risk increase of 0.63% (95%CI = 0.24% to 1.02%)
(Table 4, eFig. 2, Supporting Information).

For women with the CC genotype, the estimated AR was
1.27% (95%CI = 1.23% to 1.32%) for never receiving meno-
pausal hormone therapy and 1.36% (95%CI = 1.15% to
1.57%) for receiving menopausal estrogen only therapy. This
implies virtually no increased risk from taking menopausal
estrogen only therapy among women with the CC genotype
(95%CI = −0.14% to 0.31%; Table 4, eFig. 2, Supporting
Information). The results on the additive interactions were in
general weaker in terms of the strength of p values.

Discussion
We have conducted a comprehensive multiplicative and addi-
tive interaction analysis of previously identified common
genetic variants and environmental factors unequivocally
associated with ovarian cancer risk. We observed six sugges-
tive interactions (with p value <0.01), four on the multiplica-
tive scale and two on the additive scale. The lack of statistical
significance of interactions after multiple testing correction
from a large collection of data and well-curated studies enable
us to conclude that it is unlikely that there are substantive
interactions with single variants and environmental factors
regardless of the choice of scale. This is consistent with what
has been observed for other cancers. One may argue that the
Bonferroni threshold for multiple comparisons is likely to be
conservative for this set of correlated environmental factors,
but the general pattern of findings remains consistent with
smaller magnitude of interaction effect sizes. However, there
are several interesting findings from this analysis that may be
worthwhile to follow-up in future G × E studies of ovarian
cancer.

Mechanistic insight. In addition to guiding targeted preven-
tion strategies, G × E analysis has the potential to provide
mechanistic insight into the complex multifactorial structure
of the underlying biological pathway. One issue complicating
observed gene–environment interactions of even confirmed
susceptibility loci is that the true casual alleles and the bio-
logical impact of the variants are unknown. Our top interac-
tion is between OCP use and rs13255292. This variant lies in
the 8q24 region which harbors several risk loci for ovarian
cancer18 and other cancers.43,44 The SNP is in the PVT1 gene
which interacts with the oncogene MYC.45 MYC has long
been reported to be at least in part under hormonal control46,47

thus an interaction with OCP use is plausible. Conversely, our
top additive interaction is between menopausal estrogen use
and rs11658063 which falls in HNF1B. To our knowledge there
is no relationship between HNF1B and hormones thus under-
scoring the difficulty of understanding these gene–environment
interactions given our limited understanding of the function of

the variants and even more broadly the biological role of the
genes.

Exposure pathways and potential for targeted prevention. The
strongest interactions are observed with OCP use or meno-
pausal estrogen use which are modifiable exposures. Our most
promising finding is the potential interaction between SNP
rs13255292 and OCP use. This finding, if replicated could
potentially lead to improved understanding of exposure
pathways.

Analytic architecture and the choice of scale for measuring
interaction. We present a comprehensive analytical framework
to carry out post-GWAS G × E analysis on both multiplicative
and additive scale. Our framework starting with data harmoniza-
tion and imputation followed by global likelihood ratio tests and
single df Wald tests provides a principled analytic architecture
for such analysis. Our analysis reiterates the well-known fact that
testing the additive and multiplicative nulls are very similar
when the marginal associations are weak but could depart when
both marginal associations are large in magnitude and the sam-
ple size is finite. In Supporting Information, eTable 5, we present
observed joint odds ratios for strata defined by G and E along
with the expected odds ratios under the multiplicative null and
the additive null. We use our top hit rs13255292 and OCP use
(ever vs. never) and length of OCP use (<1 year, 1- <5 years, 5+
years) as an illustration. One can note that the expected ORs are
fairly close under both models. However, their estimated depar-
ture from the observed joint OR is more pronounced for the
1- <5 years sub-group when compared to 5+ years, explaining
the suggestive evidence for rejecting the null.

We discussed the multiplicative interaction results for
rs13255292 and OCP use in the previous section. We now
explore the structure of additive interaction for this G × E
result (Fig. 2a,c). Marginally, without including any genetic
information, from a pure environmental association analysis
we observed a relationship between duration of OCP use and
risk reduction for ovarian cancer. For 1–5 years of OCP use
(vs. <1 year) the estimated absolute risk difference was 0.47%
(95%CI = 0.37% to 0.56%), while the estimated absolute risk
difference for long-term use of OCPs (5+ year vs. <1 year)
was 0.84% (95%CI = 0.77% to 0.92%) (Fig. 2b,c, Supporting
Information, eTable 4), in agreement with previous findings
that longer duration of OCP use is associated with larger risk
reduction in ovarian cancer.3 However, when stratified by
rs13255292 genotype, we observed an interesting pattern.
Among individuals with TT genotype, the corresponding
absolute risk difference estimate for 1–5 year of OCP use (vs.
<1 year) was 0.69% (95%CI = 0.49% to 0.88%), whereas
among individuals with CC genotypes the corresponding risk
reduction estimate was 0.36% (95%CI = 0.22% to 0.50%),
implying potential effect modification by the C allele at locus
rs13255292 (p value = 1.12 × 10−2) (Fig. 2b, Supporting Infor-
mation, eTable 4). In contrast, the absolute risk difference is

2202 G x E analysis in ovarian cancer

Int. J. Cancer: 144, 2192–2205 (2019) © 2018 UICC

C
an

ce
r
G
en
et
ic
s
an

d
E
pi
ge
n
et
ic
s



Figure 2. Estimated absolute risk (AR) of ovarian cancer given OCP use and number of copies of C allele, among non-Hispanic white college
graduates aged below 50 with no family history of ovarian cancer, BMI below 25, no tubal ligation, no endometriosis, with one child. The ARs
were calculated from a logistic regression model assuming log-additive effect of SNPs while all covariates fixed at their most frequent level as
described above. (a) ARs stratified by OCP (ever vs. never) and genotype (b) ARs stratified by 1 to 5 years of OCP use (vs. <1 year) and
genotype (F) ARs stratified by more than 5 years of OCP use (vs. <1 year) and genotype. Risk differences were also reported as the solid
black bar.
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estimated at 0.95% (95%CI = 0.78% to 1.12%) for women with
TT genotype and at 0.79% (95%CI = 0.69% to 0.90%) in
women with CC genotype. This indicates that longer OC use
is associated with greater risk reduction overall and the risk
reduction might be even greater for women with the TT geno-
type than those with the CC genotype. From Fig. 2b,c, we
observe the interplay between “nature vs. nurture” with risk
due to germline genetic mutations offset by long-term use of a
modifiable protective factor. This analysis also highlights the
benefit of measuring duration of exposure as opposed to a
coarse indicator of ever/never use.

Prior work in G × E for ovarian cancer has focused
solely on multiplicative interactions. We previously reported
no departures from a multiplicative model with the first six risk
loci identified through GWAS with a reduced set of exposures.3

Follow-up work identified an interaction with menopausal
estrogen therapy use and rs10069690 in the TERT gene,48 but
that finding was not replicated in the present analysis which
included a larger set of studies. Fridley and colleagues have
reported on G × E taking a candidate gene approach with sev-
eral promising findings.49 There are several studies in other
cancers examining G × E on the multiplicative scale with lim-
ited success in identifying interactions, but to our knowledge,
only prostate cancer and bladder cancer have been studied on
the additive scale. In prostate cancer, suggestive additive inter-
actions between vitamin D, confirmed genetic variants and risk
have been identified.50 In bladder cancer, additive interaction
has been explored between confirmed genetic loci and smoking
with risk of disease.31 In this work the authors were able to
demonstrate that the absolute risk of bladder cancer for current
smokers varied from 2.9% to 9.9% based on the polygenic risk
score quartile. These results are similar to our findings on the
additive scale with absolute risk differing based on genetics and
hormone therapy use; an interesting next step for our work is
to consider the polygenic risk score for all of these confirmed
ovarian cancer susceptibility alleles.

There are several limitations of the current analysis. Though
we considered both multiplicative and additive interactions,
the logistic model in (M1) is linear in covariates and exposures.
We ignored potential non-linearity and exposure × exposure
as well as exposure × covariate interactions. Similarly, we
ignored any higher order interactions. A completely non-
parametric machine learning approach, based on a recursive
partition of the predictor space may avoid misspecification of
the model, but would lack interpretability from an epidemio-
logic and public health perspective. We also acknowledge that
this exploration of interaction is purely statistical, a more
causal interpretation in a biological sense will require functional
validation. One may also want to explore G × E interaction with
loci that are not significant at genome-wide threshold but are
significant at a less stringent threshold or even conduct genome-
wide G × E scans.

The associations between ovarian cancer risk and some of
the variants included here were limited to specific histotypes

of ovarian cancer, however we have only presented results for
all epithelial ovarian cancers combined. Developing histotype-
specific risk stratification approaches is not feasible because
for any given histotype the absolute risk is unlikely to ever
reach an actionable threshold on a population level. In addi-
tion, risk reducing strategies are the same across histotypes
and thus there is little benefit to considering histotype specific
results from a precision prevention perspective. Heteroge-
neous associations between environmental risk factors and
ovarian cancer risk by histology has previously been well
characterized.3,23,27 There is value in understanding histotype
associations for disease etiology and mechanisms and this will
be the focus of future work.

The analyses presented here offer insight into potential bio-
logical mechanisms, opportunities for ovarian cancer risk
stratification, and approaches to studying gene–environment
interactions. Ideally, replication for the six promising findings
would be undertaken, but this is challenging with ovarian cancer
given that most studies with the relevant data are included here.
Functional studies for the regions harboring our most promising
findings are underway and it is possible that the association
described here may help inform those investigations 51. Also,
gene–environment interaction analyses can also be used to iden-
tify novel genetic associations51 and thus a deeper evaluation of
variants that are still borderline significant, but do not exactly
achieve a genome-wide threshold is warranted for subsequent G
× E analysis. Of particular interest will be to conduct risk strati-
fication and risk prediction analysis using a summative poly-
genic risk score and to conduct an agnostic genome-wide search
for G × E interaction. Despite the limitations the comprehensive
framework of data harmonization, imputation, screening test
followed by characterization of effect and risk estimates that has
been used in this analysis can serve as a robust model for future
gene–environment interaction analyses.
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